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Summary 
 

Communication between chloroplasts and the nucleus in response to various environmental 

cues may be mediated by various small molecules. Signalling specificity could be enhanced 

if the physical contact between these organelles facilitates direct transfer and prevents 

interference from other subcellular sources of the same molecules. Plant cells have plastid-

nuclear complexes, which provide close physical contact between these organelles. plastid-

nuclear complexes have been proposed to facilitate transfer of photosynthesis-derived H2O2 

to the nucleus in high light. Stromules (stroma filled tubular plastid extensions) may provide 

an additional conduit for transfer of a wider range of signalling molecules, including proteins. 

However, plastid-nuclear complexes and stromules have been hitherto treated as distinct 

phenomena. We suggest that plastid-nuclear complexes and stromules work in a co-

ordinated manner so that, according to environmental conditions or developmental state the 

two modes of connection contribute to varying extents. We hypothesise that this association 

is dynamic and that there may be a link between plastid-nuclear complexes and the 

development of stromules. Furthermore, the changes in contact could alter signalling 

specificity by allowing an extended or different range of signalling molecules to be delivered 

to the nucleus. 
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Introduction  

In eukaryotes, the nucleus is the recipient of intracellular signals from every other organelle 

and compartment (de Souza et al 2017), which strongly suggests that spatial (i.e. 3-

dimensional) as well as temporal components in signalling networks are of the utmost 

importance in terms of signalling specificity and the determination of cell fate. The continual 

adjustment to cellular metabolism in a fluctuating environment, which every 

photosynthetically active plant cell in a leaf has to carry out, depends upon the 

communication from its chloroplasts to the nucleus (hereafter termed retrograde signalling). 

Conversely, adjustments to primary metabolism involve much communication from the 

nucleus to plastids (termed anterograde signalling; de Souza et al 2017) and can result in 

changes to photosynthesis, alter protective mechanisms such as antioxidant capacity and 

modulate hormone biosynthesis.  

In this short paper, we have not considered mitochondrion-nucleus retrograde signalling. 

Instead, we refer the reader to other papers in this special issue. Rather, we have focussed 

on two means by which physical contact between plastids and the nucleus have been 

reported; plastid-nuclear complexes and stromules. We consider what is known about the 

dynamics of these interactions, the implications of close proximity of these organelles for the 

specificity of retrograde signalling as raised previously (Selga et al 2010; Higa et al 2014; 

Exposito-Rodriguez et al 2017) and begin to consider the notion that sub-populations of 

chloroplasts may have distinct cellular functions.  

Plastid-nuclear complexes in higher plants and algae  

A close association of plastids, including chloroplasts, and nuclei have been observed in 

many higher plant species ranging from horsetails (Equisetum sp.) to eudicots and 

monocots (Selga et al 2010; Fig.1A, B). Plastid-nuclear complexes may have a complex but 

ordered structure because in some images, the peri-nuclear endoplasmic reticulum may be 

seen to interpose between chloroplasts and their nucleus (Selga et al 2010). Furthermore, 

an extensive survey of the positioning of plastids around the nuclei of tobacco epidermal 
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cells strongly suggest a specific positioning between the organelles – the most striking and 

common being a daisy flower arrangement of plastids associated with the “equator” of the 

nucleus (Selga et al 2010). This is an arrangement we have also readily observed (Fig.1A; 

Movie S1). This apparently precise arrangement could mean that the structure of plastid-

nuclear complexes is under tight regulation and be amenable to genetic analysis (see 

below). Algal cells have from one (e.g. Chlamydomonas, Ostreococcus) to many 

chloroplasts. In Chlamydomonas, the nucleus is enveloped within the cup-shaped 

chloroplast. In Ostreococcus tauri, TEM electron cryotomography shows close association 

of chloroplast and nucleus with the peroxisome sandwiched between them. At some points 

during cell division, elongated nuclear envelope processes stream around the chloroplasts 

(Henderson et al 2007). Since Ostreococcus cells are very small, with one copy of each 

organelle, it is difficult to determine if there are specific physical links.  Photosynthetic 

protists of various kinds have chloroplasts derived from secondary endosymbiosis with 

algae and therefore have more complex membrane arrangement with 3-4 membranes 

enclosing the chloroplast and sometimes enclosing a nucleomorph (remnant of the 

symbiont’s nucleus) (Keeling, 2010). Attachment of the chloroplasts to each other and to the 

nucleus has been reported in Euglena, particularly during cell division (Ehara et al 1990). 

Chromosomes are prominent near the contact points. In Ochromonas the nuclear envelope 

appears to be continuous with the outer chloroplast membrane, with little or no cytoplasm 

between them (Gibbs, 1962). Clearly, more extensive data are needed to assess the extent 

of chloroplast-nuclear attachments in algae and photosynthetic protists.   

The study by Selga et al (2010) described plastid-nuclear complexes in 10 plant species 

that included horsetail, a fern, gymnosperms, eudicots and monocots. This survey suggests 

that plastid-nuclear complexes in plant cells is the norm, but questions arise about the 

dynamic nature of plastid-nuclear complexes. For example, is there a turnover of 

chloroplasts associated with the nucleus? Despite, a range of microscopic methods having 

been applied to image plastid-nuclear complexes (Selga et al 2010), we have no impression 
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of their turnover.. In many photosynthetic cell types packed with chloroplasts (e.g. estimates 

of 50-70 in Arabidopsis mesophyll cells; Glynn et al 2009) only a percentage of chloroplasts 

would be able to engage in direct interactions with chloroplasts (Fig.1B) but it would be 

difficult to observe turnover. However, in cell types with lower numbers of chloroplasts such 

as the abaxial epidermal tissue of Nicotiana benthamiana (N. benthamiana), a single time 

point sampling revealed 3-12 chloroplasts in contact with the nucleus (Fig.1A, C; Exposito-

Rodriguez et al 2017). This could imply a stochastic process but equally could be reflecting 

turnover in chloroplast numbers in different plastid-nuclear complexes such that at any 

timepoint different cells display differing number of chloroplasts interacting with their 

nucleus.  Resolving this would require long term observations of the same cell with 

differentially marked chloroplasts. 

Plastid-nuclear complexes and the actin cytoskeleton 

In the streptophytes, chloroplasts and nuclei move to anticlinal sides of cells away from high 

fluence blue light such as in the high light (HL) conditions used by the authors (Exposito-

Rodriguez et al 2017). This is called the avoidance response and is controlled by 

phototropins (Kong and Wada, 2011).  The avoidance response of chloroplasts depends 

upon their interaction with the actin cytoskeleton (Kong and Wada, 2011, Higa et al 2014, 

Iwabuchi et al 2010). Chloroplasts and the nucleus in each cell are tethered to one another 

via the actin cytoskeleton and the action of at least three proteins CHLOROPLAST 

UNUSUAL POSITIONING1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED 

CHLOROPLAST MOVEMENT1 (KAC1) and KAC2 that are associated with the plastid outer 

membrane (Oikawa et al 2003; Caplan et al 2015; Higa et al 2014; Suetsugu et al 2016). 

These proteins serve primarily to anchor chloroplasts to the plasma membrane but appear 

also to be crucial for correct tethering of nuclei to chloroplasts. Nuclei have no independent 

capacity to move along the actin cytoskeleton, instead relying on their physical association 

with chloroplasts (Higa et al 2014; Suetsugu et al 2016). However, in mutants defective in 
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one or more of these proteins, nuclei still do move in response to incident light, albeit in an 

unusual manner. This is because in chup1 and kac1kac2 mutants, nuclei retain some 

connectivity to chloroplasts and therefore some capacity to carry out avoidance. Even a 

triple mutant (chup1kac1kac2) while showing severe attenuation did display some highly 

aberrant nuclear avoidance responses, implying there was still some nuclear-plastid 

connectivity (Higa et al 2014; Suetsugu et al 2016). Interestingly and in contrast to these 

mutants, some plastid division mutants (plastid division1 (pdv1) / pdv2 double mutant and 

paralog of arc6 (parc6)) are also completely defective in tethering of chloroplasts to the 

nucleus (Higa et al 2014). In the case of parc6, the phenotype shows cell autonomous 

behaviour with respect to this phenotype (Higa et al 2014) meaning that most cells display a 

lack of chloroplast-to-nucleus tethering, but a proportion of them do not. Therefore, it may 

prove possible to compare cells with nuclei attached to chloroplasts alongside cells with 

separated chloroplasts and nuclei in the same tissue. This may obviate issues around the 

possibility of pleiotropic effects of such mutants.  While there are many questions 

surrounding the use of chup1, parc6 and other such mutants, they do indicate both the 

complexity and the likely dynamic nature of these plastid-nuclear complexes. In summary, 

we conclude that plastid-nuclear complexes are unlikely to be static structures and in 

considering their interactions with the cytoskeleton and overlap with plastid division they 

share commonality with stromules (see below). 

Recently, it has been proposed that stromules might function to aid the dynamics of plastid-

nuclear complexes leading to programmed cell death (PCD) in plant immunity (Kumar et al. 

2018). Stromules are tubular protrusions stretched from the plastid body filled with stroma 

(Kohler et al. 1997; Hanson and Hines 2018; Fig.1C; Fig.2). Recent studies unveiled a 

potential role of stromules as a path to transfer signalling molecules from plastids to the 

nucleus (Caplan et al. 2015; Hanson and Hines 2018) and a regulatory factor to maintain 

the resulting plastid-nuclear complex via actin filaments during PCD (Kumar et al. 2018). 

Dynamic stromule formation is regulated differentially by actin and microtubule 
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cytoskeletons (Kumar et al 2018; Hanson and Hines, 2018). Recently and interestingly, the 

causative defective gene in an Arabidopsis mutant displaying enhanced stromule formation 

in epidermal plastids was shown to be PARC6 (Itoh et al 2018), which is also implicated in 

the formation of plastid-nuclear complexes in mesophyll cells (see above).  Unlike the 

chloroplast body that primarily moves along actin filaments (Kong and Wada, 2011, Higa et 

al 2014, Iwabuchi et al 2010), stromules use microtubules as their guide to undergo 

directional extension and retraction. Interestingly, actin filaments provide anchor points to 

regulate stromule length (Kumar et al 2018), showing that movement of the chloroplast body 

and stromules are not regulated in the same manner. Interestingly, during immune 

responses, numerous stromules were observed to extend towards the nucleus and often 

wrap around the nucleus (Caplan et al. 2015). In addition, the tips of stromules can anchor 

to the periphery of the nucleus followed by a retraction of the stromules resulting in 

movement of the chloroplast body closer to the nucleus (Fig. 2. Movie S2). This movement 

might be one of the mechanisms to maintain the plastid-nuclear complex observed in plant 

immunity (Kumar et al. 2018). However, genetic components to regulate stromules have yet 

to be identified. Although chloroplast body movement is altered in chup1 (Oikawa et al 

2003; Higa et al 2014; Suetsugu et al 2016), stromules were hyper-induced without 

pathogen infection in N. benthamiana cells showing suppressed CHUP1 expression by RNA 

interference (Caplan et al., 2015). These data suggest that CHUP1 is a negative regulator 

of stromule formation.  In these experiments, chloroplast bodies were frequently clustered 

similar to the plastid-nuclear complexes described above (Fig.1C; Fig. 2), although 

unfortunately nuclei were not co-visualized (Caplan et al 2015). Nevertheless, these data 

also suggest that CHUP1, presumably with as yet unidentified components, may also 

provide stromule-actin connectivity and stromule-mediated chloroplast movement towards 

the nucleus.             

Problems of specificity 
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In almost all figures illustrating retrograde signalling, a single chloroplast is often depicted as 

the source of signals transduced to the nucleus (e.g. de Souza et al 2017). The reality in all 

higher plants’ cells is somewhat different; multiple chloroplasts in cells are universal. 

Furthermore, in response to both internal and external cues it can be expected that not all 

chloroplasts inside a cell experience the same interaction with the environment. This is 

especially so for the light environment, where the light avoidance response (see above; 

Kong and Wada 2011) results in stacking of chloroplasts and ensures that some experience 

higher light intensity than others. Therefore, from a signalling context, it is feasible that not 

all chloroplasts in a HL-exposed cell will communicate with the nucleus to the same degree. 

Thus, how could signalling from multiple chloroplasts be integrated by the nucleus to 

produce a defined change in gene expression?  Likewise, for many small molecules or 

metabolites that also are signal transducers, more than one source in a cell is possible or 

likely. The exemplar is hydrogen peroxide (H2O2; Mullineaux et al 2018) with sources not 

only from the chloroplasts, but from the peroxisome, mitochondria, plasma membrane and 

cytosol (Mullineaux et al 2018; Smirnoff and Arnaud, 2019). In which case, how is it possible 

that an accumulation of H2O2 in nuclei but sourced from chloroplasts be distinguished, for 

example, from H2O2 sourced from peroxisomes? Finally, how would a metabolite acting as 

a signalling molecule avoid being diverted into another pathway en route to the nucleus 

from chloroplasts? The potential advantage of proximity or attachment of chloroplasts and 

nuclei is that any small molecule signal is directed to the nucleus so that chloroplast 

conditions are more specifically indicated. However, if metabolites first have to move to the 

cytosol they will very rapidly equilibrate across the cell. Therefore, for metabolites shared 

between chloroplasts and the cytosol, this could render them less effective as a chloroplast 

signal. Alternatively, compounds that are readily metabolised (e.g. H2O2) could be removed 

before entering the nucleus. This is illustrated by the ease of detecting photosynthesis-

sourced H2O2 in nuclei but not cytosol in response to high light (Exposito-Rodriguez et al 

2017). The starting point to answer to all of the above questions could be the spatial context 
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in which signalling takes place in plastid-nuclear complexes.  These complexes would allow 

direct communication between the origin of the transducing signal (the chloroplasts) and its 

destination (the nucleus). This is discussed further below, especially in the context of H2O2 

as a transducing signalling molecule. 

Partitioning and direct transfer of H2O2 from chloroplasts to the nucleus for signalling 

– a critical role for plastid-nuclear complexes and stromules?  

In HL-exposed photosynthetically active cells, H2O2 accumulates in chloroplasts (Nakano 

and Asada 1980; Fryer et al 2003; Wen et al 2008; Galvez-Valdivieso et al 2009; 

Mubarakshina et al 2010; Driever and Baker 2011; Exposito-Rodriguez et al 2017). Various 

biochemical and genetic means of changing ROS levels in plant cells by promoting 

oxidative stress have been used to study the response of the transcriptome to H2O2 as well 

as other reactive oxygen species (ROS; reviewed in Mignolet-Spruyt et al 2016).  The real 

value of the many independent transcriptomic datasets has been their combined study in 

meta-analyses using ever more statistically robust methodology (Gadjev et al 2006; Willems 

et al 2016). This has provided strong evidence that a cohort of H2O2-responsive genes exist 

which are common to a number of different environmental and cellular cues, including 

exposure to HL. These meta-analyses do suggest that different subcellular sources of H2O2 

could provide one element of signal specificity (Mignolet-Spruyt et al 2016; Willems et al 

2016). For example, a transcriptomics study of Arabidopsis genotypes with altered H2O2 

production and scavenging capacities in chloroplasts and peroxisome respectively, which 

were shifted from non-photorespiratory to photorespiratory conditions, clearly indicated that 

the source of H2O2 may bring about a specificity of response (Sewelam et al 2014). In 

summary, specificity of H2O2 signalling is likely, but how would this be achieved? This is 

especially the case, if we consider how H2O2 could be a retrograde signal transducer. The 

idea that H2O2 could convey a signal out of the chloroplast had been considered to be 

problematic (Mullineaux et al 2006; Galvez-Valdivieso et al 2009). The problem is that H2O2, 

in its supposed journey from the chloroplast to the nucleus, would not last long in the 
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reducing environment of the cytosol. In addition, once exited from the chloroplast, the 

source specificity of H2O2 would surely be lost. Consequently, the view was that H2O2 could 

initiate signalling but not onward transduction out of the chloroplast. Further signal 

transduction to the nucleus would have to be achieved by some other signalling molecule, 

which would be stable during its transit of the cytosol. However, subsequent research 

challenged this view. Isolated chloroplasts secrete H2O2 into their medium in a light intensity 

and photosynthetic electron transport (PET)-dependent manner (Mubarakshina et al 2010) 

and there was the clear implication that this could also occur in vivo. Genetically encoded 

fluorescent protein biosensors that detect H2O2 enabled this question of its mobility and 

consequent specificity to be addressed (Exposito-Rodriguez et al 2017; Nietzel et al 2019). 

These biosensors can detect H2O2 with a high degree of specificity in real time, non-

invasively and quantitatively (Belousov et al 2006; Meyer and Dick 2010; Exposito-

Rodriguez et al 2013; Walia et al 2018).  Using such a probe (Hyper; Belousov et al 2006) 

expressed transiently in N. benthamiana abaxial epidermal cells and targeted to chloroplast 

stroma, cytosol and nucleus revealed that under HL, H2O2 levels increased in nuclei 

concomitant with the rates of accumulation in the chloroplast stroma (Exposito-Rodriguez et 

al 2017). The HL-dependent increase in H2O2 (measured as increased HyPer oxidation) in 

both compartments was dependent upon active photosynthetic electron transport (PET). 

Furthermore, attenuation of the HL-triggered H2O2 accumulation in the chloroplast stroma 

by over-expressing the H2O2-scavenging enzyme ascorbate peroxidase (APX) also crucially 

inhibited its accumulation in the nucleus. This demonstrated that the H2O2 accumulation in 

the nucleus was directly dependent upon its accumulation in the chloroplast. The simplest, 

but not only, explanation for these observations is that transfer of H2O2 from chloroplasts to 

the nucleus occurs rapidly upon exposure to HL. Importantly, when a cytosolic isoform of 

APX was over-expressed it did not significantly attenuate accumulation of H2O2 in the 

nucleus. It was concluded that chloroplast-sourced H2O2 does not transit the cytosol and is 

a direct transfer from chloroplasts to the nucleus. In these abaxial epidermal cells, plastid-
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nuclear complexes are readily observed, consisting of a median 7 chloroplasts per nucleus 

and it was noted that the oxidation of the HyPer probe in PNC chloroplasts was less than in 

those not associated with the nucleus. It was therefore hypothesised that it is the 

chloroplasts in plastid-nuclear complexes that transfer H2O2 directly to the nucleus. 

Interestingly, it has been previously observed (Selga et al 2010) that chloroplasts detached 

from the nucleus underwent more rapid loss of chlorophyll fluorescence compared with 

those associated with the nucleus, implying different metabolic states for sub-populations of 

chloroplasts.  

The same treatments that attenuated H2O2 in chloroplasts and nuclei also impacted on the 

expression of a N. benthamiana HL-responsive gene, NbAPX1c, in the same way, 

establishing that the H2O2 in the nucleus initiates onward signalling leading to the change in 

expression of at least one HL-responsive gene (Exposito-Rodriguez et al 2017). 

 While the hypothesis of a direct transfer of H2O2 from chloroplasts to the nucleus is the 

simplest explanation of the data, other, not necessarily mutually exclusive, variations on this 

retrograde signalling mechanism remain possible. It is clear that chloroplast-sourced H2O2 

initiates and drives the signalling and that HL-dependent accumulation of H2O2 in the 

nucleus continues that signalling process. Nor is the notion of a spatial dependence of 

signalling negated. However, it is conceivable that another signalling molecule is transferred 

to the nucleus which stimulates H2O2 synthesis in that compartment or even that 

chloroplast-sourced H2O2 amplifies or activates its nuclear-localised synthesis. For 

example, nuclear-located cryptochromes (CRYs) when challenged with high fluence blue 

light can make H2O2 (Consentino et al 2015) and CRY1 has been shown to positively 

regulate HL-responsive genes that are also responsive to H2O2 and require active PET 

(Kleine et al 2007; Karpinski et al 1999).  

H2O2 is also known to be generated and have a critical role as a signalling molecule to 

induce plant immunity (Stael et al., 2015). When PCD occurs, chloroplasts function as a 

major generator of H2O2, which often induce gene expression in the nucleus (Yao and 
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Greenburg, 2006). Moreover, application of exogenous H2O2 to leaves have been shown to 

increase stromule formation (Gray et al 2012). Recently, H2O2 translocation from chloroplast 

to the nucleus via stromules has been raised as a possibility from work using the HyPer 

H2O2 sensor (Caplan et al. 2015). In live cell time-lapsed images, the concentration of H2O2 

increased in stromules whose tips were anchored to the nucleus. In addition, by using 

nuclear-localised HyPer, an increase in H2O2 in nucleus of plastid-nuclear complexes was 

monitored. Although these two events were monitored in separate experiments this study 

does support the hypothesis that H2O2 is a retrograde signalling molecule in plant immunity. 

However, more sophisticated experiments will be required to monitor H2O2 translocation 

from chloroplasts into the nucleus in the same cell, in order to be able to propose that 

stromules might be a major path for H2O2-mediated retrograde signalling in plant immune 

responses.    

Application of exogenous H2O2 is sufficient to induce stromule formation vigorously (Gray et 

al 2012; Caplan et al. 2015; Brunkard and Burch-Smith 2018).  Furthermore, evidence has 

recently been presented that the establishment of pathogen- or effector-triggered immunity 

or treatment with H2O2 also causes the chloroplasts of N. benthamiana epidermal pavement 

cells to cluster around the nucleus (Ding et al 2019). Interestingly though, the authors did 

not report the presence of stromules during their observations. In summary, evidence may 

be emerging that H2O2 not only produced by chloroplasts, but from other subcellular 

sources may also promote formation of both plastid-nuclear complexes and stromules. This 

implies a complex regulatory system, which we are just beginning to perceive. However, all 

these observations have used agro-infected N. benthamiana which might result in an 

interaction between HL and pathogen-associated molecular pattern (PAMP)  responses 

(Caplan et al 2015; Exposito-Rodriguez et al 2017; Ding et al 2019) and therefore such 

observations do need to be confirmed in other experimental systems. Furthermore, some 

plant-pathogen interactions (e.g. that of Arabidopsis and Pseudomonas syringae DC3000) 

may suppress photosynthesis and chloroplast-sourced ROS in an effector dependent 
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manner (de Torres-Zabala et al 2015). In this case, the impact of suppression of chloroplast 

function and ROS formation on stromule formation is unknown. 

Retrograde signalling and H2O2 in cytosol microdomains 

The close associations between chloroplasts and nuclei do not exclude retrograde signalling 

involving H2O2 also going via the cytosol and still achieving signalling specificity. Under HL, 

N. benthamiana abaxial epidermal cells do accumulate H2O2 in the cytosol but it is not 

evenly distributed. It must be assumed that the rate of diffusion of H2O2 from chloroplasts 

that are not part of plastid-nuclear complexes, is sufficient to overcome rates of reducing 

activity from antioxidant systems in the cytosol for long enough to allow oxidation of the 

cytosol-located HyPer probe (Exposito-Rodriguez et al 2017). Active transport, i.e. secretion 

of H2O2 from chloroplasts, cannot be ruled out but no evidence is available on this point. If 

the resulting H2O2 microdomains are involved in signalling, then there would be temporal 

and spatial constraints meaning that redox-sensitive signal transducers will have to be in 

place to meet this localised H2O2 exiting from chloroplasts. There are candidate signal 

transducers that could act in such a role provided their spatial distribution in relation to H2O2 

microdomains could be confirmed. At least three Arabidopsis heat shock transcription 

factors, HSFA1D, HSFA8 and HSFA4A, have been shown to be redox-regulated (Jung et al 

2013; Giesguth et al 2015; Pérez-Salamó et al 2014). Inter- and intramolecular disulphide 

bond formation is important in the conversion of inactive cytosol-located monomeric HSF 

isoforms into active trimeric forms that migrate to the nucleus to carry out their function. The 

high degree of sequence conservation in extensive plant HSF gene families suggest that 

such potential redox regulation may extend beyond these three examples (Miller and Mittler 

2006)  Signal transduction involving H2O2 in eukaryotes may involve the transfer of oxidising 

equivalents by thiol peroxidases (TPXs; Giesguth et al 2015; Mullineaux et al 2018), which 

again would be required to be located or translocate to where H2O2 accumulates in 

microdomains. A simpler outcome could be that H2O2 from such chloroplasts, were it to 



 13

continue to accumulate in the cytosol for any length of time, would lead to cellular oxidative 

stress and trigger PCD (Mullineaux et al 2006). 

In summary, regarding the role of H2O2 as a signal transducer in retrograde signalling there 

are clear layers of spatial dependency – plastid-nuclear complexes, stromules and 

microdomains. The juxtaposition of the players, once identified, in these signal transduction 

routes with respect to one another and to the accumulation of H2O2 will be critical in 

determining how H2O2-mediated retrograde signalling truly functions. 

Spatial considerations of metabolites as retrograde signal transducers 

As with H2O2, there are a myriad of small molecules that have single or distinct pools in 

chloroplasts and are translocated to other part of the cell as part of the normal role in 

cellular metabolism. Any molecule with a distinct origin or location in plastids has, therefore, 

the potential to be co-opted as a transducer in retrograde signalling. Recent productive lines 

of research have established at least 3 such metabolites or metabolic intermediates that fall 

into this class:  3’-phosphoadenosine 5’-phosphate (PAP; Estavillo et al 2011) with cytosolic 

and chloroplast pools; methylerithrytol phosphate (MEcPP; Xiao et al 2012) a biosynthetic 

intermediate in plastid isoprenoid production; β-cyclocitral, an oxidation product 

of carotenoids formed in chloroplasts (Ramel et al 2012). These molecules have all been 

firmly established in the pantheon of prominent players in retrograde signalling. They have 

been proposed, and evidence offered, of being able to transduce signals out of the 

chloroplast and have been shown to strongly influence both whole plant responses to 

environmental stress and the expression of a distinct cohort of genes (Estavillo et al 2011; 

Xiao et al 2012; Ramel et al 2012). To our knowledge, no spatial relationship between 

chloroplasts and the nucleus has been invoked as necessary for their signalling roles to be 

effective. However, clearly the workings of these signalling pathways could be enhanced if 

they were functioning in plastid-nuclear complexes or require stromules. For such spatial 

relationships to be established, specific genetically encoded biosensors would be needed to 
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allow the necessary investigations to be done. The availability of such probes may still be 

some way off but would surely be of value to progress this field. 

Spatial considerations of proteins as retrograde signal transducers   

In contrast to the scores of metabolites and hormones that have been proposed as 

retrograde signal transducers, only a small number of proteins known to be targeted to the 

chloroplast have been identified subsequently in the nucleus to function as retrograde signal 

transducers in response to biotic and abiotic stresses. WHIRLY1 has been proposed to 

convey the redox status in chloroplasts to the nucleus in a salicylic acid-dependent manner 

(Foyer et al., 2014). WHIRLY1 proteins localize to both chloroplast and nucleus (Grabowski 

et al., 2008; Isemer et al., 2012). Expression of WHIRLY1 protein without its N-terminal 

plastid transit peptide sequence resulted in localization in the nucleus and successfully 

rescued the whirly1 mutant phenotype (Isemer et al., 2012).  Although dual localization of 

WHIRLY1 has been shown by several different approaches, how the translocation of 

WHIRLY1 from chloroplasts to the nucleus might occur is still not shown.  An interesting 

chloroplast outer envelope protein, PTM (a PHD type transcription factor with 

transmembrane domains) was proposed to translocate to the nucleus to regulate high light-

responsive gene expression (Sun et al 2011). This translocation of PTM was proposed to 

allow its binding to the promoter of ABSCISIC ACID INSENSITIVE4 to induce expression of 

light-responsive genes (Sun et al., 2011) and to the promoter of FLOWERING LOCUS C to 

control flowering under HL (Feng et al 2016). However, the identity of the signal from the 

chloroplast to induce an intramembrane proteolytic cleavage of the PTM is unknown and 

how the N-terminal moiety of the PTM is released from the chloroplast and finally ends up in 

the nucleus remains to be investigated. Subsequently, doubt about this proposed role of 

PTM was raised by the lack of impairment of a genomes-uncoupled phenotype in ptm 

mutants treated with norflurazon and lincomycin (Page et al 2017).   

Several GFP-tagged proteins have shown to be present in stromules (e.g. carbonic 

anhydrase) and GFP photoconversion and photobleaching experiments suggest this is a 
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dynamic process and that transfer of proteins between plastids can occur via stromules 

(reviewed by Hanson and Hines 2018). Recent studies of NRIP1 translocation from 

chloroplasts to nuclei via stromules might aid an understanding of the mechanism of 

translocation (Caplan et al 2015). NRIP1 is a helper of N protein, which recognizes the p50 

protein of TMV (tobacco mosaic virus) and, in turn, rapidly triggers plant immunity (Caplan 

et al. 2008). NRIP1 protein is localised in the stroma of chloroplasts of tobacco plant cells in 

normal conditions. However, upon TMV infection, NRIP1 proteins can translocate into the 

nucleus through stromules anchored to the nucleus (Caplan et al. 2015).  

Without further experimental support, it is hard to propose whether any of these above 

exemplar proteins translocate through stromules or directly by the plastid-nuclear 

complexes. However, given the proposed role of the stromules and the plastid-nuclear 

complexes to provide a path to transfer signalling molecules from chloroplasts to the 

nucleus in response to rapid changes of environmental status, it would be worth examining 

levels of stromules and the frequency of plastid-nuclear complexes in the WHIRLY1, PTM  

and NRIP1 activation conditions and their translocation via stromules and/or the plastid-

nuclear complexes.    

A time for stromules and a time for plastid-nuclear complexes: Is the link 

photosynthesis? 

Both plastid-nuclear complexes and stromules are now proposed to provide a spatial 

element to retrograde signalling. Especially in the case of H2O2-mediated retrograde 

signalling, such direct contacts between chloroplasts and their nucleus provide signalling 

specificity and permit this ROS to be a direct carrier of a signal from chloroplasts to their 

associated nucleus. Exactly the same argument and evidence is provided for stromules 

regarding H2O2-mediated retrograde signalling. The difference in signalling roles between 

plastid-nuclear complexes and stromules may be that the latter are able to provide a 

specific conduit for a much wider range of signalling molecules from the chloroplasts, 
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including proteins (Hanson and Hines 2018). However, to our knowledge, no evidence is 

available that protein-mediated retrograde signalling is definitively limited to stromules.  

We have considered that plastid-nuclear complexes potentially provide a spatial component 

for signalling without stromules, but some studies show a high degree of stromule-producing 

chloroplasts present in such structures and stromules apparently facilitating the entry of 

their chloroplast into close contact with the nucleus (Fig. 2; Movie S2). All of this points to a 

distinct function for stromules over and above any signalling role that is also achieved by 

direct contact between chloroplasts and the nucleus.  

We have commented above that that some researchers observed stromules in their 

experimental systems and others do not. This suggests that specific physiological states of 

chloroplasts and cells are important in determining the circumstances which give rise to 

stromule formation. While the predominance of observations has been made in cells 

undergoing PCD, either as senescence or in the induction of pathogen- or elicitor-induced 

immunity (see above), it is premature to assume that stromule formation is a phenomenon 

linked to this process. This is because drought, salinity, phosphate limitation and ABA 

(possibly via strigolactone signalling) can also induce stromule formation (Gray et al 2012; 

Vismans et al 2016) and these treatments, to our knowledge, do not induce PCD. 

Furthermore, isolated chloroplasts have been reported to be able to form stromules 

(Brunkard et al 2015; Ho and Theg 2016). We propose instead that all these situations have 

in common a diminution in photosynthesis and primary metabolism. Induction of drought 

stress or phosphate limitation, and more controversially, exogenous ABA often disrupt 

photosynthesis (Spencer & Foyer 1986; Pinheiro and Chaves 2010; Bechtold et al 2016). 

The impact of immunity and senescence on photosynthesis is always associated with a 

decline in this function (Balazadeh et al 2008; de Torres-Zabala et al 2015). Furthermore, 

any restriction of photosynthesis and consequent rise in the oxidation state of the stroma is 

a likely pre-requisite for stromule formation (Brunkard et al 2015).   
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Figure captions 

Fig. 1.  Nucleo-plastid association in Arabidopsis thaliana and N. benthamiana.  All 

chloroplasts are magenta, all nuclei green. All scale bars 10 µm. A) Nuclei are surrounded 

by chloroplasts in the typical 'daisy flower' arrangements in N.benthamiana abaxial 

epidermal cells. B) In the spongy mesophyll of Arabidopsis, nuclei are in contact with but not 

surrounded by chloroplasts. C) A nucleus with surrounding chloroplasts from N. 

benthamiana abaxial epidermal cells, displaying occasionally observed stromules under low 

light conditions.  

Fig. 2. Stromule-mediated perinuclear clustering (PNC) of the chloroplast during plant 

immune responses. 

NRIP1(cTP)-TagRFP (magenta) were transiently expressed to visualize chloroplasts and 

stromules in GFP-TUA6 (green) transgenic N. benthamiana leaf epidermal cells. Images are 

6 representative images in indicated time points from the Movie S2. When N. benthamiana 

leaf epidermal cells are infected by Pseudomonas syringae, stromules are vigorously 

induced and attached to the nucleus. Dynamic stromule retractions bring about chloroplast 

body movement toward the nucleus (yellow arrow) and extension of stromules also occurs 

to withdraw the chloroplast body from the nucleus (white arrowhead), controlling the extent 

of the PNC during plant immunity.   

 

Supplementary material 
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Movie S1.  Changing views of plastid-nuclear complexes in N. benthamiana abaxial 

epidermal cells. All chloroplasts are false-coloured magenta, all nuclei green. Nuclei and the 

cytosol are expressing HyPer as described previously (Exposito-Rodriguez et al 2017). 

Movie S2. Stromules mediate chloroplast movement towards and away from the nucleus. 

Chloroplasts and stromules were visualized by transient expression of NRIP1(cTP)-TagRFP 

(magenta) in GFP-TUA6 (green) transgenic N. benthamiana leaf epidermal cells. 8 hours 

after Pseudomonas syringae infection, time-lapsed images were acquired every 5 min and 

compiled in AVI format to run in 6 frames per second. Representative images are shown in 

Figure 2.  

 

 

 


