

UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks!

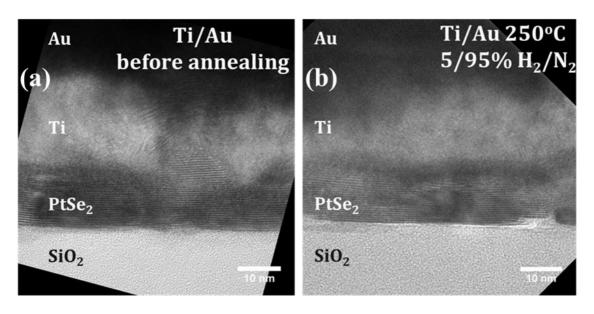
Title	Effects of annealing temperature and ambient on Metal/PtSe2 contact
	alloy formation
Author(s)	Mirabelli, Gioele; Walsh, Lee A.; Gity, Farzan; Bhattacharjee, Shubhadeep; Cullen, Conor P.; Ó Coileáin, Cormac; Monaghan, Scott; McEvoy, Niall; Nagle, Roger; Hurley, Paul K.; Duffy, Ray
Publication date	2019-10-10
Original citation	Mirabelli, G., Walsh, L. A., Gity, F., Bhattacharjee, S., Cullen, C. P., Ó Coileáin, C., Monaghan, S., McEvoy, N., Nagle, R., Hurley, P. K. and Duffy, R. (2019) 'Effects of Annealing Temperature and Ambient on Metal/PtSe2 Contact Alloy Formation', ACS Omega, 4(17), pp. 17487-17493. (7pp.) DOI: 10.1021/acsomega.9b02291
Type of publication	Article (peer-reviewed)
Link to publisher's version	https://pubs.acs.org/doi/10.1021/acsomega.9b02291 http://dx.doi.org/10.1021/acsomega.9b02291 Access to the full text of the published version may require a subscription.
Rights	©2019 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
Item downloaded from	http://hdl.handle.net/10468/8875

Downloaded on 2019-12-02T14:11:48Z

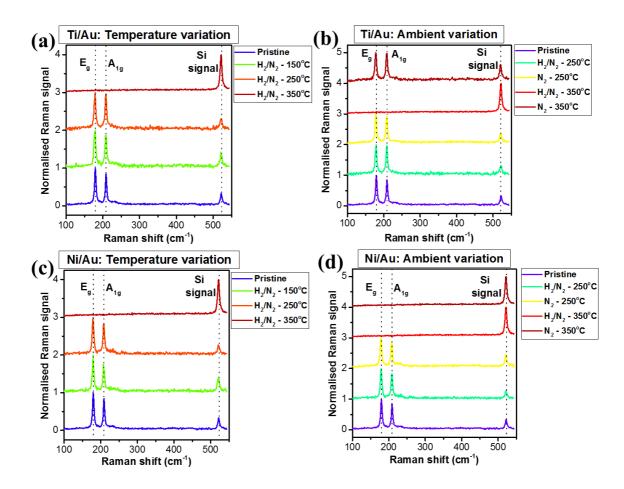
Supporting Information:

Effects of annealing temperature and ambient

on metal-PtSe₂ contact alloy formation


Gioele Mirabelli¹, Lee A. Walsh¹, Farzan Gity¹, Shubhadeep Bhattacharjee¹, Conor P. Cullen³, Cormac Ó Coileáin³, Scott Monaghan¹, Niall McEvoy³, Roger Nagle¹, Paul K.

Hurley^{1,2}, Ray Duffy¹


¹ Tyndall National Institute, University College Cork, Cork, Ireland,

² School of Chemistry, University College Cork, Ireland,

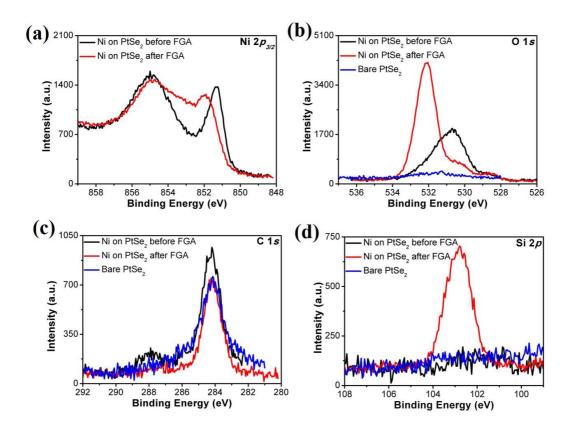

³ School of Chemistry, AMBER and CRANN, Trinity College Dublin, Dublin 2, Ireland

Figure S1: Representative cross-section TEM images of the PtSe₂ contacted with Ti/Au (a) before and (b) after annealing at 250 °C in FG, showing that the layered structure of the PtSe₂ is maintained after annealing.

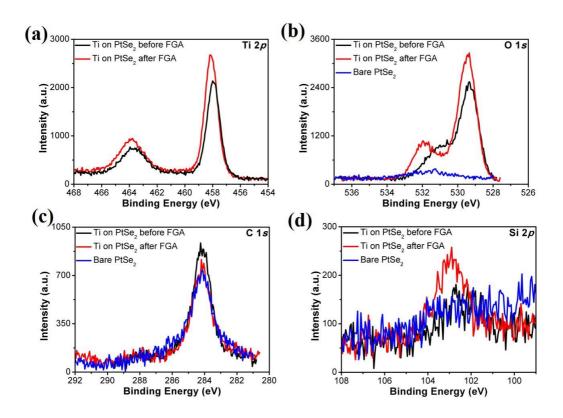


Figure S2: Raman signal collected from the PtSe₂ region (not the alloy region) after each annealing variation. (a) and (c) show the Raman signal after annealing in forming gas for each temperature for the Ti/Au and Ni/Au samples respectively. (b) and (d) show the Raman signal after annealing at 250 °C and 350 °C in FG and inert environment for the Ti/Au and Ni/Au samples respectively. When the annealing condition is too harsh the PtSe₂ signal is lost.

Figure S3: Additional XPS spectra of as-deposited Ni/PtSe₂ samples. a) Ni $2p_{3/2}$, (b) O 1s, (c) C 1s, and (d) Si 2p spectra.

Figure S2 shows spectra of the as-deposited Ni on PtSe₂ in addition to those included in the main article. The Ni $2p_{3/2}$ spectra show a metallic Ni signal at 851.2 eV, and a broad peak centered at ~853 eV. This higher BE peak cannot be directly attributed to the formation of a NiSe_x due to the number of complex satellite peaks present at higher BE in a Ni 2p spectra, along with the multiple peak splitting which can occur for Ni compounds. The O 1s spectra shows an increase in oxidation (compared to bare PtSe₂) following Ni deposition. This is primarily due to oxidation of the Nickel surface. No significant change in the C 1s or Si 2p signal is observed between bare PtSe₂ and Ni on PtSe₂, indicating no C contamination, or thinning of the PtSe₂ layer (which would lead to an increased Si signal).

Figure S4: Additional XPS spectra of as-deposited Ti/PtSe₂ samples. a) Ti 2p, (b) O 1s, (c) C 1s, and (d) Si 2p spectra.

Figure S3 shows additional spectra of the as-desposited Ti on PtSe₂. The Ti 2*p* spectra show a no evidence of a metallic Ti signal rather the peak shape and position are that expected for TiO₂. This is expected given the very low formation energy of TiO₂, and the oxygengettering nature of Ti. This complete oxidation of the Ti (BE = 529.5 eV) can also be clearly seen in the drastic increase in the O 1*s* signal. No significant change in the C 1*s* or Si 2*p* signal is observed between bare PtSe₂ and Ti on PtSe₂, again indicating no C contamination, or thinning of the PtSe₂ layer.