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Abstract

This paper explores a simple property of the Hodrick-Prescott filter: when the HP
filter is applied to a series, the cyclical component is equal to the HP filtered trend
of the fourth difference of the series, except for the first and last two observations,
for which different formulas are needed. We use this result to derive small sample
results and asymptotic results for a fixed smoothing parameter. We first apply this
property to analyze the consequences of a deterministic break. We find that the effect
of a deterministic break on the cyclical component is asymptotically negligible for the
points that are away from the break point, while for the points in the neighborhood of
the break point, the effect is not negligible even asymptotically. Second, we apply this
property to show that the cyclical component of the Hodrick-Prescott filter when ap-
plied to series that are integrated up to order 2 is weakly dependent, while the situation
for series that are integrated up to order 3 or 4 is more subtle. Third, we characterize
the behavior of the Hodrick-Prescott filter when applied to deterministic polynomial
trends and show that in the middle of the sample, the cyclical component reduces the
order of the polynomial by 4, while the end point behavior is different. Finally, we give
a characterization of the Hodrick-Prescott filter when applied to an exponential deter-
ministic trend, and this characterization shows that the filter is effectively incapable
of dealing with a trend that increases this fast. Our results are compared to those of
Phillips and Jin (2015).
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1 Introduction

The Hodrick-Prescott (HP) filter is a long-standing standard technique in macroeconomics
for separating the long run trend in a data series from short-run fluctuations. Introduced
initially by Whittaker (1923) and popularized in economics by Hodrick and Prescott (1997),
the HP filter is universally used in macroeconomics. The cited paper by Hodrick and Prescott
has thousands of citations; yet, the impact of this work may go beyond that, since the HP
filter has become an obliteration by incorporation. While the HP filter has a long and
venerable history, it has recently being analyzed more formally in Phillips and Jin (2002),
Phillips (2010), Phillips and Jin (2015), de Jong and Sakarya (2016), Cornea-Madeira (2017),
and Hamilton (2018). These papers analyze the properties of the HP filter rigorously and
reconsider its usefulness in the context of macroeconomics. Note that Phillips and Jin (2002)
and Phillips and Jin (2015) do not only study the HP filter, but the more general Whittaker
filter.

The HP filter calculates the trend of a series yt, t = 1, . . . , T by minimizing

T∑
t=1

(yt − τt)2 + λ
T−1∑
t=2

(τt+1 − 2τt + τt−1)
2, (1)

over τ = (τ1, . . . , τT ). The parameter λ here is a smoothing parameter that for quarterly
data is typically chosen to equal 1600. The minimizer, which we will label τ̂Tt, is referred to
in the literature as the “trend component,” while ĉTt = yt− τ̂Tt is referred to as the “cyclical
component.” By writing the minimization problem as a vector differentiation problem, it
follows that there exists a unique minimizer. The trend component τ̂Tt and the cyclical
component ĉTt are both weighted averages of yt, and in de Jong and Sakarya (2016), an
exact formula for the weights is found. This paper also explores the statistical properties of
the cyclical component when the HP filter is applied to a unit root process, and considers
adjusting the smoothing parameter for the data frequency. Cornea-Madeira (2017) also
provides an exact formula for the weights by using the Sherman-Morrison formula.

In this paper, we derive a property of the HP filter which allows us to derive more general
results that are not present in the literature. A feature of our results is that we will assume λ
to be fixed with T . If we interpret λ as a bandwidth type parameter, the assumption that λ
grows with T is natural. This case is studied in detail in Phillips and Jin (2002) and Phillips
and Jin (2015).1 In our setting λ is assumed to be fixed, even while deriving our asymptotic
results. One justification for this approach is that regardless of the sample size, in the macro
literature values for λ are fixed; typically λ = 1600 for quarterly data or λ = 6.25 for annual
data.

We first use this elegant result to explore the effect of an intercept break on the cyclical
component. We show that the effect of a structural break on the cyclical component dies out
as one moves a finite number of observations away from the break point, also asymptotically.
If we specialize the general setting of Phillips and Jin (2015) to the case of an intercept
break, their results consider the case where the size of the break grows at rate T 1/2 and λ
grows with T , while we assume that the break size and λ are fixed with T .

Our main result is also applied to processes that are integrated up to order 4. Again
assuming a fixed value for λ, we show that the cyclical component of series that are integrated
up to order 2 exhibits weak dependence properties, while for series that are integrated of
order 3 or 4 the law of large numbers does not hold for a large class of unbounded functions

1Note that Phillips and Jin (2002) and Phillips and Jin (2015) also contain fixed λ and T results for the
more general case of the Whittaker filter.
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of the cyclical component. This result contrasts with Phillips and Jin (2002) and Phillips
and Jin (2015) for the case λ = O(T 4), where it is shown that for this case, the HP filter
“fails to eliminate” the unit root. Our result shows that for fixed λ, King and Rebelo
(1993)’s widely known conjecture “. . . the HP filter will render stationary series that are
integrated (up to fourth order) . . . ” is incorrect in the sense that the law of large numbers
does not hold for a large class of functions of the cyclical component when the original series
is integrated of order 3 or 4.2 The reasoning used by King and Rebelo is based on assuming
that the first order condition of the minimization problem in Equation (1) that is valid for
t = 3, 4, . . . , T − 2 holds for every t ∈ Z. We call this approach the “heuristic approach”
throughout the paper. Our representation provides a rigorous analysis of the HP filter that
does not ignore begin and end point issues. In addition, we give a closed form formula for the
cyclical component of a polynomial trend for fixed λ. Phillips and Jin (2015) again consider
the large λ case. We also consider the case of an exponential deterministic trend by using
our new representation.

In Section 2 of the paper, we provide an explanation of the “heuristic approach.” In
Section 3 of the paper, we establish our main result. Section 4 explores the consequences
of a structural break. In Section 5, we discuss weak dependence properties of the cyclical
component when the HP filter is applied to I(2), I(3), or I(4) series. In Section 6, we charac-
terize the behavior of the HP filter when applied to a polynomial trend and an exponential
deterministic trend. Section 7 summarizes the findings of the paper.

2 Explanation of the heuristic approach

Letting B̄ and B denote the forward and the backward operators, respectively, the first order
conditions of the problem in Equation (1) can be written as(

(1 + λ)− 2λB̄ + λB̄2
)
τ̂T1 = y1, (2)(

−2λB + (1 + 5λ)− 4λB̄ + λB̄2
)
τ̂T2 = y2, (3)(

−2λB̄ + (1 + 5λ)− 4λB + λB2
)
τ̂T,T−1 = yT−1, (4)(

(1 + λ)− 2λB + λB2
)
τ̂T,T = yT , (5)

while for t = 3, 4, . . . , T − 2,(
λB̄2 − 4λB̄ + (1 + 6λ)− 4λB + λB2

)
τ̂Tt = yt. (6)

By defining |1 − B|2 = (1 − B)(1 − B̄), the first order condition in Equation (6) can be
written as

yt = (λ|1−B|4 + 1)τ̂Tt. (7)

Analyses of the HP filter based on the first order condition of Equation (7) are for example
King and Rebelo (1993), Cogley and Nason (1995), McElroy (2008). Such an analysis cannot
be more than a conjecture, since the first order conditions of Equations (2)-(5) are ignored.
King and Rebelo (1993)’s conjecture (i.e., the HP filter will render stationary series that are
integrated up to fourth order) is based on a simple manipulation of the first order condition
of Equation (7) and the identity yt = τ̂Tt + ĉTt, which give

ĉTt = (λ|1−B|4 + 1)−1λ|1−B|4yt.
2Phillips and Jin (2002) were the first to note that King and Rebelo (1993)’s conjecture is incorrect for

the case λ = O(T 4).
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Thus, one might conjecture that ĉTt should possess stationarity properties if yt is integrated
up to order 4, because |1− B|4yt = (1− B)2(1− B̄)2B2B̄2yt = ∆4yt+2. Conjecturing along
these lines, we might also suspect that the HP filter is capable of removing a quadratic trend,
since |1−B|4yt = |1−B|4t2 = 0. However, we will show that both conjectures are incorrect
in general, since the first order condition of Equation (7) fails to hold for t = 1, 2 and
t = T − 1, T . After all, it is easy to see (for example, by calculating the cyclical component
of a quadratic time trend in a software package) that the cyclical component of the HP filter
when applied to a quadratic trend is not equal to zero. Similarly, we will show that the
heuristic reasoning needs to be refined when considering the cyclical component of processes
that are integrated of order 3 or 4.

The results of the aforementioned papers should be interpreted as the results derived
from an approximate problem that will likely be valid for values of t away from the begin
and end points of the sample and for large values of T . However, such findings cannot render
exact results for the HP filter. This paper will seek to derive an exact result for the HP filter
that allows us to address those issues formally.

3 Main result

The following theorem presents a property of the HP filter.

Theorem 1. Let ỹT1 = ∆2y3, ỹT2 = ∆2y4−2∆2y3, ỹT,T−1 = ∆2yT−1−2∆2yT , ỹT,T = ∆2yT ,
and for t = 3, 4, . . . , T − 2, ỹTt = ∆4yt+2. Then for t = 1, 2, . . . , T

ĉTt(y1, y2, . . . , yT ) = λ τ̂Tt(ỹT1, ỹT2, . . . , ỹTT ). (8)

This simple but elegant result provides insights into the structure of the cyclical term.
This result shows that when the HP filter is applied to a series, the cyclical component of
the series equals the trend of the fourth difference of the series, where the first and last two
observations need a different formula. This property can shed light on the behavior of the
cyclical component that is obtained from various data generating processes. As pointed out
by a perceptive referee, this property can also be established using matrix algebra. Given
the relative simplicity of the minimization problem involved, it is perhaps not surprising
that matrix based treatments of the HP filter (such as e.g. in Phillips and Jin (2015), in
particular Remark 3) come close to establishing the result of Theorem 1.

The idea behind our result is the following. Using the first order condition in Equation (7)
and the identity yt = τ̂Tt + ĉTt, it follows that

ĉTt(y1, . . . , yT ) = λ|1−B|4τ̂Tt(y1, . . . , yT )

= λ(1−B)2(1− B̄)2B2B̄2τ̂Tt(y1, . . . , yT )

= λ(1−B)4B̄2τ̂Tt(y1, . . . , yT ).

Ignoring the fact that y−1, y0, yT+1 and yT+2 are undefined, we can now conjecture that the
last expression is approximately equal to

λ(1−B)4τ̂Tt(y3, . . . , yT+2),

which can be conjectured to approximately equal to

λτ̂Tt(∆
4y3, . . . ,∆

4yT+2).
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Therefore, the conjecture presents itself that the cyclical component in a series yt is approx-
imately equal to the trend in the fourth difference. Theorem 1 corrects and formalizes the
conjecture above by taking into account the first order conditions of Equations (2)-(5) as
well.

Note that the last two observations ỹT,T−1 and ỹTT are important especially if the original
series is strongly trended; for example if yt is integrated of order 3 or 4. In that case, those
two observations may be relatively large, because in the formulas for these objects the second
difference instead of the fourth difference shows up. In Section 5, we will elaborate on this
observation to show that King and Rebelo (1993)’s conjecture is incorrect in some dimensions.

De Jong and Sakarya (2016) gives an analysis of the weak dependence properties of the
cyclical component of a unit root process. It is unclear how to extend this analysis to series
that are integrated of order 2 or more. Also, the analysis of de Jong and Sakarya (2016) does
not give a route for a characterization of structural breaks or deterministic trends (such as
polynomial or exponential trends). However, the result that is given in Theorem 1 allows us
to give formal results for processes that are integrated up to order 4 and for deterministic
trends in a simple and elegant way by providing a full characterization for the cyclical
component of any series.

4 The effect of a structural break

We analyze the effects of structural breaks to the cyclical component. Specifically, we focus
on an intercept break that is assumed to occur at an unknown date in the middle of the
sample. The next result formalizes the effect of an intercept break.

Theorem 2. Let

yt =

{
ut for t = 1, 2, . . . , [rT ]

µ+ ut for t = [rT ] + 1, [rT ] + 2, . . . , T,

where 4 ≤ [rT ] ≤ T − 5, r ∈ (0, 1) and [·] is the floor function. Then for t = 1, 2, . . . , T

ĉTt(y1, . . . , yT ) = −λµ∆3wTt,[rT ]+2 + ĉTt(u1, u2, . . . , uT ),

where wTts is defined in Equation (17) of Appendix 1, and for k ∈ Z

lim
T→∞

|ĉT,[rT ]+k(y1, . . . , yT )− ĉT,[rT ]+k(u1, u2, . . . , uT )| = λ|µ∆3fλ(k + 1)| a.s.,

where fλ(·) is defined in Equation (22) of Appendix 1.

The first result shows that the presence of the structural break alters the cyclical com-
ponent ĉTt by −λµ∆3wTt,[rT ]+2. From results (5) and (6) of Appendix 1, we know that
|fλ(k)| ≤ C|k|−3 for |k| ≥ 1; therefore, the cyclical component ĉT,[rT ]+k for values of k that
are away from zero is not affected much asymptotically by the structural break. However,
for small values of k, the second result shows that the cyclical component is altered by
λµ∆3fλ(k+ 1) asymptotically. It is possible to calculate λ∆3fλ(k+ 1) by using the formula
for fλ(k + 1) in result (6) of Appendix 1. In Figure 1, the effect of an intercept break on
the cyclical component is illustrated by plotting λµ∆3fλ(k + 1) for λ = 1600 and µ = 1. It
shows that the structural break mainly impacts ĉTt’s that are less than 10 time points away
from the structural break point. Note that the problem of analyzing multiple breaks can be
split into the analyses of single breaks by the additivity of the HP filter cyclical component.
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Phillips and Jin (2015) consider a much more general form of trend and analyze the effect
of a structural break. They assume λ = µT 4 where µ ∈ (0,∞) and consider the behavior of
the trend at a distance k = O(T ) away from the break. Our result assumes both λ and k
constant.
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Figure 1: The effect of a deterministic trend break of size 1 when λ = 1600

5 The HP filter when applied to integrated processes

We consider the weak dependence properties of the cyclical component which is obtained from
processes yt that are integrated up to order 4; that is, ∆qyt = ut, for q = 1, 2, 3, or 4, where
we assume that ut has some stationarity or weak dependence properties. King and Rebelo
(1993) have conjectured, based on considering the first order condition in Equation (7) only,
that the cyclical component has weak dependence properties for processes that are integrated
up to order 4. In this section, we show that this can be made precise for bounded functions
of the cyclical component when the process is integrated up to order 4. On the other hand,
for unbounded functions of the cyclical component, we show that the law of large numbers
does not necessarily hold. Therefore, the picture is more subtle than suggested by King and
Rebelo (1993).

The cyclical component ĉTt is a triangular array, and therefore it cannot be a strictly
stationary sequence. On the other hand, it is possible to derive a near epoch dependence type
result. The near-epoch dependence idea goes back to Ibragimov (1962) and is formalized
by Billingsley (1968), McLeish (1975), Bierens (1983), Gallant and White (1988), Andrews
(1988), and Pötscher and Prucha (1991) with different approaches. The idea behind the
near epoch dependence concept is that the process can be approximated arbitrarily well
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by a function of a finite number of strong mixing variables. Such a function is called the
approximator.

To formulate our result, for m ≥ 1 define the approximator ĉmTt for t = 1, 2, . . . , T as

ĉmTt = λ
T−2∑
s=3

wTtsỹTsI(|t− s| ≤ m). (9)

Note that ỹTs = ∆4ys+2 for s = 3, . . . , T − 2. Since ∆4ys+2 = ∆4−qus+2 for q = 1, 2, 3, 4 is
a function of us−2+q, . . . , us+2, the approximator ĉmTt depends only on ut−2−m+q, . . . , ut+2+m.

Also, note that the approximator cannot be defined as λ
∑T

s=1wTtsỹTsI(|t−s| ≤ m) because
then the approximator would include integrated terms (i.e., ỹT,T−1 and ỹTT ) if yt is an I(3)
or I(4) process.

The next result shows that the cyclical component has an approximability property when
the HP filter is applied to a process that is integrated of order 4 or less. Everywhere in this
paper, ‖ · ‖p denotes (E| · |p)1/p.

Theorem 3. Let p ≥ 1. Assume that ∆qyt = ut, for q = 1, 2, 3, or 4, where sups≥1 ‖ us ‖p<
∞. Then for any γ ∈ (0, 1/2), there exists constant C1 > 0 such that for any m ≥ 1,

sup
T≥1

sup
t∈[γT,(1−γ)T ]

‖ ĉTt−λwTt1ỹT1−λwTt2ỹT2−λwTt,T−1ỹT,T−1−λwTtT ỹTT − ĉmTt ‖p≤ C1m
−2

and

sup
T≥1

sup
t∈[γT,(1−γ)T ]

‖ ĉTt − λwTt1ỹT1 − λwTt2ỹT2 − λwTt,T−1ỹT,T−1 − λwTtT ỹTT ‖p<∞.

The term

wTt1ỹT1 + wTt2ỹT2 + wTt,T−1ỹT,T−1 + wTtT ỹTT (10)

will be small under standard conditions if yt is integrated up to order 4. This is because
I(2) processes are Op(T

3/2) under standard conditions (such as when a functional central
limit theorem holds for the ut), while from results (5) and (8) of Appendix 1, it follows
that |wTtj| ≤ C̃T−3 for j = 1, 2, T − 1, T and t ∈ [γT, (1 − γ)T ]. Therefore, ĉTt can be
approximated well using ĉmTt, which is a function of the us for values of s close to t, and
therefore has weak dependence properties. This reasoning can be used to establish the
following weak law of large numbers for bounded and continuous functions of the cyclical
component:

Theorem 4. Assume that yt satisfies ∆qyt = ut for q = 1, 2, 3, or 4, and assume that ut is
strong mixing. In addition, assume that E(|ỹ1T | + |ỹ2T | + |ỹT−1,T | + |ỹT,T |) = O(T 3/2). Let
g(·) be a function that is bounded and Lipschitz continuous on R. Then

T−1
T∑
t=1

(g(ĉTt)− Eg(ĉTt))
p−→ 0.

The result above can be viewed as a formalization of King and Rebelo’s conjecture. Note
that in the above result, the term of Equation (10) plays no role asymptotically as long as
g(·) is a bounded function. In the case that g(·) is an unbounded function, the fact that ỹTT
is asymptotically large if yt is integrated of order 3 or 4 can break the law of large numbers
for functions of the cyclical component. The following theorem formalizes this.
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Theorem 5. Assume that yt satisfies ∆qyt = ut for q = 3 or 4, and supk≥1E|uk| <∞. Let

g(x) ≥ C|x|p where x ∈ R, p > 0, and C > 0. Also, assume that UT (r) := T−1/2
∑[rT ]

t=1 ut ⇒
U(r) on r ∈ [0, 1], where U(·) denotes a multiple of Brownian motion. Then,

T−1
T∑
t=1

g(ĉTt) ≥ CλpT−1|
T∑
s=1

wTTsỹTs|p. (11)

If yt is an I(3) process, then

T−p/2|
T∑
s=1

wTTsỹTs|p
d−→ | ((fλ(0)− fλ(2)) + ξλgλ(1)(gλ(1)− gλ(2)))U(1)|p. (12)

If yt is an I(4) process, then

T−3p/2|
T∑
s=1

wTTsỹTs|p
d−→ | ((fλ(0)− fλ(2)) + ξλgλ(1)(gλ(1)− gλ(2)))

∫ 1

0

U(r)dr|p, (13)

where gλ(·) and ξλ are defined in results (7) and (8) of Appendix 1, respectively.

It is easy to verify that fλ(0)−fλ(2)+ξλgλ(1)(gλ(1)−gλ(2)) takes the value of 0.254, 0.022,
and 0.002 for λ = 6.25, 1600, and 129,600, respectively.3 The above result gives conditions
under which T−1

∑T
t=1 g(ĉTt) is explosive. In the first result, we show that T−1

∑T
t=1 g(ĉTt)

is bounded below by a process that is Op(T
(p/2−1)) if yt is an I(3) process. This implies that

for p ≥ 2, the law of large numbers does not hold for g(ĉTt). Similarly, T−1
∑T

t=1 g(ĉTt) is
bounded below by a process that is Op(T

(3p/2−1)) if yt is an I(4) process, which again implies
that the law of large numbers does not hold for g(ĉTt) for p ≥ 2/3. Therefore, Theorem 5
provides a partial converse to King and Rebelo’s conjecture, as it illustrates that the law of
large numbers can fail for unbounded functions of the cyclical component when the HP filter
is applied to I(3) or I(4) processes.

Phillips and Jin (2015)’s Theorem 4 considers the I(1) case. For the case λ = µT 4, they
conclude in Remark 9 that the scaled partial sum process of the cyclical component satisfies
a functional central limit theorem. For the case of smaller λ, Phillips and Jin (2015) conclude
that the HP filter “. . . eliminates the stochastic trend giving a zero ‘cyclical’ process.”

6 The HP filter when applied to deterministic trends

6.1 Deterministic polynomial trends

Theorem 1 also allows us to establish the behavior of the HP filter when applied to determin-
istic polynomial trends. From Theorem 1, a result for the case of a linear trend yt = a + bt
immediately follows. After all, for that case, ∆2yt = 0, implying that ỹTt = 0 for t = 1, . . . , T ,
which by Theorem 1 implies that ĉTt = 0. For higher order polynomials, the result is more
complex. In Theorem 6 and below, we adopt the convention that the summations over empty
index sets are zero.

3The Matlab program used to calculate these values can be found at https://neslihansakarya.weebly.
com/uploads/5/9/5/5/59554687/matlab_files_for_theorem_5.zip
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Theorem 6. Suppose that yt = tp for t = 1, 2, . . . , T and p ∈ N. Then,

ĉTt(1, 2
p, . . . , T p) =

{
λCTtp if p = 2, 3

λ
∑p−4

k=0 apkτ̂Tt(1, 2
k, . . . , T k) + λCTtp − λHTtp if p ≥ 4.

where

cpk =

(
p

k

)
(2p−k − 2), (14)

CTtp =

p−2∑
k=0

cpkτ̂Tt
(
1, 2k − 2, 0, . . . , 0, (T − 3)k − 2(T − 2)k, (T − 2)k

)
,

apk =

{(
p
k

) (
2p−k+1 − 8

)
if p− k is even

0 if p− k is odd,
(15)

HTtp =

p−4∑
k=0

apkτ̂Tt
(
1, 2k, 0, . . . , 0, (T − 1)k, T k

)
.

Note that for p = 2, ĉTt = λCTt2 = 2λτ̂Tt(1,−1, 0, . . . , 0,−1, 1) = 2λ(wTt1 − wTt2 −
wTt,T−1 + wTtT ). This result and results (5) and (8) of Appendix 1 together imply that ĉTt
takes a value close to zero if t is sufficiently away from the begin and end points. In the
case of a cubic trend, Theorem 6 gives ĉTt = λCTt3 = 6λτ̂Tt(2,−1, 0, . . . , 0,−T, (T − 1)) =
6λ(2wTt1 − wTt2 − TwTt,T−1 + (T − 1)wTtT ), which suggests that the cyclical component
approaches zero slower than the cyclical component of a quadratic trend in the middle of
a large sample. The heuristic approach that we explained in Section 2 incorrectly suggests
that the cyclical component of a polynomial trend of order 3 or less equals zero. Another
implication of the above result is that for p = 4, ĉTt = 24λ + λCTt4 − λHTt4. Note that
CTt4 = 50wTt1 + 10wTt2 + (−12(T − 2)2 + 70)wTt,T−1 + (12(T − 2)2 + 24T − 34)wTtT and
HTt4 = 24(wTt1 + wTt2 + wTt,T−1 + wTtT ). In the middle of a large sample, CTt4 and HTt4

are O(T−1) and O(T−3), respectively, by results (5) and (8) of Appendix 1 and therefore,
ĉTt is roughly equal to 24λ in that case. However, since by Lemma 2, for fixed k ≥ 0,
limT→∞ T

−2CT,T−k,4 exists and does not equal 0, CT,T−k,4 is O(T 2) near the end of the
sample. The reduction of the polynomial order by 4 therefore only happens in the middle of
the sample. The case p > 4 follows a similar pattern.

Next, we provide an explicit formula for the cyclical component of a quadratic trend. In
Theorem 7 and below, z̄ denotes the complex conjugate of z.

Theorem 7. Suppose that yt = t2 for t = 1, 2, . . . , T , and 0 < λ <∞. Then

ĉTt =(C1T + C̄1T )|z1|t cos(tθ) + i(C1T − C̄1T )|z1|t sin(tθ)

+ (C1T + C̄1T )|z1|T−t+1 cos((T − t+ 1)θ)

+ i(C1T − C̄1T )|z1|T−t+1 sin((T − t+ 1)θ), (16)

where i2 = −1,

aT = (1 + λ)(z1 + zT1 )− 2λ(z21 + zT−11 ) + λ(z31 + zT−21 ),

bT = −2λ(z1 + zT1 ) + (1 + 5λ)(z21 + zT−11 )− 4λ(z31 + zT−21 ) + λ(z41 + zT−31 ),
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C1T = 2λ
(
b̄T + āT

)
/
(
aT b̄T − āT bT

)
,

z1 = 1−
√√

1 + 16λ− 1

2
√

2λ
+ i

( √
2√√

1 + 16λ− 1
− 1

2
√
λ

)
,

θ = tan−1
(

21/2
(√

1 + 16λ− 1
)−1/2)

.

Note that C1T + C̄1T and i(C1T − C̄1T ) that appear in Theorem 7 are both real-valued.
The above result implies that when t is small and T is large, the cyclical component of a
quadratic trend is approximately equal to (C1T + C̄1T )|z1|t cos(tθ) + i(C1T − C̄1T )|z1|t sin(tθ),
and when t is close to the end of the sample, the last two terms in Equation (16) take over.
When t is in the middle of a large sample, ĉTt takes relatively smaller values since all terms
in Equation (16) are small. This is because |z1| < 1 for 0 < λ < ∞. Also, it is easy to
see that ĉTt(1, 2

2, . . . , T 2) = ĉT,T−t+1(1, 2
2, . . . , T 2) for t = 1, 2, . . . , T . This property of the

cyclical component appears only in the quadratic trend case.
Note that it is also possible to derive an expression for the cyclical component of a cubic

trend along the lines of Theorem 7:

ĉTt =(C∗1T + C̄∗1T )|z1|t cos(tθ) + i(C∗1T + C̄∗1T )|z1|t sin(tθ)

+ (C∗2T + C̄∗2T )|z1|T−t+1 cos((T − t+ 1)θ)

+ i(C∗2T + C̄∗2T )|z1|T−t+1 sin((T − t+ 1)θ),

where C∗1T and C∗2T are the complex-valued terms that depend only on z1 and T , and C∗1T 6=
C∗2T 6= C1T . For the sake of brevity, we do not provide the explicit formulas for C∗1T and C∗2T .

Phillips and Jin (2015)’s Theorem 4 and the subsequent discussion provide an asymptotic
analysis of a general higher order polynomial case, and they conclude that “... the asymptotic
forms of the filters project the higher order polynomials onto lower order polynomials ... and
apply the smoother to the residual process.” However, the results of this section considered
fixed T results.

6.2 Deterministic exponential trends

The following result characterizes an exponential deterministic trend by using the result of
Theorem 1.

Theorem 8. Let yt = exp(t) for t = 1, 2, . . . , T . Then

ĉTt = Cλτ̂Tt(C1 exp(1), C2 exp(2), exp(3), . . . , exp(T − 2), C3 exp(T − 1), C4 exp(T ))

where C = exp(2)(1−exp(−1))4, C1 = (1−exp(−1))−2, C2 = C1(1−2 exp(−1)), C3 = 1−C1,
and C4 = C1 exp(−2).

Since the above result implies that the cyclical component equals the trend in an exponen-
tially increasing sequence, Theorem 8 suggests that the HP filter is not capable of removing
an exponential deterministic trend from a series. As was noted by the Editor, given the fact
that differencing an exponential trend gives a multiple of an exponential trend, and given the
role of the fourth difference in the HP filter, it is not surprising that the cyclical component
retains an exponential trend (the exact nature of which is given in Theorem 8). Results such
as Phillips and Jin (2015)’s Theorem 1 and Remark 3 can also be shown to imply the result
of Theorem 8.

The next result shows that the cyclical component of an exponentially deterministic trend
is as explosive as the exponential trend itself when t is close to the end of the sample.
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Theorem 9. Let yt = exp(t) for t = 1, 2, . . . , T . Then for k ≥ 0

lim
T→∞

ĉT,T−k(exp(1), . . . , exp(T ))

exp(T − k)

=Cλ exp(k)
∞∑
j=0

(fλ(k − j) + fλ(k + j + 1) + ξλgλ(k + 1)gλ(j + 1)) exp(−j)

+ Cλ exp(k − 1)(C3 − 1) (fλ(k − 1) + fλ(k + 2) + ξλgλ(k + 1)gλ(2))

+ Cλ exp(k)(C4 − 1) (fλ(k) + fλ(k + 1) + ξλgλ(k + 1)gλ(1)) .

This result shows that the HP filter is not capable of removing the trend in deterministic
exponential trends, in the sense that ĉTt is as explosive as yt = exp(t) when t is close to the
end of the sample. For λ = 1600 and k = 0, 1, . . . , 5, the limit in Theorem 9 takes the values
0.703, 0.277,−0.739,−3.130,−8.679 and −21.363, respectively.4

In the setting of an exponential time trend, a trivial remedy is to take the logarithm of
yt, which will become a linear trend after the logarithmic transformation. It was argued in
the beginning of Section 6 that the HP filter is capable of removing a linear trend; therefore,
the cyclical component of the transformed yt would be zero.

7 Conclusion

This paper derives a simple but elegant property of the HP filter, which highlights the
behavior of the cyclical component when the HP filter is applied to various processes. We
use this result to derive small sample results and fixed lambda asymptotic results.

Our main result is used to analyze the effect of an intercept break. We find that an
intercept break affects the cyclical component, and this effect is not negligible even when
the sample size is large. Next, our main result is applied to integrated processes of order
up to 4. We conclude that the cyclical component of series that are integrated of order
1 or 2 possesses weak dependence properties and that the law of large numbers holds for
transformations of the cyclical component. On the other hand, the situation is more subtle
when the HP filter is applied to processes that are integrated of order 3 or 4. We find
that in this case, the law of large numbers fails to hold for unbounded transformations of
the cyclical component. Our main result allows us to derive a closed form formula for the
cyclical component of deterministic polynomial trends. It is shown that the HP filter reduces
the order of the polynomial by 4 in the middle of the sample. We show that the HP filter is
not capable of removing the trend in deterministic exponential trends.

Results such as those of Phillips and Jin (2002), Phillips and Jin (2015) and this paper
should help economists gain a full understanding of the issues involved in the analysis of HP
filtered macroeconomic data. In particular, these results can inform applied macroeconomists
about the effect of applying the HP filter in the presence of structural breaks, unit roots,
and/or deterministic polynomial or exponential trends.
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Appendix 1

In this section, we introduce the notation and the results from de Jong and Sakarya (2016)
that are used throughout this paper.

1. For m ∈ Z, λ ∈ [0,∞), and T ≥ 1,

fTλ(m) =1/(2T ) + (−1)m(2T )−1(1 + 16λ)−1

+ T−1
T∑
j=2

cos(π(j − 1)m/T )(1 + 16λ sin(π(j − 1)/(2T ))4)−1.

2. For m ≥ 1, λ ∈ [0,∞), and T ≥ 1,

gTλ(m) = T−1
T∑
j=1

√
2 cos(π(j − 1)(m− 1/2)/T )qT1j(1 + 16λ sin(π(j − 1)/(2T ))4)−1,

where qT1j = sin(π(j − 1)/(2T ))2 cos(π(j − 1)/(2T )) for j = 1, 2, . . . , T .

3. The sequences δTλ, ηTλ, ξTλ and φTλ are defined as

δTλ =T−1
T∑
j=1

q2T1j(1 + 16λ sin(π(j − 1)/(2T ))4)−1,

ηTλ =T−1
T∑
j=1

qT1jqT2j(1 + 16λ sin(π(j − 1)/(2T ))4)−1,

where qT2j = sin(π(j − 1)/(2T ))2 cos(π(j − 1)(T − 1/2)/T ) for j = 1, 2, . . . , T , and

ξTλ =32λ(1− 64λδTλ)(1− 64λδTλ + 322λ2(δ2Tλ − η2Tλ))−1

+ 322λ2(1− 64λδTλ + 322λ2(δ2Tλ − η2Tλ))−1δTλ,
φTλ =322λ2(1− 64λδTλ + 322λ2(δ2Tλ − η2Tλ))−1ηTλ.

4. When the HP filter is applied to a time series yt, it calculates a trend that is the
weighted average of the original series such that τ̂Tt =

∑T
s=1wTtsys for t = 1, 2, . . . , T

where

wTts =fTλ(t− s) + fTλ(T )I(t+ s− 1 = T )

+ fTλ(t+ s− 1)I(t+ s− 1 < T ) + fTλ(2T − t− s+ 1)I(t+ s− 1 > T )

+ ξTλgTλ(t)gTλ(s) + φTλgTλ(T − t+ 1)gTλ(s)

+ φTλgTλ(t)gTλ(T − s+ 1) + ξTλgTλ(T − t+ 1)gTλ(T − s+ 1) (17)

=fTλ(t− s) +
8∑
j=2

wjT ts. (18)

5. |fTλ(0)| ≤ 1; for m ∈ {1, 2, . . . , T}, |fTλ(m)| ≤ Cm−3 and |gTλ(m)| < Cm−3 for some
constant C > 0 independent T by Theorem 1 of de Jong and Sakarya (2016); from the
above definitions and inequalities, it follows that

sup
T≥1,t,s∈{1,2,...,T}

|wTts| <∞, (19)

sup
T≥1

T−2∑
s=1

|wTTs| <∞, (20)
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and for γ ∈ (0, 1/2)

sup
T≥1

sup
1≤s≤T

sup
r∈[γ,(1−γ)]

|T 3

8∑
j=2

wjT,[rT ],s| <∞. (21)

6. For all λ ≥ 0 and m ∈ Z,

lim
T→∞

fTλ(m) = fλ(m) =

∫ 1

0

cos(πrm)(1 + 16λ sin(πr/2)4)−1dr. (22)

7. For all λ ≥ 0 and m ≥ 1,

lim
T→∞

gTλ(m) = gλ(m)

=
√

2

∫ 1

0

cos(πr(m− 1/2)) sin(πr/2)2 cos(πr/2)(1 + 16λ sin(πr/2)4)−1dr.

8. For all λ ≥ 0, limT→∞ φTλ = 0,

lim
T→∞

ξTλ = ξλ =
32λ

1− 32λδλ
,

where 1− 32λδλ 6= 0, and

lim
T→∞

δTλ = δλ =

∫ 1

0

sin(πr/2)4 cos(πr/2)2(1 + 16λ sin(πr/2)4)−1dr.

9. Since τ̂Tt =
∑T

s=1wTtsys for t = 1, 2, . . . , T , for sequences xt and yt, we have

τ̂Tt(x1 + y1, x2 + y2, . . . , xT + yT ) = τ̂Tt(x1, x2, . . . , xT ) + τ̂Tt(y1, y2, . . . , yT ), (23)

and also since ĉTt = yt − τ̂Tt we write

ĉTt(x1 + y1, x2 + y2, . . . , xT + yT ) = ĉTt(x1, x2, . . . , xT ) + ĉTt(y1, y2, . . . , yT ), (24)

for t = 1, 2, . . . , T .

10. For t = 1, 2, . . . , T

τ̂Tt(y1, y2, . . . , yT−1, yT ) = τ̂T,T−t+1(yT , yT−1, . . . , y2, y1). (25)

Appendix 2: Mathematical proofs

Throughout this Appendix, we define summations with empty index sets to equal 0.

Proof of Theorem 1. First, we rewrite the minimization problem of Equation (1) as a mini-
mization problem over ct = yt − τt. We then obtain

T∑
t=1

c2t + λ
T−1∑
t=2

(ct+1 − 2ct + ct−1)
2 − 2λ

T−1∑
t=2

(yt+1 − 2yt + yt−1)(ct+1 − 2ct + ct−1)

+λ
T−1∑
t=2

(yt+1 − 2yt + yt−1)
2.
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The last term of the expression above is irrelevant to the minimization problem. Applying
summation by parts twice gives (Rudin, 1976, Theorem 3.41 on p. 70)

T−1∑
t=2

(yt+1 − 2yt + yt−1)(ct+1 − 2ct + ct−1)

=
T−1∑
t=2

∆2yt+1∆
2ct+1

=
T−1∑
t=3

(∆2yt −∆2yt+1)∆ct + ∆2yT∆cT −∆2y3∆c2

=
T−2∑
t=3

∆4yt+2ct + ∆2y3c1 +
(
∆2y4 − 2∆2y3

)
c2 +

(
∆2yT−1 − 2∆2yT

)
cT−1 + ∆2yT cT ,

and therefore, it suffices to minimize

T∑
t=1

c2t + λ

T−1∑
t=2

(ct+1 − 2ct + ct−1)
2 − 2λ

T−2∑
t=3

∆4yt+2ct

−2λ∆2y3c1 − 2λ
(
∆2y4 − 2∆2y3

)
c2 − 2λ

(
∆2yT−1 − 2∆2yT

)
cT−1 − 2λ∆2yT cT

=
T∑
t=1

c2t+λ
T−1∑
t=2

(ct+1−2ct+ct−1)
2−2λ

T−2∑
t=3

ỹTtct−2λỹT1c1−2λỹT2c2−2λỹT,T−1cT−1−2λỹTT cT ,

over (c1, . . . , cT ) where ỹTt is defined in Theorem 1. The first order conditions for ct for
t = 1, 2, T − 1, T are(

(1 + λ)− 2λB̄ + λB̄2
)
ĉT1 = λ∆2y3 = λỹT1, (26)(

−2λB + (1 + 5λ)− 4λB̄ + λB̄2
)
ĉT2 = λ

(
∆2y4 − 2∆2y3

)
= λỹT2, (27)(

−2λB̄ + (1 + 5λ)− 4λB + λB2
)
ĉT,T−1 = λ

(
∆2yT−1 − 2∆2yT

)
= λỹT,T−1, (28)(

(1 + λ)− 2λB + λB2
)
ĉTT = λ∆2yT = λỹTT , (29)

respectively. Also, the first order condition for ct for t = 3, . . . , T − 2 is(
λB̄2 − 4λB̄ + (1 + 6λ)− 4λB + λB2

)
ĉTt = λ∆4yt+2 = λỹTt. (30)

The analogy between the first order conditions of Equations (26)-(30) and the first condi-
tions of Equations (2)-(6) now reveals that ĉTt(y1, y2, . . . , yT ) = τ̂Tt(λỹT1, λỹT2, . . . , λỹTT ) =
λτ̂Tt(ỹT1, ỹT2, . . . , ỹTT ).

Lemma 1. For r ∈ (0, 1) and k, l ∈ Z,

lim
T→∞

wT,[rT ]+k,[rT ]+l = fλ(k − l).
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Proof of Lemma 1. Using Equation (17), we write

lim
T→∞

wT,[rT ]+k,[rT ]+l

= lim
T→∞

(fTλ(k − l) + fTλ(T )I(2[rT ] + k + l − 1 = T ))

+ lim
T→∞

fTλ(2[rT ] + k + l − 1)I(2[rT ] + k + l − 1 < T )

+ lim
T→∞

fTλ(2(T − [rT ])− k − l + 1)I(2[rT ] + k + l − 1 > T )

+ lim
T→∞

(ξTλgTλ([rT ] + k)gTλ([rT ] + l) + φTλgTλ(T − [rT ]− k + 1)gTλ([rT ] + l))

+ lim
T→∞

φTλgTλ([rT ] + k)gTλ(T − [rT ]− l + 1)

+ lim
T→∞

ξTλgTλ(T − [rT ]− k + 1)gTλ(T − [rT ]− l + 1)

=fλ(k − l),

by results (5)-(8) in Appendix 1.

Proof of Theorem 2. Because yt = µI(t ≥ [rT ] + 1) + ut and Equation (24)

ĉTt(y1, y2, . . . , yT ) = ĉTt(u1, u2, . . . , uT )+ĉTt(µI(1 ≥ [rT ]+1), µI(2 ≥ [rT ]+1), . . . , µI(T ≥ [rT ]+1)).

By Theorem 1, and because 4 ≤ [rT ] ≤ T − 5 was assumed,

ĉTt(µI(1 ≥ [rT ] + 1), µI(2 ≥ [rT ] + 1), . . . , µI(T ≥ [rT ] + 1))

=λµτ̂Tt(0, 0,∆
4I(5 ≥ [rT ] + 1), . . . ,∆4I(T ≥ [rT ] + 1), 0, 0).

Noting that ∆4I(t+ 2 ≥ [rT ] + 1) = ∆3I(t+ 2 = [rT ] + 1), it follows that the last expression
equals

λµτ̂Tt(0, 0,∆
3I(5 = [rT ] + 1), . . . ,∆3I(T = [rT ] + 1), 0, 0)

=λµ
T−2∑
s=3

∆3I(s+ 2 = [rT ] + 1)wTts

=λµ
T−2∑
s=3

(I(s+ 2 = [rT ] + 1)− 3I(s+ 1 = [rT ] + 1))wTts

+ λµ

T−2∑
s=3

(3I(s = [rT ] + 1)− I(s− 1 = [rT ] + 1))wTts

=− λµ∆3wTt,[rT ]+2,

where the first equality is obtained by the weighted average representation of the trend
provided in result (9) of Appendix 1. This establishes the first result of theorem.

Next, we need to show the second result of the theorem. Using the first result of the
theorem, we find that

lim
T→∞

|ĉT,[rT ]+k(y1, y2, . . . , yT )− ĉT,[rT ]+k(u1, u2, . . . , uT )|

= lim
T→∞

|λµ∆3wT,[rT ]+k,[rT ]+2|

=λ|µ| lim
T→∞

|wT,[rT ]+k,[rT ]+2 − 3wT,[rT ]+k,[rT ]+1 + 3wT,[rT ]+k,[rT ] − wT,[rT ]+k,[rT ]−1|

=λ|µ||fλ(k − 2)− 3fλ(k − 1) + 3fλ(k)− fλ(k + 1)|
=λ|µ∆3fλ(k + 1)| a.s.,

where the third equality follows from Lemma 1.
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Proof of Theorem 3: By Theorem 1 and the definition of ĉmTt in Equation (9),

sup
t∈[γT,(1−γ)T ]

‖ ĉTt(y1, y2, . . . , yT )−λwTt1ỹT1−λwTt2ỹT2−λwTt,T−1ỹT,T−1−λwTtT ỹTT− ĉmTt ‖p

= sup
t∈[γT,(1−γ)T ]

‖ λτ̂Tt(ỹ1, ỹ2, . . . , ỹT )−λwTt1ỹT1−λwTt2ỹT2−λwTt,T−1ỹT,T−1−λwTtT ỹTT−ĉmTt ‖p

= λ sup
t∈[γT,(1−γ)T ]

‖
T−2∑
s=3

wTtsỹTs −
T−2∑
s=3

wTtsỹTsI(|t− s| ≤ m) ‖p

≤ λ sup
t∈[γT,(1−γ)T ]

T−2∑
s=3

|wTts| ‖ ỹTs ‖p I(|t− s| > m)I(T ≥ m).

For m ≥ 1, noting that sup3≤s≤T−2 ‖ ỹTs ‖p≤ C sups≥1 ‖ us ‖p if ∆pyt = ut for p = 1, 2, 3, or
4,

sup
t∈[γT,(1−γ)T ]

T−2∑
s=3

|wTts| ‖ ỹTs ‖p I(|t− s| > m)I(T ≥ m)

≤ C sup
t∈[γT,(1−γ)T ]

T−2∑
s=3

|fTλ(t− s)|I(|t− s| > m) sup
s≥1
‖ us ‖p

+C sup
t∈[γT,(1−γ)T ]

T−2∑
s=3

|
8∑
j=2

wjT ts|I(|t− s| > m) sup
s≥1
‖ us ‖p I(T ≥ m)

≤ C
T−2∑
j=m

|fTλ(j)| sup
s≥1
‖ us ‖p +C

T−2∑
s=3

sup
t∈[γT,(1−γ)T ]

|
8∑
j=2

wjT ts| sup
s≥1
‖ us ‖p

≤ C1 sup
s≥1
‖ us ‖p

∞∑
j=m

j−3

+CT−2 sup
s≥1
‖ us ‖p sup

T≥1
sup

1≤s≤T
sup

t∈[γT,(1−γ)T ]
|T 3

8∑
j=2

wjT ts|I(T ≥ m)

= O(m−2),

by the results of Equations (18)-(21). This shows the first assertion of the theorem. To show
the second assertion,

sup
T≥1

sup
t∈[γT,(1−γ)T ]

‖ ĉTt − λwTt1ỹT1 − λwTt2ỹT2 − λwTt,T−1ỹT,T−1 − λwTtT ỹTT ‖p

≤λ sup
T≥1

sup
t∈[γT,(1−γ)T ]

‖
T−2∑
s=3

wTtsỹTs ‖p

≤32λ
T−2∑
j=0

|fTλ(j)| sup
s≥1
‖ us ‖p +16λ

T−2∑
s=3

sup
t∈[γT,(1−γ)T ]

|
8∑
j=2

wjT ts| sup
s≥1
‖ us ‖p= O(1),

by a reasoning similar to that of the proof of the first assertion.
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Proof of Theorem 4: We write that

T−1
T∑
t=1

(g(ĉTt)− Eg(ĉTt))

=T−1
∑

t∈{1,...,T},t/∈[γT,(1−γ)T ]

(g(ĉTt)− Eg(ĉTt)) + T−1
∑

t∈[γT,(1−γ)T ]

(g(ĉTt)− Eg(ĉTt)).

The first term is bounded in absolute value by 4γ supx∈R |g(x)| where γ can be chosen
arbitrarily small. Therefore, it is sufficient to show that the second term is op(1). Let
aTt = λ(wTt1ỹT1 + wTt2ỹT2 + wTt,T−1ỹT,T−1 + wTtT ỹTT ) and note that

T−1
∑

t∈[γT,(1−γ)T ]

(g(ĉTt)− Eg(ĉTt))

=T−1
∑

t∈[γT,(1−γ)T ]

(g(ĉTt)− g(ĉTt − aTt)) (31)

+ T−1
∑

t∈[γT,(1−γ)T ]

(g(ĉTt − aTt)− Eg(ĉTt − aTt)) (32)

+ T−1
∑

t∈[γT,(1−γ)T ]

(Eg(ĉTt − aTt)− Eg(ĉTt)). (33)

by the triangle inequality. For the expression in Equation (32), the weak law of large numbers
follows analogously to the proof of Theorem 6 of de Jong and Sakarya (2016). Therefore,
we only need to show that the expression in Equation (31) is op(1) and the expression in
Equation (33) converges to 0. Both results follow if

T−1
∑

t∈[γT,(1−γ)T ]

E|g(ĉTt)− g(ĉTt − aTt)| −→ 0. (34)

In order to establish this, note that since g(·) is Lipschitz continuous, we have

T−1
∑

t∈[γT,(1−γ)T ]

E|g(ĉTt)− g(ĉTt − aTt)| ≤ LT−1
∑

t∈[γT,(1−γ)T ]

E|aTt|, (35)

and by the definition of aTt and Equation (18), we have

E|aTt| ≤ λ(|wTt1|E|ỹT1|+ |wTt2|E|ỹT2|+ |wTt,T−1|E|ỹT,T−1|+ |wTtT |E|ỹTT |)

≤ λ(|fTλ(t− 1)|+ |
8∑

k=2

wkT t1|)E|ỹT1|+ λ(|fTλ(t− 2)|+ |
8∑

k=2

wkT t2|)E|ỹT2|

+λ(|fTλ(t− T + 1)|+ |
8∑

k=2

wkT t,T−1|)E|ỹT,T−1|+ λ(|fTλ(t− T )|+ |
8∑

k=2

wkT tT |)E|ỹTT |

≤ λ sup
s∈{1,2,T−1,T}

|fTλ(t− s)|E(|ỹT1|+ |ỹT2|+ |ỹT,T−1|+ |ỹTT |)

+λ sup
s∈{1,2,T−1,T}

|
8∑

k=2

wkT ts|E(|ỹT1|+ |ỹT2|+ |ỹT,T−1|+ |ỹTT |)
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≤ C1T
3/2 sup

s∈{1,2,T−1,T}
|fTλ(t− s)|+ C2T

3/2 sup
s∈{1,2,T−1,T}

|
8∑

k=2

wkT ts|, (36)

where the last line follows from the assumption E(|ỹT1|+ |ỹT2|+ |ỹT,T−1|+ |ỹTT |) = O(T 3/2).
Therefore, we use the upper bound for E|aTt| in Equation (36) to bound the expression in
Equation (35), as follows:∑

t∈[γT,(1−γ)T ]

E|g(ĉTt)− g(ĉTt − aTt)|

≤ C1LT
3/2T−1

∑
t∈[γT,(1−γ)T ]

sup
s∈{1,2,T−1,T}

|fTλ(t− s)|

+C2LT
3/2T−1

∑
t∈[γT,(1−γ)T ]

sup
s∈{1,2,T−1,T}

|
8∑

k=2

wkT ts|.

Note that

lim
T→∞

T 3/2T−1
∑

t∈[γT,(1−γ)T ]

sup
s∈{1,2,T−1,T}

|fTλ(t− s)|

≤ C3 lim
T→∞

T−3/2T−1((1− 2γ)T + 1) sup
r∈[γ,(1−γ)]

sup
s∈{1,2,T−1,T}

T 3|[rT ]− s|−3

= 0,

where the last inequality follows from |fTλ(m)| ≤ C|m|−3 for m ∈ {1, 2, . . . , T} as given in
result (5) of Appendix 1. Similarly, we write that

lim
T→∞

T 3/2T−1
∑

t∈[γT,(1−γ)T ]

sup
s∈{1,2,T−1,T}

|
8∑

k=2

wkT ts|

≤ lim
T→∞

T 3/2T−1
∑

t∈[γT,(1−γ)T ]

sup
r∈[γ,(1−γ)]

sup
s∈{1,2,T−1,T}

|
8∑

k=2

wkT,[rT ],s|

= lim
T→∞

T−3/2T−1((1− 2γ)T + 1) sup
r∈[γ,(1−γ)]

sup
s∈{1,2,T−1,T}

|T 3

8∑
k=2

wkT,[rT ],s|

= 0,

since supT≥1 sup1≤s≤T supr∈[γ,(1−γ)] |T 3
∑8

j=2w
j
T,[rT ],s| <∞. as given in result (5) of Appendix

1. Therefore, we have now shown the result of Equation (34), and the proof is complete.

Lemma 2. For k, j ≥ 0,

lim
T→∞

wT,T−k,j+1 = 0,

lim
T→∞

wT,T−k,T−j = fλ(k − j) + fλ(k + j + 1) + ξλgλ(k + 1)gλ(j + 1).
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Proof of Lemma 2. Using Equation (17), we write

lim
T→∞

wT,T−k,j+1

= lim
T→∞

(fTλ(T − k − j − 1) + fTλ(T )I(T − k + j = T ))

+ lim
T→∞

(fTλ(T − k + j)I(T − k + j < T ) + fTλ(T + k − j)I(T − k + j > T ))

+ lim
T→∞

(ξTλgTλ(T − k)gTλ(j + 1) + φTλgTλ(k + 1)gTλ(j + 1))

+ lim
T→∞

(φTλgTλ(T − k)gTλ(T − j) + ξTλgTλ(k + 1)gTλ(T − j)) = 0,

by results (5)-(8) of Appendix 1. Similarly, we write that

lim
T→∞

wT,T−k,T−j

= lim
T→∞

(fTλ(k − j) + fTλ(T )I(2T − k − j − 1 = T ))

+ lim
T→∞

fTλ(2T − k − j − 1)I(2T − k − j − 1 < T )

+ lim
T→∞

fTλ(k + j + 1)I(2T − k − j − 1 > T )

+ lim
T→∞

(ξTλgTλ(T − k)gTλ(T − j) + φTλgTλ(k + 1)gTλ(T − j))

+ lim
T→∞

(φTλgTλ(T − k)gTλ(j + 1) + ξTλgTλ(k + 1)gTλ(j + 1))

=fλ(k − j) + fλ(k + j + 1) + ξλgλ(k + 1)gλ(j + 1),

since limT→∞ fTλ(m) = fλ(m) and limT→∞ gTλ(m) = gλ(m) for all λ ≥ 0 and m ∈ Z,
limT→∞ ξTλ = ξλ, and limT→∞ φTλ = 0 as given in results (6)-(8) of Appendix 1.

Proof of Theorem 5. First, we write that

T−1
T∑
t=1

g(ĉTt) ≥ CT−1
T∑
t=1

|ĉTt|p

=CT−1
T∑
t=1

|λ
T∑
s=1

wTtsỹTs|p ≥ CλpT−1|
T∑
s=1

wTTsỹTs|p,

where the first inequality follows from the fact that g(x) ≥ C|x|p, and the first equality is
due to Theorem 1. This gives the result in Equation (11). Next, we will show that the
results in Equations (12) and (13) hold. If yt is an I(3) or an I(4) process, we have

E|
T−2∑
s=1

wTTsỹTs| ≤
T−2∑
s=1

|wTTs| sup
1≤s≤T−2

E|ỹTs|.

Furthermore, sup1≤s≤T−2E|ỹTs| ≤ C2 sups≥1E|us| < ∞ by the definition of ỹTs given in
Theorem 1, which together with the result of Equation (20) implies that

|
T−2∑
s=1

wTTsỹTs| = Op(1). (37)
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If yt is an I(3) process, then

|
T∑
s=1

wTTsT
−1/2ỹTs|p

=|
T−2∑
s=1

wTTsT
−1/2ỹTs + wTT,T−1T

−1/2ỹT,T−1 + wTTTT
−1/2ỹTT |p

=|wTT,T−1T−1/2ỹT,T−1 + wTTTT
−1/2ỹTT +Op(T

−1/2)|p

=|(wTTT − wTT,T−1)T−1/2
T∑
k=1

uk +Op(T
−1/2)|p,

where the second equality is implied by the expression in Equation (37), and the third
equality follows from Theorem 1 and the assumption that ∆3yt = ut, since ỹT,T−1 = ∆2yT−1−
2∆2yT = −

∑T
k=1 uk − uT and ỹTT = ∆2yT =

∑T
k=1 uk. Since UT (1)

d−→ U(1), we obtain

|(wTTT − wTT,T−1)T−1/2
T∑
k=1

uk + op(1)|p

d−→| ((fλ(0)− fλ(2)) + ξλgλ(1)(gλ(1)− gλ(2)))U(1)|p

by Lemma 2 and by the continuous mapping theorem. This shows the result in Equation (12).
If yt is an I(4) process, then

|
T∑
s=1

wTTsT
−3/2ỹTs|p = |wTT,T−1T−3/2ỹT,T−1 + wTTTT

−3/2ỹTT +Op(T
−3/2)|p

= |(wTTT − wTT,T−1)T−3/2
T∑
k=1

k∑
l=1

ul +Op(T
−3/2)|p,

where the first equality is implied by the expression in Equation (37). The second equality
follows from Theorem 1 and the assumption that ∆4yt = ut which implies that ỹT,T−1 =

∆2yT−1 − 2∆2yT = −
∑T

k=1

∑k
l=1 ul −

∑T
l=1 ul and ỹTT = ∆2yT =

∑T
k=1

∑k
l=1 ul. Since

UT (r)⇒ U(r) on r ∈ [0, 1], we obtain

|(wTTT − wTT,T−1)T−3/2
T∑
k=1

k∑
l=1

ul + op(1)|p

d−→| ((fλ(0)− fλ(2)) + ξλgλ(1)(gλ(1)− gλ(2)))

∫ 1

0

U(r)dr|p

by Lemma 2 and by the continuous mapping theorem. This completes the proof.

Lemma 3. ∆2(t+2)p =
∑p−2

k=0 cpkt
k for t = 1, 2, . . . , T , where cpk is defined in Equation (14).

Proof of Lemma 3. The binomial theorem gives the following equality

(t+m)p =

p∑
k=0

(
p

k

)
tkmp−k.
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Therefore,

∆2(t+ 2)p = (t+ 2)p − 2(t+ 1)p + tp

=

p∑
k=0

(
p

k

)
tk2p−k − 2

p∑
k=0

(
p

k

)
tk + tp

=

p−1∑
k=0

cpkt
k + (tp − 2tp + tp) =

p−2∑
k=0

cpkt
k,

where cpk =
(
p
k

)
(2p−k − 2). The last equality follows from the fact that cp,p−1 = 0.

Lemma 4. ∆4(t+2)p =
∑p−4

k=0 apkt
k for t = 1, 2, . . . , T , where apk is defined in Equation (15).

Proof of Lemma 4. By the binomial theorem, we have

∆4(t+ 2)p =(t+ 2)p − 4(t+ 1)p + 6tp − 4(t− 1)p + (t− 2)p

=

p∑
k=0

(
p

k

)
tk2p−k − 4

p∑
k=0

(
p

k

)
tk + 6tp

− 4

p∑
k=0

(
p

k

)
tk(−1)p−k +

p∑
k=0

(
p

k

)
tk(−2)p−k

=

p−1∑
k=0

ap,kt
k + (tp − 4tp + 6tp − 4tp + tp)

=

p−1∑
k=0

apkt
k,

where

apk =

(
p

k

)(
2p−k − 4− 4(−1)p−k + (−2)p−k

)
.

This implies that

apk =

{(
p
k

) (
2p−k+1 − 8

)
if p− k is even

0 if p− k is odd.

Note that apk = 0 for k = p − 1 and k = p − 3, since p − k is odd in both cases. It is also
easy to see that ap,p−2 = 0. Thus, we conclude that

∆4(t+ 2)p =

p−4∑
k=0

ap,kt
k.

Proof of Theorem 6. Let yt = tp for t = 1, 2, . . . , T . Theorem 1 implies that

ĉTt (1, 2p, . . . , T p) = λτ̂Tt(ỹT1, ỹT2, . . . , ỹTT ),

22



where by Lemma 3

ỹT1 = 3p − 2p+1 + 1 =

p−2∑
k=0

cpk, (38)

ỹT2 = (4p − 2× 3p + 2p)− 2(3p − 2p+1 + 1) =

p−2∑
k=0

cpk(2
k − 2), (39)

ỹT,T−1 = ((T − 1)p − 2(T − 2)p + (T − 3)p)− 2(T p − 2(T − 1)p + (T − 2)p)

=

p−2∑
k=0

cpk((T − 3)k − 2(T − 2)k), (40)

ỹTT = T p − 2(T − 1)p + (T − 2)p =

p−2∑
k=0

cpk(T − 2)k, (41)

and by Lemma 4 for t = 3, 4, . . . , T − 2,

ỹTt = ∆4(t+ 2)p =

p−4∑
k=0

apkt
k. (42)

Also, by Equation (23) it follows that

ĉTt(1, 2
p, . . . , T p) = λτ̂Tt(0, 0, ỹT3, . . . , ỹT,T−2, 0, 0) + λτ̂Tt(ỹT1, ỹT2, 0, . . . , 0, ỹT,T−1, ỹTT ).

By replacing ỹTt with the expression in Equation (42) for t = 3, 4, . . . , T − 2, we obtain

τ̂Tt(0, 0, ỹT3, . . . , ỹT,T−2, 0, 0)

=τ̂Tt(0, 0,

p−4∑
k=0

apk3
k, . . . ,

p−4∑
k=0

apk(T − 2)k, 0, 0)

=

p−4∑
k=0

apkτ̂Tt(0, 0, 3
k, . . . , (T − 2)k, 0, 0),

where the last equality follows from Equation (23). Similarly, by replacing ỹT1, ỹT2, ỹT,T−1
and ỹTT with the expressions in Equations (38)-(41) and Equation (23) we obtain

τ̂Tt(ỹT1, ỹT2, 0, . . . , 0, ỹT,T−1, ỹTT )

=

p−2∑
k=0

cpkτ̂Tt(1, 2
k − 2, 0 . . . , 0, (T − 3)k − 2(T − 2)k, (T − 2)k).

Thus, we have

ĉTt(1, 2
p, . . . , T p)

=λ

p−4∑
k=0

apkτ̂Tt(0, 0, 3
k, . . . , (T − 2)k, 0, 0)

+ λ

p−2∑
k=0

cpkτ̂Tt(1, 2
k − 2, 0 . . . , 0, (T − 3)k − 2(T − 2)k, (T − 2)k).
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By using the identity in Equation (23), we write that τ̂Tt(0, 0, 3
k, . . . , (T − 2)k, 0, 0) =

τ̂Tt(1, 2
k, . . . , T k)− τ̂Tt(1, 2k, 0, . . . , 0, (T − 1)k, T k), which gives

ĉTt(1, 2
p, . . . , T p)

=λ

p−4∑
k=0

apkτ̂Tt(1, 2
k, . . . , T k)

+ λ

p−2∑
k=0

cpkτ̂Tt(1, 2
k − 2, 0 . . . , 0, (T − 3)k − 2(T − 2)k, (T − 2)k)

− λ
p−4∑
k=0

apkτ̂Tt(1, 2
k, 0, . . . , 0, (T − 1)k, T k).

Therefore, the result is shown.

Lemma 5. λz4 − 4λz3 + (1 + 6λ)z2 − 4λz + λ = 0 has four roots z1, z2, z3 and z4 where

z1 = 1−
√√

1 + 16λ− 1

2
√

2λ
+ i

( √
2√√

1 + 16λ− 1
− 1

2
√
λ

)
,

and z2 = z−11 , z3 = z̄1, z4 = z̄−11 .

Proof of Lemma 5. Note that λz4− 4λz3 + (1 + 6λ)z2− 4λz+λ = λ(z− 1)4 + z2. Therefore,
we write that

λ(z − 1)4 + z2 =
(√

λ(z − 1)2 + iz
)(√

λ(z − 1)2 − iz
)
.

Two tedious calculation show that(√
λ(z − 1)2 + iz

)
=
√
λ(z − z1)(z − z2)

and (√
λ(z − 1)2 − iz

)
=
√
λ(z − z3)(z − z4)

where z1, z2, z3 and z4 are as defined in the lemma.

Proof of Theorem 7. For t = 3, 4, . . . , T−2, the first order condition for ĉTt given in Equation
(30) is

λĉT,t+2 − 4λĉT,t+1 + (1 + 6λ)ĉTt − 4λĉT,t−1 + λĉT,t−2 = 0.

The above equation is a fourth order difference equation, which has four roots z1, z2, z3 and
z4 given in Lemma 5. Since zero is a particular solution to the difference equation, and using
the fact that z2 = z−11 , z3 = z̄1, and z4 = z̄−11 , it follows that

ĉTt = C1T z
t
1 + C2T z

−t
1 + C3T z̄

t
1 + C4T z̄

−t
1 .

Note that the HP filter always produces trends and cyclical components that are real
valued as long as yt is real for t = 1, 2, . . . , T . Thus, ĉTt = ¯̂cTt, which implies that

C1T z
t
1 + C2T z

−t
1 + C3T z̄

t
1 + C4T z̄

−t
1 = C̄1T z̄

t
1 + C̄2T z̄

−t
1 + C̄3T z

t
1 + C̄4T z

−t
1 ,
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and therefore C3T = C̄1T and C4T = C̄2T .
Furthermore, Theorem 1 implies that ĉTt(1, 2

2, . . . , T 2) = λτ̂Tt(1,−1, 0, . . . , 0,−1, 1) and
ĉT,T−t+1(1, 2

2, . . . , T 2) = λτ̂T,T−t+1(1,−1, 0, . . . , 0,−1, 1). Equation (25) implies that

τ̂Tt(1,−1, 0, . . . , 0,−1, 1) = τ̂T,T−t+1(1,−1, 0, . . . , 0,−1, 1).

Therefore, it follows that ĉTt(1, 2
2, . . . , T 2) = ĉT,T−t+1(1, 2

2, . . . , T 2), which means that

C1T z
t
1+C2T z

−t
1 +C̄1T z̄

t
1+C̄2T z̄

−t
1 = C1T z

T+1
1 z−t1 +C2T z

−(T+1)
1 zt1+C̄1T z̄

T+1
1 z̄−t1 +C̄2z̄

−(T+1)
1 z̄t1.

Therefore, C2T = C1T z
T+1
1 , which allows us to conclude

ĉTt(1, 2
2, . . . , T 2) = C1T (zt1 + zT−t+1

1 ) + C̄1T (z̄t1 + z̄T−t+1
1 ). (43)

Next, we use the first order conditions for t = 1 and 2, given in Equations (26) and (27),
to solve for C1T . Defining

aT = (1 + λ)(z1 + zT1 )− 2λ(z21 + zT−11 ) + λ(z31 + zT−21 )

bT = −2λ(z1 + zT1 ) + (1 + 5λ)(z21 + zT−11 )− 4λ(z31 + zT−21 ) + λ(z41 + zT−31 ),

Equations (26) and (27) are equivalent to C1TaT + C̄1T āT = 2λ and C1T bT + C̄1T b̄T = −2λ,
which implies that C1T = 2λ(b̄T + āT )/(aT b̄T − āT bT ). By using the polar coordinate form,
we write that z1 = |z1|(cos(θ) + i sin(θ)) where

θ = tan−1
(

21/2(
√

1 + 16λ− 1)−1/2
)
.

Then, when we replace z1 with its polar coordinate form in Equation (43), we obtain

ĉTt =(C1T + C̄1T )|z1|t cos(tθ) + i(C1T − C̄1T )|z1|t sin(tθ)

+(C1T + C̄1T )|z1|T−t+1 cos((T − t+ 1)θ) + i(C1T − C̄1T )|z1|T−t+1 sin((T − t+ 1)θ).

Lemma 6. ∆2 exp(t + 2) = CC1 exp(t) and ∆4 exp(t + 2) = C exp(t) where
C = exp(2) (1− exp(−1))4 and C1 = (1− exp(−1))−2.

Proof of Lemma 6. The result is easy to verify and we omit its proof for the sake of brevity.

Proof of Theorem 8. Let yt = exp(t) for t = 1, 2, . . . , T . By Theorem 1, we write

ĉTt (exp(1), exp(2), . . . , exp(T )) = λτ̂Tt (ỹT1, ỹT2, . . . , ỹTT ) ,

where by Lemma 6, ỹT1 = CC1 exp(1), ỹT2 = CC1(1 − 2 exp(−1)) exp(2), ỹT,T−1 = C(1 −
C1) exp(T − 1),ỹTT = CC1 exp(−2) exp(T ), and ỹTt = C exp(t) for t = 3, 4 . . . , T − 2. Using
these expressions and using the definitions of C2, C3 and C4 in the theorem, we find

τ̂Tt(ỹT1, ỹT2, . . . , ỹTT )

=τ̂Tt(CC1 exp(1), CC2 exp(2), C exp(3), . . . , C exp(T − 2), CC3 exp(T − 1), CC4 exp(T ))

=Cτ̂Tt(C1 exp(1), C2 exp(2), exp(3), . . . , exp(T − 2), C3 exp(T − 1), C4 exp(T )).

Therefore, we have

ĉTt(exp(1), . . . , exp(T ))

=Cλτ̂Tt(C1 exp(1), C2 exp(2), exp(3), . . . , exp(T − 2), C3 exp(T − 1), C4 exp(T )).
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Proof of Theorem 9. Evaluating the result of Theorem 8 at t = T − k gives that

ĉT,T−k(exp(1), . . . , exp(T ))

=Cλτ̂T,T−k(C1 exp(1), C2 exp(2), exp(3), . . . , exp(T − 2), C3 exp(T − 1), C4 exp(T ))

=Cλτ̂T,T−k(exp(1), exp(2), . . . , exp(T ))

+ Cλτ̂T,T−k((C1 − 1) exp(1), (C2 − 1) exp(2), 0, . . . , 0, (C3 − 1) exp(T − 1), (C4 − 1) exp(T ))

=Cλτ̂T,T−k(exp(1), exp(2), . . . , exp(T ))

+ Cλ ((C1 − 1)wT,T−k,1 exp(1) + (C2 − 1)wT,T−k,2 exp(2))

+ Cλ ((C3 − 1)wT,T−k,T−1 exp(T − 1) + (C4 − 1)wT,T−k,T exp(T )) ,

where the second equality follows from Equation (23) and the third equality is obtained by
the weighted average formula of the trend given in result (9) of Appendix 1. Therefore it
now follows that

lim
T→∞

ĉT,T−k(exp(1), . . . , exp(T ))

exp(T − k)

=Cλ lim
T→∞

τ̂T,T−k(exp(1), exp(2), . . . , exp(T ))

exp(T − k)
(44)

+ Cλ lim
T→∞

((C1 − 1)wT,T−k,1 exp(1) + (C2 − 1)wT,T−k,2 exp(2))

exp(T − k)
(45)

+ Cλ lim
T→∞

((C3 − 1)wT,T−k,T−1 exp(T − 1) + (C4 − 1)wT,T−k,T exp(T ))

exp(T − k)
. (46)

The limit in Equation (44) satisfies

lim
T→∞

∑T
s=1wT,T−k,s exp(s)

exp(T − k)
= lim

T→∞

T∑
s=1

wT,T−k,s exp(s+ k − T )

= lim
T→∞

T−1∑
j=0

wT,T−k,T−j exp(k − j) = lim
T→∞

∞∑
j=0

wT,T−k,T−j exp(k − j)I(j ≤ T − 1)

=
∞∑
j=0

lim
T→∞

(wT,T−k,T−j exp(k − j)I(j ≤ T − 1)),

where the last equality follows by the dominated convergence theorem and Equation (19).
Therefore, Lemma 2 implies that the limit in Equation (44) is equal to

Cλ
∞∑
j=0

(fλ(k − j) + fλ(k + j + 1) + ξλgλ(k + 1)gλ(j + 1)) exp(k − j)

=Cλ exp(k)
∞∑
j=0

(fλ(k − j) + fλ(k + j + 1) + ξλgλ(k + 1)gλ(j + 1)) exp(−j).

It is easy to see that the expression in Equation (45) vanishes since limT→∞wT,T−k,j = 0 for
j = 1, 2 by Lemma 2. Lastly, we consider the expression in Equation (46). Dividing the
numerator and the denominator of the expression by exp(T ), we obtain

Cλ exp(k) lim
T→∞

((C3 − 1)wT,T−k,T−1 exp(−1) + (C4 − 1)wT,T−k,T )

=Cλ exp(k − 1)(C3 − 1) (fλ(k − 1) + fλ(k + 2) + ξλgλ(k + 1)gλ(2))

+ Cλ exp(k)(C4 − 1) (fλ(k) + fλ(k + 1) + ξλgλ(k + 1)gλ(1))
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by Lemma 2. So we conclude that

lim
T→∞

ĉT,T−k(exp(1), . . . , exp(T ))

exp(T − k)

=Cλ exp(k)
∞∑
j=0

(fλ(k − j) + fλ(k + j + 1) + ξλgλ(k + 1)gλ(j + 1)) exp(−j)

+ Cλ exp(k − 1)(C3 − 1) (fλ(k − 1) + fλ(k + 2) + ξλgλ(k + 1)gλ(2))

+ Cλ exp(k)(C4 − 1) (fλ(k) + fλ(k + 1) + ξλgλ(k + 1)gλ(1)) .
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