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The development of an acidic tissue environment is a hallmark of a variety of inflammatory processes and solid tumors. However,
little attention has been paid so far to analyze the influence exerted by extracellular pH on the immune response. Tissue acidosis
(pH 6.0 to 7.0) is usually associated with the course of infectious processes in peripheral tissues. Moreover, it represents a
prominent feature of solid tumors. In fact, values of pH ranging from 5.7 to 7.0 are usually found in a number of solid tumors
such as breast cancer, brain tumors, sarcomas, malignant melanoma, squamous cell carcinomas, and adenocarcinomas. Both the
innate and adaptive arms of the immune response appear to be finely regulated by extracellular acidosis in the range of pH
values found at inflammatory sites and tumors. Low pH has been shown to delay neutrophil apoptosis, promoting their
differentiation into a proangiogenic profile. Acting on monocytes and macrophages, it induces the activation of the
inflammasome and the production of IL-1β, while the exposure of conventional dendritic cells to low pH promotes the
acquisition of a mature phenotype. Overall, these observations suggest that high concentrations of protons could be recognized
by innate immune cells as a danger-associated molecular pattern (DAMP). On the other hand, by acting on T lymphocytes, low
pH has been shown to suppress the cytotoxic response mediated by CD8+ T cells as well as the production of IFN-γ by TH1
cells. Interestingly, modulation of tumor microenvironment acidity has been shown to be able not only to reverse anergy in
human and mouse tumor-infiltrating T lymphocytes but also to improve the antitumor immune response induced by
checkpoint inhibitors. Here, we provide an integrated view of the influence exerted by low pH on immune cells and discuss its
implications in the immune response against infectious agents and tumor cells.

1. Introduction

Extracellular acidosis is a hallmark of inflammatory pro-
cesses. Accumulation of protons in the extracellular space is
frequently associated with the course of inflammatory
responses against bacteria in peripheral tissues, where pH
values as low as 5.5 have been described [1–6]. In this sce-
nario, local acidosis appears to be induced by three major fac-
tors: (1) tissue hypoxia caused by the damage of small blood
vessels and the metabolic activity of infiltrating leukocytes,
resulting in a switch towards glycolytic metabolism and the
subsequent accumulation of lactic acid [7–12]; (2) the
massive production of protons by neutrophils during the
activation of the respiratory burst [13–15]; and (3) the

accumulation of short-chain fatty acids produced by bacteria
[16–18]. Autoimmune and allergic diseases are also associ-
ated to the accumulation of protons in the extracellular space
at the sites of tissue injury. Analysis of compromised joints in
patients with rheumatoid arthritis revealed low pH values in
the synovial fluid being acidosis associated to both synovial
fluid leukocytosis and radiological joint destruction [19–21].
On the other hand, observations made in samples of exhaled
breath condensate from asthmatic patients revealed that acute
asthma exacerbations are associated to the acidification of the
airway [22–24]. Similar findings were made in patients with
acute lung injury [25].

A large body of evidence indicates that acidosis and hyp-
oxia are hallmarks of tumors as well as crucial determinants

Hindawi
Mediators of Inflammation
Volume 2018, Article ID 1218297, 11 pages
https://doi.org/10.1155/2018/1218297

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/237184572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-9519-5909
http://orcid.org/0000-0002-4750-9686
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/1218297


of tumor progression. Observations made in solid tumors
such as malignant melanomas, brain tumors, sarcomas,
breast cancer, squamous cell carcinomas, and adenocarci-
nomas showed that tumor microenvironments reach pH
values ranging from 5.8 to 7.4 [26–34]. Tumor cells usually
show a highly glycolytic metabolism leading to the decrease
in the pH of the tumor microenvironment due to lactic acid
production. The Warburg effect, identified by Otto Warburg
and colleagues in the 1920s, describes the elevated rate of
glucose uptake and preferential production of lactate by
tumor cells, even in the presence of oxygen. More recent
studies, however, suggest that lactate production by tumor
cells also involves the metabolism of nonglucose substrates
[35–37]. DeBerardinis et al. demonstrated that glutamine
can be metabolized in cancer cells through the citric acid
cycle and that this pathway represents a major source of
lactate [35]. It is not only cancer cell metabolism that con-
tributes to the acidification of the tumor microenviron-
ment. Additionally, the poor and disorganized tumor
vasculature prevents an efficient washout of protons from
the extracellular space leading to the acidification of the
extracellular space [33, 34, 38–40]. Interestingly, extracel-
lular acidosis has been shown to favor cancer progression
by promoting local tumor invasion and also distant meta-
static spread [27]. Moreover, different strategies have been
explored to exploit the relative acidity of tumor versus
normal tissue in order to improve the efficacy of antitumor
chemotherapy [27, 39–42].

In spite that low pH is a common feature in inflammatory
environments and tumors, little attention has been paid to
determine how the function of immune cells is modulated
by changes in the extracellular pH. This review summarizes
our current understanding of the immunomodulatory
actions induced by low pH on the course of the innate and
adaptive immune response and discusses the mechanisms
involved, as well as the feasibility of using therapeutic strate-
gies targeting extracellular acidosis.

2. Sensing of Protons by Immune Cells

Mammalian cells are able to sense changes in the pH of the
extracellular medium, particularly, the accumulation of pro-
tons in the extracellular space. However, the mechanism
underlying the sensing of protons and the signaling pathways
activated by them are poorly characterized. The emerging
field of pH sensors expressed on the cell surface has shed
some light about how cells recognize and respond to protons
[43, 44]. G protein-coupled receptors (GPCRs), including
GPR68 (OGR1), GPR65 (TDAG8), GPR4, and GPR132
(G2A) are widely expressed by immune cells. They act as
receptors for lysolipids such as sphingosylphosphorylcho-
line, lysophosphatidylcholine, and psychosine, but they are
also activated by low pH (range 6.4 to 6.8) through the pro-
tonation of the imidazole side chain of histidine residues
(pI < 6 5) located in the extracellular domain of these recep-
tors. This results in different signaling mechanisms mediated
by the activation of phospholipase C (PLC), the induction of
Ca2+ transients, the stimulation of adenylyl cyclase which
leads to the synthesis and accumulation of cAMP, and the

activation of the protein kinase A/ERK-signaling pathway
[45–48]. Acid-sensing ion channels (ASICs) represent a sec-
ond group of receptors activated by protons (half-maximal
activation at pH < 6 7) [49–52]. They are cation-selective
ion channels involved in pain perception, ischemic stroke,
mechanosensation, learning, and memory [53]. ASICs com-
prise six isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b,
ASIC3, and ASIC4) mainly expressed in peripheral sensory
and central nervous system neurons [53]. The pattern of
ASIC expression in immune cells has not been clearly
defined; however, these receptors have been shown to be
expressed in monocytes, macrophages, and dendritic cells
[54–56]. A third family of proton receptors includes the
transient receptor potential channel vanilloid subfamily 1
(TRPV1). They are cation channels activated by low pH
(~6.0), resulting in Ca2+ influx [57]. Originally associated
with sensory neurons, TRPV1 has been shown to be highly
expressed in immune cells [58–60]. Activation of TRPV1
induces the influx of Ca2+ and the subsequent activation
of a number of transcription factors, such as NF-κB and
NFAT [61, 62].

There are also mechanisms through which protons might
modulate cellular responses without interacting with cell sur-
face receptors. Extracellular acidosis has been shown to be
capable of lowering cytosolic pH in immune cells through
the rapid diffusion into the cell of CO2 originating from the
reaction of protons with extracellular bicarbonate, the sub-
sequent hydration of CO2, and the overproduction of
intracellular protons [63, 64]. In fact, intracellular acidifi-
cation has been shown to promote different responses
such as neutrophil shape change and chemotaxis, as well
as the production of IL-1 by mononuclear phagocytes
[65–68]. It should be noted, however, that the relative contri-
bution of receptor-dependent and independent mechanisms
in the immunomodulatory effects induced by low pH
remains to be further clarified.

3. Innate Immune Cells and Low pH

There are a number of studies, mostly performed in vitro,
analyzing the influence exerted by low pH on the function
of innate immune cells. Some contradictory results have been
reported perhaps reflecting distinct approaches used to lower
the pH of the culture medium. While some studies have used
isotonic solutions of HCl, others have employed lactic acid,
the final product of anaerobic glycolysis. Lactate, which has
long been merely considered as a bystander product of cell
metabolism, is able to exert by itself important immunomod-
ulatory effects [69]. Thus, it was not unexpected to find dif-
ferent observations by using HCl or lactic acid to change
the pH of the culture medium. Those studies that have inves-
tigated both compounds in concert support the notion that
low pH itself exerts major immunomodulatory effects and
also exacerbates lactate-mediated effects [70].

3.1. Neutrophils. Neutrophils play a critical role in host
defense against bacterial and fungal infections and are also
involved in the pathogenesis of a number of inflammatory
conditions [71]. Extracellular acidosis has been shown to
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induce either stimulatory or inhibitory effects on neutrophil
responses, depending on the function analyzed. Most of the
published studies were performed using human neutrophils.
Early reports showed that both oxygen consumption and O2

−

production induced by different stimuli such as the chemo-
tactic peptide fMLP, opsonized zymosan, and PMA are
markedly inhibited when assessed in citrate-phosphate buffer
adjusted to acidic values of pH (range 6.0 to 7.0) [72]. Consis-
tent with these observations, more recent studies have shown
that neutrophils suspended in CO2-bicarbonate-buffered
medium adjusted to low pH values show a reduced ability
to produce extracellular traps (NETs) but a higher ability to
kill phagocytized bacteria [73]. On the other hand, studies
performed by us and other groups have shown that low pH
induces neutrophil shape change, a transient increase in
cytosolic Ca2+ levels, the upregulation of cell surface expres-
sion of CD18, and the production of platelet-activating factor
(PAF) via activation of phospholipase A2 [67].

We have previously reported that extracellular acidosis
induces both a fall in intracellular pH (pHi) and a delay of
neutrophil apoptosis, suggesting that extracellular acidosis
might delay apoptosis by reducing pHi [67]. Interestingly,
we also observed that fever-range hyperthermia accelerates
the rate of neutrophil apoptosis at neutral pH but markedly
increases neutrophil survival induced by low pH [74].
Because previous reports have shown that hyperthermia pro-
motes intracellular acidification in tumor cells by inhibiting
the Na+/H+ antiporter, we hypothesized that the prosurvival
effect induced by hyperthermia at low pH values could be
related to its ability to decrease pHi. We found that hyper-
thermia did not decrease the pHi of neutrophils cultured at
neutral pH values, but it significantly decreased the pHi of
neutrophils cultured at acidic pH values. Moreover, we found
that two Na+/H+ exchanger inhibitors reproduced the antia-
poptotic effect induced by hyperthermia, suggesting that it
delays neutrophil apoptosis by inhibiting the Na+/H+ anti-
porter further decreasing pHi. Of note, while the prolonga-
tion of neutrophil survival induced by pathogen-associated
molecular patterns (PAMPs), danger-associated molecular
patterns (DAMPs), and inflammatory cytokines is usually
associated to the preservation of classical neutrophil effector
functions such as phagocytosis and reactive oxygen species
(ROS), the antiapoptotic effect induced by low pH and
hyperthermia promoted an alternative functional profile
characterized by a poor phagocytic ability, a very low produc-
tion of ROS, a very high expression of the β2 integrin
CD11b/CD18, and a high ability to suppress T cell responses
and to produce the angiogenic factors IL-8, VEGF, and the
matrix metallopeptidase 9 (MMP-9) [74]. These observations
suggest that acting together, local acidosis and fever might
promote neutrophil differentiation into a profile similar to
that described for tumor-associated neutrophils (TANs).
Neutrophils make up a significant fraction of the inflamma-
tory cell infiltrate found in a large variety of tumors [75], and
clinical studies involving different tumors have shown that
TANs confer a poor prognosis in cancer patients [76–78].
Tumor-associated neutrophils seem to contribute to cancer
growth and metastasis through different mechanisms, such
as suppression of T cell function, production of angiogenic

factors, and secretion of proteases, among them elastase
and MMP-9 [75]. This functional profile closely resembled
the profile observed for neutrophils cultured at low pH
values and febrile-range temperatures [74].

3.2. Monocytes and Macrophages. The function of monocytes
and macrophages is also regulated by changes in the pH of
the extracellular medium. Most of the studies performed in
this field have analyzed the influence exerted in vitro by low
pH on the production of cytokines by human, murine, rat,
and rabbit macrophages [68, 79–83]. Low pH (6.0 to 6.5)
has been shown to induce the activation of the inflammasome
and the production of IL-1β by human monocytes and mac-
rophages [68, 83]. Additional experiments suggest that the
stimulation of IL-1β production is promoted by a drop in
pHi, and not through the interaction of extracellular protons
with cell surface receptors. In fact, the inhibition of the major
regulators of intracellular pH such as the plasmalemmal
V-type H+ ATPases and the Na+/H+ exchangers, which
extrude intracellular protons, resulted not only in a drop of
pHi but also in the promotion of IL-1β secretion [68, 83].

It was also reported that lactic acidosis, but not low pH,
stimulates the production of IL-23 by mononuclear phago-
cytes, promoting the development of a TH17 profile [84].
On the other hand, studies performed with rat peritoneal
macrophages showed that mildly acidic conditions
(pH6.8-7.0) induce NF-κB activation, the production of
TNF-α, and the expression of the inducible form of nitric
oxide synthase (iNOS) [79]. Contrasting with this observa-
tion, it has been reported that low extracellular pH (range
6.5-7.0) inhibits the production of TNF-α by rabbit alveolar
macrophages [80], and consistent with this finding it has also
been shown that either low pH or lactic acid markedly
inhibits TNF-α production by human monocytes [85]. Inter-
estingly, in vivo experiments made in mouse models of acute
pneumonia and peritonitis induced by Pseudomona aerugi-
nosa infection showed that acidosis stimulates the produc-
tion of inflammatory cytokines, including IL-1β, IL-6,
CXCL1, and CCL2, as well as the recruitment of neutrophils
in the injured tissue [86, 87]. On the other hand, studies
focused on tumor-associated macrophages (TAMs) have
shown that lactic acidosis induces not only the expression
of vascular endothelial growth factor (VEGF) but also the
acquisition of a M2-like phenotype by TAMs [88]. These
effects are mediated through the stimulation of the transcrip-
tion factor hypoxia-inducible factor 1α (HIF-1α). Consistent
with these observations, it was reported that low pH decreases
gene expression of proinflammatory M1 markers such as
iNOS, monocyte chemoattractant protein-1 (MCP1), and
IL-6 in M1 macrophages, while it increased gene expression
of M2 markers such as mannose receptor C-type 1 (MRC1),
arginase 1 (ARG1), and chitinase-3-like protein inM2macro-
phages [89]. These observations suggest that a macrophage
growing at low pH undergoes anM1 toM2 phenotypic switch
which might contribute to tumor growth.

3.3. Natural Killer Cells. Natural killer (NK) cells play an
important role in the innate host defense against viruses
and other intracellular pathogens as well as in antitumor
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immunity. There is a general agreement that extracellular
acidosis inhibits the antitumoral activity of NK cells. Using
unstimulated peripheral blood mononuclear cells (PBMCs),
isolated NK cells, NK cell lines, and lymphokine-activated
killer cells (LAK cells), it was shown that the release of perfor-
in/granzyme-containing granules, the secretion of IFN-γ and
TNF-α, and the cytotoxic response against tumor cells
assessed in vitro were markedly inhibited at low pH values,
in the range of 5.8 to 7.0 [90–92]. A similar inhibition of
NK cell function was shown to be induced by lactic acid.
Lactate dehydrogenase-A (LDH-A), the enzyme responsible
for conversion of pyruvate to lactate, is highly expressed in
tumor cells. Using a pancreatic cancer model, Husain et al.
[93] reported that lactate from cancer cells inhibits NK cell
activity in vivo and increases tumor size. Moreover, experi-
ments performed in vitro showed that lactate inhibits NK cell
cytotoxicity and that this suppressive effect was further
amplified when assays were performed at low pH values.
Consistent with these observations, it was also reported that
lactic acid accumulation in melanomas inhibits tumor
surveillance by NK cells. In fact, observations made in
C57BL/6 mice showed that tumors with reduced lactic acid
production developed slower than control tumors and
showed an increased infiltration with IFN-γ producing T
and NK cells [94].

Moreover, extracellular acidosis has been shown to pre-
vent the generation of LAK cells induced by IL-2 [95]. Inter-
estingly, experiments performed in vivo in a lymphoma
mouse model demonstrated not only that tissue acidosis
compromises the production of IFN-γ by NK cells but also
that systemic alkalinization by oral delivery of bicarbonate
increases the production of IFN-γ as well as the infiltration
of tumor tissue by NK cells, delaying tumor growth [96].
Surprisingly, it has been reported that an acidic microenvi-
ronment does not suppress, but rather increases the killing
of different species and strains of Cryptococcus mediated by
NK cells [97]. This enhancing effect was shown to be associ-
ated to the stimulation of ERK1/ERK2 phosphorylation and
the enhancement of perforin release. The reasons underlying
the differences between the effects induced by low pH on the
antitumoral and anticryptococcal activity of NK cells remain
to be clarified. In this regard, it should be considered that low
pH enhances Cryptococcus replication, and NK cells have
been shown to kill the faster replicating Cryptococcus more
efficiently than the slower replicating organisms. On the
other hand, differences in the mechanisms responsible for
the recognition of tumor cells and fungi should also be con-
sidered. In fact, while NK cells require the participation of
LFA-1 for binding and killing of tumor cells, the anticrypto-
coccal activity of NK cells is mediated through a
LFA-1-independent pathway [98].

The function of NKT cells has also been shown to be reg-
ulated by extracellular pH [99]. These cells are innate-like
lymphocytes recognizing lipid antigens and play an impor-
tant role in the host defense against pathogens and tumor
cells. It was reported that extracellular acidosis (pH6.8)
inhibits the production of IFN-γ and IL-4 by NKT cells acti-
vated by alpha-galactosylceramide. Interestingly, suppres-
sion of NKT cell function by low pH was shown to be

associated to the inhibition of mammalian target of rapamy-
cin (mTOR) signalling, a critical pathway involved in the
activation of both conventional T cells and NKT cells [99].

3.4. Dendritic Cells. Conventional or myeloid dendritic cells
(DCs) are highly specialized antigen-presenting cells with a
unique ability to prime naive T cells inducing the activation
of the adaptive immune response [100]. They are responsible
for the induction of primary immune responses, but they also
play a critical role in determining the type of T cell-mediated
immunity as well as in silencing the immune response against
self-antigens. DCs do not represent a homogeneous cell pop-
ulation; rather, different functionally specialized subsets of
DCs exist, and each of them displays phenotypic and func-
tional plasticity in response to diverse stimuli [101]. The pro-
duction of fully competent DCs involves two major steps:
differentiation of DCs from blood precursors and maturation
into potent antigen-presenting cells [102]. Maturation repre-
sents a commonproperty of all DC types and subtypes. In fact,
upon encountering PAMPs, DAMPs, or inflammatory cyto-
kines in peripheral tissues, DCs become activated and
undergo a maturation process leading to an enhanced ability
to activate T cells and to direct the differentiation of CD4+ T
cells into different profiles. DC maturation is associated with
a number of phenotypic and functional changes: (a) upregula-
tion of the chemokine receptor CCR7, allowing homing of
DCs to draining nodes drawn by the chemokines CCL19
and CCL21; (b) downregulation of DC ability to capture and
process antigens; (c) increased expression of MHC-peptide
complexes; (d) upregulation of CD40, CD80, and CD86
expression; and (e) enhanced ability to produce a variety of
cytokines, chemokines, and growth factors [103–105].

Extracellular acidosis has been shown to be able to modu-
late both the differentiation andmaturation of DCs. Differen-
tiation of human DCs is usually analyzed by culturing
monocytes for 5-7 days with GM-CSF plus IL-4, as described
by Sallusto and Lanzavecchia [106]. Studies directed to char-
acterize immune evasion mechanisms in cancer revealed that
lactic acidosis impairs the differentiation of monocytes into
DCs. Gottfried et al. reported that monocytes cultured in the
presence of IL-4 and GM-CSF within multicellular tumor
spheroids do not acquire CD1a expression, a marker of
monocyte-derived DCs, and show a reduced ability to pro-
duce IL-12 [107]. These immunosuppressive effects were
shown to be induced by the production of lactic acid by tumor
cells. Additional experiments revealed that the inhibitory
effect induced by lactic acid could indeed be reverted by
adjusting the pH to neutral values, and it was not reproduced
by lowering pHwith HCl [107], suggesting that the inhibition
of DC differentiation depends on lactate transport into the
cell, a strictly pH-dependent process [108]. Consistent with
this observation, it was reported that monocytes cultured
alone at high density, in the presence of IL-4 plus GM-CSF,
show impairment in both the acquisition of CD1a expression
and the ability to produce IL-12. These immunosuppressive
effects were induced by the accumulation of high concentra-
tions of lactic acid in the culture media and were not repro-
duced by incubating monocytes in culture medium adjusted
to low pH values by the addition of HCl [109].
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We have studied the influence exerted by extracellular
acidosis on the maturation of murine and human DCs. Using
DCs derived from murine bone marrow precursors, we
found that extracellular acidosis (pH6.5) increased the endo-
cytic activity of DCs and the expression of MHC class II,
CD40, and CD86 [110]. Moreover, DCs pulsed with antigens
at low pH values showed an improved efficacy to induce spe-
cific cytotoxic responses mediated by CD8+ T cells as well as
specific antibody responses in vivo [110]. On the other hand,
using human DCs derived from monocytes cultured with
IL-4 and GM-CSF, we found that transient exposure of
DCs to pH6.5 markedly increases the expression of
HLA-DR, CD40, CD80, CD86, CD83, and CCR7, improves
the T cell priming ability of DCs, and increases the produc-
tion of IL-12, stimulating the synthesis of IFN-γ, but not
IL-4, by Ag-specific CD4+ T cells [111]. These changes
induced by extracellular acidosis were shown to be strictly
dependent on the activation of p38 MAPK. Of note, we
observed that low concentrations of LPS abrogated DC mat-
uration induced by pH6.5 [111], suggesting a cross talk
between the activation pathways triggered by extracellular
protons and LPS in DCs. The ability of extracellular acidosis
to induce the phenotypic maturation of humanDCs was con-
firmed by Tong et al. [56]. Interestingly, they demonstrated
that this response is induced through the activation of ASIC
receptors, a family of proton receptors [56].

3.5. Platelets and Endothelial Cells. Different groups have
shown that low pH modulates the course of the innate
immune response by acting not only on leukocytes but also
on nonimmune cells. It is well known that platelets modulate
the function of neutrophils in the course of inflammatory
processes. Etulain et al. reported that extracellular acidosis
(pH6.5-7.0) downregulates platelet haemostatic functions
such as adhesion, spreading, ATP release, aggregation,
thromboxane B2 generation, and procoagulant activity, but
it increases platelet ability to stimulate inflammatory
responses mediated by neutrophils such as chemotaxis and
the generation of mixed platelet-leukocyte aggregates,
through a P-selectin-dependent mechanism [112]. Low pH
has been shown to be also able to modulate the function of
vascular endothelial cells [113–117]. Using human umbilical
vein endothelial cells (HUVEC), human lung microvascular
endothelial cells, and pulmonary artery endothelial cells, it
was reported that exposure to pH6.4 increased the expres-
sion of a number of inflammatory genes including chemo-
kines, cytokines, adhesion molecules, COX-2, and NF-κB
pathway genes. This proinflammatory effect was induced
through the activation of the proton receptor GPR4 [117].
Moreover, it was shown that extracellular acidosis promotes
the proangiogenic activity of vascular endothelial colony
forming cells and also stimulates lymphoangiogenesis and
the production of IL-8 by human lymphatic endothelial cells
through a TRPV1-dependent pathway [118].

4. Low pH Inhibits T Cell Responses

The abovementioned evidence indicates that extracellular
acidosis can either stimulate or suppress innate immune

responses depending on both the cell type involved and the
particular response analyzed. Contrasting with the diversity
of effects induced on the innate immune system, a large
body of evidence indicates that low pH strongly suppresses
T cell-mediated immunity [119–122]. It has been reported
that lactic acid, but not sodium lactate, suppresses the prolif-
erative response and cytokine production by human CD8+
T cells. Inhibition of T cell function by lactic acid was also
observed by analyzing infiltrating CD8+ T cells in tumor
spheroids [121]. Suppression of T cell function by lactic acid
was shown to be a reversible phenomenon which was
reversed after a 24h recovery period in lactic acid-free
medium. Interestingly, lactic acid and HCl were shown to
induce different patterns of T cell suppression. In fact, lactic
acid, but not HCl, markedly suppressed the production
of IFN-γ and IL-2 by stimulated CD8+ T cells and also
promoted cell death. The strong inhibitory effect mediated
by lactic acid seems to be mediated, at least in part, via
blockade of lactate efflux and thereby disturbance of T cell
metabolism [121].

Further supporting that low pH suppresses T cell func-
tion, Calcinotto et al. [120] have shown that lowering the
environmental pH to values of 6.0-6.5 induced an anergic
state in human and mouse tumor-specific CD8+ T cells.
This anergic state was characterized by a profound impair-
ment of cytotoxic activity, inhibition of cytokine produc-
tion, reduced expression of the alpha chain of the IL-2R
(CD25), and a diminished activation of extracellular
signal-regulated kinase (ERK) and STAT5 upon T cell acti-
vation. Buffering pH to neutral values restored T cell func-
tion [120, 122]. Of note, raising intratumoral pH with oral
sodium bicarbonate in a mice model has been shown to
enhance antitumoral T cell responses [122]. Moreover, sys-
temic treatment of tumor-bearing mice with proton pump
inhibitors (PPI) improved the therapeutic efficacy of immu-
notherapy, suggesting that PPI might represent useful
therapeutic tools to reverse the anergy of tumor-infiltrating
T cells and to improve the performance of immunotherapy
approaches used in cancer [120, 123].

The detailed mechanisms through which extracellular
acidosis inhibits T cell function have not been yet clarified.
T cells are highly dependent on mTORC1 activity in order
to cope with their metabolic requirements for activation
and differentiation [124, 125]. Balgi et al. reported that low
pH inhibits mTORC1 activity in human cell lines [126].
Moreover, in a recent study [127], Walton et al. have shown
that low pH markedly suppresses mTORC1 activity in CD4+
and CD8+ T cells through a mechanism dependent, at least
in part, on the centrifugal distribution of lysosomes induced
by acidosis, impairing the interaction of lysosome-bound
mTORC1 with RHEB (GTP-binding protein Ras homolog
enriched in brain), an activator of the mTORC1 pathway.
These observations suggest that strategies directed to restore
mTOR activation in environments characterized by low pH
values would represent a useful therapeutic approach in
cancer immunotherapy.

An integrated view of the effects induced by extra-
cellular acidosis on the immune response is shown in
Figure 1.
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5. Targeting Acidosis to Improve
Cancer Immunotherapy

As mentioned above, extracellular acidosis is associated to
the course and severity of autoimmune, allergic, and infec-
tious diseases. Moreover, acidosis represents a hallmark of
solid tumors and promotes local tumor progression, metasta-
sis, and resistance to therapy (reviewed in [27, 128]). The
contribution of extracellular acidosis to cancer growth is
not only related to the suppression of T cell function but also
with a number of actions exerted on both tumor cells and the
tumor environment. Low pH has been shown to increase
cancer cell motility by stimulating cytoskeletal-dependent
cancer cell polarization and by increasing the proteolytic
activity of TAMs, fibroblasts, and the tumor cells themselves
promoting both angiogenesis and cancer invasiveness
[129–132]. Moreover, exposure of tumor cells to acidosis
results in the induction of autophagy which confers a survival
advantage to tumor cells [133]. Considering the role of extra-
cellular acidosis in cancer progression, a large number of
studies have analyzed the molecular pathways responsible
for acid-base regulation and pH homeostasis in order to
improve cancer therapy. The most important pH regulators
in tumor cells include different isoforms of carbonic anhy-
drase and anion exchangers, monocarboxylate transporters,
Na+/HCO3

− cotransporters, and Na+/H+ exchangers [128].
Antibodies directed to these pH regulators and compounds
able to modulate its function have been developed and
are currently at various stages of clinical development

[27, 128]. Moreover, neutralization of tumor acidosis by
administration of systemic buffers such as sodium bicarbon-
ate has been shown to hamper tumor growth in experimental
models [134, 135]. Interestingly, targeting tumor acidosis has
also shown to increase the effectiveness of checkpoint inhib-
itors (antibodies directed to programmed cell death protein 1
(PD1) and cytotoxic T lymphocyte-associated antigen 4
(CTLA-4)) [120, 122] that have recently demonstrated tre-
mendous potential for the treatment of a variety of solid
tumors [136].

6. Concluding Remarks

It is widely appreciated that both inflammation and tumor
progression are associated with the development of acidic
microenvironments. However, there are relatively few studies
directed to analyze the effect of extracellular acidosis on the
immune response. These studies show that extracellular
acidosis suppresses T cell-mediated immunity while it can
either stimulate or inhibit the innate immune response,
depending on the cell type and the function analyzed. The
ability of extracellular protons to activate cell responses
mediated by neutrophils, mononuclear phagocytes, DCs,
and endothelial cells suggests that a high concentration of
protons would be recognized by innate immune cells as a
DAMP produced by stressed cells. Supporting this view, it
was shown that extracellular acidosis induces cytoplasmic
acidification in mononuclear phagocytes inducing IL-1β
production in a NLRP3-dependent mode. However, other
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responses triggered by extracellular acidosis seem to be
dependent on the recognition of protons by specific pH
sensors expressed on the surface of innate cells which are
not related to pattern recognition receptors (PRRs). A further
complexity derives from the ability of extracellular and intra-
cellular protons to modulate the energetic metabolism of
innate immune cells. Acidosis should be understood as an
environmental cue arising from stressed tissues where
homeostasis has been challenged. Acting in concert with
other environment factors, acidosis could be considered as
a rheostat of the immune response able to start a proinflam-
matory or a proresolving immune response depending on the
immune context.
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