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This document serves as a supplement to the article ”Ultrafast relaxation of symmetry-breaking
photo-induced atomic forces”. It contains details of the numerical convergence of the Eg force life-
times and the Wannier interpolation of the electronic bands. It also contains a detailed explanation
of the modifications made to the experimental analysis in Ref. [1] and a derivation of the equation
used for computing atomic forces in terms of the diagonal part of the electron-phonon matrix.

I. WANNIER INTERPOLATION OF
ELECTRON-PHONON MATRIX ELEMENTS

The electronic bandstructure, phonon dispersion and
electron-phonon coupling matrix elements were calcu-
lated on a uniform 6×6×6 Brillouin zone grid within the
framework of density functional perturbation theory. We
used a 25 hartree plane wave energy cutoff and the lo-
cal density approximation to exchange and correlation.
Norm-conserving pseudopotentials including spin orbit
coupling were used for all 3 materials. These quantities
were then interpolated to finer grids using maximally lo-
calised Wannier functions (MLWF) as implemented in
the EPW code [2]. The interpolation of the electronic
bandstructure of Bi, Sb and As are shown in Figs. 1, 2
and 3 respectively. These were performed using 14 Wan-
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FIG. 1. Comparison of Bi DFT bands with those obtained
by Wannier interpolation. 14 Wannier orbitals were used to
interpolate the bandstructure from a coarse 6× 6× 6 grid.

nier orbitals for Bi and 16 Wannier orbitals for Sb and
As. Since we consider photoexcited pump pulse photons
between 0.5 eV and 3.0 eV, we are interested in states
within ∼ 2 eV of the Fermi level, which are well repre-
sented by this Wannier interpolation for all three mate-
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FIG. 2. Comparison of Sb DFT bands with those obtained
by Wannier interpolation. 16 Wannier orbitals were used to
interpolate the bandstructure from a coarse 6× 6× 6 grid.

rials.
The electron-phonon matrix elements are interpolated

from a coarse 6× 6× 6 grid to finer grids.

II. CONVERGENCE OF Eg FORCE LIFETIMES

The Eg force lifetime has two convergence parameters,
the number of k(and q) points in the uniform Brillouin
zone grid (Nk) and the Gaussian smearing, σ, used to
compute Im{Σnk} (see Eq. 4 of main text.). As shown
in Fig. 4, the low-temperature (0.1 K) Eg force lifetime
at the experimental pump-pulse energy (1.5 eV) is insen-
sitive to σ and is converged at a Brillouin zone grid of
Nk = 12×12×12. At a grid density of Nk = 14×14×14,
the Eg force lifetime converges in all 3 materials and at all
temperatures considered, so we perform our calculations
on that grid.

At excitation energies where the electronic density of
states is very low, the convergence with respect to grid
sampling becomes more demanding. However, for the
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FIG. 3. Comparison of As DFT bands with those obtained
by Wannier interpolation. 16 Wannier orbitals were used to
interpolate the bandstructure from a coarse 6× 6× 6 grid.

energy range shown in Fig. 3 of the main text, going
from a 14× 14× 14 grid to a 16× 16× 16 grid makes at
most a difference of ∼ 20%.

10 11 12 13 14 15 16
Nk

1/3

20

25

30

35

40

E g
 fo

rc
e 

lif
et

im
e 

(fs
)

= 100 meV
= 10 meV

FIG. 4. Convergence of low-temperature (0.1 K) Eg force
lifetime in Bi with respect to Nk and σ assuming an absorbed
photon energy of 1.5 eV.

III. ANTIMONY Eg FORCE DECAY RATE
WITH ADDITIONAL

TEMPERATURE-INDEPENDENT SCATTERING

The calculated and experimental values of the Sb Eg
force decay rate differ approximately by a temperature-
independent scattering rate of Γ′ ∼ 12.5 ps−1. Figure. 5
shows the calculated decay rate of the Eg force on Sb,
ΓEg , the experimental Eg force decay rate and ΓEg +
Γ′. It shows that the discrepancy between the calculated
and measured Eg force decay rate in Sb is consistent
with a temperature-independent correction due to static
imperfections, such as impurities or grain boundaries.
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FIG. 5. Decay rate of Eg force in Sb, including (red line)
and excluding(blue line) a correction due to a temperature-
independent scattering rate of Γ′ ∼ 12.5 ps−1.

IV. ANALYSIS OF EXPERIMENT INCLUDING
PARTIAL DECAY OF A1g FORCE.

The relaxation time of the Eg mode driving force in
bismuth and antimony is experimentally determined by
comparing the amplitudes of the Eg and A1g modes ob-
tained from a time-resolved optical pump-optical probe
experiment and the corresponding cross sections obtained
from cw Raman scattering [1]. The A1g mode driving
force is assumed to remain constant for the duration of
the pump pulse (∼ 70 fs).

However, our calculations show a partial decay of the
A1g force from its initial value to a non-zero constant
value on timescales much shorter than the pump-pulse
duration. In order to estimate the impact of this on the
experimentally derived Eg force lifetime, we need to un-
derstand the amount by which this partial decay modifies
the initial amplitude of the A1g mode.

At times much greater than the pump pulse duration
(t � τp) and assuming that the pump pulse duration is
much less than the phonon period (Ωτp � 1), we can
describe the A1g mode by a harmonic oscillator subject
to 2 driving forces, a step function which decays at a rate
Γ, and one which does not decay. This gives the following
equation of motion :

Q̈+ Ω2Q =
F0

µ
[s+ (1− s)e−Γt], (1)

where s ∈ [0, 1], F0 is the initial driving force and µ is
the effective mass. Making the substitution Q→ µQ/F0,
we arrive at the simpler equation:

Q̈+ Ω2Q = s+ (1− s)e−Γt, (2)

which has a general solution of the form:

Q(t) = A cos(Ωt+ φ) +
s

Ω2
+

1− s
Γ2 + Ω2

e−Γt. (3)

The initial conditions are that Q(0) = 0 and that Q̇(0) =



3

0, which give us the following:

−A cos(φ) =
s

Ω2
+

1− s
Γ2 + Ω2

(4)

−A sin(φ) =
1− s

Γ2 + Ω2

(
Γ

Ω

)
. (5)

Taking the ratio of these we obtain the phase:

tanφ =
ΩΓ(1− s)
sΓ2 + Ω2

. (6)

There are two important limits of this expression: when
s = 0, we get tanφ = Γ/Ω, which is the phase of the
Eg mode as shown in Ref. [1]; when s = 1, we get φ =
0, which is the phase of the A1g mode given by DECP
theory.

Summing the squares of Eq. (4) and Eq. (5), we find
that the amplitude, A = Λ/Ω2, where Λ is defined by:

Λ2 ≡

[
s2

Ω2

Γ2 + 1
+

1
Γ2

Ω2 + 1

]
(7)

This gives us the following equation of motion for the
A1g mode:

Q(t) =
1− s

Γ2 + Ω2
e−Γt +

Λ

Ω2

[ s
Λ
− cos(Ωt+ φ)

]
(8)

If we compare this with the equation of motion for the
A1g mode driven by a time-independent force:

Q(t) =
1

Ω2
[1− cos(Ωt+ φ)] , (9)

we see that the effect of the force decaying from F0 → sF0

is to reduce the amplitude of the A1g mode by the factor
Λ.

V. EFFECT ON DERIVED EXPERIMENTAL Eg

FORCE LIFETIME

Li et. al. gives the following expression for the Eg
force relaxation rate [1]:

ΓEg = ΩEg

√
gPP 4

gRS4
− 1, (10)

where gPP
4 = (AA1g

ÃA1g
/AEg ÃEg )2 is the ”effective

electron-phonon coupling” from the optical pump-optical
probe experiment and gRS

4 = (AA1g
/AEg )4 is the corre-

sponding coupling deduced from cw Raman scattering
cross sections which are insensitive to electronic decay of
the mode driving forces. The amplitudes are assumed to

be of the form [1]:

AEg =
F 0
Eg

µΩEg
2 (11)

ÃEg =
F 0
Eg

µΩEg
2

√
1 +

ΓEg
2

ΩEg
2

(12)

AA1g =
F 0
A1g

µΩA1g

2 . (13)

The amplitude ÃA1g is assumed to be approximately
equal to AA1g , which amounts to assuming that the A1g

driving force remains constant over the duration of the
pump pulse ( ∼ 70 fs). Since our calculations show a
partial decay of the A1g driving force in Bi and Sb, we
make the following modification:

ÃA1g
=

F 0
A1g

Λ

µΩA1g

2 , (14)

which implies a change to the derived values of the Eg
force lifetime by a factor of:

τEg =

√
gPP 4

gRS4 − 1√
Λ2 gPP

4

gRS4 − 1
. (15)

Fig. 6 shows the resulting modifications to the experi-
mentally derived Eg force lifetimes for Bi and Sb:

0 50 100 150 200 250 300
Temperature (K)

0

5

10

15

20

25

30

E g
 fo

rc
e 

lif
et

im
e 

(fs
)

Adjustment of experimental Eg force lifetime
Bi: Ref [1]
Bi: corrected
Sb:Ref [1]
Sb: corrected

FIG. 6. Corrections to the experimentally derived Eg force
lifetimes reported in Ref [1]. The open points are the exper-
imental values reported in Ref [1], the solid points are the
experimental values after taking into account the calculated
partial decay of the A1g driving force.
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VI. HAMILTONIAN FOR
ELECTRON-PHONON SCATTERING

The Hamiltonian for the electron-phonon interaction
is:

Heph =

(
~

2N

) 1
2 ∑

q,λ

a†−qλ + aqλ√
ωλ(q)

∑
k,n,m

c†mk+qcnk g
λq
knm ,

(16)
where ωλ(q) is the frequency of the phonon with wavevec-
tor q and branch λ, aqλ is the phonon annihilation oper-

ator, cnk is the electron annihilation operator and gλqknm
is the electron-phonon matrix element defined as:

gλqknm =
∑
α

eλα(q)√
Mα

· 〈mk + q|∇ταV |nk〉 (17)

where N is the number of primitive cells in the system,
Mα is the mass of the atom indexed by α, eλα(q) is the
phonon eigenvector of mode and ∇ταV is the derivative
of the potential with respect to atomic displacement τα
within the primitive cell.

VII. Eg AND A1g FORCES FROM
ELECTRON-PHONON MATRIX ELEMENTS

Koopman’s theorem relates the DFT total energy,
EDFT to the energy and occupation of orbital |nk〉 [3]:

∂EDFT

∂fnk
= En(k) = 〈nk|Ĥ|nk〉 . (18)

To first order in ∆fnk, the change in the DFT total en-
ergy per unit cell is as follows:

∆EDFT/cell ≈
1

N

∑
n,k

∆fnk 〈nk|Ĥ|nk〉

=
1

N

∑
n,k

(
fnk − f (0)

nk

)
〈nk|Ĥ|nk〉 (19)

where f
(0)
nk is the equilibrium electronic occupation of the

state |nk〉 at the instantaneous temperature of the lat-
tice and N is the number of unit cells in the system. In

practice, we can set f
(0)
nk equal to the equilibrium occu-

pation of state |nk〉 before photoexcitation because the
lattice temperature doesn’t change substantially over the
timescales being considered in this work (∼ 10 fs). The
force Fα on atom α is then:

Fαi = −∇τα [∆EDFT/cell]

= − 1

N

∑
n,k

∇τα

[
∆fnk 〈nk|Ĥ|nk〉

]
≈ − 1

N

∑
n,k

∆fnk∇τα

[
〈nk|Ĥ|nk〉

]
If we assume that the single-particle states |nk〉 are eigen-

states of Ĥ, then we can apply the Hellman-Feynman
theorem [4]. This allows us to express the forces in terms
of the diagonal electron-phonon matrix elements and the
occupations of the electronic states:

Fαi = − 1

N

∑
n,k

∆fnk 〈nk|∇ταĤ|nk〉 (20)

VIII. COMPARING TEMPERATURE
DEPENDENCE OF τEg AND 〈τ〉

In the main text we note that the temperature
dependence of the Eg force lifetime τEg and that of
the non-equilibrium average state lifetime 〈τ〉 are very
similar. Both 〈τ〉 and τEg were fitted with the function
f(T ) = f(0)/[1 + 2nB(T,Ω0)], where nB(T,Ω0) is the
Bose-Einstein occupation number for a mode frequency
Ω0 at temperature T . The frequency Ω0 is a fitting
parameter that quantifies the temperature dependence.
Here we compare the values of ~Ω0 obtained by fitting
τEg (~Ω0(τEg )) with those obtained by fitting 〈τ〉
(~Ω0(〈τ〉)).

TABLE I. Comparison of fitting parameter ~Ω0(τEg ) with
~Ω0(〈τ〉), showing that the temperature dependence of τEg is
similar to that of 〈τ〉 in all three materials considered.

Material ~Ω0(τEg ) (meV) ~Ω0(〈τ〉) (meV)

Bismuth 6.8 6.7

Antimony 10.7 10.8

Arsenic 15.5 16.2
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[2] S. Poncé, E. Margine, C. Verdi, and F. Giustino, Com-
puter Physics Communications 209, 116 (2016).

[3] R. M. Martin, Electronic Structure: Basic Theory and
Practical Methods (Cambridge University Press, 2004).

[4] R. P. Feynman, Physical Review 56, 340 (1939).


