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Effect of a 24-week randomized trial of an organic produce intervention on
pyrethroid and organophosphate pesticide exposure among pregnant
women
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A R T I C L E I N F O

Handling Editor: Lesa Aylward

A B S T R A C T

Background: Introduction of an organic diet can significantly reduce exposure to some classes of pesticides in
children and adults, but no long-term trials have been conducted.
Objectives: To assess the effect of a long-term (24-week) organic produce intervention on pesticide exposure
among pregnant women.
Methods: We recruited 20 women from the Idaho Women, Infants, and Children (WIC) program during their first
trimester of pregnancy. Eligible women were nonsmokers aged 18–35 years who reported eating exclusively
conventionally grown food. We randomly assigned participants to receive weekly deliveries of either organic or
conventional fruits and vegetables throughout their second or third trimesters and collected weekly spot urine
samples. Urine samples, which were pooled to represent monthly exposures, were analyzed for biomarkers of
organophosphate (OP) and pyrethroid insecticides.
Results: Food diary data demonstrated that 66% of all servings of fruits and vegetables consumed by participants
in the “organic produce” group were organic, compared to<3% in the “conventional produce” group. We
collected an average of 23 spot samples per participant (461 samples total), which were combined to yield 116
monthly composites. 3-Phenoxybenzoic acid (3-PBA, a non-specific biomarker of several pyrethroids) was de-
tected in 75% of the composite samples, and 3-PBA concentrations were significantly higher in samples collected
from women in the conventional produce group compared to the organic produce group (0.95 vs 0.27 μg/L,
p= 0.03). Another pyrethroid biomarker, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid,
was detected more frequently in women in the conventional compared to the organic produce groups (16% vs
4%, p=0.05). In contrast, we observed no statistically significant differences in detection frequency or con-
centrations for any of the four biomarkers of OP exposure quantified in this trial.
Discussion: To our knowledge, this is the first long-term organic diet intervention study, and the first to include
pregnant women. These results suggest that addition of organic produce to an individual's diet, as compared to
conventional produce, significantly reduces exposure to pyrethroid insecticides.

1. Introduction

A growing number of prospective birth cohort studies have in-
vestigated the relationship between in utero exposure to organopho-
sphate (OP) and pyrethroid pesticides and neurodevelopmental out-
comes in children. Many, though not all, of these studies have
concluded that higher prenatal exposure to these insecticides is asso-
ciated with poorer neurological and cognitive development in children
(Bouchard et al., 2011; Cartier et al., 2016; Engel et al., 2011; Engel

et al., 2016; Eskenazi et al., 2014; Furlong et al., 2017; Marks et al.,
2010; Sagiv et al., 2018; Stein et al., 2016; Viel et al., 2015; Viel et al.,
2017). Several systematic reviews have critically evaluated the avail-
able body of work regarding the neurodevelopmental impacts of pre-
natal pesticide exposure, and while these reviews have primarily fo-
cused on OPs, the collective evidence supports the hypothesis that such
exposure induces neurotoxic effects (Muñoz-Quezada et al., 2013;
González-Alzaga et al., 2014; Hernández et al., 2016). This evidence
has motivated calls to reduce exposure to neurotoxic chemicals, like OP
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and pyrethroid pesticides, in vulnerable populations (Bennett et al.,
2016; Hertz-Picciotto et al., 2018).

OP pesticides were broadly used in the USA in residential settings
until the mid-2000s when residential uses of chlorpyrifos and diazinon
were phased out (US EPA, 2000; US EPA, 2001); residential use of
pyrethroids remains common and represents a potential exposure
pathway (Palmquist et al., 2012). Diet is also a potentially important
source of exposure to both OP and pyrethroid pesticides (Melnyk et al.,
2014; Nougadѐre et al., 2012; Oates and Cohen, 2011), as OP and
pyrethroid pesticides are widely used in agriculture (Roberts and
Reigart, 2013). However, usage patterns of these pesticides are chan-
ging. While OP pesticides have been the dominant class of insecticides
used in American agriculture during the past two decades, OP use has
declined> 70% since 2000, from an estimated 70 million pounds to 20
million pounds in 2012 (EPA, 2017). As a percentage of total in-
secticidal use, OP usage has dropped from 71% in 2000 to 30% in 2012,
and this drop reflects a shift to usage of other classes of insecticides,
including pyrethroids (EPA, 2017).

Use of these synthetic pesticides is prohibited in the production of
food certified as organic, and food monitoring has confirmed that or-
ganically grown food typically contains lower pesticide residues than
food that is conventionally grown (Baker et al., 2002; USDA, 2011).
Further, both observational and short-term experimental studies have
shown that consumption of an organic diet is associated with a sig-
nificant reduction in biomarkers of OPs and, to a lesser degree, pyre-
throids, when compared to consumption of a conventional diet (Berman
et al., 2016; Bradman et al., 2015; Curl et al., 2003; Curl et al., 2015;
Göen et al., 2017; Hyland et al., 2019; Lu et al., 2006b; Lu et al., 2008;
Lu et al., 2009; Oates et al., 2014).

However, despite evidence suggesting that low-dose in utero ex-
posure to OP and pyrethroid pesticides is associated with negative
health effects, and compelling data showing an organic diet to be an
effective means of lowering exposures to these compounds, it remains
difficult to draw conclusions about any potential health benefits of an
organic diet. This is because most existing birth cohorts were not fo-
cused on diet, and were established either in primarily agricultural
regions (Eskenazi et al., 1999; Petit et al., 2010) or in urban areas where
residential pesticide use was common (Whyatt et al., 2004; Wolff et al.,
2007). Because diet was not necessarily a primary source of pesticide
exposure in these cohorts, it remains unknown whether pesticide ex-
posure from consumption of a conventional diet is sufficiently high to
lead to the adverse health outcomes observed. Further, in the HOME
Study where dietary intake was the primary source of OP pesticides, the
investigators found adverse effects of prenatal OP exposure on birth
weight and gestational age, but not neurodevelopmental outcomes
(Donauer et al., 2016; Rauch et al., 2012).

We propose that observational studies of the relationship between
organic food consumption and health will always be limited by the
potential for uncontrolled confounding. In both the United States and
Europe, individuals who consume organic food generally tend to report
other factors associated with better health, including higher levels of
educational attainment and higher income (Curl et al., 2013; Dettmann
and Dimitri, 2009; Govindasamy and Italia, 1999; Petersen et al., 2013;
Simões-Wüst et al., 2017; Smith et al., 2009; Williams and Hammitt,
2001; Zhang et al., 2008). Organic food consumption is also associated
with greater total fruit and vegetable intake (Curl et al., 2015; Hu et al.,
2016; Petersen et al., 2013), which itself confers health benefits. These
associations hinder investigations of the relationship between organic
food consumption and health effects using an observational study de-
sign.

An experimental design would represent a compelling way to
evaluate this relationship but to date, no organic diet trials have been
tested in pregnant women. In addition, all organic diet trials to date
have been brief, typically lasting between four days and two weeks.
Finally, existing organic diet trials have included a completely organic
diet, which may not represent realistic eating habits of most consumers

of organic food. The primary objective of this study was to test the
efficacy of a long-term (24-week) randomized organic diet trial on
pesticide exposure in pregnant women. This trial involved provision of
either organic or conventional fruits and vegetables as a supplement to
the participants' regular diets.

This study focused on supplementing diets with fruits and vege-
tables for several reasons. First, fruits and vegetables have been the top
selling category of organically grown food since the organic food in-
dustry began retailing products in the 1990s, and they continue to
outsell other organic food categories (USDA, 2017b). Second, in-
secticides such as OPs and pyrethroids are more commonly used in crop
production than in livestock or dairy, and residues of these pesticides
are more commonly found on produce items than animal-based pro-
ducts such as milk (USDA, 2017a). Finally, most organic consumers
report that they “sometimes” consume organic food, while fewer than
5% report that they “often or always” do (Curl et al., 2015). Therefore,
to better represent the actual consumption habits of most organic
consumers and to focus on food items most likely to influence exposure
to OP and pyrethroid pesticides, we elected to supplement participants'
diets with either organic or conventional produce, rather than fully
replacing conventional diets with organic food. We hypothesized that
those receiving organic fruits and vegetables would have lower ex-
posures to OP and pyrethroid insecticides than those receiving con-
ventional produce.

2. Materials and methods

2.1. Study participants

Participants were recruited between June and December of 2016
from Women, Infants and Children (WIC) clinics in urban and suburban
regions of the Treasure Valley of Idaho, including the cities of Boise,
Meridian, and Garden City. Treasure Valley WIC clinics serve over 500
pregnant women per month who meet income guidelines of 185%
poverty level or lower. Clinic staff and counselors used an informational
script to identify and screen interested participants for eligibility.
Criteria for eligibility included: pregnancy< 16-week gestation; 18 to
35 years of age; consumer of a fully conventional (non-organic) diet;
non-smoker; no report of alcohol consumption during this pregnancy;
no report of occupational exposure to pesticides; and no history of high-
risk pregnancy or gestational diabetes. WIC counselors recited the
prepared script and obtained permission from interested women to
submit their contact information to the researcher staff. Research staff
then contacted potential participants via telephone to confirm interest
and eligibility. An initial home visit was scheduled, during which re-
searcher staff presented the study purpose and protocols, obtained
written consent, and administered a pesticide exposure questionnaire.
Produce delivery and urine sample collection began in July of 2016 and
continued through May 2017. All procedures were reviewed and ap-
proved by the Boise State University Human Subjects Institutional
Review Board. The involvement of the Centers for Disease Control and
Prevention (CDC) laboratory did not constitute engagement in human
subject research.

2.2. Pesticide Exposure Questionnaire

All participants were interviewed in person using a standardized
questionnaire to collect demographic data and identify any non-dietary
sources of pesticide exposure. Demographic data included age, family
income, highest level of educational attainment, and race/ethnicity.
Participants were then asked a series of questions to evaluate use of
pesticides to control any of the following: insects inside or outside of
their residences; weeds; plant diseases; snails and slugs; and any larger
pests (e.g., rats, mice). Participants were also asked about pet owner-
ship and about any pesticides used to control fleas or ticks on those
pets. Finally, researchers recorded information on any pesticides from
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the containers that the residents reported using.

2.3. Trial design and diet protocol

All study participants had the opportunity to receive as many as 24
consecutive weekly deliveries of $20-worth of fresh fruits and vege-
tables, for a total of $480-worth of free produce throughout their
second and third pregnancy trimesters. We designed a parallel trial with
a 1:1 allocation ratio, in which participants were randomly assigned to
either the “organic” or the “conventional” group, with those in the
organic group receiving organic produce and those in the conventional
group receiving conventional produce. Prior to participant enrollment,
a research staff member used a computer program to generate a se-
quence of random numbers. As participants were recruited to the study,
their study ID numbers were matched to this sequence of numbers;
participants who were matched with even numbers were assigned to
the conventional arm and those matched with odd numbers were as-
signed to the organic arm. The research staff member who generated
the ID numbers and group assignments was involved in participant
enrollment activities, but she was not involved in the data analysis.
Participants were not informed of their group assignments.

Participants placed individual produce orders each week at least
three days prior to their established food delivery date. Orders were
made through a password-protected website developed by the research
team in collaboration with the Boise State University Office of
Information Technology. An automated reminder email was sent to any
participant who did not submit an order prior to this date. This
“Produce Order Form” contained a list of approximately 25 different
common fruits and vegetables (apples, bananas, spinach, tomatoes,
carrots, onions, blueberries, etc.), each with an associated price re-
flecting the average of the price of the organic and conventional ver-
sions of the item. Participants indicated the number (in pounds, bun-
ches or pints, as appropriate) of each item they wanted to receive, and
the Order Form calculated the total cost, which was capped at $20 per
week. All fruits and vegetables listed on the Order Form were available
from grocery suppliers in both organic and conventional varieties.
Seasonal changes in fruit and vegetable availability occasionally altered
the options offered. Participants' orders were captured in an Order
Database, and local grocery suppliers automatically received compiled
weekly lists of the orders. These suppliers delivered all produce to the
“Clean Kitchen” area of our research laboratory on an established
schedule. Research staff ensured that all labels or stickers that might
identify the produce as organic or conventional were removed, and
packaged each participant's individual order. A delivery company then
distributed the produce to all participants.

Participants were asked to incorporate these produce items into
their existing diet, but were not required to only eat produce provided
by the study. Participants were not discouraged from eating at restau-
rants or at other people's homes, and were not discouraged from eating
additional fruits and vegetables that we did not deliver. We also said
that they could share the produce we delivered with their families. We
allowed this for three reasons. First, because this was a long-term study,
we were concerned that participants would not be compliant with a
more restrictive diet, particularly during pregnancy. We also did not
want to limit their fruit and vegetable intake. Finally, our previous
research has shown that most people who report consuming organic
food do so “occasionally”; few “always” consume organic food (Curl
et al., 2015). In this study, we wanted to evaluate the magnitude of
difference in pesticide biomarker concentrations associated with a
realistic frequency of organic food consumption that might reasonably
mimic the actual habits of most consumers of organic foods.

2.4. Food records

In conjunction with Boise State University's Office of Information
Technology, we developed a study-specific phone app to allow

participants to track all of the fruits and vegetables they consumed. This
app is available for Android or iOS and can be found in most app stores
under “CAHL Food Record” (Curl Agricultural Health Lab). All parti-
cipants with smartphones were asked to download this app and use it to
record all fruits and vegetables they consumed throughout the 24-week
study period. This password-protected app allowed participants to take
a picture of any meal or snack that included a fruit or vegetable. They
then indicated the meal type (e.g., breakfast, lunch, dinner or snack),
selected the item type from a drop-down menu (e.g., orange, banana),
and selected the portion size consumed. Participants were provided a
Portion Size Guide to assist in identifying portion sizes.

Participants were then asked whether the item was provided by the
study; if the item was not provided by the study, they were asked
whether it was organic or conventional. While the participants were
blinded to their group assignment, the research staff coding the dietary
data was not. Therefore, staff were able to appropriately designate
produce reported as “provided by the study” based on group assign-
ment. Produce items that were not provided by the study were coded as
“organic” or “conventional” based on the designation provided by the
participant. Data were then downloaded into a Food Record Database
that tracked the number of servings of each type of fruit and vegetable
item consumed by each participant over the course of the study. These
totals were calculated separately for servings of organic and conven-
tional food.

Written food diaries were provided to three participants who did not
have a smartphone or who did not want to use a phone app. These
diaries captured the same information as the phone app but did not
allow participants to photograph their meals; written diary data was
hand-entered into the same Food Record Database.

2.5. Urine specimen collection

We collected one baseline, pre-intervention spot urine sample and a
series of up to 24 weekly spot urine samples during the study period
from each participant. Research staff visited each participant's home
every week, provided participants with a pre-labeled 4-oz poly-
propylene specimen cup, and asked them to provide a urine sample.
Participants were asked to collect at least 10mL of urine. Research staff
recorded the date and time of sample receipt on a Chain of Custody
form, which was also signed by the participants. Urine cups were placed
into resealable plastic bags and transported on ice back to the labora-
tory at Boise State University, where they were analyzed for specific
gravity via refractometry (Atago Urine Specific Gravity Refractometer,
PAL 10-S).

Individual weekly urine samples collected during the dietary in-
tervention were pooled to create monthly composites for analysis.
Specifically, 1 mL from each of four separate weekly spot samples was
pipetted into a 5-mL cryovial, intended to represent exposure over the
course of a given month. All samples were stored at −80 °C within 48 h
of collection; additional aliquots were added in layers to a given
cryovial as each month progressed. Samples were shipped on dry ice to
the CDC, National Center for Environmental Health in Atlanta, Georgia
for analysis within nine months of collection. Samples were submitted
for analyses in one of two shipments, and all samples collected from a
given participant were analyzed together within the same analysis
batch.

2.6. Quantification of pesticide biomarkers in urine specimens

Urine samples were analyzed at the CDC for four specific metabo-
lites of organophosphate insecticides: 3,5,6-trichloro-2-pyridinol
(TCPY, a metabolite of chlorpyrifos and chlorpyrifos-methyl), 2-iso-
propyl-4-methyl-6-hydroxypyrimidine (IMPY, a metabolite of dia-
zinon), para-nitrophenol (PNP, a metabolite of parathion and methyl
parathion as well as other chemicals), and malathion dicarboxylic acid
(MDA, a metabolite of malathion). Samples were also analyzed for three
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metabolites of pyrethroid insecticides: 4-fluoro-3-phenoxybenzoic acid
(4-F-3-PBA, a metabolite of cyfluthrin and flumethrin), 3-phenox-
ybenzoic acid (3-PBA, a nonspecific metabolite of several pyrethroids
including cyhalothrin, cypermethrin, deltamethrin, fenpropathrin,
permethrin, and tralomethrin), and trans-3-(2,2-dichlorovinyl)-2,2-di-
methylcyclopropane carboxylic acid (trans-DCCA, a metabolite of per-
methrin, cypermethrin, and cyfluthrin).

Target analytes were extracted using semi-automated solid phase
extraction, separated using reversed-phase high-performance liquid
chromatography, and detected using tandem mass spectrometry with
isotope dilution quantitation. Method details and quality control pro-
cedures have been previously described (Davis et al., 2013). Limits of
detection (LODs) were 0.1 μg/L (TCPY, IMPY, PNP, 4-F-3-PBA, 3-PBA);
0.5 μg/L (MDA); and 0.6 μg/L (trans-DCCA). One sample result for 3-
PBA, one sample result for PNP and one sample result for trans-DCCA
could not be reported due to an interfering substance during the ana-
lysis. The CDC laboratory is certified by the Health Care Financing
Administration to comply with the requirements set forth in the Clinical
Laboratory Improvement Act of 1988 (CLIA ‘88) and is recertified an-
nually. Therefore, the analytical measurements followed strict CLIA-
recommended quality control/quality assurance protocols. For ex-
ample, in addition to study samples, each analytical run included ca-
libration standards, two high- and two low-concentration quality con-
trol (QC) materials (prepared using pooled human urine), and blanks to
ensure data accuracy and reliability. The concentrations of the high-
concentration QCs and the low-concentration QCs, averaged to obtain
one measurement of high-concentration QC and low-concentration QC
for each run, were evaluated using standard statistical probability rules
(Caudill et al., 2008). If the QC samples failed the statistical evaluation,
all of the study samples in the run were re-extracted.

2.7. Data analysis

We summarized study participants' demographic characteristics,
and compared them by group assignment. We also evaluated all parti-
cipants' other potential sources of pesticide exposure, based on data
collected through the Pesticide Exposure Questionnaire. We then
evaluated the frequency of detection of each biomarker during the in-
tervention period in composite samples from the organic and conven-
tional groups. We compared the frequency of detection of each bio-
marker between the organic and conventional groups using the Fisher
exact test.

In addition to comparing detection frequencies, we also compared
biomarker concentrations in the two groups. Based on previously
published results, we anticipated that not all of the biomarkers ana-
lyzed in this study would be frequently detected. Therefore, we decided
a priori to focus analyses on biomarkers with no>70% censored data
because at degrees of censoring higher than 70%, no techniques for
substituting data provide good estimates of summary statistics, in-
cluding maximum likelihood estimation (MLE) methods (Antweiler and
Taylor, 2008). For biomarkers detected in at least 30% of samples, non-
detectable concentrations were replaced with a value equal to the LOD
divided by the square root of 2 (Hornung and Reed, 1990). Prior to all
analyses, we employed specific gravity measurements to adjust bio-
marker concentrations for urine dilution according to:

= ∗

−

−

C C
SG

1.016 1
1SG

where CSG is the adjusted result (μg/L), C is the original measured
concentration (μg/L), 1.016 is the mean specific gravity measured
within the study population, and SG is the specific gravity of the in-
dividual sample (Chiu et al., 2018).

For biomarkers detected with at least 30% frequency, we estimated
each participant's exposure as the geometric mean of the biomarker
concentrations measured in the composite samples collected during the
intervention period. We then calculated the 25th, 50th, and 75th

concentration percentiles in the organic and conventional groups, and
compared these estimates using the nonparametric Mann-Whitney U
test for non-normally distributed data.

3. Results

3.1. Study population and demographic characteristics

During the recruitment process, WIC clinic staff and counselors
identified 49 potential study participants based on their initial
screening for interest and eligibility. We attempted to contact all of
these potential participants and ultimately enrolled 20 women from this
group. Among those not enrolled, 13 were unable to be contacted and
were unresponsive to messages, two were not interested in participating
in the study, one had a miscarriage, and nine did not meet eligibility
criteria (see Fig. 1 for additional details). A total of 24 women provided
informed consent, but four of these withdrew before the first food de-
livery or urine sample collection, either due to miscarriage (n= 1) or
because they were concerned about the time commitment of the study
(n= 3). Ultimately, 20 women enrolled and all of them completed the
study. Of these, ten were randomly assigned to the conventional pro-
duce group and ten to the organic produce group.

The average participant age was 27.8 years with a standard devia-
tion of 5.4 years (Table 1). Participants in the organic produce group
were slightly younger than those in the conventional produce group
(26.4 ± 3.6 years vs 28.7 ± 6.7 years). Reflective of the overall de-
mographics of the Treasure Valley of Idaho, the majority (75%) of study
participants in the trial were Caucasian. In both groups, the median
household income was between $20,000 and $29,999 per year. Parti-
cipants randomized to the organic produce group were more highly
educated than those randomized to the conventional produce group,
with five having completed college or higher, compared to just two in
the conventional group. This difference was not statistically significant,
but is still important to note given the small sample size.

Fig. 1. Details of participant recruitment and eligibility.
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3.2. Pesticide exposure

Participants were asked a series of detailed questions about poten-
tial sources of residential pesticide exposure, including residential
pesticide use by themselves, household members, or pest control
companies. No participants in either study group reported any exposure
to rodenticides, molluscicides, or fungicides. Three participants in the
organic produce group and one participant in the conventional produce
group reported occasional use of herbicides for weed control. One
participant in the organic produce group and none in the conventional
produce group reported use of flea or tick control for a pet. Five par-
ticipants in the organic produce group and six participants in the con-
ventional produce group reported that some insecticides had been used
in their homes in the past year. Additional questions and product in-
spection indicated that none of these insecticides were organopho-
sphates, but three of the participants in the organic produce group and
one of the participants in the conventional produce group had used
pyrethroid pesticides in their homes in the past year and were still
storing those containers. Occupational pesticide exposure, either for the
participant or any household members, was an exclusion criterion and
as such, no participants reported that they or any members of their
households were occupationally exposed to pesticides.

3.3. Food diaries

Seventeen of the twenty study participants elected to use the phone
app to record their dietary choices; three used paper diaries. One of
those using paper diaries was in the organic group and two were in the
conventional group. Data from these food diaries indicated a significant
difference between groups in the number of servings of organic produce
consumed. Based on self-report, 66% of all produce consumed by par-
ticipants in the “organic produce” group was organic (primarily

indicated as “provided by the study”), compared to 2.7% in the con-
ventional produce group (t-test, p < 0.00001). Across both groups, the
median number of servings of any produce items was two per day.

3.4. Urinary biomonitoring

Over the course of the trial, we collected a total of 461 individual
spot urine samples, representing an average of 23 samples per partici-
pant. These included one individual pre-intervention spot sample per
participant (total n= 20), and 441 spot urine samples collected during
the intervention period that were combined to yield a total of 116
monthly composites. Eighty-seven percent (87%) of the monthly com-
posites were comprised of aliquots of all four corresponding weekly
spot samples (average: 3.8 ± 0.6 spot samples per composite). Missed
samples were primarily due to participants being out of town or deli-
vering their babies earlier than 40-week gestation (sample collection
ended at delivery).

Pesticide biomarker concentrations measured in the pre-interven-
tion samples are difficult to compare to the samples analyzed during the
intervention, as they represent single, individual spot samples as op-
posed to monthly composites. These samples therefore represent an
exposure window of approximately 6–24 h prior to their collection, and
should not be interpreted as a representative measure of chronic pre-
intervention exposure. Detection frequencies and concentrations mea-
sured in pre-intervention samples are shown in Table 2. Three of the
metabolites were rarely detected in these pre-intervention samples.
Specifically, 4-F-3-PBA was detected in the urine of one participant, and
both IMPY and trans-DCCA were detected in the urine of two partici-
pants. Detection frequencies of the other metabolites were similar be-
tween participants who were randomized to receive conventional and
organic produce, although participants who were randomized to the
organic produce group were slightly more likely to have had detectable
concentrations of urinary pesticide biomarkers prior to the intervention
than those randomized to the conventional produce group. Specifically,
nine of the participants randomized to the organic produce group had
detectable urinary concentrations of 3-PBA prior to the intervention,
compared to five in the conventional produce group. All ten partici-
pants randomized to the organic produce group had detectable urinary
concentrations of PNP prior to the intervention, compared to eight of
those randomized to receive conventional produce. TCPY was detected
in pre-intervention samples from five participants in the organic pro-
duce group and four in the conventional produce group, and MDA was
detected in pre-intervention samples from four participants in the or-
ganic produce group and two in the conventional produce group.

Table 3 shows metabolite detection frequencies in composite sam-
ples collected during the intervention. Data are displayed both overall
and separately for the organic and conventional groups. For all three
pyrethroid biomarkers, detection frequencies were higher among par-
ticipants receiving conventional produce compared to those receiving
organic produce, although this difference was only statistically sig-
nificant for trans-DCCA (3-PBA: 81% vs 68%, p=0.14; trans-DCCA:
16% vs 4%, p= 0.05; 4-F-3-PBA: 5% vs 4%, p=1.0). For OP

Table 1
Participant demographics.

All Organic Conventional

n 20 10 10
Age at enrollment (years, avg ± SD) 27.8 ± 5.4 26.4 ± 3.6 28.7 ± 6.7
Race/ethnicity (N)
Caucasian or White 15 8 7
African-American or Black 1 0 1
Hispanic/Latina 4 2 2

Highest level of education attained
Graduated high school 4 1 3
Some college 9 4 5
Bachelor's degree 6 4 2
Graduate or other advanced degree 1 1 0

Household income ($ per year)
< $20,000 7 4 3
$20,000–$29,999 6 3 3
$30,000–$59,999 5 3 2
$60,000–$79,999 1 0 1
Don't know 1 0 1

Table 2
Frequency of detection of pyrethroid and organophosphate metabolites in pre-intervention samples.

Metabolite Parent compounds Detection frequency Median (μg/L) 75th percentile (μg/L) Max (μg/L)

Pyrethroids
3-PBA Cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, permethrin, tralomethrin 70% 0.55 1.82 13.17
trans-DCCA Permethrin, cypermethrin, cyfluthrin 10% <LOD <LOD 20.43
4-F-3-PBA Cyfluthrin, flumethrin 5% <LOD <LOD 0.28

Organophosphates
PNP Parathion, methyl parathion 90% 0.54 0.67 4.91
TCPY Chlorpyrifos, chlorpyrifos-methyl 45% <LOD 1.64 3.61
MDA Malathion 35% <LOD 0.88 2.04
IMPY Diazinon 10% <LOD <LOD 0.75
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metabolites, all samples contained detectable concentrations of PNP.
TCPY was detected more frequently in samples collected from women
receiving conventional produce, although this difference was not sta-
tistically significant (39% vs 32%, p=0.44). Contrary to our hypoth-
esis, both MDA and IMPY were detected more frequently in samples
collected from women whose diets were supplemented with organic
produce, although these differences were small and did not approach
statistical significance (MDA: 20% vs 23%, p=0.82; IMPY: 7% vs 9%,
p=0.76).

Our a priori decision to produce and compare summary statistics
only for those metabolites with< 70% censored data resulted in the
exclusion of trans-DCCA, 4-F-3-PBA, MDA and IMPY from this compo-
nent of the analysis. For the three remaining biomarkers, 3-PBA, PNP
and TCPY, we calculated the geometric mean concentration for each of
the 20 study participants from the concentrations measured in the six
monthly composite samples, which represented approximately 22 spot
urine samples per participant. Table 4 shows the median (50th per-
centile), as well as the 25th and 75th percentiles, of the geometric
means of the concentrations measured in the monthly composite sam-
ples collected from each participant during the intervention period.
Fig. 2 shows these results graphically. While the range and 75th per-
centiles of the geometric mean concentrations were larger in the con-
ventional group than the organic group for all three biomarkers, only 3-
PBA was significantly different between the two groups (median of the
geometric mean results: 0.95 μg/L vs 0.27 μg/L, p=0.03).

4. Discussion

We found that participants in the organic produce group had lower
concentrations of urinary biomarkers of pyrethroid pesticide exposure
than those in the conventional produce group. The most frequently
detected pyrethroid biomarker in this study, 3-PBA, was found in sig-
nificantly lower concentrations in urine samples collected from women
receiving organic produce compared to those receiving conventional
produce. The other two pyrethroid biomarkers examined in this study
were not detected with sufficient frequency to allow a meaningful
comparison of metabolite concentrations, but the detection frequency
of trans-DCCA was significantly lower in samples collected from parti-
cipants receiving organic produce compared to those receiving con-
ventional produce. Together, these results suggest that addition of or-
ganic produce to an individual's diet, as compared to conventional
produce, significantly reduces exposure to pyrethroid insecticides. We
did not observe this result for biomarkers of exposure to OP pesticides,
whether evaluated based on detection frequency or urinary con-
centrations.

These results differ somewhat from results of previous studies,
especially with respect to OP biomarkers. Several observational studies
reported that children and adults with conventional diets had higher
urinary concentrations of OP biomarkers than those with organic diets.
In the first such study, conducted by members of our research group in
2001, urinary concentrations of the non-specific dialkylphosphate
(DAP) biomarkers of OP exposure were found to be six times higher
among 2–5 year old children whose parents reported that they con-
sumed conventional diets compared to those whose parents reported
feeding their children organic diets (Curl et al., 2003). More recently,
researchers evaluating urinary concentrations of specific and non-

Table 3
Frequency of detection of pyrethroid and organophosphate metabolites in
composite urine samples collected during the dietary intervention.

% detected*

Metabolite Overall (n= 116) Conventional (n= 59) Organic (n= 57)

Pyrethroids
3-PBA 75% 81% 68%
trans-DCCA 10% 16%** 4%**
4-F-3-PBA 4% 5% 4%

Organophosphates
PNP 100% 100% 100%
TCPY 35% 39% 32%
MDA 22% 20% 23%
IMPY 8% 7% 9%

p<0.05

Table 4
For each participant, long-term exposure was estimated as the geometric mean
of the concentrations in all monthly composite samples collected throughout
the second and third trimesters of pregnancy. The distribution of these geo-
metric mean concentrations in the organic and conventional groups is presented
for all metabolites with< 70% censored data.

Percentiles (μg/L)

n 25th 50th 75th

3-PBA⁎

Conventional 10 0.54 0.95 1.85
Organic 10 0.23 0.27 0.80

PNP
Conventional 10 0.39 0.50 0.76
Organic 10 0.47 0.50 0.57

TCPY
Conventional 10 0.11 0.20 0.48
Organic 10 0.11 0.20 0.26

⁎ Concentrations in the conventional group were significantly higher than in
the organic group (Mann-Whitney U test, p= 0.03).

Fig. 2. Distribution of participants' long-term exposure, estimated as the geo-
metric mean of the concentrations in all monthly composite samples collected
throughout the second and third trimesters of pregnancy, by intervention group
assignment. Boxes extend from the 25th to the 75th percentile, horizontal bars
indicate the medians, whiskers extend 1.5 times the length of the interquartile
range above and below the 75th and 25th percentiles, and outliers are re-
presented as asterisks (*). 3-PBA concentrations were significantly higher
among participants in the conventional as compared to the organic group
(p= 0.03); no significant difference was found for PNP or TCPY.
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specific OP metabolites found lower concentrations of dimethylpho-
sphates among residents of a vegetarian community who reported
higher intake of organic produce (Berman et al., 2016). Similarly, in a
large multi-ethnic cohort of American adults recruited from six cities
across the USA, we found DAP concentrations to be significantly lower
among individuals who reported more frequent consumption of organic
produce, after control for total fruit and vegetable intake (Curl et al.,
2015).

Several experimental studies have supported the results of these
observational investigations. Among 23 children aged 3–11 years, a
five-day organic diet intervention significantly reduced urinary con-
centrations of specific biomarkers of OP pesticide exposure (Lu et al.,
2006b; Lu et al., 2008). In this study, the researchers substituted many
categories of conventional items with organic versions, including fresh
and processed fruits and vegetables, juices, and some wheat- and corn-
based items. In another interventional study in 2006, Bradman et al.
(2015) recruited a group of 40 Mexican-American children aged
3–6 years, 20 of whom lived in an urban community and 20 of whom
lived in a predominantly agricultural community. Regardless of re-
sidential location, introduction of a 7-day organic diet significantly
reduced DAP concentrations in the children's urine. In this study, the
researchers substituted several food categories, including fruits, breads,
cereals, vegetables, dairy, eggs, juices and snacks. A crossover study of
13 non-occupationally exposed adults in Australia also found urinary
DAP concentrations to be significantly lower when the participants
were asked to consume as close to a 100% organic food diet as possible
for seven days (Oates et al., 2014). Most recently, Hyland et al. (2019)
reported significant reductions in urinary levels of several pesticide
metabolites – with some of the most marked decreases among specific
metabolites of OPs – among four families whose conventional diets
were replaced with fully organic diets.

In our study, we did not find a significant difference between con-
centrations of OP biomarkers in the conventional and organic produce
groups. Unlike many of these previous studies, we did not attempt to
substitute a fully organic diet for the participants' conventional diets,
instead focusing on fresh fruit and vegetable items. OP and pyrethroid
insecticides are more commonly used on fruit and vegetable crops than
livestock, dairy or grain, but it is possible that our results may have
underestimated the effect of an organic diet on OP exposure because we
did not include processed fruits and vegetables or juices in the dietary
intervention. We also did not measure the non-specific DAP metabo-
lites, which represent collective exposure to many OP pesticides, and so
our results are limited to the specific biomarkers of a much smaller set
of parent compounds. Of the OP biomarkers investigated in this current
study, one – PNP – represents exposure to parathion and methyl para-
thion (neither of which is currently registered for use in American
agriculture), but is also itself used to manufacture drugs and dyes (Qiao
et al., 2000). The finding that 100% of our samples contained detect-
able concentrations of PNP may not be informative as to differences in
pesticides exposure. For TCPY, the specific biomarker of exposure to
chlorpyrifos, we did see a larger range and a higher 75th percentile for
concentrations of this biomarker in the conventional produce group
compared to the organic produce group. However, the median con-
centrations were nearly identical, and this difference was not statisti-
cally significant. MDA and IMPY, the specific biomarkers of malathion
and diazinon, were infrequent and not different between the two
groups.

It is also possible that, with regard to OP pesticides, the difference
between our findings and those of previous studies may be related to
changes in agricultural pesticide use practices over time. The dietary
interventions conducted by Lu et al. (2006b, 2008) and Bradman et al.
(2015), described above, occurred during the early to mid-2000s. In the
ten to fifteen years since those studies were conducted, OP pesticide use
in agriculture has decreased, and pyrethroid use has risen (Palmquist
et al., 2012). At the same time, concentrations of many OP pesticide
metabolites in the overall population have dropped while many

pyrethroid metabolite concentrations have increased (CDC, 2018).
Thus, it could be that an organic diet may not have as significant an
effect on OP exposure as it may have had in the previous decade, al-
though the recent findings by Hyland et al. (2019) do not support this
hypothesis.

With respect to pyrethroids, participants in the organic produce
group had significantly lower urinary biomarkers of exposure than
participants in the conventional produce group. The results of previous
studies of the effect of an organic diet on pyrethroid exposure have been
somewhat mixed, compared to previous studies of OP exposure.
Bradman et al. (2015) found urinary concentrations of 3-PBA to de-
crease following an organic diet intervention among children living in
Oakland, CA, but not among those living in the Salinas Valley, CA. And
while Lu et al. (2006a) reported a dramatic reduction in OP exposure
following an organic diet intervention in 23 elementary school children,
they found residential pesticide use to be more important than diet as a
predictor of pyrethroid metabolite concentrations in children's urine.
More recently, Hyland et al. (2019) reported decreases of 43 to 57% for
the metabolites of multiple pyrethroid insecticides (including 3-PBA
and trans-DCCA) following a fully organic diet intervention. Changes in
pesticide use patterns over time, and particularly the increased use of
pyrethroids in agriculture described above, may explain the less am-
biguous effect of an organic intervention on pyrethroid exposure ob-
served in both the recent work described by Hyland et al. (2019) and
the current study compared to earlier research.

To our knowledge, this is the first study to evaluate the effect of a
long-term organic diet intervention. All previous studies have included
interventions lasting one to two weeks; this study evaluated the effect of
a 24-week intervention. Our biomonitoring approach, which included
collection of an average of 23 urine samples per participant, was also
sufficiently intensive to capture and characterize long-term exposure.
Thus, for the first time, we are able to evaluate the effect of an organic
diet intervention on pesticide exposures on a more chronic timescale.
This also is the first study to investigate the effect of an organic diet
intervention on pesticide exposure among pregnant women.
Neuroscientific research has identified embryonic and fetal develop-
ment to be among the “critical windows of vulnerability” to neurotoxic
chemicals (Bennett et al., 2016), and thus pregnant women are an
important population to consider when evaluating potential opportu-
nities for exposure reduction.

Finally, instead of providing study participants with a fully organic
diet and encouraging strict compliance, we designed an intervention
more closely related to actual dietary consumption patterns. Previous
researchers' decisions to evaluate the effect of a fully organic diet were
clearly appropriate for the goal of understanding the contribution of the
dietary pathway to pesticide exposure. One of our goals, however, was
to determine whether it would be feasible to conduct a longer-term
organic diet intervention study that would be acceptable to partici-
pants. In this way, this work provides preliminary data for a future
investigation of whether organic food consumption is associated with
improved neurocognitive outcomes in children. For that future work to
be meaningful, the dietary intervention must be realistic. Consumption
of a fully organic diet is rare; in our previous research, among a sample
of> 4000 adults recruited from across the USA, we found that fewer
than 5% reported that they “often or always” consumed organic food,
whereas 35% reported that they “sometimes” did (Curl et al., 2013).
Thus, the dietary intervention we selected for this study was intended to
better reflect real-world dietary habits.

While there are several important and novel attributes to this study,
there are also areas of remaining uncertainty. Use of urinary biomarkers
to assess pesticide exposure is limited by the possibility that measured
concentrations may represent exposure to preformed metabolites rather
than the parent compounds themselves (Sudakin and Stone, 2011), and
no data were available regarding residue levels of parent compounds on
produce samples. This could result in overestimation of the potential
effect of the dietary intervention on any health outcomes. This fact is
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less of a concern in the current study because we are not evaluating
health effects, but it could be problematic for future epidemiological
inference. In addition, several of the participants in this study did report
residential use of pyrethroid pesticides and containers of these pesti-
cides were found in their homes. Because the frequency of residential
pyrethroid use was similar in the organic and conventional groups, we
do not think that this affected the study results. However, we cannot
rule out the possibility that residential sources, in addition to dietary
sources, contributed to the measured biomarker concentrations.

This study had a small sample size of twenty participants, although
461 spot urine samples were collected and analyzed as 116 monthly
composites. A larger number of participants would have generated
more precise exposure estimates, which may have allowed us to see
differences in biomarkers of OP pesticides between the organic and
conventional produce groups – if they existed – that were not apparent
in these data. Finally, participants in this study were relatively homo-
genous in terms of race/ethnicity and income levels. While these vari-
ables should not necessarily affect our conclusions in this study, a more
diverse population may be more appropriate for future research re-
garding the relationship between organic food consumption and health
effects. In terms of education, participants in the organic produce group
had somewhat higher educational attainment than those in the con-
ventional produce group. Because higher educational attainment is
frequently associated with greater intake of fruits and vegetables, and
fruit and vegetable intake has been associated with pesticide exposure,
this difference could dampen any relationship between assignment to
the organic produce group and reduced pesticide exposure. This could
potentially bias results towards the null and would result in an under-
estimation of the effect of organic produce consumption on pesticide
exposure in this cohort. We believe this is unlikely, however, since the
median intake of fruits and vegetables was two servings per day in both
groups.

Despite these limitations, this study provides evidence that addition
of organic, rather than conventional, produce to an individual's diet
may be an effective strategy to reduce exposure to pyrethroid pesti-
cides. This work demonstrates that a fully, 100% organic diet is not
required to see a significant reduction in urinary biomarkers of ex-
posure to these insecticides. Finally, this study, which included the
collection of many more biological samples than in previous studies,
demonstrates the feasibility of a long-term organic diet intervention in a
potentially vulnerable population and provides an estimate of the effect
of such an intervention on exposure to pyrethroid and OP pesticides.
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