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ABSTRACT 
 

The purpose of the study was to evaluate the associations between selected dietary factors, body mass 

index (BMI), selected obesity-related metabolic markers, and lung cancer risk as well as histological 

types in ever-smokers (former and current-smokers). Characteristics of interest included BMI at age 50, 

fruits and vegetables daily frequency, supplemental beta-carotene intake, C-peptide (CP), high-

sensitivity C-reactive protein (hsCRP), and leptin concentrations. Data from the Prostate, Lung, 

Colorectal, and Ovarian (PLCO) Cancer Screening Trial were analyzed. Linear regression models were 

used to describe the associations between quantitative variables. The relationships between variables of 

interest and lung cancer were studied by logistic regression modelling. Multivariable fractional 

polynomial (MFP) models were utilized to address non-linearity in these associations. Higher fruits and 

vegetables daily frequency and supplemental beta-carotene intake were associated with a lower risk of 

lung cancer in ever-smokers. Metabolic markers, C-peptide and hsCRP, were positively associated with 

lung cancer risk. Inverse relationships were observed between BMI and leptin with lung cancer risk. The 

relationships between selected dietary factors, BMI, selected metabolic markers, and lung cancer risk 

were more prominent in non-small cell lung cancer (NSCLC) in comparison with those in small cell lung 

cancer (SCLC). 
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CHAPTER 1 INTRODUCTION 

In Canada, approximately 1 in 11 males and 1 in 14 females would develop lung cancer (LC), and 

this type of cancer causes more cancer deaths than the total mortality from breast, colorectal, and 

prostate cancers together (Canadian Cancer Statistics Advisory Committee[CCSAC], 2017). Although lung 

cancer is an exceedingly lethal disease, there are hopes of preventing it. Risks associated with the 

disease may be reduced or prevented with further understanding of factors that contribute to lung 

cancer risk other than tobacco use. 

According to multiple studies, the most significant cause of lung cancer is cigarette smoking 

(Alberg, Brock, Ford, Samet, & Spivack, 2013; de Groot, Wu, Carter, & Munden, 2018). About 85% of 

lung cancer incidence cases could be attributed by cigarette smoking (Chyou, Nomura, & Stemmermann, 

1992) In Canada, 11.1% of people with lung cancer were caused by low fruits consumption and 5.3% 

were caused by low non-starchy vegetables consumption, respectively (Poirier et al., 2019). Higher body 

mass index (BMI), an indicator of body composition, is associated with numerous deteriorating health 

problems. Nevertheless, an inverse association between elevated BMI and lung cancer risk has been 

established by many studies, which implies that greater body mass protects people against lung cancer 

(Goodwin & Stambolic, 2015; Renehan, Tyson, Egger, Heller, & Zwahlen, 2008). Other researchers have 

explored the role of different lifestyle factors, for example, nutrition and diet (Dela Cruz, Tanoue, & 

Matthay, 2011). Dietary components, such as fruits, vegetables, and whole grains have protective 

effects on lung cancer. Higher levels of serum C-peptide and high-sensitivity C-reactive protein were 

related to a higher lung cancer risk (Goodwin et al., 2015).  

The main purpose of the current study was to determine whether the effects of dietary factors 

on odds of lung cancer could be explained by alterations in metabolic markers in relation to sex, 

smoking status, and histological types of lung cancer. We intended to identify associations among diet, 
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BMI, metabolic markers, and the likelihood of lung cancer. This is expected to add new understanding of 

factors that may prevent lung cancer. 

1.1 Impact of Lung Cancer 

For decades, lung cancer has been one of the most common cancers in the world, and 2.09 

million new occurrences were estimated in 2018 (CCSAC, 2018). With a high mortality rate, lung cancer 

was responsible for 1.76 million deaths (CCSAC, 2018). And it is noteworthy that lung cancer trends 

differ by histologic type and sociodemographic characteristics, including sex, race/ethnicity, and age. 

These differences represented different historical cigarette smoking rates, duration, cessation, cigarette 

composition, and exposure to other carcinogens (Lewis, Check, Caporaso, Travis, & Devesa, 2014). High 

incidence and mortality, and poor survival make lung cancer one of the high-burden diseases to 

societies. A better understanding of the causes of lung cancer can help to design proper protective 

schemes. Consequently, the burden of the disease can be minimized by carefully implementing 

prevention strategies (CCSAC, 2017). 

1.2 Potential Mechanisms 

Cigarette smoking is the single most prominent preventable risk factor, as it has been proven to 

have a strong direct effect on lung cancer formation (de Groot et al., 2018). The exposure to cigarette 

smoking may be also indirectly linked to users’ BMI and metabolism, which alters people’s risk of 

developing the disease. Excess body weight or higher BMI, a risk factor for many common (i.e. colorectal 

cancer) and less common cancers (i.e. gallbladder), reduces people’s risk of developing lung cancer 

(Goodwin & Stambolic, 2015; Renehan et al., 2008; Sanikini et al., 2018). Higher C-peptide and high-

sensitivity C-reactive protein (hsCRP) are metabolic markers that may reflect the carcinogenic process, 

but lower risk is observed in people with higher leptin level. BMI and these metabolic markers are 

related to diet, so the role of dietary factors in lung cancer risk should be considered along with smoking 

exposure. Dietary studies have found that certain dietary patterns, such as high fat, sugar, and refined 
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carbohydrate consumption, are associated with higher body mass. And studies on cigarette smoking and 

BMI found that smokers are likelier to be leaner than non-smokers. On the other hand, evidence from 

observational studies have substantiated the role of a healthy diet in lung cancer. Fruits and vegetables 

consumption is inversely related to the incidence of the disease (Alberg et al., 2013). In addition, an 

earlier study of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial found that 

several obesity-related metabolic markers are associated with lung cancer risk (Goodwin et al., 2015). 

Potential interaction of associations with sex were examined since metabolism differs by biological sex. 

Therefore, diet might have an impact on the likelihood of lung cancer through regulation of BMI, leptin, 

C-peptide, and hsCRP; and the effects might differ by sex, and smoking status. 

1.3 Literature Gaps 

Previous studies established the relationship between smoking and metabolic changes, 

including lower leptin, higher C-peptide, and hsCRP (Cibickova et al., 2015; Helmersson, Larsson, Vessby, 

& Basu, 2005; Perkins & Fonte, 2002). Although the results of dietary studies were inconsistent, a well-

accepted finding suggested that a dietary pattern with high intakes of fruits, vegetables, and whole 

grains was inversely associated with leptin and C-reactive protein (CRP) levels independent of BMI (Ko et 

al., 2016; Nettleton et al., 2006). Higher fruits or green leafy vegetables intake was associated with 

lower risk of type 2 diabetes mellitus (T2DM) (Li, Fan, Zhang, Hou, & Tang, 2014). This might be 

explained by the antioxidant content in fruits and vegetables that reduces systemic oxidative stress and 

inflammatory responses. Carotenoid metabolism changes during inflammation, and carotenoid level can 

also influence inflammatory responses and oxidative stress (Rubin, Ross, Stephensen, Bohn, & 

Tanumihardjo, 2017). Hence, beta-carotene may play a role in the development of lung cancer by 

mediating inflammation. hsCRP belongs to the family of innate immune response proteins and is 

considered a marker of inflammatory processes (Bassuk, Rifai, & Ridker, 2004). Furthermore, the 

associations between pre-diagnostic metabolic markers and lung cancer risk regarding smoking status 
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were investigated. Higher C-peptide and hsCRP concentrations were associated with higher lung cancer 

risk, while leptin level and BMI were inversely related to the risk in ever-smokers (former and current-

smokers) (Goodwin et al., 2015). A moderate positive correlation between BMI and leptin level 

suggested a possible association, but a causal relationship could not be determined yet (Altman & 

Krzywinski, 2015; Kazmi et al., 2013). Moreover, BMI was documented to be inversely associated with 

lung cancer risk from a previous study using data from the PLCO Cancer Screening Trial (Tammemagi et 

al., 2011). 

The study designs of previous studies were mostly cross-sectional or retrospective case-control, 

so they were possibly compromised by reverse causality. For instance, the metabolic changes were 

caused by lung cancers. The current case-control study evaluated the effects of dietary factors, BMI at 

age 50, leptin, C-peptide, and hsCRP on lung cancer risk. It was nested in the experimental cohort of the 

PLCO Cancer Screening Trial. A nested case-control design possesses a higher position in the hierarchy of 

study validity and brings more evidence for establishing causality between exposures and the outcome 

of interest. In addition, the interactions of participants’ sex, and smoking status had not been 

completely examined yet; the current study evaluated the associations between dietary factors, BMI at 

age 50, metabolic markers, and lung cancer adjusted for potential confounders. 

1.4 Response to Gaps in Current Knowledge 

To address the gaps in knowledge, the current research was conducted using the pre-existing 

data from the PLCO Cancer Screening Trial in the United States. The PLCO Trial was a randomized 

prospective study launched by the National Cancer Institute (NCI) in 1993. The metabolic markers and 

dietary data were collected before the patients were diagnosed with lung cancer. Hence, the study 

could appropriately clarify the temporal aspects of the associations and might suggest possible causal 

relationships. Moreover, if the identified mechanisms of associations in the study can be validated in 
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future studies, this may lead to a discovery of potential sites for intervention. Consequently, the results 

may provide future research directions. 

1.5 Study Aim, Objectives and Hypotheses 

Study Aim: To evaluate the associations between selected dietary factors, BMI, metabolic markers 

(leptin, C-peptide, and high-sensitivity C-reactive protein), with each other and with lung cancer.  

 

Figure 1. Schematic Presentation of Potential Pathways 

Study Objectives: 

(1a) Describe the associations between selected dietary factors (fruits and vegetables daily frequency 

and supplemental beta-carotene intake) and lung cancer, and (1b) if the associations differ by potential 

effect modifiers (sex, smoking status, and histological types of lung cancer).  

2a) Describe the associations in the pathway between Diet-BMI-LC, (2b) evaluate if the associations 

differ by potential effect modifiers, and (2c) and if BMI in part explain the association between diet and 

lung cancer.  

(3a) Describe the associations in the pathway between Diet-Metabolic markers-LC, (3b) evaluate if the 

associations differ by potential effect modifiers, (3c) and if metabolic markers in part explains the 

associations between diet and lung cancer, and (3d) between BMI and lung cancer. 

Hypotheses: 

Relationship between diet and lung cancer: 
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H0: Dietary factors are not associated with lung cancer as estimated by odds ratio approaching the null 

value. 

H1: Dietary factors are associated with lung cancer as estimated by odds ratio away from the null value. 

Relationship between diet and BMI: 

H0: Dietary factors are not associated with BMI as estimated by slope approaching the null value. 

H1: Dietary factors are associated with BMI as estimated by slope away from the null value. 

Relationship between BMI and lung cancer: 

H0: BMI is not associated with lung cancer as estimated by odds ratio approaching the null value. 

H1: BMI is associated with lung cancer as estimated by odds ratio away from the null value. 

Relationship between diet and metabolic marker level: 

H0: Dietary factors are not associated with metabolic markers as estimated by slope approaching the 

null value. 

H1: Dietary factors are associated with metabolic markers as estimated by slope away from the null 

value. 

Relationship between metabolic markers level and lung cancer: 

H0: Metabolic markers are not associated with lung cancer as estimated by odds ratio approaching the 

null value. 

H1: Metabolic markers are associated with lung cancer as estimated by odds ratio away from the null 

value. 

The main dependent variable a person’s lung cancer status (yes/no) is dichotomous, and the 

independent explanatory variables are quantitative (e.g. supplemental beta-carotene intake) and 

categorical variables (e.g. education). Cases and controls were matched on sex, age, race/ethnicity, 

smoking status, year of study entry, duration of follow-up, and study center. Therefore, conditional 

logistic regressions examined the associations for matched data, the method estimated the effects of 
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multiple explanatory variables with and without adjustments for relevant variables and identified effect 

modifications (also known as interactions). Hypotheses of interactions and correlations between 

metabolic markers are not stated here because those evaluations were of an exploratory nature. 

1.6 Conclusion 

The pooled five-year survival rate of lung cancer patients for all stages was just 17% (CCSAC, 

2019). And the deadly disease is not uncommon, approximately 8.7% of males and 7.1% of females in 

Canada would develop the disease (CCSAC, 2017). Patients and their families suffer as do communities 

worldwide. Gaining further understanding of additional risk factors for lung cancer might lead to 

preventive measures, which would be the most cost-effective strategy for individuals and societies to 

manage the harms of the disease (Tota, Ramanakumar, & Franco, 2014). The current study aimed to 

contribute to the existing body of knowledge by evaluating the associations among diet, BMI, metabolic 

markers, and lung cancer. The associations described in the study might help to clarify the inverse 

relationship between pre-diagnostic BMI and lung cancer. The mechanism of dietary factors elucidated 

in the current study may offer new targets for interventions for primary prevention. A better 

understanding of selected dietary factors, BMI, and metabolic markers may improve a screening 

program and a prediction tool for lung cancer. The additional components of metabolic markers 

provided by the study may further improve the performance of risk assessment tools and help to 

identify individuals at high risk for developing lung cancer.  
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CHAPTER 2 REVIEW OF LITERATURE 

2.1 Overview and Lung Cancer Statistics 

Lung cancer is the most common cancer and the most common cause of cancer death in the 

world. The crude and age standardized incidence and mortality rates in 2018 were 22.5 and 18.6 per 

100,000, which contributed to 2.09 million new cases and 1.76 million deaths (International Agency for 

Research on Cancer [IARC], 2018). The disease continues to be the most common cancer in males 

worldwide. The incidence rate for females is lower than males because of different tobacco use. Since 

the overall ratio of mortality to incidence was 0.87, it is a highly fatal disease (IARC, 2018). 

In Canada, about 8.7% males and 7.1% females would develop lung cancer in their lifetimes 

(CCSAC, 2017). It is a leading cause of cancer death as well, killing more Canadians than the other three 

major cancer types combined (breast, colorectal, and prostate cancers). Overall, lung cancer accounted 

for approximately 14% of all new cases in both males and females (CCSAC, 2017). In Canada, it was 

projected that 28,600 people would develop lung cancer in 2017 and 21,100 would die from it 

(Government of Canada, 2017). The age standardized incidence remained higher in males (76.5 per 

100,000) than females (65.3 per 100,000) (Government of Canada, 2017). The disparities in incidence 

rates between sexes is explained by historical differences in tobacco use. In males, a noticeable decline 

in the prevalence of daily smokers occurred in the mid-1960s in Canada, followed by a decrease in 

incidence of lung cancer about 20 years later. A downturn in smoking did not emerge among females 

until the mid-1980s, which indicates that incidence rate of lung cancer in females may start to drop in 

the coming years (CCSAC, 2017). In contrast to many other cancers where mortality increases with age, 

deaths from lung cancer remain the highest in one age range: 70 – 79 years old for both sexes (CCSAC, 

2017). Five-year relative survival rate for lung cancer was about 17%, with 14% in males and 20% in 

females (CCSAC, 2017). This means that comparing to 100 people who are alive at the end of five-year 

period in the general population, the number of people with lung cancer, similar age and sex who will be 
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alive five years after diagnosis is only 17. Moreover, relative survival rate decreases as patients’ ages go 

up. People aged 15 – 39 years at diagnosis have the highest five-year relative survival rate of 45%, while 

individuals aged 80 – 99 years have the lowest rate of 10% (CCSAC, 2017). It can be explained that older 

individuals with lung cancer are more likely to die from competing causes of death than younger 

individuals. 

2.2 Biology of Lung Cancer 

2.2.1 Etiology and Pathogenesis 

Normal cells grow and divide to produce new cells when the body requires them, and newly 

generated cells take the place of aged and damaged ones. When the balance is disrupted, aged or 

damaged cells persist in living and unrequested new cells are produced disproportionately (National 

Cancer Institute [NCI], 2015b). As a result, these extra cells replicate interminably and may progress and 

form tumors. Particularly, a malignant tumor, also known as cancer, invades tissues nearby and spreads 

to distal sites of one’s body (NCI, 2015b). Thereby, having a sound grasp of irregular cell activities is vital 

to understanding carcinogenesis. One cause of abnormal cell activity is genetic alterations. The genetic 

changes can occur through a variety of mechanisms, including inherited from one’s biological parents, 

acquired during his/her lifetime by reason of mutations, or triggered by certain environmental 

exposures (NCI, 2015b). In general, the alterations can take place in 3 types of genes: proto-oncogene, 

tumor suppressor gene (also known as antioncogene), and DNA repair gene. Proto-oncogenes are 

obligated to maintain normal development and reproduction of cells. So, changes in these genes may 

result in hyperactivity, and they may turn into cancer-causing oncogenes. Similarly, mutation in 

antioncogenes may result in loss of function which leads to unrestrained cell growth. By contrast, DNA 

repair genes have a capacity to refurbish injured genes, so cells with genetic alterations in them are 

more inclined to accumulate additional mutations in other genes. Because of this, cells that have 

undergone multiple mutations can eventually become cancerous (NCI, 2015b). In other words, cancer is 
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a joint consequence of higher exposures to detrimental factors and higher susceptibility to these factors 

among people (Alberg et al., 2013). Moreover, the interaction between two harmful exposures can act 

synergistically and increase lung cancer risk that is considerably greater than the sum of two individual 

impacts. For example, exposure to asbestos and radon gas are well-recognized risk agents which can 

amplify the harmful effect of cigarette smoking (Saracci, 1987).  

2.2.2 Classification and Histology 

Based on the cell type of a malignant tumor, lung cancer can be categorized into two general 

histological classes: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). The former type 

accounts for 80 to 85 percent of all cases, and it is comprised of adenocarcinoma (AD), squamous-cell 

carcinoma, and large cell carcinoma (American Cancer Society, 2016b; Collins, Haines, Perkel, & Enck, 

2007; Hoffman, Mauer, & Vokes, 2000). 

Small Cell Lung Cancers (SCLCs) 

Small cell lung cancers (SCLCs) account for about 14% of all lung cancer cases, and unique 

clinical and histological characteristics distinguish them from NSCLCs. SCLCs are made of small cells with 

little cytoplasm, poorly marked cell borders, finely granular nuclear chromatin, and inconspicuous 

nucleoli (Travis, Brambilla, Muller-Hermelink, & Harris, 2004). SCLCs are rarely seen in non-smokers, and 

are likelier to progress considerably, and metastasize readily in comparison to NSCLC (CCSAC, 2017). The 

following will discuss cell types specific to NSCLC. 

Non-small cell lung cancer 

Adenocarcinomas (ADs) 

Adenocarcinomas account for roughly 40% of all lung cancers (Collins et al., 2007; Travis, 2011). 

Although adenocarcinomas manifest primarily in former and current-smokers, they are the most 

prevalent type found in non-smokers (CCSAC, 2018). Given that lung cancer occurs less frequently in 

non-smokers, the number of adenocarcinoma cases are lower in this population compared to that of 
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smokers (CCSAC, 2018). Moreover, adenocarcinomas occur more often in females than males, and have 

become a common type in young never-smokers (American Cancer Society, 2016b; Dela Cruz et al., 

2011). 

Adenocarcinomas are closely related to the popularity of filter-tipped cigarettes. The tobacco 

industry adds filter tips to cigarettes to cut down tar and nicotine yields (Ernst L Wynder & Muscat, 

1995). In order to compensate for the lower delivery of nicotine, users tend to inhale more deeply and 

smoke more intensely than non-filter smokers. A greater draw of smoke can counteract the decrease in 

tar exposure (Ernst L Wynder & Muscat, 1995). The peripheral bronchioles are defective in defense 

mechanisms. In consequence, the distant lung tissue is exposed to higher dose of carcinogens, making 

people more susceptible to developing adenocarcinomas. In other words, more adenocarcinomas were 

detected when filtered cigarettes began to dominate the market. 

Squamous-Cell Carcinomas (SCCs) 

About 25 to 30% of all lung cancers are squamous-cell carcinomas, and they are characterized 

by thin, flattened cells with keratinized cytoplasm and intercellular bridges (American Cancer Society, 

2016b; Travis, 2011). SCCs are typically linked with a history of smoking and generally occur in the 

central part of the thorax, especially in the vicinity of a major airway or a bronchus (American Cancer 

Society, 2016b). In addition, SCCs is a predominant subgroup in male smokers (Khuder, Dayal, Mutgi, 

Willey, & Dayal, 1998; Pesch et al., 2012). 

Large Cell Carcinomas (LCCs) 

Approximately 10 to 15% of lung cancers belong to LCCs. They can be found in any region of the 

lungs. Because LCCs frequently progress and spread quickly, healthcare providers have difficulty in 

managing and controlling them (American Cancer Society, 2016b). 

2.3 Tumor Staging and Grade 

2.3.1 Cancer Staging 
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Cancer staging represents the severity of a patient’s cancer referring to the size of a primary 

tumor and if it has metastasized to other sites of his/her body. Staging enables doctors to develop an 

appropriate treatment plan and make an accurate prognosis for the patient (American Joint Committee 

on Cancer [AJCC], 2018; NCI, 2015a). Regardless of different types of staging, all systems consist of four 

principal elements: (1) the location of a primary tumor in the body; (2) the magnitude of the tumor and 

extension of tumor locally; (3) if the tumor has spread to adjacent lymph nodes; and (4) whether the 

cancer has metastasized to a distant location of the body. The Tumor-Node-Metastasis (TNM) 

classification system (8th edition), developed and maintained by the American Joint Committee on 

Cancer (AJCC, 2018) and the Union for International Cancer Control (UICC), is the most widely utilized 

tool by medical professionals. As shown in Table 1, there are three anatomical components in the 

system: T for the size of a primary tumor in long axis, or direct extent of the tumor into contiguous 

structures; N for the involvement of regional lymph nodes; and M for the presence of distant metastases 

beyond regional lymph nodes (Detterbeck, Boffa, Kim, & Tanoue, 2017; Kay et al., 2017; Mirsadraee, 

Oswal, Alizadeh, Caulo, & van Beek, 2012). Moreover, each T, N, and M component is split into multiple 

secondary categories based on particular characteristics. In Table 2, three elements are integrated and 

reclassified into prognostic stage groups (Detterbeck et al., 2017; Edge, 2017; Kay et al., 2017).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

Table 1. Tumor-Node-Metastasis (TNM) Cancer Staging System for Lung Cancer, 8th edition. (American 
Joint Commission on Cancer, 2017) 

Note: the table is adapted from The Eighth Edition Lung Cancer Stage Classification (2017) (Detterbeck 
et al., 2017) 
 

2.3.2 Stage Groups 

Cancers at Stage I are usually small or have not grown deeply into nearby healthy tissues. Stage 

II and III indicate that cancers have grown in size and may have invaded to lymph nodes or adjacent 

tissues as well. When the tumor has spread to other organs or sites of the body, the individual is 

diagnosed with Stage IV cancer (Edge, 2017). 

 
 
 
 
 
 
 
 
 
 

Primary Tumor (T) 

T0 
  Tis 

No evidence of primary tumor 
Carcinoma in situ 

T1 Tumor 3 cm or less in greatest diameter 
T2 Tumor more than 3 cm but no more than 5 cm or tumor involving visceral pleura, main  

    bronchus, atelectasis to hilum 
T3 Tumor more than 5 cm but no more than 7 cm or invading chest wall, pericardium,  

    phrenic nerve or separate tumor nodule(s) in the same lobe 
T4 Tumor greater than 7 cm or invading mediastinum, diaphragm, heart, great vessels,  

    recurrent laryngeal nerve, carina, trachea, esophagus, spine; or tumor nodule(s) in a  
    different ipsilateral lobe 

Reginal Lymph Nodes (N) 

N0 No regional lymph node metastasis 
N1 Metastasis in ipsilateral pulmonary or hilar nodes 
N2 Metastasis in ipsilateral mediastinal/subcarinal nodes 
N3 Metastasis in contralateral mediastinal/hilar, or supraclavicular nodes 

Distant Metastasis (M) 

M0 No distant metastasis 
M1a Malignant pleural/pericardial effusion or pleural/pericardial nodules or separate tumor  

    nodule(s) in a contralateral lobe 
M1b Single extrathoracic metastasis 
M1b Multiple extrathoracic metastases (1 or more than 1 organ) 
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Table 2. Stage Grouping for Lung Cancer, 8th edition. (American Joint Commission on Cancer, 2017) 

T/M Description N0 N1 N2 N3 

T1 Tumor ≤ 1 cm IA1 IIB IIIA IIIB 
 Tumor > 1 but ≤ 2 cm IA2 IIB IIIA IIIB 
 Tumor > 2 but ≤ 3 cm IA3 IIB IIIA IIIB 
T2 Tumor < 3 but ≤ 5 cm or tumor involving:  

    visceral pleuraa, main bronchus (not carina),  
    atelectasis to hiluma 

IB IIB IIIA IIIB 

 Tumor > 3 but ≤ 4 cm IB IIB IIIA IIIB 
 Tumor > 4 but ≤ 5 cm IIA IIB IIIA IIIB 
T3 Tumor > 5 but ≤ 7 cm IIB IIIA IIIB IIIC 
 or invading chest wall, pericardium, phrenic  

    nerve 
IIB IIIA IIIB IIIC 

 or separate tumor nodule(s) in the same lobe  IIB IIIA IIIB IIIC 
T4 Tumor > 7 cm IIIA IIIA IIIB IIIC 
 or tumor invading: mediastinum, diaphragm,  

    heart, great vessels, recurrent laryngeal  
    nerve, carina, trachea, esophagus, spine; 

IIIA IIIA IIIB IIIC 

 or tumor nodule(s) in a different ipsilateral lobe IIIA IIIA IIIB IIIC 
M1 Malignant pleural/pericardial effusionb or  

    pleural/pericardial nodules 
IVA IVA IVA IVA 

 or separate tumor nodule(s) in a contralateral  
    lobe 

IVA IVA IVA IVA 

 Single extrathoracic metastasis IVA IVA IVA IVA 
 Multiple extrathoracic metastases (1 or > 1  

    organ) 
IVB IVB IVB IVB 

Note: the table is reprinted from The 8th Edition Lung Cancer Stage Classification (2017) (Detterbeck et 
al., 2017) 
cm: centimeter 
a such tumors are classified as T2a if >3 and ≤4 cm, T2b if >4 and ≤5 cm 
b Pleural effusions are excluded that are cytologically negative, non-bloody, transudative, and clinically 
judged not to be a cancer 
 

2.3.3 Tumor Grade 

In contrast to staging, tumor grade represents the irregularity and deviation of a tumor from 

healthy tissues, it is determined by the appearance of the tumor tissue under a microscope and its 

growth rate (NCI, 2013). Shown in Table 3, tumors made of cells and tissues resemble normal ones are 

described as "well-differentiated" (low grade); they have a lower level of aggressiveness and tend to 

spread slowly (NCI, 2013). In contrast, "poorly-differentiated" or "undifferentiated" (high grade) cells 

signifies the presence of aggressive tumors that have lost the normal structure of cells and they grow 
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and spread rapidly. Patients with high grade tumors usually have poor prognoses and are in need of 

immediate therapy (NCI, 2013). 

Table 3. Tumor Grading System 

Grade Description  

GX Grade cannot be assessed (undetermined grade) 
G1 Well differentiated (low grade) 
G2 Moderately differentiated (intermediate grade) 
G3 Poorly differentiated (high grade) 
G4 Undifferentiated (high grade) 

Note: the table is adapted from AJCC Cancer Staging Manual. 8th edition (2017) (Edge, 2017) 

2.4 Treatment and Prognosis 

Surgical resections, especially a minimally invasive procedure like video-assisted thoracic 

surgery, followed by chemotherapy are recommended for cases with removable stage I and II NSCLC, 

(Collins et al., 2007; Howington, Blum, Chang, Balekian, & Murthy, 2013; Latimer & Mott, 2015). The 

five-year survival rate is 60 to 70% for stage I and 40 to 50% for stage II patients (Collins et al., 2007). 

Based on performance status and lung cancer histology, chemotherapy and radiotherapy are 

recommended in stage III patients for the purpose of eliminating visible intrathoracic tumors and 

preventing subsequent extrathoracic metastases (Latimer & Mott, 2015; Ramnath et al., 2013; West & 

Jin, 2015). Five-year survival rate is between 15 and 30% for surgical removable stage IIIA, 10 to 20% for 

irremovable and advanced stage IIIA and stage IIIB with the involvement of contralateral or 

supraclavicular lymph nodes (Collins et al., 2007). For stage IIIB (pleural effusion) or stage IV cases, two-

year survival rate is between 10 to 20%. For patients with stage IV tumor, the main purpose of 

treatment is to improve quality of life (Latimer & Mott, 2015; Temel et al., 2010). Palliative care is aimed 

at managing symptoms, providing psychological support and assisting with decision-making for 

terminally ill patients and their families. It should be introduced early for patients with metastatic NSCLC 

or at any stage when their morbidity is severe (Latimer & Mott, 2015; Temel et al., 2010). 

Along with the TNM classification system, the Veterans Administration Lung Study Group 

(VALSG) two-stage classification scheme clinically categorizes SCLCs into limited-stage and severe 
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extensive-stage (Jett, Schild, Kesler, & Kalemkerian, 2013). For people with limited-stage SCLCs, surgery 

may be recommended. For either staged SCLCs, chemotherapy and radiation therapy with a platinum-

based agent in conjunction with either etoposide or irinotecan may be suggested at the same time (Jett 

et al., 2013). In addition, opportune palliative care is recommended concerning the severity of cancer, 

morbidity, and patients’ preferences (Latimer & Mott, 2015). People with limited-stage SCLCs are 

treated with the intention of curing the disease; however because of SCLC’s aggressive nature, the five-

year survival rate is between 20 to 25%. The figure is virtually zero among extensive-stage patients (Jett 

et al., 2013; Latimer & Mott, 2015). 

The survival rates of lung cancer are low, especially for people diagnosed at later stages (CCSAC, 

2018). For instance, estimates of five-year relative survival rates for NSCLCs range from 68% to 92% for 

stage I, but the number is between 1% to 10% for stage IV (American Cancer Society, 2017). Moreover, 

five-year survival estimates are pertinent to histologic types, for example 31% for SCLCs stage I and 

greater than 68% for NSCLCs stage I (American Cancer Society, 2016a; American Cancer Society, 2017). 

About 50% of all lung cancers patients are identified at stage IV (CCSAC, 2018). Nearly one-

quarter (23.1%) of NSCLCs are identified at stage I compared with only 3.5% of SCLCs. Because most 

cases are diagnosed at advanced stages and tumors have already spread, lung cancer has one of the 

lowest relative survival rates of all the major types of cancer in Canada (CCSAC, 2018). 

2.5 Clinical Presentation and Diagnosis 

2.5.1 Signs and Symptoms 

Although approximately 10% of lung cancer cases show no symptoms, most patients manifest 

some signs or symptoms at the time of diagnosis (Beckles, Spiro, Colice, & Rudd, 2003; Collins et al., 

2007; Latimer & Mott, 2015). Some symptoms affect individuals’ whole bodies non-specifically, such as 

fatigue, loss of appetite, and weight loss. And other cases present with specific symptoms caused by a 

primary or a secondary tumor (Collins et al., 2007). A primary tumor often induces symptoms like 
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coughing, coughing up of blood, labored breathing, pain or discomfort of the chest (Collins et al., 2007; 

Latimer & Mott, 2015). Intrathoracic spread caused by direct invasion of a tumor or lymphangitic 

metastasis appears in 40% of cases, and common presentations included chest wall invasion, esophageal 

symptoms, Horner’s syndrome, Pancoast’s tumor, phrenic nerve paralysis, pleural effusion, recurrent 

laryngeal nerve paralysis, and superior vena cava obstruction (Collins et al., 2007). And lung cancer 

patients may experience unconventional symptoms when secondary tumors affect their bodies. For 

example, a patient may experience difficulty in swallowing when the esophagus is affected by a 

secondary intrathoracic tumor. And a Pancoast tumor, in rare cases of NSCLCs, is atypically found at the 

top end (apex) of either lung. Common symptoms associated with lung cancer are seldom found in these 

patients. Instead, a Pancoast tumor is often accompanied by pain in the shoulder and arm (Hamilton, 

Peters, Round, & Sharp, 2005). Nearly one-third of patients display signs of extrathoracic spread, and 

their symptoms are related to the location of distant metastases (Collins et al., 2007; Latimer & Mott, 

2015). A paraneoplastic syndrome is another consequence of the tumor or immune response through 

bioactive substances secretion. The syndrome occurs in about 10% of lung cancer cases, and common 

examples at presentation are digital clubbing, hypercalcemia, and hyponatremia (Collins et al., 2007). In 

addition, two symptoms, hemoptysis and digital clubbing, are associated with a higher risk of having 

lung cancer (Latimer & Mott, 2015). 

2.5.2 Diagnosis 

For suspected lung cancer patients, health history and physical examination are evaluated at 

first to gather subjective data on symptoms and potential risk factors. Complete blood count and blood 

chemistry tests (including alkaline phosphatase or calcium, and liver function tests) provide information 

on overall health and possible metastatic growth in the patient. Several radiological exams are 

employed, for example: chest X-ray (chest radiograph), computed tomography (CT) scan, positron 

emission tomography (PET) scan, magnetic resonance imaging (MRI), and ultrasound (CCSAC, 2018; 
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Latimer & Mott, 2015). A negative result of a chest X-ray cannot completely rule out lung cancer, CT or 

PET are necessary when a suspicion remains high (Latimer & Mott, 2015). 

Physicians diagnose the type of lung cancer based on clinical presentations and radiographic 

exams. Although, obtaining a tissue biopsy is essential for an accurate diagnosis and planning an 

appropriate treatment plan. Diagnostic assessment will be further determined based on the type of 

procedure, dimensions and location of the tumor, comorbidities, and potential presence of metastasis 

(Herth, Eberhardt, Vilmann, Krasnik, & Ernst, 2006; Lamprecht, Porsch, Pirich, & Studnicka, 2009; 

Latimer & Mott, 2015; Rivera, Mehta, & Wahidi, 2013). Conventional bronchoscopy works best for 

central lesions, whereas CT-guided transthoracic needle aspiration is typically used for peripheral lesions 

(Rivera et al., 2013). Endobronchial ultrasound is suitable for nodules between the lungs, and 

electromagnetic navigation bronchoscopy improves the diagnostic yield of bronchoscopy for peripheral 

lesions (Herth et al., 2006; Lamprecht et al., 2009). 

2.6 Risk Factors 

Risk factors of a health condition are defined as characteristics, attributes or exposures that 

increase the probability of developing a disease (CCSAC, 2019). A risk factor may not necessarily be a 

cause of the disease. But understanding risk factors of lung cancer is crucial in public health as it helps to 

develop preventive programs. To better understand risk factors, these characteristics are mainly 

classified as non-modifiable or modifiable risk factors according to whether an alteration is achievable. 

2.6.1 Non-Modifiable Risk Factors 

2.6.1.1 Age 

The inevitable risk factor of ageing is believed to have the most pronounced effect on never-

smokers, although it plays a pivotal role regardless of a person’s smoking status (McCarthy, Meza, Jeon, 

& Moolgavkar, 2012; Thun et al., 2006). Meanwhile, people are living longer lives with the average age 

of most populations around the world climbing, thus lung cancers cases will increase more so than past 
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decades. Deoxyribonucleic acid (DNA) damage and shortening telomeres are more commonly found 

when people are in their advanced ages, and they are associated with lung cancer development (de 

Groot et al., 2018). Around 53% of patients are diagnosed with lung cancer at age 55 to 74, and 37% are 

over 75 years old with the median age at diagnosis of 70 for both sex groups (de Groot et al., 2018; 

Torre et al., 2015). Lung cancer has been found to be the leading cause of death in males over 40 years 

of age and in females above 59 in the United States (de Groot et al., 2018; Siegel, Miller, & Jemal, 2018).  

2.6.1.2 Sex 

The trends of lung cancer are changing discordantly between males and females. Historically, 

more males used tobacco products, and incidence and mortality rates were higher in males than in 

females (Siegel et al., 2018). Then, female rate of smoking began after the World War II with cessation 

rates lagging behind males. A rapid drop in incidence rate was found in males, but the figures in females 

declined slowly (de Groot et al., 2018). Even though tobacco use is the major determinant of lung cancer 

in females, roughly 20% of cases have never smoked. Other factors, like environmental exposures, 

genetic mutation, hormonal effects, and infections, are potentially involved in the development of lung 

cancer among female non-smokers (Kligerman & White, 2011). 

The histological composition and genetic predisposition of lung cancer also differ by sex. 

Adenocarcinoma is the most frequently found lung cancer type in both males and females (Sagerup, 

Småstuen, Johannesen, Helland, & Brustugun, 2011). The proportion of females identified as non-

smoking lung cancer cases is higher than that of males, and the incidence of bronchiolo-alveolar 

carcinoma (BAC), a subtype of adenocarcinoma, is two to four times more commonly seen in females. 

The probability of epidermal growth factor receptor (EGFR) mutation is greater in tumors of female 

patients with lung cancer (O’Keeffe & Patel, 2008; Planchard, Loriot, Goubar, Commo, & Soria, 2009). 

Certain DNA sequences more frequently found in female smokers probably make them more susceptible 
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to the disease. For example, overexpression of X-linked gastrin-releasing peptide receptor (GPRP) is 

associated with bronchial cell proliferation (Kligerman & White, 2011; North & Christiani, 2013). 

Overall, the findings of hormonal effects cannot draw a coherent conclusion. The estrogen 

receptor (ER) α, absent in healthy lung tissue, has been found overexpressed in adenocarcinoma of 

female patients, but some studies also detected the overexpression in male cases (Kligerman & White, 

2011). Randomized controlled trials (RCTs) of hormonal therapy with an estrogen and progestin 

formulation have ascertained a significantly higher lung cancer risk, which signals a potential hormonal 

influence on the etiology of lung cancer in females (Alberg et al., 2013; Greiser, Greiser, & Dören, 2010). 

Nonetheless, a meta-analysis of 14 cohort studies concluded that the use of previous hormonal 

replacement therapy had an insignificant effect on the risk of lung cancer in females (Bae & Kim, 2015). 

2.6.1.3 Race/Ethnicity 

Race classification used in some biomedical studies adds meaningfulness to the geographical 

area of origin for a person’s ancestry, which contains five main categories: Whites, Blacks or African 

Americans, Asians, Native Hawaiians or other Pacific Islanders, and American Indians or Alaska Natives 

(Schabath, Cress, & Muñoz-Antonia, 2016). Race and ethnicity does not only represent collective social 

and cultural structures, but they are also linked to socioeconomic status (SES) (Dela Cruz et al., 2011; 

Schabath et al., 2016). Blacks or African Americans have the highest incidence and mortality rates of the 

five groups (Ryerson et al., 2016). A review from the Centers for Disease Control and Prevention (CDC, 

2010) reported that the annual number of new cases of lung cancer was the highest among Blacks or 

African Americans (76.1 per 100,000), followed by Whites (69.7 per 100,000), American Indians or 

Alaska Natives (48.4 per 100,000), and Asians or Pacific Islanders (38.4 per 100,000) for the period 1998 

to 2006. 

A disproportion of race/ethnicity composition can also be found between sexes in relation to 

lung cancer incidence. For instance, Blacks or African Americans had the highest incidence rate (104.5 
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per 100,000) among males, and Whites had the highest incidence rate (57.6) among females 

(Underwood et al., 2012). Moreover, a study on trends in lung cancer incidence and mortality among 20 

to 39 years old recognized a narrowing of the racial gap, and a change was expected to proceed in the 

following decades as a result of the substantial drop in smoking prevalence among Black or African 

American youth since the 1970s (Jemal, Center, & Ward, 2009). Asian ethnicity is a beneficial prognostic 

factor for survival independent of smoking status, and Asian patients with NSCLC respond better to 

chemotherapy than Whites (Alberg et al., 2013; Soo et al., 2011). A convincing explanation has not been 

reached so far, but the differences in tumor characteristics might contribute to some extent: the 

prevalence of epidermal growth factor receptor (EGFR) mutation in Asians is higher than in Whites, and 

patients with this genetic mutation usually react well to treatment with EGFR inhibitors, such as 

Gefitinib (Alberg et al., 2013; W. Zhou & Christiani, 2011). 

2.6.1.4 Family Aggregation and Genetic Susceptibility  

Family aggregation is the occurrence of multiple cases of lung cancer within a given family, 

which happens due to environmental exposures and genetic susceptibility. A large international case-

control study found that family history of lung cancer in any first-degree relative (parents, full-siblings, 

and children) significantly increased a person’s risk (Lissowska et al., 2010). More specifically, a positive 

family history was associated with 1.72-fold increased odds ratio for lung cancer (OR = 1.72; 95% CI, 

1.56-1.88), and having two or more lung cancer cases in the family increased the odds ratio by 3.6 times 

(OR = 3.6; 95% CI, 1.56-8.31) (de Groot et al., 2018; Lissowska et al., 2010). A case-control study that 

examined never-smokers in Ontario found an insignificant association between positive family history of 

any cancer and odds of lung cancer, but having a family member with young onset of any cancer (age at 

onset < 50 years old) is marginally associated with an increased odds ratio of 1.8 (95% CI, 1.0-3.2) among 

never-smokers (Brenner et al., 2010). 
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Substantial research has been done to investigate the effect of certain genetic factors on lung 

cancer risk. The associations between chromosome regions 5p15, 15q25-26, 6q21, and elevated lung 

cancer risk have been determined by genome wide association studies (GWAS) (de Groot et al., 2018; 

Herbst, Heymach, & Lippman, 2008; Schwartz & Cote, 2016). The 5p15 region, acting on cell replication, 

is associated with a higher risk of adenocarcinomas after adjusting for smoking status (Landi et al., 2009; 

Lips et al., 2010). And variants at chromosome locus 6p21 increase the risk of lung cancer among never-

smokers (Yokota, Shiraishi, & Kohno, 2010). 

2.6.2 Modifiable Risk Factors 

2.6.2.1 Tobacco Use and Secondhand Smoke  

The vast majority of lung carcinomas are caused by one risk factor: the use of tobacco products, 

which contributes to approximately 90% of lung cancer cases in countries where smoking is common 

(Alberg et al., 2013; de Groot et al., 2018). Lung cancer would continue to be a common cause of death 

before a substantial decline in smoking prevalence is accomplished (Alberg, Brock, & Samet, 2005; 

Molina, Yang, Cassivi, Schild, & Adjei, 2008). In the 1930s, Müller published one of the very first case-

control studies and proposed that there was a link between tobacco use and lung cancer: people 

diagnosed with lung cancer were more likely to have smoked than people without lung cancer (Müller, 

1940; Proctor, 2012). Later in 1950, multiple major epidemiological studies confirmed that cigarette 

smoking caused lung cancer (de Groot et al., 2018; Doll & Hill, 1950; Proctor, 2012; Ernest L. Wynder & 

Graham, 1950). In 1964, a report by the USA Public Health Service came to several crucial conclusions: 

(1) smoking elevates age-specific mortality by 70% in males and by a smaller extent in females; (2) the 

duration of smoking and the number of cigarettes per day (intensity) are positively associated with lung 

cancer risk; and (3) average male smokers have about 9 to 10-fold increased risk than male non-

smokers, and the figure is 20 times higher in heavy smokers (U.S. Public Health Service & National 

Clearinghouse for Smoking Health, 1972). 
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Overall, ever smoking of any tobacco product (e.g. cigarettes, pipes and cigars) increased lung 

cancer risk by 5.50-fold (random-effects relative risk [RR] = 5.50; 95% CI, 5.07-5.96) (Lee, Forey, & 

Coombs, 2012). Compared to non-smokers, current-smokers were at 8.43 times higher risk (random-

effects RR = 8.43; 95% CI, 7.63-9.31), and former-smokers had a relatively smaller risk than current-

smokers (random-effects RR = 4.30; 95% CI, 3.93-4.71). Furthermore, the effect magnitude of current 

smoking was greater for squamous-cell carcinoma (random-effects RR = 16.91; 95% CI, 13.14-21.76) 

than adenocarcinoma (random-effects RR = 4.21; 95% CI, 3.32-5.34). However, smoking pipe/cigar only 

did not show a significant effect on the risk of adenocarcinoma (random-effects RR = 0.93; 95% CI, 0.62-

1.40) (Lee, Forey, & Coombs, 2012). 

Exposure to secondhand smoke (SHS) imposes a risk of lung cancer to non-smokers as well 

(American Cancer Society, 2015). In one study, exposure to SHS from male smokers posed a higher risk 

to non-smoking female partners with pooled relative risk (RR) of 1.27 (95% CI, 1.17-1.37) (Taylor, Najafi, 

& Dobson, 2007). In addition, a dose-response effect could be found in the association, which meant 

greater exposure to SHS is related to higher lung cancer risk (Taylor et al., 2007). And more recently, 

exposure to SHS at home during adulthood increased one’s risk of lung cancer by 26% (pooled RR = 1.26; 

95% CI, 1.09-1.46) (Hori, Tanaka, Wakai, Sasazuki, & Katanoda, 2016).  

2.6.2.2 Lack of Physical Activity 

Leisure-time physical activity (PA) is beneficial to health on many levels, one of them is reducing 

lung cancer risk. Recreational physical activity lessened the risk by 24% (pooled RR = 0.76; 95% CI, 0.69-

0.85). Such protective effects were consistent across histological types, including adenocarcinomas 

(pooled RR = 0.80; 95% CI, 0.72-0.88), squamous-cell lung cancers (pooled RR = 0.80; 95% CI, 0.71-0.90) 

and small cell lung cancers (pooled RR = 0.79; 95% CI, 0.66-0.94). Effect of PA was statistically significant 

in current (pooled RR = 0.77; 95% CI, 0.72-0.83) and former-smokers (pooled RR = 0.77; 95% CI, 0.69-

0.85), but significance did not appear in never-smokers (pooled RR = 0.96; 95% CI, 0.79-1.18) (Brenner, 
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Yannitsos, Farris, Johansson, & Friedenreich, 2016). PA worked favorably in risk reduction for ever-

smokers, but the biological mechanism was still uncertain (Alberg et al., 2013). Besides, a lack of PA (i.e. 

an indicator of sedentary lifestyle) was associated with other unhealthy behaviors, like tobacco use. For 

this reason, potential residual confounding by cigarette smoking could not be ruled out (Alberg et al., 

2013). Along with PA, body weight may also play a role. A large study in Norway evaluated the 

association between PA, smoking status, BMI, and lung cancer risk among female participants (Borch, 

Weiderpass, Braaten, Hansen, & Licaj, 2018). The study suggested a stronger association between higher 

PA level and lower risk in current and former-smokers, and in normal weight and overweight 

participants, but no significant association was found in the obese group (Borch et al., 2018). 

2.6.2.3 Body Mass Index and Obesity 

Obesity is a health problem characterized by excessive body fat accumulation. Body mass index 

(BMI), waist circumference, waist-to-hip ratio, and percentage of body fat are accessible methods to 

determine obesity status (Egom et al., 2018). Measurement of BMI together with other parameters 

provide more accurate information than BMI alone (Egom et al., 2018). However, because data used in 

this study was collected for another purpose, the current study relied on BMI as the sole indicator of 

obesity.  

Body mass index (BMI) is a metric for delineating anthropometric height and weight 

characteristics in adults (Nuttall, 2015). It is calculated as weight in kilograms divided by height in meters 

squared. According to Health Canada, BMI is categorized into underweight (less than 18.5 kg/m2), 

normal weight (18.5 - 24.9 kg/m2), overweight (25.0 - 29.9 kg/m2), obese class I (30.0 - 34.9 kg/m2), 

obese class II (35.0 - 39.9 kg/m2), or obese class III (40 kg/m2 or greater) (Government of Canada, 2004). 

In 2008, Renehan et al. examined the effect size of the association between BMI and 20 cancer types by 

sex (Renehan et al., 2008). For lung cancer, every 5 kg/m2 increase in BMI, there are diminutions in the 

risk by 24% (RR = 0.76; 95% CI, 0.70-0.83) in males, and 20% (RR = 0.80; 95% CI, 0.66-0.97) in females. 
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Therefore, a higher BMI is associated with a significantly lower incidence of lung cancer in both sexes 

(Renehan et al., 2008). More recent meta-analyses endorse the protective effect of excessive body 

adiposity on lung cancer risk (Duan et al., 2015; Yang et al., 2012). 

The inverse association between higher BMI and lower lung cancer risk is found in many 

observational studies. For instance, Kollarova et al. (2008) found that overweight and obesity groups 

had a lower lung cancer risk than normal weight group after adjusting for age, sex, and smoking status. 

Duan et al. (2015) found that participants who were underweight had 1.31 times higher lung cancer risk 

compared to people had normal weight (RR = 1.31; 95% CI, 1.10-1.57), but a significant relationship was 

not observed in former (RR = 1.40; 95% CI, 0.82-2.36) or non-smokers (RR = 1.18; 95% CI, 0.90-1.54). The 

pooled RRs of 0.82 (95% CI, 0.77-0.86) and 0.78 (95% CI, 0.74-0.83) were found in overweight and 

obesity groups, respectively. The inverse relationship remained significant after stratification by smoking 

status in both levels (Duan et al., 2015). Yang et al. (2012) also identified an association between 

excessive body weight (BMI greater than 25 kg/m2) and lower incidence of lung cancer, and they 

recognized that the strengths of the association were different by smoking status (Yang et al., 2012). A 

stronger protective effect against lung cancer was found in current-smokers with a RR of 0.63 (95% CI, 

0.57-0.70), while effect magnitudes in former (RR = 0.73; 95% CI, 0.58-0.91) and non-smokers (RR = 0.83; 

95% CI, 0.70-0.98) were smaller (Yang et al., 2012). Smoking might have confounded the relationship 

between BMI and the risk of lung cancer, because tobacco use has links with body weight (Sanikini et al., 

2018; Yang et al., 2012). On the other hand, the effect of BMI remains significant after adjusting for 

smoking associated explanatory variables in the lung cancer screening model PLCOm2012 (Tammemägi et 

al., 2013). 

2.6.2.4 Socioeconomic Status (SES) 

In one study (Torre, Siegel, & Jemal, 2016), 27.9% of people under the poverty threshold used 

tobacco products, and lung cancer is more frequently found in poor and less educated people in United 
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States (Alberg et al., 2013; de Groot et al., 2018). Even though smoking rates are negatively correlated 

with income, investigators also found a correlation between lung cancer incidence and lower 

socioeconomic status (SES) independent of tobacco use (Dalton et al., 2011; Sidorchuk et al., 2009). This 

denotes that low SES may also be associated with encountering harmful environmental factors, for 

instance, hazardous occupational exposure and housing conditions can impose additional adverse 

effects on people’s health (de Groot et al., 2018). Education, another indicator of SES, also relates to the 

likelihood of lung cancer. Compared to people with a university degree, the relative risk of lung cancer 

was 1.33 (95% CI, 1.24-1.43) times higher for those with only a postsecondary diploma, 1.96 (95% CI, 

1.85-2.08) for a secondary school diploma, and 2.52 (95% CI, 2.38-2.68) for less than secondary school 

diploma in both sexes (Mitra, Shaw, & Tjepkema, 2015). 

2.6.2.5 History of Pulmonary Diseases 

Inflammation caused by pulmonary diseases make people more liable to lung carcinogenesis. 

The positive association between level of a chronic inflammation marker CRP and lung cancer (LC) risk 

indicates a possible association exists between pulmonary inflammation and lung cancer formation 

(Chaturvedi et al., 2010; McCarthy et al., 2012). Inflammation in lung tissues relates primarily to 

respiratory conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, and 

tuberculosis; their association with lung cancer are discussed here individually (Brenner, McLaughlin, & 

Hung, 2011; McCarthy et al., 2012). 

Chronic obstructive pulmonary disease (COPD) refers to lung disease consisting of two main 

types, emphysema and chronic bronchitis (Durham & Adcock, 2015; Stark, 2013). The main determinant 

of COPD, cigarette smoking, is primarily responsible for lung cancers as well (Durham & Adcock, 2015; 

Stark, 2013). On the other hand, COPD represents a lung inflammatory pathway that may be different 

from an exclusive tobacco carcinogen pathway, so it may modify the risk of lung cancer. Moreover, the 

inflammation and remodeling caused by COPD are precursory indications of lung cancer, and airflow 
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constriction among smokers increased their risk of lung cancer by five times in comparison to that of 

smokers with normal respiratory function (Durham & Adcock, 2015; Young & Hopkins, 2010). Compared 

to people with normal lung function, the annual lung cancer incidence was doubled in people with COPD 

(Young et al., 2015). Patients who suffered from emphysema were more likely to die from lung cancer, 

even though they had never been active smokers (Brenner et al., 2011; Turner, Chen, Krewski, Calle, & 

Thun, 2007). A pooled analysis of seven case-control studies in Canada and Europe found that males 

with previous diagnoses of chronic bronchitis had 1.33 (95% CI, 1.20-1.48) times higher odds of 

developing lung cancer (Denholm et al., 2014). And a preceding emphysema increased the odds by 50% 

in males (95% CI, 1.21-1.87). 

Pneumonia is an infection and inflammation of one or both lungs, and the infection can be 

caused by viruses, bacteria, fungi, and parasites (CDC, 2018; Cheepsattayakorn & Cheepsattayakorn, 

2014). A meta-analysis of 22 studies investigated the association between an earlier diagnosis of 

pneumonia and lung cancer risk after adjusting for smoking status, and researchers found a higher risk 

of lung cancer without a sign of publication bias (overall RR = 1.43; 95% CI, 1.22-1.68) (Brenner et al., 

2011). Among males, participants who had pneumonia 2 years or less before lung cancer diagnoses had 

higher odds of lung cancer than people free of the pulmonary condition after adjustment for age, 

smoking status and time since smoking cessation (OR = 3.31; 95% CI, 2.33-4.70) (Denholm et al., 2014). 

And another pooled study revealed that self-reported data on previous diagnosis of pneumonia 

increased lung cancer risk by 57% after stratifying by smoking status (RR = 1.57; 95% CI, 1.22-2.01) 

(Brenner et al., 2012). 

Tuberculosis (TB) is a transmissible infectious bacterial disease. TB can attack any part of the 

body, but lungs are almost always affected. A meta-analysis of 30 studies evaluated the relationship 

between TB and lung cancer, and found 76% higher risk (RR = 1.76; 95% CI, 1.49-2.08) across all studies 

and 90% higher risk among never-smokers (RR = 1.90; 95% CI, 1.45-2.50) (Brenner et al., 2011). A pooled 
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analysis of 17 studies in Europe and North America also found that people previously diagnosed with TB 

were at a higher lung cancer risk independently of tobacco use, with a relative risk of 1.48 (95% CI, 1.17-

1.87) (Brenner et al., 2011).  

2.6.2.6 Diet and Nutrition 

Thirty percent of all cancers can be explained by diet, and poor dietary intake can contribute to 

the development of lung cancer (Dela Cruz et al., 2011; Willett & Trichopoulos, 1996). In Canada, the 

estimated proportions of lung cancer incidence in the population that could be attributed to low fruits 

consumption and low non-starchy vegetables consumption were 11.1% and 5.3%, respectively (Poirier 

et al., 2019) A diet rich in fruits and vegetables is believed to protect high risk populations against lung 

cancer. People who consume the highest amount of fruits and vegetables had a 14% lower risk of lung 

cancer (RR = 0.86; 95% CI, 0.78-0.94) in comparison to the people with lowest intake; and such an 

inverse association was found marginally significant in current-smokers (RR = 0.90; 95% CI, 0.81-1.00), 

but not in never or former-smokers (Vieira et al., 2016). A significant dose–response association 

between each 100 grams increase in fruits and vegetables intake per day reduced the risk by 4% (RR = 

0.96; 95% CI, 0.94-0.98). The risk can be reduced up to 27% by raising consumption to 400 grams per 

day, but no additional benefit was attained beyond this amount (Vieira et al., 2016).  

Some studies group fruits and vegetables into separate classes and examined their influence on 

lung cancer risk, such as cruciferous vegetables which includes broccoli, cabbage, kale and so on (Alberg 

et al., 2013). Compared to individuals in the lowest category of total cruciferous vegetables 

consumption, the risk among people in the highest consumption category was 23% lower in case-control 

studies (random-effects pooled odds ratio = 0.77; 95% CI, 0.68-0.88) and 17% lower in cohort studies 

(pooled relative risk = 0.83; 95% CI, 0.62-1.08) (Lam et al., 2009). And the inverse association remains 

significant after stratification by smoking status; the ORs were 0.49 (95% CI, 0.27-0.92) in former and 

0.52 (95% CI, 0.29-0.95) in current-smokers (Lam et al., 2010). 
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Humans obtain vitamin A from animal (retinol) and vegetable (carotenoid) sources, but only the 

vegetable component has potential protective effects against lung cancer (World Cancer Research 

Fund/American Institute for Cancer Research [WCRF/AICR], 2019). Since fruits and vegetables have 

shown a beneficial effect against lung cancer, researchers postulate that the dietary micronutrient 

carotenoid might have the potential to prevent lung cancer and reduce the risk. Many researchers 

attempt to understand the role of carotenoid in the etiology of lung cancer (Alberg et al., 2013). 

Gallicchio et al. conducted a systematic review investigating the effect of carotenoids on lung cancer 

development (Gallicchio et al., 2008). Dietary consumption and pre-diagnostic serum concentration of 

total carotenoids were associated with a 21% (pooled RR = 0.79; 95% CI, 0.71-0.87) and 30% (pooled RR 

= 0.70; 95% CI, 0.44-1.11) lower lung cancer risk in the highest exposure category in comparison with 

the lowest one after adjusting for smoking (Gallicchio et al., 2008). Results suggest an inverse 

association between carotenoids and lung cancer, although one of them is statistically insignificant. This 

insignificance may be a consequence of high collinearity between the carotenoids measurement and the 

intake of fruits and vegetables, or a residual confounding by cigarette smoking (Gallicchio et al., 2008).  

Vitamins C and E (alpha-tocopherol) may also have protective effects (Dela Cruz, Tanoue, & 

Matthay, 2011). Yong et al. (1997) evaluated the relationship between dietary and supplemental intake 

of vitamin E, C, A, and lung cancer incidence in the First National Health and Nutrition Examination 

Survey epidemiologic follow-up study. The results showed that participants in the highest quartile of 

vitamin C intake had 34% lower risk of lung cancer compared to people in the lowest quartile (RR = 0.66; 

95% CI, 0.45-0.96). In current-smokers with the lowest tertile of pack-years of smoking, the highest 

quartile of vitamin E intake lowered the risk of lung cancer by 64% in comparison with the risk in the 

lowest quartile (RR = 0.36; 95% CI, 0.16-0.83) (Yong et al., 1997).  

On the contrary, studies of several large randomized control trials (RCTs) found that 

supplemental beta-carotene, a provitamin A carotenoids, increased lung cancer risk in smokers in the 
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Carotene and Retinol Efficacy Trial (CARET) (Goodman et al., 2004). Researchers found that high-dose 

beta carotene and retinol supplements increased the risk of lung cancer. The study recruited high risk 

people who had been extensively exposed to asbestos or had at least 20 pack-years of cigarette smoking 

history. In the intervention group, participants took a combination of 30 mg of beta-carotene and 

25,000 IU of retinol daily. The study stopped ahead of schedule as the findings showed a harmful effect 

of the intervention. Compared to the placebo group, the risk of lung cancer in the intervention group 

was 12% higher (RR = 1.12; 95% CI, 0.97-1.31) (Goodman et al., 2004). The Alpha-Tocopherol, Beta-

Carotene Cancer Prevention (ATBC) Study examined the effect of daily supplemental alpha-tocopherol 

(50 mg), beta-carotene (20 mg), alpha-tocopherol plus beta-carotene, and placebo for 5 to 8 years on 

the incidence and mortality of cancers among male smokers aged 50 to 69 years old (Virtamo et al., 

2003). Analyses revealed that the risk for lung cancer incidence was 6% higher in recipients of 

supplemental beta-carotene (RR = 1.06; 95% CI, 0.94-1.20) in comparison to recipients of the placebo 

(Virtamo et al., 2003).  

The roles of soy foods and isoflavones in lung cancer risk has been studied as well. Yang and 

colleagues conducted a meta-analysis of eight case-control and three prospective cohort studies to 

evaluate the association between soy intake and lung cancer. Most of the individual studies controlled 

for smoking, secondhand smoke (SHS), energy intake, BMI, physical activity, fruits and vegetables 

intakes, alcohol drinking, and age. They found a 23% reduction in lung cancer risk with high intake of soy 

foods (overall RR = 0.77; 95% CI, 0.65-0.92) (Yang, Va, Wong, Zhang, & Xiang, 2011). Isoflavones, 

including genistein, daidzein, and glycitein, are found mainly in soy and soy food products. To evaluate 

the association between plasma Isoflavones and lung cancer risk, Shimazu et al. carried out a case-

control study nested in a prospective cohort study. The odds ratio of lung cancer in the highest quintile 

compared to the lowest quintile of plasma genistein concentration was 0.31 (95 % CI, 0.12-0.86; P for 
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trend = 0.085) after adjusting for family history of lung cancer, pack-years of smoking among current-

smokers, SHS, use of exogenous female hormones, and fruits and vegetables intake. 

A report by World Cancer Research Fund and American Institute for Cancer Research in 2018 

has summarized effects of a number of lifestyle factors on risk of lung cancer. The report concludes that 

there was a strong evidence for the positive effect of drinking water containing arsenic and taking high-

dose beta-carotene supplements on lung cancer risk. The harmful effect of consuming red meat, 

processed meat, and alcoholic drinks were supported by some evidence (WCRF/AICR, 2019). The results 

showed that for every 100 grams of red meat consumption per day increase, there was an increased risk 

of lung cancer by 22% (RR = 1.22; 95% CI, 1.02-1.46). Haem iron in red meat is proposed to result in the 

production of free radicals. Red meat contains heterocyclic amines and polycyclic aromatic 

hydrocarbons when prepared at high temperatures. The dose-response meta-analysis revealed that 

every 50 grams increment of processed meat consumption per day increased the lung cancer risk by 

14% (RR = 1.14; 95% CI, 1.05-1.24) (WCRF/AICR, 2019). N-nitroso compounds in processed meat and 

produced in the stomach are postulated to cause genetic mutation and cancer. Every 10 g increase in 

the daily consumption of ethanol was related to 3% higher lung cancer risk (RR = 1.03; 95% CI, 1.01-

1.05). There are a number of suspected mechanisms of carcinogenesis: the carcinogenic metabolites of 

alcohol, increasing penetration of carcinogenic molecules into mucosal cells, and a lack of essential 

nutrients in diet. The report also summaries effects of several risk and beneficial factors according to the 

smoking status (WCRF/AICR, 2019). Every 40 mg increase in the vitamin C intake from food lowers lung 

cancer risk by 13% in current-smokers (RR = 0.87; 95% CI, 0.79-0.96). This could be possibly due to the 

effect of vitamin C on free radicals and reactive oxygen molecules, stimulating the immune system, and 

inhibiting production of carcinogens. In never-smokers, foods containing isoflavones may lower the risk 

of lung cancer. Risk was 12% lower in people with the highest consumption of food containing 

isoflavones in comparison to the risk in the lowest consumers (RR = 0.88; 95%, 0.79-0.99). After 
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stratification by smoking status, the highest consumers of isoflavones in never-smokers have 34% lower 

risk than the lower consumers (RR = 0.66; 95% CI, 0.51-0.84).  

2.6.2.7 Other Modifiable Risk Factors 
 
 The effects caused by other smoking products, like marijuana and electronic nicotine delivery 

systems (also known as electronic cigarettes or e-cigarettes) may also relate to lung cancer. Other 

environmental risk factors, such as radiation, asbestos, and poor air quality, may exacerbate the 

development of lung cancer as well. And people infected with human immunodeficiency virus (HIV) may 

be at a higher risk than people free of HIV infection (Alberg et al., 2013; de Groot et al., 2018). 

2.6.3 Explanatory Variables of Interest 

 In the current study, medical history includes two factors: BMI at age 50 and self-reported 

COPD. Age at study entry, sex, race/ethnicity, and education are main sociodemographic characteristics. 

Assessments of smoking exposures include smoking status (never, former, and current-smokers), 

intensity (number of cigarettes smoked per day), duration (number of years smoked), and time to quit in 

former-smokers (number of years since stopped smoking cigarettes). In the PLCOm2012 prediction model, 

these factors demonstrated significant effects associated with lung cancer (Tammemägi et al., 2014, 

2013). These variables are well established factors related to the outcome, therefore they were 

evaluated in the study. 

2.7 Cigarette Smoking and Metabolic Markers 

Cigarette smoking is associated with weight loss, so people gain weight over time during the 

cessation. The effect of continuing smoking on increasing level of leptin, a hormone that regulates 

energy expenditure, may explain lower body weight in smokers (Klok, Jakobsdottir, & Drent, 2007; 

Perkins & Fonte, 2002). For example, Targher et al. (2001) measured serum leptin concentrations in 

patients with type 1 diabetes mellitus and in controls who were matched on age, sex, BMI, blood 

pressure, and smoking status. They found that leptin levels were significantly lower in smokers in 
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comparison with non-smokers after stratification by diabetic status (Targher et al., 2001). 

Notwithstanding, Perkins and Fonte (2002) found no significant difference in means of leptin 

concentrations with respect to smoking status after controlling for BMI and age. More research is 

expected to evaluate the association between cigarette smoking and changes in leptin level in detail 

(Wang, Wang, & Wang, 2017).  

In 2015, Cibickova et al. (2015) assessed the effect of smoking on lipid metabolism and insulin 

resistance. The measurement of C-peptide was obtained to describe one’s insulin profile. The level of C-

peptide with skewed distribution was analyzed with Mann-Whitney U-test (the Wilcoxon rank-sum test), 

and the results showed that the median of C-peptide level in non-smokers was significantly lower than 

the median in smokers (median: 2.11, IQR: 1.50-2.88 in non-smokers; median: 2.54, IQR: 1.76-3.53 in 

smokers; P-value < 0.001). 

A raised hsCRP level is clinically related to higher risk of cardiovascular diseases (Kamath, Xavier, 

Sigamani, & Pais, 2015). Helmersson et al. (2015) investigated if hsCRP level differed by categories of 

smoking status: non-smokers, former, and current-smokers. The median in current-smokers was higher 

than former and non-smokers; however, the difference was not significant. 

2.8 Obesity and Metabolic Markers 

2.8.1 Obesity and Leptin 

Leptin in the circulatory system can cross the blood-brain barrier, and elevated levels of leptin 

signal the brain to inhibit appetite and increase energy expenditure for maintaining a stable body weight 

(Klok et al., 2007). Nonetheless, leptin may fail to function normally. Many factors, such as prolonged 

exposure to high levels of circulating leptin and chronic inflammation, are partly responsible for leptin 

resistance, and leptin resistance is an important risk factor for obesity (Zhou & Rui, 2013). Many studies 

find a positive correlation between body fat and blood leptin level. For example, Kazmi et al. (2013) 

examined the association between obesity, BMI, and serum leptin concentrations in Rawalpindi. The 
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mean of leptin levels in the obese group (52.8 ± 24.6 ng/mL) was significantly higher than the mean in 

non-obese counterpart (6.3 ± 3.1 ng/mL) with a P-value of 0.001. And a moderate-to-strong correlation 

was detected between BMI and serum leptin concentration (r = 0.59; P = 0.001). 

2.8.2 Obesity and Connecting Peptide (C-peptide) 

Metabolic syndrome (MeS) is characterized by a combination of medical conditions, the central 

components include glucose intolerance, obesity, hypertension, and dyslipidaemia (Eckel, Grundy, & 

Zimmet, 2005). And MeS is a universally recognized risk factor for cardiovascular disease and type II 

diabetes mellitus (T2DM). Abdominal obesity or adiposity and insulin resistance are the most 

conspicuous clinical features of this syndrome (Deedwania & Gupta, 2006; O’Neill & O’Driscoll, 2015). 

Because of that, obesity status or BMI may potentially reflect people’s metabolic health. Abdullah et al. 

(2012) grouped female university students into non-overweight (BMI < 25 kg/m2) and overweight (BMI ≥ 

25 kg/m2) groups, and found that the mean of C-peptide in the overweight group (2.5 ± 0.7 ng/mL) was 

higher than that of the non-overweight group (2.1 ± 0.7 ng/mL) with a P-value of 0.02. Moreover, a 

weak positive linear relationship existed between C-peptide concentration and waist circumference 

among the overweight group with an r of 0.36 and a P-value of 0.02 (Abdullah, Hasan, Raigangar, & 

Bani-Issa, 2012). In the current study, as a result, a positive association was expected between BMI and 

C-peptide measurement.  

2.8.3 Obesity and High-sensitivity C-reactive Protein (hsCRP) 

An increase in CRP level could predict a higher risk of cardiovascular diseases in the future, and 

it is associated with a higher BMI as well (Visser M et al., 1999). A study comprised of 7,938 males and 

8,678 females was conducted to verify if excess body fat was associated with elevated serum CRP 

concentration (i.e. values ≥ 0.22 mg/dL) (Visser M et al., 1999). Compared to males with normal weight, 

obese male participants had 2.13 (95% CI, 1.56-2.91) higher odds of having elevated CRP level after 

adjusting for age, race/ethnicity, smoking status, estrogen use (in females), inflammatory disease, 
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cardiovascular disease, and diabetes mellitus (Visser M et al., 1999). And females with obesity were 6.21 

times (95% CI, 4.94-7.81) likelier to have elevated CRP concentration than their normal-weight peers 

(Visser M et al., 1999). The study by Clark et al. (2016) also found a positive association between BMI 

and CRP level with a P-value < 0.001, and the effect was stronger in females than in males. 

2.9 Metabolic Markers of Interest 
 

Obesity is accompanied by a series of metabolic changes which potentially act as a bridge 

between excessive body fat and risk of cancer. Some examples of the metabolic changes include altered 

concentrations of insulin, insulin-like growth factor-1 (IGF-1), sex-steroid hormones, and adipokines 

(Nimptsch & Pischon, 2016). From earlier studies of the PLCO Cancer Screening Trial data and 

biospecimens, certain metabolic markers showed significant associations with lung cancer (Goodwin et 

al., 2015). The expert team Dr. Azad, Dr. Goodwin, Dr. Stambolic, Dr. Dowling, Williams, Moore, Dr. 

Lohmann, and Dr. Shepherd at University of Toronto selected the most plausible metabolic markers 

from the candidate list with consideration of the pragmatic assessment of assay. Therefore, the current 

study assesses the roles of these metabolic markers: leptin, C-peptide, and hsCRP. 

Leptin is the first discovered adipokine in 1994. It is produced in adipose tissue and mediated by 

leptin receptor. Leptin concentration in serum is correlated with the total fat mass and the volume of 

adipose cells. Leptin is important to control nutritional intake and to maintain energy balance. The level 

of leptin in males is lower than the level in females. Obesity, insulin stimulation, acute infections, and 

the effect of cytokines can result in upregulation of leptin production. A decrease in leptin can be a 

consequence of fasting, exposure to cold, testosterone, and beta-adrenergic agonists (Ntikoudi, Kiagia, 

Boura, & Syrigos, 2014). 

C-peptide, also known as connecting peptide, is synthesized along with insulin in equimolar 

amounts. C-peptide is a marker of endogenous insulin secretion. Higher concentrations of C-peptide 
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may indicate an increased atherogenic activity and a higher risk for cardiovascular disease. Elevated C-

peptide may also suggest an increased risk of cancers (Aleksandrova, Mozaffarian, & Pischon, 2018).  

Positive and negative acute-phase reactants are proteins whose plasma concentration can 

increase or decrease by at least 25% during an inflammation (Epstein, Gabay, & Kushner, 1999). The 

acute-phase C-reactive protein (CRP) is a sensitive metabolic marker for systemic inflammation (Visser 

M et al., 1999). It is released into the blood by the liver following acute infections, inflammatory 

conditions, and trauma. Highly sensitive assay is a technologically optimized design that can detect low 

levels of C-reactive protein, and its measure is denoted as high-sensitivity C-reactive protein (hsCRP). 

CRP recognizes and removes many pathogens and abnormal cells by the humoral immune response. The 

concentration of CRP is substantially low in healthy people, but an inflammation in response to 

infections, autoimmune reactions, cardiovascular diseases, sepsis, and cancer can trigger a rapid 

increase in the level of CRP. The extent of the elevation is correlated with the severity of tissue injury or 

inflammatory reaction (Agassandian, Shurin, Ma, & Shurin, 2014).  

2.10 Dietary Factors and Metabolic Markers 

Food frequency questionnaires (FFQs) are commonly used in dietary studies to gather 

information on how often each food item is consumed. Tracking patterns of dietary intake can provide 

empirical evidence to analyze data related to risk of lung cancer. Hu et al. (1999) performed factor 

analysis to identify dietary patterns based on nutrient profiles and culinary use in two categories: 

Western or Prudent. The typical constitution of a Western pattern includes high consumptions of 

refined grains, processed meat, red meat, butter, high-fat dairy products, and eggs. While the Prudent 

dietary pattern consists of a large consumption of fruits, vegetables, legumes, whole grains, poultry, 

fish, and other seafood independent of BMI (Hu et al., 1999). 
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2.10.1 Dietary Factors and Leptin 

The level of circulating leptin showed fluctuations at 24-hour intervals and also change 

regarding dietary circumstances: feeding increases leptin concentrations and a drop can be detected 

during fasting (Münzberg & Morrison, 2015). Ko et al. (2016) evaluated the relationship between diet 

quality, patterns, and metabolic markers including leptin and C-reactive protein (CRP) after adjusting for 

BMI. The results showed a greater positive relationship between Western diet score and total energy 

intake (r = 0.85, P < 0.001). On one hand, Western diet scores were positively associated with leptin 

concentration (standardized β = 0.50, P = 0.008). On the other hand, a negative association was found 

between Prudent diet scores and leptin level (standardized β = −0.24, P = 0.009). Moreover, there was a 

descending trend in leptin levels when the tertile of vegetables, fruits, legumes, eggs, and fish 

consumption went up (Ko et al., 2016). 

2.10.2 Dietary Factors and C-peptide 

Fung et al. (2001) examined the association of Western and Prudent dietary patterns and 

metabolic markers in relation to cardiovascular disease and the risk of obesity (Fung et al., 2001). The 

study found that people with higher Prudent scores had a lower insulin concentration, and a higher C-

peptide level was detected in participants with greater Western diet scores. They also observed a 

significant positive correlation between the Western dietary pattern and log-transformed C-peptide 

concentration (r = 0.31, P < 0.01) after adjusting for age, smoking status, total energy intake, alcohol 

intake, physical activity, hours of television watching, and BMI (Fung et al., 2001). 

2.10.3 Dietary Factors and hsCRP 

The influence of diet on inflammatory markers have been documented by Smidowicz and Regula 

(2015). In another study by Fung et al., the association between dietary patterns and CRP level was 

evaluated (Fung et al., 2001). The means and standard errors of CRP in the first, third, and fifth quintile 

of Western diet were 1.7 ± 0.3, 1.9 ± 0.3, and 2.5 ± 0.3 mg/L (P for trend = 0.004). And a significant 
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positive correlation was observed between log-transformed CRP concentrations and Western dietary 

pattern scores (r = 0.22, P < 0.0001) independent of BMI (Fung et al., 2001).  

Nettleton et al. (2006) examined the relationships between dietary pattern, inflammatory 

markers, and endothelial activity. The fats and processed meats dietary pattern involving oils, fats, 

processed meats, fried potatoes, desserts, and salty snacks were positively associated with CRP 

concentration (P for trend < 0.001). In contrast, an inverse association was identified between whole 

grains and fruits dietary pattern (whole grains, fruits, green leafy vegetables, and nuts) and plasma CRP 

level (P for trend < 0.001). Additionally, a diet pattern typified by high consumption of vegetables and 

vegetable oil, resulting in high intakes of antioxidant micronutrients and essential fatty acids, was 

significantly associated with 12% lower odds of having CRP level greater than 3 mg/L after adjusting for 

baseline BMI (OR = 0.88; 95 % CI, 0.78-0.98) (Julia et al., 2013). 

2.11 Mechanism of the Relationship between Metabolic Markers, Metabolic Changes, and Lung 

Cancer 

Leptin’s angiogenic, mitogenic, and immunomodulatory effects have been stressed by many 

studies, which suggest that it has a potential to mediate and amplify the progression of carcinogenesis, 

such as tumor invasion and migration (Ntikoudi, Kiagia, Boura, & Syrigos, 2014; Ribeiro, Araújo, Lopes, & 

Medeiros, 2007). Nonetheless, the relationship between serum leptin level and lung cancer is 

indeterminate. Investigators hypothesize that serum leptin level is higher if patients have advanced lung 

cancer. As the disease progresses, less leptin is produced because cachexia induced body fat loss is more 

commonly found at advanced stages (Ntikoudi et al., 2014). A cohort study from the Third National 

Health and Nutrition Examination Survey (NHANES III) evaluated initial serum C-peptide concentration 

and lung cancer death (Hsu, Chang, Lin, Lin, & Caffrey, 2013). After adjusting for age and smoking status, 

higher serum C-peptide concentration was associated with increased mortality among females (HR = 

2.65 per pmol/mL; 95% CI, 1.31-5.36). In a prospective cohort study, Allin, Bojesen, and Nordestgaard 
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(2009) measured baseline CRP level of 10,408 participants followed for up to 16 years. Participants with 

CRP levels greater than 3 mg/L at baseline were at a 2.2 higher risk of developing lung cancer in 

comparison with those who had CRP lower than 1 mg/L after adjusting for age, sex, smoking, alcohol 

consumption, BMI, and for women, also oral contraceptive therapy, menopausal status, and hormone 

replacement therapy (hazard ratio = 2.2; 95% CI, 1.0-4.6). A previous matched case-control study nested 

in the PLCO Cancer Screening Trial also identified that a higher circulating CRP level was associated with 

higher prospective lung cancer risk (Shiels et al., 2013). 

2.12 Source Data — The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial 

In 1993, the National Cancer Institute launched the Prostate, Lung, Colorectal and Ovarian 

(PLCO) Cancer Screening Trial to investigate disease-specific mortality reduction from screening tests for 

these four cancers compared with usual medical care practices in males and females. Secondary 

analyses included screening test operating characteristics, incidence, stage, survival of cancer cases, 

costs, risks, etiology, and natural history of disease (Jones & Hattersley, 2013). The study design is briefly 

summarized here, while an explicit description can be found in previous papers (Gohagan et al., 2000; 

Prorok et al., 2000). 

2.12.1 Current Study Sample Data 

A matched case-control study design nested in the intervention group of the prospective PLCO 

Cancer Screening Trial was used to evaluate associations between diet, BMI, metabolic markers, and 

lung cancer. Since secondary analysis was carried out using pre-existing data, study questions were 

restricted to available variables in the dataset. Among the intervention arm, eligible cases were 

participants who provided serum samples before their lung cancer diagnoses. Case and controls were 

matched on sex, age at entry (within five years of age), race/ethnicity, smoking status (never, former, 

and current), year of study entry, duration of follow-up, and study center. The observations were 

stratified by many aspects, so the five years of age variation leave more considerable cell sizes than a 2-
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year matching age range. The control versus cases ratios were 3:1 in never-smokers and 2:1 in ever-

smokers. The metabolic markers assessed from at least one year prior to diagnostic and non-fasting 

blood samples were used. Self-reported dietary information was collected at the study baseline and the 

fourth year of the trial by distributing food frequency questionnaires (FFQs). Only the latter dietary data 

were used for the current study because of superior quality. Answers for the FFQ, including an organized 

food list and a corresponding frequency section, reflects participants’ usual frequency of each food item 

over the past 12 months. Because people tend to keep a same diet over time, the information on FFQs 

can represent individuals’ long-term habits. 

2.12.2 Study Centers & Ethical Considerations 

The PLCO project recruited participants at ten screening centers across the United States 

(Gohagan et al., 2000; Prorok et al., 2000). In order to attain the total of 74,000 females and 74,000 

males, each center required enrollment of about 5,000 to 30,000 individuals (Prorok et al., 2000). Local 

institutional review board approval was acquired to conduct the study at each screening center, and 

written informed consent were provided by all participants (Oken et al., 2011). For the current study, 

the appropriate Data Transfer Agreement has been signed off on by Brock University and the U.S. 

National Institutes for Health, and Brock University Research Ethics Board clearance has been received 

for secondary data analysis.  

2.12.3 Recruitment and Participant Cohort 

The PLCO Cancer Screening Trial was a two-arm randomized controlled trial. It recruited people 

between 55 to 74 years of age. People diagnosed with any of four cancers under study or were receiving 

treatments for any cancer other than basal cell or squamous cell skin cancer were excluded from the 

study. People who had surgical removal of one lung, the entire colon, or the entire prostate were not 

included (Oken et al., 2005). Targeted individuals were from the general population dwelling in the 

catchment area of each screening center, and mass mailing was the main recruitment strategy (Oken et 
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al., 2011). In both intervention and control arms, 37,000 males were screened for lung, colorectal, and 

prostate cancer, and 37,000 females were screened for shared-site cancers and ovarian cancer 

(Gohagan et al., 2000). Recruiters tried to obtain an appropriate minority representation in the overall 

participant population (Oken et al., 2011; Prorok et al., 2000). A total of 154,942 participants enrolled 

for the trial, with 77,465 in the intervention and 77,477 in the control arm (Oken et al., 2005).  

2.12.4 Randomization and Screening 

Participants were stratified by screening center, sex, and age, and block randomized to either an 

intervention or a control arm. After that, they were followed for at least 13 years until diagnosis of 

cancer, death ascertainment or end of study to determine if screening reduced disease-specific 

mortality (Gohagan et al., 2000; Prorok et al., 2000). People received usual medical care practice in the 

control group. In the intervention group, posterior-anterior chest X-ray and sigmoidoscopy were used to 

screen for lung and colorectal cancers for both males and females. Digital rectal examination and blood 

test for prostate-specific antigen were employed to screen for prostate cancer in males, and females 

were assessed with transvaginal ultrasound and cancer antigen 125 blood test to examine for ovarian 

cancer (Gohagan et al., 2000; Prorok et al., 2000). For the lung cancer screened group, ever-smokers 

received chest X-ray at entry and annually for three consecutive years, while never-smokers were 

assessed biennially (Prorok et al., 2000).  

2.12.5 Diagnostic and Therapeutic Follow-up 

A nodule, mass, infiltrate, or other abnormalities on radiographs were considered to be 

suspicious for lung cancer, and the individuals were referred to a primary health care provider of their 

choice (Oken et al., 2005; Prorok et al., 2000). And the individuals with positive screening results were 

encouraged to receive diagnostic evaluation and treatment (Prorok et al., 2000). Moreover, in order to 

avoid providing biased therapy to people in the screening group, the PLCO trial decided not to dictate 

guidelines for diagnosis or treatment (Prorok et al., 2000). Results of screening tests and diagnoses were 
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identified and documented, and participants diagnosed with PLCO cancers were for the most part 

believed to have received diagnostic and therapeutic procedures according to currently accepted 

practice for his/her age, stage of cancer, and medical conditions. 

2.12.6 Endpoints 

The primary endpoint of the PLCO project was death from any of four cancers, and the 

secondary endpoint included the incidence, stage of cancer, and survival of cases (Prorok et al., 2000). 

Conducting active and passive follow-up and cause-of-death review processes maximized the 

completeness of endpoint information (Prorok et al., 2000). In each of the 10 screening centers, the 

death review committee determined the underlying cause of death by assessing all available relevant 

records, such as death certificate, pathology forms, autopsy reports, and pathology slides (Prorok et al., 

2000). And the documents were reviewed by experts who had no affiliation with the trial and were 

blinded to the randomized group membership of the deceased (Prorok et al., 2000). 

2.12.7 Data Collection 

A self-administered baseline questionnaire was used at study entry to obtain information on 

personal sociodemographic characteristics (race/ethnicity, marital status, and education), family history 

of cancer, personal medical history, smoking history (status, age started and ceased, and pack-year 

history), and cancer screening history in last three years (Oken et al., 2011, 2005; Prorok et al., 2000). 

Diet-related data were collected in a separate questionnaire, including information on consumption of 

foods, cooking techniques, and use of dietary supplements (Prorok et al., 2000). An additional dietary 

questionnaire was included for the intervention group in their fourth year and for the control group at 

study entry (Hayes et al., 2000). Biological samples were collected for evaluation of cancer antigen 125, 

prostate-specific antigen, and other metabolic markers (Hayes et al., 2000). Blood was collected from 

participants in the intervention arm and aliquoted into serum, plasma, erythrocytes, and leukocytes 

annually at their screening visit (Hayes et al., 2000). Except for the whole blood, all other blood samples 
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were stored at -70°C at the PLCO biorepository in Frederick, Maryland (Hayes et al., 2000). For the 

current study, a 100-microliter aliquot of each serum sample temporally most distant from lung cancer 

diagnosis were shipped on dry ice to Mount Sinai Hospital in Toronto for analysis by Dr. Azar Azad.  

2.13 Matched Case-Control Study Nested in the PLCO Trial 

 In the current study, a nested case-control study design was used. It embedded a matched case-

control study within an established cohort. This study design reduced some shortcomings associated 

with classic case-control studies, and it also incorporated additional virtues of cohort studies (Sedgwick, 

2014). Selection and recall biases can jeopardize traditional case-control studies, and inability to 

establish a temporal direction between exposure and outcome makes it difficult to determine a causal 

relationship (Patten, 2015). In a nested case-control study, a cohort is followed over time, so it can 

demonstrate the temporality of exposure and disease. And recall bias was not a major problem as 

information on a series of exposures was collected before the outcome occurs. Moreover, the cohort 

where both cases and controls came from provided a well-defined source population, which made the 

control selection simple to implement. Therefore, the risk of selection bias was minimized by the design 

as well. Besides, the high response rate and close follow-up of the cohort study made selection of cases 

and controls straightforward and enabled investigators to accurately identify incident cases (i.e. new 

cases) (Patten, 2015).  
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CHAPTER 3 METHODS 

3.1 Overview 

Study Questions: 

1. Are recognized daily frequency of fruits and vegetables and supplemental beta-carotene intake 

associated with lung cancer? And do the effects differ by sex and histological type of lung cancer? 

2. Is there an association between BMI and lung cancer? What are the relationships between dietary 

factors and BMI? Does BMI partly explain the effects of dietary risk factors associated with lung cancer? 

And do interactions exist? 

3. Do metabolic markers affect the likelihood of lung cancer? What are the relationships between dietary 

factors and metabolic marker concentrations? Do relationships between BMI and metabolic markers 

exist? Do metabolic markers explain the effect of BMI on lung cancer likelihood? Do metabolic markers 

explain the effects of dietary factors on lung cancer likelihood? Are there interactions? How do sex and 

age interact with dietary factors, BMI, and metabolic markers in the observed associations?  

 

To describe the associations between dietary factors, BMI, metabolic markers, and lung cancer, 

three study objectives have been proposed. For study objective one, dietary factors associated with lung 

cancer were selected by implementing prior knowledge and studying known lung cancer dietary risk 

explanatory variables in the dataset, and their relationships with lung cancer were evaluated using 

logistic regression. The associations in the pathway between Diet-BMI-lung cancer were evaluated for 

study objective two. Linear and logistic regressions were employed to describe relationships of Diet-BMI 

and BMI-lung cancer, respectively. Then the pathway between Diet-Metabolic markers-lung cancer was 

examined to address study objective three. Associations of Diet-Metabolic markers and BMI-Metabolic 

markers were described using linear regression, and logistic regression evaluated the relationship 

between metabolic markers and lung cancer. Analytical procedures were performed in the statistical 
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software Stata/IC 14.2 (StataCorp, College Station, Texas). Two-tailed significance levels less than 0.05 

were considered significant for hypotheses testing.  

3.2 Data Preparation 

Every explanatory variable under investigation was assessed for missing data and outliers. 

Usually, a small portion of missing (5% or less) is inconsequential. If the percentage of participants with 

complete information on all variables is lower than 90%, then the results may be biased. In this case, the 

mechanisms and patterns of missing data should be investigated (Dong & Peng, 2013). Based on an 

underlying mechanism, an incompleteness can be classified into one of three types: missing completely 

at random, missing at random, and missing not at random (Little, Jorgensen, Lang, & Moore, 2014). 

Disregarding the observations which have missing values is a way to handle the issue, but a loss of 

information from these observations and lower study power are major drawbacks. A better approach to 

manage missing values is data imputation that can make an attempt to obtain unbiased parameter 

estimates (Graham, Olchowski, & Gilreath, 2007). Multiple imputations (MI) offers a set of plausible 

values for each missing value of covariates, and it is suitable for many types of missing information. 

Recent studies recommended that the number of imputation should be similar to the percentage of 

incomplete observations to gain a good reproducibility level of the results (Pedersen et al., 2017). For 

instance, 20 imputed datasets are required when there is 20% of data missing. And all explanatory 

variables involved in the types of missing and outcome variable are included in the imputation model.  

Carefully tackling outliers is also crucial, as they are extreme values distinctly different from the 

rest of the data. Outliers can be visually detected using the Stata command scatter and command graph 

box to generate scatter plots and boxplots. And another Stata command extremes gives values of Cook’s 

distance, any observation with Cook’s distance greater than 4/N can potentially influence the results. 
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3.3 Candidate Variables 

Candidate explanatory variables were selected based on formerly identified risk factors for lung 

cancer, current knowledge, and previous studies of the PLCO Cancer Screening Trial. Candidate dietary 

factors and metabolic variables are summarized in Table 4. Other explanatory variables and potential 

confounders are listed in Table 5 with corresponding descriptions. For study objective one, two, and 

three, lung cancer status (yes/no) is the response variable. The sociodemographic characteristics include 

age at study entry, race/ethnicity, and education (7 categories) (Tammemagi et al., 2011). A positive 

COPD stands for the presence of emphysema or/and chronic bronchitis. Positive self-reported COPD 

may relate to higher odds of getting lung cancer. Therefore, education and history of COPD are potential 

confounders in the study. 

Among lung cancer patients, the outcome variable can be split into two complementary groups 

to explore effects on different lung cancer types: non-small cell lung cancer (NSCLC) versus small cell 

lung cancer (SCLC). Another comparison can be drawn among adenocarcinomas (ADs), squamous-cell 

carcinomas, and Other NSCLC. The rationale behind the categorization was explained in section 2.2.2. 
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Table 4. Candidate Dietary Variables and Metabolic Markers associated with Lung Cancer 

Variable 
Categories 

Variable Names Additional Descriptions 

Dietary Factors 
(n=7) 

Food energy from diet In kcal/day 

 Sum of daily frequency of 
    fruits and vegetables 

Sum of natural log transformed “daily  
    frequency of fruits, including beverages” and  
    “daily frequency of vegetables, including  
    juice excluding fried potatoes, adjusted for  
    ketchup, onion, and garlic amounts” 

Red meat consumption Hamburgers, steak, pork chops, bacon, and  
    regular sausage, in g/day 

Vitamin C from diet  In mg/day 
Total beta-carotene Beta-carotene from diet and current  

    supplements only, in mcg/day 
Supplemental beta-carotene Supplemental beta-carotene from current  

    single and multi-vitamins only, in mcg/day 
Total isoflavone In mg/day 

Metabolic 
Markers (n=3) 

Log transformed Leptin In ln(ng/mL) 
Log transformed C-peptide In ln(pmol/L) 
Log transformed hsCRP In ln(mg/L) 
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Table 5. Candidate Variables and Potential Confounders for Evaluating Associations with Lung Cancer 

Variable 
Categories 

Variable Names Additional Descriptions 

Sociodemographic 
(n=2) 

Race/ethnicity White, Non-Hispanic 
Black, Non-Hispanic 
Hispanic 
Asian 
Pacific Islander 
American Indian/Alaskan Native 

Education Less than 8 years 
8 to 11 years 
12 years or completed high school  
    (referent group) 
Post high school training other than  
    college 
Some college  
College graduate 
Postgraduate degree 

Medical History 
(n=2) 

BMI at age 50 In kg/m2 
Self-reported COPD Presence of emphysema or/and chronic  

    bronchitis 

Smoking Exposure 
(n=3) 
 

Number of cigarettes smoked per 
    day 

Numeric 

Duration smoked cigarettes In years 
Number of years since stopped  
    smoking cigarettes (in former  
    smokers) 

In Years 

Confirmed Lung 
Cancer 

Lung cancer type (small or non- 
    small cell lung cancer) 

Small cell cancer 
Non-small cell lung cancer 
    Adenocarcinoma 
    Squamous cell carcinoma 
    Other Non-small cell lung cancer 

 

3.4 Descriptive Statistics 

Frequency, percentage, and proportion of each category were assessed in categorical variables, 

such as sex, smoking status, lung cancer status, and histology. The distributions, measures of central 

tendency, and variability of quantitative variables, including dietary factors, BMI, and metabolic markers 

concentrations were evaluated. Means and standard deviations were calculated for normally distributed 

quantitative variables, and Student’s independent sample t-tests were employed to compare the 

differences in means of these variables between two groups. Whereas, medians and interquartile ranges 
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were computed for quantitative variables with skewed distribution. The Wilcoxon rank-sum test (also 

known as the Mann–Whitney test) is a non-parametric equivalent of the independent t-test, and it can 

identify if the two populations where the two samples are selected from have the same distribution 

(Field, 2009). After summarizing study covariates overall, these analyses were carried out stratifying by 

lung cancer. Chi-square tests of independence evaluated the differences in distribution between two 

categorical variables; when any expected frequency was less than five, then Fisher’s exact test were 

used. And the direction and strength of relationships between metabolic markers concentrations were 

assessed using correlation. 

3.5 Univariate Analysis  

For study objective one, two, and three, univariate conditional logistic regressions were carried 

out separately to evaluate the associations between dietary factors, BMI, metabolic markers (leptin, C-

peptide, and hsCRP), and lung cancer odds. Correlation and linear regression methods evaluated 

associations between dietary factors, BMI, and metabolic markers. 

3.6 Multivariable Analysis 

Multivariable conditional logistic regressions included the explanatory variables and possible 

interaction terms in ever-smokers. The non-candidate inclusion criterion was set to 0.15, explanatory 

variables in univariate analyses show a P-value less than 0.15 were evaluated in later multivariable 

analyses (Bursac, Gauss, Williams, & Hosmer, 2008). 

3.7 Model Building Approach 

3.7.1 Handling Quantitative Variables 

The distributions of metabolic markers were highly skewed, so converting them to normal 

distributions was fundamental before including them as quantitative variables. The Stata command 

gladder generates multiple different transformations and depict them with graphics; then a proper 

transformation could be chosen from them by judging the distributions. The Stata command qladder 
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illustrated quantile-normal plots for each transformation, and the plots were used to evaluate the 

normal distribution of the transformed variables. Usually, a natural logarithm is a commonly used 

transformation for metabolic marker values (Grund & Sabin, 2010). Multivariable fractional polynomials 

(MFP) were used to handle non-linear associations between quantitative explanatory variables and lung 

cancer (Sauerbrei, Meier-Hirmer, Benner, & Royston, 2006). 

3.7.2 Evaluating Collinearity 

Collinearity or multicollinearity occurs when two explanatory variables are highly correlated 

with each other. Consequently, it leads to volatile model estimates of the coefficients and inflated 

standard error. The Stata command vif and collin computed variance inflation factor (VIF) and a 

tolerance value (1/VIF), and they represented how severe the variance is inflated. Furthermore, carefully 

considering the causal framework under investigation is more important to understand what causes the 

collinearity (Schisterman, Perkins, Mumford, Ahrens, & Mitchell, 2017). The correlations among the 3 

metabolic markers were evaluated. 

3.7.3 Assumption Checking 

1) Independence of Errors: the observations of the data should not be related.  

2) Linearity: a linear relationship exists between any quantitative independent variable and the logit of 

the dependent variable. Non-linear relationships were evaluated by adding a Stata prefix command mfp 

to run analysis with multiple fractional polynomial regressors. 

3) Lack of Influential Outliers: too many outliers may compromise the overall accuracy of the model. 

Examining residuals (the difference between predicted and actual outcomes), diagnostic statistics and 

graphs could locate the outliers. Comparing the overall model fit and estimated beta coefficients with 

and without the outliers demonstrated how influential the outliers are, and one can decide to retain or 

remove them (Stoltzfus, 2011). 
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3.7.4 Model Selection 

Prior knowledge and data should be considered to select model and variables (Greenland, 

1989). Besides evaluating the relationships between dietary variables and lung cancer status, the 

existence of confounders, effect modifiers, and mediators need to be carefully examined. Both 

confounders and effect modifiers are extraneous variables. A confounder is a risk factor for lung cancer 

and also relates to diet, but it does not occur in the proposed causal pathway. Confounding variables 

distort the associations under investigation, therefore they should be carefully assessed and controlled 

(Patten, 2015). On the other hand, effect modification refers to a situation when the effect of an 

exposure on the outcome differs across the level of another exposure (Knol, Egger, Scott, Geerlings, & 

Vandenbroucke, 2009). In analytical phase of the study, stratification can unveil the effect of a 

categorical extraneous variable. To identify if a given exposure is a confounder is to quantify the effect 

of confounding. The first step is to compute the effect estimates both before and after adjusting for the 

potential confounder. Next, calculating the difference between the unadjusted and adjusted measures 

of association in percentage reveals the magnitude of confounding. When the difference is more than 

15%, there is evidence of confounding. In this case, the confounder is important in the association and 

adjusted effect estimates should be reported. If the stratum-specific estimates are different from each 

other and the crude estimate falls in between, this implies an effect modifier. Both confounding and 

effect modification by quantitative variables can be evaluated using a multivariable regression 

modelling. An important confounder is kept in the regression model. To assess an effect modification, 

the suspected quantitative variable is included in the model as a cross-product term (interaction term) 

along with main effects. If the cross-product term between exposure and the covariate is significant, the 

covariate is an effect modifier. Otherwise, further assessment for confounding takes place by comparing 

adjusted and unadjusted estimates (Patten, 2015). A mediator displays an intermediate effect between 

diet and lung cancer, and it partially describes the association (Corraini, Olsen, Pedersen, Dekkers, & 
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Vandenbroucke, 2017). The portion between crude and adjusted estimates represents the effect of the 

mediator. As illustrated in Figure 1, BMI, leptin, C-peptide, and high-sensitivity C-reactive protein 

(hsCRP) are potential mediators. 

Controls were matched to cases from PLCO data, and an unconditional analysis would not 

completely eliminate confounding by matching factors. In order to acquire unbiased results, conditional 

analysis should be carried out (Pearce, 2016). As mentioned before, explanatory variables with a P-value 

less than 0.15 in univariate analyses were included in multivariable models. Backward elimination was 

used for model selection: all explanatory variables were placed in the model initially, the contribution of 

each explanatory variable was calculated, and the significance values were compared to a removal or an 

inclusion criterion. The least influential explanatory variable or the one which meets the removal 

criterion was dropped. This process may be required multiple times to obtain a final model. Using 

backwards elimination minimized the issue of suppressor effects, which happens when an explanatory 

variable possesses a significant effect but only when another variable is kept consistent (Field, 2009). 

3.8 Model Evaluation/Diagnostics  

3.8.1 Numerical Measures 

3.8.1.1 Measures of Fit 

Using the Stata command fitstat gives the measures of fit for the purpose of model comparison. 

The model with smaller Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) is 

considered the better one. 

3.8.1.2 Model Adequacy/Specification Error 

The Stata command linktest can detect a specification error. The principle of linktest is that if no 

additional significant explanatory variables can be determined except by chance, then the model is 

properly specified. It rebuilds the model using the predicted value (_hat) and the predicted value 

squared (_hatsq) as the explanatory variables. The variable _hat should be statistically significant, 
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otherwise an insignificance denotes that the entire model is incorrectly specified. On the contrary, the 

variable _hatsq should be an insignificant explanatory variable. A significant _hatsq indicates one of 

following possibilities: important variables are not included in the first place, relevant variables are 

falsely removed from the model or modeled incorrectly, and the dependent variable is falsely specified. 

Other causes may be the lack of availability for inclusion, inappropriately transformed quantitative 

variables, or missed interactions. 

3.8.2 Graphical Inspections 

3.8.2.1 Plot of Standardized Residuals versus Observation Number 

Pearson standardized residual can be used to visually inspect influential observations. Pearson 

chi-square residuals are the differences between observed and fitted values. When plotting 

standardized residual (y-axis) versus observation number (x-axis), values which are outside the range of 

negative and positive 1.96 on the y-axis are potentially influential observations. 

3.8.2.2 Plot of Influential Observations/Analysis of Residuals Using Cook’s Distances 

Cook’s distance of a variable depicts the change in all fitted values when the variable is 

removed; hence, a large value of Cook’s distance indicates an influential observation. When plotting 

Cook’s distance (y-axis) versus observation number (x-axis), influential values manifest themselves as 

peaks. 
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CHAPTER 4 RESULTS 

Initially, the study sample included both never and ever-smokers. The descriptive characteristics 

of the pooled sample are included in the Supplemental Material Table S1. As the two groups were 

different in terms of biological mechanism and carcinogenesis, analyses were conducted separately. In 

never-smokers, none of the study exposures are significantly different between controls and cases 

(Table S2). For this reason, never-smokers are excluded from the subsequent analysis. 

Data Preparation 

The overall completeness of the dataset for variables of study interest is 88%. There is no 

missing variable in the outcome of interest. Twenty-four extreme values detected in explanatory 

variables were truncated to the maximum of the remaining observations (n=3) or set as missing values 

(n=21). All dietary factors and metabolic markers were natural log transformed (LN) according to the 

results in Stata’s ladder of power except supplemental beta-carotene intake. The ordinal variable 

supplemental beta-carotene intake was rescaled to 1000 mcg/day from 1 mcg/day. To prevent 

multicollinearity, quantitative variables were centered on means or values close to means. 

Supplemental beta-carotene intake was centered on 500 mcg/day. LN daily frequency of fruits and 

vegetables was centered on 2 units. LN leptin concentration was centered on 1.8 ln(ng/mL). LN C-

peptide level was centered on 7 ln(pmol/L). LN high-sensitivity C-reactive protein (hsCRP) concentration 

was centered on 2 ln(mg/L). BMI at age 50 was centered on 27 kg/m2. Age at study entry was centered 

on 64 years. Smoking duration was centered on 30 years. Educational achievement was centered on 

level four (post high school training other than college). 

Descriptive statistics and results of univariate logistic associations for ever-smokers are 

presented in Table 6. Table 7 provides a summary of lung cancer histological distribution in the study. 

Important correlations between explanatory variables are summarized in Table 8. The final multivariable 

conditional logistic regression model is presented in Table 9 followed by an assessment of collinearity 
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(Table 10). Assumptions were examined together with visual inspections (Figure 4 and 5). Measures of 

fit and model adequacy were diagnosed for the final model. Then the explanatory variables in the final 

model were evaluated in different histological subtypes of lung cancer.  

4.1 Population Characteristics 

The characteristics of ever-smokers are presented in Table 6. In ever-smokers, there were 1,685 

controls and 855 lung cancer cases. Participants’ ages at study entry ranged from 55 to 74 years (mean = 

64.0; SD = 5.0) with 37.5% identified as female. The majority of participants (89.8%) were Non-Hispanic 

White. The similarities in age, sex, and race/ethnicity distribution between controls and cases reflect the 

matched case-control study design. About 67.9% of controls and 62.1% of cases had greater than high 

school education. There was an association between educational achievement and lung cancer (Pc < 

0.001). Specifically, higher educational level was related to lower odds of lung cancer (Poverall < 0.001). 

The mean BMI at age 50 in controls was 0.45 kg/m2 higher than the value in cases, which indicates an 

inverse association with lung cancer (P = 0.002). 

Among seven candidate dietary factors, significant mean differences were found between 

control and case groups for the LN daily frequency of fruits and vegetables, LN red meat consumption, 

LN supplemental beta-carotene intake, and LN vitamin C from diet. Out of 2,540 ever-smokers, 1375 

(54.1%) were former-smokers. The similar proportion of current-smokers in controls and cases is 

expected as smoking status is one of the matching criteria in the study. Although a difference in smoking 

status does not exist, dissimilarities are identified in some detailed smoking characteristics. On average, 

cases smoke 5.7 cigarettes/day more and 6.9 years longer than controls. The average number of years 

since smoking cessation in controls was 10.1 years longer than in cases. The mean level of LN C-peptide 

in cases was 0.06 ln(pmol/L) higher than in controls. The average LN hsCRP concentration was 0.26 

ln(mg/L) lower in controls than in cases. No significant difference was found in leptin concentration. 
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Univariate conditional logistic regressions were carried out for all explanatory variables and 

covariates, excluding sex, race/ethnicity, and smoking status. Univariate odds ratios, 95% confidence 

interval estimates, and P-values for unadjusted effects are shown in Table 6. The results of univariate 

analyses served as a guideline for multivariable analysis. Higher LN fruits and vegetables daily frequency, 

supplemental beta-carotene intake, LN vitamin C from diet, and LN isoflavone were associated with 

lower odds of lung cancer. Higher LN red meat consumption was related to higher odds of lung cancer. 

Higher BMI at age 50 demonstrated a protective effect against lung cancer. Higher LN pre-diagnostic C-

peptide and hsCRP were associated with a higher likelihood of lung cancer. A trend towards significance 

suggests a potential inverse association between LN leptin level and lung cancer. 

Furthermore, the distribution of lung cancer type is summarized in Table 7. Among 855 

participants with lung cancer, 119 (13.9%) of them were diagnosed with small cell lung cancer (SCLC). In 

736 people with non-small cell lung cancer (NSCLC), adenocarcinoma, including bronchiolo-alveolar 

carcinoma (BAC), contributed to 319 (37.3%) of them. Apart from 188 (22.0%) participants with 

squamous cell carcinoma, there were 229 (26.8%) who were diagnosed with Other NSCLC (in this study, 

including large cell carcinoma, other NSCLC, not otherwise specified carcinoma, and other/missing). 
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Table 6. Characteristic of Ever-smokers by Lung Cancer Status and Univariate Logistic Associations with Lung Cancer 

Explanatory Variables 
Controls Cases P Univariate Odds Ratio 

(n = 1685) (n = 855)  (95% CI; P) 

Sociodemographic     
    Age, year, mean (SD) 63.94 (4.99) 63.98 (4.97) Pt = 0.868 1.169 (0.998−1.370; 0.053) 
    Sex, number (%)   Pc = 0.962 Controls matched to cases 
        Female 631 (37.45) 321 (37.54)   
        Male 1054 (62.55) 534 (62.46)   
    Race/ethnicity, number (%)   Pe = 0.888 Controls matched to cases 
        Non-Hispanic White 1514 (89.85) 768 (89.82)   
        Non-Hispanic Black 109 (6.47) 56 (6.55)   
        Hispanic 21 (1.25) 10 (1.17)   
        Asian 29 (1.72) 15 (1.75)   
        Pacific Islander 6 (0.36) 5 (0.58)   
        American Indian/Alaskan Native 6 (0.36) 1 (0.12)   
    Education, number (%)   Pc < 0.001  
        Less than 8 years 18 (1.07) 11 (1.29)  1.032 (0.470−2.267; 0.937) 
        8 to 11 years 138 (8.21) 91 (10.64)  1.121 (0.812−1.548; 0.486) 
        12 years or completed high school 381 (22.67) 222 (25.96)  Referent group 
        Post high school training other than college 234 (13.92) 122 (14.27)  0.887 (0.670−1.174; 0.403) 
        Some college  385 (22.90) 220 (25.73)  0.997 (0.785−1.267; 0.980) 
        College graduate 258 (15.35) 113 (13.22)  0.769 (0.581−1.017; 0.066) 
        Postgraduate degree 267 (15.88) 76 (8.89)  0.492 (0.359−0.673; <0.001) 
    <0.001(overall) 
Medical history     
    BMI at age 50, kg/m2, mean (SD) 25.43 (3.52) 24.98 (3.43) Pt = 0.002 0.964 (0.939−0.989; 0.006) 
    Self-reported COPD, number (%)   Pc < 0.001  
        No 1531 (90.86) 713 (83.39)   
        Yes 154 (9.14) 142 (16.61)  1.934 yes vs no (1.506−2.483; <0.001) 

Abbreviations: BMI, body mass index (weight kg/height meter2); CI, confidence interval; COPD, chronic obstructive pulmonary disease; CP, C-peptide; hsCRP, high-sensitivity C-
reactive protein; IQR, interquartile range; LN, natural log transformed; P, P-value; Pc: P-value from Pearson’s chi-squared; Pe, P-value from Fisher’s Exact test; Pn, P-value from 
non-parametric test for trend across ordered groups (an extension of the Wilcoxon rank-sum test); Pt, P-value from t-test with unequal variances; SD, standard deviation.  

 
(continued on the following page) 
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Explanatory Variables 
Controls Cases P Univariate Odds Ratio 

(n = 1685) (n = 855)  (95% CI; P) 

Dietary factors     
    Food energy from diet, kcal/day, median (IQR) 2025.48 (1095.96) 1943.05 (1044.43) Pn = 0.106  
        LN Food energy from diet, mean (SD) 7.60 (0.42) 7.58 (0.43) Pt = 0.416 0.908 (0.726−1.136; 0.397) 
    Fruits&Vegetables, daily frequency, median 
(IQR) 

5.92 (4.05) 5.19 (3.82) Pn < 0.001  

        LN Fruits&Vegetables, mean (SD) 1.86 (1.17) 1.56 (1.22) Pt < 0.001 0.787 (0.726−0.854; <0.001) 
    Red meat, g/day, median (IQR) 26.58 (36.41) 29.27 (38.96) Pn = 0.004  
        LN Red meat, mean (SD) 3.22 (0.97) 3.35 (0.95) Pt = 0.002 1.158 (1.045−1.284; 0.005) 
    Supplemental beta-carotene, 1000 mcg/day, 
mean (SD) 

0.51 (0.99) 0.42 (0.85) Pt = 0.021 0.874 (0.789−0.968; 0.010) 

    Vitamin C from diet, mg/day, median (IQR) 149.95 (104.99) 129.78 (103.49) Pn < 0.001  
        LN Vitamin C from diet, mean (SD) 4.95 (0.60) 4.82 (0.60) Pt < 0.001 0.708 (0.607−0.825; <0.001) 
    Isoflavone, mg/day, median (IQR) 0.40 (0.47) 0.36 (0.43) Pn = 0.019  
        LN Isoflavone, median (SD) -0.98 (1.03) -1.06 (0.96) Pt = 0.054 0.899 (0.815−0.992; 0.033) 
Smoking Exposures     
    Smoking status, number of current-smokers (%) 772 (45.82) 393 (45.96) Pc = 0.943 Controls matched to cases 
    Cigarettes per day, mean (SD) 23.63 (13.35) 29.29 (14.78) Pt < 0.001 1.033 (1.026−1.040; <0.001) 
    Smoking duration, year, mean (SD) 32.31 (14.47) 39.16 (10.57) Pt < 0.001 1.077 (1.065−1.088; <0.001) 
    Quit-time in former-smokers, year, mean (SD) 23.26 (12.51) 13.19 (10.45) Pt < 0.001 0.929 (0.917−0.940; <0.001) 
Metabolic markers     
    CP (pmol/L), median (IQR) 752.14 (667.70) 824.85 (767.78) Pn = 0.011  
        LN CP, mean (SD) 6.65 (0.64) 6.71 (0.64) Pt = 0.034 1.157 (1.012−1.323; 0.032) 
    hsCRP (mg/L), median (IQR) 8.50 (14.90) 11.65 (20.70) Pn < 0.001  

        LN hsCRP, mean (SD) 2.33 (1.01) 2.59 (1.04) Pt < 0.001 1.323 (1.214−1.454; <0.001) 
    Leptin (ng/mL), median (IQR) 5.10 (6.90) 4.90 (7.30) Pn = 0.424  
        LN Leptin, mean (SD) 1.85 (0.77) 1.82 (0.79) Pt = 0.381 0.939 (0.829−1.064; 0.325) 

Abbreviations: BMI, body mass index (weight kg/height meter2); CI, confidence interval; COPD, chronic obstructive pulmonary disease; CP, C-peptide; hsCRP, high-sensitivity C-
reactive protein; IQR, interquartile range; LN, natural log transformed; P, P-value; Pc: P-value from Pearson’s chi-squared; Pe, P-value from Fisher’s Exact test; Pn, P-value from 
non-parametric test for trend across ordered groups (an extension of the Wilcoxon rank-sum test); Pt, P-value from t-test with unequal variances; SD, standard deviation. 
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Table 7. Distribution of Histological Subtypes of Lung Cancer in 2540 Ever-Smokers 

 Lung cancer Total 

Small cell lung 
cancer 

Non-small cell lung cancer 

Adenocarcinoma Squamous cell 
carcinoma  

Other NSCLC† 

Frequency (%) 119 (13.9) 319 (37.3) 188 (22.0) 229 (26.8) 855 
† Other NSCLC in the current study includes large cell carcinoma, other NSCLC, not otherwise specified carcinoma, and 
other/missing. 

 
4.2 Key Study Findings 

Correlations were examined between quantitative explanatory variables and covariates. 

Explanatory variables that require greater attention are outlined in Table 8. LN food energy from diet is 

positively and moderately correlated with multiple explanatory variables: LN fruits and vegetables daily 

frequency, LN red meat consumption, LN vitamin C from diet, and LN isoflavone intake. The correlation 

coefficient between LN vitamin C from diet and LN fruits and vegetables daily frequency was as high as 

0.8. LN isoflavone intake was potentially related to LN fruits and vegetables daily frequency and LN 

vitamin C from diet. As the BMI of participants at age 50 increased, their pre-diagnostic leptin 

concentration increased as well.  

Table 8. Correlation Coefficient between Selected Explanatory Variables 

Measures 1 2 3 4 5 6 7 

1. BMI at age 50        
2. LN Food energy from diet        
3. LN Fruits&Vegetables   0.350      
4. LN Red meat  0.474      
5. LN Vitamin C from diet  0.489 0.846     
6. LN Isoflavone  0.307 0.353  0.305   
7. LN Leptin 0.291       

 

Study question 1. Are recognized daily frequency of fruits and vegetables and supplemental beta-

carotene intake associated with lung cancer? And do the effects differ by sex and histological type of 

lung cancer? 

The associations between dietary factors and lung cancer were evaluated using multivariable 

conditional logistic regressions. Sex was removed as no significance was found. After adjusting for age, 
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educational achievement, smoking intensity, and smoking duration, effect estimates of dietary factors 

are presented in Supplemental Material Table S3. Each one unit increase in LN daily frequency of fruits 

and vegetables was associated with 11.9% lower odds of lung cancer (OR = 0.881; 95% CI, 0.803-0.965; P 

= 0.007). Supplemental beta-carotene intake was associated with 13.3% lower odds of lung cancer (OR = 

0.867; 95% CI, 0.773-0.971; P = 0.014). No interactions were found in the association between dietary 

factors and lung cancer. 

 

Study question 2. Is there an association between BMI and lung cancer? What are the relationships 

between dietary factors and BMI? Does BMI partly explain the effects of dietary risk factors associated 

with lung cancer? And do interactions exist? 

The univariate association between BMI and lung cancer was significant (Table 6, P = 0.006). A 

significant interaction effect was found between BMI and age in the association of BMI and lung cancer. 

The effect of BMI on lung cancer depended on the level of age (Table S4; OR = 1.007; 95% CI, 1.001-

1.013; P = 0.024). Part of BMI effect might be explained by proposed dietary factors in the association. 

The strength of the inverse association between BMI and lung cancer decreased as age goes up.  

The results of the multivariable linear regression with dietary factors predicting BMI are 

presented in Table S5. LN food energy from diet, LN fruits and vegetables daily frequency, LN red meat 

consumption, supplemental beta-carotene intake, LN vitamin C from diet, and LN isoflavone intake were 

significantly associated with BMI after adjusting for age, education, and smoking exposures. If other 

explanatory variables remain constant, each one ln(kcal/day) increase in LN food energy from diet 

corresponded to a 0.600 kg/m2 increase in BMI (P = 0.011) on average. Each one unit (ln(frequency)) 

increase in fruits and vegetables daily frequency corresponded to a 0.407 kg/m2 decrease in BMI (P = 

0.002). Each one unit (ln(g/day)) increase in red meat consumption related to a 0.388 kg/m2 increase in 

BMI (P < 0.001). Per one unit (ln(mg/day)) increase in vitamin C from diet was associated with a 0.875 
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kg/m2 increase in BMI (P = 0.001). An assumption of the study was that participants did not change their 

diets over time. People with higher daily frequency of fruits and vegetables might consume more 

beverage and juice that are rich in both vitamin C and sugar. With a one unit (ln(mg/day)) increase in 

Isoflavone intake, on average BMI decreased by 0.243 kg/m2 (P = 0.003). Although a number of dietary 

factors and covariates were considered in the model, effect modifications were not detected in the 

association. 

After taking LN fruits and vegetables daily frequency and supplemental beta-carotene intake 

into consideration, higher BMI was significantly and inversely associated with lung cancer likelihood 

(Table S6). When covariates were kept constant, each one unit (kg/m2) increase in BMI related to 3.9% 

lower odds of lung cancer on average (P = 0.017). Each one unit (ln(frequency)) increase in fruits and 

vegetables daily frequency corresponded to 12.1% lower odds of lung cancer (P = 0.006). Every 1000 

mcg/day increase in supplemental beta-carotene intake was associated with 13.9% lower lung cancer 

odds (P = 0.010). The effects of fruits and vegetables daily frequency and supplemental beta-carotene 

intake on lung cancer did not differ by educational achievement, BMI at age 50, or smoking exposures. 

 

Study question 3. Do metabolic markers affect the likelihood of lung cancer? What are the relationships 

between dietary factors and metabolic markers concentrations? Do relationships between BMI and 

metabolic markers exist? Do metabolic markers explain the effect of BMI on lung cancer likelihood? Do 

metabolic markers explain the effects of dietary factors on lung cancer likelihood? Are there 

interactions? How do sex and age interact with dietary factors, BMI, and metabolic markers in the 

observed associations?  

The associations with dietary factors were examined for each of the three metabolic markers 

(Table S7a-c). P-values of adjusted effect estimates of fruits and vegetables daily frequency and LN red 

meat consumption on C-peptide, hsCRP, and leptin were all smaller than 0.10. Unlike the expected 
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negative relationship, LN fruits and vegetables daily frequency was positively associated with C-peptide 

(Table S7a). An inverse association was found between LN fruits and vegetables daily frequency and 

hsCRP, as well as leptin (Table S7b-c). The effect of LN fruits and vegetables daily frequency on C-peptide 

was different for male and female participants. For each one unit increase in fruits and vegetables daily 

frequency, a male participant had a 0.030 unit additional increase in C-peptide, but a female participant 

had a 0.027 additional decrease in C-peptide (Pinteraction = 0.016) (Table S7a). This indicates metabolic or 

hormonal physiological differences in males and females. LN red meat consumption was positively 

associated with all three metabolic markers. The effect of red meat consumption on hsCRP was different 

for sex and age (Table S7b). In addition, supplemental beta-carotene intake, LN vitamin C from diet, and 

LN isoflavone intake were significant explanatory variables of LN leptin level (Table S7c). The 

relationship between supplemental beta-carotene and leptin was non-linear. Unlike expected negative 

relationship, vitamin C from diet was positively associated with leptin concentration. Isoflavone intake 

was inversely associated with leptin. 

The associations between BMI and C-peptide, and BMI and leptin were non-linear (Table S8a, c). 

The non-linearity detected between BMI at 50 and LN leptin concentration is illustrated in Figure 2. 

Increasing BMI was accompanied by a rapidly climbing in leptin level, then the trend decreases once BMI 

reaches 35 kg/m2. A positive linear relationship existed between BMI and LN hsCRP, and a significant 

interaction of sex*BMI was detected in the association (Table S8b). The association between BMI and 

hsCRP differed by sex. 
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Figure 2. Non-Linear Association between BMI at Age 50 and LN Leptin among Ever-Smokers 

The associations of metabolic markers on lung cancer (model one) are summarized in Table S9. 

The effect of BMI and dietary factors were adjusted in model two and three respectively. Higher LN C-

peptide and LN hsCRP were associated with an increased odds ratio for lung cancer after controlling for 

education, smoking intensity, and smoking duration. Higher LN leptin was associated with a lower odds 

ratio. Comparing model two with model one in Table S9, although the effect estimate of the additional 

explanatory variable BMI was insignificant (P = 0.118), it shrank the magnitude of effect estimates of 

leptin by 23.6% (OR from 0.746 to 0.806). The inclusion of BMI in model two reduced the effect size of 

leptin on lung cancer. The relationship between leptin and lung cancer could be partly explained by BMI. 

A comparison between model one and model three demonstrated the additional effects of dietary 

factors: LN fruits and vegetables daily frequency and supplemental beta-carotene intake. Both dietary 

factors were significantly associated with lower odds of lung cancer along with metabolic markers after 

adjusting for covariates. Adding dietary factors increased effect magnitudes of C-peptide and leptin by 

23.9% (OR = 1.205 versus 1.254) and 16.5% (OR = 0.746 versus 0.704), respectively. C-peptide and leptin 
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were mediators that explain the associations between dietary factors and lung cancer. Overall, model 

three fitted the association better than model one (McFadden’s pseudo-R2 = 0.221 versus 0.196). 

In Table S9, model two and three have separately evaluated the relationships between BMI, 

dietary factors, and lung cancer along with metabolic markers. The fully adjusted model in Table 9 

summarizes the effect estimates and P-values of all explanatory variables in comparison with the model 

three from Table S9. Out of 2245 complete observations, 2002 individuals were included in the final 

model after excluding 243 concordant observations. There was 22.1% improvement in the final model 

over a null model which solely contains an intercept (McFadden’s pseudo-R2 = 0.221). 

In the final model, the effects of educational achievement, smoking intensity, and smoking 

duration were adjusted. Each one unit (kg/m2)increase in BMI at age 50 reduced the lung cancer odds 

ratio by 3.2% at the significance level of 0.1 (OR = 0.968; 95% CI, 0.931-1.006; P = 0.100). Each one unit 

increase in LN fruits and vegetables daily frequency lowered the odds ratio by 10.9% (OR = 0.891; 95% 

CI, 0.811-0.979; P = 0.016). Odds of lung cancer decreased 14.1% with each 1000 mcg increased in daily 

supplemental beta-carotene intake (OR = 0.859; 95% CI, 0.763-0.966; P = 0.012). The non-linear 

association between smoking intensity (number of cigarettes/day) and probability of lung cancer is 

illustrated in Figure 3. Each one unit (ln(pmol/L)) increase in C-peptide concentration increased odd by 

28.1% (OR = 1.281; 95% CI, 1.072-1.532; P = 0.007). For each one unit (ln(mg/L)) increase in hsCRP, the 

odds increased by 20.6% (OR = 1.206; 95%, 1.075-1.354; P = 0.001). Lastly, each one (ln(ng/Ml)) increase 

in LN leptin was associated with 23.1% lower odd (OR = 0.769; 95% CI, 0.633-0.934; P = 0.008). In 

summary, fruits and vegetables daily frequency and supplemental beta-carotene intake were protective 

factors against lung cancer in adjusted analysis. The selected metabolic markers showed significant 

associations with lung cancer. The approaching significance of BMI at age 50 might be in part explained 

by the joint action of dietary factors and metabolic markers. 
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Collinearity is evaluated in the final model with variance inflation factors (VIFs) and tolerance 

values (Table 10). All VIFs were smaller than two with a mean VIF of 1.12. Tolerances were substantially 

greater than 0.1. The smallest tolerance value was 0.794. Therefore, collinearity was not a major 

concern in the final model. 
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Table 9. Final Multivariable Conditional Logistic Regression for Dietary Factors, Body Mass Index (BMI), and Metabolic Markers Associated 
with Lung Cancer in 2002 Ever-Smokers 

 Adjusted Model† Fully Adjusted Model‡ 
Explanatory Variables Odds Ratio (95% CI) P Odds Ratio (95% CI) P 

LN Fruits&Vegetables, per 1 ln(daily  
frequency) increase  

0.893 (0.813−0.980) 0.017 0.891 (0.811−0.979) 0.016 

Supplemental beta-carotene, per 1000  
mcg/day increase 

0.859 (0.764−0.967) 0.012 0.859 (0.763−0.966) 0.012 

BMI at age 50, per 1 kg/m2 increase - - 0.968 (0.931−1.006) 0.100 

LN CP, per 1 ln(pmol/L) increase 1.254 (1.050−1.495) 0.012 1.281 (1.072−1.532) 0.007 

LN hsCRP, per 1 ln(mg/L) increase 1.212 (1.080−1.359) 0.001 1.206 (1.075−1.354) 0.001 

LN Leptin, per 1 ln(ng/Ml) increase 0.704 (0.592−0.837) <0.001 0.769 (0.633−0.934) 0.008 

ncontrol, ncase; AIC, BIC 1290, 747; 1165.690, 1210.644 1262, 740; 1146.819, 1197.236 
P of overall model, pseudo-R2 <0.001, 0.221 <0.001, 0.221 

†The model adjusting for education, smoking intensity, and smoking duration 
‡The final model adjusting for education, smoking intensity, and smoking duration 
A non-linear association between smoking intensity and lung cancer odds could not be interpreted directly. For an illustration of the non-linearity, see Figure 3. 
The transformation formula: (number of cigarettes per day/10)^-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Non-Linear Association between Smoking Intensity and Probability of Lung Cancer among Ever-Smokers
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Table 10. Collinearity Evaluation for the Final Model 
Explanatory Variables Variance Inflation 

Factors (VIF) 
Tolerance 

Education, per 1 level increase 1.04 0.959 
BMI at age 50, per 1 kg/m2 increase 1.15 0.869 
LN Fruits&Vegetables, per 1 ln(daily frequency) increase 1.11 0.903 
Supplemental beta-carotene, per 1000 mcg/day 

increase 
1.02 0.976 

Transformed smoking intensity with power of -1, per 1 
cigarette/day increase 

1.09 0.916 

Smoking duration, per 1-year increase 1.16 0.859 
LN CP, per 1 ln(pmol/L) increase 1.13 0.887 
LN hsCRP, per 1 ln(mg/L) increase 1.11 0.903 
LN Leptin, per 1 ln(ng/Ml) increase 1.26 0.794 

Mean VIF 1.12 

 

4.3 Assumption Checking 

1) Independence of Errors 

In the study, observations were independent of each other. No duplicated responses occurred in 

the data. 

2) Linearity 

Locally weighted regression between numeric variables was visually examined by performing 

Lowess smoothing plots and spline modeling. Skewed distributed explanatory variables were 

transformed into a natural log form except for supplemental beta-carotene intake whose 

transformation was not helpful. For all linear and conditional logistic regressions, possible non-linear 

associations were considered by conducting MFP analysis. 

3) Lack of Influential Outliers  

As shown in Figure 4 and 5, influential outliers were inspected by plotting Pearson standardized 

residual and Cook’s distance against observation number for the final model. In Figure 4, the majority of 

the information points are located in the range of -1.96 and 1.96 on the y-axis. Cook’s distances in Figure 

5 range from 0 and 0.15, thus influential outliers were not a cause of concern in the final model. 
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Figure 4. Inspection of Influential Observations with Pearson Standardized Residual in the Final Model 

 
 
 
 

 
 
 
Figure 5. Inspection of Influential Observations with Cook’s Distance in the Final Model 
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4.4 Model Diagnostics 

1) Measures of Fit 

Akaike information criterion (AIC), Bayesian information criterion (BIC), and R2 or pseudo-R2 of 

intermediate analyses were evaluated to find optimal models. The final model has an AIC of 1146.819, a 

BIC of 1197.236, and a pseudo-R2 of 0.221 (Table 9). 

2) Model Adequacy/Specification Error 

The model specification was evaluated by conducting a link test. The linear predicted value 

(_hat) is statistically significant with a P-value of <0.001. The P-value of the linear predicted value 

squared (_hatsq) is 0.920. Therefore, the model was appropriately specified as the link test was 

insignificant. 

4.5 Exploratory Analyses 

The final model was applied to the subgroups of lung cancer types: non-small cell lung cancer 

(NSCLC) and small cell lung cancer (SCLC) with their matched group of control. Then in NSCLC, the 

comparison was drawn between adenocarcinoma, squamous cell carcinoma, and Other NSCLC 

subgroups. 

The analysis of the NSCLC group included 973 controls and 736 cases (Table 11). The overall 

model was significant with a P-value of <0.001 and a pseudo-R2 of 0.225. Except for educational 

achievement and BMI at age 50, all explanatory variables were significant. The analysis of SCLC was 

comprised of 174 controls and 119 cases (Table 11). The overall model was significant with a P-value of 

<0.001 and a pseudo-R2 of 0.225. Comparing the effect estimates of NSCLC analysis to those of SCLC 

analysis demonstrated similarities and differences between the two groups regarding study explanatory 

factors. The protective effect of BMI exists in NSCLC but not SCLC. Odds ratios for fruits and vegetables 

daily frequency and supplemental beta-carotene intake were less than one in both lung cancer 

subgroups. The effect size of LN fruits and vegetables daily frequency was larger in NSCLC than in SCLC. 
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The effect estimates of C-peptide and hsCRP were greater than one in both NSCLC and SCLC. The effect 

magnitude of C-peptide was 6.8 times more prominent in NSCLC than in SCLC. The odds ratios for leptin 

were less than one in both groups. The effect of leptin on NSCLC was 148% higher than the effect in 

SCLC. In other words, the overall model fitted NSCLC and SCLC in a similar way, but the strengths of 

associations for individual explanatory variables were different. In this study, dietary factors, BMI, and 

metabolic markers fitted NSCLC group better than SCLC group. 

Among the subgroups of NSCLC, 432 controls and 319 cases of adenocarcinoma were included 

(Table 12). The overall model was significant with a P-value of <0.001 and a pseudo-R2 of 0.192. In the 

analysis of squamous cell carcinoma, 245 controls and 188 cases were studied. The model for squamous 

cell carcinoma was significant with a P-value of <0.001 (pseudo-R2 = 0.324). The analysis of Other NSCLC 

consisted of 296 controls and 229 cases. The association with Other NSCLC was significant (P < 0.001; 

pseudo-R2 = 0.283). The explanatory variables fitted the squamous cell carcinoma group better than 

adenocarcinoma and Other NSCLC groups. The effect of BMI was protective in all three subgroups, and 

the effect size in the Other NSCLC subgroup was the largest. The protective effect of fruits and 

vegetables was most prominent in Other NSCLC and was close to the null and non-significant for 

adenocarcinoma and squamous cell carcinoma. The effect estimates of C-peptide were inconsistent 

across the three subgroups. The positive association between C-peptide and lung cancer appeared to be 

absent in squamous cell carcinoma while present in adenocarcinoma and Other NSCLC. HsCRP was 

associated with higher odds for all NCSLC types with the strongest effect found in the Other NSCLC 

subgroup. The inverse association between leptin and lung cancer were observed in all three NSCLC 

groups. 
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Table 11. Multivariable Conditional Logistic Regression for Dietary Factors, Body Mass Index (BMI), and Metabolic Markers Associated with 
Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) 

ncontrol, ncase NSCLC (973, 736) SCLC (174, 119) 
Explanatory Variables Odds Ratio (95% CI), P Odds Ratio (95% CI), P 

Education, per 1 level increase 0.937 (0.872−1.006), 0.073 0.877 (0.719−1.069), 0.194 
Smoking intensity, per 1 cigarette/day increase N/A†, <0.001 1.017 (0.992−1.042), 0.183 
Smoking duration, per 1-year increase 1.064 (1.050−1.079), <0.001 1.092 (1.045−1.140), <0.001 
LN Fruits&Vegetables, per 1 ln(daily frequency) increase  0.879 (0.794−0.974), 0.014 0.939 (0.727−1.212), 0.628 
Supplemental beta-carotene, per 1000 mcg/day increase 0.868 (0.764−0.985), 0.028 0.809 (0.565−1.159), 0.248 
BMI at age 50, per 1 kg/m2 increase 0.963 (0.923−1.005), 0.084 1.000 (0.904−1.108), 0.992 
LN CP, per 1 ln(pmol/L) increase 1.340 (1.102−1.629), 0.003 1.050 (0.656−1.681), 0.838 
LN hsCRP, per 1 ln(mg/L) increase 1.208 (1.067−1.367), 0.003 1.231 (0.881−1.719), 0.224 
LN Leptin, per 1 ln(ng/Ml) increase 0.750 (0.607−0.927), 0.008 0.899 (0.544−1.484), 0.676 

n; AIC, BIC n = 1709; 976.574, 1025.567 n = 293; 182.749, 215.871 
P of overall model, pseudo-R2 <0.001, 0.225 <0.001, 0.225 

† A non-linear association between smoking intensity and odds of NSCLC could not be interpreted directly. 
The transformation formula: (number of cigarettes per day/10)^-1 

 
Table 12. Multivariable Conditional Logistic Regression for Dietary Factors, Body Mass Index (BMI), and Metabolic Markers Associated with 
Adenocarcinoma, Squamous Cell Carcinoma, and Other Non-Small Cell Lung Cancer (NSCLC) 

ncontrol, ncase Adenocarcinoma (432, 319) Squamous cell carcinoma (245, 188)  Other NSCLC (296, 229) † 
Explanatory Variables Odds Ratio (95% CI), P Odds Ratio (95% CI), P Odds Ratio (95% CI), P 

Education, per 1 level increase 0.894 (0.800−0.998), 0.046 0.986 (0.845−1.149), 0.853 0.925 (0.810−1.057), 0.253 
Smoking intensity, per 1 cigarette/day increase N/A‡, <0.001 1.012 (0.995−1.030), 0.163 N/A§, <0.001 

Smoking duration, per 1-year increase 1.048 (1.029−1.068), <0.001 1.135 (1.088−1.183), <0.001 1.062 (1.036−1.088), <0.001 
LN Fruits&Vegetables, per 1 ln(daily frequency) 

increase 
0.941 (0.813−1.088), 0.409 0.937 (0.764−1.148), 0.531 0.753 (0.602−0.941), 0.013 

Supplemental beta-carotene, per 1000 mcg/day  
increase 

0.943 (0.770−1.154), 0.567 0.706 (0.532−0.937), 0.016 0.928 (0.754−1.142), 0.480 

BMI at age 50, per 1 kg/m2 increase 0.970 (0.913−1.030), 0.318 0.987 (0.899−1.085), 0.790 0.947 (0.869−1.032), 0.216 
LN CP, per 1 ln(pmol/L) increase 1.502 (1.133−1.992), 0.005 0.908 (0.577−1.429), 0.677 1.535 (1.044−2.258), 0.029 
LN hsCRP, per 1 ln(mg/L) increase 1.161 (0.967−1.393), 0.109 1.166 (0.879−1.546), 0.288 1.432 (1.128−1.817), 0.003 
LN Leptin, per 1 ln(ng/Ml) increase 0.770 (0.559−1.060), 0.108 0.785 (0.505−1.222), 0.284 0.583 (0.387−0.879), 0.010 

n; AIC, BIC n = 751; 457.437, 499.030 n = 433; 229.669, 266.306 n = 525; 290.129, 328.499 
P of overall model, pseudo-R2 <0.001, 0.192 <0.001, 0.324 <0.001, 0.283 

† Other NSCLC in this study includes large cell carcinoma, other NSCLC, not otherwise specified carcinoma, and other/missing. 
‡ A non-linear association between smoking intensity and odds of Adenocarcinoma 
The transformation formula: (number of cigarettes per day/10)^-1 
§ A non-linear association between smoking intensity and odds of Other NSCLC 
The transformation formula: (number of cigarettes per day/10)^-2 
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CHAPTER 5 DISCUSSION 

5.1 Explanatory Variables of Lung Cancer 

This study identified that an increased risk of lung cancer was associated with less daily 

frequency of fruits and vegetables, less supplemental beta-carotene intake, lower BMI at age 50, and 

higher C-peptide, higher hsCRP, and lower leptin serum concentrations in ever-smokers. Higher fruits 

and vegetables intake and higher supplemental beta-carotene intake protected people against lung 

cancer, but meanwhile, their protective effects were partly offset by the effect of decreasing BMI. The 

beneficial effect of higher fruits and vegetables intake was partly offset by increasing C-peptide. 

Lowering hsCRP was another effect of fruits and vegetables intake on lowering lung cancer risk. 

Although a complete understanding of the process in the pathophysiology of lung cancer was not 

attained, the findings of this study help improve our understanding of lung carcinogenesis and may lead 

to public health approaches to improve lung cancer prevention.  

5.1.1 Relationships between Dietary Factors and Lung Cancer 

Some of the dietary factors observed to be important in the univariate analysis were eliminated 

in multivariable analysis as several factors were correlated with each other and presented similar 

attributes of individuals’ diets. For example, higher daily frequency of fruits and vegetables intake was 

accompanied by higher vitamin C intake from diet and higher total isoflavone intake, therefore 

relationships between the latter factors and lung cancer were suppressed in multivariable models. As 

the odds ratio was 0.891 for each one unit increase in daily frequency of fruits and vegetables, the odds 

of lung cancer decreased by 10.9% (95% CI, 0.811-0.979; P = 0.016). The finding of the current study 

aligned with a 14% risk reduction in lung cancer reported in an earlier study (Vieira et al., 2016). 

The relationship between supplemental beta-carotene and lung cancer remained unclear. In the 

current study, we found that higher daily supplemental beta-carotene intake was associated with lower 

odds of lung cancer (OR = 0.859; 95% CI, 0.763-0.966; P = 0.012). In contrast, previous studies 
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demonstrated a detrimental effect or no effect of daily supplemental beta-carotene on lung cancer risk. 

Participants who received 20 mg (133,333 IU) of synthetic beta-carotene per day had 6% higher lung 

cancer risk than the placebo group in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) 

Study (Virtamo et al., 2003). In the Carotene and Retinol Efficacy Trial (CARET), lung cancer risk in the 

intervention group with a daily combination of beta-carotene (30 mg = 15,000 mcg RAE) and retinol 

(25,000 IU = 7500 mcg RAE) was 12% higher than the risk in control group (Goodman et al., 2004). In 

another randomized control trial, no significant difference was found in lung cancer risk between the 

group with 50 mg (25,000 mcg RAE) beta-carotene every other day and the placebo group (RR = 1.00; 

95% CI, 0.85-1.17) (Lin et al., 2009). It is worth noting that the three studies were experimental studies 

and the study groups received dosages substantially higher than the recommended level. When 

converted to retinol activity equivalents (RAE), the measure for beta-carotene reflects the active 

amount of provitamin A carotenoids from food to retinol or active vitamin A (Trumbo, Yates, Schlicker, & 

Poos, 2001). One RAE equals to 12 mcg beta-carotene from foods or 2 mcg beta-carotene from 

supplements. In the current study, the average daily dietary and supplemental beta-carotene intake 

were 4,820.5 mcg/day (651.7 mcg RAE) and 475.7 mcg/day (237.9 mcg RAE). In other words, a moderate 

dosage of supplemental beta-carotene does not appear to be harmful. On the other hand, the 

association between beta-carotene supplement and lung cancer was adjusted for other study dietary 

factors, namely BMI, metabolic markers, and cigarette smoking. The effect of supplemental beta-

carotene is less likely to be due to residual confounding in the current study.  

5.1.2 Relationships between Dietary Factors, BMI, and Lung Cancer 

The current study found a protective effect of increasing BMI at age 50 in ever-smokers with an 

odds ratio of 0.968, corresponding to a 3.2% risk reduction per one unit (kg/m2) increase (95% CI, 0.931-

1.006; P = 0.100). In a systematic review by Duan et al. (2015), investigators found that each five units 

increase in BMI was associated with a 3.3% decrease in the risk of lung cancer. The effect size in the 
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current study was stronger (OR = 0.850 per five units increase in BMI) than the findings in Duan et al.’s 

study (2015). This may be attributed to a more diverse participant pool studied. Including the group of 

never-smoker might have attenuated the effect size of BMI. Unlike the linear association we found in 

the current study, the relationship between BMI and lung cancer risk was non-linear in the study by 

Duan et al. (2015) They also conducted a dose-response analysis to quantify the effect of BMI on lung 

cancer risk in different BMI categories. With normal weight (18.5 - 24.9 kg/m2) as the reference 

category, they found the protective effect of higher BMI among people with BMI of 35 kg/m2 (summary 

RR = 0.81; 95% CI: 0.72-0.91), 30 kg/m2 (summary RR = 0.91; 95% CI: 0.85-0.98), and 25 kg/m2 (summary 

RR = 0.98; 95% CI: 0.95-1.01) (Duan et al., 2015). This further confirmed the inverse association between 

BMI and lung cancer risk. In a case-control study by Sanikini et al. (2018), BMI were classified into four 

categories: underweight (less than 18.5 kg/m2), normal weight (18.5 - 24.9 kg/m2), overweight (25.0 - 

29.9 kg/m2) and obese (30 kg/m2 or greater). They evaluated the association between ordinal weight 

category and lung cancer risk. Lower lung cancer risks were detected for people in overweight category 

(OR = 0.77; 95% CI: 0.68-0.86) and in obese category (OR = 0.69; 95% CI: 0.59-0.82) in comparison with 

normal weight category after adjusting for age, sex, study center, time elapsed, pack-years of smoking, 

and education level (Sanikini et al., 2018). To further examine the relationship between BMI and lung 

cancer risk among subgroups, investigators stratified observations by smoking status. Compared to 

people with normal weight, overweight and obese participants were at 30% and 45% lower risk of lung 

cancer, respectively in former-smokers. The effect sizes were smaller in current-smokers: 21% and 25% 

risk reductions (Sanikini et al., 2018). As there was adjustment for smoking duration and intensity in the 

final model for this study, the BMI effect genuinely existed in the association with lung cancer 

independent of smoking exposure. 

The relationship between dietary factors and BMI found that fruits and vegetables daily 

frequency was inversely associated with BMI (β = -0.407; 95% CI, -0.660- -0.155). In a meta-analysis of 
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11 RCTs and six prospective cohort studies by Hebden et al. (2017), long-term weight gain in adults was 

explained by lower consumption of whole fruits. The beneficial effect of higher whole fruits 

consumption on body weight management was mediated by smaller total energy intake (Hebden et al., 

2017). In the current study, a positive association was found between total energy from diet and BMI (β 

= 0.600; 95% CI, 0.137-1.064). 

 Previous studies have found an inverse association between beta-carotene and excess body fat 

in plasma and adipocyte. A lower plasma beta-carotene concentration was related to a higher BMI in 

one study (Brady, Mares-Perlman, Bowen, & Stacewicz-Sapuntzakis, 1996). The actual concentration of 

beta-carotene in the adipocyte was inversely related to the measure of obesity (Östh, Öst, Kjolhede, & 

Strålfors, 2014). Beta-carotene concentrations in the adipocytes from both obese non-diabetic and 

obese diabetic participants (BMI ≥ 28 kg/m2) were substantially lower than that from the lean (BMI < 23 

kg/m2) or non-obese participants (23 ≤ BMI < 28 kg/m2) (Östh et al., 2014). The association with BMI is 

unclear as the evidence for moderate supplemental beta-carotene intake is scarce in observational 

studies. In the current study, a non-linear association was suggested by the multivariable fractional 

polynomial (MFP) model: supplemental beta-carotene was associated with BMI (Table S5). Regardless of 

techniques for measurements, lower beta-carotene levels in supplemental intake, plasma, and 

adipocyte were associated with a higher BMI. 

5.1.3 Relationships between Dietary Factors, BMI, Metabolic Markers, and Lung Cancer 

Red meat consumption (β = 0.053; 95% CI, 0.024-0.083; P < 0.001) and fruits and vegetables 

daily frequency (β = 0.030; 95% CI, -0.001- 0.060; P = 0.057) were positively associated with C-peptide 

concentration in the current study (Table S7a). The positive association between red meat consumption 

and C-peptide concentration concurred with previous studies. The work by Fung et al. (2001) found that 

Western dietary patterns, a key component is higher red meat consumption, that in turn was positively 

correlated with fasting insulin and C-peptide level (Fung et al., 2001). The positive relationships between 
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the Western diet, serum C-peptide, and serum insulin were also recognized in a previous study (Kerver, 

Yang, Bianchi, & Song, 2003). However, the role of fruits and vegetables in the association with C-

peptide level we found does not align with these studies. The Prudent dietary pattern characterized by 

high fruits and vegetables intake was inversely correlated with insulin (Fung et al., 2001). Higher fruits or 

green leafy vegetables intake was associated with a significantly reduced risk of type 2 diabetes (Li, Fan, 

Zhang, Hou, & Tang, 2014). The reasons behind the contradictory observation in the current study 

related to the different definition of fruits and vegetables and the measure of dietary factors. 

Categorization of fruits and vegetables in the current study included juice, excluded fried potatoes, and 

adjusted for ketchup, onion, and garlic amounts. The food types and level of preparation such as whole 

or processes foods may also play a role in metabolic activities. The metabolic responses to processed 

juices, which often contain high quantities of sugar differ from response to whole fruits and vegetables. 

On the other hand, fruits and vegetables measured in daily frequency might not accurately reflect 

absolute intake. 

A higher daily frequency of fruits and vegetables (β = -0.049; 95% CI, -0.084- -0.014; P = 0.007) 

and a lower red meat consumption (β = 0.113; 95% CI, 0.060-0.167; P < 0.001) were related to a lower 

hsCRP concentration, which indicates a Prudent diet rich in fruits and vegetables helps prevents 

inflammation (Table S7b). The anti-inflammatory effect might be attributable to salicylates, vitamins, 

and minerals in whole plants (Smidowicz & Regula, 2015). In red meat preparation, people may be 

exposed to polycyclic aromatic hydrocarbons via smoking or grilling meat at high temperatures. As well 

excess haem iron from red meat may induce inflammatory responses by mediating hsCRP (World Cancer 

Research Fund/American Institute for Cancer Research [WCRF/AICR], 2018). 

Increasing leptin suppresses appetite to maintain energy balance. In the associations between 

dietary factors and leptin, we found that higher red meat intake (β = 0.078, 95% CI, 0.044-0.111; P < 

0.001) and vitamin C intake from diet (β = 0.101; 95% CI, 0.008-0.193; P = 0.033) were associated with a 
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higher leptin level (Table S7c). In the previous study by Ko et al. (2016), they also found a diet with 

higher Western diet scores was associated with a higher leptin concentration. The inverse association 

between daily frequency of fruits and vegetables (β = -0.051; 95% CI, -0.102- -0.001; P = 0.047) and 

leptin concentration also aligns with Ko et al.’s (2016) finding of a Prudent diet. But the positive 

association between vitamin C intake from diet and leptin is contrary to expectations. Because vitamin C 

and fruits and vegetables daily frequency were highly correlated, they were expected to relate to leptin 

level in a similar way. A previous study by Aeberli et al. (2006) on the effects of dietary intake on 

inflammatory markers found that both vitamin C intake and beta-carotene intakes were negative 

explanatory variables of leptin concentration. 

In the experimental study by Jamalan, Rezazadeh, Zeinali, and Ghaffari (2015), participants’ 

mean leptin level was significantly lower (mean = 19; SD = 12) after receiving vitamin C 1000 mg/day for 

four weeks than at baseline (mean = 31; SD = 15 ng/mL) (Jamalan, Rezazadeh, Zeinali, & Ghaffari, 2015). 

In Table 6, vitamin C intake from diet demonstrated a protective effect against lung cancer in the 

unadjusted univariate analysis. But no association between vitamin C and lung cancer was found in the 

fully adjusted model (Table 9). Vitamin C had no directly independent effect on lung cancer. However, 

increasing BMI and increasing leptin caused by higher vitamin C were associated with a lower risk of 

lung cancer. In the current study, a non-linear association existed between supplemental beta-carotene 

intake and leptin concentration (Table S7c). It seems that reduced leptin associated with higher 

supplemental beta-carotene stimulates appetite and energy storage. 

In the study by Abdullah, Hasan, Raigangar, and Bani-Issa (2012), a higher C-peptide in the over-

weight group than the non-overweight group indicated that C-peptide, a measure of endogenous insulin 

secretion, was positively associated with BMI (Abdullah, Hasan, Raigangar, & Bani-Issa, 2012). In our 

study, we detected a non-linear association between C-peptide and BMI (Table S8a). However, the 
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effects of C-peptide and BMI associated with lung cancer were contrary against each other. The risk 

reduction in lung cancer by increasing BMI was stronger than the risk imposed by increasing C-peptide. 

We found a higher BMI was associated with a higher hsCRP level (Table S8b), which is in 

agreement with previous studies (β = 0.021; 95% CI, 0.006-0.035; P = 0.005) (Clark et al., 2016; Visser M 

et al., 1999). As mentioned before, BMI and lung cancer risk were inversely associated. The effect of 

increasing BMI on lowering lung cancer risk had offset the effect of increasing hsCRP. The hsCRP 

concentrations in female participants were significantly higher compared to male participants in the 

current study. In addition, sex interacted with the effect of BMI on hsCRP (Pinteraction = 0.005). In the study 

of Clark et al. (2016), they also found the association between BMI and hsCRP was stronger in female 

individuals than in male individuals. This might be due to a few biological reasons: different metabolic 

activity of adipose tissue in males versus females; higher leptin concentrations in female participants; 

and higher body fat and different fat distribution in female participants (Choi, Joseph, & Pilote, 2013). 

In the current study, a non-linear relationship was detected between BMI at age 50 and leptin 

level (Table S8c and Figure 2). However, the non-linear association may have resulted from a few 

extreme values among people with BMI greater than 40 kg/m2. The concentration of leptin in female 

participants was higher than in male participants. A previous study by Kazmi et al. found similar results. 

The serum leptin level was lower in the non-obese group than the group with excess body fat. Female 

participants had higher leptin levels than male participants in both groups (Kazmi et al., 2013). However, 

a greater age was associated with a higher leptin concentration, which was not found in the study by 

Kazmi et al. A relatively small study sample with a younger age range (25 to 40 old) might have 

prevented them from finding the effect of age in relation to leptin concentration.  

The current study found that C-peptide concentration was positively associated with lung cancer 

(adjusted OR = 1.281; 95% CI, 1.072-1.532; P = 0.007). Such an association was independent of BMI. 

Findings of the current study concurred with previous studies. In the study by Hsu et al. (2013), for every 
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one unit (pmol/mL) increase in serum C-peptide concentration, there was an associated 165% increased 

risk of lung cancer death in female participants (95% CI, 1.31-5.36). In our study, sex did not play a 

significant role in the risk of lung cancer. This suggested that increasing C-peptide might help predict 

lung cancer risk and guide screening in both sexes. According to the study conducted by Argirion, 

Weinstein, Männistö, Albanes, and Mondul (2017), the mean fasting insulin concentration in lung cancer 

cases was 8.7% higher than the mean in controls. Males participants in the highest quartile of insulin 

level were at 110% higher risk of lung cancer in comparison with people in the lowest quartile (HR = 

2.10; 95% CI, 1.12-3.94) (Argirion et al., 2017). As the current study utilized data that collected non-

fasting serum samples, the association between insulin and lung cancer could not be evaluated. An 

increase in either C-peptide or insulin concentration indicates insulin resistance, a precursor of type 2 

diabetes mellitus. Individuals taking metformin to control diabetes may have an advantage in terms of 

reduced risk of lung cancer. These finding may suggest that conventional intervention for diabetes-

related diseases, like metformin, may help inhibit lung cancer initiation and progression (Argirion et al., 

2017; Zhang et al., 2014). 

hsCRP level was found to be positively associated with lung cancer (adjusted OR = 1.206; 95%, 

1.075-1.354; P = 0.001). A previous nested case-control study using data from the PLCO trial found 

similar results: the combination of interleukin 8 and C-reactive protein (CRP) were robust metabolic 

markers in predicting lung cancer (Pine et al., 2011). Another nested case-control study in the PLCO trial 

matched participants on age, sex, entry year, follow-up time, and smoking (pack-year and quit-time) 

(Chaturvedi et al., 2010). Increased CRP levels were associated with higher lung cancer risk in former-

smokers and current-smokers, but not in never-smokers. In current-smokers, the total number of 

cigarettes they had smoked (pack-year) was associated with CRP level. Therefore, the concentration of 

CRP, an indicator of inflammation, might just reflect how the body responded to cigarette-smoking 

(Agassandian, Shurin, Ma, & Shurin, 2014; Chaturvedi et al., 2010). However, in the current study, the 
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association between hsCRP and lung cancer exists after adjusting for smoking exposures (intensity and 

duration). The level of hsCRP was not only a response to smoking but also a mediator in lung cancer 

development.  

In a previous PLCO study on metabolic markers, the inverse association between leptin and lung 

cancer had been attenuated after adjusting for BMI (Goodwin et al., 2015). In the current study, lung 

cancer odds decreased by 23.1% as leptin concentration increased one unit (ln(ng/mL)) (95% CI, 0.633-

0.934; P = 0.008) after adjusting for other explanatory variables and covariates, including BMI. In Table 

S9 Model 3, the effect estimate of leptin without adjustment for BMI was 0.704 (95% CI, 0.592-0.837, P 

< 0.001). After adding BMI in the analysis, the protective effect of leptin decreased by 22.0%. Therefore, 

higher BMI in part explained the effect of increasing leptin on lowering lung cancer risk. In addition, the 

effect of leptin on lung cancer was prominent and independent of BMI.  

5.2 Limitations 

The study matched controls to cases on factors associated with study exposures using PLCO 

data. This might have introduced selection bias as the sample association of exposure with lung cancer 

was altered by the matched study design (Rothman, Greenland, & Lash, 2008). Because controls were 

matched to cases on sex, age, and race/ethnicity, the associations of lung cancer with regard to these 

matching factors could not be evaluated. Also, as the matching factors were associated with study 

exposures, the consequential overmatching may have harmed statistical efficiency (Rothman, 

Greenland, & Lash, 2008). If the onset of lung cancer occurred before metabolic markers were collected, 

the temporal relation could not be determined. However, this study was nested in the intervention 

cohort of the prospective PLCO study, hence the possibility of reverse causation bias is low. Besides, the 

results obtained in our research could be influenced by several limitations: inaccessible information, 

self-reported data, and restricted population representation. 
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5.2.1 Unattainable Information 

Only BMI was included to represent participants’ excess adiposity. As an indirect method to 

measure obesity, BMI has limitations (Egom et al., 2018). Higher BMI simply indicates higher body mass; 

this could mean greater body fat and muscle mass. BMI alone could not describe a person’s adiposity 

profile. Hence, a full picture of obesity status could not be obtained in the study. The current study was 

based on an assumption that participants’ diet did not change over time. However, people might adjust 

diet according to changing preferences, food availability, and health concerns. The dietary information 

could not capture potential changes over time. 

5.2.2 Self-reported Data 

The information on baseline characteristics and dietary factors were gathered from participant-

reported questionnaires (Prorok et al., 2000). In the baseline form, respondents provided their BMI, 

health history, and smoking history. To correspond with ideal societal norms, participants might over-

report favourable attributes in diet. On the other hand, individuals may have been more likely to 

minimize undesirable behaviours in cigarette smoking. Thus, information on these factors might have 

been affected by social desirability bias. If cigarette smoking exposures were underreported, the 

harmful effect might shift toward a weaker relation than in reality. The effect magnitude of fruits and 

vegetables daily frequency might be underestimated as well. Another non-differential misclassification 

bias is caused by memory error in dietary information. Because the occurrences of this error were not 

thought to be determined by lung cancer status, the error might weaken the effect estimates for dietary 

factors. Because measures in the baseline and dietary were collected at one point in time, reliability 

does not apply (Patten, 2015). 

5.2.3 Restricted Population Representation 

The study sample was drawn from a more educated population with less current-smokers and 

fewer people with obesity (Pinsky et al., 2007). Given the age range of 55 to 74 years at study entry, 
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participants were at an advanced age and at a higher risk of having lung cancer (Prorok et al., 2000). In 

this regard, individuals who volunteered to participate in the PLCO screening trial were more likely to be 

healthier than the overall population in the United States. The “healthy volunteer effect” might 

introduce selection bias and weaken external generalizability of findings (Pinsky et al., 2007). As a result, 

the inferences drawn from the study might have difficulty in generalizing to a wider population. 

Although the findings were based on data from the United States, the associations identified are likely 

to be applicable to ever-smoker populations in different settings because they are thought to result 

from universal biological mechanism in humans. The relationships between dietary factors, BMI, 

metabolic markers, and lung cancer were only described in the high-risk group (ever-smokers). The 

group of never-smokers was excluded in this study, so it is unreasonable to generalize the findings to 

never-smokers. 

5.3 Strengths 

One of the main strengths of the current study was the prospective study design. The matched 

case-control study nested in the PLCO trial was less likely to be affected by disease-differential bias. 

Assessment of dietary intake at study baseline should not have been influenced by lung cancer related 

or precursor conditions-associated diet modifications. The information on body composition had been 

assessed using BMI at age 50. Serum samples were collected at least more than one year before lung 

cancer diagnosis. Therefore, the study was not susceptible to recall bias. Cases and controls were both 

from the same explicitly described PLCO trial cohort, this minimized one of the commonest 

vulnerabilities in case-control design—selection bias (Sedgwick, 2014). Besides, the study was endowed 

with 2 advantages of the conventional case-control design. First, the study was efficient at evaluating a 

chronic disease—lung cancer—that usually has a long latency between exposures and disease 

manifestation (Howard, 2015). Second, the design was cost-effective and allowed us to examine 
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multiple exposures simultaneously, for instance, a series of dietary factors and metabolic markers 

(Patten, 2015). 

At the analysis stage, robust statistical methods were utilized to improve statistical precision. 

The study had adjusted for interactions and covariates. For all logistic regressions evaluating the risk of 

lung cancer, conditional analyses had controlled for confounding by the matching and by inclusion of 

potential confounders as explanatory variables in the models (Pearce, 2016). Multivariable linear 

regression that assesses associations between quantitative variables was performed with cluster-robust 

standard errors to adjust for the matched data. Meanwhile, non-linear associations between 

quantitative variables and lung cancer were examined by employing multivariable fractional polynomial 

(MFP) models. In the process of model building, we used a liberal P-value cut-point (P < 0.15) to 

purposefully select and retain candidate explanatory variables in intermediate associations (Bursac, 

Gauss, Williams, & Hosmer, 2008). 

Important confounders were carefully controlled in the study. In the association between 

dietary factors, metabolic markers, and lung cancer, higher BMI had a direct effect on lowering lung 

cancer. Increasing BMI also had an indirect effect by increasing leptin. This indicated the potentiality of 

BMI as an important factor to consider for lung cancer risk prediction and screening. Overall, the high-

quality data from the PLCO cancer screening trial was helpful for accurately describing the study 

associations. Carefully following up participants had maximized data completeness. We were able to 

conduct exploratory analyses in selected lung cancer histological types because of the sufficient sample 

size.  

5.4 Implications 

First, the study results provide updated evidence to focus lung cancer prevention scheme on the 

role of diet and metabolism for ever-smokers from a public health perspective. Underweight smokers 

are recommended to attain a normal BMI by having a nutritious diet including the nutrients found to be 
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protective in the current study. Given the evidence of high quality RCT it is prudent to obtain dietary 

beta-carotene from natural dietary sources, as they also appear to be protective (data not shown). As 

healthy diet and higher body weight in the normal range are strong and modifiable protective factors for 

lung cancer in ever-smokers, the potential for preventable incidence and mortality are enormous. To 

achieve this goal at the population level, the findings can be used to improve health guidelines and 

educate people, especially high-risk group, to have a good diet and body weight.  

Second, the findings of the study may bring new opportunities for improving secondary 

prevention of lung cancer. Dietary, BMI and metabolic information may improve the performance of 

current risk prediction model for lung cancer and assist healthcare professionals to detect the disease at 

an early stage. Adding segments of people’s diet, obesity status, and metabolic profile to the lung cancer 

screening for high risk individuals permits practitioners better identify individuals with a higher 

likelihood of lung cancer occurrence in Canada.  

Third, this study provides new ideas and directions for future efforts or research aimed at the 

treatment of lung cancer. C-peptide, hsCRP, and leptin are important explanatory variables of lung 

cancer independent of dietary factors, BMI, and other covariates. The panel of selected metabolic 

markers may serve as targets for possible future development of chemoprevention and therapeutics. 

Conventional drugs, for instance metformin used to treat T2DM, act on these metabolic markers, which 

indicates their undiscovered capabilities to aid in medical interventions for lung cancer (Sleire et al., 

2017; Pryor & Cabreiro, 2015). 

 5.5 Future Directions 

 In future research, it is crucial to conduct more external validations of our model or identified 

associations in wider populations with a longitudinal design. Broadening the panel of metabolic markers 

helps to advance knowledge on associations between insulin metabolism related metabolic markers and 

lung cancer. Because sex differences exist in the associations of metabolism and lung cancer biology, sex 
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effects on metabolic markers should be studied and evaluated. If well-defined measures of obesity (a 

combination of BMI and waist circumference), socioeconomic status, and history of pulmonary disease 

are available, they can verify and improve identified estimates of association effects. Variable selection 

with statistical learning had been used to study the role of dietary factors associated with outcome of 

interest in chronic diseases (Biesbroek et al., 2015; Panaretos et al., 2018). Employing different statistical 

methods and comparing them with the current study might tell us their capability in the field of cancer 

epidemiology and further improve our models and understanding of associations. 

5.6 Conclusions 

In summary, our study contributes to the literature by exploring the associations between 

dietary factors, BMI, metabolic markers, and the risk of lung cancer and its subgroups. An inverse 

association was found between higher BMI and the risk of lung cancer. Having a lower BMI at 50 is 

associated with a higher risk. Higher intake of fruits and vegetables and supplemental beta-carotene in 

an appropriate dosage range are inversely associated with the risk. Fruits and vegetables and 

supplemental beta-carotene may act as possible protective factors for lung cancer prevention. The 

profile of metabolic markers might add value to existing risk prediction model to focus on early 

detection of lung cancer in high-risk population. An increase in C-peptide and hsCRP and a decrease in 

leptin were associated with higher lung cancer risk. The selected metabolic markers have the potential 

to influence intervention planning for chemoprevention or therapeutics if their relationships to lung 

cancer risk are validated in future studies. More investigations with broad and selected dietary factors 

and metabolic markers are warranted to validate our findings and explore the factors that contribute to 

development of lung cancer. Studies with a longitudinal design are needed to verify the etiology of the 

disease. 
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SUPPLEMENTAL MATERIAL 
 
Table S1. Characteristic of Overall Participants by Lung Cancer Status and Univariate Logistic Associations with Lung Cancer 

Explanatory Variables 
Controls Cases P Univariate Odds Ratio 

(n = 1919) (n = 931)  (95% CI; P) 

Sociodemographic     
    Age, year, mean (SD) 64.10 (5.04) 64.11 (5.01) Pt = 0.933 1.161 (0.997−1.352; 0.055) 
    Sex, number (%)   Pc = 0.531 Controls matched to cases 
        Female 780 (40.65) 367 (39.42)   
        Male 1139 (59.35) 564 (60.58)   
    Race/ethnicity, number (%)   Pc = 0.871 Controls matched to cases 
        Non-Hispanic White 1734 (90.36) 839 (90.12)   
        Non-Hispanic Black 112 (5.84) 57 (6.12)   
        Hispanic 26 (1.35) 12 (1.29)   
        Asian 35 (1.82) 17 (1.83)   
        Pacific Islander 6 (0.31) 5 (0.54)   
        American Indian/Alaskan Native 6 (0.31) 1 (0.11)   
    Education, number (%)   Pc < 0.001  
        Less than 8 years 18 (0.94) 13 (1.40)  1.310 (0.621−2.762; 0.479) 
        8 to 11 years 153 (7.99) 95 (10.20)  1.142 (0.836−1.561; 0.403) 
        12 years or completed high school 435 (22.72) 231 (24.81)  Referent group 
        Post high school training other than college 264 (13.79) 136 (14.61)  0.963 (0.738−1.258; 0.784) 
        Some college  440 (22.98) 234 (25.13)  1.016 (0.807−1.280; 0.892) 
        College graduate 295 (15.40) 128 (13.75)  0.841 (0.645−1.098; 0.204) 
        Postgraduate degree 310 (16.19) 94 (10.10)  0.580 (0.434−0.776; <0.001) 
    <0.001(overall) 
Medical history     
    BMI at age 50, kg/m2, mean (SD) 25.26 (3.83) 25.28 (3.50) Pt = 0.929 0.965 (0.942−0.989; 0.005) 
    Self-reported COPD, number (%)   Pc < 0.001  
        No 1757 (91.56) 788 (84.64)   
        Yes 162 (8.44) 143 (15.36)  1.850 yes vs no (1.447−2.365; <0.001) 

Abbreviations: BMI, body mass index (weight kg/height meter2); CI, confidence interval; COPD, chronic obstructive pulmonary disease; CP, C-peptide; hsCRP, high-sensitivity C-
reactive protein; IQR, interquartile range; LN, natural log transformed; P, P-value; Pc: P-value from Pearson’s chi-squared; Pe, P-value from Fisher’s Exact test; Pn, P-value from 
non-parametric test for trend across ordered groups (an extension of the Wilcoxon rank-sum test); Pt, P-value from t-test with unequal variances; SD, standard deviation.  
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Explanatory Variables 
Controls Cases P Univariate Odds Ratio 

(n = 1919) (n = 931)  (95% CI; P) 

Dietary factors     
    Food energy from diet, kcal/day, median (IQR) 1978.44 (1058.58) 1943.85 (1041.71) Pn = 0.542  
        LN Food energy from diet, mean (SD) 7.58 (0.43) 7.58 (0.42) Pt = 0.844 0.982 (0.796−1.211; 0.866) 
    Fruits&Vegetables, daily frequency, median 
(IQR) 

6.01 (4.12) 5.42 (3.93) Pn < 0.001  

        LN Fruits&Vegetables, mean (SD) 1.91 (1.16) 1.63 (1.22) Pt < 0.001 0.816 (0.756−0.882; <0.001) 
    Red meat, g/day, median (IQR) 24.58 (35.06) 28.28 (38.27) Pn = 0.001  
        LN Red meat, mean (SD) 3.16 (0.97) 3.31 (0.95) Pt < 0.001 1.149 (1.042−1.267; 0.005) 
    Supplemental beta-carotene, 1000 mcg/day, 
mean (SD) 

0.52 (1.00) 0.41 (0.83) Pt = 0.006 0.864 (0.782−0.954; 0.004) 

    Vitamin C from diet, mg/day, median (IQR) 150.69 (104.61) 132.75 (105.59) Pn < 0.001  
        LN Vitamin C from diet, mean (SD) 4.96 (0.59) 4.85 (0.60) Pt < 0.001 0.756 (0.654−0.875; <0.001) 
    Isoflavone, mg/day, median (IQR) 0.40 (0.48) 0.36 (0.43) Pn = 0.039  
        LN Isoflavone, median (SD) -0.98 (1.03) -1.05 (0.96) Pt = 0.088 0.919 (0.838−1.009; 0.077) 
Smoking Exposures     
    Smoking status, number of current-smokers (%) 772 (40.23) 393 (42.21) Pc = 0.005 Controls matched to cases 
    Cigarettes per day, mean (SD) 20.71 (14.72) 26.86 (16.30) Pt < 0.001 1.033 (1.026−1.040; <0.001) 
    Smoking duration, year, mean (SD) 28.32 (17.22) 39.91 (14.80) Pt < 0.001 1.077 (1.065−1.088; <0.001) 
    Quit-time in former-smokers, year, mean (SD) 23.26 (12.51) 13.16 (10.45) Pt < 0.001 0.929 (0.917−0.940; <0.001) 
Metabolic markers     
    CP (pmol/L), median (IQR) 752.26 (670.17) 811.44 (756.89) Pn = 0.025  
        LN CP, mean (SD) 6.65 (0.64) 6.70 (0.64) Pt = 0.060 1.127 (0.993−1.281; 0.065) 
    hsCRP (mg/L), median (IQR) 8.40 (14.90) 11.05 (20.45) Pn < 0.001  

        LN hsCRP, mean (SD) 2.32 (1.01) 2.56 (1.04) Pt < 0.001 1.292 (1.186−1.407; <0.001) 
    Leptin (ng/mL), median (IQR) 5.30 (7.50) 5.20 (7.40) Pn = 0.174  
        LN Leptin, mean (SD) 1.89 (0.78) 1.84 (0.79) Pt = 0.134 0.932 (0.828−1.050; 0.247) 

Abbreviations: BMI, body mass index (weight kg/height meter2); CI, confidence interval; COPD, chronic obstructive pulmonary disease; CP, C-peptide; hsCRP, high-sensitivity C-
reactive protein; IQR, interquartile range; LN, natural log transformed; P, P-value; Pc: P-value from Pearson’s chi-squared; Pe, P-value from Fisher’s Exact test; Pn, P-value from 
non-parametric test for trend across ordered groups (an extension of the Wilcoxon rank-sum test); Pt, P-value from t-test with unequal variances; SD, standard deviation. 
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Table S2. Characteristic of Never-smokers by Lung Cancer Status and Univariate Logistic Associations with Lung Cancer 

Explanatory Variables 
Controls Cases P Univariate Odds Ratio 

(n = 234) (n = 76)  (95% CI; P) 

Sociodemographic     
    Age, year, mean (SD) 65.21 (5.30) 65.66 (5.29) Pt = 0.526 1.070 (0.632−1.812; 0.800) 
    Sex, number (%)   Pc = 0.621 Controls matched to cases 
        Female 149 (63.68) 46 (60.53)   
        Male 85 (36.32) 30 (39.47)   
    Race/ethnicity, number (%)   Pe = 0.957 Controls matched to cases 
        Non-Hispanic White 220 (94.02) 71 (93.42)   
        Non-Hispanic Black 3 (1.28) 1 (1.32)   
        Hispanic 5 (2.14) 2 (2.63)   
        Asian 6 (2.56) 2 (2.63)   
        Pacific Islander 0 (0.00) 0 (0.00)   
        American Indian/Alaskan Native 0 (0.00) 0 (0.00)   
    Education, number (%)   Pe = 0.053  
        Less than 8 years 0 (0.00) 2 (2.63)  N/A 
        8 to 11 years 15 (6.41) 4 (5.26)  1.316 (0.333−5.205; 0.696) 
        12 years or completed high school 54 (23.08) 9 (11.84)  Referent group 
        Post high school training other than college 30 (12.82) 14 (18.42)  2.445 (0.942−6.350; 0.066) 
        Some college  55 (23.50) 14 (18.42)  1.498 (0.585−3.835; 0.399) 
        College graduate 37 (15.81) 15 (19.74)  2.529 (0.938−6.819; 0.067) 
        Postgraduate degree 43 (18.38) 18 (23.68)  2.534 (0.965−6.655; 0.059) 
    0.206 (overall) 
Medical history     
    BMI at age 50, kg/m2, mean (SD) 25.32 (3.87) 25.05 (3.72) Pt = 0.580 0.977 (0.906−1.053; 0.537) 
    Self-reported COPD, number (%)   Pe = 0.462  
        No 226 (96.58) 75 (98.68)   
        Yes 8 (3.42) 1 (1.32)  0.383 yes vs no (0.047−3.123; 0.370) 

Abbreviations: BMI, body mass index (weight kg/height meter2); CI, confidence interval; COPD, chronic obstructive pulmonary disease; CP, C-peptide; hsCRP, high-sensitivity C-
reactive protein; IQR, interquartile range; LN, natural log transformed; P, P-value; Pc: P-value from Pearson’s chi-squared; Pe, P-value from Fisher’s Exact test; Pn, P-value from 
non-parametric test for trend across ordered groups (an extension of the Wilcoxon rank-sum test); Pt, P-value from t-test with unequal variances; SD, standard deviation.  

 
(continued on the following page)  

 
 
 
 
 
 
 



 118 

Explanatory Variables 
Controls Cases P Univariate Odds Ratio 

(n = 234) (n = 76)  (95% CI; P) 

Dietary factors     
    Food energy from diet, kcal/day, median (IQR) 1707.13 (855.68) 1981.11 (918.90) Pn = 0.035  
        LN Food energy from diet, mean (SD) 7.43 (0.44) 7.55 (0.36) Pt = 0.022 1.764 (0.913−3.408; 0.091) 
    Fruits&Vegetables, daily frequency, median 
(IQR) 

6.83 (4.05) 7.16 (3.71) Pn = 0.147  

        LN Fruits&Vegetables, mean (SD) 2.23 (1.01) 2.42 (0.82) Pt = 0.108 1.233 (0.921−1.650; 0.159) 
    Red meat, g/day, median (IQR) 16.30 (22.25) 15.89 (26.31) Pn = 0.833  
        LN Red meat, mean (SD) 2.79 (0.94) 2.88 (0.89) Pt = 0.467 1.069 (0.787−1.453; 0.669) 
    Supplemental beta-carotene, 1000 mcg/day, 
mean (SD) 

0.58 (1.07) 0.40 (0.56) Pt = 0.066 0.736 (0.502−1.080; 0.118) 

    Vitamin C from diet, mg/day, median (IQR) 154.36 (103.62) 169.08 (93.96) Pn = 0.104  
        LN Vitamin C from diet, mean (SD) 5.02 (0.54) 5.14 (0.49) Pt = 0.091 1.501 (0.891−2.529; 0.127) 
    Isoflavone, mg/day, median (IQR) 0.37 (0.50) 0.41 (0.44) Pn = 0.553  
        LN Isoflavone, median (SD) -1.00 (1.08) -0.94 (0.92) Pt = 0.622 1.117 (0.836−1.492; 0.455) 
Smoking Exposures     
    Smoking status, number of never-smokers (%) 234 (100.00) 76 (100.00) N/A Controls matched to cases 
Metabolic markers     
    CP (pmol/L), median (IQR) 789.14 (686.91) 706.50 (517.28) Pn = 0.457  
        LN CP, mean (SD) 6.65 (0.63) 6.59 (0.59) Pt = 0.497 0.870 (0.571−1.325; 0.515) 
    hsCRP (mg/L), median (IQR) 7.95 (14.80) 7.70 (14.20) Pn = 0.769  

        LN hsCRP, mean (SD) 2.28 (1.03) 2.24 (1.02) Pt = 0.741 0.993 (0.754−1.308; 0.959) 
    Leptin (ng/mL), median (IQR) 7.70 (13.00) 6.20 (8.20) Pn = 0.246  
        LN Leptin, mean (SD) 2.15 (0.83) 2.04 (0.72) Pt = 0.283 0.872 (0.586−1.296; 0.497) 

Abbreviations: BMI, body mass index (weight kg/height meter2); CI, confidence interval; COPD, chronic obstructive pulmonary disease; CP, C-peptide; hsCRP, high-sensitivity C-
reactive protein; IQR, interquartile range; LN, natural log transformed; P, P-value; Pc: P-value from Pearson’s chi-squared; Pe, P-value from Fisher’s Exact test; Pn, P-value from 
non-parametric test for trend across ordered groups (an extension of the Wilcoxon rank-sum test); Pt, P-value from t-test with unequal variances; SD, standard deviation. 
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Table S3. Multivariable Conditional Logistic Regression for Dietary Factors Associated with Lung Cancer in 2062 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) Odds Ratio (95% CI) P 

Education, per 1 level increase -0.062 (-0.127−0.003) 0.940 (0.881−1.003) 0.061 

LN Fruits&Vegetables, per 1 ln(daily 
frequency)  
    increase  

-0.127 (-0.219− -0.036) 0.881 (0.803−0.965) 0.007 

Supplemental beta-carotene, per 1000      
    mcg/day increase 

-0.143 (-.257− -0.029) 0.867 (0.773−0.971) 0.014 

Smoking intensity, per 1 cigarette/day  
    increase 

-1.731 (-2.206− -1.257)† N/A <0.001 

Smoking duration, per 1-year increase 0.066 (.0537−0.0784) 1.068 (1.055−1.082) <0.001 

n; AIC, BIC n = 2062; 1201.649, 1229.806 
P of overall model, pseudo-R2 <0.001, 0.203 

† The association between smoking intensity (average number of cigarettes smoked per day) and lung cancer was non-linear, and the variable 
was transformed accordingly. As a result, the effect estimate could not be interpreted directly.  
The transformation formula: (number of cigarettes per day/10)^-1 
 
Table S4. Multivariable Conditional Logistic Regression for Body Mass Index (BMI) Associated with Lung Cancer in 2340 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) Odds Ratio (95% CI) P 

Age, per 1-year increase 0.171 (-0.005− -0.348) 1.187 (0.995−1.416) 0.057 

Education, per 1 level increase -0.077 (-.1386− -0.016) 0.926 (0.871−0.984) 0.014 

BMI at age 50, per 1 kg/m2 increase -0.024 (-0.054−0.006) 0.976 (0.947−1.006) 0.111 

Self-reported COPD, yes versus no 0.242 (-0.043−0.528) 1.274 (0.958−1.695) 0.096 

Smoking intensity, per 1 cigarette/day    
    increase 

-1.712 (-2.148− -1.275)† N/A† <0.001 

Smoking duration, per 1-year increase 0.048 (0.027−0.069) 1.049 (1.028−1.072) <0.001 

Quit-time, per 1-year increase -0.019 (-0.043−0.005) 0.981 (0.958−1.005) 0.122 

Interaction between BMI and age 0.007 (0.001−0.013) 1.007 (1.001−1.013) 0.024 

n; AIC, BIC n = 2340; 1399.280, 1445.343 
P of overall model, pseudo-R2 <0.001, 0.188 

† A non-linear association between smoking intensity and lung cancer odds could not be interpreted directly. 
The transformation formula: (number of cigarettes per day/10)^-1 
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Table S5. Multivariable Linear Regression with Dietary Factors Predicting Body Mass Index (BMI) in 2261 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) P 

Age, per 1-year increase -0.080 (-0.114− -0.045) <0.001 

Education, per 1 level increase -0.053 (-0.140−0.035) 0.240 

LN Food energy from diet, per 1 ln(kcal/day) increase 0.600 (0.137−1.064) 0.011 

LN Fruits&Vegetables, per 1 ln(daily frequency) increase  -0.407 (-0.660− -0.155) 0.002 

LN Red meat, per 1 ln(g/day) increase 0.388 (0.215−0.561) <0.001 

Supplemental beta-carotene, per 1000 mcg/day increase 0.00006 (0.00003−0.00010)† <0.001 

LN Vitamin C from diet, per 1 ln(mg/day) increase 0.875 (0.350−1.399) 0.001 

LN Isoflavone, per 1 ln(mg/day) increase -0.243 (-0.405− -0.082) 0.003 

Smoking intensity, per 1 cigarette/day increase 0.022 (0.011−0.032) <0.001 

Smoking duration, per 1-year increase -0.012 (-0.031−0.007) 0.210 

Quit-time, per 1-year increase 0.238 (0.096−0.380)‡ 0.001 

Model constant -12.766 (-16.172− -9.360) <0.001 

n; AIC, BIC n = 2261; 11827.700, 11896.380 
P of overall model, R2 <0.001, 0.093 

† According to the multivariable fractional polynomial (MFP) model in Stata, supplemental beta-carotene was transformed to a power of -2. 
Therefore, no direct interpretation for the coefficient estimate was attainable.  
The transformation formula: (supplemental beta-carotene+ 0.0107249990105629))^-2 
‡ Quit-time was transformed at the suggestion of MFP. The transformation formula: ln [(quit-time+0.5)/10] 
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Table S6. Multivariable Conditional Logistic Regression for Dietary Factors and Body Mass Index (BMI) Associated with Lung Cancer in 2027 
Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) Odds Ratio (95% CI) P 

Education, per 1 level increase -0.075 (-0.141− -0.009) 0.928 (0.869−0.991) 0.026 

BMI at age 50, per 1 kg/m2 increase -0.040 (-0.073− -0.007) 0.961 (0.930−0.993) 0.017 

LN Fruits&Vegetables, per 1 ln(daily 
frequency)  
    increase  

-0.129 (-0.222− -0.036) 0.879 (0.801−0.964) 0.006 

Supplemental beta-carotene, per 1000  
    mcg/day increase 

-0.150 (-0.265− -0.035) 0.861 (0.767−0.965) 0.010 

Smoking intensity, per 1 cigarette/day  
    increase 

-1.719 (-2.197− -1.240)† N/A† <0.001 

Smoking duration, per 1-year increase 0.065 (0.052−0.077) 1.067 (1.053−1.080)  <0.001 

n; AIC, BIC n = 2027; 1178.660, 1212.346 
P of overall model, pseudo-R2 <0.001, 0.205 

† A non-linear association between smoking intensity and lung cancer odds could not be interpreted directly. 
The transformation formula: (number of cigarettes per day/10)^-1 
 

Table S7a. Multivariable Linear Regression with Dietary Factors Predicting C-peptide (CP) in 2283 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) P 

Age, per 1-year increase 0.008 (0.003−0.014) 0.004 

Sex, female versus male -0.087 (-0.144− -0.029) 0.003 

LN Fruits&Vegetables, per 1 ln(daily frequency) increase  0.030 (-0.001−0.060) 0.057 

LN Red meat, per 1 ln(g/day) increase  0.053 (0.024−0.083)  <0.001 

Smoking intensity, per 1 cigarette/day increase 0.003 (0.001−0.005) 0.012 

Interaction between sex and LN Fruits&Vegetables -0.057 (-0.104− -0.011) 0.016 

Model constant -0.533 (-0.649− -0.417) <0.001 

n; AIC, BIC n = 2283; 4371.563, 4411.696 
P of overall model, R2 <0.001, 0.024 
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Table S7b. Multivariable Linear Regression with Dietary Factors Predicting High-sensitivity C-reactive Protein (hsCRP) in 2281 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) P 

Age, per 1-year increase -0.020 (-0.048−0.007) 0.152 

Sex, female versus male 0.653 (0.338−0.967) <0.001 

Education, per 1 level increase -0.022 (-0.049−0.005) 0.114 

LN Fruits&Vegetables, per 1 ln(daily frequency) increase  -0.049 (-0.084− -0.014) 0.007 

LN Red meat, per 1 ln(g/day) increase 0.113 (0.060−0.167) <0.001 

Self-reported COPD, yes versus no 0.304 (0.167−0.441) <0.001 

Smoking intensity, per 1 cigarette/day increase 0.004 (0.001−0.007) 0.004 

Smoking duration, per 1-year increase 0.010 (0.007−0.013) <0.001 

Interaction between sex and LN Red meat -0.111 (-0.209− -0.013) 0.026 

Interaction between age and LN Red meat 0.007 (-0.001−0.015) 0.075 

Model constant  -0.277 (-0.488− -0.066) 0.010 

n; AIC, BIC n = 2281; 6436.229, 6499.285 
P of overall model, R2 <0.001, 0.069 

 
Table S7c. Multivariable Linear Regression with Dietary Factors Predicting Leptin in 2274 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) P 

Sex, female versus male 0.787 (0.718−0.855) <0.001 

Education, per 1 level increase 0.012 (-0.007−0.030) 0.217 

LN Fruits&Vegetables, per 1 ln(daily frequency) increase  -0.051 (-0.102− -0.001) 0.047 

LN Red meat, per 1 ln(g/day) increase 0.078 (0.044−0.111) <0.001 

Supplemental beta-carotene, per 1000 mcg/day increase 0.00001 (0.000007−0.00002)† <0.001 

LN Vitamin C from diet, per 1 ln(mg/day) increase 0.101 (0.008−0.193) 0.033 

LN Isoflavone, per 1 ln(mg/day) increase -0.045 (-0.077− -0.013) 0.006 

Smoking intensity, per 1 cigarette/day increase 0.003 (0.001−0.005) 0.008 

Quit-time, per 1-year increase -0.0007 (-0.0009− -0.0006)‡ 0.001 

Model constant -1.862 (-2.374− -1.351) <0.001 

n; AIC, BIC n = 2274; 4704.466, 4761.759 
P of overall model, R2 <0.001, 0.226 

† The transformation formula: (supplemental beta-carotene+0.0107249990105629)^-2 
‡ The transformation formula: [(quit-time+0.5)/10]^-2 
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Table S8a. Multivariable Linear Regression with Body Mass Index (BMI) Predicting C-peptide (CP) in 2461 Ever-Smokers 

Explanatory Variables Beta Coefficient (95% CI) P 

Age, per 1-year increase 0.009 (0.004−0.014) <0.001 

BMI at age 50, per 1 kg/m2 increase 0.425 (0.334−0.516)† <0.001 

BMI at age 50, per 1 kg/m2 increase -0.382 (-0.496− -0.267)‡ <0.001 

Smoking intensity, per 1 cigarette/day increase 0.003 (0.001−0.004) 0.006 

Smoking duration, per 1-year increase 0.001 (-0.001−0.003) 0.142 

Model constant -0.796 (-0.888− -0.705) <0.001 

n; AIC, BIC n = 2461; 4685.637, 4720.487 
P of overall model, R2 <0.001, 0.054 

† The transformation formula: [(centred BMI+11.36660194396973)/10]^2 
‡ The transformation formula: [(centred BMI+11.36660194396973)/10]^2*ln[(centred BMI+11.36660194396973)/10] 
 
Table S8b. Multivariable Linear Regression with Body Mass Index (BMI) Predicting High-sensitivity C-reactive Protein (hsCRP) in 2457 Ever-
Smokers 

Explanatory Variables Beta Coefficient (95% CI) P 

Sex, female versus male 0.368 (0.261−0.474) <0.001 

Non-Hispanic Black versus White 0.189 (0.011−0.367) 0.038 

Hispanic versus White 0.225 (-0.444−0.894) 0.510 

Asian versus White -0.629 (-0.927− -0.331) <0.001 

Pacific Islander versus White -0.555 (-1.084− -0.025) 0.040 

American Indian/Alaskan Native versus White 0.109 (-0.295−0.513) 0.598 

Education, per 1 level increase -0.029 (-0.055− -0.003) 0.027 

Self-reported COPD, yes versus no 0.257 (0.128−0.387) <0.001 

BMI at age 50, per 1 kg/m2 increase 0.021 (0.006−0.035) 0.005 

Smoking intensity, per 1 cigarette/day increase 0.005 (0.002−0.008) <0.001 

Smoking duration, per 1-year increase 0.012 (0.009−0.015) <0.001 

Interaction between sex and BMI 0.035 (0.010−0.060) 0.005 

Model constant -0.226 (-0.395− -0.056) 0.009 

n; AIC, BIC n = 2457; 6900.960, 6976.447 
P of overall model, R2 <0.001, 0.086 
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Table S8c. Multivariable Linear Regression with Body Mass Index (BMI) Predicting Leptin in 2455 Ever-Smokers 
Explanatory Variables Beta Coefficient (95% CI) P 

Age, per 1-year increase 0.007 (0.001−0.012) 0.018 

Sex, female versus male 0.918 (0.865−0.972) <0.001 

Non-Hispanic Black versus White 0.197 (0.093−0.302) <0.001 

Hispanic versus White -0.015 (-0.238−0.208) 0.893 

Asian versus White -0.171 (-0.333− -0.009) 0.039 

Pacific Islander versus White 0.048 (-0.243−0.340) 0.746 

American Indian/Alaskan Native versus White -0.155 (-0.742−0.431) 0.603 

Education, per 1 level increase 0.014 (-0.002−0.030) 0.086 

BMI at age 50, per 1 kg/m2 increase 1.964 (1.686−2.242)† <0.001 

BMI at age 50, per 1 kg/m2 increase -0.448 (-0.561− -0.335)‡ <0.001 

Smoking intensity, per 1 cigarette/day increase 0.002 (0.001−0.004) 0.014 

Smoking duration, per 1-year increase 0.004 (0.002−0.007) 0.001 

Quit-time, per 1-year increase -0.0006 (-0.0008− -0.0004)§ 0.001 

Model constant -2.616 (-2.814− -2.419) <0.001 

n; AIC, BIC n = 2455; 4506.633, 4587.915 
P of overall model, R2 <0.001, 0.397 

† The transformation formula: (centred BMI +11.36660194396973)/10 
‡ The transformation formula: [(centred BMI+11.36660194396973)/10]^2 
§ The transformation formula: [(quit-time+0.5)/10]^-2 
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Table S9. Comparison of Multivariable Conditional Logistic Regressions for Metabolic Markers, Body Mass Index (BMI) and Metabolic 
Markers, and Dietary Factors and Metabolic Markers Associated with Lung Cancer in Ever-Smokers 

 Model 1 Model 2 Model 3 
Explanatory Variables Odds Ratio (95% CI), P Odds Ratio (95% CI), P Odds Ratio (95% CI), P 

Education, per 1 level increase 0.929 (0.875−0.987), 0.018 0.921 (0.866−0.980), 0.009 0.941 (0.881−1.004), 0.068 
Smoking intensity, per 1 cigarette/day increase N/A†, <0.001 N/A†, <0.001 N/A†, <0.001 
Smoking duration, per 1-year increase 1.066 (1.054−1.078), <0.001 1.065 (1.053−1.077), <0.001 1.068 (1.055−1.082), <0.001 
LN Fruits&Vegetables, per 1 ln(daily frequency)  
    increase  

- - 0.893 (0.813−0.980), 0.017 

Supplemental beta-carotene, per 1000 mcg/day  
    increase 

- - 0.859 (0.764−0.967), 0.012 

BMI at age 50, per 1 kg/m2 increase - 0.973 (0.941−1.007), 0.118 - 

LN CP, per 1 ln(pmol/L) increase 1.205 (1.023−1.420), 0.025 1.229 (1.043−1.448), 0.014 1.254 (1.050−1.495), 0.012 
LN hsCRP, per 1 ln(mg/L) increase 1.233 (1.110−1.371), <0.001 1.228 (1.104−1.366), <0.001 1.212 (1.080−1.359), 0.001 
LN Leptin, per 1 ln(ng/mL) increase 0.746 (0.638−0.872), <0.001 0.806 (0.677−0.961), 0.016 0.704 (0.592−0.837), <0.001 

n; AIC, BIC n = 2348; 1386.992, 1421.560 n = 2308; 1363.730, 1403.939 n = 2037; 1165.690, 1210.644 
P of overall model, pseudo-R2 <0.001, 0.196 <0.001, 0.196 <0.001, 0.221 

† A non-linear association between smoking intensity and lung cancer odds could not be interpreted directly. 
The transformation formula: (number of cigarettes per day/10)^-1.  


