
A Genetic Programming Framework for 2D Platform AI
Swen E. Gaudl1

Abstract. There currently exists a wide range of techniques to
model and evolve artificial players for games. Existing techniques
range from black box neural networks to entirely hand-designed so-
lutions. In this paper, we demonstrate the feasibility of a genetic pro-
gramming framework using human controller input to derive mean-
ingful artificial players which can, later on, be optimised by hand.
The current state of the art in game character design relies heavily
on human designers to manually create and edit scripts and rules for
game characters. To address this manual editing bottleneck, current
computational intelligence techniques approach the issue with fully
autonomous character generators, replacing most of the design pro-
cess using black box solutions such as neural networks or the like.
Our GP approach to this problem creates character controllers which
can be further authored and developed by a designer it also offers de-
signers to included their play style without the need to use a program-
ming language. This keeps the designer in the loop while reducing
repetitive manual labour. Our system also provides insights into how
players express themselves in games and into deriving appropriate
models for representing those insights. We present our framework,
supporting findings and open challenges.

1 Introduction

The design of intelligent systems is a complex task which in itself
can benefit from the application of AI techniques. Here we present a
system that offers the developer the option to mine human behaviour
and include it into the system to create better Game AI. We detail a
genetic programming (GP) system that generalises from and improve
upon human game play. More importantly, the resulting representa-
tions are amenable to further authoring and development. We discuss
our GP system for evolving game characters by utilising recorded
human play. The system uses the platformerAI toolkit, detailed in
section 3, and the JAVA genetic algorithm and genetic programming
package (JGAP) [7]. JGAP provides a system to evolve computer
programs and their representations as decision tree when given a set
of command genes, a fitness function, a genetic selector and an in-
terface to the target application. Once the system it set up by includ-
ing those components, it generates artificial players by creating and
evolving JAVA program code which is fed into the PLATFORMERAI
toolkit and evaluated using our fitness function which is detailed in
[4].

The rest of this paper is organised as follows. In section 2 we de-
scribe how our system derives from and improves upon the start of
the art. Section 4 describes our system and its core components, in-
cluding details on our the design of fitness functions. We conclude
our work by describing our findings and possible open challenges.

1 MetaMakers Institute, UK, email: swen.gaudl@gmail.com

2 Background & Related Work

In practice, making a good game is achieved by a good concept and
long iterative cycles in refining mechanics and visuals, a process
which is resource consuming. It requires a large number of human
testers to evaluate the qualities of a game. Thus, analysing tester
feedback and incrementally adapting games to achieve better play
experience is tedious and time-consuming. Reducing some part of
the laborious work is where our approach comes into play by trying
to minimise development, manual adaptation and testing time, yet
allow the developer to remain in full control.

Agent Design was initially no more than creating 2D shapes on
the screen, e.g. the aliens in SPACEINVADERS. Due to early hard-
ware limitations, more complex approaches were not feasible. With
more powerful computers it became feasible to integrate more com-
plex approaches such as finite state machines (FSMs). In 2002 Isla
introduced the BEHAVIOURTREE (BT) for the game Halo, later elab-
orated by Champandard [2]. BT uses a directed acyclic graph to rep-
resent the reasoning process within the game logic. It integrates hi-
erarchical structures as well offering the system to scale based on
the requirements but does not have the same disadvantages of FSMs,
namely the exponential amount if transition checks required to verify
the functionality of the FSM. BT has become the dominant approach
in the industry. BTs can be represented as a combination of a decision
tree (DT) using a pre-defined set of node types. A related academic
predecessor of the BT were the POSH dynamic plans of BOD [1, 3].

Generative Approaches build models to create better and more ap-
pealing agents. To achieve their goal, a generative agent uses ma-
chine learning techniques to increase its capabilities by testing and
updating its components. Using data derived from human interaction
with a game—referred to as human play traces—can allow the game
to act on or re-act to input created by the player. By training on such
data, it is possible to derive models able to mimic certain character-
istics of players [5, 8] . One obvious disadvantage of this approach
is that the generated model only learns from the behaviour exhib-
ited in the data provided to it. Thus, interesting behaviours are not
accessible because they were never exhibited by a player.

In contrast to other generative agent approaches [9, 15, 8] our sys-
tem combines features which allow the generation and development
of truly novel agents. Thus, the system presents the first use of un-
authored recorded player input as direct input into our fitness func-
tion. It allows the specification of agents only by playing. The second
feature of the system is that our agents are actual programs in the
form of either JAVA code or decision tree representations which can
be altered and modified after evolving into a desired state, creating
a white box solution. While [13] use neural networks (NN) to create
better agents and enhance games using Neuroevolution, we utilise
genetic programming [10] for the creation and evolution of artificial
players in human readable and modifiable form. The most compa-

ar
X

iv
:1

80
3.

01
64

8v
1

 [
cs

.A
I]

 5
 M

ar
 2

01
8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/237179658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rable approach is that of [9] which use grammar based evolution to
derive BTs given an initial set and structure of subtrees. In contrast,
we start with a clean slate to evolve our agents as directly executable
programs.

3 Setting and Environment
Evolutionary algorithms have the potential to solve problems in vast
search spaces, especially if the problems require multi-parameter op-
timisation [11, p.2]. For those problems, humans are generally out-
performed by programs [12]. Our GP approach uses a pool of pro-
gram chromosomes P and evolves those in the form of decision trees
(DTs) exploring the possible solution space. For our experiments the
PLATFORMERAI toolkit (http://www.platformersai.com)
was used which is entirely written in Java and freely available. It con-
sists of a 2D platformer game, similar to existing commercial prod-
ucts and contains modules for recording a player, controlling agents
and modifying the environment and rules of the game.

The Problem Space is defined by all actions an agent can perform.
Within the game, agent A has to solve the complex task of select-
ing the appropriate action each given frame. The game consists of A
traversing a level which is not fully observable. A level is 256 spatial
units long, and A should traverse it left to right. Each level contains
objects which act in a deterministic way. Some of those objects can
alter the player’s score, e.g. coins. Those bonus objects present a sec-
ondary objective. The goal of the game, move from start to finish, is
augmented with the objective of gaining points. A can get points by
collecting objects or jumping onto enemies. To make it comparable
to the experience of similar commercial products we use a realistic
time frame in which a human would need to solve a level, 200 time
units. The level observability is limited to a 6×6 grid centred around
the player, cf. [9]. The restriction to a smaller grid is only necessary
to reduce the number of generations the system needs to converge
towards good results as the grid size has an exponential affect on the
convergence time.

Figure 1: A visual representation of the PLATFORMERSAI toolkit
with the vision grid around the agent.

Agent Control within the platformersAI toolkit is handled through
a 6-bit vector C: left, right, up, down, jump and shoot|run. The
vector is required each frame, simulating an input device to control
the agent in Figure1. However, some actions span more than one
frame. This is a simple task for a human but quite complex to learn
for an agent. One such example, the high jump, requires the player
to press the jump button for multiple frames. Those long action se-
quences mean that the agent needs to anticipate future events and
actions to trigger actions spanning multiple reasoning cycles. Our
system has genes for each of the elements of C plus 14 additional
genes formed of five gene types: sensory information about the level
or agent, executable actions, logical operators, numbers and struc-
tural genes. All those are combined at execution time into a chromo-
some represented as a DT using the grammar underlying the JAVA

language. Structural genes allow the execution of n genes in a fixed
sequence, reducing the combinatorial freedom provided by JAVA.
Our system uses the JGAP framework, which allows us to add new
genes to enrich the search space and the agent capabilities by writ-
ing self-contained JAVA methods and adding them to the Agent class.
However, adding more genes increases the search space resulting po-
tentially in longer conversion times.

Parameter Value
Initial Population Size 100
Selection Weighted Roulette Wheel
Genetic Operators Branch Typing CrossOver and

Single Point Mutation
Initial Operator probabilities 0.6 crossover, 0.2 new chro-

mosomes, 0.01 mutation, fixed
Survival Elitism
Function Set ifelse, not, &&, ||, sub,

IsCoinAt, IsEnemyAt,
IsBreakAbleAt, . . .

Terminal Set Integers [-6,6], ←, →, ↓,
IsTall, Jump, Shoot,
Run Wait, CanJump,
CanShoot, . . .

Table 1: GP parameters used in our system.

4 Fitness Evaluation
The evaluation is done in our system using the Gamalyzer-based
play trace metric which determines the fitness of individual chro-
mosomes based on human traces as an evaluation criterion, see [4].
For finding optimal solutions to a problem, statistical fitness func-
tions offer near-optimal results when optimality can be defined. A
near-best solution for the problem space of finding the optimal way
through a level in the platformersAI toolkit was given by Baumgarten
[14] using the A∗ algorithm. This approach produces agents who are
extremely good at winning the level within a minimum amount of
time but at the same time are clearly distinguishable from actual hu-
man players. Contrasting the goal of finding optimal solutions, we
are interested in understanding and modelling human-like or human-
believable behaviour in games. Thus, using statistical functions is
difficult, as there currently is no known algorithm for measuring how
human-like behaviour is; identifying this may even be computation-
ally intractable. For games and game designers a less distinguishable
approach is normally more appealing—based on our initial assump-
tions. Additionally, having an approach which produces readable and
amenable representations of the behaviour might not just aid its un-
derstanding but might offer different insights into the design of the
game as well.

Based on the biological concept of selection, all evolutionary sys-
tems require some form of judgement about the quality of a specific
individual—the fitness value of the entity. Within our framework,
agents are evaluated after each run of an entire level of the game
as intermittent evaluation of games where actions can span multiple
cycles is difficult to evaluate. Within the original JGAP framework
evaluation can be done at arbitrary times but it an important consid-
eration that the evaluation (running the program to receive a result)
is normally the most expensive cost within a GP.

In table 1 the settings we use for GP within our framework are
given. As a selection mechanism, the weighted roulette wheel is

http://www.platformersai.com

used which attributes each chromosome a position and then weights
all chromosomes according to their fitness giving fitter individuals
slightly more space. We additionally preserve the fittest individual
of a generation. Preserving the best individual is crucial as muta-
tion can be destructive to the chromosome We use single point tree
branch crossover on two selected parent chromosomes and expose
the resulting child to a single point mutation before it is put into the
new generation. We also add 20% new randomly generated chromo-
somes to the pool to bring in some ”fresh blood” or to be more precise
keep the pool from stopping in a homogeneous state. Even through
mutation is potentially destructive, it helps exploring the vast gene
space better than relying entirely on the cross-over operation. How-
ever, within our experiments [4], using the more stable cross-over as
the main driving force for the evolution gave better and more reliant
results than switching entirely to random exploration using a stronger
mutation coefficient.

Figure 2: An evolved agent after 694 generations, represented as de-
cision tree by our system.

In Figure 2 one of the resulting agents is presented in its DT
form. The visual representation was generated by the system us-
ing GRAPHVIZ (http://www.graphviz.org/). As the aim of
our approach was to derive meaningful representations of agent be-
haviour, visual representation of the result is of utmost importance.
Using the rendered DT allows a designer to either alter the agent or
to understand why it behaved in a certain way.

5 Findings & Open Challenges
Using our experimental configuration and the PBF fitness function
[4] we are now able to execute, evaluate and compare platformerAI
agents against human traces. Using human play traces to drive the
evolution resulted in agents which are able to beat some but not all of
the test levels. However, there is still potential using different ways to
integration human knowledge into the evaluation. The JGAP frame-
work proved to a useful and easy to use and robust framework for
developing genetic programs, even though it has some weaknesses
compared to other frameworks. If you care for running the GP on
a cluster you might decide to use a different framework which of-
fers better support for spitting up both the evaluation of chromo-
somes and the handling large data structures. Most of the GP systems
let you also run or communicate external libraries. In our case, we
included the PLATFORMERSAI toolkit to evaluate our agents. This
toolkit does not support parallel instantiations of multiple levels well
but can be tweaked easily and offers also support for using a genetic
approach to evolve levels. A next step would be to investigate the

generated modifiable programs further and analyse their benefit in
understanding players better. However, our current solution already
offers a way to design agents for a game by simply playing it and
creating learning agents from those traces. Other possible directions
could be the comparison of different fitness functions and how differ-
ent interpretations of human play input might affect the convergence
rate of agents within our framework. Our current agent model con-
sists of an unweighted tree representation containing program genes.
Currently subtrees are not taken into consideration when calculat-
ing the fitness of an individual. By including those weights it would
be possible to narrow down the search space of good solutions for
game characters dramatically, also potentially reducing the bloat of
the DT. So, to enhance the quality of our reproduction component
we believe it might be interesting to investigate the applicability of
behavior-programming for GP (BPGP) [6] into our system.

REFERENCES
[1] Joanna J. Bryson and Lynn Andrea Stein, ‘Modularity and design in

reactive intelligence’, in Proceedings of the 17th International Joint
Conference on Artificial Intelligence, pp. 1115–1120, Seattle, (August
2001). Morgan Kaufmann.

[2] Alex J. Champandard, AI Game Development, New Riders Publishing,
2003.

[3] Swen E. Gaudl, Simon Davies, and Joanna J. Bryson, ‘Behaviour ori-
ented design for real-time-strategy games – an approach on iterative de-
velopment for starcraft ai’, in Proceedings of the Foundations of Digital
Games, pp. 198–205. Society for the Advancement of Science of Digi-
tal Games, (2013).

[4] Swen E Gaudl, Joseph Carter Osborn, and Joanna J Bryson, ‘Learning
from play: Facilitating character design through genetic programming
and human mimicry’, in Portuguese Conference on Artificial Intelli-
gence, pp. 292–297. Springer, (2015).

[5] C. Holmgard, A. Liapis, J. Togelius, and G.N. Yannakakis, ‘Evolving
personas for player decision modeling’, in Computational Intelligence
and Games (CIG), 2014 IEEE Conference on, pp. 1–8, (Aug 2014).

[6] Krzysztof Krawiec and Una-May O’Reilly, ‘Behavioral programming:
a broader and more detailed take on semantic gp’, in Proceedings of the
2014 conference on Genetic and evolutionary computation, pp. 935–
942. ACM, (2014).

[7] Klaus Meffert, N Rotstan, C Knowles, and U Sangiorgi. Jgap-
java genetic algorithms and genetic programming package. last
viewed:01.2015, 09 2000.

[8] Juan Ortega, Noor Shaker, Julian Togelius, and Georgios N. Yan-
nakakis, ‘Imitating human playing styles in super mario bros’, Enter-
tainment Computing, 4(2), 93 – 104, (2013).

[9] Diego Perez, Miguel Nicolau, Michael ONeill, and Anthony Brabazon,
‘Evolving behaviour trees for the mario ai competition using grammat-
ical evolution’, in Applications of Evolutionary Computation, ed., etal.
Di Chio, volume 6624 of Lecture Notes in Computer Science, 123–132,
Springer Berlin Heidelberg, (2011).

[10] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R
Koza, A field guide to genetic programming, Lulu. com, 2008.

[11] Hans-Paul Paul Schwefel, Evolution and optimum seeking: the sixth
generation, John Wiley & Sons, Inc., 1993.

[12] Selmar K Smit and Agoston E Eiben, ‘Comparing parameter tuning
methods for evolutionary algorithms’, in Evolutionary Computation,
2009. CEC’09. IEEE Congress on, pp. 399–406. IEEE, (2009).

[13] Kenneth O. Stanley and Risto Miikkulainen, ‘Evolving neural networks
through augmenting topologies’, Evolutionary Computation, 10, 99–
127, (2002).

[14] Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten, ‘The
2009 mario ai competition’, in Evolutionary Computation (CEC), 2010
IEEE Congress on, pp. 1–8. IEEE, (2010).

[15] Julian Togelius, GeorgiosN. Yannakakis, Sergey Karakovskiy, and
Noor Shaker, ‘Assessing believability’, in Believable Bots, ed., Philip
Hingston, 215–230, Springer Berlin Heidelberg, (2012).

http://www.graphviz.org/

	1 Introduction
	2 Background & Related Work
	3 Setting and Environment
	4 Fitness Evaluation
	5 Findings & Open Challenges

