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Abstract 

 

Wireless sensor networks (WSNs) provide a low cost solution with respect to maintenance and 

installation and in particular, building refurbishment and retrofitting are easily accomplished via 

wireless technologies. Fire emergency detection and response for building environments is a novel 

application area for the deployment of wireless sensor networks. In such a critical environment, 

timely data acquisition, detection and response are needed for successful building automation. This 

paper presents an overview of our recent research activity in this area. Firstly we explain research 

on communication protocols that are suitable for this problem. Then we describe work on the use 

of WSNs to improve fire evacuation and navigation.  
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1 Introduction 
 

In the near future we expect buildings to be equipped with a range of wireless sensors and actuators 

functioning as part of an overall building management system. Included in this set of sensors will be 

devices to monitor fire and smoke and to respond to the sensed events, allowing detection, localisation 

and tracking of fires, and providing guidance to evacuees and firefighters on the progress of the fire, 

on escape routes, and on the locations of people needing assistance. As part of the NEMBES project 

[1], we are developing a variety of techniques and application solutions to enable this vision of 

enhanced fire response through wireless embedded systems. In this paper, we present an overview of 

our work in two areas: protocol design for robust network operation, and sensor driven evacuation 

planning and simulation. 

The remainder of this paper is structured as follows: Section 2 presents the routing and MAC layer 

design especially for building fire. Section 3, we outline the evacuation and guidance in fire, and then 

propose the emergency simulation. Section 4 involves some related work. Finally, Section 5 concludes 

this paper. 

 

2 Routing and MAC Layer Design for Building Fire 
 
Wireless sensor networks for sensing and reporting on a spreading fire are faced with two main issues. 

Firstly, large volumes of data need to be reported as quickly as possible to a central sink (also called 

base station) – the rate of sensing will be greatly increased over normal operation, requiring more 

frequent data transmission. Access protocols and schedules used during normal conditions will no 

longer apply; instead new protocols designed to ensure rapid transmission of critical data without 

increased collisions are required. Secondly, the network itself will degrade as the fire spreads, 

blocking links and killing individual nodes. Stored routing information will quickly become invalid, 

and whole areas of the network may become disconnected. Adaptive routing protocols are required 

which can adapt quickly to the changing network, which can act opportunistically, and which are 

robust to the spreading fire. On the other hand, energy efficiency and node lifetimes are of little 

concern. We investigate three techniques for operation of an in-building sensor network during a fire: 

real-time robust routing, a routing protocol able to take advantage of transient connectivity provided 

by firefighters, and traffic-adaptive MAC. We present each of these in turn below. 

 

2.1  Real-time and Robust Routing in Fire (RTRR)  
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RTRR is the core routing protocol that we have developed for use in building emergency networks. Its 

key requirement is to deliver messages in real-time and with a high probability of success which is the 

main challenge in building fire emergency. To achieve this, it employs the use of several techniques. 

Firstly, it maintains delay estimates from each node to its nearest sink to guide a real-time delivery. 

Secondly, it tracks the status of nodes and link valid time in fire, allowing traffic to avoid nodes that 

are in danger according to fire spreading. Thirdly, it uses adaptive transmission power to avoid routing 

holes caused by nodes that have failed or seek real-time and valid paths in fire situations. 

Given a WSN with N sensors and M sinks deployed in a building, with a goal of each sensor being 

able to deliver its data packets to one of the sinks within maximum delay Tmax. Each sensor can adjust 

its transmission range by using different transmission power levels p0, p1 … pk-1=pmax. Initially, all 

sensors transmit at default power p0. Nodes maintain information on their route to the sink and on their 

immediate neighbourhood. Each node is in one of four states: safe(no fire), lowsafe(1-hop to fire), 

infire(caught in fire) and unsafe(cannot work). A node may change its state autonomously in response 

to tracked fire situations: occurrence, expanding, diminishing, etc.. 

Each sink periodically broadcasts a HEIGHT message to refresh the network, allowing nodes to 

determine reachability to the nearest sink with “height” (defined as number of hops toward the nearest 

sink) and estimate delay. We denote delay(sink, i)  as the delay experienced from the sink to node i, 

and then we use delay(sink, i)  as a bound to guide a real-time delivery from node i to sink. The 

estimate delay is calculated by cumulative hop-to-hop delay: 

                                    
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where, n is the hop count from the sink to node i, Tc is the time it takes for each hop to obtain the 

wireless channel with carrier sense delay and backoff delay, Tt is the time to transmit the packet, Tq is 

the queuing delay, and R is the retransmission count. We can proof delay(sink, i) is a bound to guide 

the real-time forwarding[12]. Furthermore, we can provide a good estimation of the delay by adjusting 

it based on both the weighted average and variation of the estimated variable  

Based on this, each node selects the relay based on metric with height, estimate delay and node state as 

follows: 

(1)Firstly, filter to find the nodes with lower height than current node. 

(2)Secondly, choose the node with and enough slack time compared to estimate delay. 

(3)Thirdly, we filter the remaining forwarding choices by node state in the priority from “safe” to 

“infire”. 

(4)If there is more than one node satisfied, we select the relay with the higher residual energy. If there 

is still a tie, we choose the lower ID. 

If no suitable relay is found, the node increases its power level gradually to find another existing 

neighbour or invoke a new neighbour discovery, and try to jump over the hole. Fig.1 shows the new 

neighbor discovery. The sink1 and sink2 are two sinks, and the other nodes are sensors. The number 

beside each node represents the “height” of each node toward the sink.  Node i reports and routes the 

data to the sink. The path: {i, e, sink1} (with p0 from sensor i to e) is invalid because slack does not 

satisfy the estimated end-to-end delay. If there are no existing eligible neighbours, then i will increase 

its power to p1 to reach node j and delivers the packets to another sink: sink2 by path {i, j, sink2} when 

slack on this route is no less than delay estimation. 
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Fig.1 Increase power to jump over the hole 

In building fire emergencies, robust routing is crucial due to the impact of quickly moving fire on node 

liveness. We assume that: (1) the minimal time interval between “infire” and “unsafe” state of a node 

is chosen as a parameter known beforehand. (2) We use necessary transmission range for connectivity 



between nodes (according to selected power level) to approximate the minimal fire spreading time 

between two nodes. In practice there are well-known guidelines for estimating the rate of fire spread, 

taking into account building materials, etc. It’s also the case that obstacles, such as walls, that mitigate 

radio propagation also have the effect of slowing fire spread.  

When a relay is used for routing, we add a timeout to avoid the use of stale and unsafe nodes, i.e., 

every node on the path from source to destination has a timeout to record the valid time. At the same 

time, each link’s valid time is decided by the nodes adjacent to it. The timeout is updated when node 

state changes among the neighbourhood. The relay and its adjacent path links that exceed the timeout 

value is considered invalid and then evicted. Accordingly, a routing re-discovery is invoked to find 

another relay with a valid route path onward one of the sinks (may be a different sink from current 

one).  

. 

2.2 Opportunistic Routing With Mobile Sinks 
 

We now consider scenarios where the network is damaged: routes to the sink may be very long for 

some nodes, and other areas are now completely disconnected. We envisage firefighters entering the 

building with small specialized sensor nodes attached to them. These nodes can act as mobile sink 

nodes, able to relay data back to the main static sink in a single hop, and so provide new transient 

paths to the static sink. We assume, though, that the firefighters are concerned only with fire fighting 

and rescue, and thus network issues have no influence on the movement of the mobile sinks. The main 

question we consider is how to make best use of these mobile sinks. When should sensor nodes relay 

data via the mobile sink? How does the mobile sink make its presence known to the sensor nodes? 

How can we use the mobile sink to re-connect disconnected regions of the field? We assume an 

underlying routing protocol for the network similar to RTRR. Thus each node maintains information 

on its relay node and hop count for transmitting data to the static sink through the network. First, we 

assume that the mobile sink transmits a beacon as its moves through the building. If the speed of 

movement is higher than a threshold, the beacon signal is suspended. Nodes that receive the beacon 

forward it for up to k hops. Each node then decides whether or not to use this new transient route. 

Each node, however, also maintains its old route. When the mobile sink moves out of range, the links 

to it will be broken, and the nodes revert to their old routes. Secondly, we assume that nodes in a 

disconnected region reply to the beacon with a panic code, which causes the mobile sink to change its 

beacon to indicate that it will only relay data from the disconnected region. This gives priority to the 

disconnected region to transmit whatever buffered data it has been able to store. Thirdly, we envisage 

the mobile sink using a directional antenna to transmit predictive beacons announcing its expected 

arrival, assuming it maintains its current speed and trajectory. Nodes receiving the predictive beacon 

can then decide whether to buffer data and wait for the arrival of the mobile sink. 

In the first and third cases, the main issue is in the tradeoff between taking advantage of the newly 

available shorter routes and wasting time transmitting control messages and rerouting data only to find 

that the mobile sink has moved on and is no longer available. If the behaviour is too conservative, 

opportunities to transmit data are lost; if the behaviour is too aggressive, latency increases and data is 

lost as the new routes disappear while data is in transit. 

 

2.3  A Hybrid MAC Protocol for Emergency Response (ER-MAC)  
 

During an emergency situation, sensor nodes must be able to adapt to a very large volume of traffic 

and collisions due to simultaneous transmissions. Nodes must accurately deliver the important 

information to the sink in no time. Furthermore, in the emergency situation, energy efficiency of the 

communication protocol can be traded for the necessity of high throughput and low latency. In WSNs, 

Medium Access Control (MAC) plays an important role in a successful communication.  

We design ER-MAC, a hybrid MAC protocol for fire emergency. This protocol adopts TDMA 

approach to schedule collision free transmission toward the sink. During normal day-to-day 

monitoring, the communication is delay-tolerant and must be energy efficient to prolong the network 

lifetime. Therefore, each node only wakes up to transmit and receive messages according to its 

specified schedule. Otherwise, it sleeps to conserve energy. When an emergency event occurs, the 



nodes change the behaviour of the MAC by allowing contention in TDMA slots. A node may contend 

for its neighbour's transmit slot if it has priority packets to send. Furthermore, during an emergency 

situation, all nodes wake up at the beginning of each TDMA slot for possible reception of packets. Our 

MAC protocol uses a pair of priority queues (as shown in Fig.2) to separate two types of packets: high 

priority packets and low priority packets, where low priority packets are sent if the high priority queue 

is empty. Inside a queue, packets are ordered based on their slack, i.e. the time remaining until the 

packet deadline expires. 

               
          Fig.2 Priority queues                                           Fig.3 Frame structure of ER-MAC 

 

Fig.3 shows a frame structure of ER-MAC, which consists of contention-free slots with duration tS 

each and a contention period with duration tC. In each contention-free slot, there are sub slots t0, t1, t2 

and t3 for contention that will be explained below. Note that the period of tS – (t0 + t1 + t2 + t3) is 

sufficient to carry a packet. We include a contention period at the end of each frame to support 

addition of new nodes. During the no fire condition, every node sends its own data and forwards its 

descendants' data to its parent in collision-free slots. A node has a special slot to broadcast 

synchronization message to its children. However, as soon as the fire alarm is triggered, node changes 

the behaviour of MAC as follows: 

(1) An owner of a slot wakes up in the beginning of its own transmit slot. If it has a high priority 

packet to send, it transmits the packet immediately. If the owner has no high priority packet to 

send, it allows its one-hop neighbours with high priority packets to contend for the slot. 

(2) All non-owners of the slot wake up in the beginning of every slot to listen to the channel for 

possible contention or reception of packets. If a non-owner with a high priority packet senses no 

activities in the channel during t0, it contends for the slot during t1. The owner of the slot replies the 

requester’s request. 

(3) The owner of the slot with low priority packets only can use its own slot if during t0 + t1, it does not 

receive any slot request messages from its neighbours. 

(4) A non-owner with low priority packet can contend for the slot if during t0 + t1 + t2, it senses no 

activities in the channel. Then, it contends for the slot during t3. The owner of the slot replies to the 

requester’s request. 

 

3 Fire Evacuation and Navigation 
 

Our main application is navigation guidance for both firefighters and evacuees. We assume two 

families of sensors, one able to report on the numbers and locations of people in the building and one 

able to report on the current extent and state of the fire. We also assume access to the building plans 

from which, combined with sensed data, we can compute the predicted spread of the fire and compute 

the quality of navigation paths through the building. We are developing algorithms for computing safe 

and short paths from each location to designated exits and for updating these paths as new sensed data 

arrive. We are also constructing a simulation framework in which we are able to simulate the actuation 

of navigation signs and the movement of people as they attempt to follow the signs and evacuate the 

building. 

 

3.1 Evacuation path planning 
 

The core of core of our approach is represented by a dynamic model for fire hazard spreading in 

building environments. The dynamic model provides estimated information about the dynamicity of 

the fire hazard over time in the building environment. The model then generates a set dynamic 

navigation weights ),()( vuc t
 representing the time taken to walk between two adjacent locations u, v 



at the time t. Based on these elements two types of dynamic navigation paths are introduced within the 

building environment. Firstly, the dynamic shortest paths are considered to be used by well-able 

evacuees towards the exit or by the fire-fighters to navigate in the building. The second type of path 

uses the concept of safety which represents the maximum time one can safely delay at the nodes. 

These dynamic safety paths can be used in evacuation by evacuees with disability of by fire-fighters 

assisting injured evacuees. The dynamic model also generates a series of dynamic centrality indices 

that offer valuable information about the importance of each node in the evacuation process. Perhaps, 

the most important index is represented by the dynamic betweenness which gives the probability of a 

node to be on evacuation paths.  

The first scenario is for evacuation and it is based on a centralised computation. The WSN network 

senses the hazard locations and then notifies the sink node about them. At the sink node the dynamic 

model is simulated and estimated information about the hazard development, about the dynamic 

shortest paths and about the dynamic safety paths are generated for future time. Then this information 

is transmitted from the based station to the actuator sensors which can display the best or safest route 

to take. This approach offers always accurate evacuation data and avoids the WSN network becoming 

congested by the process of updating evacuation routes. Another approach of this scenario is when the 

estimated evacuation information is sent from the sink node to the fire-fighters in order to allow them 

use only safe navigation routes to the exit. The second scenario uses the dynamic model to offer the 

fire-fighters support when they navigate in the building. An important duty of fire-fighters is to search 

rooms for possible injured people and to assist them in evacuation. In this case the fire-fighters use the 

dynamic shortest paths in the navigation process through the rooms and then take the dynamic safety 

path to the exit when they assist injured evacuees. The third scenario offers information to the Incident 

Commander about the most important nodes in evacuation which should be kept hazard free during 

the evacuation process. 

 

3.2 Multi-Agent Emergency Simulation 
 

We design a real-time simulator for detecting and handling building fire emergency scenarios. The 

goals of this simulator are to provide for: (1)a dynamic virtual test-bed for population routing and 

networking algorithms during emergencies, (2)identification of building features that impact on 

evacuation scenarios, such as corridors prone to congestion, (3)visualising real-world emergency 

situations and predicting outcomes to inform rescue personnel as to the best rescue strategy or possible 

danger areas. 

The underlying world model for this simulation is an object-based 2.5 dimension "building". Each 

floor of the building is a 2D collection of world objects, with the floors arranged in a spacial collection 

(ground floor, first floor, second floor etc). Stairs, fire escapes and elevators provide a mechanism for 

agents to travel between floors. This 2-and-a-half dimension model was chosen as it simplifies agent 

behaviour computations and allows for very clear visualisation of the emergency as it unfolds. The 

underlying building objects have analogues within the Industry Foundation Classes building model 

objects, such as walls, doors and so on. 

The simulation features multiple agents with dynamic behaviours navigating a building during an 

emergency. These agents are driven by a Sense->Plan->Act cycle and have basic memory. The two 

main classes of Agent are "Occupant" agents (persons present in the building, primarily driven by 

environmental cues such as direction signs or following crowds) and "Firefighter" agents (primarily 

driven by individual instructions, such as radio contact or personal "compass" direction). Agents will 

have steering and crowding mechanisms to accurately reflect real-life population movement. The 

underlying physical model of the world combined with such measures will provide useful knowledge 

as to areas in the building with excessive traffic and poor movement flow, or parts of a building which 

are of high-importance for evacuation (e.g. a main corridor). 



 
Fig.4 Simulation illustration 

 
The simulation also incorporates simulated embedded network elements. These virtual sensors detect 

people, fire, smoke and temperature. The simulated actuators will drive building elements such as 

direction signs, windows, door locks and fire suppression systems (sprinklers etc). Fig. 4 shows a 

screenshot of our simulation for building fire. 

The sensors will be used to drive a view of the building apart from the actual underlying simulation 

itself. This "sensor view" is limited by sensor uncertainty, sensing range characteristics and sensing 

schedules. This limited view of the building provides information to a higher-level Application Layer 

which will be running Evacuation route planning algorithms, fire-fighter direction and other 

emergency applications.  

The systems running on the application layer feed actuation instructions to the in-simulation actuators 

which reflect these instructions in the underlying simulation (signs direct the occupants along the 

evacuation path, sprinklers activate, fire-fighters remotely receive a new instruction, and so on).  

 

4 Related work 
 

Our research discussed in this paper is based on the NEMBES project funded by the Irish Higher 

Education Authority under the PRTLI-IV programme. NEMBES is an inter-institutional and multi-

disciplinary research programme that will investigate a "whole system" approach to the design of 

networked embedded systems, marrying expertise in hardware, software and networking with the 

design and management of built environments. Our research is covered by one of the main research 

strands in NEMBES: facilities management as “sensor network management within buildings”. The 

focus of the research is to develop dynamic sensor network management methodologies for building 

environment where wireless sensor network technology providing low cost data acquisition also 

provides a means of detecting the environment and the combine wireless sensing and actuating 

capabilities to provide some response capability for sensed events. While the network routing and 

MAC protocols govern the successful data reporting of the wireless sensor network it will also be 

tasked with fire events via alarm triggers. These alarmed events can be interpreted, ranked and routed 

based on urgency as maintenance, repair, replace requests or highlight the need for additional 

equipment, sensors meters to satisfy building services demands such as making fire evacuation for 

people in fire and providing guidance for firefighter to find injured.  

There are a lot of routing and MAC layer protocols designed for WSNs. Real-time design is one of the 

challenge in building fire emergency. Some WSN applications require real-time communication, 

typically for timely surveillance or tracking, e.g. SPEED [2], MM-SPEED [3], RPAR [4] and RTLD 

[5] were designed for real-time applications. But they are not well suited for building fire emergency 

especially the situation will be even worse with dynamic topology changes and node failure caused by 

fire spreading. 

In building fire emergency applications, we envisage firefighters entering the building with small base 

stations attached to them. These base stations can act as mobile sink nodes, able to relay data back to 

the main base station in a single hop. Recently, many researchers have considered mobile relays or 

mobile sinks to solve the sink neighbourhood problem [10, 11]. In these scenarios, mobile nodes play 



an important role for relaying or collecting data continuously. Combining our application, the main 

question we consider in fire is how to make best use of these mobile sinks.  

In WSNs, Medium Access Control (MAC) plays an important role in a successful communication. 

Existing contention-based MAC protocols such as S-MAC [6], schedule-based MAC protocols such as 

TRAMA [7], and the combination of both contention and schedule (hybrid) for example Z-MAC [8] 

are not suitable for fire emergency. During this emergency situation, successful communication of the 

WSN depends on a robust and reliable communication protocol to transport important messages to the 

base station. Furthermore, in the emergency situation, energy efficiency of the communication 

protocol can be traded for the necessity of high throughput and low latency. Different from existing 

work, nodes change the behaviour of the MAC by allowing contention in TDMA slots when an 

emergency event occurs. A node may contend for its neighbour's transmit slot if it has priority packets 

to send.  

The last couple of years have seen an important number of applications of sensors in building 

environments. The usage of the WSN networks in emergency evacuation is just one of them with 

various solutions proposed so far [9]. Different from this, our work uses a novel dynamic evacuation 

model [13] to consider dynamic evacuation graph with fire spreading. 

Currently, a simulator doesn’t exist which is designed specifically for emergency applications such as 

building fire, we designed a simulator that could provide a dynamic virtual testbed for designed 

protocols and algorithms especially for emergency scenarios. 

 

5 Conclusions  
 

In this paper, we present the framework of communication protocol design for building fire, and then 

propose the main schemes to use WSNs in fire evacuation/guidance, as well as the multi-agent 

emergency simulation. We outline some of the main ideas of our NEMBES project work on building 

fire emergency applications. Firstly, we present the main ideas of the real-time and reliable routing 

protocol designed for building fire to guarantee a real-time and high successful probabilistic end-to-

end data delivery. This routing protocol is adaptive to fire spreading. Secondly, we propose an 

opportunistic routing scheme with mobile sinks. Thirdly, we present a MAC protocol that is adaptive 

to priority-based traffic and collisions due to simultaneous transmissions. Next, we give some details 

about fire evacuation/navigation schemes by using a dynamic evacuation model. Then, we bring 

forward a simulation testbed especially for building fire based on the protocols we designed.  

Our research is still in progress and it could benefit applications for building fire emergency and other 

similar emergency situations such as earthquakes and other urban disasters. The further work includes 

the complementary of existing protocols and mechanisms, as well as implementing simulations under 

different network scenarios and fire models.  
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