
molecules

Article

Gold-Catalyzed Addition of β-Ketoesters to Alkenes:
Influence of Electronic and Steric Effects in the
Reaction Outcome

Agustina La-Venia, Mirta P. Mischne * and Ernesto G. Mata * ID

Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de
Rosario-CONICET, Suipacha 531, Rosario S2002LRK, Argentina; lavenia@iquir-conicet.gov.ar
* Correspondence: mischne@iquir-conicet.gov.ar (M.P.M.); mata@iquir-conicet.gov.ar (E.G.M.);

Tel.: +54-9-341-4370477 (M.P.M. & E.G.M.)

Received: 7 February 2018; Accepted: 9 March 2018; Published: 10 March 2018

Abstract: The gold-catalyzed intermolecular hydroalkylation of olefins with β-ketoesters represents
a conceptually attractive and useful synthetic tool; however, it has been scarcely applied, remaining
a challenge for chemists. The aim of the current study was to investigate the addition of these
1,3-diketo-compounds to alkenes under gold catalysis conditions, in order to establish the electronic
and steric effects of the alkenyl substrates in the reaction outcome. The screening of different catalyst
systems and diverse olefins enabled defining the alkenyl requirements and the best reaction conditions
to efficiently achieve the coupled products.
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1. Introduction

In recent years, the application of homogeneous gold catalysis has become a very active area
of research [1–13]. Gold is considered a “soft” metal, thus it is an excellent carbophilic activator
avoiding high oxophilicity, which is exhibited by most of the Lewis acids. Therefore, gold selectively
activates unsaturated carbon–carbon bonds (alkynes, alkenes, and allenes) towards nucleophilic attack,
catalyzing a large number of organic transformations with high efficiency under a broad scope of
reaction conditions (oxygen, water, and alcohols are usually tolerated) [14–19]. The gold-promoted
nucleophilic additions onto alkynes and allenes have been widely explored for the generation of
both new C-heteroatom (N, S, O) bonds and new carbon–carbon bonds [20–26]. In the last few years,
gold-mediated activation of alkenes has been developed as well, but in less extension as expected,
due to their lower reactivity comparing with the alkynyl and allenyl counterparts [27–31]. In particular,
gold catalysis applied to unactivated olefins presents a limited scope of conditions and reagents, and is
mainly referred to heteroatom nucleophilic addition, which, in most of the cases, leads to the formation
of heterocyclic structures [32–38]. Indeed, the formation of new carbon–carbon bonds achieved by gold
catalysis from alkenyl systems remains scarcely investigated [39–42]. Specifically, the gold-mediated
hydroalkylation of olefins using 1,3-dicarbonyl systems, which represents an atom-economic alternative
to the classic nucleophilic alkylation, has been barely explored [43–46]. This conceptually attractive
synthetic approach presents only a few examples of intermolecular addition of 1,3-diketo-compounds
to alkenes, mainly limited to the use of electron-rich alkenes and Au(III) catalysts [43,45,47].

In this context, we decided to investigate the scope and limitations of gold catalysis for the
intermolecular addition of simple β-ketoesters onto diverse substituted alkenes, attempting to establish
the influence of steric and electronic factors on the course of this process.
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2. Results and Discussion

As previously exposed, the reported examples of gold catalysis applied to the chemical
transformation under study refer to the coupling of 1,3-diketones either with aryl-conjugated
alkenes [45] or with electron-rich cyclic alkenes [43,47] in the presence of cationic Au(III) (Scheme 1a).
Particularly interesting are the intramolecular versions of this process that enable the use of alternative
dicarbonyl systems, for instance β-ene-1,3-diketoamides, which afford cyclic lactams (Scheme 1b) [46].
Moreover, in the presence of (R)-DTBM-SEGPHOS(AuCl)2 and Cu(OTf)2, the asymmetric version
of this ene-β-ketoamide cyclization was achieved (Scheme 1c) [40]. The key modification in this
enantioselective hydroalkylation was the use of copper chloride scavengers [48,49].
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(a) Intermolecular version with 1,3-diketones. (b) and (c) Intramolecular version with β-ketoamides.

It is apparent from these reports that the use of β-ketoesters as the dicarbonyl starting
material has been underexplored. In fact, both Li et al. [45] and Che et al. [46] specifically
highlighted that 1,3-dicarbonyl substrates incorporating ester functionalities failed to proceed to
the corresponding C–C bond formation under gold catalysis, probably due to decomposition of these
ester-functionalized starting materials in the presence of high Lewis acidic reagents [45]. In addition,
the intramolecular alternative using these kinds of diketo moieties has not been efficiently achieved
either. Recently, Gandon and coworkers reported a gold(I)-mediated cyclization via an intramolecular
hydroalkylation of an internal diene by a β-ketoester [44]. However, optimized reaction conditions
were accomplished using Bi(OTf)3/TfOH as an alternative catalytic system due to the fact that extensive
decomposition of starting material was observed using gold catalysts. Some other studies were carried
out trying to expand the hydroalkylation of olefins with β-ketoesters mediated by auric cations;
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however, they were clearly unsuccessful [50]; furthermore, in some conditions, the gold catalysts
exhibited an unusual oxophilic behavior [51].

Taking into account this literature review, to achieve our objective, we decided firstly to test the
reaction between β-ketoesters (1a and 1b) and p-methylstyrene (2a) to obtain the corresponding
coupling products 3a and 3b (Table 1). Different reaction conditions, mainly involving changes
in the catalyst mixture and temperature, were evaluated. For ethyl acetoacetate (1a), the use of a
AuCl3/AgSbF6 mixture (5 mol %/15 mol %) was the most efficient catalyst system, leading to 3a
in 75% yield (Entry 1). The product was obtained as an inseparable mixture of two diastereoisomers in
a 1:1 ratio, identified and quantified by 1H-NMR spectra and by HPLC. The use of AgOTf as co-catalyst
(Entry 2) provided similar results, whereas the use of Au(I) catalyst (Entry 3) caused a significant
decrease in yield. The addition of CuCl2 to avoid gold reduction resulted in a slight decrease in the
reaction yield (Entry 4) [52]. To evaluate the protic triflic acid (TfOH) effect, this acid was added as the
single promoter (Entry 5) [53]. The expected product 3a was obtained but with a notable decreased
yield (20%). Similarly, the use of AgOTf as the only catalyst was also tested, but the reaction did
not proceed at all, recovering the starting materials (Entry 6). These latter results proved that auric
triflate is the predominant catalytic specie involved in the hydroalkylation under study. On the other
hand, changing the dicarbonyl substrate by tert-butyl acetoacetate (1b) gave a complex mixture of
unidentified compounds, probably derived from self-condensation of the alkene and β-ketoester
hydrolysis in the acidic media (Entry 7).

Table 1. Gold-catalyzed hydroalkylation of p-methylstyrene (2a) with β-ketoesters 1a and 1b.
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1 R1 Catalyst System T Yield 1

1 1a Et AuCl3 (5 mol %) AgSbF6 (15 mol %) rt 75%

2 1a Et AuCl3 (5 mol %)
AgOTf (15 mol %) rt 70%

3 1a Et AuCl (5 mol %)
AgSbF6 (5 mol %) rt 40%

4 1a Et
AuCl3 (5 mol %)

AgSbF6 (15 mol %)
CuCl2 (10 mol %)

0 ◦C 60%

5 1a Et TfOH (2 mol %) 0 ◦C 20%
6 1a Et AgOTf (15 mol %) rt NR 2

7 1b tBu AuCl3 (5 mol %)
AgSbF6 (15 mol %) rt NR 2

The reaction was carried out by adding 2a (1.5 eq.) for 5 h with a syringe pump to the solution of the β-ketoesters
1a or 1b (1.0 eq.) and catalyst in dichloromethane, then the reaction mixture was stirred overnight. The addition
products 3 were eventually isolated and purified by column chromatography. 1 Yield after column chromatography.
2 No reaction.

With these optimized conditions in hand, we proceeded to investigate the scope and limitations
of the process testing different olefin partners. 1H-NMR spectroscopic analysis of the crude
reaction mixtures showed that, along with the presence of alkylated products 3 and starting
materials 1a and 2, signals corresponding to self-condensation olefin polymeric by-products [54,55]
could be identified (Table 2).
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Table 2. Evaluation of olefin influence in the AuCl3/AgSbF6–promoted hydroalkylation.
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2 2b, R2 = p-Et 3b, 50% 1a Yes
3 2c, R2 = p-tBu 3c, 20% 1a Yes
4 2d, R2 = p-CH2Cl 3d, 10% (35%) 4 1a Yes
5 2e, R2 = p-OAc 3e, traces 1a Yes
6 2f, R2 = p-OMe 3f, 7% (25%) 4 1a Yes
7 2g, R2 = p-OtBu 3g, traces 1a No
8 2h, R2 = p-CO2Me NP 1a + 2h No
9 2i, R2 = p-Br NP 1a + 2i No

10 2j, R2 = o-Br NP 1a + 2j No
11 2k, R2 = o-Me NP 1a + 2k Yes
12 2l NP 1a + 2l No
13 2m NP 1a 5 No
14 2n NP 1a + 2n No

1 Yields correspond to final products purified by flash column chromatography. The addition products 3 were
generated as inseparable mixtures of diastereoisomers in 1:1 ratio (see Supplementary Materials). NP: No addition
product 3 was observed. 2 Starting material remained in the reaction mixtures. 3 Signals attributed to polymeric
by-products were observed by 1H-NMR spectra of the reaction mixtures. 4 Optimized conditions: AuCl3/AgOTf
(5/15 mol %), 0 ◦C. 5 1a was partially hydrolyzed, 2m was evaporated during the work up of the reaction.

A detailed examination of the results indicates that the reaction under study is very sensitive to
structural and electronic features of the alkene. In the case of para-substituted styrene derivatives (2a–i),
the best results have been achieved for those substrates having both weak electron-donating such as
alkyl groups (2a–c, Entries 1–3) and weak electro-withdrawing substituents (2d, Entry 4), leading to the
adducts 3a–d up to 75% yield. In the case of other aromatic substrates with stronger electron-donating
groups (2e–g), the corresponding products were detected but with considerable decrease in the
yields and along with large amounts of polymeric material (Entries 5 and 6), except for 2g (Entry 7).
These results revealed an efficient gold-promoted alkene-activation, except for the most bulky
substituted styrene (R2 = OtBu); however, unfortunately, the polymerization process was predominant.
Interestingly, those substrates with strong electron-withdrawing substituents (2h, R2 = CO2Me and 2i,
R2 = Br, Entries 8 and 9) did not provide the desired products and neither the possible products of
polymerization, recovering both starting materials, which could be justified by an ineffective olefin
coordination with the metal. A similar tendency was observed for ortho-substituted styrene derivatives 2j
and 2k, which did not generate the desired addition products, regardless of their electronic properties,
recovering in both cases the unreacted starting materials (Entries 10 and 11). Though, in the case of
alkene 2k (Entry 11), a small amount of polymerization product was observed, demonstrating a poor
activation of the olefin by the Au(III) [56,57], probably due to steric hindrance of the substituent in
ortho position in comparison to the para analogue 2a. As expected, the non-aromatic alkenes or alkenes
structurally different to styrene, remained unchanged under the optimized conditions (Entries 12–14),
which clearly indicated that the cationic gold failed to promote their activation.
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Taking into account these results, we can remark about two major difficulties for the broad
application of this synthetic tool. According to the most commonly proposed mechanism based on the
cationic gold activation of alkene species followed by methylene nucleophilic attack, the first difficulty
is related to the activation of alkenes by coordination with the active gold species. In order to achieve
such gold coordination, olefins must present sufficient electron density, restricting the type of alkene
able to participate in the hydroalkylation. This limitation becomes evident in those alkenes with low
electron density, which remained unreacted in the presence of the auric cation (2h–j and 2l–n).

The second drawback of the reaction arises from competition with the self-addition of the olefins.
Electron rich olefin can coordinate with the cationic gold, but the presence of free unactivated olefin in
the reaction medium can also efficiently act as a nucleophile. Thus, self-addition occurs between the
metal-coordinated olefin (electrophilic) and the free olefin (nucleophilic), generating the polymeric
by-product. There is a competition between both potential nucleophiles, high-electron density olefins
and the corresponding enol of 1,3-dicarbonyl compounds. The nucleophilic enolate can be generated
by the presence of metal co-catalyst, such as Cu or can be present directly in the dicarbonyl equilibrium.
In the case of β-ketoesters, only a small proportion is present as the enol form (8% in DCM) [58];
therefore, high electron density olefins are better nucleophiles, generating mainly polymerization
products during catalysis. In contrast, reactions involving diketones instead of β-ketoesters are more
efficient for the hydroalkylation of alkenes since these diketo compounds are mostly in their enol form
(81% in DCM).

Under these premises, we carried out further screening conditions to some promising substrates
(2e and 2f). It can be assumed that reduction of olefin self-addition would increase the efficiency of
the hydroalkylation reaction. To achieve the limitation of this undesired reaction, various strategies
were tested. The first attempts that involved the incorporation of base to the reaction mixture in order
to shift the keto/enol equilibrium did not proceed as expected. For instance, the addition of tBuOK
led to a slight increase of coupling while amine bases poisoned the catalyst. Fortunately, slow alkene
addition at low temperature showed promising effects. Moreover, when the decrease in temperature
was combined with a simple exchange of co-catalyst (AgOTf instead of AgSbF6), 3f was obtained with
a considerably higher yield (25%) (Entry 6, Table 2). Similar results were observed for substrate 2d
(R2 = CH2Cl), affording 3d with a 35% yield (Entry 4, Table 2).

3. Materials and Methods

3.1. General Information

Chemical reagents were purchased from commercial suppliers and used without further
purification, unless otherwise noted. Solvents were analytical grade or were purified by standard
procedures prior to use. Reactions requiring inert atmosphere were carried out under a high-purity dry
nitrogen atmosphere. Solvents from these reactions were transferred with syringe under high-purity
dry nitrogen pressure. Yields were calculated for material judged homogeneous by thin layer
chromatography (TLC) and nuclear magnetic resonance (1H-NMR). All reactions were monitored by
thin layer chromatography performed on silica gel 60 F254 pre-coated aluminum sheets, visualized
by a 254 nm UV lamp, and stained with an ethanolic solution of 4-anisaldehyde. Column flash
chromatography was performed using silica gel 60 (230–400 mesh).

3.2. Instrumental and Physical Data

1H-NMR spectra were recorded in a Bruker Avance spectrometer (Bruker Analytik GmbH,
Karlsruhe, Germany) at 300 MHz, in CDCl3 with tetramethylsilane (TMS) as internal standard (0 ppm).
13C-NMR spectra were recorded on the same apparatus at 75 MHz with CDCl3 as solvent and
reference (76.9 ppm). Chemical shifts (δ) are reported in ppm upfield from TMS and coupling constants
(J) are expressed in Hertz. The following abbreviations are used to indicate the multiplicities: s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet.
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IR spectra were obtained using a Shimadzu, Prestige–21 FT-IR spectrometer (Shimadzu, Kioto,
Japan), wavelengths are informed in cm−1, and only partial spectral data are listed.

High resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF-Q II spectrometer
obtained on a Q-TOF mass spectrometer and detection of the ions was performed in electrospray
ionization, positive ion mode.

3.3. Synthetic Procedures

Gold-catalyzed hydroalkylation: A mixture of AuCl3 (15.2 mg, 0.05 mmol, 5 mol %) and AgSbF6

(51.5 mg, 0.15 mmol, 15 mol %) in anhydrous DCM (2 mL) under N2 atmosphere was stirred at room
temperature for 2 h. The β-ketoester, ethyl acetoacetate 1a, (0.13 mL, 1 mmol) was then added to the
catalysts solution previously formed, followed by the addition of the solution of the corresponding
alkene 2 (1.5 mmol, 1.5 eq.) in anhydrous DCM (3 mL) with a syringe-pump during 5 h at room
temperature or at 0 ◦C. The reaction mixture was further stirred at room temperature overnight under
N2 atmosphere. After that time, the solvent was evaporated and the reaction crude was purified
by column chromatography on silica gel (eluent: Hexane-AcOEt with increasing polarity) to afford
addition products 3 (1:1 diastereoisomeric mixture). Note: the AuCl3 catalyst must be weighed under
a nitrogen cone because of its high hygroscopicity.

3.4. Analytical Data of Individual Compounds

Ethyl 2-acetyl-3-(p-tolyl)butanoate 3a. Yield: 75% of colorless oil (inseparable mixture with
diastereoisomeric ratio 1:1). IR (Film) (cm−1): 2964, 2932, 1743 (νCO), 1717 (νCO), 1513, 1177. 1H-NMR
(CDCl3, 300 MHz): δ 7.09 (8H, bs, ArH), 4.22 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.90 (2H, q, J = 7.1 Hz,
-OCH2CH3), 3.76 (1H, d, J = 11.0 Hz, H-2), 3.71 (1H, d, J = 10.9 Hz, H-2), 3.56–3.45 (2H, m, H-1′), 2.30 (6H,
s, ArCH3)*, 2.29 (3H, s, H-4)*, 1.94 (3H, s, H-4)*, 1.31–1.27 (6H, m, H-2′ and -OCH2CH3), 1.21 (3H,
d, J = 6.9 Hz, H-2′), 0.97 (3H, t, J= 7.2 Hz, -OCH2CH3). 13C NMR (CDCl3, 75 MHz): δ 202.5 (C, C-3),
202.4 (C, C-3), 168.6 (C, C-1), 168.1 (C, C-1), 140.1 (C, Ar), 139.9 (C, Ar), 136.4 (C, Ar), 136.2 (C, Ar),
129.3 (2 CH, Ar), 129.0 (2 CH, Ar), 127.2 (2 CH, Ar), 127.1 (2 CH, Ar), 67.6 (CH, C-2), 67.1 (CH, C-2),
61.3 (CH2, -OCH2CH3), 61.0 (CH2, -OCH2CH3), 39.6 (CH, C-1′), 39.3 (CH, C-1′), 29.7 (CH3, C-4),
29.4 (CH3, C-4), 20.9 (2 CH3, Ar-CH3), 20.6 (CH3, C-2′), 20.3 (CH3, C-2), 14.0 (CH3, -OCH2CH3),
13.6 (CH3, -OCH2CH3). HRMS (ESI) m/z calcd. for C15H20NaO3 [M + Na]+ 271.1305, found 271.1302.
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under N2 atmosphere. After that time, the solvent was evaporated and the reaction crude was 
purified by column chromatography on silica gel (eluent: Hexane-AcOEt with increasing polarity) to 
afford addition products 3 (1:1 diastereoisomeric mixture). Note: the AuCl3 catalyst must be 
weighed under a nitrogen cone because of its high hygroscopicity. 

3.4. Analytical Data of Individual Compounds 

Ethyl 2-acetyl-3-(p-tolyl)butanoate 3a. Yield: 75% of colorless oil (inseparable mixture with 
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d, J = 6.9 Hz, H-2′), 0.97 (3H, t, J= 7.2 Hz, -OCH2CH3). 13C NMR (CDCl3, 75 MHz): δ 202.5 (C, C-3), 
202.4 (C, C-3), 168.6 (C, C-1), 168.1 (C, C-1), 140.1 (C, Ar), 139.9 (C, Ar), 136.4 (C, Ar), 136.2 (C, Ar), 
129.3 (2 CH, Ar), 129.0 (2 CH, Ar), 127.2 (2 CH, Ar), 127.1 (2 CH, Ar), 67.6 (CH, C-2), 67.1 (CH, C-2), 
61.3 (CH2, -OCH2CH3), 61.0 (CH2, -OCH2CH3), 39.6 (CH, C-1′), 39.3 (CH, C-1′), 29.7 (CH3, C-4), 29.4 
(CH3, C-4), 20.9 (2 CH3, Ar-CH3), 20.6 (CH3, C-2′), 20.3 (CH3, C-2), 14.0 (CH3, -OCH2CH3), 13.6 (CH3, 
-OCH2CH3). HRMS (ESI) m/z calcd. for C15H20NaO3 [M + Na]+ 271.1305, found 271.1302. 

 

Ethyl 2-acetyl-3-(4-ethylphenyl)butanoate 3b. Yield: 50% of colorless oil (inseparable mixture with 
diastereoisomeric ratio 1:1). IR (Film) (cm−1): 2965, 2932, 2873, 1744 (νCO), 1716 (νCO), 1513, 1176. 1H 
NMR (CDCl3, 300 MHz): δ 7.11 (8H, bs, ArH), 4.22 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.89 (2H, q, J = 7.1 
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2.60 (4H, q, J = 7.5 Hz, H-1″), 2.29 (3H, s, H-4), 1.93 (3H, s, H-4), 1.31-1.17 (15H, m, H-2′, H-2″ and 
-OCH2CH3)*, 0.94 (3H, t, J = 7.1 Hz, H-2″)*. 13C NMR (CDCl3, 75 MHz): δ 202.5 (2 C, C-3), 168.5 (C, 
C-1), 168.1 (C, C-1), 142.6 (2 C, Ar), 140.2 (C, Ar), 140.1 (C, Ar), 128.0 (2 CH, Ar), 127.7 (2 CH, Ar), 
127.2 (2 CH, Ar), 127.1 (2 CH, Ar), 67.6 (CH, C-2), 67.0 (CH, C-2), 61.3 (CH2, -OCH2CH3), 60.9 (CH2, 
-OCH2CH3), 39.6 (CH, C-1′), 39.3 (CH, C-1′), 29.7 (CH3, C-4), 29.3 (CH3, C-4), 28.3 (CH2, C-1″), 28.2 
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-OCH2CH3), 13.6 (CH3, -OCH2CH3). HRMS (ESI) m/z calcd. for C16H23NaO3 [M + Na]+ 285.1461, found 
285.1461. 

Ethyl 2-acetyl-3-(4-ethylphenyl)butanoate 3b. Yield: 50% of colorless oil (inseparable mixture with
diastereoisomeric ratio 1:1). IR (Film) (cm−1): 2965, 2932, 2873, 1744 (νCO), 1716 (νCO), 1513, 1176.
1H-NMR (CDCl3, 300 MHz): δ 7.11 (8H, bs, ArH), 4.22 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.89 (2H, q,
J = 7.1 Hz, -OCH2CH3), 3.77 (1H, d, J = 11.0 Hz, H-2), 3.71 (1H, d, J = 11.0 Hz, H-2), 3.59–3.46 (2H, m,
H-1′), 2.60 (4H, q, J = 7.5 Hz, H-1”), 2.29 (3H, s, H-4), 1.93 (3H, s, H-4), 1.31-1.17 (15H, m, H-2′, H-2” and
-OCH2CH3)*, 0.94 (3H, t, J = 7.1 Hz, H-2”)*. 13C NMR (CDCl3, 75 MHz): δ 202.5 (2 C, C-3), 168.5 (C, C-1),
168.1 (C, C-1), 142.6 (2 C, Ar), 140.2 (C, Ar), 140.1 (C, Ar), 128.0 (2 CH, Ar), 127.7 (2 CH, Ar), 127.2 (2 CH,
Ar), 127.1 (2 CH, Ar), 67.6 (CH, C-2), 67.0 (CH, C-2), 61.3 (CH2, -OCH2CH3), 60.9 (CH2, -OCH2CH3),
39.6 (CH, C-1′), 39.3 (CH, C-1′), 29.7 (CH3, C-4), 29.3 (CH3, C-4), 28.3 (CH2, C-1”), 28.2 (CH2, C-1”),
20.5 (CH3, C-2′)*, 20.2 (CH3, C-2′)*, 15.4 (CH3, C-2”)*, 15.3 (CH3, C-2”)*, 14.0 (CH3, -OCH2CH3),
13.6 (CH3, -OCH2CH3). HRMS (ESI) m/z calcd. for C16H23NaO3 [M + Na]+ 285.1461, found 285.1461.
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Ethyl 2-acetyl-3-(4-methoxyphenyl)butanoate 3f Yield: 25% of colorless oil (inseparable mixture with 
diastereoisomeric ratio 1:1). 1H NMR (CDCl3, 300 MHz): δ 7.14 (2H, d, J = 6.0 Hz, ArH), 7.11 (2H, d, J 
= 6.0 Hz, ArH), 6.82 (4H, dd, J = 8.7, 0.9 Hz, ArH), 4.21 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.90 (2H, q, J = 
7.2 Hz, -OCH2CH3), 3.77 (6H, s, -OCH3), 3.74 (1H, d, J = 11.1 Hz, H-2), 3.68 (1H, d, J = 11.1 Hz, H-2), 
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1.21 (3H, d, J = 6.9 Hz, H-2′), 0.98 (3H, t, J = 7.2 Hz, -OCH2CH3). 13C NMR (CDCl3, 75 MHz): δ 202.5 (C, 
C-3), 202.4 (C, C-3), 168.6 (C, C-1), 168.1 (C, C-1), 158.2 (2 C, Ar), 135.2 (C, Ar), 134.9 (C, Ar), 128.2 (4 
CH, Ar), 113.9 (2 CH, Ar), 113.6 (2 CH, Ar), 67.7 (CH, C-2), 67.1 (CH, C-2), 61.3 (CH2, -OCH2CH3), 
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diastereoisomeric ratio 1:1). 1H-NMR (CDCl3, 300 MHz): δ 7.29 (4H, d, J = 8.5 Hz, ArH), 7.15–7.10 (4H,
m, ArH), 4.22 (2H, q, J = 7.1 Hz, -OCH2CH3), 3.93–3.83 (2H, m, -OCH2CH3), 3.77 (1H, d, J = 10.9 Hz,
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(27H, m, H-2′, -C(CH3)3 and -OCH2CH3)*, 0.88 (3H, t, J = 7,1 Hz, -OCH2CH3)*. 13C NMR (CDCl3,
75 MHz): δ 202.5 (2 C, C-3), 168.6 (C, C-1), 168.5 (C, C-1); 149.6 (C, Ar); 149.5 (C, Ar); 139.9 (C, Ar);
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-C(CH3)3); 31.2 (6 CH3, -C(CH3)3); 29.7 (CH3, C-4); 29.3 (CH3, C-4); 20.5 (CH3, C-2′); 20.1 (CH3, C-2’);
14.0 (CH3, -OCH2CH3); 13.5 (CH3, -OCH2CH3). HRMS (ESI) m/z calcd. for C18H30NO3 [M + NH4]+
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-OCH2CH3). HRMS (ESI) m/z calcd. for C15H24NO4 [M + NH4]+ 282.1705, found 282.1694. 

Ethyl 2-acetyl-3-(4-methoxyphenyl)butanoate 3f Yield: 25% of colorless oil (inseparable mixture with
diastereoisomeric ratio 1:1). 1H-NMR (CDCl3, 300 MHz): δ 7.14 (2H, d, J = 6.0 Hz, ArH), 7.11 (2H, d,
J = 6.0 Hz, ArH), 6.82 (4H, dd, J = 8.7, 0.9 Hz, ArH), 4.21 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.90 (2H, q,
J = 7.2 Hz, -OCH2CH3), 3.77 (6H, s, -OCH3), 3.74 (1H, d, J = 11.1 Hz, H-2), 3.68 (1H, d, J = 11.1 Hz,
H-2), 3.55-3.44 (2H, m, H-1′), 2.29 (3H, s, H-4), 1.93 (3H, s, H-4), 1.31–1.26 (6H, m, H-2′ and -OCH2CH3),
1.21 (3H, d, J = 6.9 Hz, H-2′), 0.98 (3H, t, J = 7.2 Hz, -OCH2CH3). 13C NMR (CDCl3, 75 MHz): δ 202.5 (C,
C-3), 202.4 (C, C-3), 168.6 (C, C-1), 168.1 (C, C-1), 158.2 (2 C, Ar), 135.2 (C, Ar), 134.9 (C, Ar), 128.2 (4 CH,
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-OCH2CH3), 55.1 (CH3, -OCH3), 55.0 (CH3, -OCH3), 39.2 (CH, C-1′), 38.9 (CH, C-1′), 29.7 (CH3, C-4),
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29.3 (CH3, C-4), 20.6 (CH3, C-2′), 20.3 (CH3, C-2′), 14.0 (CH3, -OCH2CH3), 13.6 (CH3, -OCH2CH3).
HRMS (ESI) m/z calcd. for C15H24NO4 [M + NH4]+ 282.1705, found 282.1694.Molecules 2018, 23, x  8 of 11 
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