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The characterization of early token-based accounting using a concrete concept of number, 
later numerical notations an abstract one, has become well entrenched in the literature. 
After reviewing its history and assumptions, this article challenges the abstract–concrete 
distinction, presenting an alternative view of change in Ancient Near Eastern number 
concepts, wherein numbers are abstract from their inception and materially bound when 
most elaborated. The alternative draws on the chronological sequence of material counting 
technologies used in the Ancient Near East—fingers, tallies, tokens, and numerical 
notations—as reconstructed through archaeological and textual evidence and as 
interpreted through Material Engagement Theory, an extended-mind framework in which 
materiality plays an active role (Malafouris, 2013). 

 
Introduction 
Early token-based accounting has long been understood as involving a “concrete” concept of 
number, with the invention of writing enabling the development of an “abstract” or “second-order” 
number concept (e.g., Damerow, 1996a). This distinction between “abstract” and “concrete” 
numbers is thought to have been facilitated by the invention of writing, which enabled the separate 
representation of quantity (by means of numerical signs) from commodity (by means of graphic 
labels), information that had previously been conjoined in the shapes, sizes, and quantities of clay 
tokens (Schmandt-Besserat, 1992a). In this familiar account, an abstract concept of number was 
presumably something the Mesopotamians not only lacked but were incapable of achieving before 
writing was invented. As expressed in the literature, “tokens reflected an archaic mode of 
‘concrete’ counting prior to the invention of abstract numbers. This is supported by the fact that 
there are no tokens to express abstractly numbers such as ‘1’ or ‘10’. Instead, a particular counter 
was needed to account for each type of goods: Jars of oil were counted with ovoids, small measures 
of grain with cones, and large measures of grain with spheres” (Schmandt-Besserat, 1992a, p. 6). 
Similarly, “[p]rior to the invention of the sexagesimal place value system [in the late 3rd 
millennium], there was no concept of abstract numeration: numbers were thought of not as 
independent entities but as attributes of concrete objects—the length of a line, for instance, or the 
quantity of sheep in a flock” (Robson, 2007, p. 75). 
 The abstract–concrete distinction has become fairly entrenched in the literature on Ancient 
Near Eastern numbers and thinking: “[T]he litany is often repeated that the Mesopotamians were 
incapable of abstract thought, that their languages lacked terms to express concepts” like numbers 
(Glassner, 2000, p. 55). It is particularly associated with the extensive research and publication on 
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Neolithic tokens by Archaeologist Denise Schmandt-Besserat (e.g., 1977, 1978, 1982, 1986, 
1992a, 1992b, 2010, 2016), as well as the cognitive analyses by developmental psychologist Peter 
Damerow (1988, 1996a, 1996b, 2007, 2010, 2012), who explicitly rooted the concrete-to-abstract 
notion in the work of psychologist Jean Piaget. Drawing in particular on work by sociologist 
Lucien Lévy-Bruhl (e.g., 1910, 1927), Piaget applied his ideas on cognitive development in 
children (e.g., how the thinking of children differs from that of adults; how the latter progressively 
develops from the former) to entire societies. These he divided into two groups. In the first were 
traditional and archaic societies, whose “prélogique” he compared to the “mentalité enfantine”; 
the second included his own and similar Western societies, labeled rational for their purported 
logical, adult thinking (Piaget, 1928, pp. 191–194). Such characterizations, pervasive in 19th-
century discourse on cross-cultural differences in general and number systems in particular (e.g., 
Conant, 1896), have been considered untenable since the mid-20th century, not merely for their 
perjoration but also for the overt biases that subvert their conclusions. 
 If its basis is now terminologically and methodologically inapt, the idea that Ancient Near 
Eastern numbers were concrete before becoming abstract nonetheless labels real phenomena of 
change in the way numbers would have been conceptualized between the Neolithic (8300 to 4500 
BC) and the Old Babylonian period (1900 to 1600 BC). One of the most significant changes was 
the separation of the representation of number from that of commodity in the late 4th millennium 
(Schmandt-Besserat, 1992a; also see Friberg, 1994; Malafouris, 2010; Mattessich, 1994), which 
enabled the further elaboration of notations and pictographs into a complex mathematics and 
literate writing. By the 2nd millennium, the Old Babylonian mathematicians had developed a so-
called pure mathematics involving complex algorithms for calculating answers to artificial as well 
as practical problems (Friberg, 2007; Høyrup, 2002a, 2002b; Robson, 2007, 2008). However, they 
do not appear to have speculated much about the nature of number as a concept, an inquiry that 
would be taken up by the Greek philosophers in the 1st millennium (Damerow 1996a, 1996b; 
Høyrup, 1994; Klein, 1968). 
 While its pervasiveness in the literature and association with unambiguous conceptual 
change make the abstract–concrete distinction difficult to challenge, the need to update it is both 
apparent and overdue for several reasons. First, as mentioned, applying Piaget’s theory of 
cognitive ontogenesis to the development of societal thinking has fallen out of fashion, a reason in 
and of itself to reexamine its application to change in the conceptualization of Ancient Near East 
numbers. Second, the distinction has generated a number of related assumptions (e.g., that tokens 
were the first technology used for counting; that tokens were used in one-to-one correspondence 
with the things they counted, and without number-words) that can and should be reexamined once 
their Piagetian underpinning has been removed, especially in light of evidence suggesting 
precursor technologies and the complexity of structure reflected by the tokens themselves. Finally 
and perhaps most importantly, the abstract–concrete distinction may underestimate the role of 
materiality in structuring and changing how numbers are conceptualized. This misses the 
opportunity provided by the Ancient Near Eastern sequence of counting devices, which spanned 
the realization of initial number concepts to their elaboration into one of the ancient world’s great 
mathematical traditions, ultimately contributing to the modern conceptualization of number. 
Analysis of the sequence may shed new light on the changes characterized by the abstract–concrete 
distinction and perhaps the way materiality functions in human cognition more broadly. 
 The challenge, then, is to update the abstract–concrete distinction in a way that both 
respects historical scholarship and provides new insight into the phenomena it characterized. After 



reviewing the history of the abstract–concrete distinction, an alternative view of change in Ancient 
Near Eastern numbers will be presented, one that encompasses materiality as a constitutive part of 
the cognitive system for numbers, and in which numbers are abstract from their inception and 
materially bound at their most elaborated. This alternative view of how numerical thinking is 
structured and changes over time draws on the sequence of material counting technologies used in 
the Ancient Near East, as reconstructed through archaeological and textual evidence (Overmann, 
2016a) and as interpreted through Material Engagement Theory, an extended-mind framework in 
which materiality plays an active role as a component of cognition with the ability to influence 
behavioral and psychological change (agency) and acquire and instantiate meaning (semiotic 
function) (Malafouris, 2013). The alternative corresponds well to Damerow’s (1988) insight that 
the conceptualization of numbers was informed by their material representations, as well as his 
concern that developmental psychology, especially as it had been applied to historical-cultural 
development by Piaget, might not be ideal for understanding change in the conceptualization of 
number (also see discussion in Nicolopoulou, 1997). 
 

The Piagetian Roots of the Abstract–Concrete Distinction 
Piaget was a clinical psychologist best known for his work on cognitive development in children. 
In his theory of how adult cognition develops from childish thinking, Piaget asserted that children 
of any and all cultures pass through four ontogenetic stages: a sensorimotor stage (0–2 years) 
characterized by experiencing the world through sensation and movement; a preoperational stage 
(2–7 years) characterized by the lack of concrete logic or the ability to manipulate information 
mentally; a concrete operational stage (7–12 years) characterized by logical thinking limited to 
matters that involved physical manipulation; and a formal operational stage (12+ years) 
characterized by abstract thought, metacognition, and complex problem solving (Inhelder & 
Piaget, 1958; Piaget, 1937, 1952). (Follow-on elaboration and enhancement of Piaget’s work on 
cognitive ontogenesis, known as Neo-Piagetian theories, have added higher-order stages and sub-
stages, not explicated here as tangential to the present argument.) Piaget held that the ontogenetic 
stages were necessarily progressive because the prior ones needed to be in place before any 
subsequent ones could develop. While scholars in the last half century have stopped applying 
Piaget’s theory to how societies think, his work on cognitive ontogenesis has remained influential 
in fields like developmental psychology and approaches like constructivism. 
 For Piaget, societies possessed distinct mentalities, as did children and adults, which he 
called primitive for traditional or archaic societies and rational, scientific, or civilized for modern, 
industrialized ones. He asserted the so-called primitive mentality of the “civilisations inférieures” 
resembled the “mentalité enfantine” (Piaget, 1928, pp. 200–201) in several respects:  

On peut citer comme exemples la tendance à l’affirmation sans preuve, le 
caractère affectif de la pensée, son caractère global, non analytique (le 
syncrétisme), l’absence de cohérence logique (des principes de contradiction et 
d’identité considérés comme des structures formelles), la difficulté à manier le 
raisonnement déductif et la fréquence des raisonnements par identification 
immédiate (participation), la causalité mystique, l’indifférenciation du psychique et 
du physique, la confusion du signe et de la cause, du signe et de la chose signifiée, 
etc. Nous ne prétendons nullement, cela va sans dire, que chacun de ces traits se 
présente de la même manière chez le primitif et l’enfant, et il faudrait un volume 
pour marquer les nuances, pour souligner l’aspect fonctionnel des ressemblances 



et écarter les identifications brutales. Mais, dans les grandes lignes, nous pensons 
qu’il y a des analogies. (Piaget, 1928, p. 194) 

Piaget also identified separate mechanisms for each, with “tradition sociale” constraining the 
primitive mentality and “l’égocentrisme de la pensée” that of the child, and these constituted 
“l’obstacle principal à la mise en parallèle du primitif et de l’enfant” (Piaget, 1928, p. 192). 
 Piaget was addressing the important question of how societies derived truth from opinion, 
the development of societal thinking that involves, as ontogeny does, the acquisition of concepts and 
the construction of structures of thought. He was not wrong about there being similarities between 
the two processes: Both involve interactivity with social others and the physical world, both are 
progressive in the sense that later constructions depend on previous ones, and both produce cognitive 
outcomes that are relatively consistent when viewed across individuals and societies. Some 
similarity is to be expected, given that any society is composed of individuals enculturated from birth 
to reproduce and transmit its behaviors, knowledge, and manner of thinking. However, while Piaget 
differentiated mechanisms of social constraint and egocentrism, he does not appear to have made a 
similar distinction between the child’s acquisition of existing social knowledge, which entails the 
preexistence of concepts, terminology, and knowledgeable others, from its social invention, where 
new knowledge is generated and adult activity dominates discovery, transmission, and 
conventionalization (indeed, since the developmental acquisition of number involves ontogenetic 
maturation, children are unlikely to be a significant factor in numerical elaboration, though the 
requirement to explain things in terms they can understand may plausibly relate, at least in some 
small part, to numerical explication). The processes overlap, as invention involves knowledge and 
skills acquired when young that are perhaps ontogenetically organized in ways that facilitate 
creativity (e.g., analogous to the way children turn pidgin into creole), and both adults and children 
participate in the transmission and conventionalization of new knowledge.12 
 The similarities and overlaps between the child’s acquisition of existing knowledge and a 
society’s generation of new knowledge may have further relevance to the history of thought 
(Oesterdiekhoff, 2016). Here it suffices to acknowledge that Ancient Near Eastern children would 
have acquired knowledge of, behaviors associated with, and ways of thinking about numbers both 
informally (e.g., via their exposure to numbers as lexical and grammatical features of language; 
through their everyday use of numbers) and formally (as part of scribal training) and that this was 
likely to have informed the social elaboration of numerical concepts, even as increasing 
elaboration may have pushed acquisition toward greater formality. However, the present focus is 
not the child’s acquisition of number concepts but how the concepts themselves changed over time 
as a body of social knowledge, Damerow’s concern. 
 

Damerow’s Application of Piagetian Theory to Ancient Near Eastern Numbers 
 In researching ancient mathematics, Damerow deserves credit for advancing the 
understanding of early Mesopotamian numerical systems through his methodical analysis of the 
extant data. This helped elevate the topic from the dismissive treatment it more commonly received 
from mathematical hands, where Babylonian and Egyptian contributions have often been 
                                                 
12Piaget envisioned the child’s acquisition of number as a process of developing “biologically predetermined” 
cognitive structures through environmental interaction; Damerow argued that environmental interaction (particularly 
with material representations of number) could influence the substance of numerical content (Damerow, 1998, p. 128). 
With Material Engagement Theory, material structures become a constitutive component of numerical cognition. 



considered rudimentary and “almost insignificant” in comparison to those of the later Greeks: 
These mathematical traditions were the merest “scrawling of children just learning how to write 
as opposed to great literature,” castigated as much for their practical application and empirical and 
inductive methodology as for making “hardly any progress [over a period of 4000 years]” and 
“[lacking] the spirit of mathematics” (Kline, 1967, p. 14). In contrast, the excitement with which 
Damerow (and indeed, predecessors, contemporaries, and successors that include Thureau-Dangin 
[1921], Neugebauer [1957], Vogel [1959], Vaiman [1961], Marvin Powell Jr., Jöran Friberg, Jens 
Høyrup, Hans Nissen, and Robert Englund, Eleanor Robson, Christine Proust, and Grégory 
Chambon) investigated the methods, context, and results of the Ancient Near Eastern mathematical 
tradition was a significant force in motivating scholarly interest from the historical and 
psychological perspectives. 
 Damerow analyzed numerical changes from the Paleolithic to the modern age, targeting 
those that occurred in the Ancient Near East between the Neolithic, which encompassed the 
invention of agriculture, significant increases in population, and the intensification of sedentism, 
specialization, stratification, and interconnectedness, and the Bronze Age, which oversaw the 
development of a complex mathematics and literary tradition. Distinctive technologies are 
associated with each: clay tokens with the Neolithic, numerical notations the Bronze Age. These 
were intermediated by forms that resembled tokens—numerical impressions and archaic numerical 
notations—whose resemblance attests to the numerical meaning of the tokens (at least the plain 
ones used in 4th-millennium accounting—spheres, cones, disks, cylinders, and tetrahedra; Friberg, 
1994), and whose use (and the subsequent development of pictographic labels for the commodities 
they enumerated) are widely credited as constituting the invention of writing. In characterizing 
numerical change using Piaget’s theory of societal mentalities, Damerow associated the numerical 
notations with an abstract concept of number. This necessitated that the earlier technologies and 
the societies that used them, like Piagetian traditional societies, were concrete and associated with 
difficulty distinguishing sign (e.g., tokens) from signified (the objects they counted). Damerow 
wrote that the Neolithic bore “the closest resemblance with what we know from extant indigenous 
cultures at a stone age level. If, therefore, Piaget’s assumption is correct that cognition in such 
cultures does not exceed the preoperative level, then the Neolithic Revolution in spite of the 
material progress did not fundamentally change the level of cognition achieved at the end of the 
Paleolithic Period” (Damerow, 1996b, p. 18). 
 Damerow advocated a four-stage model of Ancient Near Eastern numeracy, with the two 
highest stages each divided into two sub-stages (1996a, pp. 139–148; also see Table 1): Stage 0 
was pre-arithmetical quantification “defined by the absence of any arithmetical activities”; Stage 
1 was proto-arithmetical quantification that began “with the construction of one-to-one 
correspondences.” Stage 2 consisted of symbol-based arithmetic “based on the manipulation of 
symbols according to rules derived from the construction of second-order representations of 
quantities and actions,” with second-order representations indicating “thoughts about thoughts”; 
Stage 2A involved context-dependent symbol systems with “no general system of abstract number 
notations,” while Stage 2B involved abstract symbol systems “no longer dependent on any specific 
contexts of application.” Finally, Stage 3 consisted of concept-based arithmetic “defined by the 
construction of second-order representations of symbolic arithmetical transformations by means 
of mental reflection”; Stage 3A involved natural-language derivations “composed of statements 
and arguments encoded in natural language” with “explicitly defined” concepts of number, of 
which the “best-known early instances” came from ancient Greek mathematics, while Stage 3B 
involved symbolic derivations in which “the encoding of concepts in natural language [was] 



replaced by encoding in abstract symbol systems ... [with concepts] subsumed under generalized, 
unifying concepts,” a progression “not completed before the end of the nineteenth century” AD. 
 
Table 1: Damerow’s Model of Conceptual Development in Ancient Near Eastern Numbers 

Stage Timeline Characterization 

0 Pre-arithmetical 
quantification 

Before 10,000 BC No arithmetical activities 

1 Proto-arithmetical 
quantification 

Roughly 10,000 
BC One-to-one correspondence 

2 Symbol-based 
arithmetic 

 Symbolic manipulation; second-order 
representations of quantities and actions 

 A 
Context-
dependent 
symbols  

Archaic numerals 
(late 4th mil. BC) No general system of abstract number 

notations 

 B 
Context-
independent 
symbols 

Cuneiform 
numerals (3rd mil. 
BC) 

Independence from any specific contexts of 
application (abstraction = abstract symbols) 

3 Concept-based 
arithmetic 

 Second-order representations of symbolic 
arithmetical transformations by means of 
mental reflection 

 A Natural-language 
derivations 

Greek 
mathematics (1st 
mil. BC) 

Natural language encoding of statements and 
arguments; explicitly defined concepts of 
numbers 

 B Symbolic 
derivations 

Late 19th century 
AD 

Symbolic encoding of statements and 
arguments; generalized, unifying concepts 

Note: Compiled from Damerow, 1996a, pp. 139–148. 
 
 It is possible to agree with Damerow regarding the overall progression and relative 
chronology of his model, since numerical elaboration in later stages depends on numerical 
concepts in some form or another being available in earlier ones. Some of the model’s timeline 
and characterizations are undoubtedly correct, as the representational separation of number and 
commodity was an abstraction that potentialized their further elaboration; Greek philosophers were 
indeed concerned, as Old Babylonian mathematicians appear not to have been, with the ontological 
status of number (Høyrup, 1994; Klein, 1968); and the emergence of generalized, unifying 
mathematical concepts relatively recently is historical fact (Gowers, 2008). Nonetheless, this 
partial acceptance does not preclude rejecting the ideas that tokens were confused with the objects 
they enumerated or that they represented concrete numbers while written notations meant abstract 
ones. Further, the mechanism of change in societal thinking may not have been ontogenetic 
maturity but, as argued here, material engagement: Numerical content and structure were 
influenced by the material forms used for counting, associated behaviors, and psychological 
processing related to the acquisition of an elaborated cultural system. That is, conceptual change, 
and perhaps change in psychological processing as well, would have occurred through change in 
the materials used to represent and manipulate numbers. Material engagement also provides a 
mechanism for conceptual structuring and change at the level of both individual and society 
without needing to appeal to ontogenesis for either. 



 Damerow’s model also inherited some of the shortfalls of Piagetian theory: For example, 
Piaget’s research in ontogenetic development and numerical acquisition focused on children 
enculturated into numerate Western societies, generating findings whose cross-cultural 
generalizability has been convincingly challenged (e.g., Dasen, 1994). To what degree the cultural 
elaboration of numbers influences their acquisition remains an open question, given that the 
perceptual ability to appreciate quantity, which governs how quantity is experienced and to some 
extent influences how numbers are cognized, appears stable across significant differences in 
numerical elaboration (Henrich, Heine, & Norenzayan, 2010). Generalizability of Piaget’s theory 
of societal mentalities faces similar difficulties: If indeed generalizable, Piagetian stages similar to 
those Damerow construed for Mesopotamian numbers should be found in Egypt, China, and 
Mesoamerica, the other ancient mathematical traditions, but they are not (Chrisomalis, 2005). 
Moreover, the emergence of context-independent numerical representations from multiple systems 
of context-dependent ones marked for Damerow the critical transition to abstract numbers in the 
Ancient Near East. Fitting this into Piagetian theory meant excluding the possibility that the 
Neolithic cultural elaboration influenced how numbers were conceptualized, despite the likelihood 
that numbers both enabled and were themselves elaborated during the Neolithic Revolution, as 
there is a well-established (if poorly explained) cross-cultural correlation between numerical 
elaboration and the complexity of material culture generally (Epps, Bowerin, Hansen, Hill, & 
Zentz, 2012). 
 

Abstract and Related Assumptions 
The distribution of numerical meaning across multiple number systems in the early numerical signs 
(i.e., the tokens, numerical impressions, and archaic notations) made their value context-dependent 
and also specified the commodity they counted. Damerow assumed this necessarily marked the 
absence of an abstract concept of number. As this meant there were no abstract number concepts 
needing linguistic expression, it was also assumed that the early numerical signs coexisted with a 
restricted numerical lexicon (i.e., one in which it was possible to count no higher than 20 and 
perhaps no higher than 3 or 4; Comrie, 2013). Finally, tokens are often discussed as if they were 
the first counting technology and were used in one-to-one correspondence with the objects they 
counted. These assumptions are closely related to one another and to the various ways the term 
abstract has been used in the literature, which will be examined first: Abstract can refer to a 
concept formed or changed through the cognitive process of abstraction. The term can also have 
the sense of something intangible; that no longer faithfully resembles what it intends to depict; that 
has become distilled, truer, or rarified; that is theoretical rather than practical when applied; or a 
number that is unspecified in not referring to any particular object. After these are examined, an 
additional way of understanding abstract as the distribution of a concept over multiple material 
forms, and hence, its seeming independence from any particular form, will be offered. 
 As a cognitive ability, abstraction is a process of concept formation and change that 
encompasses generalization (identifying properties common to sets of objects; inducting from 
particulars; applying inductive insights to new domains), decontextualization (extracting content 
from its original circumstances to remove their influence on its meaning), synthesis (combining 
parts into wholes, often in such a way that sums are greater than the parts), and reification 
(reinterpreting processes or relations as permanent entities in their own right, making them 
available to act as inputs to other processes or relations) (Dreyfus, 1991; Ferrari, 2003; Sfard & 
Linchevski, 1994). As a process, abstraction is as much behavioral and material as it is mental. For 



example, numbers begin as a recognition that sets of objects share quantity (Russell, 1920), 
generalization occasioned by behaviors like one-to-one correspondence that manipulate sets of 
objects into arrangements whereby their shared quantity can be appreciated. Change in the venue 
for counting—performing it in a place different from the one where the enumerated goods are 
located—would decontextualize counters from counted. And blank space in the sexagesimal place 
value system developed in Mesopotamia toward the end of the 3rd millennium would be reified, 
first as a meta-sign for the absence of any number, and ultimately as a number in its own right, 
zero (Rotman, 1987). 
 Schmandt-Besserat labeled objects thought to be numerical counters “tokens,” a term that 
invoked the type–token distinction of philosopher Charles Saunders Peirce. A Token is “a Single 
object or thing which is in some single place at any one instant of time, such … thing being 
significant only as occurring just when and where it does”; in comparison, a Type “is not a Single 
thing or Single event. It does not exist; it only determines things that do exist” (Peirce, 1906, p. 
506). Where a Peircean Token is tangible, a Type is not, making the former presumably concrete, 
the latter abstract. Abstract products need not inhabit the same phenomenological level, as a 
(physical) drawing of a triangle differs from the (ideal) geometrical concept of one. That is, the 
concepts realized by abstraction are “not concrete and tangible” (Gowers, 2002, p. 16), a 
characterization often applied to mathematical objects. Formally, abstract objects are conceived as 
non-mental and nonsensible (e.g., Plato’s ideal forms) or as lacking spatiotemporal locus, causal 
efficacy, or both (Linnebo, 2013; Rosen, 2014). This is mathematical realism, the view that 
mathematical objects have an existence independent of the mind and sensible world. From a 
different perspective, being intangible or otherwise imperceptible is true of mental content, to 
anyone other than the person whose mental content it happens to be, unless it is made public some 
fashion (e.g., materially, linguistically, emotionally, etc.). Intangibility is implicit in intuitionism, 
the idea that numbers are intuited and mathematical objects mentally constructed (Brouwer, 1981). 
The debate about whether numbers are mind-external or -internal need not be settled to recognize 
that either way, numbers would be intangibly abstract from their inception as comparisons of 
quantity between two sets of objects; their intangibility means that numbers depend on material 
instantiation for their expression, explication, manipulation, and visualization (Fig. 1). More 
interesting is the fact that they can be materially realized and systemically manipulated in the first 
place, as not every intangibly abstract concept or group of related concepts can as easily be (e.g., 
justice; societal norms). However, while conceptual content is related to the materiality that gives 
it form, there is arguably more to the former than the latter instantiates (were this not so, 
archaeological interpretation would be a much simpler matter). If the instantiating material makes 
the concept comprensible (Frege, 1953), what its substance is (and is not) capable of has potential 
influence on the resultant content. 
 A representation whose form has become relatively independent of the object it once 
depicted is abstract in the sense Schmandt-Besserat initially used: “Hypotheses about the origin of 
writing generally postulate an evolution from the concrete to the abstract: an initial pictographic 
stage that in the course of time and perhaps because of the carelessness of scribes becomes 
increasingly schematic” (1978, p. 50). Over several centuries, the pictographs used as archaic 
commodity labels did become less recognizable as the objects they depicted (Fig. 2), but probably 
not through inattention or neglect. Rather, decreased iconicity was an effect of emerging literacy: 
The neural reorganizations involved in recognizing handwritten written objects by their features 
relaxed the need to preserve the original iconic form; other contributing factors included motor 
habituation, biomechanical effectiveness, and visual discriminability (Overmann, 2016b). Decreased 



iconicity also affects numerical signs (e.g., as the sign 2 was once two strokes), but to a lesser extent 
than non-numerical ones because of how they represent meaning and are organized systemically. 
Numerical signs can instantiate their meaning (Malafouris, 2013), as two strokes or wedges are two. 
Even in abstract (e.g., 2) or symbolic form (as a small sphere meant an amount of N01 and a wedge 
meant 10), numerical signs are semantically meaningful without phonetic specification, a quality 
Powell (1971) noted Sumerian numbers share with modern Western numerals. This is because 
numerical signs share relations with each other and are organized in a limited number of basic 
patterns (only five in the classification schema of Chrisomalis, 2010), making them recognizable as 
numbers even in unknown languages and scripts. By comparison, non-numerical signs symbolize 
their meaning, making them relatively ambiguous regarding their intended semantic and phonetic 
values (e.g., as the pictograph of a head could mean head, person, or capital). Further, the 
organization of non-numerical language is much more variable, and context affects both semantic 
and phonetic value. These factors pressure non-numerical signs to incorporate semantic and phonetic 
clues that alter their appearance. Thus, while both numerical and non-numerical signs lose iconicity 
through factors involved in emergent literacy, non-numerical signs lose more (i.e., become more 
abstract in this sense of the term) than numerical signs do. 
 

 

Fig. 1: Model of a conceptual blend anchored 
and stabilized by a material form (adapted from 
Malafouris, 2013, Fig. 5.2). Blending “operates 
on ... Input mental [and physical] spaces to yield 
a third space, the blend. The blend inherits 
partial structure from the input spaces and has 
emergent structure of its own” through 
processes like contextualization, recognition of 
inter-element relations, and elaboration 
(Fauconnier, 1997, pp. 149–151, emphasis 
original). The letters represent elements such 
as knowledge (mental), features (physical), and 
capacities (both). The lines between elements 
are “ontological correspondences [between 
internal (mental) and external (physical) 
domains that] primarily involve connections of 
identity, analogy, similarity, causality, change, 
time, intentionality, space, role, and part-whole, 
and in some cases also of representation” 
(Malafouris, 2013, p. 100). Projection is 

triggered and supported by an “external manipulable structure” that interacts with and influences 
mental capabilities and conceptual content; it augments and contextualizes the observed material 
form with knowledge, attended features, construed relations, etc., thereby going “beyond what is 
immediately perceived” (Malafouris, 2013, p. 102) to become “transformational and not merely 
informational” (di Paolo, Rohde, & de Jaegher, 2010, p. 39). Blending enables numerical intuitions 
to be made tangible, expressed, explicated, manipulated, and visualized. 

 
 Abstract can also connote something that has become distilled, refined, or purified to its 
essential nature, perhaps in the process becoming more accurate and true, or something that has 
achieved a state more rarified and complex than what preceded it, making it more difficult for the 



uninitiated to comprehend. Certainly, numbers have changed over the past millennia, and if 
distilled and truer, they have also become more complicated and difficult to grasp in their totality: 
Old Babylonian numbers are relatively simple compared to their Greek counterparts, whose 
foundational ontological role connected the sensible and nonsensible realms, not just for 
themselves but for all things (Klein, 1968); with their modern counterparts, it is not only possible 
but desirable to prove something as seemingly self-evident and incontrovertible as 1 + 1 = 2 
(Peano, 1889; Whitehead & Russell, 1927). Materiality has been central to this evolutionary 
development: It collects and consolidates social knowledge and interfaces what a society knows 
and an individual learns, distributing elaborational effort over space and time (Haas, 1996; 
Hutchins, 1995). As the conceptualization of number differs by evolutionary locus, a further 
distinction can be made between a material form and the concept it represents, not merely because 
the former makes the latter tangible: At least part of conceptual content relates to the number 
system, as the relations among numbers are as critical to what numbers are and what they can do 
as are notes to music and sounds to language (Plato, 1892). As numerals (and other material forms) 
make numbers accessible, their “perceived relationships … are taken as proxies (consciously or 
unconsciously) for relationships among conceptual elements” (Hutchins, 2005, p. 1562). Material 
representation makes numerical relations accessible in a way that enhances the visualization of 
patterns and bypasses psychological constraints (e.g., working memory capacity); the evolutionary 
mechanism this provides is one in which material properties are as pertinent as mental ones. 
 

 
Fig. 2: Chronology of numerical (top) and non-numerical (bottom) signs across five thousand 
years and multiple languages; both lineages descend from ancestral to modern forms, though 
not all intermediate forms or contributing branches are shown. The numerical sign shows greater 
conservation of form relative to the non-numerical sign, which reasonably relates to its non-
phonetic semanticity. Over a similar time span (i.e., from the Shang oracle bones, through the 
Zhou, Qin, and Han writing reforms, to the 20th-century simplified script), Chinese non-numerical 
characters show less orthographic change relative to the non-numerical example above, as they 
have not involved significant phonetic or semantic adaptation; however, Chinese non-numerical 
characters still show more change than the associated numerical signs (Branner, 2006; 
Chrisomalis, 2010; Martzloff, 1997). Information compiled and images adapted from Chrisomalis, 
2010; Ifrah, 2000; Nissen, 1986; Tompack, 1978; Cuneiform Digital Library 2015. 

 
 As numerical relations become more explicit (e.g., not just “greater than” and “plus one” 
but “11 is 3 more than 8”), they also become more accessible to manipulation. This relates to the 
sense in which abstract, theoretical, or pure mathematics contrasts with its mundane counterpart, 
the everyday use of numbers: The former is concerned with numerical relations, the latter with 



questions of how many and how much, the difference between searching for higher prime numbers 
and summing a grocery bill. A pure mathematics is said to have developed by the Old Babylonian 
period (Friberg, 2007; Høyrup, 2002a, 2002b; Robson, 2007, 2008), as discerned through complex 
calculations with quantities or measurements that could not exist in actuality, making them pure 
“in substance,” though they remained “applied in form” in dealing with matters like military 
construction and agricultural yield (Høyrup, 1994, p. 8; emphasis in original). Greek 
mathematicians, in comparison, investigated knowledge “systematically and for its own sake (or 
at least without any intentions of application)” (Høyrup, 1994, p. 25; emphasis in original), a 
distinction Damerow noted in his model. However, Greek concern with conceptual content, 
definitions, and ontological status was informed by the abstract mathematics developed in 
Mesopotamia, and it was not limited to numbers or mathematics but rather involved the entire 
spectrum of scientific thought as it was then known. Thus, while representational separation 
undoubtedly facilitated the complex and artificial calculations of Mesopotamian mathematicians 
and contributed to the later conceptual work of the Greeks, the further elaboration of number 
concept by the latter cannot be ascribed solely to independent mathematical developments but 
must be contextualized as part of continued change in mathematical thinking and broader change 
in scientific thought. 
 The terms concrete and abstract have another connotation, familiar in discussions of Ancient 
Near Eastern numbers: specified or unspecified, or connected (or not) to the objects of which a 
number is the quantity (e.g., Schmandt-Besserat, 1981). To Damerow, the early numerical signs were 
specified, as they referred to particular commodities, and cuneiform numbers were unspecified, as 
they did not so refer. However, even the later Greeks lacked unspecified numbers. The everyday 
numbers used in counting and calculating (arithmos) were so thoroughly identified with the sensible 
objects they quantified that while a number designating different objects had the same quantity, it 
differed with respect to the objects it designated: The ten used with horses thus differed from the ten 
used with dogs (Klein, 1968, drawing on Aristotle). Plato’s pure or nonsensible numbers were 
similarly specified: One was not a number but an indivisible unity, of which the pure numbers, two 
and higher, were multiples and thus specified (this construct created some difficulty, as the 
indivisibility of one meant that pure numbers could not be divided into fractions like arithmos could 
be) (Klein, 1968). Against Damerow’s model, this suggests that Greek specified numbers were less 
abstract than cuneiform unspecified numbers, or that cuneiform numbers were not really unspecified 
(perhaps in referring to the metrological systems they intermediated; Robson, 2008), or that the 
Mesopotamians may have distinguished, as the Greeks did, the quantity of a number (shared) from 
its designation (specified). Certainly, Mesopotamian length and area calculations were specified, 
since continuous extents are ratios of some known measure, not discrete items subject to 
individuation and enumeration. The idea that number could be unspecified was the work of 
Renaissance mathematicians like Viète, Stevin, and Descartes, part of a larger reconceptualization 
that included one, zero, fractions, infinity, and unknown numbers in the same symbolic class as the 
positive integers and which unified continuous and discrete numeration (Klein, 1968; Rotman, 1987, 
2000). The point is not to reassign abstract numbers to the Renaissance (or indeed, to the late 19th 
century, where Crossley [1987] suggests numerical abstractness developed suddenly from a 
purported previous concreteness through work by Dedekind), but to draw attention to the fact that 
the Mesopotamian numbers represented by the early numerical signs, considered in total across the 
multiple systems they instantiated, referred to a much broader range of objects than what a tally 
might designate. This attribute might have been acknowledged as representing abstract numeration 
had the early numerical signs not been labeled as concrete. 



 Beyond specifying particular things or nothing whatsoever (except perhaps each other), 
numbers can apply to anything and everything (it is left to the reader to determine whether this is 
best characterized as specified or not): “For number applies itself to men, angels, actions, thoughts, 
every thing that either doth exist or can be imagined” (Locke, 1690, Book 2, Chapter XVI, Sect. 
1). The set of entities over which numbers can range becomes functionally limitless, a significant 
expansion compared to the relatively few commodities specified by early Mesopotamian 
numerical signs. This expansion, however, obscures a similar phenomenon in the material 
instantiation of number, where the incorporation of multiple material forms has three major effects: 
First, multiple instantiating forms enable comparisons of what they share and, more importantly, 
where and how they differ (e.g., as tokens were manipulable but numerical impressions were 
fixed). The contrast between forms (and language) potentializes elaboration, relative to systems 
with fewer forms (e.g., the Oksapmin body counting system prior to its exposure to Western 
mathematical practices; Saxe, 2012; reinforcement between the ordinal sequence provided by both 
the single material form and language yielded a stable system). In the Ancient Near East, not only 
were a variety of forms used, there were multiple numerical systems in contact with each other, 
whose different organization (e.g., Sumerian sexagesimal; Akkadian and Elamite decimal) would 
have provided contrasting elements. New material forms provide additional ways to represent and 
manipulate number concepts, the potential for novel structure, and material contrasts that may 
serve to highlight differences and foster insight. 
 The concept of number also incorporates attributes from the various material forms used 
to instantiate it: For example, numerical notations became manipulable once the relations between 
numbers had been sufficiently explicated and learned and suitable algorithms were formulated. 
But notations are fixed, not manipulable, which suggests they incorporated the manipulability of 
the earlier tokens, a development perhaps involving some awareness that what older forms enabled 
should be possible with newer forms. The concept of number also helps perpetuate these attributes 
across changes in material form: As their representation on the outsides of bullae indicates, tokens 
likely preserved the linear ordering by increasing magnitude of fingers and tallies, despite the 
potential for other organizational schemes (e.g., in a circle rather than a line; random or alternating 
magnitude; etc.) implied by their manipulability. Further, though once made they were fixed, the 
notational forms (i.e., the numerical impressions on bullae and envelopes, archaic numerical 
notations, and cuneiform numbers) were consistently ordered linearly and by increasing 
magnitude, though they too could have been otherwise organized during the process of 
manufacture. However, material forms and the concepts they instantiate condition those who use 
them to things working in certain ways. Familiarity and habituation narrow the range of behaviors 
possible with newer forms, enabling the structure of older forms to influence the structuring 
potential of newer forms. 
 Finally, when the concept of number is instantiated by a variety of forms, it becomes in a 
sense independent of any of them, yet another way of understanding the term “abstract.” To 
paraphrase Miller (1980, p. 4) on the independence of the concept money from the many forms it 
can assume: Numerals are not numbers but a form of number; whatever its real nature, the concept 
of number is revealed through the form(s) that instantiate(s) it (Overmann, 2017). The use of 
multiple forms implies a concept that has become independent of any particular form, something 
that is true of the Western number concept: We count with our fingers, make tally marks, use coins 
(a material form similar to tokens in being manipulable and numerically interrelated), write 
numbers on paper and chalkboards, type them into calculators and computers, etc. The concept of 
number encompasses all of these various material forms (and more that have not been listed), along 



with aspects of only some of them (e.g., linearity; manipulability), characteristics that may not be 
implicit in every particular form but perpetuated through conceptual content. The potential 
persistence of tallies and tokens thousands of years after their first appearance in the archaeological 
records (e.g., Henkelman & Folmer, 2016; MacGinnis, Monroe, Wicke, & Matney, 2014), the 
presumed persistence of finger-counting to the point where it appears in the textual record, and 
indeed, the distribution of numerical value over multiple systems of early numerical signs 
(including the tokens), suggest that Mesopotamian numbers were similarly distributed across, and 
thus independent of, the different forms of materiality used to represent and manipulate them, and 
that this independence perhaps emerged in the Neolithic. 
 In sum, number is abstract in being formed and changed through the cognitive process of 
abstraction. It is abstract in its intangibility and subject to some abstractness in losing iconicity. It 
is abstract in the sense that its content changes over time through elaboration, in being applied 
theoretically, in expanding its range of potential application, and in becoming less dependent on 
particular material forms. Yet while number is abstract from its inception, it remains bound, 
however loosely, to the materiality that gives rise to it as concept, that makes it tangible and 
accessible and manipulable, that stabilizes and makes it generationally persistent, and whose 
properties inform its character while enabling it to change. Rather than being conceived as being 
“concrete” at some times and “abstract” at others, number should be acknowledged to have a dual 
abstract–concrete nature (with the quality “abstract” as stipulated and numerical content, structure, 
and organization changing as described). With number as a concept that emerges from the 
interaction of the psychological, behavioral, and material elements of numerical cognition, the 
“abstract–concrete” distinction collapses.23 
 

Related Assumptions 
Damerow’s idea that the early numerical signs entailed concrete numbers was derived from their 
meaning, which was distributed, context-dependent, and specified: In the Neolithic, the numerical 
meaning of tokens varied geographically and temporally, creating an impression there was no 
abstract concept of number to unify them (this is compounded by a tendency to label any small 
clay object as a token; archaeological contexts being ambiguous regarding intended use; among 
other criticisms; see Englund, 1998; Friberg, 1994; Zimansky, 1993). By the late 4th millennium, 
numerical signs also distributed their meaning between multiple, commodity-specific systems, in 
which conventions of shape, size, and order encoded both number and commodity and a particular 
sign could hold different values (i.e., polyvalency) relative to higher- and lower-value signs 
(Nissen, Damerow, & Englund, 1993; also see Fig. 3). Value that was distributed, context-
dependent, and specified suggested to Damerow a concrete concept of number. However, 
specification may have been an improvement over earlier, non-specifying technologies (more on 
this later). Further, distributed, context-dependent, specified numbers need not be concrete: the 
question how many? implicitly means how many [what]; 10 can mean ten or two; and both are 
associated with thoroughly abstract numbers. The idea that distributed, context-dependent 
specificity signaled concrete numbers is absurd, as it would make those familiar with them “less 
numerate than the average Sumerian who did not use texts, only number words” (Chrisomalis, 
2005, p. 4). And as discussed, the distribution of numerical meaning over multiple representational 
                                                 
23This is not an argument for retaining the term “abstract,” but rather, a stipulation that “independence” is another 
aspect of the quality to which “abstract” has historically been applied. 



systems may have signified an abstract concept of number, in the sense of being independent from 
any particular material form. 
 

 
Fig. 3: Two of over a dozen archaic numeral systems used for counting and representing (top) 
most objects and (bottom) grain, probably barley. Redrawn from Nissen, Damerow, & Englund 
(1993) without the fractions for System 2. Note that N14 is equal to ten N01 in System 1 but six 
N01 in System 2; the ability of the same sign to hold different values across systems is called 
polyvalency. Also note that relative to N34, N45 has a higher value in System 1 but a lower one 
in System 2; such context-dependent value meant that N48 was equivalent to 600 N01 in System 
1 but 1800 N01 in System 2. Context was determined by sign order, the use of signs unique to 
a particular system (e.g., N50 and N39), and bundling amounts (six or ten N01). Context also 
specified commodity (e.g., N34 meant barley in System 2 but “humans and animals, dairy and 
textile products, fish, wooden and stone implements, [or] containers” in System 1; Nissen et al., 
1993, p. 28). Other methods of representing commodity were also used: Container-shaped 
tokens (e.g., jars for oil) represented number and commodity conjointly through resemblance 
and unbundled repetition (Damerow & Meinzer, 1995). Commodity could also be represented 
separately from number, perhaps through complex tokens (Schmandt-Besserat, 1992a; 
however, this is the least accepted part of Schmandt-Besserat’s hypothesis; see criticisms by 
Englund, 1998a; Friberg, 1994; Zimansky, 1993). Other, more ambiguous methods of 
representing commodity separately from number involved the use of seals or trading context 
(Englund, 1998b; Jasim & Oates, 1986); these methods would have identified people known to 
deal in specific items, commodities that were not otherwise specified in seals or which involved 
trade relations invisible to archaeological methods. 

 
 Rather than indicating a concrete number confusing sign with signified, conjoint 
representation may have simply been the Mesopotamian solution to a common problem, how to 
represent number and commodity in material form prior to the invention and availability of writing. 
In traditional societies, when a hunter marks his arm or the ground to count the days he has traveled 
or the enemies he has killed (Morgan, 1852; Pelleschi, 1896), he is unlikely to conflate the marks 
with either but simply represents the quantity of what he counts with the marks and maintains the 
knowledge of what he counts separately, perhaps in memory or the context of discussion. Granted, 
without their separation, further elaboration of the representation number and commodity is less 
likely. However, once the amount and duration of what needs to be remembered exceeds the 
capacity and persistence of human memory, some more capacious and durable method will be 
developed, and it may at some point involve representational separation. Other societies have 
solved the problem similarly to the way the Mesopotamians initially did, by means of encoding 
quantity, shape, and/or position; these devices include the Peruvian quipu, knotted string systems 
used in Peru, Bolivia, and Germany, Roman counting board, Chinese and Roman abacus, and 
Japanese Soroban (Zhang & Norman, 1995). None of these has been labeled as representing a 



particularly concrete notion of number, despite the similarity of their conjoined representation with 
that of the early numerical signs, impressions, and tokens of the Ancient Near East. 
 The idea that early numerical signs (e.g., tokens, impressions, proto-cuneiform) were used 
with a restricted numerical lexicon relates to the idea that concrete thinking precluded both concepts 
of and words for abstract numbers (previously discussed) and to the inexpressiveness of early writing 
(i.e., the need for greater specificity in non-numerical signs). Sumerian numbers are typically 
described as a system in which early numerical signs were used with an oral counting sequence of 
only small quantities, signs for higher quantities like 600 were used without any corresponding 
vocabulary, and there was no ability to expand spoken numerals systematically before writing was 
invented (Høyrup, 2016). The textual evidence for a numerical lexicon thus requires context: The 
emergence of phonetic values for lexical and ordinal words (e.g. and respectively, one, thousand and 
first, thousandth) and grammatical singular–plural distinctions in the 3rd millennium is more likely 
related to increased expressiveness (greater specificity) in writing, rather than indicating these 
features had only recently emerged in speech, for three reasons: The recency hypothesis (i.e., the 
idea that unrestricted lexical numbers emerged in Sumerian only after the invention of proto-
cuneiform) and the fact that lexical forms precede grammatical ones (Corbett, 2000; Overmann, 
2015) entail a significantly accelerated timeline at odds with the gradual pace of such 
grammaticalization generally (Heine, 2003; Traugott & Heine, 1991). The recency hypothesis also 
ignores the import of token precursors and the semantic (non-phonetic) sufficiency of numerical 
representation, which suggest, respectively, the early development of a numerical lexicon and a late 
emergence for its phonetic representation. Finally, the recency hypothesis cannot account for the 
differences (e.g., marking method, distinctions expressed, animacy modulation) in Sumerian, 
Akkadian, and Elamite grammatical number that imply its separate development (i.e., before the 
significant inter-group contact of the late Neolithic). 
 A restricted lexicon also cannot be confirmed through the frequency of ordinal numbers 
(Dahl, 2015), as higher ordinal terms (e.g., sixth, tenth, hundredth) have a negligible frequency even 
in numerate languages with expressive scripts. Simply, the writing system’s inability to express 
numbers phonetically does not entail there were no such words, especially given the semantic 
sufficiency of numerical representation mentioned previously. Further, while there is some lag 
between the initial representation of numbers materially (e.g., with fingers, gesture, tallies, etc.) and 
their linguistic expression, the lag is associated with relatively small, isolated societies, not 
populations the size and scale of the Ancient Near Eastern Neolithic. No known number systems 
have a lag the size of the one suspected for the Ancient Near East; rather, the ability to represent 
numbers in the hundreds materially invariably has a corresponding vocabulary, including an ability 
to express higher quantities in systematized and regularized ways (Comrie, 1989; Greenberg, 1978). 
Thus, early numerical signs for quantities in the hundreds are evidence of an unrestricted numerical 
lexicon, even if the associated phonetic values remained unknown until much later. 
 The assumption that tokens were the initial counting technology used in the Ancient Near 
East is countered on several grounds. First, there is archaeological evidence of possible tallies in 
the Upper Paleolithic Levant and known cultural diffusion between the populations that expanded 
into southern Mesopotamia from the Levant and Zagros Mountains during the Neolithic (Lazaridis 
et al., 2016; Reese, 2002). There is also textual and numerical evidence that implies finger-
counting with a relative chronology that likely predates tallies and thus tokens as well. Schmandt-
Besserat (1992a) acknowledged both, but she did not address their significance as possible token 
precursors. Admittedly, both are ambiguous regarding counting. For the artifacts purported to be 



tallies, there is no definitive way to establish their use in counting, as marks on bones can be made 
for a variety of other purposes, including record-keeping, divination, music, fiber- or leather-
working, and tools of an unknown type (Reese, 2002). For fingers (and possibly toes as counting 
devices), the evidence takes two forms: One post-dates tokens as lexical terms (i.e., five-plus 
compounds for six through nine; ten- and twenty-cycles in higher lexical numbers) whose 
preservation had to wait for writing to be invented and then develop both the ability and the need 
to express the phonetic values of Sumerian number-words; the other consists of the productive 
cycles of 10 in the Sumerian, Akkadian, and Elamite number systems, ten-ness that typically 
derives from the use of the fingers in counting (Blažek, 1999; Edzard, 1980; Englund, 1998c, 2004; 
Friberg, 2007; Nissen, Damerow, & Englund, 1993).34 
 However ambiguous the evidence of fingers and tallies might be, tokens were still unlikely 
to have been first, on grounds of their complex numerical representation: Tokens were related not 
just to what they counted but to each other as well, through bundling relations that made a single 
token of a higher value equal to 2–10 tokens of a lower value; in many (but not all) cases, bundling 
reflected metrological relations between containers used for the commodities in question (Nissen, 
Damerow, & Englund, 1993). In adding a second dimension to their numerical representation (Fig. 
4), bundling implies that the tokens were likely preceded by one or more one-dimensional 
technologies. (A possible counterargument, that tokens simply depicted what they counted, leaves 
the evidence of finger-counting and possible tallies unexplained.) Bundling also counters the idea 
that tokens represented one-to-one correspondence, since they were related to each other and not 
just the commodity they enumerated. In addition, bundling operations (i.e., the exchange of higher- 
and lower-value tokens to simplify a compilation of tokens to its simplest and most accessible 
numerical form) necessitated a relative faculty with quantities like six and 10, which exceed the 
range of perceptual salience (i.e., the so-called subitization constraint) that limits the quantities 
appreciable without counting to three or four. This in turn implies that the numerical lexicon likely 
reached numbers that corresponded not only to bundling values (i.e., up to 10) but to the values of 
compound tokens as well (tens and hundreds), rather than being restricted to subitizable amounts. 

                                                 
34The idea that fingers (and possibly toes) were an early material form for Mesopotamian counting is inferred from 
extant number systems, where the strong somatic basis for numbers manifests as patterning by fives, tens, and twenties. 
This somatic basis is a function of the neurological interaction between the intraparietal sulcus (the part of the brain 
implicated in appreciating quantity; e.g., Ardila, 2010) and the angular gyrus (the part that “knows” the fingers and 
supports both finger-counting and calculating; e.g., Roux, Boetto, Sacko, Chollet, & Trémoulet, 2003). Finger-
counting spans the gamut of numerical elaboration (i.e., from emerging to highly elaborated systems), while the use 
of body parts other than the fingers (e.g., toes; other anatomical features) is associated with emerging number systems 
(especially ones that have not incorporated other material forms). Mesopotamian numbers would have shared these 
cross-cultural tendencies, as Ancient Near Eastern people are reasonably and plausibly construed to have had five-
fingered hands and typical neurological functionality (and indeed, the latter is supported by linguistic evidence). A 
more detailed discussion is outside the present scope but is planned. 



 
Fig. 4: Numerical representational of tallies (left) and tokens (right). In a tally, numerical 
representation is one-dimensional; total value is achieved by accumulating value along the 
single dimension. With tokens, there are more relations between numbers: those of sequential 
plus-one accumulation (the horizontal axis) and those implicit in bundling (the vertical axis); 
total value is achieved by accumulating value along both dimensions. The two-dimensional 
structure of tokens implies one-dimensional precursors like tallies and/or fingers. 

 

Material and Conceptual Change in Ancient Near Eastern Numbers  
If the possible evidence of fingers and tallies is accepted, the sequence of counting technologies 
in the Ancient Near East includes fingers, tallies, tokens, and the various numerical notations. In 
the analysis presented in Table 2, fingers and notations were treated as if they were material in the 
same way that physical devices like tallies and tokens are. Typically, fingers are thought of as 
biological supports to psychological capabilities like working memory, notations as signs and 
symbols. The assumption entailed that the conceptual boundaries between the body and the 
material (for fingers), and the material and the psychological (for numerical notations), needed to 
tolerate a degree of ambiguity in what they delimited. To bridge the ambiguity, Gibson’s (1977, 
1979) notion of affordance was used. An affordance is a relation between what an agent is capable 
of and what its environment enables it to do; here it designates the exploitable properties of a 
material form used for counting. Analysis of the affordances provided by the different counting 
technologies then allowed characterization of how they were similar (e.g., fingers and tallies, in 
influencing structural characteristics like linearity) and how they differed (fingers only, in being 
part of the body, etc.). 
 The analysis yielded the insight that new material forms were incorporated because they 
shared some affordances with older forms and because they brought new affordances that 
addressed limitations in older forms. New forms also brought new limitations into the system for 
numbers that eventually motivated the inclusion of new forms, and the contrast between newer 
and older forms provided elaborational opportunities. Newer forms were often associated with 
behavioral differences, and in some cases changes in psychological processing (e.g., the shift to 
knowledge-based calculation would have been associated with recruitment of the parts of the brain 
involved in recalling arithmetical facts, etc.), that would have affected how numbers were 
conceptualized. Concurrently, older forms appear to have persisted, both directly as a retained 
technology for representing and manipulating numbers and indirectly in the way their structure 
persisted in the way newer forms were used. These insights expand Gallagher’s notion of an 
“affordance space,” the “range of possibilities provided by any active movement in body or change 
in environment” delimited not just by the physiology and psychological capacities furnished 



evolutionarily, the stage of ontogenetic development applying to participating individuals, and the 
sociocultural practices informing behavioral possibilities (Gallagher, 2015), but by the 
capabilities, limitations, and structuring of the materials used and the concepts themselves as well. 
 
Table 2: Analysis of Affordance Similarities and Differences 

 Fingers Tallies Tokens Impressions Proto-cuneiform Cuneiform 

Sequence of 
technologies 
used for 
counting and 
calculating 

Appearance “First” 
Late Upper 
Paleolithic 
(30,000–12,000 BP) 

Neolithic  
(8300–4500 BC) 

Chalcolithic 
(4500–3300 BC) 

Early Bronze Age  
(late 4th mil. BC) 

Bronze Age  
(3rd mil. BC) 

Evidence Textual (from 3rd 
mil. BC) Archaeological Archaeological Archaeological Archaeological Textual 

Importance Initial structure Transition to 
material culture 

Knowledge-
based calculation 

Need for new 
algorithms 

Need for new 
algorithms 

Numbers as 
entities or objects 

Embodied 
characteristics 

Neurological Yes No No No No No 
Discriminability Yes Up to 3 or 4 Unknown Bundling Bundling Place value 
Linear; order Developed Imposed Imposed Imposed Imposed Imposed 

Material 
characteristics 

Bundling Anatomical No Metrological Metrological Metrological Sexagesimal 
Capacity  Five Tens Hundreds Hundreds Thousands Thousands 
Persistence  No Yes If contained Yes Yes Yes 
Manipulability Limited Fixed High Fixed Fixed Fixed 
Integrity Anatomical Fixed If contained Fixed Fixed Fixed 
Specified In memory In memory Conjoined Conjoined Conjoined Labeled 

Representation Dimensional One One Two Two Two Two 
Concise No No Increasing No Increasing Yes 

Conceptual 
change 

Identity Equivalence Collection Collection Collection Collection Entity/object 
Relations Stable order Plus-one, etc. Metrological Metrological Metrological Many (tables) 
Operations Accumulation Accumulation Grouping, etc. Imposed Imposed Imposed 
Algorithms Simple Simple Complex Imposed Imposed Imposed 
Distributed With language Two forms Three forms Multiple forms Multiple forms Multiple forms 

Note. Embodied characteristics are significantly influenced by psychological and physiological 
traits. Material characteristics are imposed (or enabled) by the material form. Representation: 
Characteristics applicable to how the material structure represents numerical information. 
Conceptual change: How the concept of number would have changed in conjunction with material, 
behavioral, and psychological change. 

 
 Four key transitions in the material sequence are highlighted below: Fingers influenced 
basic structure; tallies represented the transition to incorporating material culture; tokens 
represented the emergence of knowledge-based numeration; and written notations enabled 
numbers to become conceptualized as entities. These are also interactions with material forms that 
potentialize neural reorganizations (i.e., the neuronal recycling hypothesis of Dehaene & Cohen, 
2007): For example, knowledge-based numeration implies recruitment of the angular gyrus, which 
demonstrates activity during the recall of arithmetic facts (Grabner et al., 2009); while parietal 
activity predominates during the performance of mathematical tasks (Amalric & Dehaene, 2016), 
the frontal lobes also show activity and imply the involvement of executive functions like 
intentionality and working memory. 

• Fingers influence numbers toward linearity and stable order (Gelman & Gallistel, 1978), 
structure that is “essential to most of [numbers’] mathematical properties” (Russell, 1920, 
p. 29) and which persists across subsequent material forms. As mentioned, the concept of 
number starts with the recognition that two sets of objects share the same cardinality. 



Representation of the concept by one of the sets in the comparison, typically the fingers, 
sets up an initial structuring—by fives and tens; in linear and stable order—as a function 
of what the hand is as an instantiating material form in interaction with other psychological, 
physiological, and behavioral capacities: As material device, the hand provides five digits, 
logical start and stop points in the outer fingers, and accumulation as counting proceeds 
across the hand. Working memory is limited in the number of items that can be held in 
active attention and manipulated mentally, necessitating the inclusion of material 
representations. Finger-counting, like any repetitive motor movement, becomes patterned 
in ways that maximize its efficiency and automaticity, which in turn reduces demands on 
attention and working memory and improves the reproducibility, reliability, and 
accessibility of the numerical information instantiated by the fingers. Language influences 
counting toward sequentiality through the seriality of the sound stream. While there may 
indeed be a sort of logical predestination to numerical ordering, numbers may be influenced 
toward linearity and stable order as much through the use of the hand as a material device 
as by the functional effectiveness in counting that magnitude ordering provides. 

• Given sufficient societal motivation for counting beyond what the hand can provide (e.g., 
the need for amounts beyond those reasonably accumulated on the fingers; time durations 
longer than what the hand can feasibly represent), tallies are the kind of device typically 
incorporated into a number system once the limitations of the hand are encountered (similar 
material devices include knotted strings, torn leaves, collected pebbles, etc.). Tallies would 
have marked a key transition, from using the body as a device for counting, to involving 
material forms not part of the body. Material artifacts are sharable in ways that bodies and 
behaviors (especially those associated with social status and prestige) are typically not, 
making the number knowledge instantiated by devices more public and socially permitted, 
and less private and proscribed, than the number knowledge instantiated by the body. 
Relative to bodies and behaviors, material artifacts also have a higher plasticity and 
capacity for being modified to collect and consolidate social knowledge. This is a critical 
aspect of transmitting information to new individuals and between generations, not only 
because it makes the information available but because it can reduce acquisition to a matter 
of learning to use the device, eliminating the need for reinvention and often bypassing the 
need to master theories and principles. 

• Tokens provided access to a more extensive and explicit set of numerical relations, 
operations, and algorithms for calculating, which are important as they provide the basis for 
knowledge-based calculating. Where tallies provided a few relations (e.g., plus one, more 
than, less than, not equal, etc.) and operations (accumulation), tokens provided the relations 
implicit in bundling values, and operations of accumulation, reduction, grouping, separation, 
and simplification (respectively, addition, subtraction, multiplication, reciprocals, and 
bundling–debundling). Tokens also enabled algorithms like the agrimensors’ method of 
approximating the area of a field, attested as early as 3250 BC in the form of two exercises 
on a tablet from Uruk, W 19408,76 (Englund, 1998c; Nissen, Damerow, & Englund, 1993; 
also see Fig. 5). Tokens’ relations of value to each other necessitated that value-relations be 
learned and associated particular token shapes and sizes with specific values quantified in 
numerical terms. Tokens nonetheless represented quantity conceived in terms of collections, 
as tallies had, because they were meaningful only in aggregate, rather than individually. 

 



  
Obverse 

1200+1,200
2

 × 930+870
2

 = 1200 × 900 (ninda) = 
10,800 iku = 10 šar 

Reverse 
990+1410

2
 × 1280+520

2
 = 1200 × 900 (ninda) = 

10,800 iku = 10 šar 
Fig. 5: W 19408,76, an accounting school text dated to 3250–3000 BC, the earliest such known 
(Friberg, 2005; Nissen, Damerow, & Englund, 1993; Robson, 2007). Ninda, iku, and šar were 
area measures; 1 ninda was about 6 meters, 1 iku = 100 ninda, and 1 šar = 1080 iku or 38.9 
km2. The algorithm’s complexity suggests that such calculations, or at least simpler versions of 
them, were performed with tokens well before the invention of the notational recording 
represented by the tablet, especially since notations were not initially useful for calculating. The 
exercises also involved “unrealistically large” surface areas (Englund, 1998b, p. 110) that 
suggest a pure (non-applied) mathematics was already developing in the late 4th millennium. 
Drawings from Englund, 1998b, Fig. 85. 

 

• Cuneiform notations enabled numbers to be conceptualized as entities through three critical 
attributes: They were handwritten, concise, and fixed. Writing by hand trained the brains 
of scribes to recognize individual notations as objects; this is a neural reorganization that 
occurs in literacy, as the part of the temporal lobe that recognizes objects, the fusiform 
gyrus, becomes trained to recognize written marks as if they were objects and to associate 
them lexically by interaction developed between the fusiform gyrus and the language 
centers of the brain (reviewed in Overmann, 2016b). Second, their concision allowed 
notations to be individuated, rather than remain collections as tokens were. Concision also 
enabled large volumes of detailed numerical relations to be recorded in the form of tables 
(e.g., multiplication tables; tables of reciprocals), which scribes reproduced and learned 
during training. This in turn yielded more options in calculating, as scribes could consult 
the tables or recall numerical relations from memory, in addition to performing the 
calculations with tokens. Concision in recording intermediate and final results would have 
also supported the development of greater complexity in calculation methods. Most 
importantly, numerical relations gave individual numbers an identity that would have 
reinforced their reconceptualization as objects or entities fostered by the neural training 



effects of handwriting. Third, the notations were fixed, as the impressions and archaic 
numerals had been, motivating the development of new algorithms that leveraged 
numerical knowledge to an even greater extent than token-based accounting did, 
algorithms that drew upon and thus reinforced the knowledge of numerical relations and 
the conceptualization of numbers in terms of relational identities. 

 Notations provide another reason for reconsidering the abstract–concrete distinction: 
Usually considered to fall on the “abstract” side, notations remained closely bound to their material 
realizers, exhibiting a concreteness that is usually obscured by their abstract designation. Yes, they 
could be written without commodity labels and were manipulated in complex algorithms, 
functioning as conceptual entities related numerically to similar entities. But commodity labels 
were understood contextually when omitted, and in calculations notations remained closely tied to 
practical domains (hence, Høyrup’s [1994] designation of the Babylonian mathematics tradition 
as subscientific). More interestingly, the numbers represented notationally differed in arithmetical 
operations in ways that evoke the material forms used for calculation: Babylonian mathematics 
had, for example, two additions and two subtractions, which differed according to whether the 
original quantities remained recognizable or not (e.g., in addition performed with commingled 
tokens, the original quantities would be lost once they joined the pile) (Høyrup, 2002a). This 
contrasts with modern numbers, which achieve the same sums and differences regardless of 
whether calculations are performed with fingers, abaci, or computers. Which is only to say that 
Babylonian and modern numbers are different concepts represented by different material forms. 
 What the cuneiform notations ultimately yielded, however, was a semiotic system in which 
the elements (numbers) were meaningful entities whose identity derived from their identification 
as objects and the interrelations providing calculational access and complexity. This system 
informed the later mathematics of the Greeks, who further elaborated the system by considering 
the patterns made by numerical relations and operations (e.g., odd/even; multiplication sets) 
(Klein, 1968), work built upon the foundation initially established by the Mesopotamians with 
tokens and tallies. While the Greek elaboration also perhaps shows more clearly a role for 
ontological and epistemological imagination—why does someone ask what a number is, or 
whether 1 + 1 will always and under every circumstance yield 2—it also shows that such 
imagination acts within and at the boundaries of an existing system, elaborating its substance, 
testing its limits, and taking for granted the ideas and social knowledge received from the work of 
many earlier hands in the form of materially instantiated knowledge. In such systems in general, 
there may be a role for Piaget’s ontogenetic effects in providing a familiar mastery that is well 
positioned to question the system’s parameters, but there is also a significant role for the material 
component, particularly in numbers, who so happily match material structures’ seemingly limitless 
potential to instantiate and illuminate novel numerical relations, and the human psychological, 
behavioral, and physiological abilities that discover and exploit them. 
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