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Abstract— Stochastic computing (SC) has emerged as a 
potential alternative to binary computing for a number of low-
power embedded systems, DSP, neural networks and 
communications applications. In this paper, a new 
method, associated architectures and implementations of complex 
arithmetic functions, such as exponential, sigmoid and hyperbolic 
tangent functions are presented.  Our approach is based on a 
combination of piecewise linear (PWL) approximation as well as a 
polynomial interpolation based (Lagrange interpolation) methods. 
The proposed method aims at reducing the number of binary to 
stochastic converters. This is the most power sensitive module in 
an SC system. The hardware implementation for each complex 
arithmetic function is then derived using the 65nm CMOS 
technology node. In terms of accuracy, the proposed approach 
outperforms other well-known methods by 2 times on average. 
The power consumption of the implementations based on our 
method is decreased on average by 40 % comparing to other 
previous solutions. Additionally, the hardware complexity of our 
proposed method is also improved (40 % on average) while the 
critical path of the proposed method is slightly increased by 2.5% 
on average when comparing to other methods.  

Keywords— stochastic computing, VLSI, arithmetic, low power, 
efficient architectures, sigmoid function, piecewise linear 
approximation, Lagrange interpolations 

I. INTRODUCTION 

Stochastic Computing was firstly introduced in the late 
1960s by a research group led by Gaines [1] as an alternative 
method for efficient arithmetic digital representation circuits, 
but its origin can be traced back to von Neumann’s seminal work 
on probabilistic logic [2]. This has recently attracted significant 
interest due to its unique properties which are extremely low-
cost arithmetic units [3], fault tolerance, simple hardware 
implementation allowing very high clock rates [4]. However, 
apart from these advantages which lead to significant savings of 
hardware cost and power consumption, SC presents some 
disadvantages including long latency and degradation of 
accuracy. Applying massive parallelism in computation driven 
by the very low-cost hardware area may alleviate some of these 
disadvantages [4]. 

  

In Stochastic Computing (SC), the basic concept is to 
represent a real number with a random bit stream by comparing 
it with a uniformly distributed random number. A given binary 
number (BN) ܤ is converted to a stochastic bit-stream form by 
a stochastic number generator (SNG). The SNG samples a BN ܴ,  compares it with ܤ , and outputs a stochastic number of 
probability 2/ܤ௞at a rate of one bit per clock cycle where ݇ is 
the number of bits to represent a BN. After N clock cycles, it has 
produced an N-bit stochastic number (SN) X with ݔ݌	  ,2௞/ܤ ≈
where ݔ݌ is the frequency or rate at which ones appear in the 
sequence. Generally, the estimate’s accuracy depends on the 
randomness of ܺ’s bit-pattern and its length ܰ [5]. 

Using a stochastic representation can map complex 
arithmetic functions to simple bitwise logical operation. Figure 
1 shows fundamental stochastic computational elements. 
Multiplication which has high hardware cost in terms of area and 
power consumption can now be implemented in a single AND 
gate in stochastic computing in unipolar format (0 ≤ ݔ݌ ≤ 1) or 
XNOR gate in bipolar format (−1 ≤ ݔ݌ ≤ 1). NOT gate is used 
to implement 1 − ݔ  in unipolar format and −ݔ  in bipolar 
format. NAND gate is used to implement 1 − aݔ, where a is in 
[0, 1]. Addition is implemented by a multiplexer (MUX) and the 
output form MUX is the scaled result [3]. These simplified 
operations, along with the ones presented in this paper, have a 
significant area and power impact on many application in digital 
signal processing, communications (e.g. LDPC codecs), neural 
networks as well as the general field of probabilistic computing 
[6].  

With the recent trend of low power wearable devices and 
Internet of Things (IoTs), there comes the necessity of 
integrating more artificial intelligence at the edge. SC becomes 
attractive to integrate neural network onto embedded and 
portable devices, which require low power and energy 
consumption and are constrained by a small hardware area. 
Deep Belief Network and Deep Neural Network based on 
Stochastic sComputing have been proposed recently in [7] and 
[8], respectively with low energy consumption, high area 
efficiency. For many signal processing applications, SC has also 
been exploited to significantly reduce the complexity and the 
power consumption (e.g. Lower Upper-Decomposition for 

1 MCCI : Microelectronic Circuits Centre Ireland, www.mcci.ie , a 
Technology Centre supported by Enterprise Ireland. 



MIMO receiver [9], Sparse code multi-access detector [10], 
digital filters, etc). Recently, some works have shown that SC-
based LDPC decoders are competitive in performance and cost 
with conventional binary designs while providing significant 
savings in area [5]. Besides, SC has also been applied for 
computation engine for DRAM based In-stu Accelerator [11], 
image processing [12].  

 

Fig. 1: Fundamental Stochastic Computational Elements 

One of the most attractive features of SC is that complex 
computational functions can be implemented by very low-cost 
hardware design allowing for massive parallelism. Widely used 
exponential and hyperbolic tangent functions on stochastic bit 
streams were proposed in [3] using FSM. But, one drawback of 
the work is that there were a limited number of functions which 
can be implemented by using this method. FSM based on 
Markov chains with a redesign of topology was proposed, so that 
more complex functions can be synthesized stochastically [4]. 
In [5] an alternative method based on Bernstein polynomials has 
been shown in which high complexity functions can be 
approximated. However, Bernstein polynomials based 
implementation requires a higher degree of polynomials to reach 
higher accuracy. This leads to a higher hardware complexity and 
higher cost. Stochastic logic based implementations of complex 
arithmetic functions using truncated Maclaurin series 
polynomials was presented in [3]. This method drastically 
reduced the critical path and hardware complexity compared to 
FSM and Bernstein polynomials based implementations. 

In our quest to further simplify the implementations of these 
functions, we propose a hybrid method to implement complex 
arithmetic trigonometric, exponential, logarithmic and sigmoid 
functions based on stochastic computing in which both PWL as 
well as polynomial interpolation methods are used for 
approximation. 

II. ARITHMETIC FUNCTIONS BASED PIECEWISE LINEAR 

APPROXIMATION 

In this section, the proposed method for calculating complex 
arithmetic functions is provided which is based on the 
combination of piecewise linear approximation and Lagrange 
interpolation polynomial. The uniform subdivisions and the 
transformations of each subdivision are selected to increase the 
accuracy while keeping the hardware complexity as low as 
possible. 

The polynomial approximation is based on the classical 
Weierstrass theorem [13] in which for any continuous function ݂(ݔ)  in the range [a, b], there exists a polynomial (ݔ)ܮ for 
approximating the function in that range so the maximum 
approximation error is below the given limit. Then degree 
polynomial can be found through ݊ + 1	fitting points in the 

interval range ܽ௜ ≤ ݔ ≤ ܾ௜. The coefficients of this polynomial 
are given by the Lagrange interpolation formula: 

(ݔ)݂ = ෍ܮ௜(ݔ)௡
௜ୀ଴  (1) 

 Where each (ݔ)ܮ term is defined by 

(ݔ)௜ܮ = .(௜ݔ)݂ ෑ ݔ − ௜ݔ௜ݔ − ௝௡ݔ
௝ୀ଴,௜ஷ୨  (2) 

With each set of fitting points, we can calculate the 
polynomial (ݔ)ܮ  then the approximation error is ߝ = (ݔ)݌  ,However, this approximation may not be optimal. Hence .(ݔ)ܮ−
we can perform an exhaustive search in the range ܽ ≤ ݔ ≤ܾ	with all possible pairs of fitting points on ݂(ݔ)	to find the 
optimal polynomial.  ܿ଴ = cos ቀ 2݊ߨ + 2ቁ , … , ܿ௡ = cos	((2݊ + 2݊ߨ(1 + 2 ) (3) 

 For the approximation interval [-1, 1], the best points 
which are to minimize the maximum of the product |(ݔ ݔ)(଴ݔ− − …(ଵݔ ݔ) − |(௡ݔ are the so-called Chebyshev nodes 
[14], for which ݔ)|ݔܽܯ − ݔ)(଴ݔ − …(ଵݔ ݔ) − −1	௡)|ݔ < ݔ < 1 

 (4) 

is minimal. In general, for the case with n + 	1 points ݔ଴, ,ଵݔ  :௡ the Chebyshev nodes areݔ

 Using the Chebyshev nodes usually provides an 
interpolating polynomial that is reasonably close to the optimal 
[14]. 

Using a high-order polynomial to approximate complex 
arithmetic functions based on stochastic computing will lead to 
an increase of hardware complexity as well as longer latency. In 
general, the shorter the approximation interval, the closer to 
linear the function then the lower degree polynomial is required 
while keeping the suitable error approximation. Therefore, 
reducing approximating interval into subintervals is necessary. 

A complex arithmetic function ݂(ݔ)  is approximated by 
using piecewise-linear (PWL) approximation in which these 
continuous functions are broken into segments. The domain of ݔ	 ∈ ,ߙ)  equal segments. Then, each ݏ could be divided into (ߚ
segment is approximated by a linear function. The number of 
segments is chosen such as ݏ = 2௞ with (k = 1,2,3,4 …) [15]. In 
segment ݅௧௛, the function f(x) can be written as: ݂(ݔ) ≈ ܽ௜ݔ + ܾ௜ , ݏ݅ ߚ) − (ߙ ≤ ݔ ≤ ݅ + ݏ1 ߚ) − ݅(ߙ = 0 → ݏ − 1 

(6) 

where ݅ describes ݅௧௛ segment. 

The absolute values of coefficients ܽ௜  and ܾ௜  could be 
described in (7) where B represents the number of bits of the two 
coefficients.  

ݔ)|ݔܽܯ − ܿ଴)(ݔ − ܿଵ)… ݔ) − ܿ௡)| = 	 12௡−1 < ݔ < 1 
 (5) 



ܽ௜, ܾ௜ = ܰ. 2ି஻						ܰ, 	ܤ ∈ ܼ (7)

The optimized values of coefficients ܽ௜  and ܾ௜  can be 
generated by using Lagrange Interpolation Approximation 
method by using Chebyshev nodes as presented above to 
minimize the approximation error. The complex arithmetic 
functions ݂(ݔ)  that are investigated in this paper include 		݈݊(1 + (ݔ , ݁ି௫, ݁ିଶ௫, (ݔ)ℎ݊ܽݐ	 , ,(ݔ)݀݅݋݉݃݅ݏ (ݔ)݊݅ݏ ,(ݔ)ݏ݋ܿ , ௦௜௡	(௫)


. Theoretically, the accuracy can be improved by 

two alternatives: either by increasing the degree of 
approximation polynomials or dividing the approximation 
interval to smaller subintervals. In this paper, we will investigate 
the number of segments in two cases, namely s = 8 and s = 16 
respectively. The number of bits of the coefficients is chosen B 
= 10 in order to balance the latency of computing and accuracy. 

The Table I describes the approximated values of 
coefficients ܽ௜  and ܾ௜  achieved by using PWL approximation 
combined with Lagrange interpolation approximation.  

III. THE PROPOSED HARDWARE ARCHITECTURES. 

A. The Hardware Designs of f(x)= ݁ି௫,  (ݔ)ݏ݋ܿ
By using the proposed method, the two above arithmetic 

functions can be approximated as follows: ݂(ݔ) ≈ ܽ௜ݔ + ܾ௜ (8) 
Implementing the above approximation function needs a 

multiplier and an addition. The addition is implemented by 
using a 2 by 1 multiplexer and the multiplier is a simple two 
input AND gate. Note that this is the scaled version of addition 
so it will lead to a reduction of accuracy. However, the 
coefficients of ݁ି௫,  in ݅௧௛ segment are always negative and their absolute values are	from the Table I, the values of ܽ௜ (ݔ)ݏ݋ܿ

smaller than	ܾ௜ . Hence, the factor 
௔೔௕೔ is in the range of [0, 1] and 

can be represented by a stochastic number. The equation (8) 
could be rewritten then as follows: ݂(ݔ) = 1 − ܽ௜ܾ௜ ,ݔ ݅ = 0 ∶ 7 (9) 

As a result, the stochastic elements used to implement the 
equation (9) includes a NAND gate rather than an AND gate 
and a multiplexer as in (8). The architecture to calculate these 

functions is illustrated in Fig.2. The factor of 
௔೔௕೔  is stored in a 

look-up table (LUT A). Three MSBs of the input values are the 

values to select the appropriate factor 
௔೔௕೔ corresponding to the ݅௧௛	segment.  

 
Fig. 2: The architecture of stochastic implementation of the 
functions	݁ି௫,  (ݔ)ݏ݋ܿ
 

The output values of the LUT are then converted to a 
stochastic number by a stochastic number generator. 
Afterwards, the two stochastic numbers are inputs to a two input 
NAND gate to implement equation (9) and the output of the 
NAND gate will be converted to binary values through a 
counter. 

TABLE I 
THE OPTIMIZED VALUES OF COEFFICIENTS ܽ௜	 AND ܾ௜  ACHIEVED BY USING PIECEWISE-LINEAR APPROXIMATION AND LAGRANGE INTERPOLATION 

Segment ݈݊(1 + 	sin(x) ܽ௜ (ݔ)݀݅݋݉݃݅ݏ (ݔ)ℎ݊ܽݐ (ݔ ܾ݅ ܽ௜	 ܾ௜  ܽ௜ ܾ௜  ܽ௜	 ܾ௜  
0 964 x 2-10 1 x 2-10 1023 x 2-10 1 x 2-10 256 x 2-10 512 x 2-10 1023 x 2-10 0 x 2-10 
1 861 x 2-10 14 x 2-10 988 x 2-10 4 x 2-10 254 x 2-10 512 x 2-10 1023 x 2-10 2 x 2-10 
2 780 x 2-10 34 x 2-10 929 x 2-10 19 x 2-10 250 x 2-10 513 x 2-10 1023 x 2-10 2 x 2-10 
3 713 x 2-10 60 x 2-10 850 x 2-10 49 x 2-10 244 x 2-10 515 x 2-10 974 x 2-10 10 x 2-10 
4 655 x 2-10 88 x 2-10 758 x 2-10 95 x 2-10 237 x 2-10 519 x 2-10 927 x 2-10 28 x 2-10 
5 606 x 2-10 118 x 2-10 660 x 2-10 156 x 2-10 228 x 2-10 524 x 2-10 866 x 2-10 58 x 2-10 
6 565 x 2-10 150 x 2-10 563 x 2-10 229 x 2-10 218 x 2-10 532 x 2-10 791 x 2-10 105 x 2-10 
7 529 x 2-10 181 x 2-10 472 x 2-10 308 x 2-10 207 x 2-10 542 x 2-10 704 x 2-10 170 x 2-10 

Segment ݁ିଶ௫ ܿ(ݔ)ݏ݋ ݁ି௫ ୱ୧୬(௫)


  ܽ௜	 ܾ௜  ܽ௜	 ܾ௜  ܽ௜ ܾ௜  ܽ௜ ܾ௜ 
0 -1809 x 2-10 1023 x 2-10 -63 x 2-10 1025 x 2-10 -962 x 2-10 1005 x 2-10 1001 x 2-10 0 x 2-10 
1 -1409 x 2-10 970 x 2-10 -190 x 2-10 1041 x 2-10 -849 x 2-10 988 x 2-10 846 x 2-10 20 x 2-10 
2 -1097 x 2-10 893 x 2-10 -315 x 2-10 1072 x 2-10 -748 x 2-10 926 x 2-10 567 x 2-10 91 x 2-10 
3 -855 x 2-10 802 x 2-10 -433 x 2-10 1116 x 2-10 -661 x 2-10 859 x 2-10 199 x 2-10 229 x 2-10 
4 -665 x 2-10 708 x 2-10 -545 x 2-10 1172 x 2-10 -582 x 2-10 773 x 2-10 -199 x 2-10 428 x 2-10 
5 -518 x 2-10 616 x 2-10 -649 x 2-10 1237 x 2-10 -517 x 2-10 723 x 2-10 -567 x 2-10 658 x 2-10 
6 -403 x 2-10 530 x 2-10 -743 x 2-10 1307 x 2-10 -453 x 2-10 682 x 2-10 -846 x 2-10 868 x 2-10 
7 -314 x 2-10 452 x 2-10 -825 x 2-10 1379 x 2-10 -394 x 2-10 611 x 2-10 -1001 x 2-10 1001 x 2-10

 



B. The Hardware Design of ݂(ݔ) = ݈݊(1 + ,(ݔ ,(ݔ)݀݅݋݉݃݅ݏ,(ݔ)ℎ݊ܽݐ  (ݔ)݊݅ݏ
From the Table I, it can be clearly seen that the values of 

both ܽ௜ and ܾ௜ are in the range [0, 1]. Note that the values of ܽ௜ 
are always greater than that of ܾ௜ . If we use	ܾ௜ = 1 − ܿ௜ , the 
approximating function can be represented as:  ݂(ݔ) = 1 − ܿ௜ + ܽ௜ݔ = 1 − ܿ௜(1 − ܽ௜ܿ௜  (10) (ݔ

Where 
௔೔௖೔ 	 are in the range [0, 1]. With this slight 

modification, we avoid using an addition in implementing the 
approximation function. The architecture of these functions is 
presented in Fig 3 as below. 

In this hardware architecture, LUT-A stores the values of 
௔೔௖೔  

while LUT-B stores the values of ܿ௜. The appropriate values for 
each segment are selected by three MSB of input. The SNGs 
convert from binary to stochastic numbers. The NAND gate is 
used to implement the expression ݕ = 1 −  Therefore, we  ݔܽ
need two NAND gates to implement the equation (10). Then the 
stochastic bit-stream from the second NAND gate will be 
converted to a binary number by a counter. 

 

 

Fig. 3: The architecture of stochastic implementation of the 
functions	݈݊(1 + (ݔ , (ݔ)ℎ݊ܽݐ , ,(ݔ)݀݅݋݉݃݅ݏ  (ݔ)	݊݅ݏ
C. The Hardware Design of  ݂(ݔ) = 	 ௦௜௡	(௫)


 

The values of ܽ௜	of approximation function are in the range     
[-1, 1], while those of ܾ௜	are in the range [0, 1]. Clearly, the 
domain of the values ܽ௜	is divided in two halves in which the 
domain of the first four values of ܽ௜	belongs to [0, 1] and the 
other four values is in [-1, 0]. Thus, the approximation function 
can be described by:  ݂(ݔ) = ൜ ܽ௜ݔ + ܾ௜, ݅ = 0,1,2,3−ܽ௜ݔ + ܾ௜, ݅ = 4,5,6,7 

 
(11) 

 In the first half, the values of ܽ௜ and ܾ௜ are always positive 
and ܾ௜’s are less than ܽ௜’s. Hence the factor 

௔೔௕೔ will exceed the 

range [0, 1] and cannot be represented by stochastic numbers. 
Hence, the approximation function can be described as follows: ݂(ݔ) = 1 − ܿ௜(1 − ௔೔௖೔  0,1,2,3 (12)	=	i		   (ݔ

Where ܿ௜ = 1 − ܾ௜ and ܿ௜  is greater than ܽ௜  so the factor 
௔೔௖೔  

is within [0, 1] and can be represented in the stochastic domain. 

In the second half, Table I shows that the values of ܽ௜’s are 
negative whereas those of ܾ௜’s are positive. Also, the same table 
shows that the absolute values of ܾ௜	are greater than those of ܽ௜’s, so the approximation function can be written as below: ݂(ݔ) = 1 − ܽ௜ܾ௜ ,ݔ 								݅ = 4,5,6,7 (13) 

 A multiplexer is required to select the appropriate output 
result and the MSB will be fed to the multiplexer for the 
selection purpose. The hardware architecture of the function is 
presented in Fig. 4. 

 

Fig. 4: The architecture of stochastic implementation of the 

functions 
௦௜௡	(௫)


  

In this hardware architecture, LUT-A will be divided into 
two halves in which the first half stores the values of 

௔೔௖೔’s and ௔೔௕೔’s values are stored in the second half. As the values of ܿ௜’s are 

only used for the first half of the approximating function, they 
will be stored in the first half of LUT-B and the second half of it 
is filled with zeros. Three MSBs of the input are also used to 
select the appropriate factors corresponding with each segment. 
The stochastic bit-stream from the multiplexer will then 
converted to a binary number by using a counter.  

D. The Hardware Design of ݂(ݔ) = 	 ݁ିଶ௫ 

In Table I, it can be seen that the range of values ܽ௜’s are in   
[-2, 0] whereas those of ܾ௜ᇱs  are in [0, 1]. Additionally, the 
absolute first four values of ܽ௜	are greater than those of ܾ௜	and 
vice versa for the next four values.  

Considering the first four values, the absolute values of ܽ௜	are greater than 1 in three cases. And the values of the factor ௔೔௕೔  belong to [1, 2], so they cannot be directly converted to 

stochastic numbers. Noting these features, the factorization 
method is considered, namely 

௔೔௕೔  is divided by 2. Then the 

approximation function of the first four values can be written as 
follows: ݂(ݔ) = 	−ܽ௜ݔ + ܾ௜ = 1 − ܽ௜ܾ௜ ,ݔ ݅ = 0,1,2,3 

= 	1 − ܽ௜2ܾ௜ ݔ − ܽ௜2ܾ௜  ݔ

Where 
௔೔ଶ௕೔is in the range [0, 1] which can be a stochastic 

number. Implementing the above formula requires a subtraction. 



However, since the value range [0, 1] is unipolar, i.e. does not 
include negative numbers, it is quite complex to implement the 
subtraction. One method has been proposed in [16] to implement 
the subtraction by using an XOR gate.  

In the second four values of ܽ௜	ܽ݊݀	ܾ௜ , the approximation 
function can be described as follows: ݂(ݔ) = 	−ܽ௜ݔ + ܾ௜ = 1 − ܽ௜ܾ௜ ,ݔ ݅ = 4,5,6,7 (15) 

The hardware architecture of the resulting function is shown 
in Fig. 5. In this hardware architecture, a LUT A is used to store 
the values 

௔೔ଶ௕೔	in the first half and 
௔೔௕೔ in the second half. Three 

MSBs will be feed to the LUT to select the appropriate value in 
each segment. The selected signal of the multiplexer is given by 
the MSB bit of the input. The AND gate is used to implement 
unipolar multiplication. We use a one-bit delay element for the 
decorrelation of 

௔೔ଶ௕೔ [3] and then a XOR gate is implemented for 

subtraction [16]. The stochastic bit-stream from the multiplexer 
will then be converted to a binary number by using a counter. 

IV. SIMULATION RESULTS 

The functions presented in the previous sections are 
implemented by using the proposed method, the FSM-based 
method [17] (the 2-dimensional method more specifically as the 
1-dimensional FSM-based method is not suited for the 
implementation of the selected complex functions [17]) and 
Horner’s Rule for Maclaurin expansions [3]. 

The Monte Carlo simulation method was used to evaluate 
the Mean Absolute Error (MAE) of different algorithms. We use 
1,024 bits to represent a numerical value stochastically. Table II 

shows the MAE of outputs of selected implementations by using 
this assumption.  

 

 Fig.  5: The architecture of stochastic implementation of the 
function ݁ିଶ௫. 

In terms of accuracy, it is shown in Table II that the MAE of 
our proposed method outperforms FSM based method by a 
factor of 8.25 times on average. Additionally, from Table II, we 
can observe that the proposed method improved the MAE 2.5 
times on average comparing to the Maclaurin based expansions 
method. Figure 6 and 7 show the simulation results of the 
stochastic implementation of widely used tanh(x) and 
sigmoid(x) functions. 

All presented algorithms and architectures are implemented 
in hardware by using VHDL and synthesized in 65 nm CMOS 
library using Synopsys Design Compiler for a fair comparison. 
Table III shows the hardware implementation results for the 
implementations. The hardware complexity results are given in 
terms of equivalents GE (number of 2-input NAND gates). 

TABLE II 
THE OUTPUT MEAN ABSOLUTE ERROR (MAE) OF STOCHASTIC IMPLEMENTATION FOR DIFFERENT COMPLEX ARITHMETIC FUNCTION USING THE PROPOSED 

METHOD, MACLAURIN EXPANSION BASED METHOD AND THE FSM-BASED METHOD. 
 

Functions  
Proposed (8 
Segments) 

Proposed (16 
Segments) 

Horners rule [3]   FSM-based [3] 

sin(x) Order - - 7 8 states 
Error 0.0013 0.0012 0.0034 0.0025 ܿ(ݔ)ݏ݋ Order - - 6 8 states 
Error 0.0087 0.0063 0.0023 0.0053 ln(1 +  Order - - 7 8 states (ݔ
Error 0.0026 0.0011 0.0081 0.0186 tanh(ݔ) Order - - 7 8 states 
Error 0.0012 0.0012 0.0140 0.0351 ݁ି௫ 
Order - - 6 8 states 
Error 0.010 0.0064 0.0008 0.0154 ݁ିଶ௫ 
Order - - 6 8 states 
Error 0.0766 0.0678 0.0009 0.0423 (ݔ)݀݅݋݉݃݅ݏ Order - - 5 8 states 
Error 0.0043 0.0012 0.0046 0.0198 sin	(ݔ)


 

Order - - 11 8 states 
Error 0.0288 0.0288 0.0487 0.4716 

 



 

Fig.  6: The simulation result of stochastic implementation of tanh(x)		 
 

Fig. 7: The simulation result of stochastic implementation of 
sigmoid(x) 
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TABLE III 
THE HARDWARE COMPLEXITY AND CRITICAL PATH DELAY OF STOCHASTIC IMPLEMENTATION OF COMPLEX ARITHMETIC FUNCTIONS WITH INPUT VALUES 

FROM 0 TO 1 
 

Functions  
Proposed (8 
Segments) 

Proposed (16 
Segments) 

Horners rule [3]  FSM-based [3] 

sin(x) Total Cell Area 601 650 2671 1269 
Power(µW) 16.5767 17.56 67.65 35.49 
Delay(ns) 2.87 2.99 3.09 2.71 ܿ(ݔ)ݏ݋ Total Cell Area 489 525 769 1268 

Power(µW) 13.6596 13.6781 21.563 36.44 
Delay(ns) 3.07 3.11 2.86 2.96 ln(1 +  Total Cell Area 607 650 763 1269 (ݔ

Power(µW) 16.73 17.498 21.42 34.79 
Delay(ns) 2.92 3.01 2.89 2.78 

 tanh(ݔ) Total Cell Area 603 657 674 1270 
Power(µW) 16.62 17.644 18.82 35.5213 
Delay(ns) 2.97 3.12 2.89 2.71 ݁ି௫ 

Total Cell Area 491 530 763 2489 
Power(µW) 13.06 13.9 21.48 41.29 
Delay(ns) 2.73 2.97 2.82 3.09 

 ݁ିଶ௫ 

Total Cell Area 504 540 1199 1269 
Power(µW) 13.353 14.13 21.783 35.57 
Delay(ns) 3.08 3.32 2.87 2.71 (ݔ)݀݅݋݉݃݅ݏ Total Cell Area 600 640 758 1489 

Power(µW) 16.542 17.29 21.15 41.23 
Delay(ns) 2.86 3.07 2.79 3.09 sin	(ݔ)


 

Total Cell Area 600 647 680 1269 
Power(µW) 16.3 17.4924 19.1076 35.52 
Delay(ns) 3.11 3.16 2.81 2.71 



Finally, each architecture is evaluated for power 
consumption. The proposed architectures also required 32% and 
58 % times (on average) less power than the Maclaurin based 
expansions and FSM based method, respectively. The cell area 
utilization of the proposed method requires 1.3 times and 2 times 
(on average) less than the Maclaurin based expansions and FSM 
based method, respectively. Additionally, the delay of the 
proposed method is 2.5 % more than others. Besides, when the 
size of LUT is doubled, the MAE is improved 1.64 times while 
cell area and power consumption are nearly unchanged. These 
results show that, the proposed hardware architectures are well 
suited for low-cost, low power applications by achieving a 
significant improvement over the state of the art. 

V. CONCLUSION 

Stochastic computing re-emerges as a promising technique 
in many applications which require low cost, fault tolerance and 
low power. Complex functions are often a determining cost 
factor for many hardware implementations. Stochastic 
implementations of complex arithmetic functions based on the 
combination of piecewise-linear approximation and Lagrange 
interpolation have been presented in this paper. Based on the 
proposed approximation scheme, a hybrid architecture for 
hardware implementation of complex arithmetic functions has 
been shown. The ASIC implementations and error analysis 
results have proven the benefits of the proposed approach with 
significant savings in area and power consumption. Future work 
will be towards further multi-objective optimisation of the 
proposed architectures (accuracy and power consumption) and 
their use in applications including LDPC decoders as well as 
neural networks. 
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