
What Prize is Right?
How to Learn the Optimal Structure for

Crowdsourcing Contests

Nhat Van-Quoc Truong1, Sebastian Stein1, Long Tran-Thanh1, and
Nicholas R. Jennings2

1 Electronics and Computer Science, University of Southampton, UK
{n.truong,s.stein,l.tran-thanh}@soton.ac.uk

2 Department of Computing, Department of Electrical and Electronic Engineering,
Imperial College, London, UK
n.jennings@imperial.ac.uk

Abstract. In crowdsourcing, one effective method for encouraging par-
ticipants to perform tasks is to run contests where participants compete
against each other for rewards. However, there are numerous ways
to implement such contests in specific projects. They could vary in
their structure (e.g., performance evaluation and the number of prizes)
and parameters (e.g., the maximum number of participants and the
amount of prize money). Additionally, with a given budget and a time
limit, choosing incentives (i.e., contest structures with specific parameter
values) that maximise the overall utility is not trivial, as their respective
effectiveness in a specific project is usually unknown a priori. Thus, in
this paper, we propose a novel algorithm, BOIS (Bayesian-optimisation-
based incentive selection), to learn the optimal structure and tune its
parameters effectively. In detail, the learning and tuning problems are
solved simultaneously by using online learning in combination with
Bayesian optimisation. The results of our extensive simulations show
that the performance of our algorithm is up to 85% of the optimal and
up to 63% better than state-of-the-art benchmarks.

Keywords: Incentive · Crowdsourcing · Bayesian Optimisation.

1 Introduction

Crowdsourcing has emerged as an efficient approach for obtaining solutions to a
wide variety of problems by engaging a large number of Internet users from many
places in the world (Ghezzi et al., 2018; Doan et al., 2011). However, the success
of crowdsourcing projects relies critically on a crowd to contribute (Simula, 2013;
Doan et al., 2011). Given this, contests3 have been shown to be an effective
3 We use the term “contest” in a broad sense to refer to any situation in which
participants exert effort to submit tasks for prizes, which are provided based on
relative performance. The prizes can be tangible rewards, points, or positions on a
leaderboard. Thus, all-pay auctions, lotteries, and leaderboards are considered as
contests for the purpose of this paper.



2 N. Truong et al.

approach in these projects, as they are effective and cheap. In particular, by
rewarding participants in a contest, task requesters do not necessarily have to pay
for every task completed as in other types of financial rewarding schemes, such
as paying for performance (Mason and Watts, 2010) or using bonuses (Yin and
Chen, 2015). Indeed, they have to pay only for a certain number of participants,
e.g., the top two who have completed the most tasks or the top participant who
has completed the tasks with the highest quality. 99designs (www.99designs.com),
TopCoder (www.topcoder.com), and Taskcn (www.taskcn.com) are some well-
known crowdsourcing platforms that use contests to attract participants.

Much work has taken a game-theoretic approach to investigate the optimal (or
efficient) design of contests in general and crowdsourcing contests in particular.
It tries to answer the questions of how to distribute the prizes (number of
prizes and their values) in contests (Luo et al., 2015; Cavallo and Jain, 2012;
Moldovanu and Sela, 2001). Yet, applying this body of research in building
efficient contests for real-world crowdsourcing projects is still challenging. This
is because these studies assume rational participants, whereas real participants
in crowdsourcing might be partly rational or irrational, as they might lack
information, knowledge, or time. Also, these studies do not consider other
factors related to the participants’ intrinsic motivation that might affect their
behaviour such as the project purpose (e.g., collecting data for scientific studies,
for government agencies or for companies) or the task nature (e.g., interesting or
boring) (Rogstadius et al., 2011; Frey and Jegen, 2001).

Furthermore, currently on many crowdsourcing platforms such as Amazon
Mechanical Turk (www.mturk.com) and Figure Eight (www.figure-eight.com),
the requesters can create tasks and get the submissions in an autonomous manner
using programmable Application Programming Interfaces (APIs). This makes it
possible to build autonomous agents to monitor and adaptively switch contest
structures (e.g., performance evaluation and the number of prizes) and parameters
(e.g., the maximum number of participants and the amount of prize money) when
appropriate. We refer to a contest structure with specific values of the parameters
as an incentive4. Indeed, it is inconvenient or almost impossible in many cases to
switch between incentives manually to identify the best one.

Therefore, another direction for dealing with the incentive problem is to
design incentives that are likely to be effective based on previous studies and
then empirically select the most effective one. In detail, the above-mentioned
studies can be used to design several contest structures with specific ranges of
their parameters which are referred to as candidate incentives. Then, based on
the proposed candidates, an adaptive approach could be used to identify the
most effective candidate efficiently. Hence, finding an appropriate way for an
autonomous agent (i.e., a computer programme) to select an effective incentive

4 Although the incentives focused on in this paper relate to contests, the problem
stated and the algorithms discussed can be used with any other types of incentive in
the literature, such as pay for performance or bonuses. Thus, to keep the problem
general, we use the term “incentives” instead of “contest structures”.



How to learn the Optimal Structure for Crowdsourcing Contests 3

in a crowdsourcing project is a key problem. We refer to this as the incentive
selection problem (ISP) (Truong et al., 2018).

To identify the most effective incentive to utilise (i.e., exploit), the agent has
to try each incentive several times to evaluate its respective effectiveness (i.e.,
explore). Given this need to balance exploitation and exploration, budgeted multi-
armed bandits (MABs) are a promising approach for the ISP. Specifically, they
model the problem as a machine with N arms (corresponding to N incentives),
pulling an arm (offering the corresponding incentive to a group of participants)
incurs a fixed cost (attached to the arm) and delivers a random utility (e.g., the
number of tasks completed) drawn from an unknown distribution. The objective
in an MAB problem is to find a policy that maximises the total utility within a
given budget (e.g., £500) before a deadline (e.g., in the next two weeks).

A number of studies about budgeted MABs have been conducted, such as
Badanidiyuru et al. (2018), Ho et al. (2016), and Tran-Thanh et al. (2010). But
these studies cannot be applied directly to the ISP as they cannot deal with
the tuning problem (i.e., choosing appropriate parameter values for a contest
structure) effectively. This is because they do not take advantage of the possible
correlations between the arms (i.e., the incentives in a contest structure). Many-
armed bandits work well with many or even an infinite number of arms (Li and
Xia, 2017; Trovo et al., 2016; Bubeck et al., 2011). Yet, none of them can be used
to solve the ISP. Actually, they do not consider all important characteristics of the
ISP, such as the budget constraints, multidimensional structure of the incentives
(i.e., a contest structure has a certain number of parameters), correlations between
the arms, and the group-based nature of the arm. Bayesian optimisation (BO) is
shown to be an efficient alternative (Snoek et al., 2012). Indeed, BO is designed
to find the global optima of functions in as few steps (i.e., function evaluations)
as possible. This fits the ISP as applying an incentive incurs a cost. Also, as BO
incorporates prior beliefs, if we have some prior knowledge about user performance
in the current crowsourcing project, BO can make use of this to find the global
optimum more quickly.

Therefore, in this paper we combine the two (online learning with MABs and
tuning with BO) to deal with the ISP. By so doing, we decouple a complicated
problem (with both learning the best structure and tuning its parameters) into
two simple problems and deal with these in a learning process). The ultimate
purpose of this work is to build an autonomous agent that can automatically
and effectively select the right incentives, so that we can easily deploy projects
on crowdsourcing platforms by using the provided APIs. To this end, our main
contributions are:

(1) We formalise the ISP and then introduce BOIS, a novel algorithm to solve
the ISP effectively by combining an MAB approach to learn the contest
structures and BO to tune the parameters of the structures.

(2) We empirically demonstrate that BOIS is generally more effective compared
to the state-of-the-art approaches in an extensive series of simulations.



4 N. Truong et al.

2 The Incentive Selection Problem

Suppose a requester wants to run a crowdsourcing project. The objective is
typically to maximise the requester’s overall utility with a given financial budget
B and time budget T . We can include task quantity, task quality, task completion
time, or some subset of them in the utility function. For example, Yin and Chen
(2015) consider the quantity and quality of the tasks. To achieve this objective,
the requester spends the available budget on providing incentives to encourage
participants (referred to as users) to perform tasks. For a better presentation,
we group the incentives with the same structure in a cluster, which is referred to
as incentive cluster (or cluster for short). We assume that there are correlations
between different incentives in a cluster. Figure 1 shows possible correlations
between the incentives in a cluster. Specifically, Figure 1a shows the effectiveness
of the incentives, measured by utility per cost unit5, in a cluster when there
is only one parameter (group size). This figure depicts that the utility initially
increases with increasing group size. However, when it is larger than 20, the
effectiveness starts decreasing. Figure 1b shows another example in a cluster with
two parameters, the group size and the amount of prize money for the best user.
We are interested in finding an effective means of selecting the incentives (i.e.,
exploring their effectiveness and exploiting the most effective one) in order to
maximise the requester’s overall utility. This is referred to as the ISP.

Formally, let C denote the number of clusters that are being considered
in a crowdsourcing project. Cluster i (or Ci for short) has Ki parameters. An
incentive a in Ci corresponds to a structure vector va = (v(1)

a , . . . , v
(Ki)
a ), where

v
(k)
a is the value corresponding to the kth parameter and v(k)

a ∈ [v(k)
min,i, v

(k)
max,i]

(v(k)
min,i, v

(k)
max,i ∈ R). Let ga be the group size of a and ca denote the cost of

applying incentive a once. The expected utility of a is µa which is unknown a
priori. Let N = {n(t)

a | t = 1, . . . , T ; a ∈ Ci; i = 1, . . . , C} denote a policy, where
n

(t)
a is the number of times incentive a is applied in period t, i.e., incentive a

is offered to n(t)
a different groups. Let u(t)

a be the total utility of applying this
incentive n(t)

a times in period t. The objective is to find a policy that maximises
the overall utility:

max
T∑
t=1

C∑
i=1

∑
a∈Ci

u(t)
a subject to

T∑
t=1

C∑
i=1

∑
a∈Ci

n(t)
a ca ≤ B. (1)

3 The BOIS Algorithm

In this section, we introduce BOIS (which stands for BO-based Incentive Selection),
a novel algorithm for the ISP. However, we first describe how the algorithm and
the benchmarks measure the effectiveness of the incentives (Subsection 3.1). We
then give an overview of the algorithm (Subsection 3.2). Finally, we detail how
5 The measurement of an incentive’s effectiveness will be discussed in Subsection 3.1.



How to learn the Optimal Structure for Crowdsourcing Contests 5

5 10 15 20 25 30
Group size

30

40

50

U
ti

lit
y

p
er

£

5 10 15 20 25 30
Group size

2

4

6

8

10

P
ri

ze
fo

r
th

e
b

es
t

us
er

(£
)

20

40

60

(a) Cluster 1 (b) Cluster 2

Fig. 1. Illustrative examples of correlations between the incentives in a cluster when it
has one (a) and two (b) parameters.

BOIS splits the learning and tuning process into steps and how it acts in these
steps (Subsections 3.3–3.5).

3.1 Measuring the Effectiveness of the Incentives

To measure the effectiveness of the incentives, we use the utility-cost ratio6, as
it reflects the average utility per cost unit. The effectiveness of incentive a is
defined as δa = µa/ca. However, as the real effectiveness of the incentives are
unknown in advance, we have to estimate them. Right after period t, the estimate
of incentive a’s effectiveness is:

d(t)
a = µ̂(t)

a /ca, (2)

where µ̂(t)
a =

(
1/m(t)

a

)∑t
τ=1 u

(τ)
a is the current estimate of incentive a’s expected

utility
(
m

(t)
a is the number of times incentive a has been applied until the end of

period t
)
. To keep the presentation simple, we use the best incentive to denote

the incentive with the highest estimate, as opposed to the real best incentive.

3.2 Algorithm Overview

The idea of BOIS is using an MAB approach to deal with the learning problem
(i.e., identifying the best cluster) and using BO7 with Gaussian processes to
tackle the tuning problem (i.e., finding the optimal values of the parameters of
a cluster). In more detail, in each period (except the first one), it selects the
incentive whose value of the acquisition function corresponding to this incentive
is the largest compared to those of the other incentives in all clusters. Note
that in BO, acquisition functions are to propose the next sampling incentive in
the search space. We have tried several acquisition functions such as expected
improvement, maximum probability of improvement, and upper confidence bound
6 This ratio is called “density” in Tran-Thanh et al. (2010).
7 See Snoek et al. (2012) for more information about the method.



6 N. Truong et al.

(UCB). However, we chose the UCB (which is the upper confidence bound of the
estimate of the incentive’s effectiveness) as it is the most effective.

The general idea of tuning parameter values of a contest structure (i.e., finding
the real best incentive in a cluster) using BO with Gaussian processes is the
following. In each period, based on the incentives sampled in the previous periods,
BOIS estimates the mean utilities of the incentives in the cluster using Gaussian
process regression (GPR). Then, it calculates the UCBs of the incentives. After
that, the incentive with the highest UCB will be the candidate to be applied next
in the cluster. BOIS will then choose the candidate incentive in the cluster which
has the highest UCB to be applied in that period. In order for the algorithm to
use BO, it must have initial estimates of the incentives in each cluster. Therefore,
in the first period (i.e., period 1), it samples several incentives, in order to obtain
good estimates of the incentives. This step is referred to as the sampling step.
Then, in each of the next periods (except the last one), it applies the most
promising incentive (a), i.e., the incentive with the largest UCB. After that, it
updates the UCBs of the incentives in the same cluster (i.e., Ci if a ∈ Ci). We
refer to this step as the stepped exploitation step. Finally, in the last period it
applies the best incentive with the remaining budget. This step is called the pure
exploitation step, as it simply exploits the best incentive after exploring in the
previous periods.

Regarding the UCBs, to select an incentive in a period t+ 1, at the end of
the previous period (t), BOIS uses GPR to estimate the mean utilities of all
incentives in each cluster. The results of the estimation are µ̂(t)

a and σ̂(t)
a ∀a ∈

Ci; i = 1, . . . , C. Then, it calculates the potential effectiveness of all incentives:

d∗(t)a = 1
ca

µ̂(t)
a + z(t) σ̂

(t)
a√

m
(t)
a ga

 . (3)

In Equation 3, z(t) = Z
(
1 − t−1

T−2
)
, where Z is the critical value (e.g., 1.96)

corresponding to the initial confidence level (e.g., 95%) of the estimates. In
more detail, as in the first periods we are not confident about the estimates
of the incentives, the confidence intervals should be large to make sure that
the algorithm does not leave out the real best incentive. That means at first,
it is better to focus on exploration. Then in the next periods, the intervals
should become smaller gradually. By so doing, it not only solves the learning and
tuning problems simultaneously, but also it performs a smooth transition from
exploration to exploitation. Literally, the first period (t = 1), z(t) = Z means that
it focuses more on exploration. Then, its value gradually decreases as time goes
by. And finally, when t = T , z(t) = 0 means that it focuses only on exploitation.
Additionally, the denominator,

√
m

(t)
a ga, signifies that the exploration level is

inversely propotional to the number of sampled users.
In the next subsections, details of the steps will be discussed. The explanations

will be linked to the corresponding parts of the pseudocode of BOIS shown in
Algorithm 1.



How to learn the Optimal Structure for Crowdsourcing Contests 7

(a) One parameter

Parameter 1
v(1)min,i v(1)max,i

(b) Two parameters

Parameter 1

Pa
ra

m
et

er
2

v(1)min,i v(1)max,i

v(2)min,i

v(2)max,i

a candidate incentive

Fig. 2. An illustration of candidate incentives in a cluster in the Sampling step when
the cluster has one (a) and two (b) parameters

3.3 The Sampling Step

As mentioned above, the purpose of this step (Lines 2–10) is to obtain initial
estimates of the incentives in each cluster, which are then used for the regression
in the next step. BOIS uses the miniMax distance design (Johnson et al., 1990)
to sample the incentives in each cluster to ensure that all other incentives in
the cluster are not too far from the sampled ones. An illustration of this space-
filling design is shown in Figure 2. In more detail, for the kth parameter of
cluster i, BOIS chooses two values, one in the first quarter and the other in the
third quarter of its range, i.e., v(k)

min,i + 0.25∆(k)
i and v(k)

min,i + 0.75∆(k)
i , where

∆
(k)
i = v

(k)
max,i − v

(k)
min,i (Figure 2a). From these values, we have a set of 2Ki

candidate incentives to be sampled. Figure 2b shows four candidate incentives in
a cluster which has two parameters.

One issue is that the financial budget is limited and we also want to spend it
on further exploration and exploitation. So, BOIS only uses ε1B (e.g., 0.2B) for
sampling. This amount might not be enough to sample all the above-mentioned
2Ki candidate incentives (∀i = 1, . . . , C). Therefore, BOIS simply iterates over
the clusters (Line 4) and at each cluster it chooses a random (without repetition)
incentive from this set. This is conducted by the NextSample() function (Line
5). Once an incentive is chosen, it will be applied several times so that it has
about U1 (e.g., 20) sampled users, which is calculated by rounding the division
U1/ga to the nearest integer (Lines 8–9). By so doing, it guarantees to have
enough sampled users if the group size of the incentive is small (e.g., 2). Note
that bb1/cac in Line 8 is to guarantee the budget being used in this step does
not exceed ε1B. BOIS stops sampling when the budget for sampling is exceeded
(Lines 6–7).
3.4 The Stepped Exploitation Step

At first, BOIS sets the budget for stepped exploitation, a specific portion of the
residual budget which is identified by ε2, e.g., 0.5 (Line 11). Then, in each period
(t) before the deadline, it will choose the incentive (a) with the highest potential
effectiveness (Line 13). The incentives are chosen based on their UCBs which



8 N. Truong et al.

Algorithm 1 The BOIS Algorithm
Input: B, T,C, and Ki ∀i = 1, . . . , C
Predefined parameters: ε1, ε2,U1, Dmin, and Z
Output: u,N = {n(t)

a | t = 1, . . . , T ; a ∈ Ci; i = 1, . . . , C}
Note: ApplyIncentive(a, n) is to apply incentive a n times and return the total utility.

01: b← B; . overall residual budget
02: b1 ← ε1B; . residual budget for sampling
03: while true do
04: for i = 1→ C do
05: a← NextSample(Ci);
06: if b1 < ca then . sampling budget is exceeded
07: Stop the for and while loops;
08: n

(1)
a ← max

{
1,min{[U1/ga], bb1/cac}

}
;

09: u
(1)
a ← ApplyIncentive

(
a, n

(1)
a

)
; b1 ← b1 − n(1)

a ca; b← b− n(1)
a ca;

10: UpdateEstimates(Ci, 1, Z) ∀i = 1, . . . , C;
11: b2 ← ε2b; . residual budget for exploration
12: for t = 2→ T − 1 do
13: a← argmaxa′∈Ci; i=1,...,C{d

∗(t−1)
a′ };

14: if d∗(t−1)
a < Dmin then . a is too bad

15: i← a random cluster; a← a random incentive in Ci;
16: if b2 < ca then . budget for exploration is exceeded
17: Stop the for loop;
18: n

(t)
a ← max

{
1,min{[U1/ga], bb2/cac}

}
;

19: u
(t)
a ← ApplyIncentive

(
a, n

(t)
a

)
; b2 ← b2 − n(t)

a ca; b← b− n(t)
a ca;

20: UpdateEstimates(Ci, t, Z,);

21: a← argmaxa′∈Ci; i=1,...,C{d
∗(T−1)
a′ };

22: n(T )
a ← max

{
1, bb/cac

}
;

23: u(T )
a ← ApplyIncentive

(
a, n

(T )
a

)
;

24: u←
∑T

t=1

∑C

i=1

∑
a∈Ci

u
(t)
a ; . overall utility

25: return u,N ;

Sa
m
pl
in
g

St
ep

pe
d
E
xp

lo
ita

tio
n

P
ur
e
E
xp

l.

contain both the estimates of the incentives’ effectiveness so far and the certainty
of the estimates. Thus, this step can be considered as both exploiting (choosing
the incentives whose estimates are high) and exploring (choosing the incentives
whose potential to be the real best one are high).

In some cases, the potential effectiveness of this incentive (d∗(t−1)
a ) can be

very low since the sampled incentives so far in this cluster (Ci) had very low
utilities. To prevent it from falling into the trap of exploring ineffective incentives,
if d∗(t−1)

a is less than some lower bound (Dmin), BOIS will randomly choose
another incentive (Lines 14–15). It is not difficult to determine a value for Dmin.
For example, if the utility is measured by the number of tasks completed and we
expect an acceptable incentive to have about 20 completed tasks per £, then we
can set Dmin to this value or even 10 if we are not quite sure about this number.



How to learn the Optimal Structure for Crowdsourcing Contests 9

Algorithm 2 The UpdateEstimates() Function
Input: Ci, t and Z
Output: Ci with updated d∗(t)

a ∀a ∈ Ci

01: Use Gaussian process regression to estimate µ̂(t)
a and σ̂(t)

a ∀a ∈ Ci;
02: Calculate d∗(t)

a based on Equation 3 ∀a ∈ Ci;

Yet, it should be larger than the possible minimum number of tasks, e.g., 0. As
in the sampling step, after having an incentive, BOIS will apply the incentive
several times so that it obtains about U1 sampled users (Lines 18–19). This step
stops when the budget for exploration is exceeded (Lines 16–17).

3.5 The Pure Exploitation Step

This step (Lines 21–23) simply applies the best incentive with the residual budget.
Indeed, from Equation 3 we can see that in this period the factor z(T ) is zero.
That means it does not explore anymore but totally exploits the incentive with
the highest estimate of the effectiveness.

4 Experimental Evaluation

To systematically evaluate the performance of BOIS, we run simulations in a
wide range of settings. It would be infeasible to undertake this evaluation in
a real crowdsourcing project as we have to deploy the project multiple times
with different financial budgets, time budgets, and numbers of clusters, as well
as different values of the parameters of each cluster. Even then, we could not
guarantee we have explored the main cases in a comprehensive fashion. In the
following, we present the benchmarks (Subsection 4.1), the experimental settings
(Subsection 4.2), and then discuss the corresponding results (Subsection 4.3).

4.1 Benchmarks

As the state-of-the-art algorithms are not specifically designed to deal with
choosing the best cluster together with tuning its parameter values, we make a
number of modifications for them to perform well with the ISP.

(1) ε-first: This algorithm spends εB (where ε is specified in advance, e.g., 0.1)
in the first period to explore by sequentially applying a random incentive in
each cluster until this budget is exceeded (Tran-Thanh et al., 2010). With a
chosen incentive a, it applies this incentive max{1, [U1/ca]} times to obtain
about U1 (e.g., 20) sampled users. In the second period, it uses GPR to
estimate the best incentive. Then it spends the subsequent period purely
exploiting the best incentive explored in the first period with the remaining
budget, i.e., (1− ε)B.



10 N. Truong et al.

(2) Decaying ε-greedy (or ε-greedy for short): It spreads the budget B over T
periods. In each period, with the given budget, it applies the best incentive
with probability (1 − ε) and a random incentive in a random cluster with
probability ε, where ε = (T − t)/(T − 1). It totally explores when t = 1
(i.e., ε = 1). When t increases, ε gradually decreases. And when t = T , it
completely exploits the best incentive (i.e., ε = 0). At the end of period t
(1 < t < T ), it uses GPR to estimate the best incentive for period t+ 1.

(3) Random: It spreads the budget B over T periods. Then in each period, it
applies a random incentive in a random cluster with the given budget.

(4) Optimal Solution: It simply applies the real best incentive all the time. To
have this optimality, we have to know the values µa (∀a ∈ Ci;∀i = 1, . . . , C)
in advance, which is typically impossible in practice. Thus, this approach
represents an upper bound of what any algorithm could achieve.

4.2 Simulation Settings

To evaluate the performance of the algorithms, we run simulations in three
different settings where the independent variables are time budget, financial
budget, and number of clusters. In the simulations of each setting, the related
quantities, i.e., utility, B, T , C, group size, and the amount of prize money for the
best user (except the corresponding independent variable) are drawn uniformly
from specific ranges. The ranges are chosen to represent realistic settings in real
crowdsourcing projects. Specifically, C is generated randomly from 1 to 10. The
group sizes (ga) are from 1 to 50. The amount of prize money for the best user
is between £1 and £25. T is between 2 and 30. And B is from 10 to 200 times
the round cost. Here, round cost is the cost of applying all the clusters, where
in each cluster the incentive which the highest cost is applied once. This is to
guarantee B is not too small compared to the generated values of C and ga, so
that we can carry out a meaningful performance comparison.

For each value of the independent variables, we run 2,000 simulations to
achieve statistically significant results at the 99% confidence level. Error bars
of the line graphs in Figure 3 represent the confidence intervals. We run the
algorithms with different values of the predefined parameters and then choose
appropriate values for the parameters. For instance, with ε of ε-first, we first run
this algorithm with different values (such as 0.05, 0.1, 0.2, 0.3, and 0.4). Then
we choose one value that helps ε-first perform well in different settings. A similar
process is used for the other predefined parameters such as ε1 and ε2 of BOIS.
As changing these values slightly does not result in a significant difference (i.e.,
the trends of the algorithms’ performance are broadly the same), in Subsection
4.3 we only present the results on the simulations with the following values of
the algorithms’ predefined parameters. With BOIS, ε1 = 0.1, ε2 = 0.5, U1 = 20,
and Z = 1.96. With ε-first, ε = 0.1 and U1 = 20. In the simulations, we assume
that the performance of a group (i.e., the total utility of all users in the group)
is linearly proportional to the group size. This means the more users there are
in a group, the better the performance of the whole group. This assumption is
based on an empirical study conducted by Araujo (2013).



How to learn the Optimal Structure for Crowdsourcing Contests 11

0 20 40 60 80 100
Time budget (in periods)

50

60

70

80

90

Opt.
BOIS

ε-first
ε-greedy

Rand.

0 20 40 60 80 100
Financial budget (in £1000)

50

60

70

80

90

0 20 40 60 80 100
Number of clusters

50

60

70

80

90

(a) (b) (c)

Eff
ec

tiv
en

es
s

(i.
e.

,u
til

ity
pe

r
£

)

Fig. 3. Results of the simulations

4.3 Results

In general, BOIS performs best in most cases (Figure 3). With a looser deadline,
the algorithm performs better, especially when T is greater than 15 (Figure
3a). This is mainly because of the miniMax space-filling design and the BO.
Specifically, if T = 2 (i.e., no exploration) the performance of BOIS is good
enough (which is a utility of about 70 per £). And if T = 15, its performance
increases clearly (up to about 79 per £). Note that the time budget is used
to learn all the clusters. This confirms that BO can quickly approach a global
optimum (i.e., the real best incentive). ε-greedy also performs better with a larger
T , since it has more time to explore. Yet, its performance is far below that of
BOIS. Whereas, different values of T does not affect the performance of ε-first
as it always uses two periods. Nonetheless, with a larger financial budget, ε-first
performs better, as there is more budget for exploration (Figure 3b). As the
way it explores is inflexible (i.e., always εB), when B is small, the budget for
exploration is not enough, so that the GPR conducted in the second period does
not have enough samples to identify one of the best incentives.

Figure 3b suggests that B should be large enough (e.g., at least £5000 as
in the simulations) for BOIS to achieve a good performance. A larger B helps
improve its performance slightly. Actually, it needs enough budget to sample all
2Ki candidate incentives ∀i = 1, . . . , C. And with a larger B, the amount of the
added budget will be used for exploiting. In Figure 3c, the performance of BOIS
drops significantly when C becomes larger. This is easy to understand, as with a
fixed B and a larger C, ε1B is not enough to sample all the candidate incentives
in all clusters. Similarly, ε-first’s performance drops more quickly than that of
BOIS. The reason is that it does not make use of the time budget to conduct
further exploration. Regarding the number of parameters, as BOIS does not scale
well to settings with large values of Ki, we only ran experiments with Ki=2, 3,
and 4. These results have a similar trend as in Figure 3c, i.e., that BOIS performs
well when Ki = 2 (a utility of about 82 per £). Then, its performance drops
down to about 69 when Ki = 3 and 62 when Ki = 4. Also, even when Ki = 4,
the time to run the algorithm (the whole episode, i.e., t = 1, . . . , T ) is less than
one minute, which is acceptable in practice.

The results suggest several guidlines for using BOIS effectively in practice.
First, both T and B should be large enough and a larger T has more effect



12 N. Truong et al.

on the algorithm. Second, C and Ki (∀i = 1, . . . , C) should be small. If there
are many (e.g., 15) candidate clusters to choose from, it is better to continue
using related studies from psychology, sociology, or computer science to filter out
clusters which are not actually promising. A similar process should be done with
the parameters.

5 Conclusions and Future Work

We have discussed the incentive selection problem (ISP) and introduced an
algorithm (BOIS) to solve the ISP effectively. Our algorithm performs efficiently in
a wide range of different cases without the need to tune its predefined parameters.
It is shown to outperform the state-of-the-art approaches in simulations. Even
though BOIS is specifically designed for incentives in the form of contests, it
can also be used with other types of incentives where the group size is 1 (i.e.,
there are no contests, such as pay for performance or using bonuses). Although
BOIS is an important initial step towards solving the ISP, there are some areas
of further work. First, we assume that time steps are homogeneous and a new
incentive can be started only when all previous ones have completed. Addressing
this limitation would shorten waiting times and thereby the total time used by
the algorithm. Additionally, this could improve the overall performance as the
algorithm has more time to conduct exploring, especially when the time budget
is limited. Second, we also asume that the cost of applying an incentive is the
same at all times. This may be limiting in more general settings. For example,
some incentives are inherently designed with variable payment such as pay for
performance or using bonuses. Third, the model of user performance used in
the simulations is rather simple, while it might be more complicated in different
projects. Thus, running experiments might help us better understand how people
behave in different cases. Hence, we can design better algorithms to solve the ISP
more efficiently. Regarding other applications of our work, the model and the
algorithm developed can be applied in other domains with a group-based nature
such as in schools, companies, or organisations (i.e., finding the most effective
groups of students or employees to work or study together).

Acknowledgments

This research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments
are authorised to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.



Bibliography

Araujo, R.M.: 99designs: An analysis of creative competition in crowdsourced
design. In: HCOMP. pp. 17–24 (2013)

Badanidiyuru, A., Kleinberg, R., Slivkins, A.: Bandits with knapsacks. JACM
65(3), 1–55 (2018)

Bubeck, S., Stoltz, G., Szepesvári, C., Munos, R.: X-armed bandits. JMLR 12,
1655–1695 (2011)

Cavallo, R., Jain, S.: Efficient crowdsourcing contests. In: AAMAS. vol. 2, pp.
677–686 (2012)

Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. CACM 54(4), 86–96 (2011)

Frey, B.S., Jegen, R.: Motivation crowding theory. Journal of Economic Surveys
15(5), 589–611 (2001)

Ghezzi, A., Gabelloni, D., Martini, A., Natalicchio, A.: Crowdsourcing: A review
and suggestions for future research. IJMR 20(2), 343–363 (2018)

Ho, C.J., Slivkins, A., Vaughan, J.W.: Adaptive contract design for crowdsourcing
markets: Bandit algorithms for repeated principal-agent problems. JAIR 55,
317–359 (2016)

Johnson, M., Moore, L., Ylvisaker, D.: Minimax and maximin distance designs.
JSPI 26(2), 131–148 (1990)

Li, H., Xia, Y.: Infinitely many-armed bandits with budget constraints. In: AAAI.
pp. 2182–2188 (2017)

Luo, T., Kanhere, S.S., Tan, H.P., Wu, F., Wu, H.: Crowdsourcing with tullock
contests: A new perspective. In: INFOCOM. pp. 2515–2523 (2015)

Mason, W., Watts, D.J.: Financial incentives and the “performance of crowds”.
ACM SigKDD Explorations Newsletter 11(2), 100–108 (2010)

Moldovanu, B., Sela, A.: The optimal allocation of prizes in contests. AER 91(3),
542–558 (2001)

Rogstadius, J., Kostakos, V., Kittur, A., Smus, B., Laredo, J., Vukovic, M.:
An assessment of intrinsic and extrinsic motivation on task performance in
crowdsourcing markets. In: ICWSM. pp. 321–328 (2011)

Simula, H.: The rise and fall of crowdsourcing? In: HICSS. pp. 2783–2791 (2013)
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: NIPS. p. 9 (2012)

Tran-Thanh, L., Chapman, A., De Cote, E.M., Rogers, A., Jennings, N.R.:
Epsilon-first policies for budget-limited multi-armed bandits. In: AAAI. pp.
1211–1216 (2010)

Trovo, F., Paladino, S., Restelli, M., Gatti, N.: Budgeted multi-armed bandit in
continuous action space. In: ECAI. pp. 560–568 (2016)

Truong, N.V.Q., Stein, S., Tran-Thanh, L., Jennings, N.R.: Adaptive incentive
selection for crowdsourcing contests. In: AAMAS. pp. 2100–2102 (2018)

Yin, M., Chen, Y.: Bonus or not? Learn to reward in crowdsourcing. In: IJCAI.
pp. 201–207 (2015)


