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A B S T R A C T

Classification-based methods for fault detection and identification can be difficult to implement in industrial
systems where process measurements are subject to noise and to variability from one fault occurrence to
another. This paper uses statistical alarms generated from process measurements to improve the robustness of
the fault detection and identification on an industrial process. Two levels of alarms are defined according to
the position of the alarm threshold: level-1 alarms (low severity threshold) and level-2 alarms (high severity
threshold). Relevant variables are selected using the minimal-Redundancy-Maximal-Relevance criterion of
level-2 alarms to only retain variables with large variations relative to the level of noise. The classification-
based fault detection and identification fuses the results of a discrete Bayesian classifier on level-1 alarms and of
a continuous Bayesian classifier on process measurements. The discrete classifier offers a practical way to deal
with noise during the development of the fault, and the continuous classifier ensures a correct classification
during later stages of the fault. The method is demonstrated on a multiphase flow facility.

1. Introduction

Fault detection determines whether a fault has happened, and fault
identification determines the type of fault that occurred. In process lit-
erature, multivariate statistical process monitoring methods have been
used for fault detection (Yin, Ding, Xie, & Luo, 2014), and contribution
plot methods have been used as an extension of multivariate statistical
process monitoring methods for finding the variables affected by the
fault (fault isolation) (Alcala & Qin, 2009). By contrast, fault identifi-
cation has been conducted using classification-based methods (Tong &
Palazoglu, 2016).

Fault identification assumes that the types of faults, or classes of
faults, are well-defined and have been encountered in the past so that
historical fault occurrences can be used as a reference. Classification-
based methods are trained to recognize patterns in the process measure-
ments based on historical fault occurrences of the same class, where
patterns refer to regularities in the data or in the characteristics of the
data. In industrial systems, patterns in the process measurements for a
given class of fault are subject to variability from one fault occurrence
to another (Lucke, Chioua, Grimholt, Hollender, & Thornhill, 2018).
This variability can be due to factors independent from the fault such
as noise and external disturbances in the process measurements that
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are not related to the ongoing fault. The variability can also be due to
the fault characteristics, for example with various fault amplitudes.

This paper presents a Fault Detection and Identification (FDI)
method designed to deal with noise and with variability in the pat-
terns of the process measurements. The method relies on statistical
alarms generated from statistical processing of the process measure-
ments. Two levels of alarms are defined according to the position
of the alarm threshold: level-1 alarms (low severity threshold) and
level-2 alarms (high severity threshold). The most informative vari-
ables with respect to the classification problem are selected using
the minimal-Redundancy-Maximal-Relevance (mRMR) criterion (Peng,
Long, & Ding, 2005). The mRMR criterion uses level-2 alarms instead
of the continuous measurements in order to reduce the impact of small
variations on the variable selection and to limit the effect of noise and
external disturbances in the classification. The classification method for
FDI also relies on statistical alarms, offering a Bayesian fusion of the
outcome of a classifier based on level-1 alarms and the outcome of a
classifier based on process measurements. The Bayesian classifier on
level-1 alarms offers a good robustness to noise during the development
of the fault. The Bayesian classifier on process measurements is used to
identify the fault during later stages.
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Section 2 provides additional information on statistical alarms and
on FDI in the process literature. Section 3.1 presents the variable
selection procedure based on the preliminary work by Lucke, Mei, Stief,
Chioua, and Thornhill (2019), and Section 3.2 presents the FDI method
with Bayesian fusion of process measurements and level-1 alarms. The
benefits of integrating statistical alarms in FDI are illustrated on a
simulation example in Section 4 and demonstrated on data from a
multiphase flow facility in Sections 5 and 6.

2. Background

2.1. Statistical alarms

An alarm is an audible or visible means of indicating to the operator
an equipment malfunction, process deviation, or abnormal condition
requiring a timely response (IEC, 2014). Statistical alarms are a specific
type of alarms generated based on statistical processing of a process
measurement (IEC, 2014). A common statistical indicator used to gen-
erate statistical alarms is the standard deviation 𝜎𝑖 of each process
variable 𝑋𝑖 during normal operation in the historical data. A statistical
alarm 𝑋̄𝑖 is generated from a mean-centered process variable 𝑋𝑖 as:

𝑥̄𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

−1, if 𝑥𝑖(𝑡) ≤ −𝑘̄𝜎𝑖
0, if −𝑘̄𝜎𝑖 < 𝑥𝑖(𝑡) < 𝑘̄𝜎𝑖
1, if 𝑥𝑖(𝑡) ≥ 𝑘̄𝜎𝑖

(1)

where 𝑘̄ is a constant (𝑘̄ > 0) that can be tuned for each alarm, and 𝑘̄𝜎𝑖
is called the alarm threshold. In the following, the alarm 𝑋̄𝑖 generated
from 𝑋𝑖 according to Eq. (1) with the constant 𝑘̄ is described as level-1
alarm. A level-2 alarm ̄̄𝑋𝑖 is also generated from 𝑋𝑖 according to Eq. (1)
with the constant ̄̄𝑘 ( ̄̄𝑘 > 𝑘̄ > 0). 𝑘̄𝜎𝑖 indicates a low severity threshold
and ̄̄𝑘𝜎𝑖 indicates a high severity threshold. Commonly used values for
𝑘̄ and ̄̄𝑘 are respectively 3 and 5, following statistical process control
rules.

Alarm chattering (i.e. repeated transitions between the alarm state
and the normal state in a short period of time) is usually removed from
alarms to limit the nuisance to the operators (Naghoosi, Izadi, & Chen,
2011). Several methods have been designed to limit alarm chattering
while maintaining a trade-off between false alarms and missed alarms,
such as deadbands and delay timers (Adnan, Izadi, & Chen, 2011), and
those methods can also be used on statistical alarms. In this paper,
traditional delay-timers are applied to 𝑋̄𝑖 and ̄̄𝑋𝑖, i.e. the alarm should
cross the threshold for 𝑇𝑜𝑛 consecutive samples before being activated
(on-delay timer) and the alarm should go below the threshold for 𝑇𝑜𝑓𝑓
consecutive samples before being deactivated (off-delay timer). 𝑇𝑜𝑛 and
𝑇𝑜𝑓𝑓 are tuned according to the dynamics of the corresponding variable.

The mean-centering of 𝑋𝑖 is done offline using the mean in normal
operation for each operating point. Fault identification for faults de-
veloping during transitions between operating points is considered as
a separate research question that requires a classifier able to deal with
highly non-stationary dynamics. In this work, it is assumed that one
occurrence of each fault is available for training at one operating point
and the fault detection and identification is applied on occurrences
of the same faults at other operating points. Therefore, multi-mode
alarming solutions are not included in the analysis.

2.2. Variable selection

2.2.1. Variable selection for fault detection and identification
FDI in industrial processes typically involves the analysis of a large

number of process variables (Ming & Zhao, 2017). Variable selec-
tion and feature extraction are the two main approaches for reducing
the number of variables, where a feature is defined as an individual
measured property of the monitored system (Chandrashekar & Sahin,
2014). Variable selection chooses informative and discriminative vari-
ables for FDI (Ghosh, Ramteke, & Srinivasan, 2014), while feature

extraction applies a transformation to the original variables to high-
light characteristics or reduce the dimension (Ghosh et al., 2014).
Historically, variable selection methods have not received the same
attention as feature extraction methods in the process fault detection
and diagnosis literature (Ming & Zhao, 2017). However, Ghosh et al.
(2014) demonstrated that variable selection and feature extraction are
complementary, and the recent review of Peres and Fogliatto (2018)
highlights a growing interest in variable selection. The present article
deals with joint fault detection and identification that assumes the types
of faults are well-defined, so irrelevant variables can be eliminated
through variable selection.

A popular strategy for variable selection combines pre-selection of
variables with an optimization problem, where the set of variables
leading to the best performance of the FDI algorithm is retained. The
work reported by Verron, Tiplica, and Kobi (2008) combined a multi-
variate extension of the mutual information criterion with discriminant
analysis for fault identification. Other criteria aiming at highlighting
variables with abnormal variations have been suggested: (Zhao & Gao,
2017) identified the nonsteady faulty variables that are disturbed sig-
nificantly using a stability factor, and Tong and Palazoglu (2016) used
an index describing the degree of abnormal variation for each variable.
Alternative approaches include genetic algorithms (Ghosh et al., 2014)
or selection of the variables that correspond to the root causes of
the faults (Shu, Ming, Cheng, Zhang, & Zhao, 2016). Regularization
techniques (such as least absolute shrinkage and selection operators or
elastic net) for variable selection in regression analysis have also been
used for discriminant analysis in the context of fault isolation (Kuang,
Yan, & Yao, 2015).

The variable selection method based on mutual information pro-
posed by Verron et al. (2008) has become a benchmark in the literature.
However, the analytical formulations of the univariate and multivariate
mutual information of Verron et al. (2008) assume that the faults are
stationary and that the process variables follow a Gaussian distribution
during each fault. Faults are generally non-stationary in industrial
systems and process variables evolve during the faults so that the
Gaussian assumption does not apply. For this reason, a data-driven
rather than analytical estimation of mutual information is preferred.

Multivariate data-driven estimation of mutual information is chal-
lenging because it assumes the estimation of joint probabilities that are
heavy to compute. An alternative is to use pairwise comparisons taking
into account a relevance criterion between each variable and the class,
which assesses how the variables are related to the various classes of
faults, and a redundancy criterion between each pair of variables that
assesses how both variables are related. Ardakani et al. (2016) bench-
marked multiple combinations of relevance criterion and redundancy
criterion with different classifiers. The combination of a redundancy
criterion and relevance criterion based on mutual information was
introduced in Peng et al. (2005) as the minimal-Redundancy-Maximal-
Relevance (mRMR) criterion. The next sub-section presents the direct
application of the mRMR criterion to process measurements.

2.2.2. mRMR criterion for process measurements
The mutual information between two random variables quantifies

the mutual dependence of the two variables (Shannon, 1948). In the
context of variable selection, the simplest criterion is the univariate
mutual information 𝐼(𝑋𝑖;𝐶) between a continuous process variable 𝑋𝑖
and the discrete class variable 𝐶. The higher the value of 𝐼(𝑋𝑖;𝐶), the
more relevant 𝑋𝑖 is considered for the classification. It can be expressed
as:

𝐼(𝑋𝑖;𝐶) =
∑

𝑐∈𝐶
∫𝑋𝑖

𝑃 (𝑥𝑖, 𝑐) log
𝑃 (𝑥𝑖, 𝑐)
𝑃 (𝑥𝑖)𝑃 (𝑐)

𝑑𝑥𝑖 (2)

where 𝑥𝑖 and 𝑐 represent the values that 𝑋𝑖 and 𝐶 can take. The
probability distributions are computed using the extension of the near-
est neighbors estimator between a continuous and a discrete vari-
able (Ross, 2014).
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The purpose of variable selection for classification is to find a set
𝛺𝑚 = {𝑋1,… , 𝑋𝑚} of 𝑚 variables 𝑋𝑖 that have the largest dependency
on the class 𝐶. In this paper, the values 𝑐 of 𝐶 corresponds to the fault
classes, including normal operation. The max-dependency criterion is
defined as:

max
𝛺𝑚

𝑑(𝛺𝑚, 𝐶), 𝑑 = 𝐼(𝛺𝑚;𝐶) (3)

where:

𝐼(𝛺𝑚;𝐶) =
∑

𝑐∈𝐶
∫𝑋1

...∫𝑋𝑚

𝑃 (𝑥1,… , 𝑥𝑚, 𝑐) log
𝑃 (𝑥1,… , 𝑥𝑚, 𝑐)
𝑃 (𝑥1,… , 𝑥𝑚)𝑃 (𝑐)

𝑑𝑥1...𝑑𝑥𝑚

(4)

Since the joint probability distributions 𝑃 (𝑥1,… , 𝑥𝑚, 𝑐) are difficult
to estimate in practice, the max-dependency criterion is approximated
using simplified criteria such as the mRMR criterion (Peng et al., 2005).
The max-relevance criterion (Peng et al., 2005) is an approximation of
the dependency criterion in Eq. (3) considering the mutual information
between each variable 𝑋𝑖 and the class 𝐶:

max
𝛺𝑚

𝐷(𝛺𝑚, 𝐶), 𝐷(𝛺𝑚, 𝐶) = 1
|𝛺𝑚|

∑

𝑋𝑖∈𝛺𝑚

𝐼(𝑋𝑖;𝐶) (5)

The min-redundancy criterion (Peng et al., 2005) considers the redun-
dancy in the information of selected variables in a pairwise manner:

min
𝛺𝑚

𝑅(𝛺𝑚), 𝑅(𝛺𝑚) =
1

|𝛺𝑚|
2

∑

𝑋𝑖∈𝛺𝑚

∑

𝑋𝑗∈𝛺𝑚

𝐼(𝑋𝑖;𝑋𝑗 ) (6)

While extending the redundancy analysis to more variables using mul-
tivariate mutual information is possible, it requires more data for the
estimation and increases the computational load. Since the number
of fault occurrences available for training are limited, the pairwise
approximation of Peng et al. (2005) is preferred. The max-relevance
criterion and the min-redundancy criterion are combined as the mRMR
criterion:

max
𝛺𝑚

𝛷(𝐷(𝛺𝑚, 𝐶), 𝑅(𝛺𝑚)), 𝛷(𝐷(𝛺𝑚, 𝐶), 𝑅(𝛺𝑚)) = 𝐷(𝛺𝑚, 𝐶) − 𝑅(𝛺𝑚) (7)

𝐼(𝑋𝑖;𝑋𝑗 ) is computed using the nearest neighbors estimator ex-
plained in Kraskov, Stögbauer, and Grassberger (2004). 𝐼(𝑋𝑖;𝐶) is com-
puted using the extension of the nearest neighbors estimator between
a continuous and a discrete variable described in Ross (2014).

In practice, an incremental search is performed to find the near-
optimal set of variables defined by 𝛷(𝐷(𝛺𝑚, 𝐶), 𝑅(𝛺𝑚)). Assuming the
set of 𝑚− 1 variables 𝛺𝑚−1 is known, the 𝑚th variable is selected from
the set of remaining variables 𝛺 −𝛺𝑚−1 (where 𝛺 indicates the set of
all the variables 𝑋𝑖) as:

max
𝑋𝑗∈𝛺−𝛺𝑚−1

[

𝐼(𝑋𝑗 ;𝐶) − 1
𝑚−1

∑

𝑋𝑖∈𝛺𝑚−1

𝐼(𝑋𝑗 ;𝑋𝑖)

]

(8)

2.3. Fault detection and identification

FDI is usually performed at each new sampling time 𝑡0 using one
(or several) classifier(s) based on the values 𝑥𝑖(𝑡0) of the 𝑚 process
variables 𝑋𝑖 in 𝛺𝑚. The observation vector 𝐗 is defined as the 𝑚-
dimensional vector of the process variables 𝑋𝑖, taking values 𝐱(𝑡0) =
[𝑥1(𝑡0), 𝑥2(𝑡0),… , 𝑥𝑚(𝑡0)] at time 𝑡0. The classifier is trained considering
the values of the observation vector 𝐱(𝑡𝑛) at various times 𝑡𝑛 (𝑛 =
1 .. 𝑁 , 𝑁 being the total number of values used for training) and their
corresponding class label 𝑐(𝑡𝑛) which relates either to a specific type of
fault or to normal operation.

Classification-based methods assume that historical data about the
faults are available, and new faults are detected and identified in a
supervised manner (Tong & Palazoglu, 2016). Many types of clas-
sifiers have been proposed to identify faults from the process mea-
surements, including discriminant analysis (Chiang, Kotanchek, & Ko-
rdon, 2004; He, Wang, Yang, & Yang, 2009; Zeng, Jia, Liang, & Gu,

2019), neural networks (Hoskins, Kaliyur, & Himmelblau, 1991; Wu &
Zhao, 2018; Zhang & Zhao, 2017), support vector machines (Chiang
et al., 2004), dissimilarity-based classifiers (Tong & Palazoglu, 2016),
𝑘-nearest neighbor classifiers (Zhu, Sun, & Romagnoli, 2018), and
random forest classifiers (Chai & Zhao, 2019). Those methods have
been designed to identify faults based on continuous features, i.e. based
on the values of the process measurements, but the variability in the
process measurements from one fault occurrence to another is not
addressed, especially in simulated case studies. Traditional FDI meth-
ods also assume processes are stationary, but recent work addressed
the issue of nonstationary fault characteristics through cointegration
analysis (Hu & Zhao, 2019).

Unlike the classifiers cited above, Bayesian classifiers can integrate
heterogeneous data. Bayesian methods for FDI have been introduced
in the process literature through the work in Huang (2007) for control
loop monitoring, which consists of detecting the under-performing
control loops in the plant. The input data of the classifier were either
discrete (e.g. values generated by control loop monitors) or continu-
ous (e.g. through kernel density estimation of the probability density
functions of the process measurements in Gonzalez and Huang (2014)).
The work of Huang (2007) has been extended to FDI problems in spe-
cific cases where Bayesian methods bring advantages over traditional
methods, e.g. for fault identification in multimode processes (Jiang,
Huang, & Yan, 2016b) or for fault identification with heterogeneous
data (Jiang, Huang, Ding, & Yan, 2016a; Stief, Ottewill, Tan, & Cao,
2018a). The fault are identified using a Bayesian classifier combin-
ing asynchronous measurements in Jiang et al. (2016a) or combining
alarms from the alarm logs and process measurements in Stief et al.
(2018a). A Bayesian framework was used to combine the classifica-
tion outcomes of various classifiers for FDI in Tidriri, Tiplica, Chatti,
and Verron (2018). Classification approaches using graphical mod-
els based on Bayesian networks have also been proposed for fault
identification (Verron, Tiplica, & Kobi, 2006; Yu & Zhao, 2019).

The advantages that a Bayesian classification framework offers for
integrating heterogeneous data, and in particular discrete and contin-
uous data, are exploited in this paper for combining process measure-
ments and statistical alarms.

2.4. Motivation for the method

Due to the limited number of fault occurrences available for training
and to the variability of process measurements from one fault occur-
rence to another, classifiers should be made as robust as possible. This
article suggests the use of statistical alarms to improve the robustness
of the FDI to noise and variability in the process measurements.

Recent works highlighted the benefits of integrating alarms in FDI
to improve the robustness of the methods. Stief et al. (2018a) combined
alarms from alarm logs with process measurements using a two-stage
Bayesian classifier to improve the accuracy of the classification by
integrating a new source of information. Lucke et al. (2018) proposed
a normalization of process measurements based on their alarm thresh-
olds extracted from the alarm system to place the variations of the
measurements in the context of their safe operating range.

Statistical alarms are generated directly from the process measure-
ments. Statistical alarms have been used as a substitute for process
measurements to reduce the computational load of methods based on
probability density estimation, in particular for root cause analysis with
transfer entropy (Hu, Wang, Chen, & Shah, 2017; Su et al., 2017; Yu
& Yang, 2015). In the current work, statistical alarms are used as
a substitute for process measurements in variable selection to limit
the impact of the small variations in the estimation of the mutual
information. Statistical alarms are also used in combination with pro-
cess measurements for FDI using a two-stage Bayesian classification
approach similar to the one in Stief et al. (2018a). However, while Stief
et al. (2018a) extracted only discrete features from the process mea-
surements, the present article suggests a combination of discrete and
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continuous features. Statistical alarms are used as features for the
detection and identification during the early stage of the fault since
they are designed to indicate deviations from the normal operation
while limiting the number of transitions due to chattering. The values
of the process measurements are used to provide a more accurate fault
identification during the late stage of the fault.

The Bayesian framework offers a simple approach to integrate con-
tinuous and discrete features in the classification. A discrete Bayesian
classifier gives probabilities of the classification outcome based on the
values of the alarms after estimation of the discrete distributions on the
training set. A continuous Bayesian classifier gives probabilities of the
classification outcome based on the values of the process measurements
after estimation of the probability density functions using kernel den-
sity estimation on the training set. The final decision is taken based on
a fusion of the outcomes of both classifiers.

3. Method

3.1. Variable selection with mRMR on level-2 alarms

In order to reduce the impact of small variations on the variable
selection, and to limit the effects of noise and external disturbances on
the classification, the mRMR criterion (Peng et al., 2005) is applied
to level-2 alarms ̄̄𝑋𝑖 (i.e. the statistical alarms with high severity
threshold ̄̄𝑘𝜎𝑖) rather than to the original process measurements. The
main difference with the preliminary work in Lucke et al. (2019) is
that the classification accuracies for the various sets of variables are
computed with the Bayesian classifier presented in the next section.
The accuracy of the classifier is defined as the proportion of values 𝐱(𝑡0)
of the observation vector 𝐗 that are correctly classified. The mutual
information 𝐼( ̄̄𝑋𝑖;𝐶) based on ̄̄𝑋𝑖 can be computed as a discrete sum:

𝐼( ̄̄𝑋𝑖;𝐶) =
∑

𝑐∈𝐶

∑

̄̄𝑥𝑖∈ ̄̄𝑋𝑖

𝑃 ( ̄̄𝑥𝑖, 𝑐) log
𝑃 ( ̄̄𝑥𝑖, 𝑐)
𝑃 ( ̄̄𝑥𝑖)𝑃 (𝑐)

(9)

The incremental search of Section 2.2.2 for the mRMR criterion
based on the level-2 alarms ̄̄𝑋𝑖 becomes:

max
̄̄𝑋𝑗∈ ̄̄𝛺− ̄̄𝛺𝑚−1

[

𝐼( ̄̄𝑋𝑗 ;𝐶) − 1
𝑚−1

∑

̄̄𝑋𝑖∈ ̄̄𝛺𝑚−1

𝐼( ̄̄𝑋𝑗 ; ̄̄𝑋𝑖)

]

(10)

where ̄̄𝛺𝑚−1 indicates the set of the best 𝑚−1 variables ̄̄𝑋𝑖 and ̄̄𝛺 the set
of all variables ̄̄𝑋𝑖. Both 𝐼( ̄̄𝑋𝑖;𝐶) and 𝐼( ̄̄𝑋𝑖; ̄̄𝑋𝑗 ) are computed as discrete
sums.

3.2. FDI with Bayesian fusion of process measurements and level-1 alarms

3.2.1. Bayesian classification with level-1 alarms
The discrete observation vector 𝐗̄ is defined as the vector of the

level-1 alarms 𝑋̄𝑖 (i.e. the statistical alarms with low severity threshold
𝑘̄𝜎𝑖) associated with the 𝑚 selected variables 𝑋𝑖 ∈ 𝛺𝑚, taking value
𝐱̄(𝑡0) = [𝑥̄1(𝑡0), 𝑥̄2(𝑡0),… , 𝑥̄𝑚(𝑡0)] at time 𝑡0. The probability that a value
𝐱̄(𝑡0) is associated with class 𝑐 is computed as:

𝑃 (𝐶 = 𝑐|𝐗̄ = 𝐱̄(𝑡0)) =
𝑃 (𝐱̄(𝑡0)|𝑐)
𝑃 (𝐱̄(𝑡0))

𝑃 (𝑐) =
𝑃 (𝐱̄(𝑡0)|𝑐)

∑

𝑐′∈𝐶 𝑃 (𝐱̄(𝑡0)|𝑐′)
𝑃 (𝑐) (11)

where 𝑃 (𝑐) is the prior probability of class 𝑐, 𝑃 (𝑐|𝐱̄(𝑡0)) is the posterior
probability of class 𝑐, 𝑃 (𝐱̄(𝑡0)|𝑐) is the likelihood, and 𝑃 (𝐱̄(𝑡0)) is the
probability of observing the value 𝐱̄(𝑡0). Since all of the values are
discrete, the probabilities are computed as discrete sums on the training
data.

3.2.2. Bayesian classification with process measurements
The continuous observation vector 𝐗 is defined as the vector of the

𝑚 selected variables 𝑋𝑖 ∈ 𝛺𝑚, taking value 𝐱(𝑡0) = [𝑥1(𝑡0), 𝑥2(𝑡0),… ,

𝑥𝑚(𝑡0)] at time 𝑡0. The probability that a given value 𝐱(𝑡0) is associated
with class 𝑐 can be computed using Bayes’ rule as:

𝑃 (𝐶 = 𝑐|𝐗 = 𝐱(𝑡0)) =
𝑃 (𝐱(𝑡0)|𝑐)
𝑃 (𝐱(𝑡0))

𝑃 (𝑐) (12)

where 𝑃 (𝑐) is the prior probability of class 𝑐, 𝑃 (𝑐|𝐱(𝑡0)) is the posterior
probability of class 𝑐 (i.e. once the value 𝐱(𝑡0) at time 𝑡0 has been
observed), 𝑃 (𝐱(𝑡0)|𝑐) is the likelihood (i.e. the probability of the value
𝐱(𝑡0) assuming class 𝑐), and 𝑃 (𝐱(𝑡0)) is the probability of observing the
value 𝐱(𝑡0).

The probability density function 𝑓 (𝐱(𝑡0)) of 𝐗 is estimated using
kernel density estimation (Parzen, 2007). The estimated probability
density function 𝑓 (𝐱(𝑡0),𝐇) is a summation of kernel functions centered
around the values 𝐱(𝑡𝑛) of the observation vectors used for training
(𝑛 = 1 .. 𝑁 , 𝑁 being the number of values used for training):

𝑓 (𝐱(𝑡0),𝐇) = 1
𝑁

𝑁
∑

𝑛=1
|𝐇|

− 1
2 𝐾

(

𝐇− 1
2 (𝐱(𝑡0) − 𝐱(𝑡𝑛))

)

(13)

𝐇 is a symmetric positive definite matrix called the bandwidth
matrix, 𝐾 is a 𝑚-variate kernel function such that ∫ 𝐾(𝐱)𝑑𝐱 = 1. A
popular choice for the kernel function is the 𝑚-variate normal density
function:

𝐾(𝐱) = 1

(2𝜋)
𝑚
2
exp(−1

2
𝐱𝑇 𝐱) (14)

which gives the kernel density estimate:

𝑓 (𝐱(𝑡0),𝐇) = 1
𝑁
√

(2𝜋)𝑚|𝐇|

𝑁
∑

𝑛=1
exp

(

−1
2
(𝐱(𝑡0) − 𝐱(𝑡𝑛))𝑇𝐇−1(𝐱(𝑡0) − 𝐱(𝑡𝑛))

)

(15)

The ratio 𝑃 (𝐱(𝑡0)|𝑐)
𝑃 (𝐱(𝑡0))

of Eq. (12) can thus be expressed with the kernel
estimates of the probability densities 𝑓 (𝐱(𝑡0)|𝑐) and 𝑓 (𝐱(𝑡0))1:

𝑃 (𝐶 = 𝑐|𝐗 = 𝐱(𝑡0)) =
𝑓 (𝐱(𝑡0)|𝑐)
𝑓 (𝐱(𝑡0))

𝑃 (𝑐) =
𝑓 (𝐱(𝑡0)|𝑐)

∑

𝑐′∈𝐶 𝑓 (𝐱(𝑡0)|𝑐′)
𝑃 (𝑐) (16)

In this paper, each probability density function 𝑓 (𝐱(𝑡0)|𝑐) corre-
sponding to a class 𝑐 is estimated using the bandwidth matrix 𝐇(𝑐)
defined as the diagonal matrix of ℎ(𝑐)𝜎𝑖:

𝐇(𝑐) = ℎ(𝑐)
⎡

⎢

⎢

⎣

𝜎1
⋱

𝜎𝑚

⎤

⎥

⎥

⎦

(17)

where ℎ(𝑐) is a positive constant tuned for each class 𝑐 (Section 6.3.3)
and 𝜎𝑖 is the standard deviation during normal operation data for the
variable 𝑋𝑖.

3.2.3. Bayesian fusion
The final classification is taken based on the decision level fusion of

the discrete and the continuous classifiers. The predicted class 𝑐𝑓 for a
given value 𝐱(𝑡0) of the observation vector 𝐗 and a given value 𝐱̄(𝑡0) of
the corresponding discrete observation vector 𝐗̄ is computed merging
the posterior probabilities 𝑃 (𝐶 = 𝑐|𝐗̄ = 𝐱̄(𝑡0)) of the discrete classifier
and the posterior probabilities 𝑃 (𝐶 = 𝑐|𝐗 = 𝐱(𝑡0)) of the continuous
classifier:

𝑐𝑓 = arg max
𝑐∈𝐶

(

𝑃 (𝑐|𝐱(𝑡0))𝑃 (𝑐|𝐱̄(𝑡0))
)

= arg max
𝑐∈𝐶

(

𝑓 (𝐱(𝑡0)|𝑐)
∑

𝑐′∈𝐶 𝑓 (𝐱(𝑡0)|𝑐′)
𝑃 (𝑐)

𝑃 (𝐱̄(𝑡0)|𝑐)
∑

𝑐′∈𝐶 𝑃 (𝐱̄(𝑡0)|𝑐′)
𝑃 (𝑐)

)

(18)

1 As explained in John and Langley (1995), Eq. (16) is not strictly correct.
The probability that a continuous-valued random variable exactly equals any
value is zero. Instead the variable lies within an interval of size 𝛥, and for
a very small constant 𝛥, 𝑃 (𝐱(𝑡0)) ≈ 𝑓 (𝐱(𝑡0))𝛥. The 𝛥 factors cancel out in the
numerator and denominator of Eq. (12).
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Fig. 1. System of the simulation example.

In this case, the prior probability 𝑃 (𝑐) is chosen as uniform (i.e. all
fault classes 𝑐 have the same prior probabilities 𝑃 (𝑐)) so the expression
can be simplified:

𝑐𝑓 = arg max
𝑐∈𝐶

(

𝑓 (𝐱(𝑡0)|𝑐)
∑

𝑐′∈𝐶 𝑓 (𝐱(𝑡0)|𝑐′)
𝑃 (𝐱̄(𝑡0)|𝑐)

∑

𝑐′∈𝐶 𝑃 (𝐱̄(𝑡0)|𝑐′)

)

(19)

4. Tests of the method in simulation

4.1. Simulation example

The benefits of integrating type-1 alarms in the classification are
demonstrated in a simple case study. The system is a first order systems
with input 𝑈 and output 𝑋, described in Fig. 1. Process noise 𝜖𝑝 and
sensor noise 𝜖𝑝 are added according to Fig. 1. Type-1 alarms 𝑋̄ are
generated from 𝑋 according to Eq. (1) with 𝑘̄ = 3. 𝑇𝑜𝑛 is set to 5 for
the on-delay timer and 𝑇𝑜𝑓𝑓 is set to 10 for the off-delay timer.

Two types of faults are introduced as input 𝑈 of the system after 100
samples of normal operation and the fault detection and identification
is done based on the output 𝑋 of the system. Two occurrences of each
type of fault with various amplitudes are generated (one for training the
classifier and one for testing) and inserted as input 𝑈 of the system. The
two faults are:

• Fault 1 (F1): 𝑈 is the step response of a second order system
𝐺(𝑠) = 1

20𝑠2+0.5𝑠+1 . The training occurrence is generated with a

step of amplitude 20, and the test occurrence is generated with a
step of amplitude 15.

• Fault 2 (F2): 𝑈 is a step of amplitude 3 for the training occurrence
and amplitude 2 for the test occurrence.

• Normal operation (N0): all samples before the introduction of the
faults constitute the normal operation data.

4.2. Results

Fig. 2 summarizes the results. The plots in the first row shows
the outputs 𝑋 during the test occurrence of each fault and the corre-
sponding alarms 𝑋̄ in red. The vertical line indicates the beginning of
the fault after 100 samples. The following plots show respectively the
classification outcome 𝑐𝑐 with the continuous Bayesian classifier, the
classification outcome 𝑐𝑑 with the discrete Bayesian classifier, and the
classification outcome 𝑐𝑓 with the fusion of both classifiers. The plots in
the last row show the classification outcome 𝑐𝐿 of a Linear Discriminant
Analysis (LDA) classifier on the process measurements for comparison.
LDA is a traditional method for FDI on process measurements (Chiang
et al., 2004) but is not adapted to deal with discrete features, like most
FDI methods in the literature. The benefits of integrating statistical
alarms in FDI are demonstrated through a comparison with a traditional
FDI method on process measurements only. The accuracies of the
classifiers are listed in Table 1.

4.3. Comparison of the methods

The classification outcome of the continuous Bayesian classifier in
Fig. 2 shows that the continuous classifier cannot distinguish clearly
between normal operation N0 and F1 due to the noisy behavior of 𝑋
during fault F1. When it comes to fault F1, the alarm 𝑋̄ (in red) offers
a better separation between normal operation and the fault than 𝑋.

Table 1
Classification accuracies on the simulation example.

Accuracy

Continuous 0.934
Discrete 0.594
Fusion 0.991
LDA 0.920

The on-delay and off-delay timers limit the number of transitions in
the state of the alarm and 𝑋̄ shows a clear transition between N0 and
F1 once the threshold has been crossed for 𝑇𝑜𝑛 consecutive samples.
Thus, the discrete classifier offers a better distinction between normal
operation and the faults, although it is not able to distinguish F1 from
F2 since it classifies both faults as F2.

The fusion of both classifiers offers both a clear distinction between
normal operation and the faults, and between F1 and F2. The delay
in the alarm activation introduced by the on-delay timer has a limited
impact on the detection of F1 and F2 with the fusion of both classifiers:
the jump in value of 𝑋 during F1 and F2 gives a high fault probability
in the continuous classifier, and the outcome of the fusion of both
classifiers indicates a fault even before the alarm activates.

As a comparison, the outcome of the LDA classifier in Fig. 2 presents
the same characteristics as the outcome of the continuous Bayesian
classifier. The LDA classifier is unable to distinguish clearly F1 from
normal operation.

5. Application to industrial case study

5.1. The multiphase flow facility

The case study is a multiphase flow facility located at the Pro-
cess System Engineering laboratory of Cranfield University described
by Stief, Tan, Cao, and Ottewill (2018b) and depicted in Fig. 3. Air (the
green stream) and water (the blue stream) are mixed just below PT417
in the top part of the plant, and the mixed two-phase flow then goes
through the horizontal section in the center of the figure. The three-
phase separator at the bottom of the figure separates the mixed flow
into water and air, the water is reinjected in the system through a water
coalescer, and some air is exhausted in the atmosphere though VC501.

The system is operated at two different points and normal operation
data are gathered for each operating point. Operating point A corre-
sponds to an air flow rate of 120 sm3 h−1 and a water flow rate of
0.1 kg s−1. Operating point B corresponds to an air flow rate of 150
sm3 h−1 and a water flow rate of 0.5 kg s−1. Three types of fault were
induced successively at each operating point:

• Air blockage (F1): valve V11 was gradually closed to simulate a
developing blockage in the input airline.

• Air leakage (F2): valve V10 was gradually opened so that the air
is partially leaked out to the atmosphere.

• Diverted flow (F3): bypass valve U39 was gradually opened so
that the mixed flow is partially led straight to the riser and
partially led into the horizontal pipeline before joining the riser.

• Normal operation (N0): all samples before the introduction of the
faults constitute the normal operation data.

The data are separated into four classes, the normal operation data
and the three faulty episodes. The analysis focuses on the 17 process
variables listed in Table 2. The variables are mean-centered at each
operating point. 𝑋̄𝑖 and ̄̄𝑋𝑖 for operating point A are generated using 𝜎𝑖
in operating point A, and 𝑋̄𝑖 and ̄̄𝑋𝑖 for operating point B are generated
using 𝜎𝑖 in operating point B. According to Section 2.1, 𝑘̄ is set to 3 for
the generation of level-1 alarms and ̄̄𝑘 is set to 5 for the generation of
level-2 alarms. 𝑇𝑜𝑛 is set to 30 for the on-delay timer and 𝑇𝑜𝑓𝑓 is set to
60 for the off-delay timer.
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Fig. 2. Standardized measurements, level-1 alarms (in red), and classification outcomes with continuous Bayesian classifier, discrete Bayesian classifier, fusion of both Bayesian
classifiers, and LDA on the simulation example. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Process diagram of the multiphase flow facility reproduced from Stief et al. (2018b).2 (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.2. Design of experiment

Variable selection and training of the classification algorithm are
performed on the data of one operating point, and tested on the data

2 ©2018 International Federation of Automatic Control. Reproduced with
permission from the original publication in IFAC-PapersOnline, 51/18.

of the other operating point. Two scenarios are presented: training on
operating point A and testing on operating point B (scenario AB), and
training on operating point B and testing on operating point A (scenario
BA).

The variable ranking is performed on a training dataset containing
the values 𝐱(𝑡𝑛) of the observation vector 𝐗 during one occurrence of
each fault and during normal operation. The variable ranking is com-
puted using the mRMR criterion on the level-2 alarms. As a comparison,
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Fig. 4. First two ranked mean-centered process variables with mRMR ranking on level-2 alarms (top) and with mRMR ranking on process measurements in operating point A
(scenario AB). The dotted lines correspond to the level-2 alarm thresholds ( ̄̄𝑘 = 5).

another variable ranking is computed using the mRMR criterion on
process measurements (Section 2.2.2).

All the sets 𝛺𝑚 corresponding to the 𝑚 best ranked variables (𝑚 =
1 .. 𝑀 with 𝑀 the total number of variables) are assessed for each
variable ranking. The accuracy of the classifier is computed on the
same training dataset using a three-fold cross-validation strategy. The
training dataset is divided in three parts that are used successively as
test set while the two remaining parts are used for training, and the
final accuracy represents the average accuracy of the three tests. The
classifier chosen for the experiment is the fusion of the continuous
classifier and the discrete classifier from Section 3.2.3. Finally, the
robustness of each variable ranking is evaluated on a test dataset
containing another occurrence of each fault and new normal operation
data. The classification accuracy for each variable set 𝛺𝑚 is computed
by training the classifier on the training dataset and testing it on the
test dataset.

6. Results

6.1. Variable selection

This section illustrates how variable selection on level-2 alarms
prioritizes variables with large variations compared to variable selec-
tion on the process measurements, and how it directly impacts the
robustness of the classification.

6.1.1. Variable ranking
Fig. 4 shows the two top ranked mean-centered variables in operat-

ing point A with mRMR on the level-2 alarms and with mRMR on the
process measurements, both in scenario AB. The dotted lines indicate
the level-2 alarm thresholds with ̄̄𝑘 = 5. Each column depicts one of
the faults. While mRMR on the level-2 alarms prioritizes variables with
large variations, mRMR on the continuous measurements picks some

Table 2
Process variables from the multiphase flow facility.

Sensor tag Process variable

FT305/OUT Inlet air flow rate 1
FT302/OUT Inlet air flow rate 2
PT312/OUT Air delivery pressure
PT417/OUT Pressure in the mixing zone
PT408/OUT Pressure at the riser top
PT403/OUT Pressure in the top separator
FT404/OUT Top separator output air flow rate
FT406/OUT Top separator output water flow rate
PT501/OUT Pressure in the three-phase separator
PIC501/PID1/OUT Air outlet valve opening in the three-phase separator
LI502/OUT Water-oil level three-phase separator
LI503/OUT Water coalescer level
LVC502/PID1/OUT Water coalescer outlet valve opening
LI101/OUT Water tank Level
FIC302/PID1/OUT Inlet air flow rate controller 1 valve opening
FIC302/PID1/PV Inlet air flow rate controller 1 process value
FIC301/PID1/PV Inlet air flow rate controller 2 process value

variables with variations that stay close to the normal range. Therefore,
noise and external disturbances have a stronger effect on the patterns
of the measurements of the bottom plot than on the patterns of the
measurements of the top plot.

6.1.2. Classification accuracies of the sets of variables
Fig. 5 shows the classification accuracies obtained for the training

data with cross-validation (solid lines) and those obtained for the
test data (dotted lines) for the various sets 𝛺𝑚 of the 𝑚 best ranked
variables, with 𝑚 from 1 to 10. The top plot corresponds to scenario
AB, the bottom plot to scenario BA.
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Fig. 5. Classification accuracy on training and test data for scenario AB (top) and scenario BA (bottom) for the first 10 variables with mRMR ranking applied to process
measurements (blue) and level-2 alarms (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5 highlights the contrast between classification accuracy with
mRMR ranking on level-2 alarms (red lines) and classification accu-
racy with mRMR ranking on process measurements (blue lines). The
classification accuracy when using level-2 alarms increases quickly for
the first ranked variables and becomes flat or starts decreasing after a
certain number of variables (in this case, two variables). By contrast,
the classification accuracy when using process measurements increases
slowly for the first variables, which means that the first ranked vari-
ables with mRMR on process measurements are not able to discriminate
between the different classes as the variables selected with mRMR on
level-2 alarms. In addition, the difference between the accuracy on the
training data and the accuracy on the test data is larger when using
mRMR on the process measurements than when using mRMR on the
alarms. This shows that there is overfitting in the classification with
variables selected with mRMR on the process measurements, and that
the corresponding classifier is not robust.

6.1.3. Selected set of variables
The set 𝛺2 of the two highest-ranked variables with mRMR ranking

on the level-2 alarms is selected as best set of variables based on the
classification accuracy on the training and test data in both scenarios
AB and BA. 𝛺2 is used for the FDI in the next sections.

The two variables in 𝛺2 are relevant with regard to the considered
faults. The highest-ranked variable, PT312, corresponds to the air deliv-
ery pressure, measured just after the valves V10 and V11 that are used
to induce the blockage and leakage faults, and just before the bypass
valve U39 used to induce the diverted flow fault. The second variable,
PIC501/PID1, refers to the air outlet valve of the three-phase separator.
As the controller output of the valve opening, PIC501/PID1 gives an
indication of the value of the outlet air flow, which is not directly
measured in the facility. The blockage and the leakage fault lead to
a reduction in the quantity of air introduced in the mixed flow, which
triggers a closure of the air outlet valve of the three-phase separator to
maintain the air pressure of the three-phase separator at its setpoint.

6.2. Fault detection and identification

This section investigates Bayesian classification of the selected vari-
ables, based on fusion of a continuous classifier on process measure-
ments and a discrete classifier on the corresponding level-1 alarms.

Table 3
Classification accuracies for scenarios AB and BA.

Scenario AB Scenario BA

Continuous 0.678 0.72
Discrete 0.719 0.676
Fusion 0.779 0.788
QDA 0.702 0.740

Table 4
Confusion matrices for scenarios AB and BA.

Scenario AB Scenario BA

N0 F1 F2 F3 N0 F1 F2 F3

Continuous

N0 0.94 0.00 0.00 0.06 0.99 0.00 0.00 0.01
F1 0.50 0.50 0.00 0.01 0.38 0.60 0.00 0.02
F2 0.09 0.30 0.61 0.01 0.13 0.00 0.86 0.01
F3 0.15 0.01 0.00 0.84 0.51 0.00 0.00 0.49

Discrete

N0 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
F1 0.43 0.43 0.14 0.00 0.38 0.62 0.00 0.00
F2 0.11 0.00 0.89 0.00 0.14 0.47 0.39 0.00
F3 0.18 0.00 0.00 0.82 0.27 0.00 0.00 0.73

Fusion

N0 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
F1 0.43 0.57 0.00 0.00 0.38 0.62 0.00 0.00
F2 0.09 0.01 0.89 0.00 0.13 0.01 0.85 0.01
F3 0.15 0.00 0.00 0.85 0.26 0.00 0.00 0.74

QDA

N0 0.95 0.00 0.00 0.05 0.97 0.00 0.00 0.03
F1 0.37 0.41 0.04 0.18 0.33 0.56 0.00 0.11
F2 0.09 0.01 0.90 0.00 0.13 0.00 0.87 0.00
F3 0.15 0.04 0.00 0.80 0.36 0.00 0.00 0.64

6.2.1. Classification results
Fig. 6 summarizes the classification outcome for scenario AB. The

plots of the first two rows show the standardized selected variables
(in black) and the corresponding level-1 alarms (in red) for faults
F1, F2, and F3. The vertical line indicates the beginning of the fault:
the samples before the vertical line correspond to normal operation
(N0). The bottom plots show respectively the classification outcome 𝑐𝑐
with the continuous Bayesian classifier, the classification outcome 𝑐𝑑
with the discrete Bayesian classifier, and the classification outcome 𝑐𝑓
with the fusion of both classifiers. The plots in the last row show the
classification outcome 𝑐𝑄 of a Quadratic Discriminant Analysis (QDA)
classifier on the process measurements for comparison. Quadratic dis-
criminant analysis is the quadratic extension of linear discriminant
analysis used in Section 4, which could not be used because the faults
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Fig. 6. Standardized measurements, level-1 alarms (in red), and classification outcomes with continuous Bayesian classifier, discrete Bayesian classifier, fusion of both Bayesian
classifiers, and QDA (scenario AB). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are not linearly separable in this case. As in Section 4, QDA is applied
on the process measurements only, since it is not adapted to discrete
features. Fig. 7 summarizes the classification outcome for scenario BA.

The classification accuracies corresponding to Figs. 6 and 7 are
indicated in Table 3. The accuracy indicates the proportion of values of
the observation vector correctly classified. The confusion matrices are
presented in Table 4. The figures indicate the proportion of values of
the observation vector classified as each class. The columns correspond
to the predicted classes and the rows correspond to the actual classes.

6.2.2. Comparison of the methods
Both Figs. 6 and 7 show that the continuous Bayesian classifier

is able to classify all faults correctly after a certain time. However,
the detection occurs late and the classifier has troubles clearly distin-
guishing the faults from normal operation during their development,
in particular for F3. On the opposite, the discrete Bayesian classifier
shows a clear and early detection of the faults due to the activation of
the alarms, but may not be able to distinguish between faults during
the late stage of the fault when all the alarms have reached the same
values. For example, the discrete classifier classifies F1 as F2 in Fig. 6
or F2 as F1 in Fig. 7 at the end of the faults because the alarms have
reached the same values in F1 and in F2.

The fusion of both classifiers brings together the advantages of
both the continuous and the discrete classifiers. The discrete classifier
ensures a clear detection and identification of the fault as soon an
alarm gets activated, and the continuous classifier ensures a correct
classification when the values of the alarms lead to indetermination.

In comparison, the QDA classifier on the process measurements
presents the same characteristics as the continuous Bayesian classifier.
Although the QDA classifier classifies all faults correctly, it cannot
clearly separates fault classes when the level of noise is high compared
to the pattern of the fault. This is the case for F3 which is regularly
classified as normal, or F1 which is regularly classified as F3. In
addition, the QDA classifier classifies several samples from normal

operation as F3, which leads to false detections. Limiting the number of
false detections is another advantage of the discrete Bayesian classifier,
which explains why the fusion of the discrete and continuous classifiers
presents very few false detections in scenario AB and BA.

6.3. Analysis of the parameters

6.3.1. Alarm thresholds
The role of level-1 alarms is to indicate any deviation from the

normal operating range. For this reason, the objectives for designing
level-1 alarms and for designing a fault detection system are similar,
and the level-1 alarms can directly be used for fault detection. It is
common practice to set the alarm threshold to 3𝜎𝑖 (𝜎𝑖 indicates the stan-
dard deviation in normal operation) following basic statistical process
control rules for a Gaussian variable. In this paper, the variables are
assumed to be Gaussian during normal operation and the 3𝜎𝑖 threshold
is retained.

The role of level-2 alarms is to indicate a severe deviation from the
normal operating range. In this paper, level-2 alarms are used to select
only the variable with severe deviations from the normal operating
range. The variables whose level-2 alarms can best discriminate fault
classes are good candidates for a robust classification, since the effect
of noise and external disturbances compared to the fault pattern is lim-
ited on those variables. This variable selection approach explains why
the level-1 alarms are also helpful, to some extent, in discriminating
fault classes for the fault identification. Similarly to the level-1 alarm
threshold, the level-2 alarm threshold can be set as a multiple of 𝜎𝑖 (5𝜎𝑖
is common practice).

6.3.2. Delay timers
Delay timers are set to reduced the number of alarm transitions

not to overload the operators. 𝑇𝑜𝑛 and 𝑇𝑜𝑓𝑓 for the on-delay and off-
delay timers are set during the alarm design stage along with the alarm
thresholds. From a safety perspective, the on-delay timer has a higher
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Fig. 7. Standardized measurements, level-1 alarms (in red), and classification outcomes with continuous Bayesian classifier, discrete Bayesian classifier, fusion of both Bayesian
classifiers, and QDA (scenario BA). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Kernel density estimates of the probability density functions of the standardized variables for normal operation N0 and faults F1, F2, and F3 in operating point A.

impact than the off-delay timer since it delays the activation of the
alarm (Adnan et al., 2011), which can be an issue in case of real fault.
For this reasons, 𝑇𝑜𝑛 is usually taken smaller than 𝑇𝑜𝑓𝑓 . In this paper,
𝑇𝑜𝑓𝑓 = 2𝑇𝑜𝑛 for both the simulation and the industrial case study. 𝑇𝑜𝑛
and 𝑇𝑜𝑓𝑓 also depends on the dynamics of the process variable. For the
industrial case study, an on-delay timer of 30 s and an off-delay timer
of 60 s are used, which correspond to standard industrial values.

6.3.3. Kernel bandwidth for the continuous Bayesian classifier
The continuous Bayesian classifier assumes the estimation of the

probability density functions of the selected variables (Eq. (16)). The
estimated probability density functions are used to assign the probabil-
ity of each fault class for each new observation vector. In this paper,

the constant ℎ(𝑐) in the bandwidth matrix 𝐇(𝐜) (Eq. (17)) is used to
adjust the smoothness of the estimated probability density functions.

A common method for choosing a good value of the kernel band-
width in kernel density estimation is cross-validation (Wand, Jones,
& Jones, 1994). In this paper, a value of ℎ(𝑐) is determined for each
fault class 𝑐 using three-fold cross-validation on the training dataset
corresponding to fault 𝑐. The training dataset corresponding to fault
𝑐 is divided in three parts that are used successively to test the fit of
the kernel density estimate while the two remaining parts are used for
computing the kernel density estimate. The fit of the kernel density
estimate is computed using the log likelihood of the data that was not
used for computing the kernel density estimate, and the value of ℎ(𝑐)

10
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maximizing the log likelihood is chosen for the estimation of 𝑓 (𝐱|𝑐) in
the continuous classifier.

The kernel density estimates 𝑓1(𝐱|𝑐) and 𝑓2(𝐱|𝑐) of the probability
density functions of the two selected standardized variables are shown
in Fig. 8 for each fault occurrence. In this case, ℎ is set to 1 for N0 and
F3, and to 15 for F2 and F3.

7. Conclusion

Classification-based methods are popular for fault detection and
identification but their implementation in the industry is limited by
noise and variability of process measurements from one fault occur-
rence to another. This paper demonstrated how statistical alarms could
be used to improve the robustness of the fault detection and identifi-
cation. A variable selection stage identifies the most relevant variables
for the classification based on the corresponding statistical alarms with
high severity threshold, focusing on variables with large variations
where the impact of noise and external disturbances is limited. The
classification stage uses a Bayesian framework combining the outcome
of a discrete classifier based on statistical alarms with low severity
threshold and the outcome of a continuous classifier based on process
measurements. The discrete classifier presents a good robustness to
noise for fault detection and identification during the early stage of the
fault since the number of alarm transitions are limited by the delay
timers. The continuous classifier ensures that the fault is identified
correctly during later stages of the fault when alarm values only are
not sufficient to distinguish faults, and the final classification outcome
is based on the fusion of the discrete and continuous classifiers.
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