
March 2018 | Volume 9 | Article 3791

PersPective
published: 01 March 2018

doi: 10.3389/fimmu.2018.00379

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Bernd Lepenies,  

University of Veterinary Medicine, 
Germany

Reviewed by: 
Celso A. Reis,  

Universidade do Porto,  
Portugal 

 Pilar Navarro,  
Institut Hospital del Mar 

d’Investigacions Mèdiques,  
Spain

*Correspondence:
Gabriel A. Rabinovich  

gabriel.r@ibyme.conicet.gov.ar,  
gabyrabi@gmail.com

†These authors have contributed 
equally to this work.

‡These authors have jointly 
supervised this work.

Specialty section: 
This article was submitted to 

Molecular Innate Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 02 December 2017
Accepted: 12 February 2018

Published: 01 March 2018

Citation: 
Sundblad V, Quintar AA, Morosi LG, 
Niveloni SI, Cabanne A, Smecuol E, 

Mauriño E, Mariño KV, Bai JC, 
Maldonado CA and Rabinovich GA 

(2018) Galectins in Intestinal 
Inflammation: Galectin-1 Expression 

Delineates Response to Treatment in 
Celiac Disease Patients.  
Front. Immunol. 9:379.  

doi: 10.3389/fimmu.2018.00379

Galectins in intestinal inflammation: 
Galectin-1 expression Delineates 
response to treatment in celiac 
Disease Patients
Victoria Sundblad1†, Amado A. Quintar 2,3†, Luciano G. Morosi1,4, Sonia I. Niveloni5,  
Ana Cabanne6, Edgardo Smecuol5, Eduardo Mauriño5, Karina V. Mariño4, Julio C. Bai5,7‡, 
Cristina A. Maldonado2,3‡ and Gabriel A. Rabinovich1,8*‡

1 Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de 
Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina, 2 Centro de Microscopía Electrónica, Facultad de 
Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, 3 Instituto de Investigaciones en Ciencias de la 
Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina, 4 Laboratorio de 
Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones 
Científicas y Técnicas (CONICET), Buenos Aires, Argentina, 5 Sección Intestino Delgado, Departamento de Medicina, 
Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina, 6 Unidad de Patología, Hospital de 
Gastroenterología, Bonorino Udaondo, Buenos Aires, Argentina, 7 Instituto de Investigaciones, Universidad del Salvador, 
Buenos Aires, Argentina, 8 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de 
Buenos Aires, Buenos Aires, Argentina

Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-
enriched glycoconjugates, modulate several immune cell processes shaping the course 
of innate and adaptive immune responses. Through interaction with a wide range of 
glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, 
these endogenous lectins trigger distinct signaling programs thereby controling 
immune cell activation, differentiation, recruitment and survival. Given the unique fea-
tures of mucosal inflammation and the differential expression of galectins throughout 
the gastrointestinal tract, we discuss here key findings on the role of galectins in intes-
tinal inflammation, particularly Crohn’s disease, ulcerative colitis, and celiac disease 
(CeD) patients, as well as in murine models resembling these inflammatory conditions. 
In addition, we present new data highlighting the regulated expression of galectin-1 
(Gal-1), a proto-type member of the galectin family, during intestinal inflammation 
in untreated and treated CeD patients. Our results unveil a substantial upregulation 
of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated 
with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring  
resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated 
network of galectins and their glycosylated ligands, exerting either anti-inflammatory 
or proinflammatory responses, may influence the interplay between intestinal epithelial 
cells and the highly specialized gut immune system in physiologic and pathologic  
settings.
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iNtrODUctiON: DeciPHeriNG 
GLYcOcODes iN iMMUNitY

Complex sugar structures play essential roles as hardware for stor- 
age of biological information, which can be deciphered by endog-
enous glycan-binding proteins or lectins (1). The singular role of 
lectins in translating glycan-containing information into a myriad of  
cellular responses invigorated further studies aimed at understand-
ing their expression patterns and molecular mechanisms of action.

Galectins, a family of lectins with affinity for N-acetyllactosamine 
(LacNac) residues, have diverse roles in shaping the course of innate 
and adaptive immunity and tailoring inflammatory responses, 
thereby modulating tumor immunity and autoimmune reactions 
(2, 3). In this perspective article, we review current knowledge 
on the role of galectins in inflammatory intestinal disorders, and 
present new findings on the regulated expression of galectin (Gal)-1 
in intestinal tissue of celiac disease (CeD) patients.

GALectiNs

Galectins, evolutionarily conserved glycan-binding proteins, 
play key roles in multiple immune cell processes. Either through 
protein-glycan or protein–protein interactions, these lectins 
function within the extracellular milieu by interacting with 
various glycosylated receptors, or work inside the cells by con-
trolling distinct signaling pathways and modulating intracellular 
processes (3, 4).

To date, 15 members of the galectin family have been identi-
fied in vertebrates, which were classified into three groups based 
on their molecular architecture: (a) “proto-type” galectins, 
comprising a single polypeptide chain with one carbohydrate 
recognition domain (CRD) that is able to dimerize (Gal-1, -2, 
-5, -7, -10, -11, -13, -14, and -15); (b) “chimera-type” Gal-3, 
which consists of a C-terminal CRD linked to an N-terminal 
peptide, and (c) “tandem repeat-type” galectins composed of 
a single polypeptide chain exhibiting two CRDs in tandem 
connected by a linker peptide (Gal-4, -6, -8, -9, and -12) (4, 5). 
While some members of the family (e.g., Gal-1 and Gal-3) are 
widely distributed among different tissues and species (6–8), 
others have more restricted tissue localization. For example, 
Gal-7 is preferentially found in the skin (9, 10), Gal-12 is mostly 
expressed in adipose tissue (11, 12), Gal-5 is restricted to rat 
reticulocytes (13, 14) and Gal-10 is found in human but not 
mouse eosinophils (15).

Once synthesized, galectins may remain within the intracel-
lular compartment and participate in protein-protein interac-
tions to regulate intracellular events (16, 17). For example, both 
Gal-1 and -3 participate in pre-mRNA splicing (18) whereas 
Gal-10 modulates functionality of human CD25+ Treg cells 
(19). However, despite the lack of a classical secretory signal 
peptide, most galectins are released through an unconventional 
route to the extracellular compartment (20). Secreted galectins 
can specifically decipher biological information encoded in 
complex saccharide structures (particularly LacNac-enriched 
complex branched N-glycans and core 2 O-glycans), and convey 
this biochemical information into functional cellular responses  
(3, 17). Although saccharide structures are widely distributed 

in a range of glycoconjugates, individual galectins may co-opt a 
particular set of glycosylated receptors, generated by the coordi-
nated action of glycosyltransferases and glycosidases which are 
differentially regulated in distinct target cells (4, 21, 22). Notably, 
one-CRD galectins can dimerize via the back sides of their CRDs, 
whereas chimera-type Gal-3 can pentamerize via its non-lectin 
N-terminal domain, and tandem-repeat galectins can oligomer-
ize (17). Thus, through formation of multivalent galectin–glycan 
complexes, galectins can promote cross-linking, reorganization, 
and clustering of glycosylated receptors thereafter regulating their 
activation and signaling (23, 24). Within the immune compart-
ment, galectin–glycan complexes may control signaling thresholds 
of relevant receptors such as the T-cell receptor (25), pre-B cell 
receptor (26), and cytokine receptors (27) among others, thereby 
modulating lymphoid and myeloid regulatory programs.

GALectiNs: KeY PLAYers iN tHe 
iNFLAMMAtOrY resPONse

Compelling evidence highlights major roles for galectins in con-
trolling innate and adaptive immune responses. These lectins may 
influence the capacity of innate immune cells [e.g., neutrophils, 
dendritic cells (DCs), monocytes/macrophages, eosinophils, and 
mast cells] to respond to chemotactic gradients, migrate across 
endothelial cell surfaces, synthesize and release pro- or anti-
inflammatory cytokines, and recognize, engulf, and kill microbes 
and damaged cells (28). In this regard, some galectins trigger innate 
immune responses, while others influence the resolution of acute 
inflammation (28). Galectins can also tailor adaptive immunity 
by influencing T-cell signaling and activation, modulating T-cell 
survival, controlling the suppressive function of regulatory T cells 
(Tregs), altering the cytokine balance and regulating B-cell matu-
ration and differentiation (3). Both the specificity of the CRD as 
well as glycan presentation in the corresponding receptors 
make distinct contributions to the specific effects of individual 
galectins, selectively mediating different biological processes. The 
final balance of their synchronized actions contributes to activa-
tion, polarization, and resolution of adaptive immune responses 
(29). Although the specific immunoregulatory activities of each 
individual galectin is beyond the scope of the present work, and 
are described elsewhere (3, 29), some of the most relevant activi-
ties displayed by Gal-1, the central core of the present article, are 
summarized herein. This endogenous lectin, composed of two 
subunits of 14.5  kDa, functions as a regulatory signal which 
undermines acute inflammatory responses by controlling neu-
trophil adhesion, function and turnover (30, 31) and modulating 
monocyte and macrophage activation and polarization (32–35). 
Moreover, Gal-1 influences DC maturation, immunogenicity, and 
migration (36–40). Interestingly upon exposure to this lectin, 
DCs acquire an IL-27-dependent regulatory function leading to 
IL-10-mediated T-cell tolerance, suppression of T-helper (Th)1 
and Th17 responses, promotion of tumor-immune escape and 
suppression of autoimmune neuroinflammation (40).

Regarding the T-cell compartment, Gal-1 controls T-cell 
viability, blunts Th1- and Th17-mediated responses and skews the 
balance of the immune response toward a Th2 cytokine profile (17, 
41–43). Interestingly, we found that Th1- and Th17-differentiated 
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cells express the repertoire of cell surface glycans that are criti-
cal for Gal-1 binding and induction of apoptosis; whereas Th2 
cells are protected from this lectin through α2,6-sialylation of 
surface glycoproteins (43). Remarkably, Gal-1 also controls the 
immunosuppressive activity of Tregs and promotes their differ-
entiation (44–46). Finally, by influencing B-cell development, 
differentiation, signaling and survival, Gal-1 also controls B-cell 
function (47–50).

The essential role of Gal-1 in the control of inflammation has 
been widely demonstrated in experimental models of autoim-
munity, allergy and cancer (29, 51–53). In cancer settings, Gal-1 
contributes to create immunosuppressive microenvironments, 
allowing tumor cell evasion of immune responses (46, 54–63). 
On the other hand, in experimental models of autoimmune 
disease including collagen-induced arthritis (64), myelin-
oligodendrocyte glycoprotein35–55-induced encephalomyelitis 
(43, 65), diabetes (66), uveitis (67), and orchitis (68), Gal-1 
elicits a broad spectrum of immunoregulatory activities leading 
to the resolution of chronic inflammation. The mechanisms 
underlying these immunosuppressive effects recapitulate those 
observed in vitro and in vivo including T-cell dysfunction and 
inhibition of proinflammatory cytokines (43, 58, 64, 69, 70), 
induction of tolerogenic DCs (40), expansion of Foxp3+ and 
Foxp3− Tregs (60, 67) and generation of alternatively activated 
“M2-type” macrophages (71).

GALectiNs iN tHe GUt: A sWeet PAtH 
At tHe crOss-rOADs OF tOLerANce 
AND iNFLAMMAtiON

Despite the broad immunoregulatory activities of galectins, 
only few studies have uncovered the role of these lectins in gut 
immune homeostasis and the implications of these findings in 
intestinal inflammation. Interestingly, Gal-1, -2, -3, -4, and -9 
are typically expressed in particular gut areas: whereas Gal-1 
is mainly present in the lamina propria (LP), Gal-2, -3, -4, -7, 
and -9 are constitutively expressed within the epithelial com-
partment of the mouse intestine (72, 73). Epithelial cells (ECs) 
of small and large intestine express high levels of Gal-3 and 
Gal-4, although Gal-2 is only found in the large intestine (72). 
Interestingly, while Gal-3 may interact with commensal bacteria 
possibly influencing their colonization capacity (74), Gal-4 and 
Gal-8 mediate bacterial recognition and killing (75). Notably, 
Gal-1 is broadly expressed in small bowel enterocytes and may 
influence their viability (76). Moreover, studies reporting the 
galectin signature of human intestinal cells were mainly focused 
on pathologic conditions. Thus far, Gal-1, -3, -4, and -9 have 
shown to be homogeneously expressed across different sections 
of the large intestine (77).

GALectiNs iN iNtestiNAL 
iNFLAMMAtOrY DiseAses

inflammatory Bowel Diseases (iBD)
Crohn’s disease (CD) and ulcerative colitis (UC) represent 
the two main forms of IBD, chronic relapsing inflammatory 

conditions that affect the gastrointestinal tract. Despite some 
shared clinical features, these diseases can be distinguished by 
differences in risk factors, and clinical, anatomical, histologi-
cal, and immunological features (78–80). Both conditions may 
involve an aberrant activation of mucosal T-cells against the 
commensal microbiota and deregulation of the EC compart-
ment, thus compromising normal intestinal function and pro-
moting an exuberant inflammatory response (81, 82). Whereas 
CD is characterized by an overactivation of mucosal Th1 and/or 
Th17 cells (with the concomitant secretion of IFN-γ, IL-17, and 
IL-22), UC patients exhibit a marked Th2 bias (with higher levels 
of IL-5 and IL-13) (79, 80, 83).

In a murine model of acute and chronic 2,4,6-trinitrobenze-
nesulfonic acid (TNBS)-induced colitis, treatment with recom- 
binant Gal-1 (rGal-1) resulted in improvement of the clini-
cal, histopathological, and immunological manifestations of 
the disease. Further analysis revealed increased apoptosis of 
TNBS-specific CD4+ T-cells in the LP, decreased percentage 
of activated T-cells and diminished levels of proinflammatory 
and Th1-type cytokines, effects that were accompanied by nor-
malization of the mucosal architecture (69). Accordingly, Gal-1  
was found to be upregulated in inflamed areas of IBD patients 
when compared with non-inflamed areas of the same patient or 
with control subjects. Indeed, expression of common mucosal-
associated galectins (Gal-1, -3, -4, -9) was found dysregulated 
in these inflamed tissues, suggesting that alteration in galectin 
expression pattern may represent an endogenous compensa-
tory mechanisms likely aimed at limiting the inflammatory 
process and restoring mucosal homeostasis (77). Notably, the 
viability of human and mouse enterocytes was also controlled 
by Gal-1 in human IBD biopsies and in murine models of intes-
tinal inflammation. Interestingly, proinflammatory stimuli 
promoted Gal-1 binding to EC which in turn influenced their 
survival and secretion of proresolving cytokines, thereby pro-
tecting the intestinal epithelium from inflammatory responses 
(76, 84). Thus, through elimination of antigen-experienced 
T-cells, modulation of proinflammatory cytokines or direct 
stimulation of epithelial-derived anti-inflammatory factors, 
Gal-1 contributes to the resolution of gut inflammation 
(Figure 1).

Notably, other members of the galectin family could also 
be involved in controlling intestinal inflammation (Figure 1). 
Gal-3 may function as a proinflammatory mediator that aggra-
vates dextran sulfate sodium (DSS)-induced colitis through 
promotion of an M1 macrophage phenotype (85). Deletion of 
Gal-3 gene in mice or pharmacological inhibition of this lectin 
promoted macrophage polarization toward a M2 phenotype in 
colonic tissue (85). In line with these observations, peritoneal 
macrophages lacking Gal-3 are more prone to undergo apop-
tosis than their wild-type counterparts, strongly suggesting a 
role for Gal-3 as a proinflammatory mediator in the peritoneal 
cavity (86). Notably, in IBD patients Gal-3 levels are reduced in 
active inflamed areas, probably aimed at limiting the inflamma-
tory process and restoring mucosal homeostasis (77, 87–89). In 
contrast, a protective role for this lectin was suggested in both 
the DSS-induced and the T-cell transfer colitis models, through 
suppression of IL-6 production by colonic LP fibroblasts or 
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FiGUre 1 | Multifunctional roles of galectins in mucosal intestinal 
inflammation. A coordinated network of galectin family members, which 
exerts either anti-inflammatory or proinflammatory responses, conditions 
epithelial barrier maintenance and immune gut homeostasis. Galectin-1 
(Gal-1) promotes the secretion of growth factors and anti-inflammatory 
cytokines by epithelial cells (ECs), induces apoptosis of activated Th1 and 
Th17 cells, inhibits secretion of proinflammatory cytokines by dendritic cells 
(DCs) and T lymphocytes, and favors an anti-inflammatory (M2) macrophage 
phenotype. Similar to Gal-1, Gal-2 displays several anti-inflammatory 
properties, but also promotes wound healing and tissue regeneration in ECs. 
In animal models of colitis, Gal-3 shows mostly proinflammatory functions, 
inhibiting the polarization of macrophages toward an M2 phenotype, whereas 
Gal-4 exhibits both anti- and proinflammatory properties within the intestinal 
inflamed mucosa, depending on the experimental setting analyzed. By 
blocking production of proinflammatory cytokines, Gal-4 prevented 
inflammation and favored epithelial regeneration. However, through binding to 
memory T-cells, Gal-4 led to T-cell activation and perpetuated intestinal 
inflammation.

tABLe 1 | Analysis of duodenal biopsies from control subjects, untreated CeD 
patients, and CeD patients subjected to gluten withdrawal.

characteristics ceD ceD-GFD

Number of cases and gender (female/male) 10 (8/2) 10 (7/3)
Median age, years (range) 32 (18–56) 37 (24–67)
Median time on a GFD, years (range) – 4 (2–14)

Number of cases with positive serology
IgA tissue transglutaminase > 20 UA/mL 10 3

severity of histologic damage
(Marsh 3 classification) number of patients 10 2

Demography, histological, and serology data of untreated (at diagnosis) celiac disease 
patients (CeD) and of CeD treated with gluten withdrawal (CeD-GFD) whose duodenal 
biopsies were employed for the study.
Patients were diagnosed with CeD according to conventional clinical, serological and 
histological criteria (108, 117). Control subjects: non-celiac subjects with negative CeD 
serology and normal duodenal histology, n = 10. Patients and controls were informed 
in detail about the study, and written consent was obtained. The protocols were 
approved by Ethics Committees of Hospital “Carlos B. Udaondo.”
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by induction of Foxp3+ Tregs (90, 91). These discrepancies 
could be explained not only by differences in experimental 
models (92), but also by dissimilar roles of endogenous versus 
exogenous Gal-3 during different stages of the inflammatory 
response (16, 29).

Similarly, Gal-4 has been shown to act either as an anti-
inflammatory or as a proinflammatory factor in IBD. An anti-
inflammatory function for both Gal-4 and Gal-2 was described, 
which contributed to ameliorate mucosal inflammation in the 
DSS colitis model through mechanisms involving apoptosis of 
activated mucosal LP T-cells and diminished proinflammatory 
cytokine secretion (93, 94) (Figure 1). Within the EC compart-
ment, Gal-2 and Gal-4 (but not Gal-1) promoted wound-healing 
(95). Gal-4 may also function as a glycoprotein trafficking car-
rier, which generates an apical endocytic-recycling pathway via 
complex-type N-glycans (96, 97). Notably, during IBD progres-
sion, local inflammation was also associated with dysregulated 

expression of glycosyltransferases, leading to exposure of 
altered glycan structures on memory CD4+ T-cells (98). In fact, 
downregulation of core 2 β1,6-N-acetylglucosaminyltransferase 
1 (C2GnT1) allowed Gal-4-O-glycan interactions resulting in 
expansion of memory CD4+ T-cells, enhanced IL-6 production 
and perpetuation of intestinal inflammation (98, 99). Notably, 
inflamed IBD mucosa could be distinguished from control tissue 
and from other types of intestinal inflammatory conditions by 
a specific galectin signature, as revealed by a multivariate-linear 
discriminant analysis of Gal-1, -3, -4, and -9 in IBD patient 
biopsies (77).

celiac Disease
Oral tolerance to dietary antigens is a key active process in 
which immune responses to innocuous antigens, commensal 
bacteria, and pathogens are suppressed (100). In CeD, intoler-
ance to indigestible wheat gluten peptides results in chronic 
intestinal inflammation associated with an extensive Th1 and  
Th17 responses (101). Similar to most chronic inflammatory dis-
eases, CeD has a multifactorial etiology involving environmental 
factors as well as genetic components. Among them, HLA-DQ2 
and HLA-DQ8 have been identified to confer susceptibility 
to CeD development (102–104). In genetically susceptible 
individuals, intestinal inflammation is triggered when ingested 
gliadin (proline-rich and glutamine-rich gluten proteins) found 
in wheat, rye, barley, and oats (105, 106) is partially processed 
and presented to CD4+ T-cells that infiltrate the LP of the small 
intestine. Thus HLA-DQ2/8 molecules may orchestrate a gluten-
specific CD4+ T-cell response (107).

Celiac disease patients on a gluten-containing diet show 
increased levels of serum antibodies specific for gliadin 
and tissue transglutaminase, an enzyme that plays a key role 
in disruption of tolerance to gluten, among other antigens  
(108, 109). To date, the only known effective treatment for 
CeD is a lifelong gluten-free diet (GFD) (109), which allows 
the complete recovery of intestinal structure and function, 
and normalization of serum antibodies (110). In spite of con-
siderable progress in our understanding of the mechanisms 
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FiGUre 2 | Expression of galectin-1 (Gal-1), Gal-4, and Foxp3 in response to gluten-free diet (GFD) in duodenal biopsies from celiac disease (CeD) patients. 
Representative micrographs of control subjects, untreated CeD patients and CeD patients subjected to gluten withdrawal (CeD-GFD patients) are shown.  
(A–c) Hematoxylin/eosin (H/E) staining of paraffin-embedded sections of duodenal biopsies from (A) control subjects, (B) CeD patients, and (c) CeD-GFD patients. 
Arrows indicate the superficial epithelium, and arrowheads indicate the glandular epithelium while asterisks denote the stroma. Bar = 20 µm.  
(D–F) Immunohistochemical analysis of Gal-1 expression in duodenal biopsies from control subjects (D), CeD patients (e), and CeD-GFD patients (F). Bar = 20 µm. 
(G–i) Immunohistochemical analysis of Gal-4 expression in duodenal biopsies from control subjects (G), CeD patients (H), and CeD-GFD patients (i). Bar = 20 µm. 
(J–L) Immunohistochemical analysis of Foxp3+ cells in biopsies from control subjects (J), CeD patients (K), and CeD-GFD patients (L). Bar = 20 µm.  
(M) Quantification of Gal-1 expression determined by immunohistochemistry. Bars represent immunostained area corresponding to superficial (Sup) and glandular 
(Gl) epithelium, and stroma, in paraffin sections from duodenal biopsies from controls, untreated CeD patients and CeD-GFD patients. Evaluation of staining intensity 
was performed with the Image J software (NIH, Bethesda, MD, USA). One-way ANOVA Tukey test was used for multiple comparisons. **p < 0.01, ***p < 0.001.
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underlying CeD development and progression, there is no clear 
answer to how breaking mucosal tolerance to gluten turns a 
controlled local immune response into chronic inflammation 
and epithelial destruction (111).

Although the involvement of galectins in IBD has been 
well documented, their relevance in CeD development and 

progression is poorly understood. In this regard, a significant 
increase in Gal-10 expression has been correlated with mucosal 
damage and number of eosinophils in duodenal lesions of CeD 
patients (112). In addition, despite some discrepancies, evidence 
suggest a role for Gal-9 in human and mouse food allergy, a broad 
entity with some common features with CeD (113–115).
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tABLe 2 | Analysis of duodenal biopsies from control subjects, untreated CeD 
patients, and CeD patients subjected to gluten withdrawal.

Antigen Primary antibody secondary antibody

Gal-1 In-house rabbit anti-Gal1 antibody 
(1:500) (64)

anti-rabbit biotinylated antibody 
(1:130) (Amersham Pharmacia, 
Buckinghamshire, UK)

Gal-4 Goat anti-Gal-4 antibody (1:75) 
(Santa Cruz Biotech, Dallas, TX, 
USA)

anti-goat biotinylated antibody 
(1:180) (Amersham Pharmacia, 
Buckinghamshire, UK)

Foxp3 Rabbit anti-Foxp3 antibody (1:50) 
(Abcam, Cambridge, UK)

anti-rabbit biotinylated antibody 
(1:130) (Amersham Pharmacia, 
Buckinghamshire, UK)

Antibodies used for immunohistochemical analysis of Gal-1, Gal-4, and Foxp3 
expression in duodenal biopsies from control subjects and patients.
Four intestinal biopsies from the second duodenal section from each patient and 
control were collected.
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GALectiN-1 eXPressiON DeLiNeAtes 
resPONse tO GFD iN ceD PAtieNts

Since several immunoregulatory mechanisms are dysregulated 
in mucosal tissue of CeD patients (108) and Gal-1 displays broad 
tolerogenic and anti-inflammatory activities in mucosal tissues 
(29), we evaluated the expression of this lectin in biopsies of 
CeD patients with or without gluten withdrawal (Table 1).

Hematoxylin/eosin staining of duodenal biopsies showed that, 
unlike the conserved LP structures observed in control subjects 
(Figure 2A), CeD patients exhibited atrophic villi with enlarged 
hyperplastic crypts and increased intraepithelial lymphocytes 
infiltration (Figure 2B). Mucosa from CeD patients after GFD 
(CeD-GFD patients) presented considerably recovered villi 
(Figure  2C). In control biopsies, Gal-1 labeling (Table  2) was 
mainly localized in stromal cells, while most ECs exhibited 
weak positive staining (Figure 2D). Biopsies from CeD patients 
exhibited a poorly labeled stromal fibrillar network, while 
atrophic epithelia showed no considerable staining. Subepithelial 
and periglandular infiltrating cells appeared negative for Gal-1 
(Figure 2E). Duodenal biopsies from CeD-GFD patients exhib-
ited a substantial increase in Gal-1 immunoreactivity, especially 
in the interstitium of the recovered villi. Numerous subepithe-
lial fibroblast-like cells, as well as round nucleus-containing 
cells scattered in the LP compatible with macrophages, and a 
few lymphocytes were Gal-1-positive. Notably, ECs recovered 
their Gal-1 weak positive staining (Figure  2F). Moreover, no 
significant differences were observed in the expression of Gal-4 
(Table 2)—a galectin family member mostly expressed in ECs 
of the intestinal tract—in biopsies from CeD patients before or 
after gluten withdrawal (Figures 2G–I).

Overall, while control duodenal biopsies showed moder-
ate Gal-1 staining, and both epithelium and stroma from 
untreated CeD patients were poorly labeled, CeD-GFD biop-
sies showed a dramatic increase in Gal-1 immunoreactivity 
(p < 0.001; Figure 2M), which correlated with normalization 
of duodenal mucosal structure. Interestingly, the expression 
of stromal Gal-1 in these patients was not only recovered but 
also increased in intensity compared with control biopsies 
(Figures 2D–F,M).

To further characterize the underlying inflammatory 
response and given the association of Gal-1 with induction of 
Foxp3+ Tregs, we analyzed the expression of this transcription fac-
tor in inflammatory infiltrates (Table 2). Though less accurate 
in defining human Tregs than mouse Tregs (116), determination 
of Foxp3 staining is typically considered a reliable indicator of the 
suppressive tissue microenvironment. An increased number of 
Foxp3+ cells was observed in CeD-GFD patients (Figures 2J–L), 
which positively correlated with Gal-1 expression, suggesting 
activation of a circuit of immunosuppressive events leading to 
restoration of mucosal homeostasis. Further studies should be 
aimed at addressing the immunosuppressive potential of this 
tolerogenic circuit in functional assays.

Our findings suggest that, in response to gluten withdrawal, 
upregulation of Gal-1 might contribute to restrain the chronic 
inflammatory response, thus allowing the onset of the recovery 
process leading to remission of mucosal damage and reestab-
lishment of villi structure. In addition, decreased Gal-1 expres-
sion observed in untreated CeD patients compared to control 
individuals may suggest a role for this lectin in controlling gut 
homeostasis under physiologic conditions. Interestingly, modu-
lation of Gal-1 expression during CeD development appeared 
to be specific as no differences were found in the expression of 
Gal-4, suggesting selective regulation of individual galectins 
during mucosal inflammation.

cONcLUsiON

The delicate balance between host immunity and tolerance 
allows the maintenance of gut homeostasis avoiding detri-
mental intestinal inflammation. Data presented here, resulting  
both from published information (Figure 1) and new observa-
tions (Figure 2), highlight the role of galectins as active players of 
complex regulatory circuits operating in intestinal mucosal tissue 
to preserve immune and epithelial homeostasis. While galectins 
(particularly Gal-1, -2, -3, -4, and -9) may be critical in preserv-
ing intestinal homeostasis, an initial set up in which galectins’ 
expression is altered or the intestinal glycome is reprogrammed 
may influence development of intestinal inflammation.

To gain insight into the role of Gal-1 in CeD patients, we dem-
onstrated here an increase in Gal-1 expression following GFD that 
was accompanied by an increased frequency of Foxp3+ cells. The 
coordinated action of both immunosuppressive mechanisms may 
occur as synchronized events to generate a tolerogenic milieu in 
mucosal tissue of treated patients. Since tolerance to gluten pep-
tides would be hard to reestablish under sustained inflammatory 
conditions, the antigen challenge-free time window (achieved by 
gluten withdrawal) may allow the development of these immuno-
suppressive pathways. The subsequent resolution of the inflamma-
tory response may foster the onset of the recovery process, leading 
to remission of mucosal damage and reestablishment of villi  
structures.

In line with findings observed in other intestinal inflam-
matory conditions (76, 77, 84), our observations support the 
use of Gal-1 agonists to treat severe mucosal inflammation. In 
addition, Gal-1 may serve as a potential biomarker to follow up 
CeD progression.
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Challenges for the future will embrace the rational manipu-
lation of the Gal-1-glycan axis toward attenuating immune 
responses in CeD. Studies in Lgals1−/− mice will be necessary 
to determine a putative role of Gal-1 and its specific ligands in 
supporting mucosal tolerance to gluten. Moreover, the ability 
of rGal-1 to suppress intestinal inflammation should also be 
evaluated in experimental CeD models. In this regard, evidence 
stemming from the study of experimental models of autoim-
munity, chronic inflammation, fetomaternal tolerance, and 
tumor growth provides fundamental insights into the critical 
role of this lectin and its specific glycosylated ligands in main-
taining and restoring immune tolerance and homeostasis, thus 
encouraging future implementation of Gal-1-based therapies in 
CeD patients.
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