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Summary

We focus on estimating the average treatment effect in clinical trials that involve stratified ran-

domization, which is commonly used. It is important to understand the large sample properties

of estimators that adjust for stratum variables (those used in the randomization procedure) and

additional baseline variables, since this can lead to substantial gains in precision and power.
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Surprisingly, to the best of our knowledge, this is an open problem. It was only recently that

a simpler problem was solved by Bugni et al. (2018) for the case with no additional baseline

variables, continuous outcomes, the analysis of covariance (ANCOVA) estimator, and no missing

data. We generalize their results in three directions. First, in addition to continuous outcomes, we

handle binary and time-to-event outcomes; this broadens the applicability of the results. Second,

we allow adjustment for an additional, preplanned set of baseline variables, which can improve

precision. Third, we handle missing outcomes under the missing at random assumption. We prove

that a wide class of estimators is asymptotically normally distributed under stratified random-

ization and has equal or smaller asymptotic variance than under simple randomization. For each

estimator in this class, we give a consistent variance estimator. This is important in order to

fully capitalize on the combined precision gains from stratified randomization and adjustment for

additional baseline variables. The above results also hold for the biased-coin covariate-adaptive

design. We demonstrate our results using completed trial data sets of treatments for substance

use disorder, where adjustment for additional baseline variables brings substantial variance re-

duction.

Key words: Covariate-adaptive randomization, generalized linear model, robustness.
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1. Introduction

Covariate-adaptive designs refer to randomization schemes that assign participants to study arms

in a way that improves balance across arms in preselected strata of the baseline variables. E.g.,

balance on disease severity, a genetic marker, or another variable thought to be correlated with

the primary outcome could be sought. The simplest form of covariate-adaptive randomization is

stratified permuted block randomization (referred to as “stratified randomization” throughout,

for conciseness).

Compared with simple randomization, covariate-adaptive randomization can be advantageous

in minimizing imbalance and improving efficiency (Efron, 1971; Pocock and Simon, 1975; Wei,

1978). Due to these benefits, covariate-adaptive randomization has become a popular approach in

clinical trials. According to a survey by Lin et al. (2015), 183 out of their sample of 224 randomized

clinical trials published in 2014 in leading medical journals used some form of covariate-adaptive

randomization. Stratified randomization (Zelen, 1974) was implemented by 70% of trials in this

survey. Another method for covariate-adaptive randomization is the biased-coin design by Efron

(1971). Other examples include Wei’s urn design (Wei, 1978) and rerandomization (Morgan and

Rubin, 2012). Our results only apply to stratified randomization and the biased-coin design.

Concerns have been raised regarding how to perform valid statistical analyses at the end of

trials that use covariate-adaptive randomization. Adjusting for stratification variables is recom-

mended (Lachin et al., 1988; Kahan and Morris, 2012; EMA, 2015), but, according to a survey

by Kahan and Morris (2012) that sampled 65 published trials from major medical journals from

March to May 2010, 41 implemented covariate-adaptive randomization (among which 29 used

stratified randomization), but only 14 adjusted in the primary analysis for the variables used in

the randomization procedure. Furthermore, there are few results on how to conduct the primary

efficacy analysis in trials that use stratified randomization without making parametric model

assumptions (which, if incorrect, can lead to bias).
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Shao et al. (2010) proved the validity of the two-sample t-test under the biased-coin design

assuming the outcome follows a linear model. Shao and Yu (2013) extended this result to a case

where the outcome follows a generalized linear model. Ma et al. (2015, 2018) also assumed a linear

model and derived the asymptotic distribution of the test statistic of the average treatment effect

for the ANCOVA estimator and a class of covariate-adaptive designs. Bugni et al. (2018), who

use the superpopulation inference framework as done here, established the asymptotic theory of

the unadjusted estimator and the ANCOVA estimator (with adjustment for strata only) of the

average treatment effect for a wide range of covariate-adaptive designs; their results, like ours

in Sections 5.1-5.2, are robust to arbitrary misspecification of the regression model used in the

estimator. Ye and Shao (2019) derived asymptotics for log-rank and score tests in survival analysis

under covariate-adaptive randomization, and their methods can handle adjustment for additional

baseline variables; however, estimation was not addressed. Li and Ding (2019) established the

asymptotic theory for the ANCOVA estimator under covariate-adaptive randomization in the

randomization inference framework.

For trials using stratified randomization or biased-coin covariate-adaptive randomization, to

the best of our knowledge, it was an open problem to determine (without making parametric

regression model assumptions) the large sample properties of covariate-adjusted estimators that

involve any of the following: binary outcomes or time-to-event outcomes, adjustment for baseline

variables other than those in the randomization procedure, or missing data. This is the problem

that we address. The main challenge is that treatment assignment is not independent across

participants.

Under regularity conditions, we prove that a large class of estimators is asymptotically nor-

mally distributed in randomized trials that use stratified randomization or the biased-coin design,

and we give a formula for computing their asymptotic variance. This class of estimators includes

ANCOVA (referred to as ’ANCOVA I’ by Yang and Tsiatis, 2001) for continuous outcomes, the
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standardized logistic regression estimator (Scharfstein et al., 1999; Moore and van der Laan,

2009) for binary outcomes, the doubly-robust weighted least squares (DR-WLS) estimator from

Marshall Joffe as described by (Robins et al., 2007) for continuous and binary outcomes, and

estimators of the restricted mean survival time for time-to-event outcomes (Van der Laan et al.,

2003; Dı́az et al., 2019). The key theoretical underpinning of our results is the empirical process

result from Shorack and Wellner (2009), which was insightfully used by Bugni et al. (2018) to

prove their fundamental results for the special case described above.

As in the above referenced work, we assume that the randomization scheme and analysis

method have been completely specified before the trial starts, as is typically required by regulators

such as the European Medicines Agency and the U.S. Food and Drug Administration (FDA and

EMA, 1998; EMA, 2015; FDA, 2019).

In the next section, we describe three motivating trial examples to which we apply our meth-

ods. In Section 3, we describe our setup, notation and assumptions. We present our main results in

Section 4. In Section 5, we give example estimators to which our general results apply. Trial appli-

cations are provided in Section 6. Practical recommendations and future directions are discussed

in Section 7.

2. Three completed randomized trials that used stratified randomization

2.1 Study of buprenorphine tapering schedule and illicit opioid use (NIDA-CTN-0003)

The trial of “Buprenorphine tapering schedule and illicit opioid use”, referred to as “NIDA-CTN-

0003” in the National Drug Abuse Treatment Clinical Trials Network, is a phase-3 randomized

trial completed in 2005 (Ling et al., 2009). The goal was to compare the effects of a short or long

taper schedule after buprenorphine stabilization of patients with opioid use disorder. Patients

were randomized into two arms: 28-day taper (control, 259 patients, 36% missing outcomes) and

7-day taper (treatment, 252 patients, 21% missing outcomes), stratified by maintenance dose (3
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levels) measured at randomization. The outcome of interest is a binary indicator of whether a

participant’s urine tested at the end of study is opioid-free. Missing outcomes are encoded as

“NA” and not imputed. In addition to the stratification variable, we adjust for the following

baseline variables: sex, opioid urine toxicology results, the Adjective Rating Scale for Withdrawal

(ARSW), the Clinical Opiate Withdrawal Scale (COWS) and the Visual Analog Scale (VAS).

2.2 Prescription Opioid Addiction Treatment Study (NIDA-CTN-0030)

The “Prescription Opioid Addiction Treatment Study”, referred to as “NIDA-CTN-0030” is a

phase-3 randomized trial completed in 2013 (Weiss et al., 2011). The goal is to determine whether

adding individual drug counseling to the prescription of buprenorphine/naloxone will improve

treatment outcome for patients with prescription opioid use disorder. Though this study adopted

a 2-phase adaptive design, we focus on phase I, where patients were randomized into standard

medical management (control, 330 patients, 10% missing outcomes) or standard medical manage-

ment plus drug counseling (treatment, 335 patients, 13% missing outcomes). Randomization is

stratified by the presence or absence of a history of heroin use and current chronic pain, resulting

in 4 strata. The outcome of interest is the proportion of negative urine laboratory results among

all tests. Among all 5 urine laboratory tests during the first 4 weeks of phase I, if a patient

missed visits of more than 2 weeks, the outcome is regarded as missing. Baseline variables that

are included in the analysis are strata, age, sex and urine laboratory result.

2.3 Study of internet-delivered treatment for substance abuse (NIDA-CTN-0044)

The phase-3 randomized trial “Internet-delivered treatment for substance abuse”, referred to as

“NIDA-CTN-0044”, was completed in 2012 (Campbell et al., 2014). The goal was to evaluate the

effectiveness of a web-delivered behavioral intervention, Therapeutic Education System (TES), in

the treatment of substance abuse. Participants were randomly assigned to two arms: treatment
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as usual (control, 252 participants, 19% missing outcomes) and treatment as usual plus TES

(treatment, 255 participants, 18% missing outcomes). Randomization was stratified by treatment

site, patient’s primary substance of abuse (sitmulant or nonstimulant) and abstinence status at

baseline. Since we do not have access to the treatment site variable, only patient’s primary

substance of abuse and abstinence status at baseline were used to construct strata (4 levels) and

treatment site was omitted from our analysis. After randomization, each participant was followed

by 12 weeks with 2 urine laboratory tests per week. The outcome of interest is the proportion

of negative urine lab results among all tests. If a participant missed visits of more than 6 weeks,

the outcome is regarded as missing. We adjust for strata and additional baseline variables: age,

sex and urine laboratory result.

In some cases, the outcomes in our analyses differ from the primary outcomes in the corre-

sponding trials. The reason is that we wanted to use the same outcomes across trials for illustra-

tion. Our outcomes are all considered clinically meaningful in the field of substance use disorder

treatments. All trial data were drawn from the National Institute on Drug Abuse Clinical Trials

Network Data Share Website (CITE).

3. Definitions and assumptions

We focus on randomized trials that use stratified randomization (or the biased-coin design) with

n participants. For each participant i = 1, . . . , n, let Yi denote the observed outcome, Mi denote

whether Yi is observed (Mi = 1) or not (Mi = 0), Ai denote the treatment allocation (Ai = 1

if assigned to treatment and Ai = 0 if assigned to control), and Xi denote a vector of baseline

covariates.

We adopt the Neyman-Rubin causal model, which assumes Yi = Yi(1)Ai + Yi(0)(1 − Ai),

where Yi(a) is the potential outcome for participant i were they in treatment group a, a = 0, 1.

Analogous to the definition of potential outcomes, we define “potential missingness” Mi(a), which
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is the indicator of whether Yi(a) would be observed for participant i were they assigned to study

arm a ∈ {0, 1}; we assume that the observed (non)-missingness variable Mi is connected to the

potential missingness variables as follows: Mi = Mi(1)Ai + Mi(0)(1 − Ai). Though potential

missingness is not commonly used in the literature, it fits into the Neyman-Rubin causal model

if missingness (e.g., whether a participant completes follow-up) is also an outcome of interest,

and the outcome vector is defined as (Mi, YiMi). We emphasize that our asymptotic results

involve neither the joint distribution of (Mi(1),Mi(0)) nor (Yi(1), Yi(0)), and that the targets

of estimation are identifiable using only the observed data distribution. Denote participant i’s

vector of potential outcomes as W i = (Yi(1), Yi(0),Mi(1),Mi(0),Xi) (some of which are not

observed) and their observed vector as (Ai,Xi, YiMi,Mi). We make the following assumptions

on the distribution of potential outcome vectors W i:

Assumption 1.

(1) W i, i = 1, . . . , n are independent samples from an unknown joint distribution P on

W = (Y (1), Y (0),M(1),M(0),X).

(2) Missing (censoring) at random (MAR): M(a)⊥⊥Y (a)|X for each arm a ∈ {0, 1}, where

⊥⊥ denotes independence.

For stratified randomization or the biased-coin design, treatment allocation depends on strata,

such as gender, location or race. Strata are represented by a single, categorical, stratification

variable S taking K possible values, which is encoded using K − 1 dummy variables in the

covariate vector X. For example, if strata are determined by 4 sites and a binary indicator

of high disease severity, then S has K = 8 possible values. We denote Si as the stratification

variable for participant i and S the set of all K strata. The goal of stratified randomization or the

biased-coin design is to achieve “balance” in each stratum; that is, the proportion of participants

assigned to the treatment arm is targeted to a prespecified proportion π ∈ (0, 1), e.g. π = 0.5.

Stratified randomization uses permuted blocks to assign treatment. In each stratum, a ran-
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domly permuted block with fraction π 1’s (representing treatment) and (1− π) 0’s (representing

control) is used for sequential allocation. When a block is exhausted, a new block is used.

The biased-coin design allocates participants sequentially by the following rule for k =

1, . . . , n:

P (Ak = 1|S1, . . . , Sk, A1, . . . , Ak−1) =


π, if

∑k−1
i=1 (Ai − π)I{Si = Sk} = 0

λ, if
∑k−1
i=1 (Ai − π)I{Si = Sk} < 0

1− λ, if
∑k−1
i=1 (Ai − π)I{Si = Sk} > 0

with λ ∈ (π, 1], e.g., λ = 0.8.

For these two designs, it follows by construction (as proved by Examples 3.2 and 3.4 of

Bugni et al., 2018) that (W 1, . . . ,W n)⊥⊥(A1, . . . , An)|(S1, . . . , Sn), since treatment allocation

only depends on strata and exogenous randomness. This and the assumptions above imply for

each s ∈ S that

1√
n

n∑
i=1

(Ai − π)I{Si = s}|(S1, . . . , Sn)
d−→ 0 a.s.

Different from these two designs, simple randomization assigns treatments by independently

flipping a coin for each participant with P (Ai = 1) = π. This randomization scheme implies that

Ai⊥⊥Aj for i 6= j and Ai⊥⊥W i for all i 6 n.

Given the observed data (Ai,Xi, YiMi,Mi) for each participant i, our goal is to estimate a

population parameter ∆∗, which is a contrast between the marginal distributions of Y (1) and

Y (0). For example, the parameter of interest can be the population average treatment effect,

defined as ∆∗ = E[Y (1)] − E[Y (0)], or it can be the restricted mean survival time when the

outcome is a time-to-event.

We assume that the estimator of ∆∗ can be expressed as a solution to estimating equations

of the form:
n∑
i=1

ψ(Ai,Xi, YiMi,Mi;θ) = 0, (1)

where ψ is a column vector of known functions with dimension p + 1, θ = (∆,βt)t is a column

vector of parameters with dimension p+ 1 and β is a column vector of nuisance parameters with
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dimension p. We denote the solution to equation (1) as θ̂ = (∆̂, β̂
t
)t. Then ∆̂ is regarded as

the estimator of ∆∗. Many estimators used in clinical trials, including all estimators defined in

Section 5, can be expressed as solutions to estimating equations (1) for an appropriately chosen

estimating function ψ.

We assume regularity conditions similar to the classical conditions that are used for proving

consistency and asymptotic linearity of M-estimators for independent, identically distributed

(i.i.d.) data, as given in Section 5.3 of van der Vaart (1998). One of the conditions is that the

expectation of the estimating equations E∗[ψ(A,X, Y M,M ;θ)] = 0 has a unique solution in

θ; in our framework, the expectation E∗ on the observed data vector ψ(A,X, Y M,M ;θ) is

defined as being with respect to the distribution induced by first drawing W from the joint

distribution P on potential outcomes (see Assumption 1), then drawing A as an independent

Bernoulli draw with probability π of being 1, and lastly applying the consistency assumptions

Y = Y (1)A+ Y (0)(1−A) and M = M(1)A+M(0)(1−A). Equivalently, this condition is that

πE[ψ(1,X, Y (1)M(1),M(1);θ)] + (1− π)E[ψ(0,X, Y (0)M(0),M(0);θ)] = 0 (2)

has a unique solution in θ, which is denoted as θ = (∆,βt)t, where E denotes expectation with

respect to the joint distribution P on the potential outcomes. The full set of regularity conditions

is given in Appendix A.

Results in Section 5.3 of van der Vaart (1998) imply that under simple randomization, given

Assumption 1 and the regularity conditions in Appendix A, ∆̂ converges in probability to ∆ and

is asymptotically normally distributed with asymptotic variance that we denote by Ṽ . We focus

on determining what happens under stratified randomization or the biased-coin design, where our

main result (Section 4) is that consistency and asymptotic normality still hold but the asymptotic

variance may be smaller (and a consistent variance estimator is given).
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4. Main result

Theorem 4.1 Let ∆̂ be the estimator of ∆∗ corresponding to solving (1) for a given set of

estimating functions ψ with parameter θ = (∆,βt)t, and θ = (∆,βt)t be the solution to the

corresponding expectation of estimating equations (2). Then given Assumption 1 and regularity

conditions in Appendix A, under stratified randomization or the biased-coin design,

√
n(∆̂−∆)

d−→ N(0, V ),

where V is the first-row, first-column entry of the matrix B−1(C +D)(B−1)t, where

B = πE

[
∂

∂θ
ψ(1,X, Y (1)M(1),M(1);θ)

∣∣∣
θ=θ

]
+ (1− π)E

[
∂

∂θ
ψ(0,X, Y (0)M(0),M(0);θ)

∣∣∣
θ=θ

]
,

C = πE[V ar{ψ(1,X, Y (1)M(1),M(1);θ)|S}] + (1− π)E[V ar{ψ(0,X, Y (0)M(0),M(0);θ)|S}],

D = E[E[πψ(1,X, Y (1)M(1),M(1);θ)− (1− π)ψ(0,X, Y (0)M(0),M(0);θ)|S]2].

Furthermore, V 6 Ṽ , where Ṽ is the asymptotic variance under simple randomization. V can be

consistently estimated using the observed data distribution as described in Appendix B.

Theorem 4.1 implies that, given our setup and assumptions, whenever an estimator ∆̂ is con-

sistent and asymptotically normally distributed under simple randomization, then it is consistent

and asymptotically normally distributed under stratified randomization or the biased-coin design

with equal or smaller asymptotic variance.

For the unadjusted estimator, our Theorem 4.1 is equivalent to Theorem 4.1 of Bugni et al.

(2018) under stratified randomization or the biased-coin design. In the special case of continuous

outcomes, if the ANCOVA estimator is used with X = S, then Theorem 4.1 is equivalent to

the result of Bugni et al. (2018) in section 4.2 under stratified randomization or the biased-coin

design, though their results also handle other types of covariate-adaptive randomization. Our

proof relies on a generalization of a key Lemma (Lemma C.2 in Appendix C) from Bugni et al.

(2018) that is based on the empirical process result of Shorack and Wellner (2009).
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5. Examples of estimators

We give several examples of estimators that our theorem above applies to. For estimators defined

in Sections 5.1-5.3, the parameter of interest, i.e. ∆∗, is the average treatment effect defined as

E[Y (1)]− E[Y (0)]. In the first two subsections, we assume no missing data.

5.1 The ANCOVA estimator for continuous outcomes; no missing data

The ANCOVA estimator ∆̂ancova for ∆∗ involves first fitting a linear regression working model

E[Y |A,X] = β0 + βAA+ βtXX (3)

and then letting ∆̂ancova be the ordinary least square estimate of βA in model (3). The working

model (3) can be arbitrarily misspecified. The ANCOVA estimator can be equivalently calculated

by solving estimating equations (1) letting

ψ(Ai,Xi, Yi,Mi;θ) =

(
βA −∆

{Yi − (β0 + βAAi + βtXXi)}Zi

)
,

where Zi = (1, Ai,X
t
i)
t.

5.2 The standardized logistic regression estimator for binary outcomes; no missing data

The standardized logistic regression estimator ∆̂logistic is calculated by first fitting a working

model:

P (Y = 1|A,X) = expit(β0 + βAA+ βtXX), (4)

where expit(x) = 1/(1+e−x), and getting the maximum likelihood estimates (MLE) (β̂0, β̂A, β̂
t

X)t.

Then we have

∆̂logistic =
1

n

n∑
i=1

{expit(β̂0 + β̂A + β̂
t

XXi)− expit(β̂0 + β̂
t

XXi)}.
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We do not assume the logistic regression model (4) to be correctly specified. The estimator

∆̂logistic can be equivalently calculated by solving estimating equations (1) letting

ψ(Ai,Xi, Yi,Mi;θ) =

(
expit(β0 + βA + βtXXi)− expit(β0 + βtXXi)−∆

{Yi − expit(β0 + βAAi + βtXXi)}Zi

)
.

Another estimator is the logistic coefficient estimator, defined as β̂A. Unlike the standardized

logistic regression estimator, the logistic coefficient estimator estimates a conditional effect and

can lead to invalid inference if there is treatment effect heterogeneity. A detailed comparison of

the two estimators can be found in Steingrimsson et al. (2016). We hence do not consider the

logistic coefficient estimator in this paper.

5.3 The DR-WLS estimator for continuous and binary outcomes; outcomes missing at random

When missing outcome data present, we estimate ∆∗ by the DR-WLS estimator. The estimator

is calculated by the following steps. (1) Fit a logistic regression model:

P (M = 1|A,X) = expit(α0 + αAA+αtXX) (5)

and get MLE (α̂0, α̂A, α̂
t
X)t of parameters (α0, αA,α

t
X)t. (2) Fit a generalized linear model

E[Y |A,X] = g(β0 + βAA+ βtXX) (6)

with weights 1/expit(α̂0 + α̂AAi+ α̂
t
XXi) using data with Mi = 1. Here the inverse link function

is g(x) = x for continuous outcomes and g(x) = expit(x) for binary outcomes. Denote the model

prediction for E[Y |A,X] as Ê[Y |A,X]. (3) The DR-WLS estimator is

∆̂DR−WLS =
1

n

n∑
i=1

{Ê[Y |A = 1,Xi]− Ê[Y |A = 0,Xi]}.

The DR-WLS estimator can be equivalently calculated by solving estimating equations (1)

with

ψ(Ai,Xi, Yi,Mi;θ) =


{g(β0 + βA + βtXXi)− g(β0 + βtXXi)} −∆

Mi

expit(α0+αAAi+αt
XXi)

{Yi − g(β0 + βAAi + βtXXi)}Zi
{Mi − expit(α0 + αAAi +αtXXi)}Zi

 .
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The ANCOVA estimator and the standardized logistic regression estimator are special cases

of the DR-WLS estimator. If there are no missing data, which means Mi ≡ 1 for a = 0, 1 and

i = 1, . . . , n, then ∆̂DR−WLS reduces to ∆̂ancova for continuous outcomes and to ∆̂logistic for

binary outcomes.

5.4 Estimators for time-to-event outcomes

We give several examples of estimators for time-to-event outcomes to which our Theorem 4.1

applies, under our Assumption 1 and regularity conditions in Appendix A. All of these estimators

can be represented as M-estimators, which is why our general approach applies to them.

In survival analysis, Yi is the failure time and Mi is the censoring time. One parameter of

interest is the restricted mean survival time, defined as ∆∗ = E[min{Y (1), τ} − min{Y (0), τ}],

where τ is a restriction time. Estimators of ∆∗ can be found in Van der Laan et al. (2003); Dı́az

et al. (2019).

5.5 Results for the ANCOVA estimator, standardized logistic regression estimator and

DR-WLS estimator

In Appendix C, we prove several results that apply to the estimators Sections 5.1-5.3. In Corol-

lary 1, we show that the ANCOVA estimator and standardized logistic regression estimator re-

main model-robust and the DR-WLS estimator is doubly-robust under stratified randomization

or the biased-coin design.

The sandwich variance estimator of θ̂ (typically used when data are assumed i.i.d.) is defined

as

V̂ ar(θ̂) =

{
1

n

n∑
i=1

∂

∂θ
ψ(Ai,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

}−1{
1

n

n∑
i=1

ψ(Ai,Xi, YiMi,Mi; θ̂)ψ(Ai,Xi, YiMi,Mi; θ̂)t

}
{

1

n

n∑
i=1

∂

∂θ
ψ(Ai,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

}−1 t
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from Section 3.2 of Tsiatis (2007) or Theorem 5.21 of van der Vaart (1998); the sandwich variance

estimator for ∆∗ is then the first-row first-column entry of V̂ ar(θ̂).

The following corollary gives conditions for when the asymptotic distribution of the estimators

in the subsections above are the same regardless of whether simple randomization, stratified

randomization, or the biased-coin design is used. Under such conditions, the estimators and their

corresponding sandwich variance estimators can be used to perform valid hypothesis tests and

construct confidence intervals (without being conservative).

Corollary 1 For the ANCOVA estimator, standardized logistic regression estimator and DR-WLS

estimator, we assume their estimating equations satisfy Assumption 1 and regularity conditions

in Appendix A. For the DR-WLS estimator, we further assume at least one of the two working

models (5) and (6) is correctly specified. If (1) π = 0.5, or (2) the outcome regression model

includes a treatment-by-strata interaction term, or (3) the outcome regression model is correctly

specified, then under stratified randomization or the biased-coin design, then these estimators

are consistent and asymptotically normally distributed with asymptotic variance V = Ṽ . Fur-

thermore, the sandwich variance estimator is consistent (for the true asymptotic variance).

6. Clinical trial applications

Table 1 summaries our data analyses for each application (NIDA-CTN-0003, NIDA-CTN-0030,

NIDA-CTN-0044). All missing baseline values were imputed by the median for continuous vari-

ables and mode for binary or categorical variables. When implementing the ANCOVA estimator

or standardized logistic regression estimator, all participants with missing outcomes were removed

from the analysis. Estimates and standard errors are rounded to the nearest 0.01. “Confidence

Interval” is abbreviated as “CI”. For all of the three trials, negative (positive) estimates are in

the direction of clinical benefit (harm).
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Table 1. Summary of clinical trial data analyses. The first column is the study ID. The second column
gives the estimator with 95% confidence intervals (CI) adjusting for strata only. The third column gives
the estimator with 95% confidence intervals (CI) adjusting for strata and additional baseline variables.
The fourth column gives the DR-WLS estimator with 95% confidence intervals (CI) adjusting for strata
and additional baseline variables. The fifth column shows the variance reduction due to adjustment for
additional baseline variables comparing the second and third column.

Study
Estimator adjusting

for strata only
(95% CI)

Estimator adjusting
for all baseline variables

(95% CI)

DR-WLS
estimator
(95% CI)

Proportional
variance
reduction

NIDA-CTN-0003 -0.11(-0.21, -0.01) -0.10(-0.19, -0.02) -0.10(-0.18, -0.02) 35%
NIDA-CTN-0030 0.02(-0.02, 0.05) 0.01(-0.02, 0.05) 0.01(-0.02, 0.05) 17%
NIDA-CTN-0044 -0.09(-0.14, -0.03) -0.09(-0.14, -0.03) -0.09(-0.15, -0.03) 2%

For NIDA-CTN-0003, the standardized logistic regression estimator was used since the out-

come was binary. If strata were adjusted only, the estimated absolute risk difference of getting

negative urine lab result was −0.11 with 95% CI (−0.21,−0.01); if strata as well as additional

baseline variables were adjusted, the point estimate became −0.10 with 95% CI (−0.19,−0.02).

Though the point estimates are similar, the variance reduction due to adjusting for additional

baseline variables is 35%, indicating that researchers planning to perform adjustment for strata

and additional baseline variables could achieve the same precision as adjusting for strata only

with approximately 35% fewer participants. The DR-WLS estimator was −0.10 with 95% CI

(−0.18,−0.02), which had 1% wider 95% CI than the standardized logistic regression estimator

with adjustment for strata and additional baseline variables. This precision loss is typical; that

is the price paid for added robustness to model misspecification, since the DR-WLS estimator is

consistent under missing at random when at least one of its working models is correct, while the

other estimators are generally only consistent when outcomes are missing completely at random

or when the outcome regression working model is correct.

NIDA-CTN-0030 and NIDA-CTN-0044 had continuous outcomes. Adjustment for additional

baseline variables brings 17% and 2% variance reduction for NIDA-CTN-0030 and NIDA-CTN-

0044, respectively, compared to adjusting only for the strata. When additional baseline variables

are not strongly prognostic, such as in NIDA-CTN-0044, the variance reduction from additional
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baseline variables can be small.

7. Discussion

There is potential to substantially improve precision by adjusting for additional baseline vari-

ables than the ones used in the randomization procedure. For example, for NIDA-CTN-0003

and NIDA-CTN-0030, adjustment for additional baseline variables brings 35% and 17% variance

reduction respectively. Our results show that there is no problem to implement this, and that

many estimators used in randomized trials are consistent, asymptotically normal with variance

that can be consistently estimated using our formula in Theorem 4.1. This asymptotic variance

may be less than in the i.i.d. case, and our variance formula captures any added precision gain

from stratified randomization (asymptotically).

The key to improving precision is adjusting for strongly prognostic baseline variables, if they

exist. At the outset, one could use previous trials or observational data from a similar population

to measure the prognostic value added by a set of baseline variables. This can be done by fitting

two models, with one adjusting for the set of baseline variables and the other one not, and

comparing their sandwich variance estimates.

Our asymptotics, as essentially all asymptotic results under the commonly used superpopula-

tion inference framework, assume that the number of strata is fixed and the number of participants

in each stratum goes to infinity. This may be a reasonable approximation when no stratum has

a small number of participants. In our data examples, the smallest stratum has 49 participants.

An area of future research is to consider cases where some strata have few participants.
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Ventures. The information reported here results from secondary analyses of data from clini-
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NIDA–CTN-0003 (Suboxone (Buprenorphine/Naloxone) Taper: A Comparison of Two Sched-
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APPENDIX

A. Regularity conditions

The regularity conditions similar to Section 5.3 of van der Vaart (1998) are specifed below:

(1) θ ∈ θ, a compact set in Rp+1.

(2) E[ψ(a,X, Y (a)M(a),M(a);θ)2] <∞ for any θ ∈ θ and a ∈ {0, 1}.

(3) There exists a zero, denoted as θ = (∆, βt)t, of the expectation of estimating equations

πE[ψ(1,X, Y (1)M(1),M(1);θ)] + (1− π)E[ψ(0,X, Y (0)M(0),M(0);θ)] = 0.

Furthermore, there is a η > 0 such that θ is the only zero in its neighborhood {θ : ||θ− θ|| < η}.

(4) functions θ 7→ ψ(a, x, y,m;θ) are twice continuously differentiable for every (a, x, y,m) in

the support of (A,X, Y (a)M(a),M(a)) and dominated by an integrable function u(A,X, Y (a)M(a),M(a)).

(5) There exist a C > 0 and and integrable function v(X, Y (a)M(a),M(a)), such that

| ∂2

∂θ∂θtψ(a, x, y,m;θ)| < v(x, y,m) element-wise for every (a, x, y,m) in the support of (A,X, Y (a)M(a),M(a))

and ||θ − θ|| < C.

(6) ∂
∂θψ(a,X, Y (a)M(a),M(a);θ)

∣∣∣
θ=θ

has finite second moment for a = 0, 1 and

πE

[
∂

∂θ
ψ(1,X, Y (1)M(1),M(1);θ)

∣∣∣
θ=θ

]
+ (1− π)E

[
∂

∂θ
ψ(0,X, Y (0)M(1),M(0);θ)

∣∣∣
θ=θ

]
is invertible.

B. Consistent estimator of B,C and D in Theorem 4.1

B̂ =
1

n

n∑
i=1

∂

∂θ
ψ(Ai,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

Ĉ =
1

|S|
∑
s∈S

 n∑
i=1

I{Si = s}∑n
i=1 I{Si = s}

ψ(Ai,Xi, YiMi,Mi;θ)2 −

{
n∑
i=1

I{Si = s}∑n
i=1 I{Si = s}

ψ(Ai,Xi, YiMi,Mi;θ)

}2


D̂ =
1

|S|
∑
s∈S

[
n∑
i=1

I{Si = s}∑n
i=1 I{Si = s}

{Aiψ(1,Xi, YiMi,Mi;θ)− (1−Ai)ψ(0,Xi, YiMi,Mi;θ)}

]2
Consistency of B̂, Ĉ and D̂ to B,C and D are proved in Appendix C.
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C. Proof of main results

In this section, we first present two lemmas that are critical for proving our main results. These two

lemmas are adapted from results of Bugni et al. (2018) and the proofs of them are very similar

to Bugni et al. (2018). Then we prove Theorem 4.1 based on Lemmas C.1 and C.2. To prove

Corollary 1, we first introduce and prove Corollary 2, which gives the asymptotic distribution of

the DR-WLS estimator and partially indicates Corollary 1.

Lemma C.1 Given Assumption 1, let Zi = h(Yi(1), Yi(0),Mi(1),Mi(0),Xi) such that E[|Zi|] <

∞. Then under stratified randomization or the biased-coin design, 1
n

∑n
i=1 ZiAi

P−→ πE[Zi].

Proof. See Lemma B.3 in the supplementary material of Bugni et al. (2018). The only difference is

that we replace (Yi(1), Yi(0), Si) by (Yi(1), Yi(0),Mi(1),Mi(0),Xi) and all deduction still holds.

�

Lemma C.2 Given Assumption 1, let Zi(1) = h1(Yi(1),Mi(1),Xi) and Zi(0) = h2(Yi(0),Mi(0),Xi)

such that V ar(Zi(a)) < ∞ for a = 0, 1. Then under stratified randomization or the biased-coin

design,

1√
n

n∑
i=1

{(Zi(1)− E[Zi(1)])(1− π)Ai − (Zi(0)− E[Zi(0)])π(1−Ai)}
d−→ π(1− π)N(0, σ2

1 + σ2
2),

where

σ2
1 =

1

π
V ar(Z(1)− E[Z(1)|S]) +

1

1− π
V ar(Z(0)− E[Z(0)|S]),

σ2
2 = V ar(E[Z(1)− Z(0)|S]).

Proof. See Lemma B.1 and Lemma B.2 in the supplementary material of Bugni et al. (2018).

The only difference is that we replace Yi(a) by Zi(a) and all deduction still holds. �

Proof of Theorem 4.1. Using the fact that Yi = Yi(1)Ai + Yi(0)(1 − Ai) and Mi = Mi(1)Ai +
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Mi(0)(1−Ai), the estimating equations (1) can be re-written as

1

n

n∑
i=1

{Aiψ(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ(0,Xi, Yi(0)Mi(0),Mi(0);θ)} = 0.

We first show that θ̂
P−→ θ, where θ is a vector that solves

πE[ψ(1,X, Y (1)M(1),M(1);θ)] + (1− π)E[ψ(0,X, Y (0)M(0),M(0);θ)] = 0.

Regularity condition (3) in Appendix A implies that θ exists and is the only zero in its neigh-

borhood. By Lemma C.1 and regularity condition (2), we have

1

n

n∑
i=1

{Aiψ(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ(0,Xi, Yi(0)Mi(0),Mi(0);θ)}

P−→ πE[ψ(1,X, Y (1)M(1),M(1);θ)] + (1− π)E[ψ(0,X, Y (0)M(0),M(0);θ)].

Combined with regularity conditions 2 (1) and (4), by Theorem 5.9 of Van der Vaart (1999), the

above results imply θ̂ converge in probability to θ.

We then show θ̂ is asymptotically linear. By multivariate Taylor expasion,

0 =
1

n

n∑
i=1

{
Aiψ(1,Xi, Yi(1)Mi(1),Mi(1); θ̂) + (1−Ai)ψ(0,Xi, Yi(0)Mi(0),Mi(0); θ̂)

}
=

1

n

n∑
i=1

{Aiψ(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ(0,Xi, Yi(0)Mi(0),Mi(0);θ)}

+
1

n

n∑
i=1

{
Aiψ̇(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ̇(0,Xi, Yi(0)Mi(0),Mi(0);θ)

}
(θ̂ − θ)

+
1

2
(θ̂ − θ)t

1

n

n∑
i=1

{
Aiψ̈(1,Xi, Yi(1)Mi(1),Mi(1); θ̃) + (1−Ai)ψ̈(0,Xi, Yi(0)Mi(0),Mi(0); θ̃)

}
(θ̂ − θ),

where

ψ̇(a,Xi, Yi(a)Mi(a),Mi(a);θ) =
∂

∂θ
ψ(a,Xi, Yi(a)Mi(a),Mi(a);θ)

∣∣∣
θ=θ

ψ̈(a,Xi, Yi(a)Mi(a),Mi(a); θ̃) =
∂

∂θ∂θt
ψ(a,Xi, Yi(a)Mi(a),Mi(a);θ)

∣∣∣
θ=θ̃

,

for a = 0, 1 and θ̃ is a random point on the line segment between θ̂ and θ.
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According to regularity condition (5), there exists a ballB around θ such that ψ̈(a,Xi, Yi(a)Mi(a),Mi(a);θ)

is dominated by a function v(Xi, Yi(a)Mi(a),Mi(a)). Hence, if θ̃ ∈ B, then

∣∣∣∣∣∣ 1
n

n∑
i=1

{
Aiψ̈(1,Xi, Yi(1)Mi(1),Mi(1); θ̃) + (1−Ai)ψ̈(0,Xi, Yi(0)Mi(0),Mi(0); θ̃)

} ∣∣∣∣∣∣
6

1

n

n∑
i=1

{||v(Xi, Yi(1)Mi(1),Mi(1))||+ ||v(Xi, Yi(0)Mi(0),Mi(0))||},

which is bounded in probability by the law of large numbers. Furthermore, since P (θ̃ ∈ B)→ 1,

we have

1

n

n∑
i=1

{
Aiψ̈(1,Xi, Yi(1)Mi(1),Mi(1); θ̃) + (1−Ai)ψ̈(0,Xi, Yi(0)Mi(0),Mi(0); θ̃)

}
= Op(1).

DenotingB = πE[ψ̇(1,X, Y (1)M(1),M(1);θ)]+(1−π)E[ψ̇(0,X, Y (0)M(0),M(0);θ)], by Lemma

C.1 and regularity condition (6), we have

1

n

n∑
i=1

{
Aiψ̇(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ̇(0,Xi, Yi(0)Mi(0),Mi(0);θ)

}
P−→ B.

Combination of above facts implies that

1

n

n∑
i=1

{Aiψ(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ(0,Xi, Yi(0)Mi(0),Mi(0);θ)}

= (θ̂ − θ)(B + op(1)) + (θ̂ − θ)tOp(1)(θ̂ − θ).

Since θ̂
P−→ θ, we get

√
n(θ̂−θ) = −B−1 1√

n

n∑
i=1

{Aiψ(1,Xi, Yi(1)Mi(1),Mi(1);θ) + (1−Ai)ψ(0,Xi, Yi(0)Mi(0),Mi(0);θ)}+op(1).

LettingZi(1) = πψ(1,Xi, Yi(1)Mi(1),Mi(1);θ) andZi(0) = (1−π)ψ(0,Xi, Yi(0)Mi(0),Mi(0);θ),

by applying Lemma C.2 to the first entry of θ̂, we get the desired asymptotic normality.

To show that V 6 Ṽ , we use the result by Theorem 5.21 of van der Vaart (1998) that Ṽ is

the first-row first-column entry of B−1EB−1t, where

E = πV ar{ψ(1,X, Y (1)M(1),M(1);θ)}+ (1− π)V ar{ψ(0,X, Y (0)M(0),M(0);θ)}.
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Since C,D,E are all semi-positive definite, it suffices to show that E −C −D is semi-positive

definite. This is implied by the following derivation:

E −C −D = πV ar{ψ(1,X, Y (1)M(1),M(1);θ)} − πE[V ar{ψ(1,X, Y (1)M(1),M(1);θ)|S}]

+ (1− π)V ar{ψ(0,X, Y (0)M(0),M(0);θ)} − (1− π)E[V ar{ψ(0,X, Y (0)M(0),M(0);θ)|S}]−D

= πV ar{E[ψ(1,X, Y (1)M(1),M(1);θ)|S]}+ (1− π)V ar{E[ψ(0,X, Y (0)M(0),M(0);θ)|S]}

− E[E[πψ(1,X, Y (1)M(1),M(1);θ)− (1− π)ψ(0,X, Y (0)M(0),M(0);θ)|S]2]

= π(1− π)V ar

(
1

π
E[ψ(1,Xi, Y (1)M(1),M(1);θ)|S] +

1

1− π
E[ψ(0,X, Y (0)M(0),M(0);θ)|S]

)
.

To prove that B,C,D can be consistently estimated by B̂, Ĉ, D̂ defined in Section B re-

spectively, we show that B̂
P−→ B for demonstration and other quantities converge with a similar

proof. By multivariate Taylor’s expansion,

1

nπ

n∑
i=1

Ai
∂

∂θ
ψ(1,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

− 1

nπ

n∑
i=1

Ai
∂

∂θ
ψ(1,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ

=
1

nπ

n∑
i=1

Aiψ̈(1,Xi, YiMi,Mi; θ̃)(θ̂ − θ)

=
1

nπ

n∑
i=1

Aiψ̈(1,Xi, Yi(1)Mi(1),Mi(1); θ̃)(θ̂ − θ)

Regularity condition (5) indicates that 1
n

∑n
i=1Aiψ̈(1,Xi, Yi(1)Mi(1),Mi(1); θ̃) = Op(1) since

θ̂
P−→ θ. As a result, by Lemma C.1,

1

nπ

n∑
i=1

Ai
∂

∂θ
ψ(1,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

=
1

nπ

n∑
i=1

Ai
∂

∂θ
ψ(1,Xi, Yi(1)Mi(1),Mi(1);θ)

∣∣∣∣
θ=θ

+ op(1)

= E

[
∂

∂θ
ψ(1,X, Y (1)M(1),M(1);θ)

∣∣∣∣
θ=θ

]
+ op(1).

Similarly, we have

1

n(1− π)

n∑
i=1

(1−Ai)
∂

∂θ
ψ(0,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

= E

[
∂

∂θ
ψ(0,X, Y (0)M(0),M(0);θ)

∣∣∣∣
θ=θ

]
+ op(1).
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Then we get

B̂ =
1

n

n∑
i=1

∂

∂θ
ψ(Ai,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

=
1

n

n∑
i=1

Ai
∂

∂θ
ψ(1,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

+
1

n

n∑
i=1

(1−Ai)
∂

∂θ
ψ(0,Xi, YiMi,Mi;θ)

∣∣∣∣
θ=θ̂

= πE

[
∂

∂θ
ψ(1,X, Y (1)M(1),M(1);θ)

∣∣∣∣
θ=θ

]
+ (1− π)E

[
∂

∂θ
ψ(0,X, Y (0)M(0),M(0);θ)

∣∣∣∣
θ=θ

]
+ op(1)

= B + op(1).

For Ĉ and D̂, regularity conditions (2), (4), (5) and (6) bounded the derivatives in probability

and Lemma C.1 implies their consistency. �

Corollary 2 Given Assumption 1 and regularity conditions in Appendix A, if at least one of the

two working models (5) and (6) is correctly specified, then under stratified randomization or the

biased-coin design,

√
n(∆̂DR−WLS −∆∗)

d−→ N(0, VDR−WLS),

where

VDR−WLS = ṼDR−WLS −
(1− 2π)2

π(1− π)
V ar

{
E

[
M(1)

Y (1)− h(1,X)

e(1,X)
−M(0)

Y (0)− h(0,X)

e(0,X)

∣∣∣∣S]} ,
where ṼDR−WLS is defined in Equation (C.1) of Appendix C, h(a,X) = g(β

0
+ β

A
a + βt

X
X),

e(a,X) = expit(α0 +αAa+αtXX) for a = 0, 1 and β
0
, β

A
,β
X
, α0, αA,αX are probability limits

of β̂0, β̂A, β̂X , α̂0, α̂A, α̂X respectively.

Furthermore, the sandwich variance estimator of ∆̂DR−WLS converges in probability to ṼDR−WLS .

Proof of Corollary 2. For the DR-WLS estimator, we have

ψ(a,X, Y (a)M(a),M(a);θ) =

 {g(β0 + βA + βtXX)− g(β0 + βtXX)} −∆
M(a)

expit(α0+αAa+αt
XX)
{Y (a)− g(β0 + βAa+ βtXX)}Z

{M(a)− expit(α0 + αAa+αtXX)}Z

 ,

where Z = (1, A,Xt)t is a p-dimensional column vector.
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Given Assumption 1 and regularity conditions in Appendix A, Theorem 4.1 shows that

√
n(∆̂DR−WLS −∆)

d−→ N(0, VDR−WLS),

where VDR−WLS is the first-row first-column entry of matrixB−1(C+D)(B−1)t, where B,C,D

are defined in Theorem 4.1.

We first show that ∆̂DR−WLS is doubly robust. If E[M(a)|X] = e(a,X) for a = 0, 1 then

0 = E[M(a)
Y (a)− h(a,X)

e(a,X)
] = E

[
E[M(a)|X]

E[Y (a)|X]− h(a,X)

e(a,X)

]
= E[Y (a)]− E[h(a,X)],

where the missing at random assumption is used. If E[Y (a)|X] = h(a,X) for a = 0, 1, then

E[Y (a)] = E[E[Y (a)|X]] = E[h(a,X)]. As a result, if at least one of the two working models is

correctly specified, then ∆ = E[h(1,X)]− E[h(0,X)] = ∆∗.

We then write out the expression of VDR−WLS . Theorem 4.1 and tedious algebra show that

√
n(∆̂DR−WLS−∆) =

1√
n

n∑
i=1

{
Ai
π
f1(Xi, Yi(1)Mi(1),Mi(1))− 1−Ai

1− π
f0(Xi, Yi(0)Mi(0),Mi(0))−∆∗

}
+op(1),

where

f1(X, Y (1)M(1),M(1)) = {1− πc1Z(1)}M(1)
Y (1)− h(1,X)

e(1,X)
+ πh(1,X)− πh(0,X)

− πc2Z(1)(M(1)− e(1,X)),

f0(X, Y (0)M(0),M(0)) = {1 + (1− π)c1Z(0)}M(0)
Y (0)− h(0,X)

e(0,X)
− (1− π)h(1,X) + (1− π)h(0,X)

+ (1− π)c2Z(0)(M(0)− e(0,X)).
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with

Z(a) = (1, a,Xt)t

c1 = E

[(
M(1)

e(1,X)
− 1

)
hβ(1,X)−

(
M(0)

e(0,X)
− 1

)
hβ(0,X)

]
×
{
E

[
π
M(1)

e(1,X)
hβ(1,X)Z(1)t + (1− π)

M(0)

e(0,X)
hβ(0,X)Z(0)t

]}−1
c2 = E[hβ(1,X)− hβ(0,X)]

{
E

[
π
M(1)

e(1,X)
hβ(1,X)Z(1)t + (1− π)

M(0)

e(0,X)
hβ(0,X)Z(0)t

]}−1
× E

[
π
M(1)eα(1,X)

e(1,X)2
(Y (1)− h(1,X))Z(1)t + (1− π)

M(0)eα(0,X)

e(0,X)2
(Y (0)− h(0,X))Z(0)t

]
× {E[πeα(1,X)Z(1)t + (1− π)eα(0,X)Z(0)t]}−1

hβ(a,X) =
∂

∂β
g(β0 + βAa+ βtXX)

∣∣∣∣
β=β

eα(a,X) =
∂

∂α
expit(α0 + αAa+αtXX)

∣∣∣∣
α=α

.

We define

ṼDR−WLS =
1

π
V ar(f1(X, Y (1)M(1),M(1)) +

1

1− π
V ar(f0(X, Y (0)M(0),M(0)). (C.1)

Lemma C.2 implies VDR−WLS = σ2
1 + σ2

2 with

σ2
1 =

1

π
E[V ar(f1(X, Y (1)M(1),M(1))|S)] +

1

1− π
E[V ar(f0(X, Y (0)M(0),M(0))|S)]

σ2
2 = V ar{E[f1(X, Y (1)M(1),M(1))− f0(X, Y (0)M(0),M(0))|S]}.

The desired variance formula then comes from the following derivation.

VDR−WLS = σ2
1 + σ2

2

=
1

π
V ar(f1(X, Y (1)M(1),M(1)))− 1

π
V ar(E[f1(X, Y (1)M(1),M(1))|S])

+
1

1− π
V ar(f0(X, Y (0)M(0),M(0)))− 1

1− π
V ar(E[f0(X, Y (0)M(0),M(0))|S]) + σ2

2

= ṼDR−WLS − π(1− π)V ar

(
1

π
E[f1(X, Y (1)M(1),M(1))|S] +

1

1− π
E[f0(X, Y (0)M(0),M(0))|S]

)
= ṼDR−WLS − π(1− π)V ar

(
1

π
E[M(1)

Y (1)− h(1,X)

e(1,X)
|S] +

1

1− π
E[M(0)

Y (0)− h(0,X)

e(0,X)
|S]

)
= ṼDR−WLS −

(1− 2π)2

π(1− π)
V ar

(
E[M(1)

Y (1)− h(1,X)

e(1,X)
|S]− E[M(0)

Y (0)− h(0,X)

e(0,X)
|S]

)
.
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The third equation comes from the fact that, if the outcome regression model is correctly specified,

then c2 = 0 and E[Z(a)M(a)Y (a)−h(a,X)
e(a,X) |S] = 0; if the missing model is correctly specified, then

c1 = 0 and E[Z(a)(M(a) − e(a,X))|S] = 0. Hence, if at least one of the two models is correct,

then

E[f1(X, Y (1)M(1),M(1))|S] = E

[
M(1)

Y (1)− h(1,X)

e(1,X)
+ πh(1,X)− πh(0,X)

∣∣∣∣S]
E[f0(X, Y (0)M(0),M(0))|S] = E

[
M(0)

Y (0)− h(0,X)

e(0,X)
− (1− π)h(1,X) + (1− π)h(0,X)

∣∣∣∣S] .

The last equation above comes from the fact that

πE[M(1)
Y (1)− h(1,X)

e(1,X)
|S] + (1− π)E[M(0)

Y (0)− h(0,X)

e(0,X)
|S] = 0,

which is implied by the definition of θ.

At last, we prove V̂ ar(∆̂DR−WLS)
P−→ ṼDR−WLS . The sandwich variance estimator defined

in Section 3 can be rewritten into

V̂ ar(∆̂DR−WLS) =
1

n

n∑
i=1

{
Ai
π
f̂1(Xi, YiMi,Mi)−

(1−Ai)
(1− π)

f̂0(Xi, YiMi,Mi)− ∆̂DR−WLS

}2

,

where f̂1, f̂0 are finite sample estimates of f1, f0 respectively, by substituting β̂, α̂ for β, α. Using

the same technique as in proof of Theorem 4.1 for consistent estimation of asymptotic variance,

we have

V̂ ar(∆̂DR−WLS) =
1

n

n∑
i=1

{
Ai
π
f1(Xi, Yi(1)Mi(1),Mi(1))− (1−Ai)

(1− π)
f0(Xi, Yi(0)Mi(0),Mi(0))−∆∗

}2

+op(1).

We apply Lemma C.1 and get

V̂ ar(∆̂DR−WLS) =
1

n

n∑
i=1

Ai
π2
{f1(Xi, Yi(1)Mi(1),Mi(1))− π∆∗}2

+
1

n

n∑
i=1

1−Ai
(1− π)2

{f0(Xi, Yi(0)Mi(0),Mi(0))− (1− π)∆∗}2 + op(1)

=
1

π
V ar(f1(X, Y (1)M(1),M(1)) +

1

1− π
V ar(f0(X, Y (0)M(0),M(0)) + op(1)

= ṼDR−WLS + op(1).
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�

Proof of Corollary 1. Given the asymptotic variance formula of Corollary 2, it is easy to verify

that when π = 0.5 or E[Y (a)|X] = g(β0 + βAa+ βtXX), we have

(1− 2π)2

π(1− π)
V ar

{
E

[
M(1)

Y (1)− h(1,X)

e(1,X)
−M(0)

Y (0)− h(0,X)

e(0,X)

∣∣∣∣S]} = 0

and hence VDR−WLS = ṼDR−WLS . Since the sandwich variance estimator is consistent to ṼDR−WLS

we get the desired result for these two cases.

For the last case where the model includes a treatment-by-strata term, we define h̃(a,X) =

g(β0 +βAa+βtXX+βtASa×S) and f̃a(X, Y (a)M(a),M(a)) by substituting h̃(a,X) for h(a,X)

in fa(X, Y (a)M(a),M(a)). Following the proof of Corollary 2, if the model includes a treatment-

by-strata interaction term, under stratified randomization or the biased-coin design, we have

√
n(∆̂DR−WLS −∆∗)

d−→ N(0, V DR−WLS),

where

V DR−WLS =
1

π
V ar(f̃1(X, Y (1)M(1),M(1))) +

1

1− π
V ar(f̃0(X, Y (0)M(0),M(0)))

− (1− 2π)2

π(1− π)
V ar{E[M(1)

Y (1)− h̃(1,X)

e(1,X)
−M(0)

Y (0)− h̃(0,X)

e(0,X)
|S]}.

According to the expected estimating equation

πE[M(1)
Y (1)− h̃(1,X)

e(1,X)
|S] + (1− π)E[M(0)

Y (0)− h̃(0,X)

e(0,X)
|S] = 0,

E[M(1)
Y (1)− h̃(1,X)

e(1,X)
|S] = 0,

we have E[M(1)Y (1)−h̃(1,X)
e(1,X) −M(0)Y (0)−h̃(0,X)

e(0,X) |S] = 0 and hence

V DR−WLS =
1

π
V ar(f̃1(X, Y (1)M(1),M(1))) +

1

1− π
V ar(f̃0(X, Y (0)M(0),M(0))).

Then following the proof of Corollary 2, we have the sandwich variance estimator is consistent

to V DR−WLS . �
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