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Abstract: The purpose of this article is to estimate the economic and environmental impacts of energy
consumption derived from healthcare buildings and proposes several energy-saving options in the
sector. An experimental energy consumption study was development between 2005 and 2013 in
12 hospitals and 70 healthcare centres in Spain, built between 1980 and 2005 through audits carried
out between 2005 and 2012, performed by the Extremadura Energy Agency. The study focused on
electric energy, HVAC, DWH, lighting systems, renewable energies, maintenance strategy, thermal
insulation, and optimal building size. Specifically, the following parameters were evaluated: energy
savings, investment emission of CO2, NO2, and SO2 gases, and payback. The results revealed that
through an appropriate energy management of healthcare buildings it is possible to save up to
8.60 kWh/m2 per year, for buildings of less than 5000 m2 (with no beds), which represents an expense
of 1.55 €/m2. In healthcare buildings larger than 5000 m2 (with beds), it was possible to save up to
6.88 kWh/m2 per year, which represents an expense of 1.25 €/m2.
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1. Introduction

As an important sector in developed countries, healthcare buildings play a major role in their
economy because of the large quantities of energy they use. In particular, the public healthcare sector
expense in Spain reached €70,635.7 million, which represented 6.5% of its Gross Domestics Product
(GDP) in 2017, in which 4.71% belonged to the public sector (with about 108,000 beds) and 1.80%
corresponded to the private sector (52,000 beds approximately) [1]. The public expenditure on health
reached €1521 per inhabitant in Spain.

In the last few years, the energy intensity in Spain has increased, while it has regularly been
decreasing in most of the EU. While Spain is dependent on primary energy at about 80%, it only
represents 50% on average in the EU [2]. For this reason, it has become urgent and necessary to
establish efficiency measures in order to save energy in all the sectors of consumption, and particularly
in hospitals [3].

Madrid Energy Foundation (2010) indicated that the annual energy consumption in a small
hospital reached 40,000 kWh, with an annual expense of €8400 [4].

Kolokotsa et al. (2012) reported that up to 10% of primary energy consumed could be save by
implementing simple energy saving techniques. In order to do that, high-cost energy categories should
be controlled and monitored [5].

Santamouris et al. (1994) quantified the potential global energy savings in 30 healthcare buildings
in Hellas (Greece) by energy audits analysis. They concluded that up to 20% of energy could be
saved [6]. Murray et al. (2008) argued that depending on the building, energy consumption varied
broadly. They proposed that a benchmark of 0.2 GJ/m3 would be realistic [7].
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Vanhoudt et al. (2011) demonstrated in a hospital in Belgium that it is possible to save up to 71%
of the primary energy by using stored thermal energy in combination with a heat pump, instead of
conventional gas-based boilers and water chillers [8]. Yun et al. (2012) showed that a change in the
occupancy patterns of a building with respect to the initial design settings might result in higher rates
of energy consumption for lighting purposes, which could potentially represent up to 50% energy
savings [9].

Martini et al. (2007) reported on the energy behaviour of different types of health service facilities
within Argentinian Public Health Network, and assessed correlations between energy consumption
rates and several related variables, including space, usage, infrastructure and equipment [10]. However,
no specific energy saving measures were proposed.

Bonnema et al. (2010) worked in the Advanced Energy Design Guide, which aimed to save 30%
in energy, as required by ANSI/ASHRAE/IESNA, applied to small hospitals and healthcare facilities.
The guide provided user-friendly assistance and recommendations for the design and construction of
buildings [11].

Szklo et al. (2004) studied energy consumption indicators in hospitals in Brazil [12]. They found
that the average ratio between thermal and electric loads was appropriate to use cogeneration systems.
In addition, by analysing a non-optimized cogeneration system, they predicted substantial potential
energy savings and CO2 reduction.

However, none of the above-mentioned authors either analysed or quantified any possible annual
economic saving derived from optimizing and managing the energy needed in this type of building.

The purpose of this article is to estimate the economic and environmental impacts of energy
consumption derived from healthcare buildings and proposes several energy-saving options in the
sector. The results of this study will be used to development a suitable tool both in the fields of
project-management of new hospitals and cost-optimisation in existing healthcare buildings.

2. Materials and Methods

Between 2005 and 2013, an analytical study was performed in 12 hospitals and 70 healthcare
centres belonging to the Public Health System in Spain, which were built between 1980 and 2005,
all located in Extremadura, a region in the southwest of Spain. The original energy consumption of
all those buildings was analysed by using the data collected through audits carried out during the
period 2005–2012 by the Extremadura Energy Agency. The final energy consumption, after energy
efficiency modifications, was obtained by considering the mean saving values for the following three
years. The economic and environmental impacts of energy saving were assessed as well.

The design conditions of the facilities were evaluated by analysing the building construction
projects. Additionally, those architects and engineers responsible for the construction were interviewed
for information purposes.

The energy savings measures were assessed after some previous meetings with the hospital’s
maintenance engineers, which involved a detailed analysis of the records, the measurement of energy
flows, individual surveys on energy consumption and monitoring of habits of patients, visitors,
and staff as related to energy consumption in the building.

For research purposes, the hospitals were classified into two categories: those with more than
5000 m2, with hospitalization beds; and health centres without hospitalization beds, with less than
5000 m2 [13].

The average emissions of CO2, sulphur dioxide (SO2), and nitrogen oxide (NOx) were estimated
as 331.0 g/kWh, 0.61 g/kWh and 0.4325 g/kWh, respectively [14]. Additionally, it was taken into
account that 1 kWh of primary energy in Spain is equivalent to 2.368 kWh of final energy.

To quantify the energy consumption in all healthcare building, network analysers, digital
luxometers, flowmeters, combustion gas analysers, thermographic cameras, digital thermometers,
hygrometers, and energy counters were used [15]. Field inspections were carried out to analyse the
initial conditions and check the development of the implemented measures.
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To calculate annual consumption of gas and electricity, billings from supply companies were
analysed [16]. The electric energy, domestic water heating (DWH), air conditioning systems (HVAC),
lighting system, external enclosures, maintenance strategy and renewable energy generation were
also analysed.

The useful floor area of each hospital was regarded as that of the outer perimeter of a covered
space, subtracting the constructive elements related to the building’s closures, partitions, structure,
and installations. Built and useful floor areas of the hospitals under study were obtained from the
construction projects.

In the course of the investigation, certain parameters were identified in the relationship
between planned savings and other functional and operating costs for each healthcare building,
such as construction year, construction surface area, number of workers, number of medical visits,
and assistance activity, by means of mathematical techniques.

3. Results

According to the potential energy saving achieved by healthcare building facilities, a series of
interesting results were obtained.

3.1. Optimization of Electric Energy Installations

The electric installation in a healthcare building is of major importance, since these buildings
play a vital role in public health service [17]. San José et al. (2009) valued that the annual average
consumption of electricity in a hospital with less than 300 beds was 8.88 kWh, and 10.04 kWh for a
hospital with more than 300 [18]. García Sanz-Calcedo et al. (2011) evaluated that the annual energy
consumption in a healthcare centre in Spain—in normal operational conditions and functioning—was
90 kWh/m2 for this type of building and 150 kWh/m2 for hospitals [19].

With the objective of determining the positive economic and environmental impacts, thanks to
optimizing electric energy installations, the annual average saving and investment for the whole set of
buildings was quantified for a three-year period.

Figure 1 shows the potential mean energy saving per built surface area (m2) through the
optimization of the electric installations in healthcare buildings with less than 5000 m2 (no beds)
and hospitals larger than 5000 m2 (with beds). An annual average energy saving of 0.45 kWh and
0.55 kWh per built surface area (m2), with a payback lower than 3.5 years, was achieved, respectively.
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The specific energy saving measures applied were the following: installation of power capacitors
for reactive power compensation, improvement of the electricity contract conditions, and appropriate
choice of electric power.

3.2. Improvement of Air Conditioning and Heating Systems (HVAC)

Hu et al. (2004) studied the consumption of energy of a hospital in Taiwan, concluding that the use
of Air conditioning and heating systems (HVAC) has a great influence in the consumption of energy,
since HVAC represents over 50% of the total amount of energy consumed [20]. Studies performed by
Natural Resources Canada pointed out that the highest energy consumption was generated by the use
of the heating, lighting, and ventilation [21].

Kappor et al. (2011) studied that HVAC generated the highest consumption of energy in hospitals,
about 30–65% [22]. After a study of a suburban hospital, the Health Department in Australia concluded
the HVAC is the highest contributor to energy consumption and CO2 emissions, at 65% and 47%,
respectively [23]. Teke et al. (2014) show hospitals represent approximately 6% of total energy
consumption in the service buildings sector [24].

In healthcare buildings, most energy consumption is consumed by HVAC facilities. Fraile et al.
(2014) realized a study about energy efficiency improvements in a boiler room in a 600-bed hospital
complex. They monitored six gas-fired boilers of heat and hot water over a six-month period and
actions were implemented in the hospital boiler room control system to increase the efficiency of the
heat production facilities [25].

To determine the positive economic and environmental impacts due to improvement of HVAC
facilities, the annual average saving and investment for the whole set of buildings was quantified for a
three-year period, in five hospitals and 20 healthcare centres.

The contribution of natural ventilation as an energy-efficient technique for hospital was studied
by Quian et al. (2010). The author suggest that up to 70% of net floor area of small to medium sized
hospital could be naturally ventilated. A high ventilation rate helps reduce cross-infection of airborne
diseases [26].

Figure 2 represents the potential mean average energy saving per built surface area (m2), by means
of upgrading HVAC installations, in healthcare buildings with less than 5000 m2 (no beds) and hospitals
larger than 5000 m2 (with beds). An annual average energy saving of 1.50 kWh and 1.80 kWh per built
surface area (m2), with a payback lower than 2.5 years, was achieved, respectively.
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Figure 2. Potential of energy saving derived from improvement of air conditioning and heating systems
(HVAC) systems.
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The following specific energy saving measures were applied: introduction of efficient air conditioning
technologies that minimize energy consumption is proposed and replacement of low-performing machines
aged more than eight years by new, high-performance models was suggested. Other feasible measures to
be carried out in this area are the following: maintenance of air-conditioning systems, zoning according
to air conditioning units, and installation of air-handling system adjustable thermostats.

3.3. Domestic Water Heating (DWH)

The studies show that the annual average per hospital bed varies between 29 m3/bed and
47 m3/bed in Europe and between 36 and 55 m3/bed in the USA [27]. In Greece, the annual
consumption of water varies between 32.85 and 43.8 m3/bed [28]. Bujak (2010) calculated that
the average consumption of DWH in a hospital per year was between 40 and 60 m3/bed [29].

Gaglia et al. (2007) studied the empirical assessment non-residential building stock in Greece,
energy consumption, emissions, and potential energy savings [30]. Their energy conservation measures
proposed were: installation of solar collectors for DWH production, addition of thermal insulation of
exposed external walls in hotels and healthcare, replacement of old inefficient boilers, installation of
building management systems, and regular maintenance of central heating boilers.

In order to quantify the economic and environmental impact from energy saving by optimizing
DWH facilities, a total of 10 hospitals and 50 healthcare centres were analysed for a three-year period.

Figure 3 shows the potential average energy saving per built surface area (m2) through the
optimization of the DWH facilities, in healthcare buildings with less than 5000 m2 (no beds) and
hospitals larger than 5000 m2 (with beds). A potential average saving between 0.65 kWh and 0.80 kWh
per built surface area is detected, in a payback period of less than three years.
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Here are the specific energy saving measures used: timers with programmed disconnection for
DWH system production by means of water heaters, or storage tanks, in order to interrupt operation
when no activity takes place. Installation of low consumption taps and tanks with double push buttons
to reduce cold water for human consumption (CWHC) consumption.

3.4. Optimization of Lighting System

Lightening consumption in the Spanish health sector is about 1000 GWh/year, which means 0.6%
of the national energy consumption, with an emission of 600,000 annual tons of CO2 [31]. Therefore, it is
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very important to use efficient lighting with high-performance lights, incorporating low consumption
equipment and high-regulation lumen-per-watt lamps.

Lighting installation in a healthcare building must take two aspects into account: a qualitative
aesthetic aspect and a quantitative engineering character. The aesthetic issue guarantees a friendly
space and distribution of lights and shade inside. The technical issues control the amount of light
needed for each activity in the different rooms and/or buildings [32]. Clearly, deficient levels of light
could cause professionals to make mistakes in diagnoses and dispensing errors [33].

With the objective of determining the positive economic and environmental impacts thanks to
optimizing lighting systems, the annual average saving and investment for the whole set of buildings
was quantified for a three-year period.

Figure 4 shows the potential average energy saving per built surface area (m2), by means of
improving lighting system performance, in healthcare buildings with less than 5000 m2 (no beds) and
hospitals larger than 5000 m2 (with beds). An annual average energy saving of 0.12 kWh and 0.15 kWh
per built surface area (m2), with a payback of less than 2.2 years, was achieved, respectively.
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The specific energy saving measures applied were installation of electronic ballast in fluorescent
lamps, replacement of fluorescent and incandescent lamps by light-emitting diodes (LEDs),
organization of lighting according to activity type, and the limitation of intensity and timing of
the controlled lighting by using occupancy sensors.

3.5. Usage of Renewable Energies

Kantola et al. (2013) studied the facilities of the Espoo Hospital (Finland), and they concluded that
the most affordable renewable solutions were biogas energy, wood chip heating, and ground source
heating. Biogas energy was the most affordable solution although it is only suitable for large-scale
projects since the system is not yet commonly used and some risk of uncertainty must be added [34].
Solar electricity was the most expensive method and snow storage cooling needs to entail certain
societal benefits for it to be cost-effective.

The current biomass energy conversion technology ensures the efficient operation of the
facilities [35]. In the combustion of biomass, CO2 emissions are almost neutral provided it is part of
the base that the plants retain a higher volume of CO2 during their growth as compared with that
released during combustion.
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The use of solar thermal energy for hot water generation allows a reduction of energy consumption
and a decrease of greenhouse gas emissions. In smaller buildings, hot water demand is relatively low
and, therefore, the current systems usually do not use central distribution networks [36], provided such
demand is satisfied by the electric hot water heater, near the consumption points. Installation of solar
collectors on roofs ensures a drastic reduction of energy consumption and is regarded as an efficient
energy supply alternative. If larger buildings with higher associated energy consumption rates are
accounted for, remarkable efficiency of solar thermal energy equipment has been reported [37].

Power generated by a photovoltaic field is fed into the public grid, allowing the production of
electricity from solar energy; it is a solution that can serve to considerably lower energy costs and
contribute to the overall decrease in emissions [38].

Use of low-temperature geothermal energy is based on the fact that the ground below a depth of
7–10 m is maintained at a stable temperature, about 17 ◦C, regardless of the time of year or weather
conditions. This energy source allows increasing the performance of the air conditioning equipment
and has been set as a renewable energy in Europe since 2009 [39].

Renedo et al. (2006) analysed the different possibilities for providing heating, air conditioning and
hot tap water to a Spanish hospital. They considered several cogeneration systems with diesel engines
and gas turbines. They observed that the most important parameter is the electricity produced and
concluded that the control strategy and the size of the facility have a strong influence on the energy
system [40].

In order to quantify the economic and environmental impact from energy saving by usage
of renewable energies, a total of eight hospitals and 25 healthcare centres were analysed for a
three-year period.

Figure 5 represents the potential average energy saving per built surface (m2) area through the
installation of renewable energy systems in healthcare buildings with less than 5000 m2 (no beds) and
hospitals larger than 5000 m2 (with beds). A potential average saving between 2.5 kWh and 3 kWh
per built surface area is observed, in a payback period lower than 10 years. Subsidies and grants can
substantially reduce the time of the investment’s amortization.
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Figure 5. Potential of energy saving derived from usage of renewable energies.

The specific energy saving measures used were the following: replacement of heating boilers using
fossil fuels, diesel or natural gas, with biomass boilers, use of solar thermal energy for DWH generation
and installation of solar collectors on roofs ensures a drastic reduction of energy consumption.
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3.6. Maintenance Management

The perception of maintenance management on healthcare facilities was analysed by
Abd Rani et al. (2015). They provide an overview of the types of maintenance strategies applied
to maintain facilities and a relationship between the types of maintenance strategies implemented and
end user satisfaction was determined [41].

Shohet et al. (2003) analysed the maintenance incidence in a hospital through a survey [42].
The communication and low voltage system, condition exterior envelope, interior finishing, water and
waste-water, and HVAC were in deteriorating condition.

Maintenance costs throughout the useful life of a facility are very important when choosing
the appropriate HVAC system to be installed in healthcare buildings. The central equipment show
lower maintenance costs than partial systems [43]. The annual energy saving through monitoring and
control procedures [44] are estimated between 5% and 15% according to the International Performance
Measurement and Verification Protocol (IPMVP). The maintenance costs represent between 2% and
10% of the original investment on equipment, depending on the complexity of the system [45].

Economic and environmental impact of energy saving was determined through maintenance
engineer interviews.

Figure 6 shows the potential average energy saving per built surface area (m2) through the
optimization of the maintenance management in healthcare buildings with less than 5000 m2 (no beds)
and hospitals larger than 5000 m2 (with beds). An annual average energy saving of 0.45 kWh and
0.50 kWh per built surface area (m2), with a payback less than one year was achieved.
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Figure 6. Potential of energy saving derived from maintenance management.

A series of energy-saving measures were used, including the development of a tailor-made
maintenance plan for each hospital, implementation of predictive maintenance techniques, processes
for monitoring and control of facilities, and the usage of qualified labour.

3.7. Thermal Insulation Improvement

In a building of more than 20 years, it is estimated that, with thermal rehabilitation, a saving of
50% of the energy consumed for heating and/or cooling [46] could be achieved. A suitable thermal
insulation can be a significant annual savings because it minimizes energy losses and air leakage from
the building.



Appl. Sci. 2018, 8, 440 9 of 13

With the objective of determining the positive economic and environmental impacts thanks to
thermal insulation improvement, the annual average saving and investment for the whole set of
buildings was quantified for a three-year period.

Figure 7 represents the potential average energy saving per built surface area (m2) through
the upgrade of the thermal insulation improvement in healthcare buildings with less than 5000 m2

(no beds) and hospitals larger than 5000 m2 (with beds). A potential average saving between 0.65 kWh
and 0.85 kWh per built surface area is observed, in a payback period less than nine years.
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Figure 7. Potential of energy saving derived from thermal insulation improvement.

The proposed measures include the following actions: increasing the insulation level of roofs,
sealing doors and windows to prevent infiltrations, installing blinds to reduce direct solar radiation,
installing overhangs, replacing single glazing with double glazing, and applying protective glazing
films. The main thermal losses in hallways, waiting rooms, and corridors were observed to occur
when access doors remained open, provided that the most usual type of access to healthcare centres
consists of windshield partition doors, a system that loses effectiveness as doors might even remain
open during the busiest periods in the building.

3.8. Optimal Sizing of Buildings

Garcia Sanz-Calcedo et al. (2014) analysed the energy impact, determining it to be the incorrect
dimension of a healthcare centre [47] and determined the optimal ratio between the area per user and
the number of users. For a smaller number of users, more space is needed for each. This is because
there are certain healthcare units that need a minimal space independently of the number of users. It is
possible to achieve annual savings by optimizing the built surface area.

In order to quantify the economic and environmental impact from energy saving by optimizing
building sizing, a total of five hospitals and 30 healthcare centres were analysed. In this study, those
over-dimensioned zones were identified by applying standard correlations between the area per user
and the number of users.

Table 1 shows the potential average energy saving per built surface area (m2), through the optimal
sizing of buildings for healthcare buildings of less than 5000 m2 (no beds) and hospitals larger than
5000 m2 (with beds).
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Table 1. Potential of energy saving derived from optimal sizing of buildings.

Impact kWh/m2 Payback €/m2

<5000 m2 no beds 0.30 4.00 0.05
≥5000 m2 with beds 0.24 4.00 0.04

Table 1 shows that it is possible to obtain a mean saving value between 0.24 kWh and 0.30 kWh
per built surface area in a four-year payback period.

4. Discussion

The above results show that it is possible to save a large amount of energy in healthcare buildings
in Spain. The application of efficient energy saving techniques would decrease the global energy
intensity and harmful gas emissions into the atmosphere.

In the healthcare sector there are buildings that consume great quantities of energy, so the energy
management in healthcare centres will not only help to find a solution to reduce the energy intensity if
not to also benefit the Spanish Health System, then economic reasons can be used in improving the
medical attention of patients.

Several energy saving measures have been found to be easily implemented without the need of
investment, including an efficient management of the buildings and improvement of the electricity
contract conditions. Therefore, they should be implemented immediately.

For those energy measures that require an investment, finance viability and payback time must
be taken into account. On the other hand, since LEDs are more efficient lighting systems and require a
shorter payback time, they should be considered as well.

Local subsidies are also interesting in order to introduce saving measures, particularly those
related to renewable energy in buildings; the implementation of renewable energies has proved to be
an appropriate strategy in order to reduce gas emissions into the atmosphere. However, at present,
Spain does not offer the possibility to incorporate the surplus energy into to the public grid. Therefore,
it is necessary to design these facilities with a self-consumption purpose, based on their annual
operative period.

Building design, efficient thermal insulation, and adequate sizing of buildings are key factors to
keep in mind in future healthcare construction projects. These measures, thus, guarantee the well-being
and satisfaction of the staff, patients, and managers.

The energy system of a healthcare building is very complex and must strictly respect the regulations.
The indoor climatic conditions, ventilation, and lighting level must be determined by medical activities [48].
Specific measures to improve the energy efficiency of a particular building should consider climatic
and local conditions, the indoor climate environment, and amortization in terms of both economic and
environmental aspects.

Healthcare engineering plays a role of growing importance in almost every aspect of healthcare,
and it will also be a major factor that advances healthcare [49]. Healthcare engineering professionals
will face major challenges associated with issues, such as the continued rise in healthcare costs,
the quality and safety of healthcare, management of common diseases, and the impact of high
technology (biomedical, information, etc.).

The results of this study are extrapolated to similar buildings with limitations due to the wide
variety of healthcare building designs mainly based on architectural conception, climate conditions,
and interior facilities. Future developments must focus on: (i) the development of healthcare
infrastructures that use renewable energies; (ii) implementation of Healthcare 4.0 technologies;
and (iii) making progress towards smart communities. Additionally, a reference set of indicators
must be produced in order to evaluate energy consumption in a given healthcare building. In this
manner, saving and efficiency energy policies could be implemented in the sector.
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5. Conclusions

Economic and environmental impacts of energy saving in healthcare buildings were quantified in
this study. From the research, we can conclude that it is possible to save up to 8.60 kWh/m2 per year
in a healthcare building under 5000 m2 and no beds, which represents an expense of 1.55 €/m2, and an
approximate annual emission of 6.88 kg of CO2 into the atmosphere.

Potentially, a healthcare building larger than 5000 m2 is able to save up to 6.88 kWh/m2 per year,
which represents an expense of 1.247 €/m2, and an annual emission of 4.82 kg of CO2 into the
atmosphere, approximately.

To sum up, in a given healthcare building of 30,000 m2 of built surface area, it is possible to obtain
an annual saving of up to €37,152, compared to €6192 in a 4000 m2 building.

It has become evident that a periodic energy audit is an appropriate strategy to optimize real
energy consumption in healthcare buildings. Furthermore, these inspections are useful to prioritize
those measures needed to reduce operating costs and energy consumption.
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