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Abstract

Let H be a Hilbert space and L(H) be the algebra of all bounded linear
operators from H to H. Our goal in this article is to study the set P · Lh
of operators in L(H) that can be factorized as the product of an orthogonal
projection and a self-adjoint operator. We describe P·Lh and present optimal
factorizations, in different senses, for an operator in this set.
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1. Introduction

Let H be a Hilbert space and L(H) be the algebra of all bounded linear
operators from H to H. This article is devoted to the study of the set

P · Lh = {T ∈ L(H) : T = PA, P ∈ P , A ∈ Lh},

where P and Lh denote the sets of orthogonal projections and self-adjoint
operators of L(H), respectively.

Previous works on factorizations of operators in terms of particular classes
of operators are in [3], [5], [7], [9] and [21] among others. In particular, the

Email addresses: lauraarias@conicet.gov.ar (M. Laura Arias),
celeste.gonzalez@conicet.gov.ar (M. Celeste Gonzalez)

1M. Laura Arias and M. Celeste Gonzalez were supported in part by CONICET (PIP
11220120100426), FONCYT (PICT 2014-1776). M. Laura Arias was also supported by
UBACYT 20020130100637.

Preprint submitted to Linear Algebra and its Applications June 6, 2018



sets P · P and P · L+ where L+ denotes the cone of the semidefinite positive
operators of L(H), are studied in [9] and [5], respectively. In these articles
different characterizations of the sets P · P and P · L+ are developed and
also optimal factorizations are presented. Our goal in this article is to obtain
similar results for the bigger set P · Lh.

Now we summarize some of the results for P · P and P · L+ than can be
found in [9] and [5]. For the set P ·P , Crimmins (see [21, Theorem 8]) showed
that T ∈ P · P if and only if T 2 = TT ∗T . Later, Corach and Maestripieri in
[9] showed that if T ∈ P · P then it can always be factorized as

T = PR(T )PN (T )⊥ , (1)

where PR(T ) and PN (T )⊥ denote the orthogonal projections onto the closure
of the range of T and onto the orthogonal complement of the nullspace of
T , respectively. They also proved that the factorization (1) is optimal in the
following two senses: if T = PMPN ∈ P · P then

a) PR(T ) ≤ PM and PN (T )⊥ ≤ PN ;

b) ‖(PR(T ) − PN (T )⊥)x‖ ≤ ‖(PM − PN )x‖ for all x ∈ H.

On the other hand, for the set P · L+ in [5] it was proved that T ∈ P · L+ if
and only if there exists λ ≥ 0 such that TT ∗ ≤ λTPR(T ). Furthermore, for

T ∈ P ·L+ it is always possible to find A ∈ L+ with N (A) = N (T ) such that
T = PA, for some P ∈ P . Between all elements of L+ with this property
there exists one, denoted by Â, such that the factorization

T = PR(T )Â,

is optimal in the following senses:

a) PR(T ) ≤ P for all P ∈ P such that T = PA for some A ∈ L+;

b) Â ≤ A and therefore ‖Â‖ ≤ ‖A‖ for all A ∈ L+ such that T = PA for
some P ∈ P .

In this article we present general properties of operators in P · Lh and we
compare the sets P · Lh and P · L+. In Section 2 we describe P · Lh and
for a given T ∈ P · Lh we study the projection sets PT = {P ∈ P : T =
PA for some A ∈ Lh} and AT = {A ∈ Lh : T = PA for some P ∈ P}.
Moreover, we see that given an operator T ∈ P · Lh it is not always possible
to find A ∈ Lh with N (A) = N (T ) such that T = PA for some P ∈
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P . We prove that this can be guaranteed under the extra hypothesis that
R(T )+̇N (T ) = H. In such case, we find an element AN ∈ Lh, withN (AN ) =
N (T ) such that the factorization

T = PR(T )AN ,

is optimal in the following senses:

a) PR(T ) ≤ P for all P ∈ P such that T = PA for some A ∈ Lh;
b) PR(T ) ≤− P for all P ∈ P such that T = PA for some A ∈ Lh;
c) AN ≤− A, for all A ∈ Lh such that T = PA, for some P ∈ P ;

Here, ≤− means the minus order defined for operators in L(H). Also, we
distinguish another two factorizations for T ∈ P · Lh denoted by

T = PR(T )A0

and
T = PR(T )AT ,

which are optimal in the following senses:

a) ‖A0‖ ≤ ‖A‖ for all A ∈ Lh such that T = PA, for some P ∈ P ;

b) ‖(T ∗ − AT )x‖ ≤ ‖(T ∗ − A)x‖ for all x ∈ H and for all A ∈ Lh such
that T = PA, for some P ∈ P ;

c) ‖T − AT‖ ≤ ‖T − A‖ for all A ∈ Lh such that T = PA, for some
P ∈ P .

See Theorems 2.2 and 3.2 for the definitions of AT and A0. The results about
optimal factorizations can be found in Section 3.

2. The products of projections and self-adjoint operators

We begin this section by introducing some notation. For each X ∈ L(H),
R(X) and N (X) are the range and nullspace of X, respectively. Besides,
PX stands for the orthogonal projection from H onto R(X). The adjoint of
X is X∗ and the Moore-Penrose generalized inverse of X is X†. We recall
that X† ∈ L(H) if and only if X has closed range. On the other hand,
if V ,W are closed subspaces of H such that H = V+̇W (direct sum), the
symbol QV//W identifies the oblique projection onto V along W , that is, the
operator Q ∈ L(H) with range V and nullspaceW such that Q2 = Q. Given
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T ∈ L(H), T = VT |T | denotes the polar decomposition of T where VT is a
partial isometry with N (VT ) = N (T ) and |T | = (T ∗T )1/2. Finally, as we
have announced in the Introduction, we shall denote by

P · Lh := {PA : P ∈ P , A ∈ Lh},

where P := {P ∈ L(H) : P 2 = P = P ∗} and Lh := {A ∈ L(H) : A = A∗}.
The next result will be frequently used along the article.

Proposition 2.1. If T = PA ∈ P · Lh then T = PTA.

Proof. If T = PA for P ∈ P and A ∈ Lh then R(PT ) = R(T ) ⊆ R(P ) and,
therefore, PTA = PTPA = PTT = T .

The following result characterizes the set P · Lh. The equivalence of
conditions a) and c) in the above theorem is [21, Theorem 9].

Theorem 2.2. Let T ∈ L(H) be given. The following statements are equiv-
alent:

a) T ∈ P · Lh.

b) TPT ∈ Lh .

c) T ∗T 2 ∈ Lh.

d) T n ∈ P · Lh for all n ∈ N.

e) |T |VT ∈ Lh.

f) AT = T + T ∗ − PTT ∗ ∈ Lh.

Proof. a) ↔ b) Assume that T ∈ P · Lh. Then T = PTA for some A ∈ Lh.
So that TPT ∈ Lh. Conversely, if TPT ∈ Lh then A = T + T ∗ − TPT ∈ Lh
and T = PTA ∈ P · Lh.

b) ↔ c) Observe that TPT ∈ Lh then for all x, y ∈ H, 〈T ∗T 2x, y〉 =
〈T 2x, Ty〉 = 〈TPTTx, Ty〉 = 〈PTT ∗Tx, Ty〉 = 〈Tx, T 2y〉 = 〈x, T ∗T 2y〉,
which is to say that T ∗T 2 ∈ Lh. Now, if T ∗T 2 = (T 2)∗T then by left
multiplication by (T ∗)† and then taking adjoint we get that (T 2)∗ = T ∗TPT .
Then, again by left multiplication by (T ∗)† we obtain that TPT ∈ Lh.

a)↔ d) Assume that a) holds, so that T = PA for some (P,A) ∈ P×Lh.
Pick any k ∈ N. Then T 2k = (PA)2k = P (AP )k(PA)k = P (T ∗)kT k. On
the other hand, T 2k+1 = TT 2k = PAP (T ∗)kT k = P (T ∗)k+1T k. Note that
(T ∗)k+1T k is self-adjoint since (T ∗)k+1T k = T ∗kAPT k = T ∗kAT k. Whence
d) follows and the proof is complete.

4



a) ↔ e) Let T = VT |T | be the polar decomposition of T . If T ∈ P · Lh
then T = PTA for some A ∈ Lh. So that VT |T | = T = PTA = VTV

∗
TA and

therefore VT (V ∗TA − |T |) = 0. Then R(V ∗TA − |T |) ⊆ N(T ) ∩ R(T ∗) = {0}.
Thus V ∗TA = |T | and |T |VT is self-adjoint. Conversely, if |T |VT is self-adjoint
then there exists A ∈ Lh such that |T | = V ∗TA (see [18, Theorem 2.2] and
[10, Theorem 3.5]). Then T = VT |T | = VTV

∗
TA = PTA and the assertion

follows.
a) ↔ f) If T = PTA, for some A ∈ Lh then TPT ∈ Lh and so AT =

T + T ∗ − TPT ∈ Lh. Conversely, if AT ∈ Lh then PTAT = T ∈ P · Lh.

By the previous theorem, we get the next result concerning quasinormal
operators:

Corollary 2.3. If a quasinormal operator T (i.e., TT ∗T = T ∗TT ) is in
P · Lh then it is self-adjoint.

Proof. Let T ∈ P · Lh such that TT ∗T = T ∗TT . By the previous theorem,
it also holds that T ∗TT = T ∗T ∗T . Then, TT ∗T = T ∗T ∗T and so TT ∗ = T 2.
Now, as T is quasinormal then R(T ) ⊆ R(T ∗) and so T = T ∗.

Remark 2.4. From now on, we denote by AT := T + T ∗ − TPT .

Corollary 2.5. a) P · Lh is closed.
b) If T ∈ P · Lh then T = PTAT .
c) If T ∈ P · Lh then T 2k ∈ P · L+ for all k ∈ N.
d) If T ∈ P · Lh and |T |VT ∈ L+ then T 2k+1 ∈ P · L+ for all k ∈ N.

Proof. a) It follows from item c) of Theorem 2.2.
b) It follows from the proof of a)→ d) of Theorem 2.2.
c) From a) → b) of Theorem 2.2 we know that T 2k = PT (T ∗)kT ∗. Then

T ∈ P · L+.
d) Since |T |VT ∈ L+ then (T ∗)2T = T ∗|T |2 = |T |V ∗T |T ||T | ∈ L+. Now,

as T ∈ P · Lh then T 2k+1 ∈ P · Lh for all k ∈ N. From the proof of
Theorem 2.2 we get that T 2k+1 = P (T ∗)k+1T k. Observe that (T ∗)k+1T k =
(T ∗)k−1(T ∗)2TT k−1 ∈ L+. So that, T 2k+1 ∈ P · L+.

Remark 2.6. Observe that given T ∈ P · Lh, T 2k+1 is not necessarily in

P · L+ for all k ∈ N. For example, consider T =

(
−1 0
1 0

)
∈ P · Lh. Note

that T 2k+1 = T for all k ∈ N. However, since TPT =

(
−1/2 1/2
1/2 −1/2

)
6∈ L+

then, by [5, Theorem 3.2], T 2k+1 6∈ P · L+.
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Remark 2.7. The following example shows that:

a) If T ∈ P · Lh then R(T ) ∩N (T ) 6= {0}, in general;

b) P · L+ ( P · Lh;

c) P · Lh is not closed by adjunction.

In fact, consider T =

1 2 3
2 4 5
0 0 0

 ∈ L(C3). Since T ∗T 2 ∈ Lh then T ∈

P·Lh. ThenR(T )∩N (T ) 6= {0}. On the other hand, note that P·L+ ( P·Lh
because if T ∈ P ·L+ then R(T )∩N (T ) = {0} (see [5, Lemma 3.1]). Finally,
to see that P · Lh is not closed by adjunction, it is sufficient to check that
T (T ∗)2 6∈ Lh.

From now on, given T ∈ P · Lh, we set

PT := {P ∈ P : PA = T for some A ∈ Lh}

and
AT := {A ∈ Lh : PA = T for some P ∈ P}.

In the next two results, we study the projection sets PT and AT .

Proposition 2.8. Let T ∈ P · Lh and P ∈ P. The following assertions are
equivalent:

a) P ∈ PT .

b) R(T ) ⊆ R(P ) and TP = PT ∗.

c) PAT = T .

Proof. a) → b) Suppose that there exists A ∈ Lh such that PA = T . Then
R(T ) ⊆ R(P ) and TP = PAP = PT ∗.

b) → c) If R(T ) ⊆ R(P ) and TP = PT ∗ then PAT = PT + PT ∗ −
PPTT

∗ = PT = T .
c)→ a) Since T ∈ P · Lh then AT ∈ Lh and so P ∈ PT .

Proposition 2.9. Let T ∈ P · Lh and A ∈ Lh. The following assertions are
equivalent:

a) A ∈ AT .

b) PTA = T .

c) A = AT +X for some X ∈ Lh with R(X) ⊆ R(T )⊥.
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Proof. a)→ b) If PA = T for some P ∈ P , then R(T ) ⊆ R(P ) and, whence,
T = PTA.

b) → c) Note that A = PTAPT + PTA(I − PT ) + (I − PT )APT + (I −
PT )A(I − PT ) = TPT + T (I − PT ) + (I − PT )T ∗ + (I − PT )A(I − PT ) =
T + T ∗ − PTT

∗ + (I − PT )A(I − PT ) = AT + (I − PT )A(I − PT ) and the
assertion follows.

c)→ a) Since PTA = PTAT = T then A ∈ AT .

Proposition 2.10. The set AT is a closed (in norm) R-affine manifold.

Proof. Item c) of Proposition 2.9 shows that AT is a R-affine manifold. Now

let us see that AT is closed. If {An} ⊆ AT and An
‖·‖−→

n→∞
A then A ∈ Lh

and Anx →
n−→∞

Ax for all x ∈ H. Then Tx = PTAnx −→
n→∞

PTAx. So that

PTA = T and therefore A ∈ AT .

In [5, Proposition 4.1] it was proved that if T ∈ P · L+ then it always
exists A ∈ L+ such that T = PTA and N (A) = N (T ). Furthermore, it was
shown that this special factor in L+ turns to have optimal properties among
all A ∈ L+ such that T = PA for some P ∈ P . Motivated by this, given
T ∈ P · Lh we are interested in finding A ∈ AT such that N (A) = N (T ).
Unfortunately, it is not always possible in P · Lh. For instance, consider

T =

1 2 3
2 4 5
0 0 0

 ∈ L(C3). By Remark 2.7 it holds that T ∈ P · Lh \ P · L+.

It is easy to check that AT =

1 2 3
2 4 5
3 5 0

. Then, by Proposition 2.9, every

A ∈ AT is A =

1 2 3
2 4 5
3 5 x

, with x ∈ R. Since det(A) 6= 0 for all x ∈ R then

A is invertible. Therefore, N (A) 6= N (T ) for all A ∈ AT .
The next result will be useful in order to study when it is possible to find

an A ∈ AT with N (A) = N (T ).

Proposition 2.11. Let T ∈ P · Lh and A ∈ AT . The following statements
hold:

a) R(T ) ∩N (A) = {0} (and therefore R(A) +R(T )⊥ is dense in H);

b) T has closed range if and only if H = R(A) +R(T )⊥;
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c) R(T )⊥ ∩R(A) = {0} if and only if N (A) = N (T ).

Proof. a) Take x ∈ R(T ) ∩ N (A). Then x = PTx and 0 = Ax = APTx =
T ∗x. So that x ∈ R(T ) ∩N (T ∗) = {0}.

b) First, let us see that R(T ) ⊆ R(A) + R(T )⊥. In fact, if y ∈ R(T )
then y = Tx = PTAx for some x ∈ H. Then PTTx = PTAx and so
Tx−Ax ∈ R(T )⊥. Therefore the inclusion is obtained. Now, if T has closed
range then H = R(T ) +R(T )⊥ ⊆ R(A) +R(T )⊥. Conversely, suppose that
H = R(A) + R(T )⊥ and T = PTA. Hence, R(T ) = PT (H) = PT (R(A) +
R(T )⊥) = R(PTA) = R(T ), i.e., T has closed range.

c) Let T = PTA. Suppose that N (A) = N (T ). If y ∈ R(A) ∩ R(T )⊥

then y = Ax for some x ∈ H and PTy = 0. So that, 0 = PTAx = Tx.
Hence x ∈ N (T ) = N (A) and, therefore y = 0. Conversely, since T = PTA
it is clear that N (A) ⊆ N (T ). Let x ∈ N (T ). Then 0 = PTAx and
so Ax ∈ R(A) ∩ R(T )⊥ = {0}. Then x ∈ N (A) and then the assertion
follows.

Theorem 2.12. Let T ∈ P · Lh. If there exists A ∈ AT with N (A) = N (T )
then R(T )+̇N (T ) is dense in H. Conversely, if R(T )+̇N (T ) = H then there
exists A ∈ AT with N (A) = N (T ).

Proof. Let T ∈ P · Lh. Assume that T = PTA with A ∈ Lh and N (A) =
N (T ). Then, by items a) and c) of Proposition 2.11, it holds that R(T ) ∩
N (T ) = {0} and N (A) + R(T ) is dense in H. Therefore R(T )+̇N (T ) is
dense in H. On the other hand, if R(T )+̇N (T ) = H, take Q = QR(T )//N (T )

and define A := ATQ. Note that A = T ∗Q = Q∗PTT
∗Q ∈ Lh because of

Theorem 2.2. Furthermore N (T ) ⊆ N (A) and if Ax = ATQx = 0 then
Qx ∈ N (AT )∩R(T ) = {0} (see Proposition 2.11). Then x ∈ N (Q) = N (T )
and so N (A) = N (T ). In addition PTA = PTATQ = TQ = T . The proof is
complete.

Corollary 2.13. Let T ∈ P · Lh with closed range. The next conditions are
equivalent:

a) There exists A ∈ AT with N (A) = N (T ).

b) R(T )+̇N (T ) = H.

Proof. Assume that there exists A ∈ AT with N (A) = N (T ). Then, by
Theorem 2.12, R(T )+̇N (T ) is dense in H. We claim that R(T )+̇N (T )
is closed. In fact, by Proposition 2.11, as T has closed range then H =
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R(A)
.

+R(T )⊥ and so R(T )+̇N (T ) = H as desired. The converse follows by
Theorem 2.12.

In the next proposition, given T ∈ P ·Lh we present equivalent conditions
to those of Theorem 2.12 in order to guarantee the existence of an A ∈ AT
with N (A) = N (T ). For that, given a pair V ,W ⊆ H of closed subspaces
we shall denote by c0(V ,W) to the cosine of the Dixmier angle between V
and W , i.e.,

c0(V ,W) := sup{|〈v, w〉| : v ∈ V , w ∈ W , ‖v‖ = ‖w‖ = 1}.

It holds that c0(V ,W) < 1 if and only if V +W is closed and V ∩W = {0}
(see [12, Theorem 1]).

Proposition 2.14. Let T ∈ P ·Lh. The following conditions are equivalent:

a) c0

(
R(T )⊥, AT (R(T )

)
< 1;

b) c0

(
N (P ), A(R(P ))

)
< 1 for all P ∈ P , A ∈ Lh such that T = PA;

c) H = R(T )+̇N (T ).

Proof. a) → b) By Proposition 2.9 every A ∈ AT can be written as A =
AT+X for some X ∈ Lh withR(X) ⊆ R(T )⊥. Now, if P ∈ PT thenN (P ) ⊆
R(T )⊥. Furthermore A(R(P )) = R(T ∗) and ATR(T ) = ATR(PT ) = R(T ∗).

Thus the assertion follows since c0

(
N (P ), A(R(P ))

)
≤ c0

(
R(T )⊥, ATR(T )

)
.

b) → c) Since c0

(
N (P ), A(R(P ))

)
< 1 for all P ∈ P and A ∈ Lh such

that T = PA then, in particular, c0

(
R(T )⊥, AT (R(T ))

)
< 1. Now observe

that AT (R(T )) = R(T ∗). Then we get that R(T )⊥+̇R(T ∗) is closed. In
consequence, R(T ) + N (T ) = H. In addition, if x ∈ R(T ) ∩ N (T ) then
x = PTx and 0 = TPTx = PTT

∗x. So that T ∗x ∈ R(T ∗) ∩ R(T )⊥ ⊆
R(T ∗) ∩R(T )⊥ = {0}. Therefore x ∈ N (T ∗) ∩R(T ) = {0} as desired.

c) → a) Since N (T )⊥ = AT (R(T )) then the assertion follows by [12,
Theorem 12 and Theorem 16].

For the next result we denote by I0 the set of split partial isometries of
L(H), i.e, the set of partial isometries V such that R(V )+̇N (V ) = H. This
class of operators was studied in [1].
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Proposition 2.15. Let T ∈ L(H). The following assertions are equivalent:

a) T ∈ P · Lh and R(T )+̇N (T ) = H;

b) |T |VT ∈ Lh and VT ∈ I0.

Proof. The proof follows from Theorem 2.2 and the facts thatR(VT ) = R(T )
and N (VT ) = N (T ).

Remark 2.16. Given a closed subspace S ⊆ H and A ∈ Lh, it is said that
the pair (A,S) is compatible if there exists Q ∈ L(H) such that Q2 = Q,
R(Q) = S and AQ = Q∗A. This notion was introduced and studied in [19].
It was proved that the pair (A,S) is compatible if and only c0(S⊥, A(S)) < 1
([19, Theorem 4.7]). Therefore, observe that given T ∈ P ·Lh, the conditions
of Proposition 2.14 are equivalent to the compatibility of the pair (AT ,R(T ))
and also to the compatibility of the pair (A,R(P )) for all A ∈ Lh and P ∈ P
such that T = PA.

Definition 1. Let T ∈ P · Lh be such that R(T )+̇N (T ) = H. If Q =
QR(T )//N (T ) we define

AN = ATQ.

Observe that, by the proof of Theorem 2.12, AN ∈ AT and N (A) =
N (T ).

Proposition 2.17. The operator AN satisfies the following properties:

a) AN is the unique operator in AT with nullspace equal to N (T ).

b) R(AN ) is closed if and only if R(T ) is closed.

Proof. a). Suppose that there exists A ∈ AT such that N (A) = N (AN ) =
N (T ). Then R(A − AN ) ⊆ N (T ∗) since T ∗(A − AN ) = APT (A − AN ) =
A(T − T ) = 0. On the other hand, as N (A) = N (AN ) = N (T ) then
R(A−AN ) ⊆ N (T )⊥. Hence, R(A−AN ) ⊆ N (T ∗)∩N (T )⊥ = {0} because
H = R(T )+̇N (T ), so A = AN .

b) Suppose that R(AN ) is closed. Then, R(AN ) = R(T ∗) and so,
R(AN )

.
+ N (T ∗) = H because R(T )

.
+ N (T ) = H. Therefore, by Propo-

sition 2.11 , R(T ) is closed.
Conversely, ifR(T ) is closed then, by Proposition 2.11,R(AN )+̇R(T )⊥ =

H. Hence, applying [15, Theorem 2.3], we obtain that R(AN ) is closed.

10



Remark 2.18. Notice that if T ∈ P · L+ with R(T )+̇N (T ) = H then AN
coincides with the optimal operator in L+ given in [5, Remark 4.2]. In fact,
by [5, Proposition 4.1], there exists a unique A ∈ L+ with N (A) = N (T )
such that T = PTA. Therefore, it is sufficient to show that AN ∈ L+. Now,
AN = ATQ = T ∗Q = Q∗T ∗Q = Q∗PTT

∗Q ∈ L+ because by [5, Theorem
3.2], PTT

∗ ∈ L+.

Proposition 2.19. Let T ∈ P · Lh with R(T )+̇N (T ) = H. Then the
following assertions hold:

a) For every A ∈ AT there exists X ∈ Lh with R(X) ⊆ R(T )⊥ such that
A = AN +X . Furthermore R(A) = R(AN )+̇R(X).

b) There exists A ∈ AT with dense range.

c) There exists A ∈ AT invertible if and only if R(T ) is closed.

Proof. a) It is easy to check that every A ∈ AT can be written as A =
AN+X, for someX ∈ Lh withR(X) ⊆ R(T )⊥. Now, sinceR(AN )+̇R(X) =
R(T ∗)+̇R(X) is closed then, by [6, Theorem 3.10], we get that R(A) =
R(AN )+̇R(X).

b) Define A = AN + (I − PT ). By the above item A ∈ AT and, since
R(A) = R(AN ) + N (T ∗) and R(AN ) = R(T ∗) it holds that A has dense
range.

c) If there exists A ∈ AT invertible then R(T ) = R(PTA) = R(PT ) =
R(T ). So that T has closed range. Conversely, if R(T ) is closed then A =
AN + (I − PT ) ∈ AT and R(A) = H. Therefore, A is invertible.

Proposition 2.20. Let T ∈ P·Lh with closed range such thatR(T )+̇N (T ) =
H. Then the following assertions hold:

a) QR(T )//N (T ) = (ANPT )†AN = (T ∗)†AN ;

b) {A ∈ AT : R(A) is closed} = {AN +X : X ∈ Lh,R(X) is closed and
R(X) ⊆ N (T ∗)};

c) T † ∈ P · Lh.

Proof. a) This proof is similar to the proof of [5, Proposition 4.3].
b) It is clear that every A ∈ AT can be written as A = AN + X,

for some X ∈ Lh with R(X) ⊆ R(T )⊥ . Since H = R(T )+̇N (T ) then
H = R(T ∗)+̇N (T ∗). So, c0(R(AN ),R(X)) ≤ c0(R(T ∗),N (T ∗)) < 1. Thus
R(AN )+̇R(X) is closed. Then by [6, Theorem 3.10] it holds that R(A) =
R(AN )+̇R(X). Therefore it is clear that if R(X) is closed then R(A) is
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closed. Conversely, if R(A) is closed then by [15, Theorem 2.3] it holds that
R(X) is closed.

c) By Proposition 2.19 there exists A ∈ Lh invertible such that PTA = T .
Define C := PR(AP )A

−1 ∈ P ·Lh. Therefore it holds that C has closed range,
TC = PT and R(C) ⊆ N(T )⊥. Thus, by [4, Theorem 3.1], C = T † and so
T † ∈ P · Lh.

3. Optimal decompositions

This section is devoted to the study of optimal factors in PT and AT for
T ∈ P ·Lh. We shall consider three different criteria of optimality: minimiza-
tion with respect to usual order between self-adjoint operators, minimization
with respect to the minus order in L(H) and minimization of the distance
to T . By usual order between selfadjoint operators we mean that given
A,B ∈ Lh, A ≤ B if B−A ∈ L+. For the minus order we shall use the sym-
bol ≤−. Given A,B ∈ L(H), it is said that A ≤− B if and only if there exist
two idempotents Q1 and Q2 in L(H) such that A = Q1B and A∗ = Q2B

∗.
The minus order was introduced by Hartwig [17] and independently by Nam-
booripad [20] on semigroups. Later this order was extended to operators in
L(H) by Antezana, Corach and Stojanoff [2] and by S̆merl [22].

Let us start studying the optimality in PT :

Proposition 3.1. If T ∈ P · Lh then:

a) PT = min{P : P ∈ PT}, where the minimum is taken with respect usual
order between self-adjoint operators.

b) PT = min{P : P ∈ PT}, where the minimum is taken with respect to
the minus order.

Proof. Let P ∈ PT . Then R(T ) ⊆ R(P ). So that, is clear that PT ≤ P .
Furthermore, PT = PTP . Then PT ≤− P .

In [5, Proposition 4.7] it was proven that if T ∈ P · L+ then there exists
Â ∈ L+ with N (Â) = N (T ) and T = PT Â such that Â realizes the minimum
among all the positive operators A such that T = PTA in two ways: with
respect to the operator norm and with respect to the usual order defined on
the set of self-adjoint operators. Hence, one may wonder if a similar result
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can be obtained for T ∈ P · Lh. But, as the next example shows, it is not

possible, in general. For example, consider T = PA =

(
−1 0
1 0

)
∈ P · Lh.

It is easy to check that AN =

(
−2 0
0 0

)
∈ Lh. Now, by Proposition 2.17

we know that AN is the unique operator in AT with nullspace N (T ). But,
‖AN‖ = 2 ≥

√
2 = ‖T‖. However, as we will see in the next result, the setAT

has a minimum with respect to the operator norm. We include its proof for
the sake of completeness. However, the arguments are very similar to those
in [11, Section 1] where the problem of finding the entry D in the block

operator matrix

(
A B
C D

)
so as to satisfy the norm bound

∥∥∥∥(A B
C D

)∥∥∥∥ ≤ µ,

for given Hilbert space operators A,B,C and prescribed µ, is fully studied.

Theorem 3.2. Given T ∈ P · Lh it holds that

min
A∈AT

‖A‖ = ‖T‖.

Moreover, the minimum is achieved in the operator A0 defined in (3).

Proof. Write
T1 := T |R(T ) and T2 := T |N (T ∗).

For all h ∈ H

‖T‖2‖PTh‖2 = ‖T ∗‖2‖PTh‖2 ≥ ‖T ∗PTh‖2 = ‖T1PTh‖2 + ‖T ∗2PTh‖2

whence
〈T2T ∗2PTh, PTh〉 ≤ 〈(‖T‖2 − T 2

1 )PTh, PTh〉. (2)

Put α := ‖T‖,

Dα := (α2|R(T ) − T
2
1 )

1
2 and Dα := R(Dα).

Then (2) yields a contraction Cα : Dα → N (T ∗) such that T ∗2 = CαDα. In

particular, AT =

(
T1 T2
T ∗2 0

)
can be written as

AT =

(
T1 DαC

∗
α

CαDα 0

)
=

(
1 0
0 Cα

)(
T1 Dα

Dα 0

)(
1 0
0 C∗α

)
.
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Take X0 := −CαT1C∗α ∈ Lh(N (T ∗)) and A0 := AT +X0 ∈ AT , so that

A0 =

(
1 0
0 Cα

)(
T1 Dα

Dα −T1

)(
1 0
0 C∗α

)
. (3)

It is well known that the block operator matrix

(
T1 Dα

Dα −T1

)
is α times a

unitary operator on R(T )⊕Dα. Thus, for all h ∈ R(T ) and x ∈ Dα,∥∥∥∥(T1 Dα

Dα −T1

)(
h
u

)∥∥∥∥ = α

∥∥∥∥(hu
)∥∥∥∥ .

Therefore, ‖A0‖ ≤ α = ‖T‖. Indeed, as ‖T‖ ≤ ‖A‖, for all A ∈ AT , it turns
out that ‖A0‖ = ‖T‖ = min

A∈AT

‖A‖.

Note that the operator AT does not realize the minimum in Theorem 3.2.

In fact, consider T =

(
1 0
1 0

)
∈ P · Lh. Here, AT =

(
3/2 1/2
1/2 −1/2

)
and

‖AT‖ = 1+
√
6

2
>
√

2 = ‖T‖. However AT is optimal in the next sense:

Theorem 3.3. Let T ∈ P · Lh. Then

min
A∈AT

‖(T ∗ − A)x‖ = ‖(T ∗ − AT )x‖ for all x ∈ H. (4)

Moreover AT is the unique operator in AT which realizes the minimum in
(4). In particular, it holds that

min
A∈AT

‖T − A‖ = ‖T − AT‖, (5)

Proof. Let x ∈ H and A ∈ AT . Then ‖(T ∗ − A)x‖2 = ‖T ∗ − AT −X)x‖2 =
‖(T ∗−T−(I−PT )T ∗−X)x‖2 = ‖(PTT ∗−T−X)x‖2 = ‖(TPT−T−X)x‖2 =
‖T (PT − I)x‖2 + ‖Xx‖2 ≥ ‖T (PT − I)x‖2 = ‖(T ∗ − AT )x‖2. In addition,
if there exists another A1 = AT + X1 ∈ AT such that ‖(T ∗ − A1)x‖ ≤
‖(T ∗−A)x‖ for all x ∈ H then, in particular, ‖(T ∗−A1)x‖ ≤ ‖(T ∗−AT )x‖
for all x ∈ H. Hence ‖X1x‖ = 0 for all x ∈ H. So that X1 = 0 and therefore
A1 = AT . Finally, from the above we get that ‖T − AT‖ = ‖T ∗ − AT‖ ≤
‖T ∗ − A‖ = ‖T − A‖.
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Finally, given T ∈ P · Lh with R(T )+̇N (T ) = H we shall prove that
AN is optimal in AT with respect to the minus order in L(H). For this we
use the following result due to Dijić, Fongi and Maestripieri [13, Proposition
3.2]).

Proposition 3.4. Let A,B ∈ L(H). The following assertions are equivalent:

a) A ≤− B;

b) N (A) +N (B − A) = N (A∗) +N (B∗ − A∗) = H.

Theorem 3.5. If T ∈ P · Lh and R(T )+̇N (T ) = H then

AN = min{A : A ∈ AT},

where the minimum is taken with respect to the minus order. Moreover, AN
is the unique element in AT that realizes the minimum.

Proof. By Proposition 2.19 every A ∈ AT can be written as A = AN +X, for
some X = X∗ and R(X) ⊆ R(T )⊥. Furthermore R(A) = R(AN ) +R(X).
Now, H = R(T )+̇N (T ) ⊆ N (A−AN ) +N (AN ). Then, by Proposition 3.4,
we get that AN ≤− A. Now, suppose that there exists Ã ∈ AT such that
Ã ≤− A for allA ∈ AT . In particular it holds that Ã ≤ AN . Then there exists
an idempotent Q ∈ L(H) such that Ã = QAN . Then N (T ) = N (AN ) ⊆
N (Ã) ⊆ N (T ). Thus N (Ã) = N (T ) and therefore, by Proposition 2.17,
Ã = AN .
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