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A B S T R A C T

This paper is concerned with the application of recent statistical advances to inference of infectious disease
dynamics. We describe the fitting of a class of epidemic models using Hamiltonian Monte Carlo and variational
inference as implemented in the freely available Stan software. We apply the two methods to real data from
outbreaks as well as routinely collected observations. Our results suggest that both inference methods are
computationally feasible in this context, and show a trade-off between statistical efficiency versus computational
speed. The latter appears particularly relevant for real-time applications.

1. Introduction

The dynamics of infectious diseases depend on how the balance of
uninfected and infected individuals varies over time. In all but the most
simplest cases mathematical modelling is an indispensable tool for
understanding the resulting epidemic spread. However, fitting epidemic
models is not straightforward, typically because the actual numbers of
uninfected (susceptible) and infected individuals remain unobserved,
which we refer to as being latent from a statistical perspective. In this
context, Bayesian approaches to modelling and inference of infectious
disease dynamics have the advantage that latent parameters and their
uncertainties can be seamlessly accounted for. However exploiting this
principal advantage is often made difficult by substantial challenges in
developing computational tools that work efficiently in a broad range of
infectious disease applications. The BUGS software (Lunn et al., 2000)
is one example of such computational tools, automating numerical in-
ference and providing an easy-to-use interface for building and sharing
Bayesian statistical models. Other, more recently developed examples
of such general purpose tools for computational fitting of Bayesian
models are JAGS (Plummer, 2017), Nimble (de Valpine et al., 2017),
AD Model Builder (Fournier et al., 2012), Template Model Builder
(Kristensen et al., 2015) and PyMC (Patil et al., 2010). Yet, many recent
Bayesian modelling approaches in infectious disease epidemiology rely

on highly customized Markov Chain Monte Carlo (MCMC) and adaptive
MCMC methods for learning the model parameters from data (Baguelin
et al., 2013; O’Neill and Roberts, 1999). This state of play is a major
hindrance for developing, sharing and fitting mathematical models to
characterize the spread of infectious diseases.
As model complexity increases, the performance of classical MCMC

algorithms deteriorates due to their potentially inefficient exploration
of the target distribution. The latest developments in statistics and
machine learning suggest that Hamiltonian Monte Carlo (HMC)
methods (Betancourt, 2017; Neal, 2012) and variational Bayes (VB)
(Blei et al., 2017; Kucukelbir et al., 2017) may offer increased statistical
and/or computational efficiency compared to MCMC. The relatively
new software package Stan (Stan Development Team, 2018; Carpenter
et al., 2017) provides a generic interface to implementing both HMC
and VB, freeing end-users from the challenge of implementing their
own computational HMC and VB routines. In addition, it appears that
Stan is the first such software offering built-in solvers for systems of
ordinary differential equations (ODEs). This makes Stan a particularly
attractive candidate tool for fitting deterministic and stochastic in-
fectious disease models based on ordinary differential equations.
The main purpose of this paper is to explore how Stan could be used

to fit mathematical models to infectious disease count data. In Section
2, we provide a brief description of the most important features of Stan's
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implementation of HMC and VB so the reader can get familiar with the
tools that Stan is based on. We then investigate three different examples
and report our findings in Section 3. First, we consider a hierarchical
model to infer age-specific gonorrhoea diagnosis rates while adjusting
for spatial heterogeneity of Public Health regions in England. Next we
consider dynamic models based upon systems of ODEs that describe
transmission dynamics of a single or multiple influenza strains. Using
single strain models we examine an outbreak of influenza at a British
boarding school and we fit a multistrain model to UK influenza data
from the 2017/18 season where even though the main strain circulating
was a B strain, there was evidence of the H3 strain as well. The ex-
amples are presented using the R interface to Stan (rstan) and the re-
thinking R package (McElreath, 2012). The code is made freely avail-
able at https://github.com/anastasiachtz/COMMAND_stan.git.

2. Material and methods

2.1. Statistical inference using Stan

Stan is an open-source general purpose inference software for a
large range of Bayesian models, including regression, hierarchical
models and state-space models. The software implements several nu-
merical techniques for sampling from posterior distributions, most no-
tably gradient-based sampling techniques, but also a method to ap-
proximate posterior distributions with variational inference, and
penalized maximum likelihood estimation via numerical optimization.
Gradient-based sampling is implemented through the No-U-turn sam-
pler (NUTS) (Hoffman and Gelman, 2014), in combination with auto-
matic differentiation to numerically approximate the gradients
(Griewank et al., 1989; Griewank and Walther, 2008). Variational in-
ference aims to find an approximating probability distribution which is
close to the posterior distribution of interest, and easy to sample from.
It is implemented through stochastic optimization of a non-symmetric
measure of the difference between the two distributions. Moreover,
Stan provides a built-in mechanism for specifying and solving systems
of ODEs, making it suitable for inference of SIR-type models.
Stan's probabilistic programming language is written in C++, with

interfaces for R, Python, MATLAB, Julia, Stata, Mathematica, Scala and
the command line. Users write Bayesian models in a computing lan-
guage similar to standard statistical notation, much like the popular
BUGS language. Detailed documentation is available, including User's
Guide, Language Reference Manual and Functions Manual (Stan
Development Team, 2018), as well as a separate guide for each of the
Stan interfaces, all addressed to users of all experience levels. The User's
Guide introduces readers incrementally to advanced modelling and
programming techniques through a broad range of statistical models,
and acts as a road map not only for learning Stan, but also modern
Bayesian modelling in general. The Stan Language Reference Manual
provides detailed analyses of the inference algorithms and clarifications
on the Stan syntax. The Stan Functions Manual documents all in-
tegrated functions.
Briefly, a difference between Stan and other automated platforms

such as BUGS and JAGS, is that variable types and indices must be
declared similarly as in the C++ programming language. Variables are
declared by their type, in blocks according to their use, and constraints
upon them need to be defined carefully. As seen in the example code in
Appendix B, the first blocks of Stan's model statement consist of data,
transformed data, parameters, transformed parameters and generated
quantities. Within the model block, sampling notation is very similar to
BUGS. User-defined probability functions can also be employed. The
Stan code is written to a human-readable Stan model file, should have
the extension .stan, and is portable across interfaces (e.g. R, Python,
etc.) and operating systems (e.g. UNIX, Windows, Mac OS). According
to the interface used, users need to call different functions for the dif-
ferent inference methods offered. All these functions include an argu-
ment which defines the location and name of the Stan model file.

In the presence of missing data, inference is challenging in epidemic
models. In Stan, missing continuous data can be treated as additional
parameters, and thus are straightforward to handle. Users need to ex-
tend the Stan model file to identify which values are missing, and de-
clare model parameters for each missing datum. However, with Stan,
missing discrete data cannot be handled in the same manner due to the
nature of the underlying inference algorithms. There is one notable
workaround. When missing discrete data have a lower and upper
bound, then it is possible to loop over all possible instances of missing
values, sum the density value of the corresponding posterior distribu-
tion, and thus marginalize out the missing discrete data. The same
process may, in principle, be applied to discrete bounded latent para-
meters.
The two main inference algorithms implemented in Stan are NUTS,

the Hamiltonian Monte Carlo No U-turn sampler, and automatic dif-
ferentiation variational inference (ADVI) (Kucukelbir et al., 2015). By
changing just a few lines of code, it is possible to employ either of the
algorithms, and also to build more complex mathematical models. In
the following section we highlight the basic idea behind HMC-NUTS
and ADVI as they are implemented in Stan. A more detailed mathe-
matical description of the algorithms is included in Appendix A.

2.1.1. Hamiltonian Monte Carlo
Statistical inference of epidemic models commonly rests on MCMC

algorithms. These algorithms provide samples from the posterior
probability distribution of model parameters by generating a Markov
chain that has the target distribution, i.e. the posterior distribution of
the model parameters, as its stationary distribution. The idea behind
most MCMC techniques such as the Metropolis-Hasting algorithm
(Metropolis et al., 1953; Hastings, 1970) and Gibbs sampling (Geman
and Geman, 1984) is to explore the parameter space by proposing a
new sample based on the current sample and then accepting or rejecting
it according to a certain probability. A frequent challenge is that the
algorithm does not propose samples in regions of the parameter space
that are distant from the current state. This may result in slow con-
vergence to the stationary distribution when the parameter space with
high posterior support is far from the initial values. It may also result in
slow exploration of the parameter space with high posterior support
when the target distribution has multiple distinct modes or an irregular
shape (Hoffman and Gelman, 2014; Neal, 1993). Thus, MCMC algo-
rithms which take samples from a target distribution by making a
random proposal and then accepting or rejecting it, may require very
long run times, even though they are theoretically guaranteed to ex-
plore all the regions of the parameter space eventually.
In contrast to the Metropolis-Hastings and Gibbs sampling algo-

rithms, HMC algorithms propose new samples adaptively, based on the
gradients of the target distribution at the current state (Neal, 2012). The
theoretical foundation of HMC is based on concepts in differential
geometry. Here we sketch only the basic steps of HMC, see Betancourt
et al. (2017) for a detailed exposition. First, the state space is aug-
mented, adding to the parameters of interest auxiliary “momentum”
parameters. Second, the Hamiltonian function, which is simply the
negative log distribution of all the parameters, is formulated. The Ha-
miltonian function is associated with a physical interpretation, the total
energy of a dynamic physical system in terms of object location and its
momentum in time. The object's location relates to the potential energy
and the momentum relates to the kinetic energy. Their sum, which is
the total energy, defines the Hamiltonian. Third, the momentum
parameters are sampled, typically from some Gaussian distributions,
given the current values of the parameters of interest. Fourth, the
proposal distribution of the parameters of interest is constructed con-
ditional on the gradients of the Hamiltonian at the current value and
thus takes into account the local geometry of the distribution.
Most HMC implementations, including that in Stan, are based on the

leapfrog method to construct the proposal density. The method alter-
nates between half-step updates of the momentum parameters and full
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steps of the parameters of interest (Beskos et al., 2013). The gradients of
the posterior distribution are typically not known analytically, and so
they are numerically approximated. Stan uses automatic differentia-
tion1 for this sub-task (Griewank and Walther, 2008; Carpenter et al.,
2015). An accept–reject step ensures that the resulting samples are
asymptotically from the target distribution.
The standard HMC algorithm has a number of tuning variables, that

complicate automated numerical inference (Betancourt, 2016;
Betancourt et al., 2014). These include the number of leapfrog steps i.e.
the number of updates performed before acceptation or rejection, the
length of each update (following the gradient), and the covariance
matrix of the probability distribution of the momentum parameters. In
Stan, an adaptive version of the leapfrog algorithm is implemented in
order to reduce the number of tuning variables. The covariance matrix
of the momentum parameters is estimated during warm-up, as is the
step size, aiming at a specific target acceptance rate (Stan Development
Team, 2018). The optimal number of updates is determined dynami-
cally. The idea is to use a sufficient number of update steps to explore
the parameter space in an efficient manner. This is achieved by either
avoiding a U-turn to previously explored trajectories or stopping at a
predetermined maximal number of increasing the leapfrog steps. Stan's
NUTS algorithm uses multinomial sampling from each trajectory to
select a sample (Stan Development Team, 2018; Betancourt, 2017;
Hoffman and Gelman, 2014). If the leapfrog integrator fails in the sense
that the value of the Hamiltonian is far from its initial value, then the
designed trajectory is identified as divergent and rejected.
HMC requires more computational effort at every step compared to

standard MCMC techniques, primarily because of the gradient calcu-
lations. However, this feature enables HMC algorithms to explore target
distributions of highly correlated parameters more effectively than
standard MCMC. This implies that much fewer iterations are typically
needed to estimate model parameters and their uncertainty intervals,
and therefore that the overall computational runtime of HMC algo-
rithms can be substantially less compared to standard MCMC techni-
ques. In particular, Monnahan et al. (2017) demonstrate that over a
range of examples, Stan-based HMC typically returns a higher effective
sample size per computational unit compared to MCMC as implemented
in JAGS.

2.1.2. Variational inference
There are real-life applications in statistics where we cannot easily

use the MCMC approach due to time constraints, as is the case e.g. for
real-time inferences when managing outbreaks of emerging pathogens.
In these cases, we may be willing to partially sacrifice accuracy for
computational speed. Variational inference is a method which origi-
nates from machine learning and tends to be faster than MCMC (Jordan
et al., 1999; Wainwright et al., 2008).
At its core, variational inference relies on translating the problem of

directly estimating posterior distributions into an optimization problem
that aims to find an easy-to-compute density that is close to the pos-
terior. More formally, variational inference considers a family of ap-
proximating distributions to the posterior distribution. Each member of
this family is a candidate approximating density to the posterior den-
sity. The goal is to find the closest candidate in terms of the
Kullback–Leibler (KL) divergence to the exact density (Blei et al., 2017).
The KL divergence is essentially a measure of the information lost when
the candidate density is used to approximate the exact posterior
(Kullback, 1997). It is expressed as the expectation, with respect to the
approximation, of the difference between the log approximating dis-
tribution and the log posterior distribution given the data. In other

words the KL divergence is a non-symmetric measure of the difference
between the two probability distributions. Since the KL divergence in-
volves the posterior, it is not computable. Consequently, variational
inference maximizes a proxy to the KL divergence, the Evidence Lower
Bound (ELBO), which is equivalent to the KL divergence up to a con-
stant (see Appendix A)
In Stan, the automatic differentiation variational inference (ADVI)

method is implemented. The fact that we need to optimize the KL di-
vergence implies a constraint that the support of the chosen approx-
imation lies within the support of the posterior (Kucukelbir et al.,
2015). However finding such a family of approximating densities is
very difficult. To overcome this challenge, ADVI transforms the support
of the parameters of interest to the real coordinate space, ensuring that
the aforementioned constraint is always valid. Then, all parameters are
defined on the same space so that we can choose the variational ap-
proximation independent of the model. To this end, Stan provides a
library of transformations. Considering then a Gaussian variational
approximation on the transformed space, ADVI tries to maximize the
ELBO. Note that the variational approximation in the original para-
meter space is non-Gaussian and its shape is directly determined by the
form of the transformation used.
Stan offers two options for the Gaussian approximation used. The

first is mean-field ADVI, which simply assumes that the unknown
parameters are independent. Mean-field variational Bayes is widely
used since it is fast, however there is no theoretical guarantee for ac-
curate results (Wang and Blei, 2018). An additional concern is that the
marginal variances of the parameters are often under-estimated (Turner
and Sahani, 2011; Bishop, 2006). The second option is full-rank ADVI.
This approach dispenses with the independence assumption that un-
derlies mean-field variational Bayes, and is therefore theoretically su-
perior in capturing posterior correlations (Wang and Blei, 2018).
However full-rank ADVI can be challenging to implement in practice.
In contrast to standard variational inference algorithms that max-

imize ELBO using coordinate ascent, ADVI uses a gradient-based algo-
rithm to perform the maximization. In particular, ADVI is based on a
stochastic gradient ascent algorithm where the gradients are computed
using automatic differentiation (Kucukelbir et al., 2015). Despite the
fact that ADVI in Stan is a faster alternative to MCMC and is automated
in the sense that the user needs to provide only the model and the data,
it may fail for several reasons. As in every variational inference ap-
proach, initialization plays a crucial role and we can only test random
initializations. Also, the fact that the posterior in the transformed space
may not be well-approximated by a multivariate normal or that this
specific iterative algorithm may not be able to find that optimal mul-
tivariate normal, may lead to poor performance.

2.2. Modelling

2.2.1. Bayesian multi-level models
Heterogeneity is pervasive in epidemiology, including for example

heterogeneous patient groups, heterogeneous treatment effects in dif-
ferent locations, or heterogeneous time effects. Statistically, Bayesian
multi-level models are the basic modeling tool in these cases, and well
suited to making inferences from structured data sets (Gelman and Hill,
2006). Stan was originally designed as a general-purpose platform for
Bayesian inference for multilevel models while trying to overcome
difficulties arising from using BUGS or JAGS (Lunn et al., 2012;
Plummer et al., 2003; Stan Development Team, 2018), and so this will
be our first example. We provide an example of estimating gonorrhea
diagnosis rates in the context of heterogeneity across age groups,
gender and Public Health regions in England.
Data on gonorrhoea case counts were obtained from Public Health

England, https://www.gov.uk/government/statistics/sexually-transmitted-
infections-stis-annual-data-tables. The data we use here range from 2012
to 2016 and are stratified by gender (m=0 for female, m=1 for male),
age group (a=0, …, 6 for the age categories years 13–14, 15–19, 20–24,

1 Automatic differentiation, instead of computing the expressions of the de-
rivatives, decomposes the complex expressions into primitive ones and com-
putes the derivatives through accumulation of values during code execution,
resulting in numerical derivatives.
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25–34, 35–44, 45–64 and 65+), and PHE region (r=1, …, 9 for East
Midlands, East of England, London, North East, North West, South East,
South West, West Midlands, Yorkshire & the Humber). Population de-
nominators for each group are available from the same source, and denoted
by Pram.
Fig. 1 illustrates the substantial variation in the number of diagnoses

by age, gender, and location. Specifically, we note that diagnoses peak
at younger ages among women when compared to men, which can be
modelled through separate age-specific random effects. Further, we
notice that diagnoses among males from London are substantially
higher and since the sample size in London is large, this is unlikely due
to error. So, if this is not accounted for, the overall estimates will be
biased upwards, suggesting to add an independent effect for London
men to the model. A typical approach for estimating region-, age- and
gender-adjusted standardized diagnosis rates is via Poisson multi-level
models, for example
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+ + +
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In the above, Yram are the number of gonorrhoea cases per strata,
Mram a gender indicator variable (0 for female, 1 for male) and Lram a
location indicator variable (0 for outside London, 1 for London). The
model includes a baseline term (α), a fixed gender effect (βM), a fixed

interaction effect between gender and location (βML), region-specific
random effects (αr), age-specific random effects among men (ξa), and
age-specific random effects among women (νa). In total, there are 29
parameters to estimate.

2.2.2. Deterministic ODE-based models
The dynamics of disease spread are frequently formulated in terms

of ODE-based models, in whom the study population is divided into
compartments representing a specific stage of the epidemic or a de-
mographic status, such as susceptible, infected, and recovered in-
dividuals (Kermack and McKendrick, 1927; Anderson and May, 1992).
The disease dynamics are captured in a system of non-linear ODEs, such
as the susceptible-infectious-recovered (SIR) model:
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=
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d
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( ) ( ) ( )

d
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where S(t) represents the number of susceptible, I(t) the number of
infected and R(t) the number of recovered individuals at time t. The
total population size is denoted by N (with N= S(t)+ I(t)+ R(t)), β
denotes the transmission rate and γ denotes the recovery rate. In an
outbreak scenario, typical initial conditions are I(0)= 1, S(0)=N−1
and R(0)= 0.
We usually want to obtain estimates of β and γ, the basic re-

production number R0 which is defined as β/γ for the SIR model, and
the initial number of susceptible individuals. The data typically consists
of the number of new infections within a certain time interval, such as
days or weeks. Inference is then complicated by the fact that the model
states S, I, R are typically latent variables, and by the non-linear nature
of the disease dynamics.
Stan has two built-in ODE solvers, which enable inference of a

variety of ODE-based models. The first solver is for non-stiff dynamic
systems, i.e. systems whose components evolve at similar rates, is based

Fig. 1. Gonorrhoea case counts in England. The total number of reported cases between 2012 and 2016 are shown by age (x-axis), gender (rows) and three of the
Public Health England regions (columns), namely East of England, London and South East. For visualization purposes, different limits on the y-axis were chosen for
men and women. There were substantially more reported cases among men.
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on the fourth and fifth order Runge-Kutta method, and fast. The second
solver is for stiff systems, i.e. systems consisting of components that
evolve at different time scales, is slower, and more robust (Stan
Development Team, 2018).
In what follows, we provide a setting where the ODE solver role is

highlighted in the context of a deterministic SIR model. We examine an
outbreak of influenza A (H1N1) at a British boarding school in 1978.
The data consist of daily counts Yt of the number of infected students,
over a time interval of 14 days. To link the data to the SIR dynamics, we
can specify the following Poisson observation model:

Y Poisson( )t t (3)

= I s
N

S s I s s( ) ( ) ( ) dt
t

0 (4)

We aim to estimate β, γ, the initial proportion of susceptible in-
dividuals s(0), and implicitly the initial proportion of infected in-
dividuals i(0) (assuming that the initial proportion of removed in-
dividuals is 0 then i(0)= 1− s(0)). To do so, we specify the following
priors

s

Lognormal(0, 1)
(0.004, 0.002)

(0) Beta(0.5, 0.5) (5)

2.2.3. Stochastic ODE-based models
Even though the deterministic approach gives us an insight into the

dynamics of the disease, considering demographic stochasticity may
allow for a more accurate estimation of the parameters related to the
spread of the disease, as the stochastic component can absorb the noise
generated by a possible mis-specification of the model (Andersson and
Britton, 2000; Malesios et al., 2017). A natural way to do so in the
above Poisson model is via employing the continuous-time analog of
the auto-regressive (1) model, the Ornstein–Uhlenbeck (OU) process
(Karatzas and Shreve, 1998) as follows:

Y Poisson( )t t (6)

= exp( )t t (7)

= +µ t Bd ( )d ds t s s (8)

where Bs denotes standard Brownian motion, σ is the instantaneous
diffusion term, ϕ is the speed of reversion of κt and μt is a piecewise
constant function which corresponds to the logarithm of the solution of
the deterministic model:

=µ I s
N

S s I s slog ( ) ( ) ( ) dt
t

0 (9)

The instantaneous κt is an OU process evolving around μt. Its transition
density from day t to day t+1 is available in closed form:

++ µ µ e e| ( ) ,
2

(1 )t t t t t1
2

2

(10)

To complete the model specification, we considered a half-normal prior
distribution for ϕ with large variance, ϕ∼HalfNormal(0, 100) and an
inverse-gamma prior density for σ2, σ2∼ Inv-Gamma(0.1, 0.1).

2.3. Multistrain models

Lastly we explore fitting ODE-based multistrain models with Stan.
Specifically we focus on a multistrain SIR model in which each strain
acts independently:

=

=

=

S
t

I t
N

S t

I
t

I t
N

S t I t

R
t

I t

d
d

( ) ( )

d
d

( ) ( ) ( )

d
d

( )

x
x

x
x

x
x

x
x x

x
x

(11)

where Sx(t) denotes the number of susceptibles to strain x at time t and
similarly Ix(t) and Rx(t) denote the number of infected and recovered
individuals to strain x at time t. The model consists of overlapping
compartments, with total population size (N= Sx(t)+ Ix(t)+ Rx(t)) for
any strain x. βx is the strain-specific transmission rate and γ is the re-
covery rate, modelled as identical for each strain.
The model is fitted to weekly influenza-like illness (ILI) case counts,

and virological data. To fit the model to the data, we track the number
of ILI cases due to strain x, denoted by ILI+,x(t), as well as the number
of ILI cases that are not a result of infection with any of the influenza
strains, denoted by ILI−(t). The total number of ILI cases is then: ILI
(t)= ∑xILI+,x(t)+ ILI−(t).
The cumulative number of ILI cases over time is modelled as fol-

lows:

=

=
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+ +
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(12)

where +
x denotes the probability of symptomatic ILI infection, and θ−

the probability of developing ILI symptoms when not having flu.
δ(tmod 7) is the Dirac delta function, which integrates to 1 when
tmod 7=0, i.e. at the start of every week, and is otherwise 0. These
equations model cumulative ILI incidence over time, while being re-
duced to zero at the beginning of the week (due to the Dirac delta
function). This is in line with the data, which counts the cumulative
number per week (i.e. restarts counting at zero every week).
It is well known that flu-negative ILI rates increase in winter

(Fleming and Elliot, 2008). To account for this, we modelled θ− to
change over time via

= + elog ˆ ( 1),t t µ( ) ( ) /2t
2 2

where ˆ is the maximum value of the (log) value of the flu negative ILI
rate, ϕ is the amplitude of the peak, μt is the time of the peak and σ
governs the width of the peak.
We now have everything in place to link the multi-strain model to

the data through the variables ILI+,x and ILI−. First we assume that the
number of ILI cases visiting a GP follows a binomial distribution such
that the likelihood of the model outcomes and parameters given the
number of ILI diagnoses per week can be defined as follows:

=y N N y N N(ILI, ; , , ) ( ; ILI / , ),c c
ILI ILI

where yi
ILI is the observed number of ILI cases in the monitored popu-

lation Nc, N is the total population, ILI is the total predicted ILI cases in
the population (see above) and ϵ is the rate with which someone with
ILI is diagnosed, i.e. this is a combination of the probability that a
symptomatic (ILI) case consults the GP and the GP correctly diagnosing
the patient. Note that the number of ILI cases in the population is scaled
to the expected number of ILI cases in the monitored population using
ILINc/N.
The virological samples are assumed to follow a multinomial dis-

tribution:

… …+ +y y( , , ; ILI /ILI, , ILI /ILI)x, ,x0 0

where y+,H1, y+,H3, y+,B represent the number of positive samples for
each strain, y− is the number of negative samples and ILI+,x0/ILI, …,
ILI−/ILI are respectively the probability of finding positive samples
with each strain x0, … and finding negative samples (flu negative ILI).
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3. Results

3.1. Poisson multi-level model

We fit our full hierarchical model (1) using Stan's NUTS algorithm.
First of all, we tested for convergence to the target distribution, by
inspecting the trace plots of multiple chains that were started from
distinct initial values. Next, we tested for sufficient exploration of the
target distribution, by calculating effective sample sizes for each model
parameter, which are an estimate of the number of independent draws

from the marginal posterior distributions that are represented in the
numerical output. Using R, effective sample sizes can be computed
through the bayesplot or coda packages, see Appendix B. Here, to ob-
tain effective sample sizes above 500, approximately 30,000 iterations
are needed. This is pretty good, with no further tuning required.
Computations took us about 13min.
Fig. 2a illustrates the region-, age- and gender-specific posterior

estimates of standardized gonorrhea diagnoses rates per 100,000 in-
dividuals (black dots and error bars). Adding crude diagnosis rate es-
timates (colored lines), it can be seen that the model achieves an overall

Fig. 2. Inference results for gonorrhoea hierarchical model using NUTS. (For interpretation of the references to color in this figure citation, the reader is referred to
the web version of this article.)
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reasonable fit, which could be further assessed through posterior pre-
dictive checks. As suggested in Fig. 2b, the model indicates further that
young women aged 15-19 have higher risk of acquiring gonorrhoea
than their male peers. In contrast, among age groups 20–64, men have
higher risk of acquiring gonorrhoea when compared to their female
peers. However the model fit also reveals notable regional trends. For
example, in the South East and South West, the model substantially
overestimates disease risk among young women aged 15–24. This
suggests that in these regions, diagnoses rates among young women
aged 15–24 are lower than expected under the general trends captured
in model (1). Alternative explanations could relate to biases in data
collection.

3.2. Single strain SIR models

In 1978, there was a report to the British Medical Journal for an
influenza outbreak in a boarding school in the north of England. There
were 763 male students which were mostly full boarders and 512 of
them became ill. The outbreak lasted from the 22nd of January to the
4th of February and it is reported that one infected boy started the
epidemic and then it spread rapidly in the relatively closed community
of the boarding school. We use the data from Chapter 9 of De Vries et al.
(2006) which are freely available in the R package outbreaks, main-
tained as part of the R Epidemics Consortium (RECON; http://www.
repidemicsconsortium.org). Data consist of the number of students who
are confined to bed each day which we assume that is equal to the total
number of infected students each day.
Both models are fitted using Stan's NUTS algorithm using 5 chains,

each with 100,500 iterations of which the first 500 are warm-up to
automatically tune the sampler, and then a sample is saved every fif-
tieth samples, leading to a total of 10,000 posterior samples. We ex-
amine the convergence of the parameters by inspecting the trace plots
of all chains indicating that there is no lack of convergence for both
models and by checking the R̂ convergence statistic reported by Stan. If
the chains have not yet converged to a common distribution the R̂
statistic will be greater than one (Gelman et al., 2013; Stan
Development Team, 2018). However, if it is equal to 1, it does not
necessarily indicate convergence. As all convergence diagnostics, R̂ can
only detect failure to convergence but it cannot guarantee convergence.
In our example, all models show good mixing according to the effective
sample size, R̂ and the trace plots.
We also fit the models using the mean-field ADVI variant of Stan. All

models were sensitive to initial values so we initialize our parameters
using values drawn uniformly from the credible intervals we obtain
from NUTS. In our example, the full-rank variant was not feasible,
maybe due to the fact that observing only 14 days throughout the
outbreak does not give us enough information to estimate the possible
correlations.

For both the deterministic and the stochastic setting, posterior
medians and 95% credible intervals of the parameters are summarized
in Table 1. In both models, ADVI results in narrower credible intervals
for β and the basic reproduction number R0 compared to NUTS, sug-
gesting that ADVI may be underestimating the posterior uncertainty, as
has been observed in the past. In general, the posterior estimates for R0
are in line with the estimated R0 obtained by Wearing et al. (2005). As
seen from Fig. 3a and b, the deterministic model has a reasonable fit to
the data but underestimates the overall uncertainty thus resulting in
overly precise estimates which fail to capture the data appropriately.
Results from the stochastic model as summarized in Table 1, include

additionally the parameters characterizing the transmission dynamics
of the disease, so we also report posterior estimates for the parameter ϕ
of the OU process which reflects the speed of reversion and the in-
stantaneous variance σ2. Again, the resulting 95% credible intervals
from ADVI have shorter length compared to NUTS.
Summing up, the results of both the deterministic and the stochastic

setting bring us to the preliminary conclusion that if we are interested
in real-time inference both methods are feasible and efficient. In terms
of computational time ADVI is extremely efficient (Table 2). As Fig. 3
demonstrates, adding stochasticity improves the fit to the data.

3.3. Multistrain model

For this example we used the UK influenza data from the 2017/18
season (Public Health England). The 2017/2018 season was somewhat
unusual in that it had multiple influenza strains circulating. The main
strain was a B strain, but a significant number of virological samples
tested positive for the H3 strain as well. Fig. 4 shows the results of
model fitting to the ILI GP consultations data and the virological con-
firmation data. The results show that the influenza strain causing the
highest incidence is B, with also some ILI consultations due to infections
with the H3 and H1 later in the season (top panel). Flu negative ILI is
also an important fraction of the ILI consultations (yellow in the top
panel), with a clear increase just before the B outbreak (11–13th week).
For the virological confirmation the uncertainty increases after week
17, this is because later in the season less virological samples are taken,
resulting in much lower confidence in the actual level of positivity by
strain.

4. Discussion

In this paper, we summarize the basic concepts required to perform
HMC and VB using Stan, in the context of infectious disease modelling.
Stan is the first general purpose statistical software allowing for rela-
tively straightforward fitting of ODE-based models using HMC and VB.
In the presence of a system of ODEs, the respective likelihood function
may have ridged regions resulting in a failure of standard regularity

Table 1
HMC-NUTS using 5 chains, each with iter= 100,500; warmup=500; thin=50; post-warmup draws per chain=2000, total post-warmup draws= 10,000; ADVI
(mean-field) using iter= 10,000, tol_rel_obj= 0.01.

Single strain deterministic model Single strain stochastic model

HMC ADVI HMC ADVI

Mean 95% CI ESS Mean 95% CI Mean 95% CI ESS Mean 95% CI

β 1.89 1.78–2.00 9766 1.89 1.86–1.93 2.02 1.68–2.71 9824 2.02 1.85–2.21
γ 0.48 0.46–0.50 10,093 0.48 0.46–0.50 0.53 0.44–0.65 9965 0.55 0.45–0.66
s(0) 1.00 1.00–1.00 9632 1.00 1.00–1.00 1.00 1.00–1.00 9034 1.00 1.00–1.00
R0 3.93 3.67–4.22 9667 3.96 3.77–4.16 3.84 2.80–5.79 9976 3.73 2.98–4.60
ϕ 4.34 0.46–19.19 9196 0.86 0.58–1.26
σ2 2.63 0.36–12.32 8599 0.70 0.45-1.02
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conditions and therefore difficulties in classical likelihood or MCMC-
based inference. In these cases, we know that HMC may produce more
accurate results and is readily available to epidemiologists in the form
of Stan.
Stan offers flexibility in the sense that it allows for the fitting to data

of a very general class of models. A detailed listing of the complex
models that Stan facilitates inference for is beyond the scope of this
paper but can be found in the extensive documentation (Stan
Development Team, 2018). In addition, one only needs to change a few

lines of code in order to estimate different models either by changing
the distributional assumptions or adding more components, say. Thus,
as a generic and flexible software package along with the fact that it
may perform inference fast, Stan makes real-time inference feasible.
We are not concerned in this article with detailed comparisons be-

tween HMC and ADVI algorithms as performed in Stan, since there are
many factors that may affect their performance and certainly differ
among different models. The chosen parameterization, priors, starting
values and tuning parameters, are only a few of these factors. In gen-
eral, HMC tends to be more computationally intensive than ADVI but it
also offers high statistical efficiency. For epidemic models where the
posterior distributions may be characterized by highly correlated
parameter spaces, HMC seems to perform better than classical techni-
ques. Currently, HMC in Stan, does not allow for discrete parameters,
but if they are bounded they can, in principle, be marginalized out.
Finally, ADVI seems to be very promising for real-time inference but it

Fig. 3. Inference results using NUTS and ADVI for influenza outbreak in British boarding school. Fit of the deterministic and stochastic SIR model to the data (black
dots). Medians (lines) and 95% CI (shaded areas).

Table 2
Execution time (min).

single strain deterministic model Single strain stochastic model

HMC 13.63 47.68
ADVI 0.32 1.86
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is extremely sensitive to starting values and can underestimate posterior
uncertainty. However, in practice when repeated fitting is required, say
in the context of real-time inference, one may overcome this issue by a
laborious initial fitting, possibly using HMC, and subsequent usage of
the outcome in order to initialise the following fit.
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Appendix A. HMC-NUTS and ADVI

A.1 HMC algorithm as performed in Stan

• Goal: sample from some target density π(θ), where θ2 is the vector of parameters of interest.
• Auxiliary step:
– Expand the original probabilistic system by introducing auxiliary momentum parameters p
– Express the target density into a joint probability distribution:

=p p( , ) ( | ) ( )

which can be written in terms of the Hamiltonian as:

=p H p( , ) exp( ( , ))

thus,

=
=

+

H p p
p

T p V

( , ) log ( , )
log ( | ) log ( )
( , ) ( )

kinetic energy potential energy

and the partial derivatives of the Hamiltonian determine how θ and p change over time, t, according to Hamilton's equations:

Fig. 4. Model fit to the data. Top panel has the fit to
the ILI consultation data (blue). Furthermore, the
panel highlights the causes of ILI, i.e. by each influenza
strain or other non-flu causes. The bottom panel has
the fit to the virological confirmation data. (For in-
terpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)

2 Note that here θ refers to the parameters of the posterior but for simplicity of notation we drop the data in this description.
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= =

= = = = =

d H
p

T
p

H T V p V p V V
dt
dp
dt

log ( | ) log ( )

since the density of momentum parameters is independent of the target density i.e. log π(p|θ)= log π(p).
• 1st step:
Start from the current value of θ and draw independently a value for the momentum p from a zero-mean normal distribution,

p MultiNormal(0, )

where Σ is the covariance matrix which is also known as the mass matrix or metric (Betancourt and Stein, 2011). The choice of Σ can improve the
efficiency of the HMC algorithm since it can rescale the target distribution so the parameters have the same scale and rotate it appropriately so the
parameters are approximately independent.
• For L steps alternate half-step updates of the momentum p and full-step updates of θ:

p p V
2

+ p

p p V
2

Therefore, each designed path of the algorithm has length ϵL. The optimal choice of the step size ϵ and the number of steps L play a crucial role in
the performance of HMC since paths which are too short do not efficiently explore the posterior space, while paths which are too long may be
rejected too often resulting in computational inefficiency. Essentially, if ϵ is too large, the leapfrog integrators error which depends on ϵ will be
large, resulting in too many rejected proposals. If ϵ is too small then the leapfrog integrator will have to perform too many small steps, increasing
run-time. On the other hand, when choosing an L which is too small the proposed samples will be close to one another while choosing an L which
is too large, the algorithm will have to do a large number of additional computations at each iteration.
• Automatic tuning of the parameters
– Automatically select L using the no-U-turn sampler (NUTS) in each iteration (Hoffman and Gelman, 2014). NUTS uses a recursive algorithm
generating an independent unit-normal random momentum and then following a doubling procedure of leapfrog steps. Crudely, when the
designed path starts to turn around, as assessed by a specific metric, NUTS stops and takes a sample. Then it generates another random
momentum and initiates an additional simulation. The number of doublings is known as the tree depth and it is a control parameter (Stan
Development Team, 2018; Betancourt, 2016). So NUTS selects a sample either when the parameter space turns back on itself or when the
maximum number of doublings is reached.

– Automatically determine ϵ during the warmup phase in order to match a target acceptance rate (Stan Development Team, 2018; Betancourt
et al., 2014).

– Set Σ to be the identity matrix or restrict it to a diagonal matrix or estimate it using warmup samples (Stan Development Team, 2018).

A.2 ADVI algorithm as performed in Stan

• Goal: approximate some target density π(θ|y).
• Variational approximation:
– Consider a family of approximating densities of the latent variables q(θ ; ϕ), parameterized by a vector of parameters ϕ ∈ Φ.
– Find the member of that family that minimizes the Kullback-Leibler(KL) divergence:

q yarg min KL( ( ; ) ( | ))

q ysuch that supp( ( ; )) supp( ( | ))

where y denotes the data.
– Since,

=
= +
= +

q y q y
q y y

y q y

KL( ( ; ) ( | )) [log ( ; )] [log ( | )]
[log ( ; )] [log ( , )] [log ( )]

[ [log ( , )] [log ( ; )]] log ( )

q q

q q q

q q

( ) ( )

( ) ( ) ( )

( ) ( )

ELBO

so the KL divergence involves the target density and its analytic form is unknown. However, notice that log π(y) does not depend on the
variational density q(θ), so it is a constant. Thus, minimizing the KL divergence is equivalent to minimizing the Evidence Lower Bound (ELBO):

y qarg max [ [log ( , )] [log ( ; )]]q q( ) ( )

subject to the support constraint.

A. Chatzilena, et al. Epidemics 29 (2019) 100367

10



• 1st step: Transform the parameters of interest, T : θ→ ζ, so that their support is in the real coordinate space, i.e. define a one-to-one differentiable
function, T: supp( ( )) . Then the transformed density is denoted by:

=
=

y y T J
y J

( , ) ( , ( ))| det ( )|
( , )| det ( )|

T

T

1 1

1

where J ( )T 1 is the Jacobian of the inverse of T.Stan supports and automatically uses a library of transformations and their corresponding
Jacobians.Also, it can be shown that the ELBO in the real coordinate space is:

= +y T J q( ) [log ( , ( )) log| det ( )|] [log ( ; )]q T q( ; )
1

( ; )1

• 2nd step: Choose the variational approximation
– Mean-field or factorized Gaussian

=
=

q µ( ; ) ( ; , )
K

1

2

where = … …µ µ( , , , , , )K K1 1
2 2 .

– Full-rank Gaussian

=q µ( ; ) ( ; , )

where ϕ=(μ, Σ).
• 3rd step: Stochastic optimization in order to maximize the ELBO in the real coordinate space (Kucukelbir et al., 2017):
– The expectations with respect to the variational parameters ϕ constituting the ELBO, are unknown. Apply an elliptical standardization so the
expectations do not depend on ϕ.

– Compute the gradients inside the expectation with automatic differentiation and use Monte Carlo integration to compute the expectations.
– Given the gradients of the ELBO employ a stochastic gradient ascent algorithm.

Appendix B. Stan model code and implementation

A Stan model consists of a number of blocks, where variables are declared by their type according to their use. All variables should have a
declared data type and size. This should be done at the start of each block. Also, local variables can be declared at the beginning of each block. The
primitive types represent real and integer values while vectors, row vectors, and matrices as well as arrays are also supported. Vector and matrix
types necessarily contain only real values, so collections of integers are expressed using arrays. The declared variables can be constrained given lower
and upper bounds which should be imposed carefully.
A complete Stan model is composed of six code blocks named data, transformed data, parameters, transformed parameters and

generated quantities. There is also a functions-definition block where user-defined functions are constructed and if used, this block should
appear before all of the other program blocks. In general, the declarations and statements which constitute the Stan program, are executed in the
order in which they are written so everything should be stated consistently. The data block consists of the data required to fit the model while the
transformed data block may include temporary transformations of the data, independent of the parameters, which need to be saved. The model's
parameters which the user want to infer are defined in the parameters and in the transformed parameters blocks. Intermediate variables can
be declared in terms of data and parameters. These values will also be returned by the inference based on the draws from the posterior parameters.
The model block is the core of Stan model statement and is where the model is defined in terms of priors and likelihood. Sampling statements can be
used but log probability variables can also be accessed directly, or user-defined probability functions can be employed. Finally, the generated
quantities block may be used to define quantities that depend on parameters and data or even random number generation and do not affect
inference.
In what follows we illustrate a complete Stan model. However, the reader is referred to https://mc-stan.org/ for the latest official Stan doc-

umentation for detailed instructions. Code for all the examples employed in this paper is made freely available in https://github.com/anastasiachtz/
COMMAND_stan.git. Here, we demonstrate Stan model code by fitting the single strain deterministic model to data for an influenza outbreak in a
boarding school in the north of England. The model as described by Eqs. (3) and (4) can be written in Stan in the following form, which the user
should save as a stan file:
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In the functions block, the system of ODEs is coded directly in Stan as a function with a strictly specified signature. It takes as input time,
system state, parameters and real and integer data, in exactly this order, and returns the derivatives with respect to time. Note that, the initial state
can also be estimated along with the parameters describing the system, which is also done here. In order to solve the system Stan has two built-in
ODE solvers, integrate_ode_rk45 and integrate_ode_bdf. Both take similar variables and functions, but they take solver specific arguments
as well. The first argument must be the function that describes the ODE system but the other arguments, except for the initial state and the
parameters, are restricted to data only expressions already declared. The solutions to the ODEs describing the SIR, given initial conditions, are
defined in the block of transformed parameters. These intermediate values can be used in the model section and the posterior values will be
included in the stan output.
Once the .stan file is written, the user should load the necessary libraries, provide data and fit the model. To do so, we use the R interface to Stan.

For this implementation we use data from the R package outbreaks, maintained as part of the R Epidemics Consortium (RECON; http://www.
repidemicsconsortium.org).
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Fit the model using the default algorithm, NUTS:

By default, Stan generates its own initial values randomly between −2 and 2 for each parameter. However, especially in complex models as those
including non-linear systems of ODEs, it is better to specify the initial values for at least a subset of the parameters. Except for initial values, the
length of adaptation during the warm-up phase is also important since at this step Stan tries to find the appropriate step size of the leapfrog integrator
which will result in efficient sampling and at the same time avoid failures of the integrator, identified as divergences. The step size is determined
trying to achieve a target acceptance rate which is specified by a adapt_delta argument in the stan() function which is also a tuning parameter
for the algorithm. In this example, the default value of 0.8 is used for adapt_delta. In general, Stan indicates if there are divergences so the user
can increase the value of adapt_delta getting closer to its maximum value of 1, decreasing in this way the step size if needed.
The stan() function returns a stanfit object which contains the sample drawn from the posterior for the monitored parameters. Printing the

stanfit object will automatically evaluate the estimated mean, standard error of the mean, standard deviation, percentiles, effective sample size and R̂
statistic for each parameter. The stanfit object can also interface with some R commands like summary so we can inspect specific parameters of
interest.
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mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
lp__ 6499.86 1.2e−02 1.22590 6496.64 6499.30 66,500.17 6500.76 6501.3 10,001 1
theta[1] 1.89 5.6e−04 0.05545 1.78 1.85 1.89 1.92 2.0 9808 1
theta[2] 0.48 1.1e−04 0.01114 0.46 0.47 0.48 0.48 0.5 9505 1
y_init[1] 1.00 1.3e−06 0.00013 1.00 1.00 1.00 1.00 1.0 9877 1
R_0 3.93 1.4e−03 0.14062 3.67 3.84 3.93 4.02 4.2 9926 1

Additional diagnostics such as checking for divergent transitions and inspecting the maximum trajectory length are also available. As mentioned
earlier, failures of the leapfrog integrator are identified as divergences. In cases where the parameter space is not well behaved, NUTS may move
according to the dynamically selected step size until it hits the maximum number of leapfrog doublings, known as tree depth. However, this means
that the algorithm will select draws according to this threshold, instead of actually tracing the posterior, so the user should check whether there are
iterations where the treedepth exceeds the maximum. Note that, problematic specification of the model may always be the source of divergences and
reparameterizations should be considered.

Using the bayesplot package the user can obtain trace plots of the fit, to assess the convergence of chains, univariate and bivariate marginal
posterior distributions as well as other diagnostics (see Gabry et al., 2019). The user should always examine model diagnostics in more detail
especially in more complex models, here we illustrate just some preliminary steps.

Given the already specified stan model, we can fit the model using ADVI simply by calling the function vb(). In this example we use the default
setting which performs mean-field ADVI, using the credible intervals we obtained from NUTS as initial values:

Stan reports the average and median changes of the ELBO during the stochastic optimization and if either do not fall below a certain threshold of
tol_rel_obj then the algorithm has converged. Currently, we cannot actually check the performance of ADVI, however there is ongoing research
on diagnostics for variational inference algorithms (Yao et al., 2018).
The vb() function returns a stanfit object which contains the approximate draws from the posterior for the monitored parameters and printing it

automatically evaluates the approximated mean, standard deviation and percentiles.
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mean sd 2.5% 25% 50% 75% 97.5%
theta[1] 1.89 0.01647 1.86 1.88 1.89 1.91 1.9
theta[2] 0.48 0.01161 0.46 0.47 0.48 0.49 0.5
y_init[1] 1.00 0.00004 1.00 1.00 1.00 1.00 1.0
R_0 3.96 0.10268 3.77 3.89 3.96 4.03 4.2

A basic advantage of Stan is flexibility in modeling, as we only need to change a few lines of code in order to implement different models, either
by changing the distributional assumptions or adding more components. For example, in the setting of the single strain deterministic SIR, we can also
use a Binomial likelihood simply by changing one line of code. For example we consider a Binomial model, using the same prior distributions,
formulated as follows:

Y N pBin( , )t t (B.1)

=p i s i s( )dt
t

s s s0 (B.2)

where ss is the fraction of susceptible students and is is the fraction of infected students.
In order to write the model in Stan we need to change only the model block:

We would save the new .stan file and perform inference using NUTS and ADVI as before.
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