
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Efficient architectures and implementation of arithmetic functions
approximation based stochastic computing

Author(s) Luong, Tieu-Khanh; Nguyen, Van-Tinh; Nguyen, Anh-Thai; Popovici,
Emanuel M.

Publication date 2019-07

Original citation Luong, T., Nguyen, V., Nguyen, A. and Popovici, E. (2019) 'Efficient
Architectures and Implementation of Arithmetic Functions
Approximation Based Stochastic Computing'. 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), New York, USA, 15-17 July, pp. 281-287. doi:
10.1109/ASAP.2019.00018

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/abstract/document/8825149
http://dx.doi.org/10.1109/ASAP.2019.00018
Access to the full text of the published version may require a
subscription.

Rights © 2019 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/8805

Downloaded on 2019-12-02T14:10:20Z

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Cork Open Research Archive

https://core.ac.uk/display/237182795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://libguides.ucc.ie/openaccess/impact?suffix=8805&title=Efficient architectures and implementation of arithmetic functions approximation based stochastic computing
https://ieeexplore.ieee.org/abstract/document/8825149
http://dx.doi.org/10.1109/ASAP.2019.00018
http://hdl.handle.net/10468/8805

Efficient Architectures and Implementation of
Arithmetic Functions Approximation Based

Stochastic Computing
Tieu-Khanh Luong

Dept. of Electrical & Electronic
Engineering, and MCCI 1
University College Cork

Ireland
118221694@umail.ucc.ie

Van-Tinh Nguyen
School of Information Science
Nara Institute of Science and

Technology
Japan

nguyen.van_tinh.np3@is.naist.jp

Anh-Thai Nguyen
Dept. of Microelectronics and

Microprocessing
Le Quy Don Technical University

Hanoi, Vietnam
nguyenanhthai77@gmail.com

Emanuel Popovici
Dept. of Electrical & Electronic

Engineering, and MCCI
University College Cork

Ireland
E.Popovici@ucc.ie

Abstract— Stochastic computing (SC) has emerged as a
potential alternative to binary computing for a number of low-
power embedded systems, DSP, neural networks and
communications applications. In this paper, a new
method, associated architectures and implementations of complex
arithmetic functions, such as exponential, sigmoid and hyperbolic
tangent functions are presented. Our approach is based on a
combination of piecewise linear (PWL) approximation as well as a
polynomial interpolation based (Lagrange interpolation) methods.
The proposed method aims at reducing the number of binary to
stochastic converters. This is the most power sensitive module in
an SC system. The hardware implementation for each complex
arithmetic function is then derived using the 65nm CMOS
technology node. In terms of accuracy, the proposed approach
outperforms other well-known methods by 2 times on average.
The power consumption of the implementations based on our
method is decreased on average by 40 % comparing to other
previous solutions. Additionally, the hardware complexity of our
proposed method is also improved (40 % on average) while the
critical path of the proposed method is slightly increased by 2.5%
on average when comparing to other methods.

Keywords— stochastic computing, VLSI, arithmetic, low power,
efficient architectures, sigmoid function, piecewise linear
approximation, Lagrange interpolations

I. INTRODUCTION

Stochastic Computing was firstly introduced in the late
1960s by a research group led by Gaines [1] as an alternative
method for efficient arithmetic digital representation circuits,
but its origin can be traced back to von Neumann’s seminal work
on probabilistic logic [2]. This has recently attracted significant
interest due to its unique properties which are extremely low-
cost arithmetic units [3], fault tolerance, simple hardware
implementation allowing very high clock rates [4]. However,
apart from these advantages which lead to significant savings of
hardware cost and power consumption, SC presents some
disadvantages including long latency and degradation of
accuracy. Applying massive parallelism in computation driven
by the very low-cost hardware area may alleviate some of these
disadvantages [4].

In Stochastic Computing (SC), the basic concept is to
represent a real number with a random bit stream by comparing
it with a uniformly distributed random number. A given binary
number (BN) ܤ is converted to a stochastic bit-stream form by
a stochastic number generator (SNG). The SNG samples a BN ܴ, compares it with ܤ , and outputs a stochastic number of
probability 2/ܤ௞at a rate of one bit per clock cycle where ݇ is
the number of bits to represent a BN. After N clock cycles, it has
produced an N-bit stochastic number (SN) X with ݔ݌	 ,2௞/ܤ ≈
where ݔ݌ is the frequency or rate at which ones appear in the
sequence. Generally, the estimate’s accuracy depends on the
randomness of ܺ’s bit-pattern and its length ܰ [5].

Using a stochastic representation can map complex
arithmetic functions to simple bitwise logical operation. Figure
1 shows fundamental stochastic computational elements.
Multiplication which has high hardware cost in terms of area and
power consumption can now be implemented in a single AND
gate in stochastic computing in unipolar format (0 ≤ ݔ݌ ≤ 1) or
XNOR gate in bipolar format (−1 ≤ ݔ݌ ≤ 1). NOT gate is used
to implement 1 − ݔ in unipolar format and −ݔ in bipolar
format. NAND gate is used to implement 1 − aݔ, where a is in
[0, 1]. Addition is implemented by a multiplexer (MUX) and the
output form MUX is the scaled result [3]. These simplified
operations, along with the ones presented in this paper, have a
significant area and power impact on many application in digital
signal processing, communications (e.g. LDPC codecs), neural
networks as well as the general field of probabilistic computing
[6].

With the recent trend of low power wearable devices and
Internet of Things (IoTs), there comes the necessity of
integrating more artificial intelligence at the edge. SC becomes
attractive to integrate neural network onto embedded and
portable devices, which require low power and energy
consumption and are constrained by a small hardware area.
Deep Belief Network and Deep Neural Network based on
Stochastic sComputing have been proposed recently in [7] and
[8], respectively with low energy consumption, high area
efficiency. For many signal processing applications, SC has also
been exploited to significantly reduce the complexity and the
power consumption (e.g. Lower Upper-Decomposition for

1 MCCI : Microelectronic Circuits Centre Ireland, www.mcci.ie , a
Technology Centre supported by Enterprise Ireland.

MIMO receiver [9], Sparse code multi-access detector [10],
digital filters, etc). Recently, some works have shown that SC-
based LDPC decoders are competitive in performance and cost
with conventional binary designs while providing significant
savings in area [5]. Besides, SC has also been applied for
computation engine for DRAM based In-stu Accelerator [11],
image processing [12].

Fig. 1: Fundamental Stochastic Computational Elements

One of the most attractive features of SC is that complex
computational functions can be implemented by very low-cost
hardware design allowing for massive parallelism. Widely used
exponential and hyperbolic tangent functions on stochastic bit
streams were proposed in [3] using FSM. But, one drawback of
the work is that there were a limited number of functions which
can be implemented by using this method. FSM based on
Markov chains with a redesign of topology was proposed, so that
more complex functions can be synthesized stochastically [4].
In [5] an alternative method based on Bernstein polynomials has
been shown in which high complexity functions can be
approximated. However, Bernstein polynomials based
implementation requires a higher degree of polynomials to reach
higher accuracy. This leads to a higher hardware complexity and
higher cost. Stochastic logic based implementations of complex
arithmetic functions using truncated Maclaurin series
polynomials was presented in [3]. This method drastically
reduced the critical path and hardware complexity compared to
FSM and Bernstein polynomials based implementations.

In our quest to further simplify the implementations of these
functions, we propose a hybrid method to implement complex
arithmetic trigonometric, exponential, logarithmic and sigmoid
functions based on stochastic computing in which both PWL as
well as polynomial interpolation methods are used for
approximation.

II. ARITHMETIC FUNCTIONS BASED PIECEWISE LINEAR

APPROXIMATION

In this section, the proposed method for calculating complex
arithmetic functions is provided which is based on the
combination of piecewise linear approximation and Lagrange
interpolation polynomial. The uniform subdivisions and the
transformations of each subdivision are selected to increase the
accuracy while keeping the hardware complexity as low as
possible.

The polynomial approximation is based on the classical
Weierstrass theorem [13] in which for any continuous function ݂(ݔ) in the range [a, b], there exists a polynomial (ݔ)ܮ for
approximating the function in that range so the maximum
approximation error is below the given limit. Then degree
polynomial can be found through ݊ + 1	fitting points in the

interval range ܽ௜ ≤ ݔ ≤ ܾ௜. The coefficients of this polynomial
are given by the Lagrange interpolation formula:

(ݔ)݂ = ෍ܮ௜(ݔ)௡
௜ୀ଴ (1)

 Where each (ݔ)ܮ term is defined by

(ݔ)௜ܮ = .(௜ݔ)݂ ෑ ݔ − ௜ݔ௜ݔ − ௝௡ݔ
௝ୀ଴,௜ஷ୨ (2)

With each set of fitting points, we can calculate the
polynomial (ݔ)ܮ then the approximation error is ߝ = (ݔ)݌ ,However, this approximation may not be optimal. Hence .(ݔ)ܮ−
we can perform an exhaustive search in the range ܽ ≤ ݔ ≤ܾ	with all possible pairs of fitting points on ݂(ݔ)	to find the
optimal polynomial. ܿ଴ = cos ቀ 2݊ߨ + 2ቁ , … , ܿ௡ = cos	((2݊ + 2݊ߨ(1 + 2) (3)

 For the approximation interval [-1, 1], the best points
which are to minimize the maximum of the product |(ݔ ݔ)(଴ݔ− − …(ଵݔ ݔ) − |(௡ݔ are the so-called Chebyshev nodes
[14], for which ݔ)|ݔܽܯ − ݔ)(଴ݔ − …(ଵݔ ݔ) − −1	௡)|ݔ < ݔ < 1

 (4)

is minimal. In general, for the case with n + 	1 points ݔ଴, ,ଵݔ :௡ the Chebyshev nodes areݔ

 Using the Chebyshev nodes usually provides an
interpolating polynomial that is reasonably close to the optimal
[14].

Using a high-order polynomial to approximate complex
arithmetic functions based on stochastic computing will lead to
an increase of hardware complexity as well as longer latency. In
general, the shorter the approximation interval, the closer to
linear the function then the lower degree polynomial is required
while keeping the suitable error approximation. Therefore,
reducing approximating interval into subintervals is necessary.

A complex arithmetic function ݂(ݔ) is approximated by
using piecewise-linear (PWL) approximation in which these
continuous functions are broken into segments. The domain of ݔ	 ∈ ,ߙ) equal segments. Then, each ݏ could be divided into (ߚ
segment is approximated by a linear function. The number of
segments is chosen such as ݏ = 2௞ with (k = 1,2,3,4 …) [15]. In
segment ݅௧௛, the function f(x) can be written as: ݂(ݔ) ≈ ܽ௜ݔ + ܾ௜ , ݏ݅ ߚ) − (ߙ ≤ ݔ ≤ ݅ + ݏ1 ߚ) − ݅(ߙ = 0 → ݏ − 1

(6)

where ݅ describes ݅௧௛ segment.

The absolute values of coefficients ܽ௜ and ܾ௜ could be
described in (7) where B represents the number of bits of the two
coefficients.

ݔ)|ݔܽܯ − ܿ଴)(ݔ − ܿଵ)… ݔ) − ܿ௡)| = 	 12௡−1 < ݔ < 1
 (5)

ܽ௜, ܾ௜ = ܰ. 2ି஻						ܰ, 	ܤ ∈ ܼ (7)

The optimized values of coefficients ܽ௜ and ܾ௜ can be
generated by using Lagrange Interpolation Approximation
method by using Chebyshev nodes as presented above to
minimize the approximation error. The complex arithmetic
functions ݂(ݔ) that are investigated in this paper include 		݈݊(1 + (ݔ , ݁ି௫, ݁ିଶ௫, (ݔ)ℎ݊ܽݐ	 , ,(ݔ)݀݅݋݉݃݅ݏ (ݔ)݊݅ݏ ,(ݔ)ݏ݋ܿ , ௦௜௡	(௫)


. Theoretically, the accuracy can be improved by

two alternatives: either by increasing the degree of
approximation polynomials or dividing the approximation
interval to smaller subintervals. In this paper, we will investigate
the number of segments in two cases, namely s = 8 and s = 16
respectively. The number of bits of the coefficients is chosen B
= 10 in order to balance the latency of computing and accuracy.

The Table I describes the approximated values of
coefficients ܽ௜ and ܾ௜ achieved by using PWL approximation
combined with Lagrange interpolation approximation.

III. THE PROPOSED HARDWARE ARCHITECTURES.

A. The Hardware Designs of f(x)= ݁ି௫, (ݔ)ݏ݋ܿ
By using the proposed method, the two above arithmetic

functions can be approximated as follows: ݂(ݔ) ≈ ܽ௜ݔ + ܾ௜ (8)
Implementing the above approximation function needs a

multiplier and an addition. The addition is implemented by
using a 2 by 1 multiplexer and the multiplier is a simple two
input AND gate. Note that this is the scaled version of addition
so it will lead to a reduction of accuracy. However, the
coefficients of ݁ି௫, in ݅௧௛ segment are always negative and their absolute values are	from the Table I, the values of ܽ௜ (ݔ)ݏ݋ܿ

smaller than	ܾ௜ . Hence, the factor
௔೔௕೔ is in the range of [0, 1] and

can be represented by a stochastic number. The equation (8)
could be rewritten then as follows: ݂(ݔ) = 1 − ܽ௜ܾ௜ ,ݔ ݅ = 0 ∶ 7 (9)

As a result, the stochastic elements used to implement the
equation (9) includes a NAND gate rather than an AND gate
and a multiplexer as in (8). The architecture to calculate these

functions is illustrated in Fig.2. The factor of
௔೔௕೔ is stored in a

look-up table (LUT A). Three MSBs of the input values are the

values to select the appropriate factor
௔೔௕೔ corresponding to the ݅௧௛	segment.

Fig. 2: The architecture of stochastic implementation of the
functions	݁ି௫, (ݔ)ݏ݋ܿ

The output values of the LUT are then converted to a
stochastic number by a stochastic number generator.
Afterwards, the two stochastic numbers are inputs to a two input
NAND gate to implement equation (9) and the output of the
NAND gate will be converted to binary values through a
counter.

TABLE I
THE OPTIMIZED VALUES OF COEFFICIENTS ܽ௜	 AND ܾ௜ ACHIEVED BY USING PIECEWISE-LINEAR APPROXIMATION AND LAGRANGE INTERPOLATION

Segment ݈݊(1 + 	sin(x) ܽ௜ (ݔ)݀݅݋݉݃݅ݏ (ݔ)ℎ݊ܽݐ (ݔ ܾ݅ ܽ௜	 ܾ௜ ܽ௜ ܾ௜ ܽ௜	 ܾ௜
0 964 x 2-10 1 x 2-10 1023 x 2-10 1 x 2-10 256 x 2-10 512 x 2-10 1023 x 2-10 0 x 2-10
1 861 x 2-10 14 x 2-10 988 x 2-10 4 x 2-10 254 x 2-10 512 x 2-10 1023 x 2-10 2 x 2-10
2 780 x 2-10 34 x 2-10 929 x 2-10 19 x 2-10 250 x 2-10 513 x 2-10 1023 x 2-10 2 x 2-10
3 713 x 2-10 60 x 2-10 850 x 2-10 49 x 2-10 244 x 2-10 515 x 2-10 974 x 2-10 10 x 2-10
4 655 x 2-10 88 x 2-10 758 x 2-10 95 x 2-10 237 x 2-10 519 x 2-10 927 x 2-10 28 x 2-10
5 606 x 2-10 118 x 2-10 660 x 2-10 156 x 2-10 228 x 2-10 524 x 2-10 866 x 2-10 58 x 2-10
6 565 x 2-10 150 x 2-10 563 x 2-10 229 x 2-10 218 x 2-10 532 x 2-10 791 x 2-10 105 x 2-10
7 529 x 2-10 181 x 2-10 472 x 2-10 308 x 2-10 207 x 2-10 542 x 2-10 704 x 2-10 170 x 2-10

Segment ݁ିଶ௫ ܿ(ݔ)ݏ݋ ݁ି௫ ୱ୧୬(௫)


 ܽ௜	 ܾ௜ ܽ௜	 ܾ௜ ܽ௜ ܾ௜ ܽ௜ ܾ௜
0 -1809 x 2-10 1023 x 2-10 -63 x 2-10 1025 x 2-10 -962 x 2-10 1005 x 2-10 1001 x 2-10 0 x 2-10
1 -1409 x 2-10 970 x 2-10 -190 x 2-10 1041 x 2-10 -849 x 2-10 988 x 2-10 846 x 2-10 20 x 2-10
2 -1097 x 2-10 893 x 2-10 -315 x 2-10 1072 x 2-10 -748 x 2-10 926 x 2-10 567 x 2-10 91 x 2-10
3 -855 x 2-10 802 x 2-10 -433 x 2-10 1116 x 2-10 -661 x 2-10 859 x 2-10 199 x 2-10 229 x 2-10
4 -665 x 2-10 708 x 2-10 -545 x 2-10 1172 x 2-10 -582 x 2-10 773 x 2-10 -199 x 2-10 428 x 2-10
5 -518 x 2-10 616 x 2-10 -649 x 2-10 1237 x 2-10 -517 x 2-10 723 x 2-10 -567 x 2-10 658 x 2-10
6 -403 x 2-10 530 x 2-10 -743 x 2-10 1307 x 2-10 -453 x 2-10 682 x 2-10 -846 x 2-10 868 x 2-10
7 -314 x 2-10 452 x 2-10 -825 x 2-10 1379 x 2-10 -394 x 2-10 611 x 2-10 -1001 x 2-10 1001 x 2-10

B. The Hardware Design of ݂(ݔ) = ݈݊(1 + ,(ݔ ,(ݔ)݀݅݋݉݃݅ݏ,(ݔ)ℎ݊ܽݐ (ݔ)݊݅ݏ
From the Table I, it can be clearly seen that the values of

both ܽ௜ and ܾ௜ are in the range [0, 1]. Note that the values of ܽ௜
are always greater than that of ܾ௜ . If we use	ܾ௜ = 1 − ܿ௜ , the
approximating function can be represented as: ݂(ݔ) = 1 − ܿ௜ + ܽ௜ݔ = 1 − ܿ௜(1 − ܽ௜ܿ௜ (10) (ݔ

Where
௔೔௖೔ 	 are in the range [0, 1]. With this slight

modification, we avoid using an addition in implementing the
approximation function. The architecture of these functions is
presented in Fig 3 as below.

In this hardware architecture, LUT-A stores the values of
௔೔௖೔

while LUT-B stores the values of ܿ௜. The appropriate values for
each segment are selected by three MSB of input. The SNGs
convert from binary to stochastic numbers. The NAND gate is
used to implement the expression ݕ = 1 − Therefore, we ݔܽ
need two NAND gates to implement the equation (10). Then the
stochastic bit-stream from the second NAND gate will be
converted to a binary number by a counter.

Fig. 3: The architecture of stochastic implementation of the
functions	݈݊(1 + (ݔ , (ݔ)ℎ݊ܽݐ , ,(ݔ)݀݅݋݉݃݅ݏ (ݔ)	݊݅ݏ
C. The Hardware Design of ݂(ݔ) = 	 ௦௜௡	(௫)



The values of ܽ௜	of approximation function are in the range
[-1, 1], while those of ܾ௜	are in the range [0, 1]. Clearly, the
domain of the values ܽ௜	is divided in two halves in which the
domain of the first four values of ܽ௜	belongs to [0, 1] and the
other four values is in [-1, 0]. Thus, the approximation function
can be described by: ݂(ݔ) = ൜ ܽ௜ݔ + ܾ௜, ݅ = 0,1,2,3−ܽ௜ݔ + ܾ௜, ݅ = 4,5,6,7

(11)

 In the first half, the values of ܽ௜ and ܾ௜ are always positive
and ܾ௜’s are less than ܽ௜’s. Hence the factor

௔೔௕೔ will exceed the

range [0, 1] and cannot be represented by stochastic numbers.
Hence, the approximation function can be described as follows: ݂(ݔ) = 1 − ܿ௜(1 − ௔೔௖೔ 0,1,2,3 (12)	=	i		 (ݔ

Where ܿ௜ = 1 − ܾ௜ and ܿ௜ is greater than ܽ௜ so the factor
௔೔௖೔

is within [0, 1] and can be represented in the stochastic domain.

In the second half, Table I shows that the values of ܽ௜’s are
negative whereas those of ܾ௜’s are positive. Also, the same table
shows that the absolute values of ܾ௜	are greater than those of ܽ௜’s, so the approximation function can be written as below: ݂(ݔ) = 1 − ܽ௜ܾ௜ ,ݔ 								݅ = 4,5,6,7 (13)

 A multiplexer is required to select the appropriate output
result and the MSB will be fed to the multiplexer for the
selection purpose. The hardware architecture of the function is
presented in Fig. 4.

Fig. 4: The architecture of stochastic implementation of the

functions
௦௜௡	(௫)



In this hardware architecture, LUT-A will be divided into
two halves in which the first half stores the values of

௔೔௖೔’s and ௔೔௕೔’s values are stored in the second half. As the values of ܿ௜’s are

only used for the first half of the approximating function, they
will be stored in the first half of LUT-B and the second half of it
is filled with zeros. Three MSBs of the input are also used to
select the appropriate factors corresponding with each segment.
The stochastic bit-stream from the multiplexer will then
converted to a binary number by using a counter.

D. The Hardware Design of ݂(ݔ) = 	 ݁ିଶ௫

In Table I, it can be seen that the range of values ܽ௜’s are in
[-2, 0] whereas those of ܾ௜ᇱs are in [0, 1]. Additionally, the
absolute first four values of ܽ௜	are greater than those of ܾ௜	and
vice versa for the next four values.

Considering the first four values, the absolute values of ܽ௜	are greater than 1 in three cases. And the values of the factor ௔೔௕೔ belong to [1, 2], so they cannot be directly converted to

stochastic numbers. Noting these features, the factorization
method is considered, namely

௔೔௕೔ is divided by 2. Then the

approximation function of the first four values can be written as
follows: ݂(ݔ) = 	−ܽ௜ݔ + ܾ௜ = 1 − ܽ௜ܾ௜ ,ݔ ݅ = 0,1,2,3

= 	1 − ܽ௜2ܾ௜ ݔ − ܽ௜2ܾ௜ ݔ

Where
௔೔ଶ௕೔is in the range [0, 1] which can be a stochastic

number. Implementing the above formula requires a subtraction.

However, since the value range [0, 1] is unipolar, i.e. does not
include negative numbers, it is quite complex to implement the
subtraction. One method has been proposed in [16] to implement
the subtraction by using an XOR gate.

In the second four values of ܽ௜	ܽ݊݀	ܾ௜ , the approximation
function can be described as follows: ݂(ݔ) = 	−ܽ௜ݔ + ܾ௜ = 1 − ܽ௜ܾ௜ ,ݔ ݅ = 4,5,6,7 (15)

The hardware architecture of the resulting function is shown
in Fig. 5. In this hardware architecture, a LUT A is used to store
the values

௔೔ଶ௕೔	in the first half and
௔೔௕೔ in the second half. Three

MSBs will be feed to the LUT to select the appropriate value in
each segment. The selected signal of the multiplexer is given by
the MSB bit of the input. The AND gate is used to implement
unipolar multiplication. We use a one-bit delay element for the
decorrelation of

௔೔ଶ௕೔ [3] and then a XOR gate is implemented for

subtraction [16]. The stochastic bit-stream from the multiplexer
will then be converted to a binary number by using a counter.

IV. SIMULATION RESULTS

The functions presented in the previous sections are
implemented by using the proposed method, the FSM-based
method [17] (the 2-dimensional method more specifically as the
1-dimensional FSM-based method is not suited for the
implementation of the selected complex functions [17]) and
Horner’s Rule for Maclaurin expansions [3].

The Monte Carlo simulation method was used to evaluate
the Mean Absolute Error (MAE) of different algorithms. We use
1,024 bits to represent a numerical value stochastically. Table II

shows the MAE of outputs of selected implementations by using
this assumption.

 Fig. 5: The architecture of stochastic implementation of the
function ݁ିଶ௫.

In terms of accuracy, it is shown in Table II that the MAE of
our proposed method outperforms FSM based method by a
factor of 8.25 times on average. Additionally, from Table II, we
can observe that the proposed method improved the MAE 2.5
times on average comparing to the Maclaurin based expansions
method. Figure 6 and 7 show the simulation results of the
stochastic implementation of widely used tanh(x) and
sigmoid(x) functions.

All presented algorithms and architectures are implemented
in hardware by using VHDL and synthesized in 65 nm CMOS
library using Synopsys Design Compiler for a fair comparison.
Table III shows the hardware implementation results for the
implementations. The hardware complexity results are given in
terms of equivalents GE (number of 2-input NAND gates).

TABLE II
THE OUTPUT MEAN ABSOLUTE ERROR (MAE) OF STOCHASTIC IMPLEMENTATION FOR DIFFERENT COMPLEX ARITHMETIC FUNCTION USING THE PROPOSED

METHOD, MACLAURIN EXPANSION BASED METHOD AND THE FSM-BASED METHOD.

Functions
Proposed (8
Segments)

Proposed (16
Segments)

Horners rule [3] FSM-based [3]

sin(x) Order - - 7 8 states
Error 0.0013 0.0012 0.0034 0.0025 ܿ(ݔ)ݏ݋ Order - - 6 8 states
Error 0.0087 0.0063 0.0023 0.0053 ln(1 + Order - - 7 8 states (ݔ
Error 0.0026 0.0011 0.0081 0.0186 tanh(ݔ) Order - - 7 8 states
Error 0.0012 0.0012 0.0140 0.0351 ݁ି௫
Order - - 6 8 states
Error 0.010 0.0064 0.0008 0.0154 ݁ିଶ௫
Order - - 6 8 states
Error 0.0766 0.0678 0.0009 0.0423 (ݔ)݀݅݋݉݃݅ݏ Order - - 5 8 states
Error 0.0043 0.0012 0.0046 0.0198 sin	(ݔ)



Order - - 11 8 states
Error 0.0288 0.0288 0.0487 0.4716

Fig. 6: The simulation result of stochastic implementation of tanh(x)		

Fig. 7: The simulation result of stochastic implementation of
sigmoid(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ta
nh

(x
)

Objective function
Stochastic Impelementation 16 Segs
Stochastic Impelementation 8 Segs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.45

0.5

0.55

0.6

0.65

0.7

0.75

si
gm

oi
d(

x)

Objective function
Stochastic Impelementation 16 Segs
Stochastic Impelementation 8 Segs

TABLE III
THE HARDWARE COMPLEXITY AND CRITICAL PATH DELAY OF STOCHASTIC IMPLEMENTATION OF COMPLEX ARITHMETIC FUNCTIONS WITH INPUT VALUES

FROM 0 TO 1

Functions
Proposed (8
Segments)

Proposed (16
Segments)

Horners rule [3] FSM-based [3]

sin(x) Total Cell Area 601 650 2671 1269
Power(µW) 16.5767 17.56 67.65 35.49
Delay(ns) 2.87 2.99 3.09 2.71 ܿ(ݔ)ݏ݋ Total Cell Area 489 525 769 1268

Power(µW) 13.6596 13.6781 21.563 36.44
Delay(ns) 3.07 3.11 2.86 2.96 ln(1 + Total Cell Area 607 650 763 1269 (ݔ

Power(µW) 16.73 17.498 21.42 34.79
Delay(ns) 2.92 3.01 2.89 2.78

 tanh(ݔ) Total Cell Area 603 657 674 1270
Power(µW) 16.62 17.644 18.82 35.5213
Delay(ns) 2.97 3.12 2.89 2.71 ݁ି௫

Total Cell Area 491 530 763 2489
Power(µW) 13.06 13.9 21.48 41.29
Delay(ns) 2.73 2.97 2.82 3.09

 ݁ିଶ௫

Total Cell Area 504 540 1199 1269
Power(µW) 13.353 14.13 21.783 35.57
Delay(ns) 3.08 3.32 2.87 2.71 (ݔ)݀݅݋݉݃݅ݏ Total Cell Area 600 640 758 1489

Power(µW) 16.542 17.29 21.15 41.23
Delay(ns) 2.86 3.07 2.79 3.09 sin	(ݔ)



Total Cell Area 600 647 680 1269
Power(µW) 16.3 17.4924 19.1076 35.52
Delay(ns) 3.11 3.16 2.81 2.71

Finally, each architecture is evaluated for power
consumption. The proposed architectures also required 32% and
58 % times (on average) less power than the Maclaurin based
expansions and FSM based method, respectively. The cell area
utilization of the proposed method requires 1.3 times and 2 times
(on average) less than the Maclaurin based expansions and FSM
based method, respectively. Additionally, the delay of the
proposed method is 2.5 % more than others. Besides, when the
size of LUT is doubled, the MAE is improved 1.64 times while
cell area and power consumption are nearly unchanged. These
results show that, the proposed hardware architectures are well
suited for low-cost, low power applications by achieving a
significant improvement over the state of the art.

V. CONCLUSION

Stochastic computing re-emerges as a promising technique
in many applications which require low cost, fault tolerance and
low power. Complex functions are often a determining cost
factor for many hardware implementations. Stochastic
implementations of complex arithmetic functions based on the
combination of piecewise-linear approximation and Lagrange
interpolation have been presented in this paper. Based on the
proposed approximation scheme, a hybrid architecture for
hardware implementation of complex arithmetic functions has
been shown. The ASIC implementations and error analysis
results have proven the benefits of the proposed approach with
significant savings in area and power consumption. Future work
will be towards further multi-objective optimisation of the
proposed architectures (accuracy and power consumption) and
their use in applications including LDPC decoders as well as
neural networks.

VI. REFERENCES

[1] B. R. Gaines, "Stochastic Computing," in Proc. AFIPS

Spring Joint Computer Conf, 1967.

[2] J. v. Neumann, Probabilistic logics and the synthesis of
reliable organisms from unreliable components,,
Automata Studies, Shannon C.E. & McCarthy J., eds.,
Princeton University Press, pp. 43-98, 1956.

[3] K. Parhi and Y. Liu, "Computing Arithmetic Functions
Using Stochastic Logic by Series Expansion," IEEE
Trans. on Emerging Topics in Computing, pp. 1-13, Oct.
2016.

[4] B. D. Card and H. C. Brown, "Stochastic Neural
Computation I: Computational Elements," IEEE
Transactions on Computers, vol. 50, pp. pp. 891-905,
2001.

[5] A. Alaghi, W. Qian and J. P. Hayes, "The Promise and
Challenge of Stochastic Computing," IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, pp. vol. 37, pp. 1515-1531, Aug. 2018.

[6] K. Palem and A. Lingamneni, "What to Do About the
End of Moore’s Law, Probably!," in DAC Design
Automation Conference, San Francisco, pp924-929 2012.

[7] Y. Liu, Y. Wang, F. Lombardi and J. Han, "An Energy-
Efficient Online-Learning Stochastic Computational

Deep Belief Network," IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 3, pp.
454 - 465, 2018.

[8] Z. Li , J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper,
B. Yuan, J. Tang, Q. Qiu and Y. Wang, "HEIF: Highly
Efficient Stochastic Computing based Inference
Framework for Deep Neural Networks," IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. Early Access, pp. 1-1, 2018.

[9] J. Chen, J. Hu and J. Zhou, "Hardware and Energy-
Efficient Stochastic LU Decomposition Scheme for
MIMO Receivers," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, pp. vol. 24, pp. 1391-
1401, Apr. 2016.

[10] K. Han, J. Hu, J. Chen and H. Lu, "A Low Complexity
Sparse Code Multiple Access Detector Based on
Stochastic Computing," IEEE Transactions on Circuits
and Systems I: Regular Papers, pp. vol. 65, issue. 2, pp.
769-782, Feb. 2018.

[11] S. Li , A. O. Glova , X. Hu , P. Gu , D. Niu , K. T. Malladi
, H. Zheng, B. Brennan and Y. Xie, "SCOPE: A
Stochastic Computing Engine for DRAM-Based In-Situ
Accelerator," in 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Fukuoka,
2018.

[12] A. Alaghi, C. Li and J. P. Hayes, "Stochastic Circuits for
Real-Time Image-Processing Applications," in
ACM/EDAC/IEEE DAC, Austin, TX, USA, 2013.

[13] W. Karl, Über die analytische Darstellbarkeit
sogenannter willkülicher Funktionen reeller Argumente,
Sitzungsber. Akad. Wiss. Berlin, pp. 633-639, 789-805
1885.

[14] S. P. Gordon and Y. Yang, "Approximating exponential
and logarithmic functions using polynomial
interpolation," Intl Journal of Mathematical Education in
Science and Technology, pp. pp. 455-473, 2016.

[15] V.-T. Nguyen, V.-P. Hoang, V.-T. Sai, T.-K. Luong, M.-
T. Nguyen and D.-H. Le, "A new approach of stochastic
computing for arithmetic functions in wideband RF
transceivers," in 2017 IEEE MWSCAS, Boston, MA,
USA, pp. 1525 - 1528, 2017.

[16] A. Alaghi and J. P. Hayes, "Exploiting Correlation in
Stochastic Circuit Design," in IEEE ICCD, Asheville,
NC, USA, pp. 39-46, Oct.2013.

[17] P. Li, D. J. Lilja, K. Bazargan and M. Riedel, "The
synthesis of complex arithmetic computation on
stochastic bit streams using sequential logic," in
IEEE/ACM (ICCAD), San Jose, CA, USA, pp. 480-487,
Dec. 2012.

