
Copyright applies. A non-exclusive, non-transferable and limited 
right to use is granted. This document is intended solely for 
personal, non-commercial use.

Terms of Use

Aubram, D., Rackwitz, F., & Savidis, S. A. (2017). Contribution to the Non-Lagrangian Formulation of 
Geotechnical and Geomechanical Processes.  In: Triantafyllidis T. (eds) Holistic Simulation of Geotechnical 
Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 82. Springer, Cham. 
https://doi.org/10.1007/978-3-319-52590-7_3

Daniel Aubram, Frank Rackwitz, Stavros A. Savidis

Contribution to the Non-Lagrangian 
Formulation of Geotechnical and 
Geomechanical Processes

Chapter in book   | Accepted manuscript (Postprint)
This version is available at https://doi.org/10.14279/depositonce-9149



Contribution to the Non-Lagrangian
Formulation of Geotechnical and Geomechanical

Processes

Daniel Aubram, Frank Rackwitz, and Stavros A. Savidis

Chair of Soil Mechanics and Geotechnical Engineering, Technische Universität Berlin
(TU Berlin), Secr. TIB1-B7, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany

Abstract. Numerical simulations of geomechanical and geotechnical pro-
cesses, such as vibro-injection pile installation, require suitable algo-
rithms and sufficiently realistic models. These models have to account
for large deformations, the evolution of material interfaces including free
surfaces and contact interfaces, for granular material behavior in differ-
ent flow regimes as well as for the interaction of the different materials
and phases. Although the traditional Lagrangian formulation is well-
suited to handling complex material behavior and maintaining material
interfaces, it generally cannot represent large deformation, shear and
vorticity. This is because in Lagrangian numerical methods the storage
points (nodes resp. material points) move with the local material velocity,
which may cause mesh tangling resp. clustering of points. The present
contribution addresses the development of models for geotechnical and
geomechanical processes by utilizing Eulerian and Arbitrary Lagrangian-
Eulerian (ALE) formulations. Such non-Lagrangian viewpoints introduce
additional difficulties which are discussed in detail. In particular, we in-
vestigate how to track interfaces and to model interaction of different
materials with respect to an arbitrarily moving control volume, and how
to validate non-Lagrangian numerical models by small-scale experimen-
tal tests.

Keywords: large deformations; mixture; granular material; sand; vol-
ume averaging; closure model; interface reconstruction; Eulerian; multi-
material ALE

1 Introduction and Literature Review

1.1 Geotechnical and Geomechanical Processes

During the last decade there has been an increasing interest in gaining broad
understanding of the mechanisms associated with geotechnical installation pro-
cesses, and how they influence the strength and stiffness characteristics of the
soil [79,155]. The main objective of the DFG Research Unit FOR 1136 GeoTech
[156, 157], with which the authors collaborate in the context of Subproject 5, is
the provision of suitable methods for numerical simulation of such processes in
order to predict the deformations of supporting systems and nearby structures.
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Geotechnical installation processes, like pile driving, vibro replacement, or
pressure grouting, generally involve large deformations and material flow, the
evolution of material interfaces including free surfaces and contact interfaces, as
well as the dynamical interaction of multiple, physically distinct materials on a
hierarchy of spatial scales [14,21,118,141]; see Fig. 1. In particular, the complex-
ity in the behavior of the soil is attributable to its granular nature and internal
structure, and to the presence of multiple phases (solid, liquid and gas). The
grain-fluid mixture is generally subject to different flow regimes and undergoes
changes in phase composition and internal structure depending on the dynamics
of the geotechnical process [17,22]

The mechanisms and phenomena associated with geotechnical installation
processes, except perhaps for the significance of soil-structure-interaction, are
similar to those of geomechanical or geomorphological flows, for example, avalan-
ches and debris flows [87,90,92,130,133], submarine landslides [103,114], and soil
liquefaction [97,145]. Although the objectives of geomorphologists and geotech-
nical engineers in studying these phenomena may be somewhat different, both
need reliable continuum mechanical models and validated numerical methods
for prediction. Both also agree that multi-phase rather than single-phase or rhe-
ological approaches should be applied to capture the complexity of evolving
geomaterial behavior [87,91,176].

1.2 Lagrangian Formulation

Geotechnical engineers have been traditionally concerned with accurate deter-
mination of soil failure conditions and small deformations that may affect struc-
tures. For such situations the Lagrangian formulation of the governing equations
(balance equations, constitutive models, etc.) and their discrete counterparts is
well-suited because it naturally handles complex material behavior and main-
tains material interfaces [57, 99, 144, 176]. Lagrangian formulations have also
been employed to study large deformation problems in geotechnical engineer-
ing [41,49,50,84,109] as well as geomechanical or granular flows [49,90,139]; see
also [148].

The discretizations in Lagrangian methods are either mesh-based, like in the
finite element method (FEM) [27,174], or point-based, like in the material point
method (MPM) [25, 150] or smoothed particle hydrodynamics (SPH) [72, 105].
The major drawback of Lagrangian approaches is that they cannot represent
large deformation, shear and vorticity without serious losses in accuracy and/or
efficiency. This is because the storage points (mesh nodes resp. material points)
move with the local material velocity, which may cause mesh distortion resp. clus-
tering of points [34, 110]; we remark that some point-based methods rely on a
spatially fixed background mesh, but the solution variables are attributed to
Lagrangian point masses. Severe local deformations may change the topology
of the material, e.g. by creating new free surfaces, and thus can hardly be ad-
dressed by Lagrangian meshes without rezoning (remeshing). In such extreme
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situations, which are likely to occur in geotechnical and geomechanical processes,
calculations slow down or even terminate.

1.3 Non-Lagrangian Formulations

Definitions and Basic Relations In our research work we pursue a non-
Lagrangian approach to overcome the limitations of a Lagrangian calculation.
A non-Lagrangian formulation is one where the domain of reference or a control
volume moves at a velocity different from the material velocity. The reference
domain is an independent continuum made up of reference points, and which
is approximated by the computational mesh in numerical simulations. By def-
inition, the mesh topology (connectivity) does not change, which distinguishes
non-Lagrangian approaches from those Lagrangian techniques employing manual
or automatic rezoning of the mesh.

In a non-Lagrangian approach the reference domain can be fixed in space as in
the Eulerian formulation, or may move arbitrarily as in the arbitrary Lagrangian-
Eulerian (ALE) formulation [13,14,34]. Fig. 2 illustrates the different concepts.
The ALE idea has been invented in the 1960-70’s [82, 160, 161]. Accordingly,
the spatial description of any scalar, vector or tensor field, q, is related to its
referential or ALE description q̂ by the composition q̂ = q ◦ Φ, where Φ is the
relative motion that maps reference points onto spatial points currently occupied
by the material. The material descriptionQ of the field is obtained fromQ = q◦ϕ,
where ϕ is the material motion. Taking the material time derivative of q = q̂◦Φ−1

leads to the fundamental ALE operator

q̇ = ∂q̂

∂t
◦ Φ−1 + c ·∇q , with q̇ = ∂Q

∂t
◦ ϕ−1 def= h(. . .) . (1)

The first term on the right side of the first equation represents the time derivative
of q with respect to fixed reference points. The second term, called the convective
term, stems from the relative motion between the material and the reference
domain and involves the so-called convective velocity c. Finally, h(. . .) is a source
or an evolution equation for the field q under consideration.

The Lagrangian and Eulerian formulations are only two special cases of the
ALE formulation. In the Eulerian formulation, c = v = ∂ϕ/∂t represents the
material velocity, and Φ = id, for which (1) reduces to the common material time
derivative. On the other hand, if the motion of the reference domain coincides
with that of the material (i.e. c = 0 and Φ = ϕ), then the Lagrangian formulation
is obtained. However, in the present work we are concerned with formulations
which are essentially non-Lagrangian (Fig. 2).

Advection Algorithms The change from a Lagrangian to a non-Lagrangian
viewpoint introduces two main difficulties: the presence of convective terms in
the time derivatives and the problem of tracking material interfaces. The first
difficulty is usually resolved either by approximating the convective terms di-
rectly, or by using conservative advection algorithms from computational fluid
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dynamics (CFD) [80, 98]. However, in contrast to ideal or Newtonian fluids the
constitutive behavior of soils and other geomaterials is generally path-dependent.
Moreover, soil strength as well as geomorphological flows are driven by gravity
and friction, which introduces additional source terms in the balance of momen-
tum. One standard approach for solving such problems is to use the operator-
splitting resp. fractional-step technique [33, 34, 52, 98]. If an operator-split is
applied to the governing equations of the problems under consideration, the
convective terms and the source terms are treated in separate equations which
are solved sequentially.

Interface Tracking The second difficulty of tracking interfaces arises because
material boundaries (free surfaces or contact interfaces) generally are not aligned
with the underlying computational mesh, as they would be in a Lagrangian
formulation. Since the mesh motion in ALE methods is arbitrary, it can be
defined in such a way that material boundaries are resolved by edges (2d) or
faces (3d) of the mesh elements, and elements contain only a single material.
This is called a simplified ALE (SALE) formulation [33, 34, 110]. The drawback
of an SALE formulation is that the range of problems that may be addressed
is not much greater than for a pure Lagrangian method because the material
boundaries remain Lagrangian in both cases (Fig. 2). Methods that do not share
this limitation require techniques for interface tracking [37,88,142].

Interface tracking methods either track the surface, defined by a distance
function or parameter representation, or the volume occupied by the material
behind the interface. When using volume tracking, the material boundary is
reconstructed ab initio from the solution data in each mesh element containing
two or more materials (so-called multi-material elements). This can be done by
employing the densities of Lagrangian marker points, with the disadvantages
outlined above, or alternatively, the fractional volume of each material as in
volume of fluid (VOF) [59,81,137,138,175] or moment of fluid (MOF) methods
[65,66]. ALE formulations using these methods for interface tracking are referred
to as full or multi-material ALE (MMALE) formulations [34,110] (Fig. 2).

Application to Geotechnical and Geomechanical Processes Concern-
ing the modeling of geotechnical and geomechanical processes, several non-
Lagrangian approaches are documented in the literature. These may be classi-
fied into SALE formulations using direct approximation of the convective terms
[121,122,146], SALE formulations using first-order [14,16,19,20,61] and second-
order advection algorithms [102,151], and Eulerian formulations using advection
algorithms. The order of the advection algorithm refers to the maximum accu-
racy with which the spatial distribution of the solution variable is approximated.
Within the Eulerian approaches, one may distinguish between channel or depth-
integrated hydraulic models [60, 132, 134], two- or three-dimensional full-scale
models using free surface tracking [107, 108], and multi-material full-scale mod-
els using volume tracking by VOF methods [1, 12,78].
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The models for the soil or debris material employed in these approaches are
based on single- or two-phase descriptions ranging between simple rheological
models in case of the full-scale Eulerian formulations, plastic or viscoplastic con-
stitutive equations using the Mohr-Coulomb criterion in case of the hydraulic
Eulerian formulations, and more or less advanced soil mechanical models in case
of the SALE formulations. Yet no full-scale multi-material Eulerian or MMALE
formulation is available which models both the complex rate-independent fric-
tional granular material behavior and the multi-phase behavior of the grain-fluid
mixture.

1.4 Multi-Material Eulerian and MMALE Methods

Multi-material Eulerian and MMALE (Fig. 2) are non-Lagrangian formula-
tions that emerged along with those computational continuum mechanics tools
commonly referred to as “hydrocodes” [34, 110]. Typical applications include
detonation and impact problems, the dynamics of bubbles and droplets, ma-
terial processing and manufacturing, or astrophysical events. Besides research
codes [35,38,69,70] and codes developed at national laboratories for energy and
defense applications [3, 59, 71, 106, 112, 115, 129, 165, 175], some general purpose
commercial codes include multi-material Eulerian or MMALE capabilities as
well [58, 101]; note that the fixed mesh in coupled Eulerian-Lagrangian (CEL)
formulations [40,126,135,154] is in fact multi-material Eulerian. The decisive ad-
vantage of an ALE mesh is that the mesh motion can be kept as Lagrangian as
possible, resulting in less numerical diffusion and more accurate representation
of interfaces compared to a fixed Eulerian mesh.

Three Step Scheme Implementations commonly use a Lagrange-plus-remap
or three step scheme which falls into the category of operator-splitting techniques
(see above). The three step scheme divides the incremental solution of the non-
linear problem into a Lagrangian step, a rezone step, and remap step (Fig. 3).
During the Lagrangian step, the set of equations is solved by accounting for the
sources but neglecting the convective terms; cf. (1). The rezone step relocates
the nodes either to their original positions (Eulerian limit) or in such a way
that mesh distortion is reduced. The remap step finally transfers the solution
variables onto the modified mesh by using conservative advection algorithms.
Physical time is advanced only during the Lagrangian step, whereas the spatial
distributions of the solution variables are fixed during the remap step.

Subcell Closure Models (Mixture Models) The rezone step may give rise
to elements which intersect with material interfaces and thus contain a hetero-
geneous mixture of two or more materials (Fig. 3 right). Because the spatial
distribution of the element’s degrees of freedom is homogeneous, however, a lack
of information arises within such multi-material elements. The main difficulties
are to accurately determine the states of the individual material portions and
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after the Lagrangian step after the remap stepinitial configuration

Fig. 3. Illustration of the MMALE three step scheme (rezone step not shown); in the
multi-material Eulerian limit the rezoned mesh would be identical to the original mesh.
The blue area indicates a material zone whose initial configuration is assigned to an
element patch highlighted in red. At the end of a calculational cycle several elements
intersect with the interface between blue and white, thus contain a mixture of two
materials.

the reaction of the element they will generate [143]. To tackle these difficulties,
the heterogeneous mixture is represented as an effective single-phase material
(homogenized mixture). This should be based on reasonable, physically-based
mixing rules, referred to as subcell closure models, which can be derived from
theories incorporating material volume fraction information [36,51,53,116,117].
However, all available subcell models assume pure, i.e. single-phase homogeneous
materials at the outset, thus are not capable of including two-phase coupled re-
sponse among the different materials of the mixture.

1.5 Large-Scale Modeling of Multi-Phase Mixtures

From the previous discussion it can be concluded that adequate non-Lagrangian
models for geotechnical or geomechanical processes must account for the dy-
namical interaction of multiple materials on at least three different length scales
[17, 21, 22]: the scale lmicro defined by a typical grain diameter of the granular
material (microscale), the scale lmeso at which the granular material can be rep-
resented as a continuum interacting with other bulk materials (mesoscale), and
the scale lmacro at which the immiscible mixture of mesoscale continua can be
represented as an effective single-phase material (macroscale). The mesoscale is
the scale commonly used in soil mechanics, and at which continuum mechanical
material models operate, e.g. to reproduce the nonlinear coupled behavior of
fluid-saturated sand. The solid grains and the interstitial fluid of the granular
material cannot be individually distinguished. The mesoscale also carries the
information of interest associated with bulk material deformation and interface
evolution. On the other hand, the macoscale is typically defined by a character-
istic element length in multi-material Eulerian and MMALE calculations, thus
is closely connected the non-Lagrangian formulation.

Our objective is not to describe small-scale details in the multi-phase flow
field, but rather large-scale motions and interactions of the materials. Flow de-
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tails should only be resolved to the extend they effect the mean flow. Upscaling
information from lower to higher scales can be achieved by different types of
approaches, and each has its advantages and disadvantages [26, 56, 77]. In both
mathematical homogenization [10, 67, 83] and volume averaging in the sense of
Whitaker [131, 166–169], the balance equations for mass, momentum, etc., as
well as the closure relations (e.g. constitutive equations) are postulated to hold
on the small scale. Filtering techniques are then applied to obtain correspond-
ing equations on the large scale at which measurements are often made. On
the other hand, the continuum theory of mixtures [46–48, 158] makes no small
scale assumptions. Instead the system is viewed as overlapping continua with
all balance principles postulated on the large scale. The form of the constitutive
equations in terms of large scale variables is usually restricted by exploiting the
entropy inequality.

A third type of approaches combining principles of the other two is adopted
in the present research. Hybrid mixture theory was introduced in [74–77] and
has been extended by Cushman and co-workers regarding two [2] and three
spatial scales [30,31,119,120]. The basic idea is to apply local volume averaging
[45, 63, 64] to the small scale balance equations and to make the constitutive
assumptions needed for closure at the large scale with respect to which averaging
is carried out, that is, for the averaged balance equations. The closure relations
can be obtained either by direct postulation of desirable equations, as done in [99]
and herein, or based on thermodynamical considerations as in the continuum
theory of mixtures.

1.6 Overview and Structure of the Work

This contribution summarizes the work done in Subproject 5 of the DFG Re-
search Unit FOR 1136. The main objective of the subproject is the theoretical
and numerical modeling of complex geotechnical processes such as the installa-
tion of vibro-injection piles [125,136]; cf. Fig. 1. In previous papers [21,22,141],
MMALE has been introduced as the authors preferred modeling framework. The
main reasons for this are as follows:

– it can represent large material deformations, shear and vorticity, as well
as material interface evolution including topological changes (e.g. new free
surfaces are allowed to be created in a natural manner);

– it can incorporate advanced history-dependent constitutive equations and
multi-phase behavior of the soil or debris material;

– it can handle interactions of multiple materials without contact elements or
specific algorithms;

– it is mass conservative and can be made less numerical diffusive than pure
Eulerian formulations;

– it is more versatile than Lagrangian formulations and can be applied in
situations where Lagrangian formulations fail.

In accordance with the individual tasks performed to reach the objectives,
the paper is structured as follows. Section 2 addresses the continuum mechanical
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modeling of saturated sand as a compressible grain-fluid mixture by starting with
the most general, averaged equations for two-phase media. In Section 3, a rigor-
ous theoretical framework is developed based upon the interpretation of geotech-
nical and geomechanical processes as complex multi-phase flows. This framework
allows for the consideration of two-phase coupled behavior of saturated sand as
well as for the construction of models for the time evolution of the material
volume fractions and averaged (homogenized) properties in multi-material flow
situations. The numerical techniques implemented in the Lagrangian step, the
rezone step, and the remap of the developed MMALE method are outlined in
Section 4. In this method, the homogeneous equilibrium model derived from the
theoretical framework provides a closed set of equations that holds at each spa-
tial point and at all interfaces (i.e. in single-material as well as in multi-material
elements). Section 5 then summarizes the experimental model tests concerned
with the vibro-injection pile installation. The main purposes of these tests are
the verification of the assumptions underlying the theoretical investigations and
the validation of the MMALE computational models. Conclusions and outlook
of future work are discussed in Section 6.

2 Saturated Sand as a Grain-Fluid Mixture

2.1 Averaged Equations of General Two-Phase Flow

In this section we derive a mathematical model for grain-fluid mixtures with
compressible constituents. The starting point are the most general, averaged
equations describing conservation of mass and balance of linear momentum,
respectively, of non-reacting immiscible two-phase flow [63,64,89]:

∂παρα

∂t
+ div(παραvα) = 0 , (2)

∂παραvα

∂t
+ div(παραvα ⊗ vα) = παραbα + div(πασα) + Γ α . (3)

The equations are in Eulerian conservation form, thus referring to a fixed mod-
eling domain D ⊂ R3 of the three-dimensional ambient Euclidian space. Each
term is generally a function of point x ∈ D and time t ∈ [0, T ] ⊂ R. The super-
script α ∈ {s, f} indicates the phase, which is either solid or fluid (liquid or gas),
and πα is the α-phase volume fraction with properties

πα ∈ [0, 1], for all α, and
∑

α
πα = 1 . (4)

Moreover, vα is the spatial image of the phase α material velocity, ρα is
the spatial mass density of that phase, bα is a prescribed body force per unit
mass, and σα = (σα)T is the symmetric Cauchy stress. A superscribed T de-
notes transposition of a second-order tensor, ⊗ is the tensor product, and div
is the spatial divergence operator. The momentum interfacial transfer term Γ α

includes surface drag forces per unit volume generated by the relative motion
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of the phases. Here we simply assume that both phases move with the same
velocity, i.e. vs = vf , resulting in Γ s = −Γ f ≡ 0. In fluid-saturated granular
material this formalizes locally undrained conditions [99,176].

The stress tensor is usually decomposed into a pressure stress and an extra
stress according to [111,159]

σα = −pαI + sα , (5)

where I is the second-order unit tensor. In general, the changes in pressure
stress are related to changes in mass density, whereas the extra stress is related
to material deformations. For simplicity, we let pα = − 1

3 trσα, meaning that
the extra stress is deviatoric, i.e. sα = σαdev, where tr denotes the trace of a
second-order tensor and σdev

def= σ − 1
3 (trσ)I.

We remark that quantities in (2) and (3) have been averaged with respect to
a representative volume element (RVE). Because of (4)2, summation over both
phases yields the mixture balance equations

∂ρ̄

∂t
+ div(ρ̄v̄) = 0 , (6)

∂ρ̄v̄

∂t
+ div(ρ̄v̄ ⊗ v̄) = ρ̄b̄+ div σ̄ , (7)

respectively. For example, ρ̄ =
∑
α π

αρα.
Provided that the σα have already been modeled by appropriate constitutive

equations, the set (2) and (3) constitutes a system of 2 · 2 equations in the
3 · 2 − 1 unknowns πα, ρα, and vα, with α ∈ {s, f}, where we emphasize that
the πα should only be considered and counted as only one variable because of
(4)2. Therefore, the system of equation requires one additional relation for the
volume fraction, called the topological closure relation [44, 45, 51], to close the
system. Otherwise the system would be indeterminate.

2.2 Stress Contributions in Granular Material

We consider a cohesionless granular material in which a single fluid fills the
interstitial space. Rheologists call this a dense grain-fluid mixture or granular
suspension [5], and a common example is saturated sand. Since only two phases
are present, we simply define the fluid fraction or porosity through

n
def= πf , so that πs = 1− n (8)

by using (4)2.
Two limiting regimes of dry granular flow are usually considered [9, 86, 139]:

a rate-independent frictional flow regime usually studied in soil mechanics [144,
176], and a rate-dependent viscous flow regime where grain inertia and instan-
taneous grain contacts through collision dominate [23, 86, 87]. In the interme-
diate, frictional-collisional flow regime, the contributions of frictional and col-
lisional interactions to the bulk stress of the mixture cannot be clearly distin-
guished [6–8,93].
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Further complexity is introduced by the interstitial fluid in granular ma-
terials. Besides the consolidation and liquefaction phenomena well-known in
soil mechanics, indirect grain interactions may occur through lubricated con-
tacts [5, 6, 8, 54]. Generally all flow regimes have to be considered in the anal-
ysis of geotechnical and geomechanical processes. However, yet no constitutive
equation is available which models the mechanical behavior of dense grain-fluid
mixture over a wide range of flow conditions and material properties [8].

To account for the different flow regimes, the stress tensors of the solid
and fluid phases in grain-fluid mixtures are additively decomposed into a rate-
independent frictional part and a rate-dependent viscous part [9, 87,93]:

σα
def= σαfr + σαvi , with α ∈ {s, f} . (9)

Terzaghi’s effective stress [153], σ′fr, is introduced as

σ′fr
1− n

def= −(ps − pf)I + ss
fr (10)

in accordance with [32], so that

p′

1− n = ps − pf , (11)

where p′ def= − 1
3 trσ′fr is the (negative) mean effective stress and ps − pf is the

excess pressure.
A particular form of the principle of effective stress [144, 176] can be de-

rived by combining (10) with an expression of the total stress of the grain-fluid
mixture,

σ̄ = (1− n)σs + nσf , (12)
resulting in

σ̄fr = σ′fr − pfI . (13)
We adopt this form for conceptual reasons, while noting that several other ver-
sions have been postulated; cf. [96].

If the effective stress for the viscous part is assumed unaffected by fluid
stresses, then substitution of (13) and (9) into (12) yields the following repre-
sentation of the principle of effective stress for a general grain-fluid mixture [92]:

σ̄ = σ′fr + σ′vi + σf
fr + nσf

vi = σ′ − pfI + nsf , (14)

with σ′ = σ′fr+σ′vi. In terms of pressure stress, the principle (14) reads p̄ = p′+pf ,
where p̄ def= − 1

3 tr σ̄fr.

2.3 Constitutive Equations

Application of (14) requires models for σ′fr, σ′vi, pf , and sf . The fluid phase is
usually represented as a Newtonian fluid, leading to simple representations of
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pf and sf . Concerning the frictional part of effective stress, σ′fr, a large number
of constitutive equations has been proposed for applications in soil mechanics.
States of failure can be adequately modeled by models employing the classical
Mohr-Coulomb yield condition [176]. Comprehensive constitutive equations that
might be applied beyond states of failure fall into the categories of hypoelasto-
plastic [100,113,128,152] or hypoplastic [73,95,123,164] rate constitutive equa-
tions. Significant progress in the development of hypoplasticity has also been
achieved in the context of this DFG Research Unit [104, 124]. Such equations
take the general form

O
σ′fr

def= c ′fr(σ′fr, n,h) : d , (15)
by assuming incompressible constituents. Here O

σ denotes any objective rate of
σ, c is the fourth-order material tangent tensor, h is a set of history variables
other than stress, and d def= 1

2 (∇v + (∇v)T) is the spatial rate of deformation
tensor.

Constitutive equations for the viscous part of the effective stress, σ′vi, are
often restricted to particular flow conditions or to narrow ranges of material
properties. Common models take the form [87,127]

σ′vi
def= µ′ds

dev , (16)

where µ′ is the dynamic shear viscosity. The latter is generally a function of the
porosity resp. solid volume fraction and shear rate [23,68,86,87,93,94,127,130].

2.4 Topological Closure and Compressible Constituents

Sect. 2.1 has revealed that a well-posed model for grain-fluid mixtures requires
topological closure, that is, an evolution equation for the fluid volume fraction
(porosity). If the material of one phase, say, the solid phase is incompressible,
then this missing equation is readily obtained from conservation of mass of that
phase. However, an indeterminacy arises for compressible constituents, reflected
in the fact that πα and ρα appear in the general equations (2) and (3) only in
the form of the product ρ̃α = παρα, but not separately.

A Lagrangian formulation is chosen to resolve the aforementioned indeter-
minacy. First, let the material time derivative of a α-phase-related quantity qα
along the velocity vα be defined through

q̇α
def= ∂qα

∂t
+ vα ·∇qα , with α ∈ {s, f} , (17)

where ∇ is the covariant derivative, and vs = vf = v̄, i.e. locally undrained
conditions have been assumed. Conservation of mass (2) for the solid phase can
then be written in Lagrangian form:

˙̃ρs

ρ̃s = −div vs . (18)

with the bulk mass density ρ̃s = πsρs = (1− n)ρs of the solid phase.
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The decomposition of stress (5) introduces pressure as an independent vari-
able. The pressure change of each phase is related to its change in density through
a compression model of the form

− 1
V α

∂V α

∂pα

∣∣∣∣
Mα

= 1
ρα

dρα
dpα

def= 1
Kα

, with α ∈ {s, f} . (19)

Kα is the bulk modulus of the α-phase material, V α = παV is the volume
occupied by phase α within a small Lagrangian control volume V of the mixture,
Mα = ραV α is the mass of that phase volume, and |Mα means that the mass of
the α-phase is kept constant along with differentiation.

In a mixture the pressure of each compressible constituent is generally a func-
tion of the mass density and volume fraction of that constituent. In particular,
the pressure of the solid phase (grains) in granular material does not only de-
pend on the mass density but also on the porosity [28,29]. However, one usually
assumes that the Lagrangian control volume occupied by the grain-fluid mixture
is a function

V = V (pf , p̄− pf) (20)

of the fluid phase pressure and the pressure difference p̄ − pf = p′. Under the
assumption that total mass of the solid phase, M s, is kept fixed, one has

dV
V

∣∣∣∣
Ms

= 1
V

∂V

∂(p̄− pf)

∣∣∣∣
pf ,Ms

d(p̄− pf) + 1
V

∂V

∂pf

∣∣∣∣
p̄−pf ,Ms

dpf

= 1
V

∂V

∂p̄

∣∣∣∣
pf ,Ms

d(p̄− pf) + 1
V

∂V

∂pf

∣∣∣∣
p̄−pf ,Ms

dpf

def= − 1
Kdr

d(p̄− pf)− 1
Kuj

dpf ,

(21)

where Kdr and Kuj are called the drained bulk modulus and unjacketed bulk
modulus of the granular material, respectively, and

Kuj ≈ Ks . (22)

By recalling that M s = ρsV s = ρs(1− n)V , Eq. (18) is equivalent to

dρ̃s

ρ̃s = − dV
V

∣∣∣∣
Ms

. (23)

Therefore, replacing in (21) the total differential with the material time deriva-
tive yields

˙̄p = −Kdr div vs + ζ ṗf , (24)

where ζ def= 1−Kdr/K
s is the Biot-Willis coefficient [42,43,176].

Based on the previous results together with the definition of mean effective
stress, (11), we are now able to relate solid and fluid phase pressures, ps and pf , to
solid phase volumetric deformation. To determine the rate of the solid pressure,
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we start from the relative volume change dV s/V s|(1−n) by keeping solid phase
volume fraction constant:

dV s

V s

∣∣∣∣
1−n

= − 1
ρs
∂ρs

∂ps dps = −dps

Ks = − 1
Ks

(
dp′

1− n + dpf
)

=
(

dV
V

∣∣∣∣
Ms

+ dpf

Ks

)
Kdr

(1− n)Ks −
dpf

Ks

= Kdr

(1− n)Ks
dV
V

∣∣∣∣
Ms
−
(

1− Kdr

(1− n)Ks

)
dpf

Ks ,

(25)

By replacing the total differential with the material time derivative again and
rearrange, one obtains

ṗs = − Kdr

1− n div vs + ζ − n
1− n ṗ

f . (26)

On the other hand, the assumption of locally undrained conditions, i.e. vf =
vs = v̄, allows us to rewrite conservation of mass (2) for the fluid phase as

ṗf = −ζQdiv vs , with Q
def=
(
ζ − n
Ks + n

Kf

)−1
. (27)

Substitution of (27) into (24) finally yields a Lagrangian form of (6):

˙̄p = −K div v̄ , (28)

in which

K = Kdr

1 + ζ2

ζ
Kdr

Ks + n

(
Kdr

Kf −
Kdr

Ks

)
 . (29)

Eq. (28) in conjunction with the bulk modulus given by (29) holds for ar-
bitrary compositions of saturated grain-fluid mixtures with compressible con-
stituents and homogeneous velocity, that is, undrained conditions. Particular
cases included are:

– solid without any pores (n = 0, Kdr = Ks, ζ = 0), for which K = Ks;
– fluid without any solid content (n = 1, Kdr = 0, ζ = 1), for which K = Kf ;
– dry granular material (0 < n < 1, Kf ≈ 0), for which K = Kdr;
– uniform suspension of zero friction (Kdr = 0, ζ = 1), for which ps = pf and
K = ((1− n)/Ks + n/Kf)−1, known as Wood’s equation [172, p. 327].

In concluding this section, we remark that the definition (11) of mean effec-
tive stress resolves the indeterminacy associated with volume fraction evolution
in compressible grain-fluid mixtures. This definition provides the missing link
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between volumetric deformation and changes in solid and fluid pressures. Evolu-
tion of volume fraction in two-phase grain-fluid mixtures thus can be associated
with solid phase conservation of mass (2) resp. (18) alone:

ṅ = (1− n)
(
ṗs

Ks + div vs
)
, (30)

in which ṗs is given by (26).

3 Mixture Model for Multi-Material Interaction

The previous section was concerned with the continuum mechanical modeling
of general two-phase, grain-fluid mixtures, of which saturated sand is but one
example. It has been shown that if both compressible phases move with the
same velocity, representing locally undrained conditions, then the mixture can
be equivalently modeled as an effective single-phase, i.e. homogeneous bulk ma-
terial. In the section that follows, we summarize a rigorous theoretical frame-
work we have developed [17,21,22] to construct macroscopic mixture models for
the dynamical interaction of grain-fluid mixtures with multiple other, physically
distinct bulk materials, e.g. pure fluids or pure solids. Void, representing empty
space or atmosphere, is generally considered as material, and all materials may
undergo large deformations. We refer to such a situation as multi-material flow.

3.1 Averaging Procedure

Consider a three-scale system consisting of bulk fluid (F), bulk solid (S), and
fluid-saturated granular material (G). The granular material consists of a solid
phase (s) and fluid phase (f), and is constituted by an assembly of solid grains,
whose typical diameter defines the microscale of the problem, lmicro. The grain
assembly can be represented by a continuum at the mesoscale lmeso, separated
from the bulk solid and bulk fluid by sharp interfaces. Moreover, we assume
that the multi-material system has a representative volume element (RVE) with
characteristic length lmacro, the macroscale. The RVE is a sub-domain H ⊂ D
of the spatially fixed, i.e. Eulerian modeling domain introduced in Sect. 2.1.

Let k ∈ {S,F,G} def= {1, . . . ,M} denote the material and α ∈ {s, f} def=
{1, . . . , N} the phase. A particular phase α in a particular material k represents
an individual, chemically-independent constituent of the flow and is denoted
by αk. Concerning the present situation, αk ∈ {S ≡ sS,F ≡ fF, sG, fG}. The
intersection of each two constituents is either empty or the shared interface. The
indicator function χαk : D× [0, T ]→ {0, 1} which picks out the α-phase domain
of the k-material domain is defined by

χαk(x, t) def=
{

1 if x is in αk at time t,
0 else.

(31)
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The point we wish to emphasize is that the indicator function (31) can be rep-
resented as the product χαk = χαχk of two independent indicator functions for
each material k and each phase α.

As introduced in Sect. 1, our approach employs hybrid mixture theory to
upscale information from the microscale to the macroscale. The microscopic
balance equations are upscaled by using local volume averaging, and then the
closure relations (constitutive equations, etc.) are postulated on the macroscale.
To this end, let the subregion of the RVE occupied by the k-material be Hk,
and let Hαk be the subregion occupied by the α-phase of the k-material, with
H =

⋃
kHk =

⋃
k

⋃
αHαk. Then the H-average of an arbitrary time-dependent

spatial microscopic field q(x, t) is defined through

〈q〉(x, t) def= 1
H

∫
H
q(x+ y, t) dv (32)

for all x ∈ D and t ∈ [0, T ], where dv is the volume density on R3, H def=∫
H 1 dv = const is the volume measure of H, and y ∈ H is a vector.

Two particular averaged fields frequently used are the volume fractions

fk
def= 〈χk〉 = Hk

H
and παk

def= 1
fk
〈χαk〉 = Hαk

Hk
, (33)

where Hk def=
∫
Hk 1 dv =

∫
H χ

k dv and Hαk def=
∫
Hαk 1 dv =

∫
H χ

αk dv. While fk
is the volume fraction of the k-material with respect to the RVE, παk represents
the macroscale volume fraction of the α-phase intrinsic to the k-material, with
fk, παk ∈ [0, 1]. Phase or material overlaps are not allowed, hence∑

k
fk = 1 and

∑
α
παk = 1 (34)

for all k ∈ {1, . . . ,M}.
Different macroscopic (i.e. H-averaged) fields can now be defined by employ-

ing the previous definitions and the properties (34). Clearly, if q is a microscopic
field defined per unit volume, then

〈q〉 =
∑

k
fkqk =

∑
k

∑
α
fkπαkqαk , (35)

with
qk

def= 〈χkq〉
fk

and qαk
def= 〈χαkq〉

fkπαk
. (36)

Here 〈q〉 is the volume average of q in the mixture, qk is the intrinsic k-material
average, and qαk is the intrinsic average related to the α-phase in the k-material.
Accordingly, if q = ρ, for example, is the microscopic spatial mass density, then
ραk represents the mass of the constituent αk per unit volume of that constituent,
παkραk is the mass of the constituent αk per unit volume of the k-material, and
fkπαkραk denotes its mass per unit volume of the mixture.
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We remark that, in the present approach, each material represents a mixture
generally composed of a solid phase and a fluid phase. Hence, we define

nk
def= πfk (37)

as the fluid fraction or porosity of material k, with k ∈ {S,F,G}; cf. (8). Then
the solid fraction is πsk = 1− nk by using (34)2. For pure solid (k = S) one has
nS = 0, whereas nF = 1 in case of pure fluid (k = F).

3.2 Macroscopic Mixture Model

On the microscale all constituents of the mixture are regarded as continua, gov-
erned by the equations of continuum mechanics [111,158,159]. The balance equa-
tions are conservation of mass and balance of momentum for the problems under
consideration, in conjunction with the interface jump conditions. Each term of
the microscopic balance equations is averaged according to the procedure above.
Details can be found in [21], and in [63,64] for the case of two scales.

Under the assumption of non-reactive constituents, one obtains the following
Eulerian conservation form of α-phase-k-material macroscopic conservation of
mass

∂fkπαkραk

∂t
+ div(fkπαkραkvαk) = 0 (38)

and macroscopic balance of linear momentum

∂fkπαkραkvαk

∂t
+ div(fkπαkραkvαk ⊗ vαk) =

fkπαkραkbαk + div(fkπαkσαk) + Γ αk .
(39)

Note that these equations are consistent with the set (2) and (3) for general
two-phase media if one sets χk ≡ 1 resp. fk ≡ 1 (single material case). As
in Sect. 2.1, let us further assume that no momentum is exchanged no matter
between which constituents, and that velocity is homogeneous. Clearly,

Γ αk ≡ 0 and 〈v〉 = vk = vαk , (40)

for all k ∈ {S,F,G} and αk ∈ {S,F, sG, fG}.
Based on (35), summation of (38) and (39) over all phases and all materials

finally yield the macroscopic conservation of mass and macroscopic balance of
momentum of the mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0 , (41)

∂〈ρv〉
∂t

+ div〈ρv ⊗ v〉 = 〈ρb〉+ div〈σ〉 . (42)

We emphasize again the consistency between (41) and(6), as well as between
(42) and (7) for the case where the mixture represents a single saturated gran-
ular material and no other bulk materials. Moreover, Sect. 2 has revealed that
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grain-fluid mixtures without mass and momentum exchange can be treated as
homogeneous bulk material, possessing a single velocity field. Therefore, after
adding the superscript G referring to the granular material to the relevant terms
of Sect. 2, these terms can be directly substituted into the equations of this
section.

After combining the mixture balance principles (41) and (42) with the par-
ticularizations made for saturated granular material in Sect. 2, and doing some
algebraic manipulation, the following Lagrangian model for geotechnical or ge-
omechanical multi-material flow is obtained [17,21]:

〈ṗ〉/〈K〉+ div〈v〉 = 0 (43)
div〈s− pI〉+ 〈ρb〉 − 〈ρ〉〈v̇〉 = 0 , (44)

in which
〈p〉 =

∑
k

fkpk = fSpS + fFpF + fG
(
pG′ + pfG

)
, (45)

〈s〉 =
∑
k

fksk = fSsS + fFsF + fG
(
sG′ + nGsfG

)
, (46)

〈ρ〉 =
∑
k

fkρk

= fSρS + fFρF + fG((1− nG)ρsG + nGρfG) , (47)

1
〈K〉

=
∑
k

fk

Kk
= fS

KS + fF

KF + fG

KG , (48)

and KG given by (29).
Constitutive equations and compression models must be prescribed for the

bulk solid (sS, pS), bulk fluid (sF, pF), granular material (sG′ , pG′), and inter-
stitial fluid (sfG, pfG), by using the consistent macroscopic rate of deformation
tensor

〈dk〉
def= 〈d〉+ ḟk

3fk I for each k ∈ {S,F,G} . (49)

Moreover, in accordance with Sect. 2.4 the evolution of the porosity of the gran-
ular material is given by

ṅG = (1− nG)
(
ṗsG

KsG + div〈vG〉
)
, (50)

with
ṗsG = − KG

dr
1− nG div〈vG〉+ ζG − nG

1− nG ṗfG (51)

and div〈vG〉 = div〈v〉+ ḟG/fG.
The model is the backbone of our non-Lagrangian numerical method summa-

rized in Sect. 4. Its is important to note that the set of equations (43) and (44)
holds at each spatial point and at all interfaces, as well as for zones occupied by
a single or multiple bulk materials. All materials that might be present in such
processes, either compressible or incompressible, are treated in a unified fashion
due to the decomposition of stress (5) used for all constituents.
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3.3 Volume Fraction Evolution and Homogeneous Equilibrium
In the mathematical sense of counting equations and unknowns, the above sys-
tem of equations requires an additional M − 1 closure relations (for the present
case, M = 3) to become a closed system. It is natural to think of this indeter-
minacy as being associated with conservation of mass and the evolution of the
material volume fractions fk, with k ∈ {1, . . . ,M} = {S,F,G}. The reader is
referred to [44,45,51] for a more general discussion of volume fraction closure in
two- and multi-phase flow models.

A simple way to obtain topological closure for multi-material flow is to as-
sume constant volume fractions. However, such an assumption is inadequate if
material compressibilities differ by several orders of magnitude. In our approach,
we achieve closure by assuming homogeneous equilibrium [53, 116, 149], formal-
ized through

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {S,F,G} . (52)

The first assumption of pressure equilibrium between bulk materials is adequate
because the speed of sound in each material is large compared with velocities
in the problems of interest. In other words, equilibration is infinitely fast such
that pressure is continuous across a material interface. The second assumption,
(52)2, has already motivated zero momentum exchange between the constituents;
see (40). However, it is not generally a reasonable one because equilibration of
velocity differences is driven by drag forces on material interfaces. Using the
assumption implies fully bonded materials.

In following [53,116] and using the assumptions (52), have derived in [17,21]
a more realistic closure model reflecting homogeneous equilibrium:

ḟk = fk
(
〈K〉
Kk
− 1
)

div〈v〉 , for all k ∈ {S,F,G} . (53)

Note that this equation naturally provides for a mixture compression model
and a void collapse mechanism: the material with the smallest bulk modulus
contributes most to the total volume change.

3.4 Non-Lagrangian Formulation of the Model
Since local volume averaging is defined with respect to a fixed region of space, the
Eulerian formulation of the proposed model is natural. Indeed, the Lagrangian
form (43) and (44) has been derived from the Eulerian conservation form (41) and
(42), respectively, using the material time derivative. The arbitrary Lagrangian-
Eulerian (ALE) formulation further generalizes the model. A condensed deriva-
tion is given below; for more details, see [13,14].

According to Sect. 1.3, the ALE formulation introduces a reference domain
which may move in space at an arbitrary velocity w. The relative volume change
between the referential coordinate system and the spatial coordinate system is
the Jacobian, J , and its rate of change is given by

∂J

∂t
= J divw . (54)
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The ALE operator (1) is substituted into the equations (43) and (44), respec-
tively. Multiplication of the resulting equations with J and substitution of (54)
gives the ALE conservation form of (43) and (44):

∂p̂J

∂t
+ J div(pc) = J(p−K) div v (55)

∂ρ̂v̂J

∂t
+ J div(ρv ⊗ c) = J(ρb+ div(s− pI)) , (56)

where
c = v −w (57)

is the convective velocity. Angle brackets indicating mixture quantities have been
dropped for notational brevity.

3.5 Application: Isotropic Compression

Consider a Lagrangian control volume occupied with a mixture of steel (bulk
solid), air (bulk fluid), and dry sand. The volume is subjected to quasi-static
isotropic compression. Under these conditions only (43) needs to be integrated
in time. A first-order explicit scheme has been implemented for this purpose. The
initial volume fractions are set to fS

0 = 0.4, fF
0 = 0.2, and fG

0 = 0.4, respectively,
and the initial porosity of the sand is nG

0 = 0.4. The sand is chosen to be uniform
and fine-grained, with an angle of internal friction φ = 32◦. The initial pressure
of all constituents is the atmospheric pressure at sea level, patm = 101.0 kPa.

Steel under isotropic compression can be approximated by hypoelasticity
[159]. The constant bulk modulus is KS = 1.6× 108 kPa. Moreover, we assume
that the compressibility of the bulk air and the air trapped in the sand pores
does not change with pressure, so that KF = KfG = patm = const.

Janbu’s power law [173] is employed in order to model nonlinear stiffness of
the granular material:

Es
def= C

(
−σ′

patm

)a
patm , (58)

where Es is the confined stiffness of the bulk granular material measured in
the confined compression (oedometer) test. σ′ is the effective stress component
in loading direction and C, a are constants. For uniform fine sand, the values
C = 300 and a = 0.6 are reasonable. Jaky’s formula [55] then relates σ′ in the
oedometer test to the mean effective stress, yielding

σ′ = − 3〈p〉
1 + 2(1− sinφ) . (59)

Finally, a relationship between Es and the drained bulk modulus of the granular
material, KG

dr, can be established by using elasticity theory,

KG
dr = Es

1 + ν

3(1− ν) , (60)
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Fig. 4. Example application of the homogeneous equilibrium model: mixture of steel
(bulk solid), air (bulk fluid), and dry sand under quasi-static isotropic compression.
Evolution of the volume fractions, sand porosity, and mixture pressure. Reprint from
[17, p. 97] with permission of Elsevier.

in which Poisson’s ratio is estimated from ν = (1− sinφ)/(2− sinφ).
Results are plotted in Fig. 4 and seem to be reasonable. At the beginning

of isotropic compression of the mixture, the bulk air is compressed, which does
not significantly change the mixture pressure and the porosity of the granular
material. The increase in bulk solid and granular material volume fractions is
approximately the same due to (53) and the fact that the mixture bulk mod-
ulus is relatively low at this stage of compression. Once the bulk air has been
completely compressed, mixture pressure increases exponentially because of the
power law (58) and continuous compaction of the granular material. This, in
turn, gives more weight to the large bulk modulus of steel in evaluating the
mixture bulk modulus, (48).

4 Numerical Techniques

The MMALE method developed in the context of Subproject 5 is an extension of
our simplified ALE method for plane and axisymmetric problems [14,16,19, 20,
140]. The implementation uses the three step scheme introduced in Sect. 1.4 and
illustrated in Fig. 3. In this section we present the basic numerical techniques in
the Lagrangian step, rezone step, and remap step associated with that scheme.
Additional details can be found in [18,141].

Let us write the set of equations (55) and (56) in compact form
∂q̂J

∂t
+ J divF = SJ , (61)



Non-Lagrangian Formulation 23

where q ∈ {ρv, p}, F is the convective flux of q, and S is the source term.
Conceptually, the three step scheme splits (61) into two sets of equations which
are solved sequentially:

∂q̂J

∂t
= SJ , (Lagrange) (62)

∂q̂J

∂t
+ J divF = 0 . (remap) (63)

The first set of equations, (62), is associated with c = 0 resp. v = w. Hence, it
is equivalent to the set of equations (43) and (44) and formalizes an Lagrangian
description of motion. The solution of the second set of equations, (63), is asso-
ciated with the remap step.

4.1 Lagrangian Step

During the Lagrangian step, the set (43) and (44) subject to prescribed initial
conditions and boundary conditions is solved with almost standard finite element
methods [27,99,174,176]. Accordingly, the set of equations is written in a weak
form which is discretized in space using finite elements. A two-field mixed element
formulation is used which accounts for material and geometric nonlinearities. For
a single finite element Ω, the weak form of the governing equations discretized
in space can be written in matrix form

M∗ÿ +C∗ẏ + F in − F ex = 0
def= Ψ , (64)

in which

Ψ
def=
[
Ψu

Ψp

]
, y

def=
[
u
p

]
, M∗ def=

[
M 0
0 0

]
,

C∗
def=
[
C 0
QT S

]
, F in def=

[
f in−Qp

0

]
, F ex def=

[
f ex

0

]
,

M
def=
∫
Ω

NT
v ρNv dv , Q

def=
∫
Ω

BTmNp dv ,

S
def=
∫
Ω

NT
p

1
K
Np dv , f in def=

∫
Ω

BTsdv ,

f ex def= fb + f t def=
∫
Ω

NT
v ρbdv +

∫
∂σΩ

NT
v tda .

(65)

In the equations, y is the vector of nodal degrees of freedom, including the nodal
pressure vector p and nodal displacement vector u,M is called the (consistent)
mass matrix,Q is the coupling matrix, S is the compressibility matrix, f in is the
vector of internal nodal forces, and f ex is the vector of applied external nodal
forces, consisting of the body forces fb and the surface forces f t. Moreover, Np
and Nv are the matrices of the interpolation functions for pressure and velocity,
respectively, B is the strain operator matrix, and m = [1, 1, 1, 0]T. A damping
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matrix C has been included for reasons of generality. If C = 0, then damping is
assumed to reside entirely in dissipative material behavior.

We emphasize that the terms in (64) are functions of the current geometry
x, which is also unknown. However, the current geometry can be determined
from the initial geometry and the nodal displacements u due to the Lagrangian
formulation. The material time derivative of the displacement is the velocity,
that is, v = u̇ and v̇ = ü is the material acceleration.

The continuous time interval of interest, [0, T ] ⊂ R, is partitioned into a
sequence of discrete time steps, using an incremental decomposition tn+1 =
tn + ∆t. Then, the solution of the semi-discrete weak form (64) is advanced
implicitly in time using the Newmark-beta and generalized trapezoidal methods
in conjunction with a damped Newton-Raphson method. The final form of the
linearized system of equations reads

Ki
n+1dy

i
n+1 = rin+1 , (66)

where i denotes the current iteration step, rin+1 is called the vector of residuals,

Ki
n+1

def=


∂Ψu

∂uin+1

∂Ψu

∂pin+1

− 1
a1

∂Ψp

∂uin+1
− 1
a1

∂Ψp

∂pin+1


=

a0M
i
n+1 + a1C

i
n+1 +Di

n+1 −Qi
n+1

−(Qi
n+1)T −a6

a1
Sin+1


(67)

is the effective stiffness matrix,

D
def=
∫
Ω

BTcBdev dv (68)

is the material stiffness matrix (ignoring initial stress stiffness), Bdev is the
deviatoric strain operator, and a0, a1, a6 are numbers associated with the time
integration scheme.

The element type used in the current implementation is the MINI quadri-
lateral element [24], which is the quadrilateral analogue of the MINI triangle
element [11, 177]. It is a stabilized quadrilateral using a bilinear approximation
of the geometry, displacement, and pressure together with an additional bubble
function for the displacement approximation.

Solution of the finite element system of equations (66) requires evaluation of
the stress at the quadrature points of the elements in every iteration of every
time step. The stress has to be integrated because the constitutive equations
are generally given in spatial rate form using objective stress rates; cf. (15).
Our current method employs an incrementally objective integration algorithm
originally developed by Hughes [85] and improved in [147, sect. 8.3] in order to
ensure exact stress update if the motion over a time step is rigid.
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4.2 Rezone Step

After the Lagrangian step, the mesh is rezoned. The rezone step provides the
mesh velocity w, from which the convective velocity required for remap can be
determined in accordance with (57); cf. [14,15] for mesh rezoning resp. smoothing
algorithms. If the MMALE method is run in the pure Eulerian mode (w = 0
resp. c = v), the mesh nodes are relocated to their original positions. In either
case the mesh topology remains unchanged.

4.3 Remap Step

The basic equation for the remap is the conservation law (63). Data assumed
to be given in the remap step includes both the deformed geometry x− and
rezoned geometry x+ as well as the solution variables q− obtained after the
Lagrangian step; quantities before and after the remap are marked with − and
+, respectively.

Due to the structure of (63), the remap takes the form of an advection
problem subject to the initial condition q|t=t− = q−. A finite volume method
[14, 20, 98] is employed for numerical solution. Finite volume methods are con-
servative because they solve the integral form of a conservation law with respect
to a control volume tessellation. In our method the control volume tessellation
coincides with the underlying finite element mesh, hence the terms “control vol-
ume” and “element” can be used interchangeably. The problem for which we
seek an approximate solution can be summarized as

d
dt

∫
Ω

q dv +
∑
I

∫
ΓI

qc · nda = 0 (69)

subject to q|t=t− = q− and for each element, where Ω is the element domain,
ΓI is the boundary edge starting at local node I, with ∂Ω ≈

⋃
I ΓI , and n is the

unit normal to that edge.
After discretization in space and first-order explicit discretization in time,

(69) takes the form

q+ = q−V − −
∑
I ∆Q

−
I

V + , with V + = V − −
∑
I

∆VI . (70)

Here q+ is the remapped field under consideration, V − is the volume of the
deformed element in the Lagrangian mesh, V + is the element volume in the re-
located mesh (i.e. after the remap), ∆VI is the total volume transported across
the edge ΓI between Ω and the element Ωadj(I) adjacent to ΓI , and ∆Q−I repre-
sents the transported q-volume across that edge.

For each element, ∆VI is commonly defined as the volume swept out by the
edge ΓI between the configurations x− and x+ [39]. Moreover, it is defined
positive if the nodes defining the edge are moved further into the element’s
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region, that is, if the transport volume is leaving the element. The transported q-
volume ∆Q−I , on the other hand, is approximated by using the so-called Godunov
flux

∆Q−I
def= 1

2∆VI(q
− + q−adj(I)) + 1

2 |∆VI |(q
− − q−adj(I))

= 1
2

(
(q− + q−adj(I)) + sgn(∆VI)(q− − q−adj(I))

)
∆VI .

(71)

Substitution into (70) results in a conservative first-order upwind transport al-
gorithm which corresponds to the classical donor-cell difference scheme [34].
Donor-cell advection is used in many ALE codes because it is simple, stable, con-
servative, and monotonicity-preserving [33,61,69,70,82,129]. Discussions of this
and several other advection algorithms can be found, for example, in [34,80,98].

The pseudocode of a suitable implementation of the donor-cell transport al-
gorithm in the remap step is provided in Alg. 1, and it uses a procedure outlined
in [39]. Note that volume is updated only if the total transported volume is pos-
itive, i.e. a negative transport volume is set to zero, and a volume subtracted
from the element is added to element adj(I) adjacent to edge I to avoid dou-
ble counts. This eliminates half of the remap operations. Higher-order accurate
transport algorithms have the same structure as the donor-cell algorithm Alg. 1,
except for the evaluation of q− occurring in line 10 [39].

Algorithm 1: Donor-cell advection algorithm.
Input: V −, q−, Lagrangian mesh and rezoned mesh
Output: V +, q+ for all elements

1 forall elements in the mesh do
2 set V = V − (total volume);
3 set Q = q−V (q-volume);
4 forall elements in the mesh do
5 forall element edges I do
6 calculate total transport volume ∆VI ;
7 if ∆VI > 0 then
8 V ← V − ∆VI ;
9 Vadj(I) ← Vadj(I) + ∆VI ;

10 ∆Q−
I = q−∆VI (donor-cell assumption);

11 Q← Q− ∆Q−
I ;

12 Qadj(I) ← Qadj(I) + ∆Q−
I ;

13 forall elements in the mesh do
14 V + = V and q+ = Q/V +;
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4.4 Treatment of Multi-Material Elements

One important feature that distinguishes non-Lagrangian from the Lagrangian
numerical methods is the presence of multi-material elements (cf. Sect. 1 and
Fig. 3 right). These elements require extensions of the Lagrangian step and
remap step presented in the previous sections in order to achieve a reasonable
accuracy of the overall MMALE method.

Mixture Model in the Lagrangian Step In the Lagrangian step, the stress
and state variables are integrated in time for each individual material. There-
after, the stress and stiffness for the mixture of materials has to be evaluated
and substituted into the respective terms of the system of finite element equa-
tions (66). For this purpose, we have developed the framework and homogeneous
equilibrium model summarized in Sect. 3 accounting for the two-phase behavior
of saturated granular material. We reemphasize that the homogeneous equilib-
rium model is consistent with the set of equations solved in the Lagrangian step,
hence valid for both single- and multi-material elements.

Eulerian and MMALE meshes may consist of elements that partially or com-
pletely cover void (empty space or atmosphere); note that void is treated as a
particular bulk fluid in (43) and (44). These elements require special treatment
in the implicit Lagrangian step because a stiffness matrix has to be inverted [38].
Void elements practically do not have any stiffness or mass density. Therefore,
their nodes remain unconsidered when setting up the finite element system of
equations. Elements located at material boundaries are partially filled with void.
The stiffness of the mixture inside these elements might be low, causing large
displacement increments during the equilibrium iterations. Therefore, the incre-
mental nodal displacements of partially filled elements are uniformly scaled.

Material Subzones Representation in the Remap Step If an element
contains m > 1 materials, the remap must be carried out for all variables q of
each individual material k, with k ∈ {1, . . . ,m}. Application of mixture theory
(Sect. 3) then requires that the advected variable is qkfk, where qk represents
the averaged variable measured per unit volume of the k-material, and fk is the
k-material volume fraction. The generic advection algorithm (70) then takes the
form

qk+ = qk−fk−V − −
∑
I ∆Q

k−
I

fk+V + for all k ∈ {1, . . . ,m} , (72)

and with V + obtained from (70)2.
For the determination of the transported (advected) volume fraction fk+

and the transported qk-volume ∆Qk−I across element edges I, the the spatial
distribution of the material subzones (subcells) in multi-material elements must
be taken into account. Otherwise initially coherent zones would disperse after a
few advection steps. The present MMALE method reconstructs and propagates
material interfaces element by element by using a volume of fluid (VOF) method.
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The amount of transported material is defined as the regions swept out by the
element edges during mesh rezoning truncated by the interfaces.

Common state-of-the-art VOF methods approximate the interface in each
multi-material element by a straight line; see reviews in [37, 137]. One of the
earliest two-dimensional methods is due to Youngs [175], which forms a basis
for the developments of the present research. Our implementation relies on that
described in [138] because the original paper provides little detail of the interface
reconstruction procedure. Details are presented in [22], so only a few key facts
will be repeated here.

A linear interface can be generally described by the Hesse normal form

n · x− d = 0 , (73)

in which x is an arbitrary point on the interface, n is the unit normal on that
interface, and d is the line constant. A linear reconstruction of the interface
is determined for each element in two steps: (i) estimate n, or equivalently, the
interface slope and (ii) determine d such that the volume fraction of the material
lying behind the interface matches the known value.

The interface slope is estimated based on the volume fraction data in the
current element and its neighbors. The location of the material interface is de-
termined by noting that the truncated element volume behind the interface
represents the partial material volume. Volume is conserved, i.e. the right loca-
tion of the interface has been determined, if the partial volume divided by the
element volume matches the given volume fraction data of that element. The
matching can be achieved by deriving an explicit expression that relates the
truncated element volume to d.

The material transport volumes are usually computed as truncation volumes,
as illustrated in Fig. 5. Once the total transport volume across an element edge,
∆V , has been determined, a region having the same amount of volume is created
that lies entirely within the element (Fig. 5 right). The k-material transport vol-
ume, ∆V k, is then defined as the set-theoretic intersection of the total transport
volume and the material domain behind the reconstructed interface. Finally, the
material volume fraction can be updated in accordance with (70), i.e.

fk+ = fk−V − −
∑
I ∆V

k
I

V + . (74)

Once the transported k-material volumes ∆V kI are known, the transported qk-
volumes ∆Qk−I needed for the remap (72) can be determined by an appropriate
advection scheme. In case of donor-cell advection (71),

∆Qk−I = 1
2

(
(qk− + qk−adj(I)) + sgn(∆V kI )(qk− − qk−adj(I))

)
∆V kI . (75)

4.5 Rigid Disk in Uniform Flow Field

To test the VOF reconstruction and propagation algorithms of our method, we
consider a rigid circular disk transported in a uniform diagonal velocity field.
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f k
k

Fig. 5. VOF interface propagation in accordance with [34, 175]. The reconstructed
interface and the total volume ∆V transported across an element edge are used to
calculate the transported material volume ∆V k > 0.

The problem statement and square mesh are shown in Fig. 6a. Fig. 6b depicts
the reconstructed interface in the initial configuration and the corresponding
distribution of the red material volume fraction. The latter has been obtained
by intersecting the circular material domain with the domain enclosed by each
mesh element, resulting in a volume fraction constant in each element. A direct
comparison of the original interface and its piecewise linear reconstruction is
given in the detailed view of Fig. 7. Note that the fractional element volume
on each side of the interface is the same for the original interface and its linear
approximation.

The second and third row in Fig. 6 show the material configurations and vol-
ume fraction distributions after advecting the material along the diagonal of the
computational domain. Figs. 6c and 6d plot the results for the case where the
transport algorithm does not account for the geometry of the material subzone in
each element. It can be seen that the material loses coherence and disperses dur-
ing transport (Fig. 6c), leading to a blurred red zone in the volume fraction plot
(Fig. 6d). In contrast to that, the shape of the circular disk is retained through-
out the calculation if the material distribution is considered in each remap step
by using the VOF algorithm (Figs. 6e and 6f).

5 Experimental Tests

Experimental model tests have been carried out in the context of Subproject 5 to
observe the multi-material flow field during vibro-injection pile (RI-pile) installa-
tion in sand. This section summarizes the test set-up, measurement concept and
experimental program, and discusses some preliminary results. Further details
have been presented in a previous paper [141]. Moreover, we refer the reader
to the benchmark tests done in the Central Project of the DFG Research Unit,
e.g. those reported in [162,163] and in this collection.
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Fig. 6. Transport of a circular disk in uniform flow. (a) Initial configuration and mesh.
(b) Initial volume fraction distribution and reconstructed material interface. (c) Final
configuration and (d) final volume fraction distribution without interface tracking. (e)
Final configuration and (f) final volume fraction distribution using the VOF method.



Non-Lagrangian Formulation 31

 0.284

 1.000

 0.927

 0.969 original
reconstructed

Volume 
fraction =

Fig. 7. Detailed view of Fig. 6b. Original interface portion (dashed line) and piecewise
linear reconstructed interface (solid red line) which is generally discontinuous across
element edges. The material volume fraction in each element matches the original value
obtained by intersecting the circle with the element domain.

5.1 Set-up and Measurement Concept

The set-up used for the tests is shown in Fig. 8. The main components are a wa-
terproof chamber with glass panel serving as a viewing window, a model pile, and
a device for vibratory pile driving. All components are in-house developments.
The vibrator consists of two counter-rotating imbalances whose mass and ro-
tational speed are adjustable. The model pile is made up of a 50 mm× 50 mm
stainless steel square tube equipped with a welded-on collar at the pile toe and
a built-in injection tube. The opening of the injection tube is located directly
above the collar (Fig. 8c). Pressurized injection is enabled by a diaphragm pres-
sure vessel.

During the tests the pile was guided alongside the glass panel. The driving
and grouting process was digitally filmed through the viewing window using a
standard Full HD camcorder. Series of consecutive still images were recorded at
50 Hz with a maximum resolution of 1920× 1080 pixels. Digital still images of
the configurations at the end of the tests were also captured. By analyzing the
recorded image sequence using image correlation software, details of the multi-
material flow field could be measured without on-sample instrumentation. A
MATLAB toolbox based on particle image velocimetry (PIV) [4,14,171], called
GeoPIV [170], is used in the present research. PIV tracks the texture within
areas of an image through a sequence of images to determine local incremental
displacement vectors. The totality of these displacement vectors represents an
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Fig. 8. Experimental investigation of vibro-injection pile installation. a) Filled test
chamber with glass panel and model pile. b) Detailed view of the glass panel, pile
guide, and model pile. c) Tapered pile toe with welded-on collar and bolt closing the
injection tube. d) Self-made vibrator with controller (frequency converter). Reprint
from [141, p. 117] with permission of Springer.
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incremental displacement field from which an incremental strain field can be
obtained through postprocessing.

5.2 Experimental Program

The sand employed in the experimental model tests is a quartz sand with well-
rounded to angular grains identified as fine-gravelly coarse Sand (fgrCSa) ac-
cording to [62]. The limit void ratios are emin = 0.482 and emax = 0.779. Further
granulometric properties are listed in [14], in which the same sand was used for
quasi-static penetration tests. In all tests the chamber was filled with air dried
sand by dry sieve pluviation. Each sand model was prepared in several layers of
equal thickness in order to achieve a homogeneous distribution of initial density.
Due to geometric constraints of the chamber the initial mean relative density
was always larger than 85 % (very dense).

Table 1. Details of conducted vibro-injection pile (RI-pile) installation tests. Reprint
from [141, p. 119] with permission of Springer.

Test ID Date Saturation Grouting material / Frequency [Hz] /
Pressurization [bar] Load amplitude [kN]a

RI-1-D

2011

air dried

none

20.7 / 2.56
RI-2-F

water flooded

20.0 / 2.39
RI-3-F 20.0 / 1.90RI-4-F
RI-5-Bb bentonite slurry / —c 20.0 / 2.39
RI-6-D

2012

air dried none

20.0 / 2.39RI-7-B
water flooded

bentonite slurry / —c

RI-8-B bentonite slurry / 1.0
RI-9-Hb hydraulic binder / 3.0
RI-10-H 2013 water flooded hydraulic binder / 3.0 20.0 / 2.39
D – dry; F – flooded; B – bentonite; H – hydraulic binder
In all tests the initial mean relative density was >85 % (very dense).

a with respect to the vibrator; the static force (dead weight) varies between the tests
b analyzed by using particle image velocimetry
c loaded under its own weight

Series with a total of 10 tests have been conducted (Tab. 1). The degree of
saturation, the grouting material, the grouting pressure, and the load amplitude
of the vibrator were varied between the tests. The vibration frequency was about
20 Hz for all tests and the load amplitude varied between 1.9 kN and 2.56 kN.
Two tests were run in air dried sand, whereas the other were carried out in
sand which had been water flooded. In three experiments the pile shaft annulus
created by the welded-on collar was injected with pigmented bentonite slurry,
whereas hydraulic binder was used in two other tests.
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5.3 Test Results

All the tests using bentonite slurry injection failed in keeping open the shaft
annulus created by the collar at the model pile toe. In contrast to that, the
hydraulic binder has a sufficiently high shear resistance to stabilize the shaft
annulus while possessing excellent flowability during pressurized grouting. Fig. 9
shows two digital photographs of test RI-9-H recorded about half an hour after
the pile installation has completed. Although the amount of hydraulic binder
infiltration into the pores of the coarse test sand increases with time, it cannot be
completely avoided. Therefore, the assumption of impermeable interfaces (zero
mass exchange) in the mixture model summarized in Sect. 3 is not always a
reasonable one. Despite this, Fig. 9 indicates a clear soil-grout interface which
is almost vertical along the pile shaft.

Fig. 10 shows the results of a PIV analysis of test RI-9-H using hydraulic
binder injection. Fig. 10a plots the time history of the vertical displacement of
the pile tip. Those configurations where image capturing took place are marked
with black squares. During a vibration cycle, however, the pile moves upward
and downward. The displacement increments in the soil which occurred during
the downward motion of the pile between image 1 and image 2 are displayed in
Fig. 10b using vectors with scaled length. It is clearly visible that the soil is not
only displaced below the pile toe and underneath the collar in a predominantly
vertical direction but also moves downward above the collar. Figure 10c shows
the displacement increments due to upward motion of the pile between image 5
and image 6. The vectors above the collar indicate that the soil located at the
soil-grout interface is dragged along with the pile motion and displaced in lateral
direction. The heavings beneath the pile toe and the collar result from the release
of the previously compressed soil.

6 Conclusions and Outlook

The original objective of Subproject 5 of the DFG Research Unit FOR 1136
GeoTech has been the numerical simulation of vibro-injection pile installation in
sand. Our research work within this project, however, has revealed that available
methods will not produce reliable results because of two shortcomings: (i) they
cannot represent the large deformations and material interface evolution associ-
ated with such multi-material flow situations and/or (ii) they cannot accurately
reproduce the complex two-phase, coupled behavior of saturated geomaterial.
Consequently, we adjusted the focus of our research towards theoretical mod-
eling of geotechnical and geomechanical processes in general, and the develop-
ment of a numerical tool that consistently employs the advanced models in a
non-Lagrangian formulation.

A rigorous theoretical framework has been developed in order to model the
geomaterial (saturated sand or debris material) as a general grain-fluid mixture
as well as its interaction with multiple other bulk materials such as pure solid and
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Fig. 9. Digital photograph of the configuration of test RI-9-H (hydraulic binder in-
jection) through the viewing window of the chamber about half an hour after pile
installation has completed. Reprint from [141, p. 120] with permission of Springer.
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Fig. 10. Results of model test RI-9-H using hydraulic binder injection. (a) Schematic
time history of vertical pile displacements. PIV results showing soil displacement in-
crements (b) at downward motion of the pile (image 1 to image 2), and (c) at upward
motion of the pile (image 5 to image 6).
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pure fluid on the macroscale. Macroscopic balance principles have been derived
from the corresponding balance principles on the microscale by employing local
volume averaging as the filtering technique. In contrast to common two-scale
theories, the proposed three-scale hybrid mixture approach is able to incorporate
both the evolution of bulk material interfaces as well as the two-phase phenomena
associated with grain-fluid mixtures. Moreover, the approach allows for the use
of phenomenological constitutive models describing grain-fluid mixture response
for different flow regimes. Accordingly, the stress tensors have been split into
rate-independent and rate-dependent parts, and into a pressure stress and an
extra stress. Closure of the mixture model has been achieved by the fundamental
assumption of homogenous distributions of pressure and velocity.

To numerically model and simulate geotechnical and geomechanical pro-
cesses, we have developed a multi-material ALE (MMALE) method. The im-
plementation of the method is based on the common three step scheme, split-
ting incremental solution into Lagrangian, rezone, and remap steps. MMALE
allows material interfaces to flow through the computational mesh, so that multi-
material elements may arise which contain two or more materials. A homoge-
neous equilibrium mixture model derived from the proposed hybrid mixture the-
ory describes the interaction within those multi-material elements in a mechani-
cally consistent way. The donor-cell advection algorithm is used to conservatively
remap the solution variables onto the rezoned mesh. To precisely determine the
amount of lost or gained material volume, material interfaces are reconstructed
and propagated through the mesh by using the VOF technique.

Experimental model tests have been carried out in order to investigate the
relevant phenomena of vibro-injection pile installation in sand, an example of
a complex geotechnical process. A special model pile and a test chamber with
viewing window have been designed and manufactured for this purpose. Image
sequences have been recorded through the viewing window during the instal-
lation process, which have been subsequently analyzed by using particle image
velocimetry. The tests indicate that displacement, infiltration, and mixing occurs
along the soil-grout interface due to the dynamical interaction of multiple, phys-
ically distinct materials on different spatial scales. The tests also reveal that the
grains in a body of sand usually entail adequate image texture for PIV analysis,
but not the grouting material unless it would be seeded with marker particles.

Future work will focus on the application of the the MMALE method in con-
junction with the proposed mixture model to specific geotechnical and geome-
chanical processes. The developed modeling framework is unique on national as
well on international level and offers great potential for future research. The lat-
ter is motivated by the assumptions and restrictions associated with the present
research. For example, the incorporation of mass and momentum transfer be-
tween the constituents would be of great practical relevance because geomechan-
ical problems are often driven by local drainage and consolidation phenomena
as well as by contact constraints.
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Nomenclature

Operators and Special Notations

·, :,⊗ single contraction, double contraction, tensor product
〈·〉 spatial average
˙(·), ˙(·)α material time derivative, of an α-related field

(̂·) referential, ALE description
(·)αk αk-intrinsic average
O

(·) objective rate
∇(·) covariant derivative, gradient
∂(·) boundary, partial derivative
div(·) divergence
∆(·) increment
tr(·) trace of a second-order tensor

Superscripts and Subscripts

−,+ associated with Lagrangian step, remap step
adj adjacent
dev deviator of a second-order tensor
dr drained
f, fG fluid phase, in granular material
fr frictional (rate-independent) contribution
F bulk fluid; F ≡ fF
G fluid-saturated granular material
′,G′ related to effective stress in granular material
k k-material; k ∈ {S,F,G} = {1, . . . ,M}
n, n+ 1 associated with time tn, tn+1

s, sG solid phase, in granular material
S bulk solid; S ≡ sS
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T transpose of a tensor
uj unjacketed
vi viscous (rate-dependent) contribution
α α-phase; α ∈ {s, f} = {1, . . . , N}
αk α-phase in k-material; αk ∈ {S,F, sG, fG}

Latin Symbols

b, bαk, 〈b〉 body force per unit mass
B strain operator matrix
c convective velocity
c fourth-order material tangent tensor
C damping matrix
d line constant
d,dk spatial rate of deformation
da,dv surface area density, volume density
D material stiffness matrix
D modeling domain in the ambient space
f, fk, fαk volume fractions, of k, αk
f in,f ex vector of internal, external nodal forces
fb,f t vector of body, surface forces
H,Hk, Hαk volume measures of H, Hk, Hαk

H representative volume element (RVE)
Hk,Hαk portions of k, αk in H
I local node, vertex, edge
I second-order unit tensor
J Jacobian
K,Kk,Kαk, 〈K〉 bulk modulus
K effective stiffness matrix
lmicro, lmeso, lmacro microscale, mesoscale, macroscale
M mass, number of materials in the mixture
M mass matrix
n, nk, nG fluid fraction, porosity
n normal on interface
N number of phases in the mixture
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Np,Nv matrix of the interpolation functions
pαk, pk, 〈p〉 pressure
p′, pG′ mean effective stress
p nodal pressure vector
q, qk, qαk generic spatial field
Q coupling matrix
r vector of residuals
sk, sαk, 〈s〉 extra stress
S compressibility matrix
t time
u nodal displacement vector
v,vk,vαk, 〈v〉 spatial velocity
V volume, of an element
w mesh velocity
x point in the ambient space
y vector of nodal degrees of freedom

Greek Symbols

ΓI edge, element edge
Γ αk rate of momentum supply via ∂Hαk

∆QI ,∆Q
k
I total transported q-volume, transported qk-volume

∆VI ,∆V
k
I total transport volume, material transport volume

ζ Biot-Willis coefficient
µ dynamic shear viscosity
παk volume fraction of α with respect to Hk

ρ, ρk, ραk, 〈ρ〉 spatial mass density
σ,σk,σαk, 〈σ〉 (Cauchy) stress
σ′,σG′ effective stress
χk, χα, χαk indicator function
ω vorticity tensor
Ω element domain, control volume
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Acronyms

ALE Arbitrary Lagrangian-Eulerian
CFD Computational Fluid Dynamics
FEM Finite Element Method
MMALE Multi-Material Arbitrary Lagrangian-Eulerian
MPM Material Point Method
MOF Moment Of Fluid
PIV Particle Image Velocimetry
RVE Representative Volume Element
SPH Smoothed Particle Hydrodynamics
VOF Volume Of Fluid
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