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Abstract 

Here we describe a simple modular 3D-printed design for an inverted pendulum sys-
tem that is driven using a stepper motor operated by a microcontroller. The design con-
sists of a stainless-steel pole that acts as the pendulum, which is pivoted at one end and 
attached to a cart. Although in its inverted configuration the pendulum is unstable with-
out suitable control, if the cart travels backwards and forwards appropriately it is pos-
sible to balance the pole and keep it upright. The pendulum is intended for use as a 
research and teaching tool in the fields of control engineering and human sensori-motor 
control. We demonstrate operation of the design by implementing an observer-based 
state feedback controller, with augmented positional state of the cart and integral action, 
that can balance the pole in its unstable configuration and also maintains the cart at its 
starting position. When the controller is running, the pendulum can resist small disturb-
ances to the pole, and it is possible to balance objects on its endpoint.  

1 Introduction  

Balancing an inverted pendulum is a classical problem in the field of control engineer-
ing. It is a task often used to demonstrate that it is possible to stabilize a system that is 
otherwise unstable without control and as such provides a test bed for control research, 
e.g. [1]. The inverted pendulum paradigm has also been adopted to investigate human 
balancing [2], [3], [4] as well as a model for human walking [5]. 

Inverted pendulums that are used to investigate control generally consists of a rod 
that acts as the pendulum, which is pivoted at one end and attached to a cart. In a linear 
inverted pendulum design, the cart can move along a linear track. Although many in-
verted pendulum designs and their variants exist (e.g. [6], [7]), very few are widely 
available. Thus, a major consideration of the current design was to ensure it would easy 
to construct using standard components and 3D printed parts, so other potential users 
can build their own pendulum units. To support this goal, the design has been made 
freely available for download (see Results and conclusions section). 
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2 Inverted pendulum components 

To ensure the pendulum system easy to use and transport, an important design consid-
eration was to make the unit a manageable size (e.g. only about 1m long), as well as 
being self-contained and be easy to program. The latter was the motivation to base the 
control on an Arduino microcontroller, since they are widely available. Here we adopt 
a modular approach to design, so that the system can be updated and expanded in the 
future. The system is comprised of several 3D printed parts, which are illustrated in 
Fig. 1. These are mounted on 20mm aluminum profile that forms the main structural 
support for the system.  

 

 
Fig. 1. Schematic of the modular inverted pendulum design, illustrating its main components. 

     To provide a low friction track, 16mm diameter stainless steel rods are attached to 
the profile frame on supports by means of standard aluminum clamps and 3D printed 
mounting blocks. The large diameter rods were needed to ensure minimal bending due 
to load of the cart whilst the pendulum rod was swung around. At the end of each track 
rod section, a protective rubber grommet was used to damp any collisions that may 
occur between the cart and the end support blocks. Hall effect limit-switch sensors were 
also located on the frame, to deactivate the motor drive system when the cart reached 
the end of its travel. A neodymium magnet mounted at the base of the cart provides the 
necessary switching signal to achieve this.  

The cart runs along the two track rods on linear ball bearings to keep friction to a 
low level. The pendulum element itself is a 600mm long x 8mm diameter stainless steel 
rod section, with an optional 3D printed end piece, so item can be balanced on it. It is 
attached to a rotary shaft mounted in the cart. An important design requirement here 
was to ensure the pendulum rod could swings freely through 360° and clear the profile 
frame structure. The shaft is supported by two sets of ball bearing and its far end is 
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coupled to an incremental encoder. A unit with 2000 pulses per revolution was found 
suitable.  

 

 
Fig. 2. Pendulum drive motor and cart mechanism. The drive pulley attached to the stepper motor 
can be seen on the right and the attachment clamp for the pendulum rod can be seen on the left. 

    The cart is pulled along its rails by means of a GT2 timing belt, which is attached to 
the cart using a simple toothed clamp. A tooth GT2 pulley is mounted on the motor to 
engage the belt. At the opposing end of the frame, a mounting block holds another GT2 
pulley so that the belt loops over the length of the track and back and can therefore be 
used to pull the cart in both directions. Ball bearing were used in the passive pulley to 
ensure all moving parts could rotate with high precision and with little frictional re-
sistance despite high belt tension.  

The motor drive component consists of a 3D printed base located in-between the 
profile rails, which supports a 2A 1.8° per step standard NEMA23 industrial standard 
stepper motor attached by means of a standard NEMA23 angle bracket. The motor was 
driven using a Pololu A4988- type stepper driver. This implements intelligent current 
control up to 2A. The stepping mode is set via control pins – and in our application we 
made use of 4x micro stepping. The A4988 operates using a simple step and direction 
control interface. To operate a stepper motor using this controller, appropriately control 
pulses (1 pulse per micro step) and direction signals (so motor turns in desired direction) 
need to be sent to the driver. Overall the motor achieved a maximum cart speed of 
0.6ms-1. We note a slow speed is desirable in many educational settings, since, it re-
duces the chance of operator (student) injury from the mechanism’s moving parts. 

 The pendulum controller was implemented using an Arduino Mega 2560 R3 micro-
controller because it meets the design requirements. Two digital input that support in-
terrupts were needed to support the Hall sensors and another two for the incremental 
encoder, giving four in total. We note that the Mega has 6 Digital I/O Pins which sup-
port interrupts, whereas the cheaper Arduino Uno only supports 2. The Arduino Mega 
also has considerably more memory than the Uno and therefore this platform will also 
support future development of more memory-demanding software. It also offers the 



4 

possibility of extending the current design to a dual pendulum system, since an addi-
tional encoder can be accommodated. The main pendulum application was pro-
grammed in Arduino-style C-code. Library functions to realize stepper motor velocity 
operation and state feedback control were written in C++. The system was run from a 
20v 2A power supply. A close up of the cart and motor drive assemble is shown in in 
Fig. 2. 

 

 
Fig. 3. Pendulum system mounted on its aluminum profile stand. This provides a convenient 
and elegant means of support and allows the pendulum to rotate freely and avoid collisions. 

The main track holders, motor drive and end pulley support are all separately at-
tached to the aluminum profile sections with T-nuts, so they can be easily removed and 
adjusted. This attachment methods also facilitates tensioning the drive belt, since the 
T-nuts can be loosened, and the motor block slid along the profile until desired tension 
is achieved. The modular construction ensures that the parts of the inverted pendulum 
system are easy to change and also upgraded with future designs, if so desired. This is 
particularly useful in teaching scenarios because different tasks can then be given to 
different groups of students with only minor modifications to the apparatus. For exam-
ple, the pole rod can easily be changed with one of a different length. Similarly, the 
stepper motor unit could be exchanged for a drive unit employing a faster torque-con-
trolled brushless DC motor, enabling the use of force control instead of velocity control 
and supporting one-shot swing-up operation in reinforcement learning experiments.  

The mounting blocks and pendulum cart were designed using AutoCAD Fusion 360. 
This was subsequently used to generate STL format files and the mechanical parts were 
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manufactured in PLA using a Flash forge Creator Pro 3D printer. We note that higher 
impact materials such as nylon would greatly improve the robustness of the design, but 
PLA has also proved to be an adequate choice.  

During operation, the inverted pendulum unit requires mounting at a suitable height 
off the ground, so that so that the rod can swing freely. A custom-made support stand 
made out of 20mm aluminum profile was therefore constructed to mount the pendu-
lum system. This provided a strong but light weight construction that can be easily 
transported. It consists of two aluminum profile pillars. These are filled at their base 
with cross member section attached with feet. At the top they are capped with 
3D printed support sections that fit in between the aluminum frame of the pendu-
lum structure. Diagonal aluminum profile sections are also used to brace the structure 
to increase its stiffness. An assembled pendulum on its stand is shown in Fig. 3. 

3 State space analysis of the pendulum  

To demonstrate operation of the inverted pendulum and provide a useful basis for ex-
periments and demonstrations of control, here we implement observed-based state feed-
back control with augmented positional state (of cart) and integral action [8]. The non-
linear differential equation describing the inverted pendulum kinematics is given by 
 

(𝐼 + 𝑚𝑙&)
𝑑&𝜃
𝑑𝑡& + 𝜇

𝑑𝜃
𝑑𝑡 = 𝑚𝑔𝑙 sin 𝜃 +𝑚𝑙

𝑑&𝑥2
𝑑𝑡& cos 𝜃

(1) 
 

This expression can be linearized around the unstable equilibria of the pendulum to 
give the linearized differential equation describing an inverted pendulum kinematics, 
which is given by 

(𝐼 + 𝑚𝑙&)
𝑑&𝜃
𝑑𝑡& + 𝜇

𝑑𝜃
𝑑𝑡 = 𝑚𝑔𝑙𝜃 +𝑚𝑙

𝑑&𝑥2
𝑑𝑡&

(2)	

	
Where: The angle to the vertical is denoted by θ, the coefficient of viscosity is de-

noted by μ, mass of the pendulum is denoted by m, moment of inertial of the rod about 
its center of mass is I, length to the center of mass is denoted by l and the displacement 
of the cart is given by xp. We note that this kinematic description is sufficient to derive 
control, provided we use cart acceleration or velocity as the control input. Velocity 
control of the cart was chosen here over acceleration control because of the relative 
ease of implementing velocity control using a stepper motor. This can be achieved with 
a simple function that uses a timer to generates pulses at a frequency corresponding to 
the desired rotational speed of the motor. Writing the differential equation describing 
the inverted pendulum with the highest state related term on the LHS be have 

 

⇒
𝑑&𝜃
𝑑𝑡& = −

𝜇
(𝐼 +𝑚𝑙&)

𝑑𝜃
𝑑𝑡 +

𝑚𝑔𝑙
(𝐼 + 𝑚𝑙&) 𝜃 +

𝑚𝑙
(𝐼 + 𝑚𝑙&)

𝑑&𝑥2
𝑑𝑡&

(3)	
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Since we wish to stabilize the pendulum using velocity control, we first write the 
acceleration control term on the RHS as 

 
𝑑&𝑥2
𝑑𝑡& =

𝑑𝑣<
𝑑𝑡

(4)	

 
We now let the constant terms be represented by coefficients as follows: 
 

𝑎? =
𝜇

(𝐼 +𝑚𝑙&)
(5)

𝑎& =
−𝑚𝑔𝑙

(𝐼 + 𝑚𝑙&)
(6)

𝑏C =
𝑚𝑙

(𝐼 + 𝑚𝑙&)
(7)

	

 
We let the constant terms be represented by coefficients terms, leading to the equation 
for dynamics 

𝑑&𝜃
𝑑𝑡& = −𝑎?

𝑑𝜃
𝑑𝑡 − 𝑎&𝜃 + 𝑏C

𝑑𝑣<
𝑑𝑡

(8)	

 
We now choose the state variables 

𝑥? = 𝜃 (9)
	

𝑥& =
𝑑𝜃
𝑑𝑡 − 𝑏C𝑣<

(10)
	

	

⇒
𝑑𝜃
𝑑𝑡 = 𝑥& + 𝑏C𝑣< (11)	

	
The choice of x1 is clear since it is simply pendulum angle θ. However, we note that the 
choice of x2 is not simply angular velocity. It also includes a term made to cancel-out 
the time differential of control velocity term, as will shortly become apparent. Differ-
entiating the state x1 with respect to time we get: 
 

⇒ �̇�? =
𝑑𝜃
𝑑𝑡

(12)
	

	

Representing this in terms of the control and the state x2: 
 

⇒ �̇�? = 𝑥& + 𝑏C𝑣< (13)	
	

⇒ �̇�& =
𝑑&𝜃
𝑑𝑡& − 𝑏C

𝑑𝑣<
𝑑𝑡

(14)	
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⇒
𝑑&𝜃
𝑑𝑡& = �̇�& + 𝑏C

𝑑𝑣<
𝑑𝑡

(15)	

	
Substituting the terms into equation (8) 

⇒ �̇�& + 𝑏C
𝑑𝑣<
𝑑𝑡 = −𝑎?(𝑥& + 𝑏C𝑣<) − 𝑎&𝑥? + 𝑏C

𝑑𝑣<
𝑑𝑡

(16)	

 
Cancelling terms and re-arranging this leads to 
 

⇒ �̇�& = −𝑎?𝑥& − 𝑎&𝑥? − 𝑎?𝑏C𝑣< (17)	
 
Rewriting equations (13) and (17) in state space matrix notation we see that 

 
�̇�? = 0𝑥? + 1𝑥& + 𝑏C𝑣< (18)	

	
�̇�& = −𝑎&𝑥? − 𝑎?𝑥& − 𝑎?𝑏C𝑣< (19)	

 
Writing equations in matrix format we therefore have 
 

⇒ I
�̇�?
�̇�&
J = K

0 1

−𝑎& −𝑎?
L I
𝑥?
𝑥&
J + I

𝑏C
−𝑎?𝑏C

J 𝑣< (20)	

	

⇒ y = [1 0] I
𝑥?
𝑥&
J (21)	

4 Observer to estimate state 

We use a Luenberger observer to estimate the full inverted pendulum system state by 
using the state space a model of the plant. This is captured by the matrices A and B 
given in equation (20), and a correction term arising from the measured output. We note 
that this is necessary since the state x2 is not available for measurement in our imple-
mentation. The observer generates the state estimate according to the dynamical equa-
tion: 

𝑋Q
.
= 𝐴𝑋Q + 𝐵𝑈 + 𝐿(𝑌 − 𝐶𝑋Q) (22)	

 
The observer gain vector L needs to be found such that the eigenvalue solutions λ to 

the characteristic equation for its error dynamics all have suitable negative real values: 
 

|(𝐴 − 𝐿𝐶 − 𝜆𝐼)| = 0 (23)	
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Here we choose observer correction gain L using Matlab (The MathWorks Inc., Na-
tick, MA, USA) by means of pole placement using the place command, with poles set 
to [-20 -24]. The values were found by experimentation. 

5 Augmenting positional state and adding integral action 

It is possible to build a controller just using feedback of the 2-dimesional state derived 
from the observer in equation (22). However, in practice we want to control cart posi-
tion as well as pendulum angle, since otherwise the cart has no reason to stop moving 
or remain at a given location. To control cart position too, we add a third state x3 to 
represent cart position. In the current pendulum design, there are two options to obtain 
cart position. We can either integrate the velocity control signal or we can count the 
pulses sent to the stepper motor and scale the count appropriately. In our analysis, here 
we demonstrate the former approach. 

 

Fig. 4. Adding integral feedback using an integrator to reduce zero steady state error. The out-
put from the plant is compared against a reference input (in our case zero). The resulting error 

is then integrated and weighted by the integral gain and added to the state feedback. 

To use to the control signal in this way to estimate cart position, we note that differ-
ential of x3 is simply given by the input velocity control signal. Therefore, we can write: 

 

[

�̇�?
�̇�&
�̇�\

] = K
0 1 0
−𝑎& −𝑎? 0
0 0 0

L [

𝑥?
𝑥&
𝑥\

] + [

𝑏C
−𝑎?𝑏C
1

] 𝑣< (24)	

	

y = [1 0 0] [

𝑥?
𝑥&
𝑥\

] (25)	

	
Integral action for a general system is illustrated in Fig. 4 and it provides an effective 

means to reduce steady state error for a state space controller. To reduce steady state 
positional error of the pendulum cart location, we also add an additional state within 
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our controller that computes the integral of the positional error. To implement integral 
action, we further augment the pendulum system matrices given in equation (24) by 
adding a fourth state x4 to represent integrated cart position error. This formulation as-
sumes that our reference input is zero. 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
�̇�?

�̇�&

�̇�\

�̇�a⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0

−𝑎& −𝑎? 0 0

0 0 0 0

0 0 1 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥?

𝑥&

𝑥\

𝑥a⎦
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑏C

−𝑎?𝑏C

1

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑣< (26)	

	

y = [1 0 0 0]

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥?

𝑥&

𝑥\

𝑥a⎦
⎥
⎥
⎥
⎥
⎥
⎤

(27)	

6 State feedback control 

Finally, we design the feedback gain vector K needed to implement full feedback state 
control in the full state vector as given in equation (26), although we use estimates of 
states x1 and x2 obtained from the Luenberger observer, i.e. xhat1 and xhat2. The eigen-
values λ of the state feedback control system are found by solving its characteristic 
equation 

|(𝐴 − 𝐵𝐾 − 𝜆𝐼)| = 0 (28)	
 
We can thus influence the location of eigenvalues of the system by changing gain 

matrix K. We determine K using pole placements using the Matlab place command, 
with poles set to [-8.8 -9.6 -10.4 -1.6]. The feedback gains were also found using a 
process of experimentation. We note that the observer poles were deliberately selected 
to be more aggressive than those used for the feedback controller, to ensure faster set-
tling of its state estimate. The structure of the observer-based controller is illustrated in 
Fig. 5. 

7 Pseudocode and Arduino implementation 

After the system matrices for the system, and the observer and controller gains L and 
K were calculated, they were tested using a Matlab simulation that made use of a non-
linear simulation of the inverted pendulum, based on equation (1). Simulations (Fig 6) 
indicated that with appropriate pole placement, the design was able to resist small 
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velocity disturbances to the balanced pole (modeled as small non-zero initial rod veloc-
ity) and maintain the cart at its origin. Importantly this was achieved when cart velocity 
was limited to the maximum cart speed that could be achieved by the stepper motor. 
We then implemented the observer-based real-time controller using an Arduino Mega. 
Fig 7. Shows the controller unit with its lid removed. This controller case was 3D 
printed and attaches to the pendulum frame with T-nuts. We note that the fan was es-
sential in this design to prevent the stepper driver from overheating. The control pro-
cessing was carried out in a poll loop. Its operation involves reading the encoder to 
determine pendulum angle, calculating the velocity control signal and using it to gen-
erate an output pulse train to drive the stepper motor in. State updates were performed 
using Euler integration [9].  
 

Pseudo-code for the main controller loop operation is as follows: 
loop 
 Calculate time since last update 
 Read the pendulum angle 
 Compute control u using full state [xhat1 xhat2 x3 x4]T 
 Calculate observer correction term using encoder position 
 Update observer state estimates [xhat1 xhat2]T 
 Use control velocity from input to update cart position x3 
 Update integral action positional error state x4 
 Generate stepper velocity drive pulses from u 
End 

 

 
Fig. 5. State feedback control using a Luenberger observer to estimate pendulum state. We only 
have access to the output angle of the real pendulum Y(t), which is shown in the upper part of 
the diagram, and not all of its states. The observer, shown in the lower part of the diagram, is 
simply a model of the real inverted pendulum dynamics and generates a state estimate Xhat, 
which is used to provide state feedback. The output angle from the pendulum encoder is repre-
sented by Y(t), and this signal is only used to correct the state estimate. 
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8 Results and conclusions 

The pendulum operated effectively and is able to balance the pendulum in its inverted 
state. When the controller was running, the pendulum could resist small tapping dis-
turbances and it was possible to balance objects on its endpoint. Indeed, provide the 
encoder is precisely adjusted so that the balance state precisely aligns with a reading 
corresponding to 0°, balancing is maintained for many 10s of minutes (if not longer). 
   The unit is relatively cheap to build, with the parts for a unit certainly costing (in 
2019) no more than around £400, and potentially less, provided good value-for-money 
components are used, which can be obtained from internet suppliers such as Amazon 
and eBay. More information on the inverted pendulum including videos of its operation 
are available at Howardlab.com/pendulum. The design is freely available for download, 
as well as the list of parts. In addition, an Arduino state feedback control program is 
supplied, as well as a set of utility programs to test the encoder, stepper motor, Hall 
sensors and menu control system. All these resources will be updated as improvements 
to the pendulum hardware and software are made. 

 

 
 
Fig. 6. Simulation of the pendulum system in Matlab showing effect of weak (poles 

at [-8.8  -9.6  -0.016  -0.008]; blue line) and strong control of cart position (poles at [-
8.8  -9.6  -0.016  -4.0]; red line). Left panels shown the response to an initial perturba-
tion of pendulum rod angular velocity (a simulated tap of the rod). Right panels shown 
the response to an initial displacement of pendulum cart position from its origin. In both 
cases the pendulum angle stabilizes to zero. However, it can be seen that when poles 
relating to cart position and its integral error are weak (close to zero), cart position is 
barely compensated. 
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Fig. 7 Arduino Mega-based stepper motor controller unit using am A4988 stepper driver. 
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