
BRIEF RESEARCH REPORT
published: 19 September 2018
doi: 10.3389/fendo.2018.00554

Frontiers in Endocrinology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 554

Edited by:

Toru Hosoi,

Hiroshima University, Japan

Reviewed by:

Guojun Shi,

University of Michigan, United States

Miguel López,

Universidade de Santiago de

Compostela, Spain

Abhiram Sahu,

University of Pittsburgh, United States

*Correspondence:

Viviana Florencia Bumaschny

vbumaschny@fmed.uba.ar

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cellular Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 28 March 2018

Accepted: 30 August 2018

Published: 19 September 2018

Citation:

Alsina R, Trotta M and Bumaschny VF

(2018) Hypothalamic

Proopiomelanocortin Is Necessary for

Normal Glucose Homeostasis in

Female Mice.

Front. Endocrinol. 9:554.

doi: 10.3389/fendo.2018.00554

Hypothalamic Proopiomelanocortin
Is Necessary for Normal Glucose
Homeostasis in Female Mice
Ramiro Alsina 1†, Milagros Trotta 1† and Viviana Florencia Bumaschny 1,2*

1Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO), Grupo de

Neurociencia de Sistemas, Buenos Aires, Argentina, 2Universidad de Buenos Aires, Facultad de Medicina, Departamento de

Ciencias Fisiológicas, Buenos Aires, Argentina

The arcuate nucleus of the hypothalamus is a key regulator of energy balance

and glucose homeostasis. In particular, arcuate proopiomelanocortin (POMC) neurons

inhibit food intake, stimulate energy expenditure and increase glucose tolerance.

The interruption of insulin or glucose signaling in POMC neurons leads to glucose

intolerance without changing energy homeostasis. Although it was previously shown

that POMC neurons are necessary for normal glucose homeostasis, the participation

of POMC neuropeptide, by mechanisms independent of energy balance, remains to be

demonstrated. To study the role of POMC in the regulation of glucose homeostasis, we

performed glucose and insulin tolerance tests in non-obese mice lacking hypothalamic

POMC expression. We found that POMC deficiency leads to glucose intolerance and

insulin resistance in female mice before the onset of obesity or hyperphagia. Conversely,

POMC deficiency does not impair glucose homeostasis in non-obese male mice.

Interestingly, females completely normalize both glucose and insulin tolerance after

genetic POMC restoration. Next, to further study sex dimorphism of POMC neurons

regarding glucose homeostasis, we measured glucose-elicited changes in C-FOS by

performing immunofluorescence in brain slices of POMC-EGFP mice. Remarkably, we

found that glucose-induced C-FOS expression in POMC neurons is more than 3-fold

higher in female than in male mice. Altogether, our results reveal a key role of arcuate

POMC in the regulation of glucose homeostasis in females. Since POMC reactivation

completely reverses the diabetogenic phenotype, arcuate POMC could be a potential

target for diabetes therapy.
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INTRODUCTION

Diabetes mellitus is a condition affecting 422 million people all over the world (1). Type 2 diabetes
is the predominant type, and it mainly results from excess body weight and physical inactivity
(1). In obese patients and mice, type 2 diabetes greatly improves or even reverts after mild body
weight loss (2–4). It is accepted that the improvement in glucose homeostasis is a consequence
of fat mass reduction, especially in the liver. However, since the hypothalamus is a key regulator
of both glucose and energy homeostasis, hypothalamic mechanisms may also be implicated in the
anti-diabetic consequences of losing weight (5, 6).
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Within the arcuate nucleus of the hypothalamus,
proopiomelanocortin (POMC) neurons sense the energy
status of the organism integrating peripheral signals such as
leptin, glucose and insulin, among others (7). In turn, POMC
neurons coordinate responses to maintain energy balance and
glucose homeostasis. Since melanocyte-stimulating hormones
(α- and β-MSH) derived from POMC peptide are anorexigenic,
POMC deficient patients and mice are extremely obese (8, 9).

Regarding the role of POMC neurons in glucose homeostasis,
some studies using electrophysiology on brain slices showed
that POMC neuron activity can be modulated by changes
in extracellular glucose levels (10–12). Moreover, deleting
components of the insulin, leptin or glucose signaling cascades in
POMC neurons impairs glucose tolerance and insulin sensitivity
in genetically engineered mice (10, 12, 13). In addition, glucose
induces both Pomc mRNA expression as well as α-MSH release
from hypothalamic neurons (12, 14). Although the role of
POMC neurons in glucose homeostasis has been well established,
it remains to be elucidated if hypothalamic POMC peptide
is directly involved, especially considering that these neurons
may also co-secrete glutamate, gamma-aminobutyric acid and
Cocaine and Amphetamine Regulated Transcript (15).

We have previously shown that hypothalamic POMC
deficiency leads both to obesity and type 2 diabetes (2).
Interestingly, restoration of POMC expression in extremely
obese POMC-deficient mice induces partial body weight loss but
complete normalization of glycemia (2). These results suggest
that the reestablishment of glucose homeostasis may not only be
a consequence of losing weight but also of Pomc restoration itself,
which would imply a direct protective role of POMC against
type 2 diabetes. In the present work, in order to test the role of
POMC in glucose homeostasis independently of its role in body
weight maintenance, we determine glucose tolerance and insulin
sensitivity in non-obese POMC-deficient mice.

MATERIALS AND METHODS

Animal Care
Mice were kept under standard laboratory conditions, with
controlled photoperiod (lights on from 7 a.m. to 7 p.m.), tap
water and standard lab chow available ad libitum. Mice were
weaned at P21. All procedures were approved by the Institutional
Animal Care and Use Committee of the School of Medicine,
University of Buenos Aires.

Mouse Lines
arcPomc−/− [Figure 1A; (2)], POMC-EGFP (16) and Cre:ERT
[B6.Cg-Tg(cre/Esr1)5Amc/J] (17) mice were kindly provided by
Marcelo Rubinstein, INGEBI-CONICET and bred as previously
described (2).

Glucose, Insulin and Pyruvate Tolerance
Tests (GTT, ITT and PTT)
Three cohorts of postnatal day 22–25 (P22-25) mice were
subjected to GTT, ITT, or PTT (Figure 1B). To avoid excessive
weight loss in weanling mice, GTTs and PTTs were performed
following 5-h fasting (8 a.m. to 1 p.m.), as suggested (18), and

received an i.p injection of glucose (2 g/kg; Sigma) or sodium
pyruvate (2 g/kg; Anedra). For ITTs mice were fasted for 2 h
(8 a.m. to 10 a.m.) and i.p injected with human insulin (Humulin
R; 1 U/kg; Lilly). Blood samples from the tail tip were taken
to measure glucose with a One Touch R© glucometer (LifeScan,
Johnson & Johnson), before and after injections, as described
previously (19). Immediately after GTT or ITT, mice were treated
with tamoxifen and re-tested at P60.

CRE Induction by Tamoxifen
Administration
Mice were injected i.p. with 50 mg/kg/day tamoxifen
(Sigma) during five consecutive days, with a solution of 5mg
tamoxifen/ml of semsame oil (Sigma) prepared as described (20).

Food Intake and Fat Determination
Another cohort of individually housed arcPomc−/−:Cre and Cre
mice was used for food intake assessment from P21 to P25. After
that, mice were euthanized by cervical dislocation and unilateral
subcutaneous (inguinal) and visceral (retroperitoneal) fat pads,
as well as livers, were dissected and weighed.

Immunohistochemistry
Mice were anesthetized with 5% chloral hydrate, perfused
with 4% paraformaldehyde and brains were cut into 35µm
coronal sections with a frozen microtome (Leica). Hypothalamic
POMC reactivation was confirmed by immunohistochemistry
(Figure 1C) using a rabbit polyclonal anti rat-ACTH antibody
(1:1,000, A.F. Parlow, National Hormone and Peptide
Program, Harbor-UCLA Medical Center) and developed
with diaminobenzidine (Vector Labs) as previously described
(2). For C-FOS detection, P22-P25 POMC-EGFP mice were
fasted from 8 a.m. to 1 p.m., and then i.p injected either
with glucose (2 g/kg) or saline. 90-120min later brains were
processed as stated above, immunostained for C-FOS (rabbit
anti C-FOS, Merck, 1:1,000) and developed with anti-rabbit-
Cy3 antisera (Jackson ImmunoResearch, 1:500). Double
immunohistochemistry: (1) mouse monoclonal IgG2a anti
C-FOS (Santa Cruz Biotechnologies, 1:4,000) followed by
anti-mouse IgG2a-Alexa Fluor 555 antisera (ThermoFisher,
1:1,000); (2) rabbit anti ER alpha antibody (Millipore, 1:10,000)
followed by biotinylated anti-rabbit antisera (Vector Labs,
1:200) and developed by streptavidin-Alexa Fluor 647 (Jackson
ImmunoResearch, 1:15,000). No staining was performed to
visualize POMC neurons since POMC-EGFP mice express
EGFP in this neuronal population. Micrographs were taken
with an AxioImager M2 motorized fluorescent microscope with
Apotome2 structured illumination (Zeiss). Positive neurons
were counted using Image J software (21).

Statistical Analysis
All data are presented as the mean ± SEM and were analyzed
by Student’s unpaired two-tailed t-test, one or two way ANOVA
(OWA, TWA) or repeated measures ANOVA (RMA), using
GraphPad Prism version 6.00 for Windows (GraphPAd Software,
La Jolla California, United States). Post hoc Bonferroni’s test
was used when necessary. P < 0.05 was considered significant.
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FIGURE 1 | Pomc regulation of glucose homeostasis in a mouse model of reversible hypothalamic Pomc deficiency. (A) A reversible arcuate Pomc deficient mouse

line (arcPomc−/−) was intercrossed with Cre-ERT line to restore Pomc expression. arcPomc−/−contains an insertion of a neomycin resistance cassette (neo), flanked

by loxP sites (triangles), interrupting Pomc neuronal enhancer activity (Blue circle: nPE1 enhancer; gap after neo: Deleted nPE2 enhancer). Gray circle: intact Pomc

pituitary promoter. arc: arcuate Pomc transcription. Black rectangles: Pomc exons. Pomc expression can be restored by treating arcPomc−/−:Cre mice with

(Continued)
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FIGURE 1 | tamoxifen (TAM). (B) General experimental design. Mice are weaned at P21 and subjected either to Glucose, Insulin or Pyruvate Tolerance Tests (GTT, ITT,

or PTT) at P22-P25 (PRE). Mice are treated with TAM for five consecutive days immediately after the first GTT or ITT. At P60, GTT or ITT was repeated (POST). (C)

Examples of brain coronal sections subjected to immunohistochemistry for POMC in non-treated mice (PRE) and mice treated with TAM (POST). Note that

arcPomc−/−:Cre mice only show POMC immune-positive neurons after POMC restoration by TAM treatment. Sections correspond to P60-P80 mice. (D-E) GTTs

and body weights (insets) of females before (PRE) or after (POST) POMC restoration. p: genotype effect of RMA. **p < 0.01 (Bonferroni). n = 7–8. (F) Area under the

curves (AUC) of (D,E). p: genotype effect of RMA. *p < 0.05; **p < 0.01 (Bonferroni). (G,H) ITTs and body weights of females before (PRE) or after (POST) POMC

restoration. p: genotype effect of RMA. *p < 0.05 (Bonferroni). n = 11. (I) Daily food intake of female mice measured from P21 to P25. T-test, p > 0.05. n = 8–11.

(J–L) Weights of retroperitoneal and inguinal fat pads, and livers of female mice at P25. T-test, p > 0.05. n = 6. (M) PTTs and body weights of females before POMC

restoration. RMA: genotype and genotype x time effects, p > 0.05. n = 5–6. (N,O) GTT and ITT of weanling male mice, respectively. RMA, genotype and genotype x

time effect: p > 0.05. Insets: body weights. n = 6–8 (GTT) and n = 7 (ITT). (P) Daily food intake of male mice from P21 to P25. n = 10–12. T-test, p > 0.05. (Q–S)

Weights of retroperitoneal and inguinal fat pads, and livers of male mice at P25. T-test, p>0.05. n = 5–6. (T) PTTs and body weights of males before POMC

restoration. RMA: genotype and genotype x time effects, p > 0.05. n = 5–6. In all graphs, error bars correspond to ±SEM.

After RMA, significant Genotype Effect was only taken into
account when Interaction (Genotype x Time) was not significant.
The total area under the curve (AUC) was calculated using the
trapezoidal rule.

RESULTS

With the aim of studying the role of POMC in glucose
homeostasis, we used an arcuate specific Pomc knockout
mouse model (arcPomc−/−) (2). These mice bare a floxed
neomycine-resistance gene (Neo) immediately downstream of
the hypothalamic Pomc neuronal enhancer module (Figure 1A).
Neo cassette prevents arcuate Pomc expression while preserving
transcription in the nucleus of the solitary tract and the pituitary
gland, avoiding corticosterone insufficiency (2).

Arcuate Pomc deficiency leads to obesity the fifth week
after birth, which predisposes to Type 2 Diabetes in adult
mice (2). Thus, in order to dissect the role of POMC
in the regulation of glucose homeostasis independently of
obesity mechanisms, we performed GTTs in arcPomc−/− mice
immediately after weaning, while animals still have normal
body weights. Interestingly, we found that despite no significant
differences in basal glycemia, female arcPomc−/− are less tolerant
to a glucose overload thanWT littermates [RMA, genotype effect:
F(1,9) = 5.992, p= 0.0369, n= 5–6 per group].

To further confirm that hypothalamic POMC prevents
glucose intolerance, we restored eutopic POMC expression by
crossing arcPomc−/− mice with a tamoxifen inducible Cre
mouse line (Figure 1A). We have previously shown that POMC
recovery at P25 completely prevents hyperphagia and obesity
in arcPomc−/−:Cre mice (2). Like arcPomc−/−, arcPomc−/−:Cre
female mice showed decreased glucose tolerance despite
normal body weight (Figure 1D). However, glucose tolerance
is completely normalized in arcPomc−/−:Cre after POMC
restoration, which further suggests a protective role of POMC
against diabetes (Figures 1E,F).

In order to address if glucose tolerance impairment triggered
by POMC deficiency is caused by decreased insulin sensitivity,
another cohort of arcPomc−/−:Cre and Cre female mice were
subjected to an ITT. Interestingly, non-obese arcPomc−/−:Cre
females show decreased insulin sensitivity that was normalized
by POMC restoration (Figures 1G,H). Glucose intolerance and
insulin resistance of arcPomc−/−:Cre females before POMC
restoration are not caused by increased inguinal, retroperitoneal

or liver fat stores, nor food intake, because no significant
differences were found when compared to Cre control mice
(Figures 1I–L). Altogether, these results suggest that POMC
prevents glucose intolerance by improving insulin sensitivity
through mechanisms not related to energy balance regulation or
fat storage.

Although it has been previously shown that hypothalamic α-
MSH enhances insulin inhibition of hepatic gluconeogenesis in
rats (22), we found no significant differences in PTTs between
female arcPomc−/−:Cre and Cre littermates (Figures 1M).

Contrary to females, non-obese POMC deficient male mice
showed normal glucose tolerance and insulin sensitivity, while
exhibiting normal food intake, inguinal and retroperitoneal
adiposity, liver weights and pyruvate tolerance (Figures 1N–T).
To further characterize if POMC neurons also show sexual
dimorphism in terms of response to glucose overload, we
measured C-FOS immunoreactivity in POMC neurons of
POMC-EGFP mice injected either with glucose or saline
(Figure 2A). Surprisingly, glucose elicited greater C-FOS
expression in arcuate POMC neurons of females than males
(Figure 2B). Notably, while C-FOS expression in POMC
neurons of glucose treated females was 71.8 ± 5.5% higher
than that of saline treated controls, males showed a difference
of only 29.5 ± 5.7% (t-test: p < 0.01). Since a subpopulation
of POMC neurons express estrogen receptor alpha (ESR1),
which was postulated to control glucose homeostasis (23), we
studied C-FOS induction by glucose overload specifically in
POMC-ESR1 neurons (Figure 2C). Interestingly, we found that,
despite the percentage of POMC neurons expressing ESR1 is
similar in males and females (38.9 ± 1.5% and 42.8 ± 1.7%,
respectively), glucose significantly increased C-FOS expression
only in POMC-ESR1 neurons of female mice (Figure 2D).

DISCUSSION

In the present work, we studied the regulation of glucose
homeostasis by using a reversible POMC knockout mouse
model with a unique feature, in which glucose homeostasis
and insulin sensitivity can be tested before and after POMC
restoration, providing strong evidence for an association between
hypothalamic POMC expression and regulation of glucose
homeostasis. Our results show that POMC deficiency impairs
insulin sensitivity and glucose tolerance in non-obese juvenile
female mice. These findings are in line with previous studies
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FIGURE 2 | Induction of C-FOS expression by peripheral glucose overload in POMC neurons. (A) Representative coronal brain sections of POMC-EGFP female mice

injected at P22-25 with saline (top) or glucose (bottom), subjected to anti-C-FOS immunofluorescence. Right panels show magnified images of squared areas

depicted in left panels. Green: EGFP expression of POMC neurons. Red: C-FOS immunopositive neurons. Arrows indicate examples of POMC neurons positive for

C-FOS. (B) Percentage of POMC neurons expressing C-FOS in male and female mice treated either with saline or glucose. POMC neurons per hemi-section: 58.45 ±

10.7; sections per animal: 7 ± 1.7 (mean ± SD). n = 4–5. (C) Representative coronal brain section of POMC-EGFP female mice injected at P22-25 with glucose (top),

subjected to double C-FOS and ERS1 immunofluorescence. Bottom panels show magnified images of squared area depicted in top panel. Green: EGFP expression

of POMC neurons. Red: C-FOS immunopositive neurons. Blue: ERS1 immunopositive neurons. Arrows: POMC/C-FOS/ESR1 neuron; *: POMC/C-FOS. Arrowhead:

POMC/ESR1 neuron. (D) Percentage of POMC/ESR1 neurons expressing C-FOS in male and female mice treated either with saline or glucose. POMC neurons per

hemi-section: 50.6 ± 14.1; sections per animal: 6.1 ± 0.9 (mean ± SD). n = −3–4. Error bars correspond to ±SEM. #p < 0.05 and ##p < 0.01 (TWA, sex x

treatment effect); *p < 0.05, **p < 0.01, and ***p < 0.001 (Bonferroni).

showing that the disruption of glucose signaling in POMC
neurons impairs glucose homeostasis (10, 12, 13). It was also
previously shown that POMC deficiency leads to decrease
insulin sensitivity in obese and food restricted mice, both
with elevated body fat composition (24). In addition, here
we found that POMC deficiency leads to insulin resistance
and glucose intolerance before the onset of obesity in ad
libitum-fed female mice characterized by normal food intake,
body weight and inguinal, retroperitoneal and liver fat stors.
Therefore, the protective role of POMC in glucose homeostasis
is presumably achieved by mechanisms independent of those
involved in energy balance control. One of the major findings
of our study is that POMC recovery completely restores
insulin sensitivity and glucose tolerance, which emphasizes the
importance of POMC in the regulation of glucose homeostasis.
This regulation may be mediated by α-MSH since it was shown
that insulin sensitivity is impaired in α-MSH receptor knockout
mice through mechanisms involving the sympathetic neural
system (25, 26). Regardless the pathway involved, since pyruvate

tolerance was unaltered in our model of POMC deficiency,
impaired glucose uptake rather than liver glucose production
might be responsible for insulin intolerance.

Sexual dimorphism is an interesting feature of POMCneurons
concerning the regulation of glucose homeostasis. Here, we
found that POMC deletion in hypothalamic neurons leads
to glucose intolerance and insulin resistance only in females.
Furthermore, glucose-elicited POMC neuron activity is greater
in female than in males and the subpopulation of POMC-ESR1
neurons response to glucose only in female mice. However,
since glucose was injected systemically, our experiments do
not distinguish between a direct or indirect action of glucose
in POMC neurons. In either case, we speculate that sexual
dimorphism found in our study is a consequence of estradiol
(E2) facilitation of POMC activity since it was previously shown
that estradiol prevents insulin resistance in POMC neurons of
diet induced obese female but not male mice (27). Furthermore,
it was demonstrated that E2 increases excitatory inputs, C-
FOS protein and Pomc mRNA expression in POMC neurons
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of wild-type females (28, 29). Interestingly, female mice lacking
estrogen receptor alpha only in POMC neurons develop insulin
resistance and glucose intolerance (23). We hypothesize the
existence of a protective pathway linking glucose signaling,
ESR1, hypothalamic POMC and glucose homeostasis which is
specific to females. Remarkably, women have lower prevalence
of diabetes than men despite having higher prevalence of obesity
(30). On this regard, our results shed light on the mechanisms
underlying gender differences in diabetes pathophysiology.

In summary, we show for the first time a protective role
of hypothalamic POMC peptide against glucose intolerance by
mechanisms that are independent of POMC role in energy
balance. Finally, since Pomc reactivation completely reverses the
diabetogenic phenotype, arcuate POMC might be a potential
target for diabetes therapy, particularly type 2 diabetes.

AUTHOR CONTRIBUTIONS

VB designed research. RA, MT, and VB performed research.
VB contributed new reagents, analytic tools. RA, MT, and VB

analyzed data. VB wrote the paper and RA, MT revised it. All
authors have approved the final article.

FUNDING

This work was supported by Fundación Florencio Fiorini,
Agencia Nacional de Promoción Científica y Tecnológica
(PICT2014-2000), Consejo Nacional de Investigaciones
Científicas y Técnicas (PIP 2014-487), and Universidad de
Buenos Aires, Argentina.

ACKNOWLEDGMENTS

We thank Marcelo Rubinstein, Juan Belforte, Jessica
Tollkuhn, Mario Perelló, Lorena Rela, and Gustavo Murer
for valuable mice and reagents; Jesica Unger, Verónica Risso
and Analía López Díaz, for technical assistance; Camila
Zold, for editing the manuscript; and Johnson&Johnson
Medical S.A., Argentina, for donating glucometer
strips.

REFERENCES

1. WHO (2016). Global Report on Diabetes-World Health organization.

Geneva. Available online at: http://apps.who.int/iris/bitstream/10665/204871/

1/9789241565257_eng.pdf?ua=1

2. Bumaschny VF, Yamashita M, Casas-Cordero R, Otero-Corchon V, de Souza

FS, Rubinstein M, et al. Obesity-programmed mice are rescued by early

genetic intervention. J Clin Invest. (2012) 122:4203–12. doi: 10.1172/JCI62543

3. Huo L, Gamber K, Greeley S, Silva J, Huntoon N, Leng XH, et al. Leptin-

Dependent control of glucose balance and locomotor activity by POMC

neurons. Cell Metab. (2009) 9:537–47. doi: 10.1016/j.cmet.2009.05.003

4. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker

EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle

intervention or metformin. N Engl J Med. (2002) 346:393–403. doi: 10.1056/

NEJMoa012512

5. Routh VH, Hao L, Santiago AM, Sheng Z, Zhou C. Hypothalamic

glucose sensing: making ends meet. Front Syst Neurosci. (2014) 8:236.

doi: 10.3389/fnsys.2014.00236

6. Schwartz MW, Seeley RJ, Tschop MH, Woods SC, Morton GJ, Myers MG,

et al. Cooperation between brain and islet in glucose homeostasis and diabetes.

Nature (2013) 503:59–66. doi: 10.1038/nature12709

7. Xu Y, Elmquist JK, Fukuda M. Central nervous control of energy and glucose

balance: focus on the central melanocortin system. Ann N Y Acad Sci. (2011)

1243:1–14. doi: 10.1111/j.1749-6632.2011.06248.x

8. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe

early-onset obesity, adrenal insufficiency and red hair pigmentation caused by

POMCmutations in humans. Nat Genet. (1998) 19:155–7. doi: 10.1038/509

9. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the

mouse model of pro-opiomelanocortin deficiency responds to peripheral

melanocortin. Nat Med (1999) 5:1066–70. doi: 10.1038/12506

10. Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG,

et al. AMPK is essential for energy homeostasis regulation and glucose

sensing by POMC and AgRP neurons. J Clin Invest. (2007) 117 2325–36.

doi: 10.1172/JCI31516

11. Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Rønnekleiv

OK, et al. Hypothalamic proopiomelanocortin neurons are glucose

responsive and express KATP channels. Endocrinology (2003) 144:1331–40.

doi: 10.1210/en.2002-221033

12. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, et al. Glucose

sensing by POMC neurons regulates glucose homeostasis and is impaired in

obesity. Nature (2007) 449:228–32. doi: 10.1038/nature06098

13. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, et al.

Direct insulin and leptin action on pro-opiomelanocortin neurons is required

for normal glucose homeostasis and fertility. Cell Metab. (2010) 11:286–97.

doi: 10.1016/j.cmet.2010.03.002

14. Bady I, Marty N, Dallaporta M, Emery M, Gyger J, Tarussio D, et al.

Evidence from glut2-null mice that glucose is a critical physiological regulator

of feeding. Diabetes (2006) 55:988–95. doi: 10.2337/diabetes.55.04.06.

db05-1386

15. Mercer AJ, Hentges ST, Meshul CK, Low MJ. Unraveling the central

proopiomelanocortin neural circuits. Front Neurosci. (2013) 7:19.

doi: 10.3389/fnins.2013.00019

16. Cowley MA, Smart JL, Rubinstein M, CerdanMG, Diano S, Horvath TL, et al.

Leptin activates anorexigenic POMC neurons through a neural network in the

arcuate nucleus. Nature (2001) 411:480–4. doi: 10.1038/35078085

17. Hayashi S, McMahon AP. Efficient recombination in diverse tissues

by a tamoxifen-inducible form of Cre: a tool for temporally regulated

gene activation/inactivation in the mouse. Dev Biol. (2002) 244:305–18.

doi: 10.1006/dbio.2002.0597

18. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations

in the design of hyperinsulinemic-euglycemic clamps in the conscious

mouse. Diabetes (2006) 55:390–7. doi: 10.2337/diabetes.55.02.06.

db05-0686

19. PerezMillanMI, LuqueGM, RamirezMC,NoainD, Ornstein AM, Rubinstein

et al. Selective disruption of dopamine D2 receptors in pituitary lactotropes

increases body weight and adiposity in female mice. Endocrinology (2014)

155:829–39. doi: 10.1210/en.2013-1707

20. Metzger D, Chambon P. Site- and time-specific gene targeting in the mouse.

Methods (2001) 24:71–80. doi: 10.1006/meth.2001.1159

21. Abràmoff MD, Magalhães PJ, Ram SJ. Image Processing With ImageJ. 4th Edn.

Biophotonics International, Vol. 11 (2004).

22. Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central

melanocortin receptors regulate insulin action. J Clin.Invest. (2001) 108:1079–

85. doi: 10.1172/JCI12954

23. Zhu L, Xu P, Cao X, Yang Y, Hinton AO, Xia Y, et al. The ERα-

PI3K cascade in proopiomelanocortin progenitor neurons regulates feeding

and glucose balance in female mice. Endocrinology (2015) 156:4474–91.

doi: 10.1210/en.2015-1660

24. Chhabra KH, Adams JM, Fagel B, Lam DD, Qi N, Rubinstein M,

et al. Hypothalamic POMC deficiency improves glucose tolerance despite

insulin resistance by increasing Glycosuria. Diabetes (2016) 65:660–72.

doi: 10.2337/db15-0804

Frontiers in Endocrinology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 554

http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1
https://doi.org/10.1172/JCI62543
https://doi.org/10.1016/j.cmet.2009.05.003
https://doi.org/10.1056/NEJMoa012512
https://doi.org/10.3389/fnsys.2014.00236
https://doi.org/10.1038/nature12709
https://doi.org/10.1111/j.1749-6632.2011.06248.x
https://doi.org/10.1038/509
https://doi.org/10.1038/12506
https://doi.org/10.1172/JCI31516
https://doi.org/10.1210/en.2002-221033
https://doi.org/10.1038/nature06098
https://doi.org/10.1016/j.cmet.2010.03.002
https://doi.org/10.2337/diabetes.55.04.06.db05-1386
https://doi.org/10.3389/fnins.2013.00019
https://doi.org/10.1038/35078085
https://doi.org/10.1006/dbio.2002.0597
https://doi.org/10.2337/diabetes.55.02.06.db05-0686
https://doi.org/10.1210/en.2013-1707
https://doi.org/10.1006/meth.2001.1159
https://doi.org/10.1172/JCI12954
https://doi.org/10.1210/en.2015-1660
https://doi.org/10.2337/db15-0804
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Alsina et al. Proopiomelanocortin Is Necessary for Glucose Homeostasis

25. Fan W, Dinulescu DM, Butler AA, Zhou J, Marks DL, Cone RD. The central

melanocortin system can directly regulate serum insulin levels. Endocrinology

(2000) 141:3072–9. doi: 10.1210/en.141.9.3072

26. Sohn JW, Harris LE, Berglund ED, Liu T, Vong L, Lowell BB,

et al. Melanocortin 4 receptors reciprocally regulate sympathetic

and parasympathetic preganglionic neurons. Cell (2013) 152:612–9.

doi: 10.1016/j.cell.2012.12.022

27. Qiu J, Bosch MA, Meza C, Navarro UV, Nestor CC, Wagner EJ.

Estradiol protects proopiomelanocortin neurons against insulin

resistance. Endocrinology (2018) 159:647–64. doi: 10.1210/en.2017-

00793

28. Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, et al. Anorectic

estrogen mimics leptin’s effect on the rewiring of melanocortin cells and

Stat3 signaling in obese animals. Nat Med. (2007) 13:89–94. doi: 10.1038/

nm1525

29. Priest CA, Roberts JL. Estrogen and tamoxifen differentially regulate

beta-endorphin and cFos expression and neuronal colocalization in

the arcuate nucleus of the rat. Neuroendocrinology (2000) 72:293–305.

doi: 10.1159/000054598

30. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk,

pathophysiology and complications of type 2 diabetes mellitus. Endocrine Rev.

(2016) 37:278–316. doi: 10.1210/er.2015-1137

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Alsina, Trotta and Bumaschny. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Endocrinology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 554

https://doi.org/10.1210/en.141.9.3072
https://doi.org/10.1016/j.cell.2012.12.022
https://doi.org/10.1210/en.2017-00793
https://doi.org/10.1038/nm1525
https://doi.org/10.1159/000054598
https://doi.org/10.1210/er.2015-1137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

	Hypothalamic Proopiomelanocortin Is Necessary for Normal Glucose Homeostasis in Female Mice
	Introduction
	Materials and Methods
	Animal Care
	Mouse Lines
	Glucose, Insulin and Pyruvate Tolerance Tests (GTT, ITT and PTT)
	CRE Induction by Tamoxifen Administration
	Food Intake and Fat Determination
	Immunohistochemistry
	Statistical Analysis

	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


