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Abstract 

The present paper considers variable amplitude fatigue lifing for rotary friction welds in 

Grade 23 6Al-4V titanium alloy.  The work reported in this paper aimed firstly at optimising 

the parameters necessary to successfully rotary weld 6 mm diameter hourglass specimens 

of Ti-6Al-4V and, secondly, at generating CA stress-life (S-N) fatigue data to underpin a VA 

fatigue life prediction that was then experimentally verified against the results obtained from 

VA fatigue testing using an 3,200 turning point sequence extracted from the simulated 

aircraft load spectrum mini-FALSTAFF (a modified Fighter Aircraft Loading Standard for 

Fatigue).  It was found that the real damage sum 𝐷𝑟𝑒𝑎𝑙 = (𝐷𝑠𝑝𝑒𝑐/𝐿𝑠) ∗ �̅�𝑒𝑥𝑝𝑒𝑟. was 

significantly < 1.0 for both parent alloy and welded specimens and also varied with maximum 

stress amplitude.  Taking a damage sum value of 1.0 as representing failure in fatigue life 

prediction would therefore be grossly nonconservative for these Grade 23 6Al-4V titanium 

specimens under spectrum VA loading, irrespective of whether they are in the parent plate 

or rotary friction welded condition. 
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Nomenclature  

 

𝜎/S  Stress 

Δσ  Stress range 

R (𝜎𝑎/ 𝜎m) Stress ratio 

R̅  Load ratio 

Pf  Failure probability 

N  Number of constant amplitude cycles 

�̅�  Number of variable amplitude cycles 

Nf  Number of cycles to failure 

Nexp  Experimental cycles to failure 

Ncalc  Predicted cycles to failure 

Pf  Probability of failure 

n  Number of cycles at applied stress level 

D  Accumulated damage sum 

Dspec  Damage accumulation spectrum sum 

Dreal  Real damage accumulation sum 

Ls  Variable amplitude sequence length 

upset  Length consumed during welding process 

f  Frequency 

Ra  Average surface roughness 

HV  Vickers pyramid number 
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1 Introduction 

Within the aerospace and automotive industrial sectors there is a global drive toward 

lightweight design and hence, as noted by Sonsino et al [1], "vehicle development without 

experimental and numerical consideration of variable amplitude loading would be 

unthinkable".  This means that prototype components usually undergo a rigorous design and 

development process that includes variable amplitude (VA) fatigue testing using a load 

spectrum applicable to the specific component.  Complexities are introduced into the fatigue 

design process from the necessary assumptions regarding the various load 'states', i.e. 

combinations of load and cyclic duration experienced in the required design lifetime, and the 

fact that constant amplitude (CA) fatigue design curves are generally used in the fatigue 

analysis.  Once a representative and statistically reliable load spectrum has been 

determined, the fatigue design process therefore usually invokes the Rainflow cycle counting 

technique to reduce the long-term spectrum of varying stress into a stress histogram that 

consists of a convenient number of equivalent constant stress range blocks Δσi each 

containing a number of stress repetitions ni.  Cycle counting techniques allow the cumulative 

fatigue damage to be summed linearly through the application of the Palmgren-Miner 

equation, and this introduces the potential for further errors from load sequence effects that 

are known to have an influence on fatigue life [2].   

In this process failure is assumed to occur when the damage sum equals unity.  However, 

extensive fatigue testing has demonstrated that failure can occur at damage sum values 

lying between 0.1 to 10 [3, 4].  The situation is further complicated for the case of solid-state 

rotary friction welds as, to date, there are no standards that specifically provide fatigue 

design curve guidance as a function of weld detail geometry and alloy for solid state, friction 

welds. However,  a recent paper by Maggiolini et al [5] has shown that friction stir welds in 

aluminium alloys have fatigue strength values generally significantly higher than the values 

recommended by current fusion weld standards, e.g. Eurocode 9 [6] or IIW [7].  It is 

therefore clear that additional work on the fatigue design of solid state friction welds is both 

necessary and useful. This paper provides data on rotary solid state friction welds. 

Rotary solid-state friction welding is used to join metals and thermoplastics in a variety of 

aviation and automotive applications.  It offers a number of significant advantages compared 

with fusion welding techniques, including fast joining times, small heat-affected zones (HAZ) 

with good properties, and lower joint preparation requirements because surface 

contaminants are removed during welding through a combination of rotary motion and 

forging (or upsetting) force [8].  It is also possible to join dissimilar materials, which is a 

particular advantage in the aerospace industry. 
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The present paper considers variable amplitude fatigue lifing for rotary friction welds in Ti-

6Al-4V alloy.  Ti-6Al-4V is an α - β titanium alloy that combines high strength, low weight and 

excellent corrosion resistance. It is one of the most widely used titanium alloys and has an 

extensive range of applications where low density and excellent corrosion resistance are 

necessary, e.g. in the aerospace industry and in biomedical applications for implants and 

prostheses.  The titanium used in this work was a Grade 23 alloy with extra-low interstitial 

content supplied as 14 mm diameter bar in the annealed condition (760°C for 1 hour) with 

the composition and tensile properties given in Table 1. 

The work reported in this paper was aimed, firstly, at optimising the parameters necessary to 

successful rotary weld 6 mm diameter hourglass specimens of Ti-6Al-4V and, secondly, at 

generating CA stress-life (S-N) fatigue data to underpin a VA fatigue life prediction that was 

then experimentally verified against the results obtained from VA fatigue testing using an 

extract from the simulated aircraft load spectrum mini-FALSTAFF (a modified Fighter Aircraft 

Loading Standard for Fatigue [9, 10]). 

The results obtained provide useful information to support VA fatigue design for rotary 

friction welded components. 

2 Rotary Friction Welding of Fatigue Specimens 

A bespoke multipurpose friction processing platform, termed WeldCore 3, developed at 

Nelson Mandela University was used for the rotary friction welding (Figure 1), while Figure 2 

shows details of the titanium specimen geometry and the rotary friction joint in a typical 

specimen.  Figure 3 provides a more detailed illustration of the grip arrangement used to 

weld the two halves of the specimens together.  Note that in Figure 3 the specimen halves 

are termed 'studs'.  The main operating parameters of the WeldCore 3 platform are a 

maximum speed of 5,250 rpm, axial forging force of 40 kN and a torque of 60 Nm.  The 

rotating spindle can come to a complete stop in 0.2 s which assists in welding small diameter 

components.  A Human Machine Interface (HMI) is used to monitor, control and change the 

process parameters during the welding process.   Force, time, rotational speed, spindle 

torque and translated axial distance data can all be logged during welding.  The transmitted 

torque experienced by the load cell (see Figure 9) is recorded separately.  

The starting point for determining the optimum rotary friction welding (RFW) process 

parameters was work done by Tsikayi [11] which identified that appropriate values of the 

axial force and forging force were 4 kN and 6 kN respectively.  Table 2 gives the values of 

upset distance and rotation speed that were trialled in the present work.  Optimisation 
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involved checking the microstructure and mechanical properties against the unwelded 

titanium alloy, as well as visual inspection for defects.  Once an optimum set of weld 

parameters was identified all fatigue specimens were welded using them. Post weld 

specimen preparation included machining away of the flash produced during welding, 

machining away the stud shoulders and re-machining the correct specimen radius. The 

specimens were then polished with a final finish of 1200 grit paper to obtain an average 

surface roughness value Ra = 0.43 μm. 

Parameter optimisation was carried out in two steps. The influence of upset distance and 

rotation speed on microstructure and hardness were investigated sequentially.  Optimisation 

aimed to obtain a hardness profile across the weld zone which was similar to that of the 

parent material.  Hardness variations across the weld zone that are too large (approximately 

~100 HV) can lead to early crack initiation from metallurgical notches as well as from 

microstructural variations. 

Upset distance was the first parameter to be considered and specimens H7, H9 and H5  

were welded with a constant rotational speed and different upset distances of 0.5 mm, 1.0 

mm and 1.5 mm, respectively (see Table 2).  Weld cross-sections were metallurgically 

examined for flaws.  Figure 4 shows a typical macrograph and associated microstructures at 

100x magnification for trial H5.  No visually discernible differences were observed in the  

microstructures in trials H5, H7 and H9.  In all cases, the heat affected zone (HAZ) was 

narrow and no impurities/discontinuities were found.  The temperature during welding was 

below the β transus temperature for Grade 23 Ti-6Al-4V of ≈979°C [12]. The β transus is the 

temperature above which only the β phase exists. Since an α + β structure was observed in 

the welds it can be deduced that the weld temperature was below the β transus temperature. 

Additionally, the welds were air-cooled, rather than quenched. Figure 5 indicates, on a 

typical rotary friction welded specimen, where the hardness measurements were made.  The 

hardness data for these trial welds are given in Figure 6 and they indicate that the average 

hardness across the weld in H5 (upset = 1.5 mm; 340 HV) is closest to the parent alloy value 

of 330 HV. 

The second parameter to be evaluated was rotational welding speed, using the same 

process of inspection for defects and hardness measurements.  Trials H4, H5 and H6 were 

used for this part of the work corresponding with rotation welding speeds of 2,500 rpm, 3,500 

rpm and 5,000 rpm respectively.  The hardness data is presented in Figure 7 where all three 

trials show very similar results. Tensile tests were therefore carried out to better differentiate 

between the three rotational speeds and the results are shown in Figure 8 and Table 3. 

Tensile data for weld H4t closely follows the elastic portion of the parent alloy stress-
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extension curve in the linear elastic region and slightly overmatches the proof strength.  

Welds H5t and H6t show significantly different moduli of elasticity beyond an applied stress 

of ≈400 MPa.  Changes in modulus of elasticity across the weld zone are important in terms 

of avoiding metallurgical notches and the parameters used in trial H4 were therefore adopted 

for manufacturing the fatigue specimens.  

The final weld parameters were therefore identified as a rotational speed of 2,500 rpm, upset 

distance of 1.5 mm, axial force of 4 kN and upset forging force of 6 kN.  A typical torque 

curve measured during the welding process using these final process parameters is given in 

Figure 9. The rotary friction welding stages identified by Kimura et al [13] are clearly visible.  

In stage 1 the two weld studs come into contact resulting in wear and seizure at the interface 

with an accompanying increase in torque.  In stage 2 plasticisation occurs and the torque 

decreases, while in stage 3 the two studs are being pushed together through the upset 

distance under the applied axial force.  In stage 4 the forging force is applied and the spindle 

is then stopped.  The work done by Tsikayi [11] showed that the grain structure is refined 

during the forging stage and excess material is forced out as a flash around the joint line.    

3 Fatigue Testing 

Fatigue testing of both parent alloy and welded specimens was performed on the polished 

specimens. CA sinusoidal fatigue testing was performed on a Zwick Vibrophore testing 

machine at room temperature.  Tests used a stress ratio R = -1 and the system operates at 

the resonant frequency of the load train and specimen, which for the present specimens was 

73 Hz.  The specimen alignment was checked so as to limit any unintended bending 

stresses, and these were found to be < 4.3% of the applied maximum tensile force in any 

test.  Failure was defined as a frequency change of 2 Hz, reflecting an increased specimen 

compliance and failure would then follow within several thousand cycles.  Run-out for CA 

specimens was deemed to occur at 2 x 106 load cycles. 

VA testing used a final sequence length of Ls = 3,200 turning points extracted from the mini-

FALSTAFF spectrum.  The mini-FALSTAFF spectrum sequence is a shortened version 

(containing 18,012 turning points) of the FALSTAFF (Fighter Aircraft Loading Standard for 

Fatigue Evaluation) spectrum containing 35,966 turning points.  Limitations on the testing 

machine software restricted the present work to using an extracted sequence containing 

3,200 turning points resulting in a load ratio of R̅ = -0.2667. For simplicity and repeatability of 

potential future work, the first 3,200 turning points in the mini-FALSTAFF sequence were 

used for the present work. Figure 10 shows this 3,200 turning point sequence extracted from 

the mini-FALSTAFF load spectrum which was applied axially using an Instron 8801 testing 
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machine with a frequency of 30 Hz at room temperature. The Rainflow matrix displaying the 

distribution of load cycles as a function of load range and mean load is shown in Figure 11. 

Failure was taken as final rupture and the run-out in the case of the VA specimens was 

defined at 3 x 106 cycles.   

Fatigue testing under VA loading is summarised clearly, in terms of data collection and 

presentation, in a paper by Sonsino [14] that describes CA testing and the Wöhler S-N 

curves, as well as VA testing and the Gassner failure line.  Using the same terminology as 

Sonsino, where N and �̅� represent, respectively, constant and variable amplitude cycles, the 

damage sum Dspec corresponding to a single application of the 3,200 turning point spectrum 

load sequence can be found using the Palmgren-Miner linear damage summation to get: 

∑ (
𝑛

𝑁
)

𝑖
= 𝐷𝑠𝑝𝑒𝑐         (1) 

The total lifetime damage sum 𝐷𝑟𝑒𝑎𝑙 for a given stress amplitude is obtained from the 

experimental S-N data as: 

𝐷𝑟𝑒𝑎𝑙 = 𝐷𝑠𝑝𝑒𝑐 .
�̅�𝑒𝑥𝑝

𝐿𝑆
     (2) 

where �̅�𝑒𝑥𝑝 is the experimentally observed number of cycles to failure under the spectrum 

loading.  Equally, a calculated variable amplitude fatigue life can be found from: 

�̅�𝑐𝑎𝑙𝑐 =
𝐷𝑟𝑒𝑎𝑙

𝐷𝑠𝑝𝑒𝑐
𝐿𝑆      (3) 

Sonsino [14] notes that investigations of cumulative damage show a significant scatter of 

data with about 90% of the results lying below the conventional failure value of Dreal = 1.  His 

conclusion was that variable amplitude fatigue testing was necessary to provide proof of 

structural integrity over the required lifetime. 

4 Fatigue Analysis - Experimental Data 

The results of variable amplitude testing under spectrum loading are presented in the form of 

a Gassner line that plots amplitude of the spectrum sequence against �̅�𝑒𝑥𝑝, where the 

different amplitude levels are obtained through a linear amplification or reduction of all the 

stress ranges in the spectrum sequence, while the shape and length Ls of the spectrum 

remain independent of the load level [14].  At each load level the life to failure under VA 

loading is given by �̅�𝑖 = 𝑥. 𝐿𝑠 where x is the number of repetitions of the spectrum load 



8 

 

sequence length Ls causing failure at the ith load level.  Figure 12 illustrates the fatigue life 

analysis procedures used in this work for both the CA and VA spectrum loading, while Figure 

13 presents the experimental CA and VA data for both the parent titanium alloy and the 

rotary friction welded specimens. In the CA tests on welded specimens cracks initiated fairly 

equally in the HAZ (4 cases) and in the parent alloy (3 cases - Table 6).  This is interpreted 

as evidence that the choice of welding parameters, as described in section 2, is close to 

optimum in terms of achieving approximately matching hardness values in the weld zone 

and in the parent alloy.  Under VA loading, however, (Table 7) there is a preference for crack 

initiation to occur in association with the weld region, with only one specimen cracking in the 

parent alloy and possible reasons for this difference are discussed below.  Typical initiation 

sites and fracture surface appearance are shown in Figures 15- 17.  The fracture surfaces 

exhibit an initially flat fracture path, indicative of low-stress high cycle fatigue. As the stress 

intensity increases during crack propagation, the surfaces become gradually rougher and 

more fibrous until final fracture occurs at ±45° to the stress direction [15]. 

As can be seen in Figure 14, under CA loading the welded specimens have a lower fatigue 

strength than the parent alloy and the fatigue limit of the welded specimens at 2 x 106 cycles 

is 530 MPa, a reduction of 16.5% compared with the parent alloy where the fatigue limit is 

635 MPa at 2 x 106 cycles.  The Basquin S-N curve equations for the CA fatigue results 

were calculated according to ASTM E 739 [16] using linear regression analysis, and the 

maximum likelihood method [17] was used to determine probability of failure lines, with run-

out results being excluded from the analysis: 

Parent alloy:   log(𝑁) =  −31.385 log(𝑆) + 93.55              (4) 

Rotary welds:   log(𝑁) =  −7.7075 log(𝑆) + 26.12              (5) 

In the CA tests, the trend lines indicate that the welded specimens would outperform the parent 

alloy at short fatigue lives, approximately <104 cycles.  This reflects the higher tensile strength 

seen in Figure 8 (H4) for the welded specimens.  For polished specimens at short lives, a 

higher tensile strength generally equates to a higher fatigue strength.  At longer lives, where 

crack initiation (perhaps up to a crack ~0.5 mm deep) dominates the fatigue life, the finer grain 

size leads to faster crack growth once a grain size crack is initiated. 

Under VA loading the welded specimens show an enhanced life compared with the unwelded 

specimens at lives approximately > 5.4 x 105 cycles.  This is believed to reflect the influence 

of the overload-induced monotonic plastic zone that creates higher dislocation density and 

hence barriers to crack propagation across grain boundaries in a larger number of grains than 

in the parent alloy specimens.  The welded specimens also have a finer grain size and fatigue 

cracks encounter more grain boundaries that are unfavourably orientated with respect to their 
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favoured growth direction and this increases the chance that the crack tip is forced to change 

direction at grain boundaries at multiple points along the crack front, thus reducing the driving 

force for crack growth [18], compared with the parent alloy specimens subject to the same 

load spectrum.  Hence for the welded specimens under VA loading, the retardation aspects of 

repeated overload cycles dominate long life performance and extend the life relative to the 

parent alloy specimens, whereas at shorter lives Figure 14 indicates that the fatigue 

performance is very similar for the parent alloy and welded specimens.  

5 Fatigue Analysis - VA Life Prediction Model 

In many cases, it is advantageous to be able to make a prediction of the fatigue life under 

variable amplitude loading, particular for components that are already in service.  Strain 

gauges are used to collect spectrum loading data during component operation. This 

measured strain gauge data can then be used as input into a VA life prediction exercise.  In 

the present work, the life prediction methodology shown in Figure 18 was used, where both 

welded and parent alloy specimens were subjected to the 3,200 turning point VA loading 

sequence extracted from the mini-FALSTAFF load spectrum.  Strains induced by the VA 

loading were measured with strain gauges and the data was then used in a Rainflow 

counting exercise.  The Smith, Watson and Topper mean stress correction model was 

subsequently used to transform the data to zero mean stress (R = -1) so that fully reversed 

CA S-N data could be used for the VA life prediction using the Palmgren-Miner linear 

damage summation rule.  Equation 1 gives the resulting damage Dspec and substituting Dreal 

into equation 2 gives the value of �̅�𝑒𝑥𝑝.  It is evident that the real damage sum is significantly 

< 1.0 for both parent alloy and welded specimens and also varies with maximum stress 

amplitude in the VA loading sequence.  A fatigue life equivalent to a damage sum of 1.0 can 

also be calculated (this is denoted as Ncalc, Dreal = 1 in Table 4) and this is given by: 

  

�̅�𝑐𝑎𝑙𝑐, 𝐷𝑟𝑒𝑎𝑙=1 =
1.0

𝐷𝑠𝑝𝑒𝑐
𝐿𝑆       (6) 

The average damage sum Dreal in Table 4 for the parent alloy data is 0.6 and for the welded 

specimens it is 0.51.  Substituting these average values of Dreal into equation 2 gives 

calculated values for the expected fatigue life, that are presented in Table 5 and plotted in 

Figure 20 on log-log scales.   The percentage difference between the calculated and 

experimentally observed life is now significantly reduced and is generally lower than the 

predicted value.  It is clear that for rotary friction welded components, fatigue life prediction 
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based on a damage sum = 1.0 is highly likely be dangerously nonconservative.  Thus VA 

lifing of such components should take account of the real damage sum obtained from 

spectrum loading fatigue tests. 

6 Conclusion 

This work initially optimised the rotary friction welding parameters for hourglass fatigue 

specimens of Grade 23 6Al-4V titanium alloy, through a parametric study of the effect of 

rotational speed and upset distance on hardness, tensile strength and defects.  An optimised 

set of welding parameters were derived as a rotational speed of 2,500 rpm, upset distance of 

1.5 mm, axial force of 4 kN and upset forging force of 6kN. 

CA and VA fatigue tests were then carried out on polished parent alloy and rotary welded 

specimens.  CA fatigue data was plotted as Wöhler S-N curves and the VA data as Gassner 

lines.  Under CA loading parent alloy specimens generally outperformed welded specimens 

by a significant margin except at fatigue lives approximately <104 cycles.  This improvement 

in fatigue performance at shorter lives observed for the welded specimens is believed to 

reflect their higher tensile strength obtained from the chosen friction welding parameters. 

The VA fatigue data shows an enhanced fatigue life for welded specimens at longer lives, 

compared with the unwelded specimens, and this reflects both the influence of a higher 

dislocation density in a larger number of near-tip grains for the case of the welded 

specimens subject to overload cycles and an increased number of localised crack front 

deviations along the crack front as a larger number of unfavourably orientated grains are 

encountered for a given crack length in the finer grain size weld zone.  Both of these effects 

reduce the effective driving force for crack growth. 

It was found that the real damage sum 𝐷𝑟𝑒𝑎𝑙 = (𝐷𝑠𝑝𝑒𝑐/𝐿𝑠) ∗ �̅�𝑒𝑥𝑝𝑒𝑟. was significantly < 1.0 for 

both parent alloy and welded specimens and also varied with maximum stress amplitude. 

Using a damage sum value of 1.0 as representing failure in fatigue life prediction would be 

dangerously nonconservative for these Grade 23 6Al-4V specimens under spectrum VA 

loading, whether in the parent plate or rotary friction welded condition.  For the parent alloy, 

the predicted lives using the Gassner line approach and the experimentally observed lives 

lay in a band between +30% and -20% using the experimental data as reference.  For the 

rotary friction welded specimens the equivalent values were -8% and +9%. 
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Table 1: Alloy composition in wt% and mechanical properties for D = 14 mm bar. 

C N Al Fe V H O Ti 
σ0.2% 
MPa 

UTS 
MPa 

Elongation 
4D% 

0.010 0.01 6.06 0.15 3.99 0.0036 0.112 Bal. 886 985 23.4 

 

Table 2: Weld matrix 

 

 

   

 

Table 3: Mechanical properties of material 

 Parent alloy Welded specimen 

Ultimate tensile strength* [MPa] 1029 1143 

Yield strength* [MPa] 901 1051 

*Average values of three tensile test results  

Table 4: Dreal results 

Designation 

Max 
stress 

amplitude 
[MPa] 

Damage 
sum in LS 

cycles 
Dspec 

Calculated 
number of 
sequence 

blocks 
(Dreal = 1) 

Calculated  
life in 
cycles 

�̅�calc 

Experimental 
life in cycles 

�̅�exper, 
Dreal 

Difference 
in life 

% 

Parent 30 kN 1061 0.000607 1647.48 5271949 2450000 0.46 -115% 

Parent 32 kN 1132 0.007372 135.65 434083 320000 0.74 -36% 

H37 31 kN 1096 0.003250 307.69 984609 544000 0.55 -81% 

H37 32 kN 1132 0.005437 183.92 588528 275200 0.47 -114% 

 

Weld Specimens       

Designation rpm upset 

H4; H4t 2500 1.5 

H5; H5t 3500 1.5 

H6; H6t 5000 1.5 

H7 3500 0.5 

H9 3500 1 
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Table 5: Corrected lifetime prediction results 

 

Table 6: CA tabulated fatigue results 

Designation 
Stress 

amplitude 
MPa 

Fatigue life 
Nf 

Remarks Crack initiation site 

Parent specimens @ R=-1 

P1 636.62 2003068 run out NA 

P5 702.93 30299 failed parent surface 

P7 689.67 17050 failed parent surface 

P8 663.15 110466 failed parent surface 

P9 689.67 16951 failed parent surface 

P10 663.15 112709 failed parent surface 

P14 702.93 15572 failed parent surface 

P15 680.83 52242 failed parent surface 

Welded specimens @ R=-1 

H39 663.15 26207 failed parent surface 

H53 565.88 57164 failed HAZ surface 

H42 565.88 77552 failed parent surface 

H38  663.15 18282 failed HAZ surface 

H36 530.52 2001421 run out NA 

H51 618.94 46038 failed HAZ surface 

H35 618.94 45384 failed HAZ surface 

H29 548.20 121360 failed parent surface 

 

 

Designation 
Max stress 
amplitude 

[MPa] 

Damage 
sum in LS 

cycles 
Dspec 

Calculated 
number of 
sequence 

blocks 
(Dreal = 0.60 or 

0.51) 

Calculated  
life in 
cycles 

�̅�calc 

Experimental 
life in cycles 

�̅�exper, 

Difference 
in life 

% 

Parent 30 kN 1061 0.000607 988.49 3163170 2450000 -29% 

Parent 32 kN 1132 0.007372 81.39 260450 320000 19% 

H37 31 kN 1096 0.003250 156.92 502151 544000 8% 

H37 32 kN 1132 0.005437 93.80 300149 275200 -9% 
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 Table 7: VA tabulated fatigue results 

 

Designation 
Max stress 

MPa 

Max 

load 

level 

kN 

Fatigue 

life 

Nf 

No. of 

Ls 

repeats 

Remarks Crack initiation site 

Parent specimens 

PF1 1000.91 28.30 2450000 765 failed parent surface 

PF2 1114.08 31.50 320000 100 failed parent surface 

PF3 1061.03 30.00 406400 127 failed parent surface 

PF4 1103.47 31.20 345600 108 failed parent surface multi sites 

PF5 930.17 26.30 2976000 930 run out NA 

PF6 983.22 27.80 2294400 717 failed parent surface 

PF7 1036.28 29.30 1263600 394 failed parent surface multi sites 

PF8 1068.11 30.20 579200 181 failed parent surface 

Welded specimens 

H41 1015.05 28.70 3126400 977 run out NA 

H32 1082.25 30.60 275200 86 failed HAZ surface  

H34 1085.79 30.70 544000 170 failed parent surface 

H44 1018.59 28.80 3200000 1000 run out NA 

H50 1071.64 30.30 1366400 427 failed HAZ surface 

H18 1071.64 30.30 416000 130 failed weld surface multi sites 

H31 1099.94 31.10 214400 67 failed weld surface 

H45 1078.72 30.50 425600 133 failed HAZ surface multi sites 
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Figure 1: WeldCore 3 friction processing platform. 

 

 

Figure 2: Specimen geometry and RFW joint. 
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Figure 3: Welding arrangement for the fatigue specimens. 

 

Figure 4: Macro-section across the weld and microstructures at selected positions. 
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Figure 5: Positions where microhardness measurements were made in a typical welded 

specimen 

 

 

Figure 6: Upset distance parameter hardness data. 
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Figure 7:  Rotational speed parameter hardness data. 

 

Figure 8: Tensile test results for repeat welds corresponding to the parameters used with 

trials H4, H5 and H6. 
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Figure 9: Typical torque curve measured during welding with the chosen process 

parameters. 

 

 

Figure 10: Extract of mini-FALSTAFF load history used in the VA testing (Ls = 3,200). 
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Figure 11: Mini-FALSTAFF Rainflow Matrix 
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Figure 12: Fatigue analysis approach 
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Figure 13: Fatigue results under CA (Wöhler curve) and VA (Gassner line) loading for the 

parent alloy and the rotary friction welds.  The lower dashed lines represent a 10% 

probability of failure and the upper dashed lines a 90% probability. 

 

 

Figure 14: Parent specimen CA fracture surface 
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Figure 15: Welded specimen CA fracture surface 

 

Figure 16: Parent specimen VA fracture surface 
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Figure 17: Welded specimen VA fracture surface 
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Figure 18:  Schematic illustration of the VA life prediction model used in the present work. 
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Figure 19: Correlation between predicted and experimental VA fatigue lives. 

 


