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ABSTRACT
Circumbinary planets are thought to form far from the central binary and migrate
inwards by interactions with the circumbinary disk, ultimately stopping near their
present location either by a planetary trap near the disk inner edge or by resonance
capture. Here, we analyze the second possibility, presenting a detailed numerical study
on the capture process, resonant dynamics and tidal evolution of circumbinary planets
in high-order mean-motion resonances (MMRs). Planetary migration was modeled as
an external acceleration in an N-body code, while tidal effects were incorporated with
a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a
highly evolved system with a planet in the vicinity of the 5/1 MMR.

Our simulations show that resonance capture is a high-probability event under
a large range of system parameters, although several different resonant configuration
are possible. We identified three possible outcomes: aligned librations, anti-aligned
librations and chaotic solutions. All were found to be dynamically stable, even after
the dissipation of the disk, for time-spans of the order of the system’s age.

We found that while tidal evolution decreases the binary’s separation, the semima-
jor axis of the planet is driven outwards. Although the net effect is a secular increase
in the mean-motion ratio, the system requires a planetary tidal parameter of the order
of unity to reproduce the observed orbital configuration. The results presented here
open an interesting outlook into the complex dynamics of high-order resonances in
circumbinary systems.

1 INTRODUCTION

As of 2017, the Kepler mission has discovered ten cir-
cumbinary planetary systems (Kepler-161, Kepler-34 and
Kepler-352, Kepler-383, Kepler-474, Kepler-645, Kepler-
4136, Kepler-453 7, Kepler-4518 and Kepler-16479). Host
binary stellar systems are generally composed of stars of
sub-solar masses, with mass ratios between ∼ 0.2 and ∼ 1.
All binary components define compact systems with periods
no longer than ∼ 40 days and a wide range of eccentricities,
from quasi-circular orbits up to very eccentric cases (∼ 0.52).
The planets surrounding them also have a diversity of char-
acteristics: masses between a few tenth of terrestrial masses
to ∼ 2 Jupiter-masses, and while many are located close to
the binary (semimajor axis ratios ∼ 0.25) others are far-
ther away with semimajor axes ratio reaching ∼ 0.004. Most
planets orbit the binary in surprising circular orbits, except
Kepler-413 (eccentricity ∼ 0.12) and Kepler-34 (eccentricity
∼ 0.18).

As expected, planet formation around compact binary

1 Doyle et al. (2011),2 Welsh et al. (2012),3 Orosz et al. (2012), 4

Orosz et al. (2012), 5 Kostov et al. (2013),6 Kostov et al. (2014)
7 Welsh et al. (2015), 8Baran et al. (2015), 9 Kostov et al. (2016).

stars is more complex than for single stars. One of the main
differences is the strong eccentricity excitation induced by
the secondary star leading to high relative velocities between
planetesimals and, consequently, to disruptive collisions (e.g.
Paardekooper et al. 2012; Meschiari 2012; Lines et al. 2014).
The primordial disk is also expected to be affected by the
gravitational perturbations of binary, again leading to eccen-
tric disks (Müller & Kley 2012; Marzari et al. 2013). Both
these effects conspire to make in-situ formation extremely
difficult. However, since the magnitude of the gravitational
perturbations are a strong function of the semimajor axis
ratio, planetary formation far from the stars appears much
easier, following usual core-accretion models. This suggest
that circumbinary planets could have formed farther out,
and later migrated inward and stalled near their current
orbits (Dunhill & Alexander 2013). In this scenario a mech-
anism that stops the inward migration is necessary.

Two mechanisms may be invoked to stall planetary mi-
gration: planetary traps generated by an inner disk cavity
(e.g. Masset et al. 2006) and resonance trapping (Nelson
2003), both identified as a result of hydrodynamical sim-
ulations. Nelson (2003), in his pioneering work for Jovian-
size circumbinary planets, found that resonance trapping ap-
peared to be an effective stalling mechanism, although which
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2 F.A. Zoppetti et al.

commensurability acted as the barrier seemed to depend on
the binary eccentricity. In all cases, however, the resonances
were of high order and first degree (i.e. mean-motion ratio
∼ j/1).

Pierens & Nelson (2007) extended this study to planets
in the Super-earth mass range, showing that these planets
were usually stopped near the edge of the inner disk cavity.
Curiously, the semimajor axis at which the planets stalled
was very close to the 5/1 MMR with the binary but the
authors could not find evidence that the protoplanets were
effectively in resonance. More sophisticated cases in which
accretion is included were discussed in Pierens & Nelson
(2008). They found that MMR-capture was the main trap-
ping mechanism. However, if post-capture planetary accre-
tion was sufficiently large to form Jovian or Super-Jovian
masses, the planet could be ejected from the commensura-
bility leading to scattering or collision with the binary.

After the discovery of the first circumbinary planets
by the Kepler mission, Pierens & Nelson (2013) attempted
to explain the orbital architecture of Kepler-16, Kepler-34
and Kepler-35 systems, again using hydro-simulations to
model the planet migration. They showed that the plan-
ets in these systems can migrate and end up in stable orbits
close to the binary, but had difficulties in recreating their
observed configurations. With a similar goal and method,
Kley & Haghighipour (2014) attempted to explain the or-
bit of Kepler-38 by presenting an improved and extended
disk model that included more realistic thermodynamics and
boundary conditions. As before, they found that the binary
carves a steep inner edge in the disk whose exact location is
sensitive with respect to the disk and simulation parameters.
A vital reference point is the location of the 5/1 MMR with
the secondary star. If the inner edge of the disk occurs closer
to the star, hydro-simulations lead to a resonance capture
in the 5/1 MMR; conversely, if the disk gap extends further
out, the planet did not reach the 5/1 commensurability but
was trapped by the cavity’s edge and remained close to its
location throughout the simulation.

Of these two possibilities (resonance capture and plane-
tary trap), Kley & Haghighipour (2014) clearly stated their
preference for the second. They found that smaller values
for the inner radius of the computational mesh led to a
more extended disk gap, placing the cavity edge beyond the
5/1 resonance. Thus, they claimed that more realistic hydro-
simulations should lead to planetary traps in non-resonant
motion with the binary. This conclusion was additionally fu-
eled by the fact that the current semimajor axis of the planet
is not close to the resonance, but significantly displaced. Ex-
plicitly, the present day mean-motion ratio between the sec-
ondary star and the planet is ∼ 5.61, a long way up from the
5/1 value.

While at first hand it may be difficult to imagine a sce-
nario in which the orbit of the planet migrated outwards
after the dissipation of the disk, the semimajor axis of the
binary could in fact have decreased over time due to tidal
effects. As the radius of the primary star is much larger than
expected for a young main sequence star with the same mass,
it is expected that the primary, and the system as a whole, is
significantly evolved (Orosz et al. 2012). This fact, in addi-
tion to the scarce separation between the primaries for their
corresponding masses and radii, allows us to infer that the

Table 1. System parameters for Kepler-38 (Orosz et al. 2012).

Body Radius m [M�] P [d] a [AU] e

m−1 1.757 R� 0.949
m0 0.272 R� 0.249 18.7954 0.1469 0.1032

m1 4.35 R⊕ ? 105.595 0.4644 ≤ 0.032

tidal effects may have played an important role in the past
evolution of the system.

Tidal evolution of resonant planets around single stars
have been analyzed recurrently in the past years (e.g. Pa-
paloizou & Terquem 2010; Papaloizou 2011; Lithwick & Wu
2012; Delisle et al. 2012; Batygin & Morbidelli 2013; Delisle
et al. 2014), all showing a slow divergence of the system away
from exact commensurability as a function of time. The ex-
tent of the divergence is a strong function of the system pa-
rameters, especially the tidal coefficients Q′i , and may reach
large values for Q′i (Lee et al. 2013). On the other hand, tidal
evolution in circumbinary systems has so far received little
attention, and mainly focused on spin dynamics rather than
on orbital evolution (Correia et al. 2016). Thus not much
is known about the role of tidal evolution in defining the
current orbital architecture of circumbinary systems.

This background invites us to revisit the dynamical
problem of resonance trapping and tidal evolution for cir-
cumbinary planets as applied to a particular system: Kepler-
38. Our aim is to test whether the combined effects of these
two phenomena can explain the present day planetary ec-
centricity and mean-motion ratio with the secondary star.
Since many of the crucial parameters (e.g. mass and tidal
coefficients) are little constrained, our analysis will also be
able to establish some limits for these parameters in order
for the adopted scenario to work.

This paper is organized as follows. In Section 2 we dis-
cuss the present state and past tidal evolution of Kepler-38
binary in order to estimate the primordial orbital configu-
ration of the binary. These primordial values are then used
in Section 3 as starting points for a set of N-body simula-
tions of the inwards migration and trapping of the planet
in the 5/1 MMR. We also discuss the stability and resonant
dynamics the captured orbits attain after the dispersal of
the disk. Section 4 is devoted to the later tidal evolution of
the complete (binary+planet) system up to the present day
and which combination of system parameters are compati-
ble with the observed configuration. Finally, in Section 5 we
summarize the results and discuss their implications.

2 THE PRESENT AND PRIMORDIAL
KEPLER-38 SYSTEM

The known physical and orbital characteristics of the present
day Kepler-38 system are reproduced in Table 1, as obtained
by Orosz et al. (2012). We denote the masses of the binary
components as by m−1 and m0 (with the convention m−1 >
m0) while m1 is reserved for the planetary body. All orbital
elements are given in the Jacobi reference frame.

The absence of noticeable planetary perturbations on
the stars place an upper value for m1 of ∼ 120m⊕, although
its actual value is probably much lower. Application of the
semi-empirical fit by Mills & Mazeh (2017) to the planetary
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Resonance Capture and Tidal Evolution of Kepler-38 3

radius yields a most probable value of m1 ' 8m⊕. However,
exoplanets with similar radii have measured masses in the
range m1 ∈ [2, 20]m⊕ associated to a large diversity of chem-
ical compositions and internal densities. Thus, although the
planetary mass is probably of the order of 10m⊕, lower or
even higher values are possible.

In addition to the parameters given in Table 1, Orosz et
al. (2012) calculated the spectroscopic metallicity ([Fe/H]=
−0.11, assumed equal for both stars) and the age T of the
system. The age was estimated using both the effective tem-
perature and the mass of the primary star and comparing
isochrones in a log (g) - Te f f diagram from the Dartmouth
series (Dotter et al. 2008). Results gave values of T between
7 and 13 Gyrs.

The large radius of m−1, compared to its mass, points
towards an evolved star leaving the main sequence. Thus,
not only is the system expected to be old but the phys-
ical radius of the main star should also have changed
significantly from its primordial value. In order to esti-
mate Ri (t) we repeated the comparison of the system pa-
rameters with the isochrones from the Dartmouth series.
The isochrones were downloaded from the database The
Dartmouth Stellar Evolution Database, which are freely
accessible from http://stellar.dartmouth.edu/~models/.
We adopted the measured metallicity of [Fe/H]= −0.11,
[α/Fe]= 0 (scaled-solar) and the photometric system
UBV(RI)c+2MASS+Kepler in the range t ∈ [1, 13] Gyrs,
the same values used by Orosz et al. (2012).

Results are shown in Figure 1. The top panel reproduces
the upper plot in Figure 9 of Orosz et al. (2012), showing the
current position of the primary and secondary star (this lat-
ter zoomed in a secondary plot) on the mass-radius diagram
which were superimposed on the isochrones from the Dart-
mouth series. Due to the degeneration of the isochrones for
low mass stars (such as m0), we used m−1 to estimate the age
of the system. The blue curve corresponds to the isochrone
that best intersects the current position of the primary, cor-
responding to T = 12.08 Gyrs. Taking into account the errors
in the determination of m−1, we estimate the age of the sys-
tem as T = 12 ± 2 Gyr, in good agreement with the value
calculated in Orosz et al. (2012).

Assuming no significant mass loss in the stars since they
entered the main sequence stage, it is then possible to de-
termine their radial evolution Ri (t) from the intersection of
each isochrone with the value corresponding to the stellar
mass. From top panel of Figure 1, we can infer that the ra-
dial evolution of the secondary star m0 should have been
negligible. This result is well known for very low-mass star
evolution: the lifetimes in the main sequence for this type
of stars are much longer than the age of the system (Bow-
ers & Deeming 1984) and no appreciable evolution in size
is expected in this stage. For this reason, for the rest of our
study we assume R0(t) = R0 = 0.272M�. The primary star,
on the other hand, suffered an important evolution in its
radius, form a zero-time value of R−1(t = 0) ' 0.84R� to its
present value of R−1(t = T ) ' 1.757R�. To obtain a smooth
functional form for R−1(t) we fitted the data to a rational
function of the form

R(t)
R�
=

A + Ct + Et2

1 + Bt + Dt2 + Ft3
, (1)

using a maximum likelihood technique. Expressing the time

Figure 1. Top: Mass-radius diagram showing the present day

values for the binary components of Kepler-38 (black circles)
with their corresponding errors (red boxes), superimposed to the

isochrones from the Dartmouth series (dotted lines) for the mea-

sured metallicity [Fe/H]= −0.11. The isochrones corresponding to
1, 5, 10 and 13 Gyrs have been highlighted in broad curves, while

the isochrone that best intersects the position of the primary star
is shown in blue (i.e. T = 12.08 Gyr). The secondary plot is a
zoom around the position of the secondary mass. Bottom: Time

evolution of the radius of the primary star (i.e. R1 (t)) (black dots)

and the fitting rational function (green line). The dotted line cor-
responds to the current R−1 and the time estimated as the age of

the system. The secondary plot shows the difference between the
data and the values predicted by the fitting algorithm.

t in Gyrs, the resulting coefficients acquire values:

A = 8.402 × 10−1 ; B = −1.205 × 10−1

C = −8.662 × 10−2 ; D = 2.837 × 10−3

E = 1.662 × 10−3 ; F = 3.530 × 10−4.

(2)

The bottom panel in Figure 1 shows the radial evolution of
the primary star R−1(t) obtained from the isochrones, and
the fitting rational function from equation (1). Notice that
the size of this star has begun to evolve recently (∼ 3 Gyr
ago), when it began to leave the main sequence.

With this information in hand, we may now estimate
the past orbital evolution of the system due to tidal inter-
actions. We assume that both stars evolved in isolation but
very quickly attained pseudo-synchronous spin rates. Adopt-
ing a Mignard-type equilibrium tide model (e.g. Mignard
1979; Hut 1981), the differential equations governing the
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Figure 2. Past tidal evolution of the mean binary semimajor axis a0 (left), mean binary eccentricity e0 (middle), and mean-motion ratio
n0/n1 (right), for different values of the tidal dissipation parameters. Continuous lines correspond to Q′0 = Q′

−1 while broken lines show

results assuming Q′0 = 105 independently of the value of Q′
−1. The mean motion of the planet (i.e. n1) was kept constant and equal to its

current value.

time evolution of the mean binary semimajor axis a0 and
eccentricity e0 may be written as:

1
a0

da0
dt
= −n0Da (e0)

[ 1
Q′
−1

( m0
m−1

) ( R−1
a0

)5
+

1
Q′0

(m−1
m0

) ( R0
a0

)5]
1
e0

de0
dt
= −n0De (e0)

[ 1
Q′
−1

( m0
m−1

) ( R−1
a0

)5
+

1
Q′0

(m−1
m0

) ( R0
a0

)5]
(3)

where Da (e) and De (e) may be written in terms of the clas-
sical eccentricity functions fi (e) as

Da (e) = 9
(

f3(e) −
f 2
2 (e)

f1(e)

)
De (e) =

81
2

(
f5(e) −

11
18

f2(e) f4(e)
f1(e)

)
,

(4)

with

f1(e) =
1 + 3e2 + 3e4/8

(1 − e2)9/2

f2(e) =
1 + 15e2/2 + 45e4/8 + 5e6/16

(1 − e2)6

f3(e) =
1 + 31e2/2 + 255e4/8 + 185e6/16 + 25e8/64

(1 − e2)15/2

f4(e) =
1 + 3e2/2 + e4/8

(1 − e2)5

f5(e) =
1 + 15e2/4 + 15e4/8 + 5e6/64

(1 − e2)13/2 ,

(5)

(e.g. Mignard 1980; Hut 1981; Correia et al. 2011). Expres-
sions (3) are valid only in the case where both bodies are
tidally locked.

We now apply these equations to the case of Kepler-
38 binary. Given the present orbit, we wish to estimate the
primordial values of a0 and e0 at the time of the dispersal
of the proto-planetary disk. To do this, we must perform
a back integration of the tidal equations for the age of the
system, assuming the current values as initial conditions and
taking into account the change in the radius of the primary
star. The values of the stellar tidal parameters Q′i are little

known, with estimates as low as 105 (e.g. Essick & Weinberg
2016; Maciejewski et al. 2016) and as high as 107 (Beńıtez-
Llambay et al. 2011). We will consequently consider them
as free parameters in our simulations.

Figure 2 shows the back evolution of the mean semi-
major axis a0 (left) and the eccentricity e0 (middle plot)
of the binary, over a total timespan of 12 Gyr and for four
representative values of Q′

−1, indicated within the left-hand
frame. Continuous lines show results with Q′0 = Q′

−1, while

broken lines correspond to Q′0 = 105 for all values of Q′
−1.

This latter case explores the possibility that the secondary
star (with much larger mass density) could have a lower
tidal parameter than its more massive companion. However,
as seen here, there is no substantial difference in the results
and the tidal evolution of the system is primarily dominated
by tides raised on the central star.

As expected, tidal evolution implies that the primordial
orbit of the binary must has been wider and more eccentric.
Dissipation parameters Q′

−1 . 3 × 105 leads to divergent
solutions and thus appear inconsistent with the present state
of the binary. On the other extreme, practically no orbital
change is observed for Q′

−1 & 107. In all cases, most of the
orbital evolution appears to have occurred in the last few
Gyrs, and is associated to the inflation of the physical radius
of the primary stellar component.

The right-hand frame of Figure 2 shows the evolution
of the mean-motion ratio n0/n1 between the binary and the
planet, where for this analysis we have assumed no change
in the value of n1. Since stronger tidal effects imply larger
initial values of a0, the proximity of the primordial system to
the 5/1 MMR could have been much smaller in the past. In
particular, for Q′

−1 ∼ 4×105 the original configuration of the
system could have been quite close to the exact resonance
and migrated out to the present value just by tidal evolution
of the binary system without change in the planetary orbit.
However, as we will see further on, large values for the ini-
tial eccentricity e0 are not compatible with a smooth tidal
ejection of the complete system (binary + planet) out of the
commensurability.
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Resonance Capture and Tidal Evolution of Kepler-38 5

3 MIGRATION AND RESONANT CAPTURE
IN THE KEPLER-38 SYSTEM

We now add the planet m1 to the dynamical system and
adopt a Jacobi reference frame for the coordinates and ve-
locities. The position vector ~r0 of the secondary star m0 is
then defined as m−1-centric while the position vector ~r1 of
the planet m1 is measured with respect to the center of mass
of m−1 and m0. The planet’s orbit, considered coplanar with
the binary, will be characterized by its semimajor axis a1,
eccentricity e1, mean longitude λ1 and longitude of peri-
center, all calculated from the Jacobi state vectors. Similar
notation, but with subindex 0 will be used for the orbit of
the secondary star m0 around the primary star m−1.

3.1 Resonant Structure

Let us now suppose that m1 lies in the vicinity of a generic
(p+q)/p mean-motion resonance with the perturber m0, such
that

(p + q)n1 − pn0 ' 0 (6)

where both p and q are positive integers. All resonant terms
of the Hamiltonian normal form will then have the generic
form

φres = u(p + q)λ1 − upλ0 + j2$0 + j4$1 (7)

where u is an integer defining the harmonic order of the
resonant term, while D’Alambert’s condition implies j2 +
j4 = −uq. Considering the lowest-order harmonic (u = 1), we
obtain j2 = k − (p + q) and j4 = p − k with k an integer.

Since the strength of a given resonant harmonic is pro-

portional to e | j2 |0 e | j4 |1 , the set of independent resonant angles
with the lowest order in eccentricity will be associated to
values of k in the range k ∈ [p, p+ q]. Thus, the resonant set
that characterizes the (p+q)/p resonance will contain (q+1)
independent resonant arguments of the form

φ(l)
(p+q)/p = (p + q)λ1 − pλ0 − q$0 − l ($1 −$0) (8)

where l = (k − p) ∈ [0, q]. In the particular case of the 5/1
MMR, all lowest-order resonant terms of the disturbing func-
tion will contain one of the following possible critical argu-
ments:

φ(0)
5/1 = 5λ1 − λ0 − 4$0

φ(1)
5/1 = 5λ1 − λ0 − 3$0 −$1

φ(2)
5/1 = 5λ1 − λ0 − 2$0 − 2$1

φ(3)
5/1 = 5λ1 − λ0 −$0 − 3$1

φ(4)
5/1 = 5λ1 − λ0 − 4$1,

(9)

which, from equation (8), may also be written succinctly as

φ(l)
5/1 = σ − l∆$ where σ = (p + q)λ1 − pλ0 − q$0 (10)

and ∆$ = $1 −$0 is the difference in longitudes of pericen-
ter.

While high-order MMRs are usually negligible in plan-
etary systems around single stars, this is not the case for
binary systems where the perturbing mass is comparable
to the central mass (e.g. Leiva et al. 2013). Moreover, in

Figure 3. Dynamical maps in the (n0/n1, e1) plane with different

values of the binary eccentricity e0 and initial angles leading to
(σ, ∆$) = (0, 0) (left-hand plots) and (σ, ∆$) = (π, π) (right-

hand column). Blue (red) tones correspond to low (high) values
of max(∆e), respectively. Total integration time was 103 years.

the case of circumbinary planets the j/1 commensurabili-
ties appear as the strongest and more isolated resonances
(Gallardo 2006), and thus the most likely final destination
through planetary migration.

Preliminary N-body simulations of the capture and dy-
namical evolution of systems within the 5/1 MMR showed
that all stable resonant solutions cross one of two repre-
sentative planes: one represented by values of the angles
(σ,∆$) = (0, 0) corresponding to aligned orbits, and a sec-
ond plane with (σ,∆$) = (π, π), this time corresponding to
anti-aligned configurations. Although asymmetric solutions
are expected for exterior j/1 resonances (e.g. Beaugé 1994),
here these seem to be associated to high eccentricities and
have not been found in any of our simulations.
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6 F.A. Zoppetti et al.

Figure 3 shows a set of dynamical maps in the (n0/n1, e1)
plane. Each frame shows a map for a 400 × 200 grid of ini-
tial conditions, each integrated for a total timespan of 103

years. The color code indicates the maximum change in the
planetary eccentricity during the integration timespan, usu-
ally referred to as the max(∆e)-indicator (e.g. Ramos et al.
2015). The planetary mass was taken equal to m1 = 120m⊕,
although no significant difference was noted in the maps
when using smaller masses. Initial values for the angles cor-
respond to (σ,∆$) = (0, 0) for the left-hand graphs and
(σ,∆$) = (π, π) for the right-hand column.

The present day location of the planet is indicated with
a large white filled circle in the two top frames, both drawn
for the current value of the binary eccentricity. While no
reliable information is available for the observed ∆$, the
current upper value for the eccentricity is very close to the
Mode I secular mode (e.g. Michtchenko & Malhotra 2004)
corresponding to aligned orbits. This secular mode is visible
for all binary eccentricities, although increasingly distorted
by the expanding libration domain of the mean-motion res-
onances.

Up to moderate values of e1 (i.e. ∼ 0.20), the struc-
ture of the 5/1 resonance is clearly visible as a classical V-
shape librational domain. A wide chaotic layer dominates
the left-hand separatrix and weaker counterpart may be seen
in the right side. However for e0 & 0.2 both branches gen-
erate a strong chaotic layer separating the resonant from
non-resonant domains. In all cases, however, the inner li-
brational region still shows an inner core of more regular
motion, whose location with respect to the exact resonance
increases with the binary eccentricity.

3.2 Ad-hoc Planetary Migration

Simulating the whole process of disk-induced migration in
the circumbinary environment is beyond the scope of the
present paper. We instead opted to add to a N-Body inte-
grator an ad-hoc external acceleration that mimics the mi-
gration mechanisms that the hydrosimulations show. This
technique is well documented for planetary systems around
single stars (e.g. Lee & Peale 2002; Beaugé et al. 2006; Cress-
well & Nelson 2008), and was recently used to study scatter-
ing processes between circumbinary planets and the binary
system by Rodet et al. (2017). It is generally believed that
circumbinary disks may present different properties respect
to disks around simple stars, so the migration processes may
also be different. However, since the principal aim of this
section is to analyze the dynamical capture into resonance,
usual ad-hoc prescriptions for planetary migration will be
used.

We assume that the protoplanetary disk was symmetric
with respect to the center of mass of the binary, thus prompt-
ing the use of a Jacobi reference frame for the complete
system. The gaseous disk was considered thin and laminar
with a power-law dependence for both the surface density
Σ(r) = Σ0 rγ and aspect ratio Hr (r) = H0 r f . Their values at
r = 1 was set to Σ0 = 1 × 10−5 M�/ AU2 and H0 = 0.05. The
exponents were taken equal to γ = 1/2 and f = 0, this last
value corresponding to a flat disk.

Following Cresswell & Nelson (2008), the acceleration of
the planet due to the interaction with the disk was modeled

by an exterior non-conservative term defined by

~̈r1 = −
[
~v1
2τa
+ 2

(~v1 · ~r1)~r1
r2
1 τe

]
(11)

where ~v1 is the Jacobi velocity vector of the planet while
τa and τe are the orbital migration and eccentricity damp-
ing timescales, respectively. No disk-induced migration was
considered for the secondary star.

From linear models (e.g. Tanaka & Ward 2004; Cress-
well & Nelson 2008), in the low eccentricity limit we may
write

τa = Qa
twave

H2
r

; τe = Qe
twave

0.780
(12)

where the quantity Qe is an ad-hoc constant parameter in-
troduced by Cresswell & Nelson (2006) to fit the results of
hydrodynamical simulations. They found that the best re-
sults were obtained with Qe = 0.1, a value that we also adopt
here. On the other hand, Qa = Qa (γ) is a function of the
slope of the surface density profile which, from Tanaka et
al. (2002), is given by Q−1

a ' 2.7 + 1.1γ. While numerical
fits with hydrosimulations sometimes lead to slightly differ-
ent functional forms (e.g. D’Angelo & Lubow 2010), here we
adopted the classical expression. The typical timescale twave

for planetary migration is given by

twave =
M2

BH2
r

m1n1a2
1Σ(a1)

(13)

where MB = m−1 + m0 is the total mass of the binary.
Finally, we consider the modifications of Goldreich &

Schlichting (2014) to take into account the contribution of
eccentricity damping to changes in the semimajor axis asso-
ciated with partial conservation of the angular momentum.
Thus, the effective characteristic timescale for orbital migra-
tion should actually be given by

1
τae f f

=
1
τa
+ 2β

e2
1
τe

(14)

where τa and τe maintain the same form as Equations (12)
and β is a factor that quantifies the fraction of the orbital
angular momentum preserved during the migration. Goldre-
ich & Schlichting (2014) refer to estimations by Tanaka &
Ward (2004) that suggest β = 0.3 for Type-I disk-planet
interactions.

We performed a series N-Body simulations of planetary
migration in circumbinary disks using this simple analytical
prescription, to which we also added relativistic effects, mod-
eled following the post-Newtonian formulation of Richard-
son & Kelly (1988). The initial semimajor axis for the planet
was chosen beyond the 6/1 MMR with the binary, e1 = 0.05
and all angles set to zero. In all cases, we assumed that
the planet was already formed when the migration began
and that there was no additional accretion. Each run was
followed for a total timespan of 105 yrs (roughly 2 × 106

binary periods) to study the long-term evolution. The sur-
face density was artificially decreased down to zero in the
time interval t ∈ [6 × 104, 8 × 104] years following a linear
trend. This interval was sufficiently long for the transition
to be adiabatic with respect to the resonant and secular
timescales. The last 20% of the simulation thus occurred
without the effects of non-conservative forces, ensuring that
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Resonance Capture and Tidal Evolution of Kepler-38 7

Figure 4. Evolution of the mean-motion ratio n0/n1 (left) and

planetary eccentricity (right) during planetary migration and cap-
ture in the 5/1 MMR for four different values of (e0,m1). The time

interval prior to the dispersal of the disk is shown in gray dots

while the resonant dynamics stemming from the purely gravi-
tational interactions is highlighted in red. For m1 = 70m⊕ the

migration and disk dissipation timescales was accelerated by a

factor 10 with respect to the smaller masses.

the final configuration was stable and representative of the
dynamics in a gas-free scenario.

Due to the lack of information of the planetary mass,
we ran simulations in the range m1 ∈ [1, 120]m⊕. Prompted
by the backwards tidal evolution, we considered primordial
binary eccentricities in the range e0 ∈ [0.10, 0.25]. This value
was kept constant throughout the migration. While resonant
capture in the 5/1 MMR were also found for higher values of
e0, most initial conditions led to orbital instabilities as soon
as the eccentricity damping force was decreased to zero. This
seems to indicate a minimum value for the tidal parameter
of the central star of the order of Q′

−1 & 5× 105 for resonant
capture to have been probable in the original configuration
of the Kepler-38 system.

Depending on the values of e0 and m1 we found three
possible final outcomes for planets trapped in the 5/1 mean-
motion resonance; their dynamical behavior is summarized
in Figures 4 and 5. The first presents the evolution of the
mean-motion ratio n0/n1 and the eccentricity of the planet
e1 during the migration process and after the dissipation

Figure 5. Orbital evolution in the regular variables

(kσ, hσ ) = (e cosσ, e sinσ) (left columns) and (k∆$, h∆$ ) =
(e cos∆$, e sin∆$) (right column) for the simulations described

in Figure 4. The time interval prior to the dispersal of the disk is

shown in gray dots while the resonant dynamics stemming from
the purely gravitational interactions is highlighted in red.

of the disk. While only four cases are shown, these proved
the only types found in our analysis of the parameter space.
Masses and values of e0 are specified in the left-hand col-
umn. Figure 5 shows the behavior of the primary resonant
and secular angles (see equation (10)). These are plotted in
regular variables with the planetary eccentricity e1 as the ra-
dial distance. Results obtained during the disk lifetime are
shown in gray while those after disk dispersal are depicted
in red.

Upon reaching the 5/1 resonance, all initial conditions
enter a chaotic region which seems to be associated to an
outer separatrix of the commensurability (see Figure 3). This
is seen in Figure 4 as a large-amplitude oscillation in both
the semimajor axis and eccentricity. We found that for e0 ≤
0.10 this phase is temporary and the planet ultimately enters
a more regular inner resonant region in which all resonant
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8 F.A. Zoppetti et al.

angles librate. Depending on the planetary mass, the center
of libration may correspond to (σ,∆$) = (π, π) (as shown
for m1 = 70m⊕) or to (σ,∆$) = (0, 0), as seen for m1 = 7m⊕.
This second mode corresponds to a libration of all critical
angles (9) around zero, while in the first (anti-aligned) mode
the critical angles librate around zero or π depending on the
multiplicity of the longitude of pericenter.

The anti-aligned mode seems to be preferred by large
planetary masses while small values of m1 always seem to
be trapped in an aligned mode. However, the precise limit
appears to be a strong function of the binary eccentricity and
a more in-depth analysis of this behavior is still pending.

For e0 > 0.10, the planet does not seem able to pass into
the inner libration domain of the 5/1 MMR and exhibits
large, apparently chaotic, oscillations in semimajor axis and
eccentricity, even after the dispersal of the disk. In most
cases this is accompanied by a lack of librations of the res-
onance angles, although we did note a few examples where

φ(3)
5/1 librated around zero. This behavior is similar to that

noted by Kley & Haghighipour (2014) in their hydrosimula-
tions, although in our case it was only observed for larger bi-
nary eccentricities. The chaoticity was checked in additional
runs without the relativistic effects, and is probably linked
to the overlap of different sub-resonances, each associated to
a different critical angle.

Notwithstanding the different dynamical evolutions, all
these simulations proved to be dynamically stable, even af-
ter extending the total integration time to over 109 orbital
periods of the binary. This seems to indicate that librations
of the resonant angles are not a necessary condition for res-
onance capture, at least for the present problem.

4 TIDAL EVOLUTION TO THE CURRENT
KEPLER-38 SYSTEM

Having established the conditions for trapping and final or-
bital configurations for the system after the dissipation of the
primordial disk, the next (and final) step is to study its later
evolution up to the present day. In a gas-free environment
the only interacting forces are gravitational, and these in-
clude the tidal interactions of the complete (binary+planet)
system.

Since we lack an adequate analytical model for the 5/1
MMR, we opted for a pure N-body approach in which the
tidal forces were modeled following Mignard (1979) as ap-
plied in (e.g. Rodriguez et al. 2011; Beaugé & Nesvorný
2012). As described in Section 2, we incorporated into the
N-body code the temporal evolution in the radius of the pri-
mary star; the secondary suffered negligible change and was
assumed constant. The whole system was then integrated for
a timespan equivalent to the age of the system, set as before
at T = 12 Gyrs. Since this timespan corresponds to about
1012 orbital periods of the binary, numerical integrations for
nominal values of the system parameters proved prohibited.
Consequently, we scaled down the total timespan and the
tidal parameters by an identical factor γ > 1 to reduce the
integration time to reasonable levels.

In the case of non-interacting masses in pseudo-
synchronous configurations, the scaling of both time and
tidal parameters leads to the same orbital evolution, regard-
less of the value of γ. The same, however, does not hold

when mutual gravitational interactions are introduced, po-
tentially leading to spurious results in the accelerated sys-
tem. In order to guard against this possibility, we considered
only values of γ sufficiently low to maintain the accelerated
tidal evolution adiabatic with respect to the resonant and
secular gravitational timescales. Following preliminary tests
we adopted γ = 105, although, as an additional security mea-
sure, we repeated some runs with lower values to guarantee
reliable results.

The current location of the Kepler-38 planets corre-
sponds to (n0/n1, e1) ' (5.61, 0.03), with the mean-motion
ratio a long way up from the average value found in our
capture simulations (n0/n1 ' 5.2). Although for high binary
eccentricities we were able to find solutions with osculating
values up to ∼ 5.6, these instants are accompanied by max-
ima of the planetary eccentricity (e1 ' 0.15 − 0.2) and thus
inconsistent with present-day values. It thus appears that
the only possibility in explaining the Kepler-38 system af-
ter a 5/1 MMR capture is through a strong tidal evolution
leading to an ejection from the resonance and a subsequent
secular drift up to the observed separation.

Here lies our first problem. Once spin-orbit equilibrium
is reached and the planet leaves the resonant domain, tidal
dissipation is expected to lead to a decrease in the semimajor
axes (see equation (5)). Thus, in order for the mean-motion
ratio n0/n1 to increase up to current values, in principle it is
necessary for the semimajor axis of the binary to decrease
faster than that of the planet and by a significantly larger
amount. As seem from the right-hand frame of Figure 2, this
condition implies that the tidal parameter of the central star
must be Q′

−1 . 5 × 105, or even lower if the planetary tidal
evolution was important. Adopting lower values for Q′0 does
not seem to modify the problem significantly.

Although such values are consistent with some estima-
tions (e.g. Maciejewski et al. 2016), they imply primordial
eccentricities for the binary e0 & 0.25 (middle frame of Fig-
ure 2). Not only is then resonance capture a low probability
event, but the outcome of the subsequent tidal evolution al-
ways appears to be close encounters and disruption of the
system. This instability is believed to be caused by the en-
hanced chaotic layer delimiting the different sub-resonant
domains, and is more pronounced in the inner separatrix
of the commensurability. Even if the large stochastic region
may be crossed successfully under the effects of a relatively
fast planetary migration, tidal evolution is much slower, giv-
ing time for the intrinsic instabilities to act and ultimately
drive the planet into a crossing orbit with the secondary
star.

These dynamical constraints seem to indicate a larger
value for the tidal parameter of the central star, of the order
of Q′

−1 & 106, leading to a lower initial binary eccentric-
ity and a much less prominent chaotic layer (see Figure 3).
The problem here lies in that the tidal decay of the binary
would not be sufficient to account for the current value of
n0/n1. Consequently, most of the divergent migration must
have come from the tidal evolution of the planet itself. This
raises two issues: (i) whether the planetary tide could have
been strong enough for the required migration scale, and
(ii) whether the direction of the tidal migration could in
fact been outwards and not inwards as expected from secu-
lar dynamics.

Figure 6 shows the results of an N-body simulation
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Resonance Capture and Tidal Evolution of Kepler-38 9

Figure 6. N-body simulation of the tidal evolution of a m1 =
2m⊕ planet initially trapped in the 5/1 MMR with the binary

(e0 = 0.156). Tidal parameters were chosen equal to Q′
−1 = 106,

Q′0 = 105 and Q′1 = 10/3. Brown dots show osculating orbital

elements while black lines correspond to filtered values, averaged

over short period terms. The white circle in the lower right-hand
plot is the current location of Kepler-38 in the (n0/n1, e1) plane.

mimicking the tidal evolution of a m1 = 2m⊕ planet, ini-
tially trapped in the 5/1 MMR, for a timespan equivalent to
the system’s age. Tidal parameters for the stars were tak-
ing equal to Q′

−1 = 106 and Q′0 = 105, implying that the
initial eccentricity of the binary was e0 = 0.156. The tidal
parameter for the planet was assumed to be Q′1 = 10/3 and
its physical radius equal to the observed value. The brown
dots show the osculating orbital element, while the black
curves correspond to values obtained after applying a FIR-
type digital filter (e.g. Carpino et al. 1987) to eliminate the
short-period variations.

The two top frames show the time evolution of the semi-
major of the planet (left) and the secondary star (right).
While a0 decreases as a function of time, as expected from
the tidal equations (3), the planet’s semimajor axis has the
inverse behavior and increases with time. Without a reliable
model for the MMR it is not possible to establish if this ef-
fect is caused by the resonant structure, but this explanation
appears improbable since we would not expect its effect to
reach beyond the immediate vicinity of the commensurabil-
ity.

A second, more likely explanation, may lie in the ef-
fects of the near-resonant terms on the secular aligned-mode,

Figure 7. Results of a second N-body simulation, this time
adopting m1 = (20/3) m⊕ and Q′1 = 1, while all other system pa-

rameters were kept equal as those used in Figure 6. Light brown

dots correspond to osculating elements while orbitally-averaged
values are shown as a thick black curve. The dashed green curve

is the forced eccentricity as given by equation (15). The current
location of Kepler-38 is indicated by a filled white circle.

whose forced eccentricity grows considerably close to the in-
ner separatrix. Since tidal effects are dominated by eccentric-
ity damping, then perhaps the system follows the perturbed
secular aligned-mode outwards from the exact commensura-
bility which, instead of causing a decrease in semimajor axis,
leads outwards. This hypothesis is supported by the behav-
ior of e1 and ∆$ in Figure 6, showing the planet rapidly
entering the secular aligned-mode as soon as it leaves the
resonance and evolving towards more circular orbits as the
mean-motion ratio n0/n1 increases up to values close to the
current location of the planet. However, additional studies
are necessary before we can prove this idea with any cer-
tainty.

Finally, the lower right-hand frame of the figure shows
the escape route of the system in the (n0/n1, e1) plane, where
now the amplitude of the short-period variations has been
reduced to avoid confusion. Not only is the final n0/n1 very
close to the observed value, but the same is also seem for
the eccentricity.

It is important to mention that not all tidal ejections
result in smooth escapes. The crossing of the outer separa-
trix, present even for low eccentricities, introduces a chaotic
behavior which, in some cases, led to an ejection in hyper-
bolic orbit or a collision of the planet with one of the stellar
companions. Curiously, in other cases the planet’s semima-
jor axis experienced a relatively small jump (of the order
of ∼ 0.1 AU) remaining bounded to the system and quickly
attaining once again a near-circular orbit.

Figure 7 shows the results of a second N-body simula-
tion, this time focusing on the (n0/n1, e1) plane. We adopted
the same system parameters as before, except for the tidal
dissipation factor and mass of the planet, now chosen as
Q′1 = 1 and m1 = 20/3. While seeming arbitrary, these give
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Figure 8. Filled circles indicate the final average n0/n1 attained

after tidal evolution for T = 12.08 Gyrs for different values of

1/(Q′1m1). Diagonal blue line is a linear fit of the data while the
upper and low bounds represent the extent of the short period

variations. Horizontal dashed line represents the current observed

value of the mean-motion ratio.

the same factor 1/(Q′1m1) and therefore lead to the same
resonance divergence as seen in the first simulation. As be-
fore, the thick black curve shows the evolution of the orbit-
averaged values while now the brown dots correspond to the
full spread of osculating elements. A comparison with Figure
6 confirms that the final resting place of the system was the
same in both cases.

As a test for the evolutionary path outside the mean-
motion resonance, the dashed green line shows the forced
eccentricity of the planet for each value of n0/n1, as given
by:

e f =
5
4

(m−1 − m0
m−1 + m0

) ( a0
a1

)
e0 (15)

(Leung & Lee 2013), where in the plot we have taken into
account the changes in binary eccentricity e0 during the sim-
ulation. While initially the tidal evolution leads to higher
values of e1, these tend towards the secular forced eccen-
tricity for increasing distance from the MMR. This lends
additional credibility to our previous idea that the outward
tidal migration of the planet is fueled by the effects of near-
resonant effects on the secular solutions.

In Figure 8 we analyze how the final value of n0/n1, at-
tained after the resonance capture and tidal evolution, de-
pends on the factor (Q′1m1). Each filled circle shows the av-
eraged value of the mean-motion ratio as obtained from a
different simulation, while the blue thick line is a linear fit
over all the data. The upper and lower limits of the light-
blue region shows the extent of the short period oscillations.
Since this magnitude is primarily dependent on the stellar
masses, it is practically independent on the adopted values
for the planetary parameters or initial conditions.

For 1/(Q′1m1) → 0, corresponding to no tidal evolu-
tion of the planet, the final value of the mean-motion ratio
tends to that solely defined by the stellar tides which, for

the adopted values of Q′
−1 and Q′0, is close to n0/n1 ' 5.3.

Thus, in order to reach the observed resonance offset (hor-
izontal dashed line) the planetary tide must have been the
dominant driving mechanism, with values of the planetary
parameters bounded by (Q′1m1) . 9. Larger values (imply-
ing either larger planetary mass or tidal dissipation factor)
would lead to n0/n1 closer to exact resonance and thus in-
consistent with the current orbital configuration.

This limit on the factor (Q′1m1) is very strict and not
easy to comply with. Adopting m1 ' 8m⊕, as predicted by
the mass-radius relationship of Mills & Mazeh (2017), im-
plies Q′1 of the order of unity, while usual estimations for the

tidal parameter of rocky bodies is of the order of 101 − 102

(e.g. Ferraz-Mello 2013). Even if the planetary mass were
to be lower than the mean predicted value, it is difficult
to imagine a scenario that could lead to significantly larger
values of Q′1.

However, as pointed out by Papaloizou (2015) citing
the work by Ojakangas & Stevenson (1986), values closer
to unity may be expected for small planets close to the
solidus temperature, as expected during the first stages of
post-formation evolution. Since we did not analyze the pos-
sibility of time-dependent Q′1 in our simulations, nor is it
clear how to accomplish such a task, we cannot vouch for
the probability of this hypothesis.

5 SUMMARY AND DISCUSSION

In this work we presented a series of dynamical maps and
N-body simulations whose aim was to study the dynamics of
the 5/1 MMR in circumbinary systems, with special empha-
sis on the capture process through disk-planet interactions
and the effects of tidal forces on the resonant motion. We
found that the 5/1 mean-motion commensurability appears
to have a complex structure with different libration modes
(dubbed (0, 0) and (π, π)) and even chaotic librations which
are nonetheless orbitally stable for timescales of the order
of Gyrs. These structures seem to be a strong function of
the binary eccentricity and planetary masses, although we
cannot rule out additional dependence on the stellar masses
and (even) migration rates.

We applied these findings to the case of the Kepler-38
system and analyzed whether the present-day configuration
could be explained by this combined process of resonance
capture and tidal ejection. We chose Kepler-38 as a test for
two main reasons: (i) capture in 5/1 mean-motion resonance
has already been reported in this system with hydrodynam-
ical simulations (Kley & Haghighipour 2014), and (ii) the
system is very compact and sufficiently evolved (Orosz et al.
2012) so as to assume that tidal effects should have played
an important role. Thus our model also included the past
tidal evolution of the stars themselves.

For moderate primordial eccentricities of the binary, we
found that resonance capture is highly probable in Kepler-
38 system. In addition, the stability of the capture is guar-
anteed for extremely long time-spans, independently of the
adopted planetary mass. This result is in contrast with what
is suggested in Kley & Haghighipour (2014), where unstable
behavior was expected soon after the dissipation of the disk.

N-body simulations of tidal evolution of the captured
orbits showed that, contrary to expectations, the semimajor
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axis of the planet increases with time independently of Q′1,
and even in a pseudo-synchronous configuration. We believe
this behavior is related to the effects of near-resonant terms
on the secular aligned-mode, although we cannot at present
rule out the existence of a locus of resonant periodic orbits
that could also drive the orbit outwards. Further studies
into the structure of the 5/1 resonance are necessary before
confirming any of these hypothesis.

The outward tidal migration of the planet, added to
the orbital tidal decay of the binary, lead to an increase of
the mean-motion ratio n0/n1. We then proceeded to esti-
mate what combination of system parameters could yield
final orbital separations consistent with the current values.
For planetary masses similar to those predicted by recent
mass-radius relations, we found that the tidal parameter of
the planet must be very small, of the order of unity. While
current tidal theories suggest values one or two orders of
magnitude larger, very little is known about the dependence
of Q′ on the internal structure of the planets an even as a
function of time. Thus, although this result does not help
us to establish the capture/escape scenario as probable for
Kepler-38, we cannot rule it out completely and perhaps fu-
ture (and more precise) tidal models will shed more light on
this issue.

Finally, although planetary scattering has recently been
proposed as an alternative mechanism to explain the orbital
architecture of some circumbinary planets (e.g. Gong & Ji
2017), the proximity of the observed eccentricity of Kepler-
38 to its forced value makes this hypothesis unlikely for this
system.
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