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Abstract

Healthcare processes are complex and may vary considerably among the same cohort of patients.

Process mining techniques play a significant role in automating the construction of healthcare

models using a system’s event log. An event log is a data type that records any event that

occurs within the process. It is a basic element of any information system and has three main

components: process instance id, event and time when an event has occurred. Using ordinary

techniques of process mining in healthcare produces ‘spaghetti-like’ models which are difficult

to understand and thus have little value. Previously published studies have highlighted the im-

portance of event abstraction which is considered as a central tool for reducing complexity and

improving efficiency. Although studies have successfully improved the understandability of pro-

cess models, they have generally relied on involvement from a domain expert. Untangling these

‘spaghetti-like’ models with the help of domain experts can be expensive and time-consuming.

Machine learning techniques such as Hidden Markov Model (HMM) has been used for modelling

sequential data for a long time. State transition modelling has also been explored by process

mining research and is advocated for sequence clustering purposes where a model is trained

over a group of sequences and then used to evaluate if a process instance is more likely to be

generated from this model or not. However, state transition models can also be utilised for de-

tecting hidden processes which can be used subsequently for process abstraction. In this thesis,

we aim to address healthcare process complexity using unsupervised abstraction. We adopt

an unsupervised method for detecting hidden processes using HMM and the Viterbi algorithm.

The method in this research includes eight stages; event logs extraction, preprocessing, learning,

decoding, optimisation, selection, visualization and lastly model evaluation. One of the main

contributions of this research is the design of two different types of process model optimisation

which are strict and soft optimisations. Models that are selected by the proposed optimisa-

tion address the limitations of other standard metrics that can be used for model selection in

HMM such as Bayesian Information criteria (BIC). Two different real healthcare data sources

are used in this research namely the Medical Information Mart for Intensive Care (MIMIC-III)

from Boston, USA and the Patients Pathway Manager (PPM) from Leeds, UK. Models are

trained using the MIMIC-III medical event log and then tested using the PPM dataset to be

evaluated later by a domain expert. Three breast cancer case studies that range in complex-

ity are extracted. The results of our method have significantly improved model complexity

and provided a conceptually valid abstraction for several care patterns. Promising results are

demonstrated in the improvement of the precision and fitness of the abstracted models. The

abstracted models can then be used as a middle step for bringing structure to unstructured

processes which helps in finding cohorts of patients based on similar healthcare processes. The

healthcare processes of a cohort of patients can then be modelled using any process mining tool

where their process similarity could not be captured in the complex models.



Terms and Definition

Term Definition

Event log, log a data type that records any event occurs in
information systems. It consists of three main
components: case id, events and time.

Case a single process instance consists of different
care events and belong to a single patient.

Event type correspond to the name of distinct event.
Event an instance of event type that has an as-

sociated timestamp and may have other at-
tributes.

Activity a group of events that aim to achieve a defined
task. It has a duration property.

Control-flow a general term used for describing the flow of
business processes inside an organisation.

Pathway, care-flow,
clinical pathway

a route that is comprised of a number of se-
rial events which start when a patient needs
healthcare and end by the completing of the
patient’s treatment.

Variant a pathway that is a different from the most
followed pathway.

Sequence, pattern an ordered set of events that represents how a
process is performed.

Production state a state generates one event type.
Simple state a state has several event types but 80% of the

state is occupied by maximum 2 event types.
Composite state a state has several event types and 80% of the

state is occupied by more than 2 event types.
Complex state a composite state and contains highly variable

processes.
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Chapter 1

Introduction

1.1 Leveraging healthcare data

Healthcare Information Systems (HIS) have rich data related to patients’ health conditions and

delivered healthcare services. Different kinds of data can be found in healthcare information

systems such as; text, image and events. There is a body of literature and applications have

investigated medical data in different forms, for instance, designing clinical support systems,

diseases diagnosis or medical image analysis. However, care events have received relatively

limited attention compared with other medical data types that have been explored over the

last decades. A care pathway “describes the sequence of care that is recommended for patients

with similar conditions requiring similar treatment” [4, pg.1]. A care event represents any event

that is performed on a patient while he/she requires treatment and is associated with timing

information. Modern information systems store events automatically in a particular component

of the system called ‘event logs’ and these systems are known as Process-Aware Information

System (PAIS). Most HIS do not record the care events automatically in one single components,

however, event data is scattered throughout the system where every department in a healthcare

organisation can record its relevant care events [5]. Extracting details of these events can help

to construct the care process that a patient has experienced.

Nowadays, healthcare can be provided at different levels relating to the complexity of the care

that is required. These are: primary care, such as the General Practice (GP), secondary care,

such as hospitals, and tertiary care, represented in highly specialised care mostly for inpatients

[5]. Healthcare organisations strive to provide effective services and support best practice while

at the same time reducing their costs [6] in order to meet the high demand of providing better

healthcare quality. One popular resource for ensuring best practice in the UK is NICE, The

National Institute for Health and Care Excellence [7]. It aims to help healthcare providers and

commissioners explore standard patient pathways and to enable them to adopt these standards

to match their resources. Healthcare practitioners are supposed to follow these guidelines which

1
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are designed mainly to improve standardisation and reduce unnecessary care variations. A clear

question raised here is to ask if these guidelines are followed in reality or not.

Process mining can play a significant role in answering this kind of question. It aims to exploit

events logs that are recorded by the system to construct a care process model and visualise it.

Recently, there has been growing attention on applying process mining in healthcare due to the

promising results that have been proven in other various domains such as industry and business.

There is great potential for applying process mining in the healthcare domain as discussed in

Mans et al.[8]. The main important advantage of this is in providing evidence-based models

that are generated from reality which bring deeper insight into patients pathways. In addition

process mining supports the exploration, management and improvement of the quality and

outcome of the healthcare processes. This includes measuring the compliance with guidelines

and discovering the mainstream pattern of care and other deviations. Further, process mining

allows stakeholders to be up to date on what is going on in the organisations which in turn ease

the adoption of necessary changes. Besides that, process mining supports exploring healthcare

from different perspectives for instance, the organisational and performance perspectives. The

organisational perspective on process mining can include analysing the relationship between

people who interact with the system. It can answer question such as ‘How can hospital ad-

ministration reschedule staff timetables to reduce cost or increase number of patients treated?’

whereas the performance perspective focuses on measuring the throughput of healthcare pro-

cesses and finding the bottleneck in the system by answering questions such as ‘when patients

have waited and for how long?’.

Modelling the care processes within healthcare organisation is a challenging task due to the

inherent complexity of patient care. Processes may vary considerably among the same cohort

of patients as organizations and clinicians vary in their response to each individual patients

different physiological, psychological and social needs. Unfortunately, the majority of exist-

ing process mining techniques are designed to discover models of structured processes unlike

in healthcare where processes are complex by nature. Therefore, the process mining bene-

fits mentioned above cannot be achieved over complex models which are described by [9] as

spaghetti-like models referring to the tangle and connectivity between its lines. There are dif-

ferent reasons contributing to this complexity and these will be discussed in Chapter 2. Hence,

the need to discover a useful model that can represent reality in a simple and understandable

way is the first step in order to apply healthcare process mining. This thesis attempts to address

that challenge.

1.2 Process mining

According to Aldin and Cesare [10], the origins of process mining go back to the research thesis

of Cook [11] where the aim was to discover the process of software development which the

author named ‘process discovery ’. After that process discovery was applied in Agrawal et al.
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[12] on the business domain and was called ‘workflow mining ’. The term ‘process mining ’ was

coined later in 2001 when Wil van der Aalst and Weijters proposed a technique to improve

workflow management systems [13]. Designing a workflow model is a challenging task because

it requires comprehensive specifications and understanding of the processes within an organi-

sation. Besides that, traditional paper-based workflow models do not illustrate the actual flow

of processes since they are built based on business rules which may not be followed in reality.

Process mining aims to discover information from event logs, which are available in information

systems, to monitor the flow of the process and ultimately improve or extend the process model

[14].

Process mining has three main goals that generate a different outcome: discovery, conformance

checking and enhancement [9]. Discovery techniques use event logs to generate a real process

model without the need for any description of business rules. This technique is the most com-

mon process mining technique used in organisations. The second goal of process mining is using

conformance checking technique, which aims to measure the compatibility between an event log

and a standard process model that is already described and known by the business manager

and should be followed. Conformance checking takes both the event log and standard model

to produce compatibility information which shows if the standard model is actually followed

or if there is any deviation. Enhancement is the third goal of process mining and is used to

improve the current model by detecting the limitations or bottlenecks of the existing model or

by checking the outcomes of variant process flows.

The merit of process mining is not solely related to discovering the control-flow perspective.

There are various other perspectives that can be analysed, such as organisational, data and

performance perspectives. The organisational perspective aims to display the relations be-

tween resources, humans or devices, to gain deep insight into their roles and the interaction

flow between them. The data perspective focuses on other information related to a particular

case/instance flow. The performance perspective reflects process efficiency and elapsed time for

each process; this is important in order to recognise the potential bottlenecks within a system

[14].

Healthcare information systems are valuable resources of clinical processes which show the real

flow of healthcare procedures. Using process mining in the healthcare domain can improve

healthcare standards and outcomes. More precisely, hospitals are very flexible and divers en-

vironments in terms of patients care-flows. Therefore, process mining may enable healthcare

administration teams to gain deeper insight into daily clinical processes by knowing the main-

stream, exceptional pattern and extreme anomalies. Furthermore, the healthcare domain is

a competitive sector; thus, process mining is a key solution to help healthcare organisations

improve.

Increasing interest in process mining has resulted in the establishment of different process

mining tools. The most prominent tool for researchers is ProM 1 which was developed by

1http://www.promtools.org/doku.php
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the Process Mining Group in Eindhoven Technical University in 2010. It is an open source

extensible platform and the current version, ProM 6.8, has more than 120 packages. Other

frameworks available for commercial use that may allow a limited research license for example,

Disco2, Celonis 3 and others. Also, there are a number of process mining separated packages

that are implemented in the R framework such as; BupaR4 and pMineR5, the latter is designed

for healthcare process particularly. It is worth noting that, most techniques within the above

tools generate non-understandable spaghetti-like models when applied to healthcare processes,

with the exception of a few techniques that attempted to abstract care events. These techniques

are discussed in Chapter 2.

1.3 Problem statement

The complexity of healthcare processes is the first obstacle that hinders the application of

process mining within healthcare (see the example illustrated in Figure1.1). On the one hand,

a general approach is suggested by Wil van der Aalst [9] which aims to split the entire event

log into smaller homogeneous sub-logs. This approach can help in analysing complex models,

however, the general process model for the entire event log cannot be discovered. The hypothesis

of this method is that fewer models are complex, but more models are simpler. Research that

adopted this approach mostly depended on case clustering and this will be discussed in Chapter

2.

On the other hand, most process mining methods that tried to address complex model issues

rely on the concept of events abstraction. The aim of this abstraction is to group fine grain

events into high level main events. Therefore, within the process mining literature, abstraction

is considered as a central tool to reduce complexity and improve efficiency [15]. Methods that

have used event abstraction will be discussed in detail in Chapter 2. Unfortunately, those

methods have abstracted events in a supervised way which requires the involvement of domain

experts in the stage of events abstraction and throughout process mining steps for validation

and evaluation.

Although studies have successfully improved the understandability of process models, they

have been overwhelmed by the consequences. Untangling spaghetti-like models with the help

of domain experts is expensive and time consuming for many reasons. First, there is a need

for finding appropriate domain experts who can understand the process or have worked closely

with the intended system. Second, these domain experts mostly need to be paid. Third, it

is tedious to arrange the times for long discussions that suit all parties for example, process

miner, domain experts and any other possible party. We have been advised of a previous

2https://fluxicon.com/disco/
3https://www.celonis.com/
4https://www.bupar.net/
5http://www.pminer.info/progetti/website/main.php
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work [16] that developing a model for chemotherapy care using a clinical reference group of

domain experts required eight iterations lasting over nearly a year. Clearly, there is a need for

developing a better more efficient method for discovering the general process model by applying

events abstraction without the need for domain experts or at least to mitigate their involvement.

Machine learning techniques can be a key solution for applying unsupervised events abstraction

and reducing the need for such domain experts.

Figure 1.1: A complex healthcare model illustrating spaghetti (provided by Fuzzy miner)

1.4 Process mining challenges in healthcare

Some previous literature [17], [8] [18] and [19] has discussed several challenges of applying

process mining on healthcare data however, this research focuses on the following challenges.

1.4.1 Challenge 1: Healthcare model complexity

Healthcare models are complex and this complexity is the expected result of several choices

that have to be taken to meet individual patients’ needs. The simplest question that should

be answered by any process mining technique is ‘What is the main pathway that is followed

by any cohort of patients?’ This cannot be answered using current process mining tools due

the highly complex nature of any healthcare process which produced a complex unstructured

model. Hence, there is a need to develop a method to cope with this complexity and generate

a comprehensible model.
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1.4.2 Challenge 2: The need for domain experts in process mining

Although some techniques that have previously been proposed to try to address model com-

plexity, all of these rely on the involvement of domain experts for event abstraction throughout

all process mining steps starting with abstraction and modelling and ending with validation

and evaluation. Untangling complex models with the help of domain experts can be expensive

and time consuming. Hence, the question of ‘Can we simplify healthcare process model without

the need to involve domain experts in the abstraction phase?’ is still open.

1.4.3 Challenge 3: Extracting care events from Electronic Health

Records (EHR)

Event log extraction and preprocessing are critical steps for process mining research and this is

recognised in the 2011 Process Mining Manifesto [14] as the first challenge in process mining.

Some EHRs are non-process aware systems which means, event logs do not already exist in the

system and are not available to use but, rather, events are distributed over different system

components, for instance different database tables within the EHR. Therefore, extracting care

events from EHR is challenging and requires more effort and stages.

1.4.4 Challenge 4: Knowing the right model for unstructured process

There is no clear answer for the ‘what is the right model?’ question, however, there are some

process model quality metrics that have been discussed in literature and will be explored in

Chapter 2 of this thesis. It should be noted that, these metrics were invented to assess the

quality of business process models in general where these models are basically discovered from

structured process. However, no attention has been given to assessing process model quality

for complex and unstructured processes. Therefore, using the same metrics of quantifying the

quality of a structured process model over an unstructured process model is questionable and

requires further investigation. A suggestion would be to consider other alternatives and to

think about the question: ‘What are the characteristics of best process abstracted model?’

since abstraction is a significant principle in resolving the complexity issue.

1.4.5 Challenge 5: Visualising the model

Considering the challenge of abstraction for healthcare model complexity leads to a further

challenge in terms of visualising the abstracted model. Process mining tools usually visualise

process models by creating a node for every event type and using event name for node labelling.

However, applying the same principle for visualising abstracted models will require labelling for

model nodes, where the node in the abstracted model is a block containing more than one event

type. Labelling the abstracted model will lead us back to the second challenge of the inevitable

reliance on domain experts. Therefore, providing a transparent representation (events can be
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seen through the pie charts states) for abstracted nodes might improve model understandability

while minimizing the cost of involving domain expert in model discovery. Hence, this challenge

suggests rethinking the applicability of using the standards process discovery tool for process

model visualisation in order to visualise the abstracted model.

1.5 Research overview

This section provides an overview of the research in terms of the research aims, a brief descrip-

tion of the research method and a list of the contributions to current knowledge.

1.5.1 Research aims

The research aims are as follows:

1. To produce a new tool that can be used to reduce the complexity of healthcare models in

order to improve process understandability and discover the mainstream pattern of care

from apparently unstructured processes. The tool will support an unsupervised event

abstraction method which does not require the involvement of domain experts during the

abstraction stage.

2. To evaluate the applicability of using the Hidden Markov Model (HMM) for abstracting

care events into states. This requires conducting different experiments of learning HMMs

with various event logs. In addition, we shall investigate the characteristics of the selected

HMMs in order to identify the criteria of the preferable and undesirable abstract models.

3. To test the proposed unsupervised abstraction method and tool on the real-world data of

healthcare processes for breast cancer patients in the Leeds Cancer Centre 6.

In order to achieve these research aims, several stages require to be completed. These are

extracting care events from EHRs and providing clean event logs that can be used for process

mining, identifying the limitations of current process mining algorithms that targeted com-

plexity, selecting the best abstract model based on novel optimisation and providing better

visualization for the abstract healthcare model of different case studies. Table 1.1 shows a

summary of the research objectives and each related chapter, contribution and publications to

date.

6https://www.leedsth.nhs.uk/a-z-of-services/leeds-cancer-centre/
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Table 1.1: Summary of research objectives and related chapter, contribution and publications

Research objectives Sub-activity Chapter Contribution Publication
Finding and extracting healthcare
events

Ch.3 Con.1 and 2 BPM [20]

Identifying the limitations of cur-
rent techniques in process mining
that target complexity

Ch.2 , Ch.3

Investigating the potential of using
machine learning (HMMs) for ab-
straction

Ch.4 Con.3 MIE [3]

Developing an improved method
Improving model
selection

Ch.5 Con.(3.a),
Con.(3.b) JBHI [21]

of state abstraction Identifying new
types of hidden
states

Ch.5 Con.6

Improving model
visualization

Ch.6 Con.5

Testing the proposed method on
real healthcare processes

Extracting three
case studies

Ch.6, Ch.7

Investigating the ability of the ab-
stract model to find similar cohort
of patients

Ch.7 Con.4

Implementing a tool for unsuper-
vised event abstraction

Appendix D Con.7 R package
documenta-
tion

1.5.2 Research method and tools

Research method

Our hypothesis is that the aims of this research can be achieved by adopting machine learning

techniques based on Hidden Markov Model (HMM) with its relevant algorithms such as the

Expectation-Maximisation (EM) and Viterbi algorithms.

First, in this research we have adopted the general method of using the HMM which consists of

three main steps: learning, selecting and decoding. Learning is done by estimating the param-

eters of the HMM using the EM algorithm and then selecting the best model using information

criteria model selection metrics that are well-known in literature such as Bayesian Information

Criteria (BIC). The sequences of the care provided are decoded using the Viterbi algorithm in

order to ascertain which event belongs to which state.

Second, we have improved this method by developing a novel optimisation function for selecting

the best model which would replace the traditional selection metrics and cope with the short-

comings of the traditional metrics.

The improved method for healthcare process abstraction developed during this thesis resulted

in an eight stage method that can be summarised as:

1. Extraction: The first step is event log extraction from an EHR. Extraction is guided by
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inclusion and exclusion criteria for several case studies.

2. Preprocessing: After extraction, event logs need to be preprocessed. This step includes

converting an event log into the form of horizontal sequences where care events that belong

to a single case should be in one row, which is the appropriate data format in order to

train the HMM.

3. Learning: The abstraction stage starts here where the algorithm that is used for learning

is the EM, and will be discussed in Chapter 4.

4. Decoding: Decoding is conducted by running the Viterbi algorithm, which is the most

used decoder with HMM, over all sequences of care events.

5. Optimisation: This step is for optimising the models space using our novel multi-

objective function which includes both soft and strict optimisation.

6. Selection: Models are selected based on the maximum score from the optimisation results

and at this stage, the abstraction process ends.

7. Model visualization: Process models are visualised using our new visualisation tool

that is more appropriate for modelling abstracted processes.

8. Evaluation: Models are evaluated using three different aspects for evaluating the selected

process models. This step also includes models selection validation using some metrics.

These steps can be repeated if the best selected model still includes a complex state. Events

related to the complex state can be isolated and extracted for a repeated analysis that will, in

turn, explain and simplify this complex state. This step is required in order to provide a better

abstract process model through hierarchical modelling of the complex state. All the steps in

our approach are illustrated in Figure 1.2 and will be discussed in detail in Chapter 5.

Figure 1.2: Method overview

Research tools

This research is conducted using a mixture of tools. The Postgres-SQL (9.5) platform was used

for setting a local version of the EHR for data sources, the R programming language (3.5)

was used for training HMMs, process mining tools such as ProM (6.8) was used for exploring
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healthcare process and evaluate our method with state-of-art approach and lastly, Disco (2.2)

was used for process performance analysis when required.

1.5.3 Healthcare data sources in this research

In this research we used two different sources for healthcare data, namely the Medical Infor-

mation Mart for Intensive Care (MIMIC-III) [22][23] and Patients Pathway Manager (PPM)

[24][16]. According to Pollard and Johnson [23], the MIMIC dataset has been used in 134

publications mostly describing data mining and machine learning approaches. This dataset is

provided by the Beth Israel Deaconess Medical Centre in Boston, USA and contains data of

46,520 patients. The PPM, on the other hand, is a mature EHR and holds the clinical and

coded data of all patients who have cancer at the Leeds Cancer Centre, which is one of the

largest cancer centres in the UK. This healthcare system was developed by Leeds Teaching Hos-

pitals Trust (LTHT) in 2003 and includes the data of 2.39 millions patients. Table 1.2 gives a

brief comparison between MIMIC-III and PPM. Further elaboration on these two data sources

is presented in their related chapters.

Both sources have a considerable number of recorded care events that can be used for mining

patients pathways. The reason for having two different data sources is that, the MIMIC-III

dataset is available online and has rich temporal event care that helps us in exploring pro-

cess models and learning and exploring HMMs, however, we cannot evaluate our method using

MIMIC-III since there is no access to domain experts. Therefore, the PPM data is used to test

our method and evaluate the results with domain experts.
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Table 1.2: Healthcare data sources that are used in this research

Data sources MIMIC-III PPM

Abbreviation for Medical Information Mart for In-
tensive Care

Patients Pathway Manager

Origin Beth Israel Deaconess Medical
Centre in Boston, USA

Leeds Cancer Centre in the UK
which is a part of Leeds Teaching
Hospitals Trust (LTHT)

Span 2001 - 2012 2003 - 2015
Number of patients 46,520 2.39 millions
Diseases different diseases cancer diseases
Care level Intensive care unit in tertiary

care
Primary care and secondary care

Patient privacy anonymised anonymised
Process tracing Patient ID , admission ID Patient ID
Event temporal resolution Date + Time Date
ICD code ICD-9 ICD-10
Accessibility online available after the accom-

plishment of an online ethics
course

require ethical approval form and
access authentication

How it is used in the de-
signed research method

Exploring Testing

Related chapters 3,4 and 5 6 and 7

It should be noted that, there is another online healthcare event log that is supported by

the Business Process Management (BPM) challenge7, which is recorded in a Dutch Academic

Hospital. However, we found some difficulties for using it because it was not in English language.

1.5.4 Research contributions to current knowledge

The contributions of this thesis can be summarised as follows:

1. Providing healthcare event logs in English that is extracted from MIMIC-III database.

To the best of our knowledge, the MIMIC-III medical databased in this research has been

used for the first time for mining healthcare processes. In order to facilitate the use of

MIMIC-III in process mining for future researchers, the steps of creating local database

of MIMIC-III and examples of event log extraction are provided in our published paper

[20].

2. Developing a novel pre-processing approach to improve pattern detection of periodically

occurred events within healthcare processes such as charting events inside intensive care

units. This method has successfully reduced the variations of the repeated events and

7https://www.win.tue.nl/bpi/doku.php?id=2011:challenge
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improved the visualisation of their patterns. The impact of this contribution is published

in our paper [20].

3. Developing an improved unsupervised abstraction method that boosts the understand-

ability of complex healthcare process models and reduces the complexity. This method

and initial results are published in our paper [3]. In order to develop this method, a

number of further contributions are invented as well:

(a) A novel model selection criteria which includes linearity, state compactness, cross

state similarity and state importance and this includes the criteria calculations.

(b) A novel multi-objective optimisation function that is designed for selecting the best

abstracted model. In order to provide more flexibility in the model selection, two

types of optimisation are proposed which are strict optimisation and soft optimisa-

tion.

4. Describing a new strategy for selecting similar patients and cohort analysis based on a

state abstraction model. This is a significant contribution where the ultimate goal of

healthcare process mining research is to find similarity between the care processes which

cannot be tackled in complex models. This strategy highlights a further functionality

of the state-based model and forms the link between the HMM’s abstract model and

the process mining framework. The abstract model helps in selecting a similar cohort of

patients and then the healthcare processes of this cohort can be modelled in a process

mining framework, such as ProM or Disco.

5. Other contributions are considered in the enhancement of the hidden Markov process

visualisation in order to provide better modelling for the abstracted process. This new

transparent visualisation is inspired from the “Seqhmm” hidden Markov model package

in R [25]. The improvements include, demonstrating clear start and end nodes to improve

model understandability, using frequency instead of probability on edges and supporting

better layout of states that helps trace the flow of the process.

6. Providing a new classification of hidden states that is helpful in model description and

identifying the necessity for hierarchical modelling of a state. Three types of states are

identified which are simple, composite and complex. The definitions of these states are

discussed later in Chapter 4.

7. Open-source implementation of the proposed method of multi-objective optimisation and

other functions. This package is written in the R environment, see Appendix D.

1.6 Thesis structure

The structure of this thesis is organised as follows:

Chapter 2: Background and Literature Review
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This chapter explains the nature of healthcare processes and provides background of process

mining research in healthcare with emphasis on healthcare complexity and variations analy-

sis. Also, this chapter discusses general process mining techniques and techniques that are

advocated for discovering unstructured process. We conclude this chapter by explaining the

theoretical basics of Hidden Markov model (HMM) and how HMM is used in process mining

research.

Chapter 3: Event Log Extraction and Pre-processing

This chapter focuses on the early step of our method, which is event log extraction and pre-

processing. MIMIC-III is the centric data source of this chapter. Detailed steps of acquiring

and preparing event log are presented since this research is the first work that uses MIMIC-III

for process mining purposes. This chapter also presents two experiments that are conducted

to demonstrate the limitations of the current process mining techniques that can be used for

complex process modelling.

Chapter 4: Machine Learning Approach for Healthcare Process Abstraction

This chapter explores the potential of using HMMs to afford an unsupervised abstract model

for complex processes. The method of using HMM for process abstraction is explained in three

main steps; learning, decoding and model selection. Some well-known information criteria met-

rics for model selection are described. Then different empirical results are discussed which in

turn provide evidence of practical issues which can be found in HMM models that are selected

as best models.

Chapter 5: Multi-objective Function for Process Abstraction

In this chapter we propose four criteria that may help in selecting the most desirable abstracted

process model. The rationale behind these criteria and their calculation is presented here. In

addition to demonstrating the criteria properties and steps for designing a multi-objective func-

tion. This chapter focuses on the optimisation role of the designed multi-objective function,

which is an important step in our methodology. We conclude this chapter by adopting and im-

proving the method of modelling complex processes using state abstraction that was developed

in Chapter 4.

Chapter 6: Case Study 1: Chemotherapy cycles of breast cancer patients

The aim of this chapter is to demonstrate our proposed method for discovering the general

pathway of complex healthcare processes. In this chapter we provide an application of our

proposed optimisation method using real world event logs from Leeds Teaching Hospitals Trust

(the PPM system), which allows us to evaluate the results with domain experts at the last stage

of our method. The case study of chemotherapy cycles of breast cancer patients is extracted

from PPM and evaluated. Process models for this case study are visualised using the new

visualization method.

Chapter 7: Further Experiments: Case study 2 and Case study 3

This chapter focuses on addressing further complexity beyond case study 1. Two case studies

are extracted from the PPM. The proposed method is also applied here in order to test the
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capability of discovering the mainstream care patterns for more complex processes. Selecting

and analysing cohorts of patients is presented in this chapter to demonstrate the applicability

of the proposed strategy for selecting patients using our state based abstraction model. The

models are validated and evaluated using two aspects, conventional metrics of process mining

evaluation and lastly evaluated by the domain expert.

Chapter 8: Conclusion

We conclude the thesis in this chapter by outlining the main contributions of this work and how

they have been achieved. A discussion of possible improvements and future work is presented

as well.



Chapter 2

Background and Literature

Review

2.1 Overview

This chapter explores the nature of healthcare processes and provides background of process

mining research in healthcare with emphasis on healthcare complexity and variations analysis.

Also, this chapter discusses general process mining techniques and techniques that are advocated

for discovering unstructured process. We conclude this chapter by explaining the theoretical

basics of Hidden Markov model (HMM) and how HMM is used in process mining research.

2.2 Healthcare process and its implications

Healthcare organisations are complex systems because they involve different components repre-

sented in people such as administrators, doctors, patients and nurses and different departments

and clinics in the healthcare process [17]. Therefore, several challenges are posed on applying

process mining in the healthcare. Analysing the challenges of process mining that are discussed

in [17] can help with categorizing these challenges into two main main areas of concern: data

quality and process characteristics. Data quality problems include missing data, incorrect data

(such as mismatch between entries and its corresponding fields in the system) and imprecise

data for instance, time data needs to be accurately logged. On the other hand, a major process

characteristics issues concerns case heterogeneity. A case, which is a single care pathway, can

be highly divergent because of various patients conditions, unforeseen complications requiring

medical intervention, which in turn may alter the pathway, and different levels of patient adher-

ence to treatment. This problem increases the difficulty of finding the most frequent pathway

and other allowed variations. According to [26], although there are a number of techniques that

tried to tackle high variations problem, more work is needed to solve this issue. Other problems

15
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of process characteristics are handling the large number of distinct events, which may lead to

the construction of overly complex process models, and how to deal with high volumes of data

that require scalable and efficient process mining algorithms.

2.3 Process Mining in Healthcare

According to Wil van der Aalst [27], there are three types of process mining projects in general,

which can be applied to healthcare as well. The first type is data-driven project which aims

to gain insight to the process in hand and there is no a particular question intended to be

answered. The second type is a question-driven project where this type has a question or list

of questions that requires answers whereas the third type is a goal-driven project which is mo-

tivated to achieve a particular goal for example, reducing the throughput time of a given task.

The general proposed methodology, which is known as L* life cycle, for conducting any type of

process mining projects cannot be used easily in complex healthcare processes as stated by the

author in [27]. This is due to the challenges that are posed in some stages of the projects such

as control-flow discovery and model enhancement. An example of early work that has done by

Mans et al. in [28] where they used a real case study of oncology patients in a Dutch hospital

for process mining. They adopted the L* general methodology in that research. However, few

techniques of process mining were explored since most of the available techniques were designed

for mining structured processes and several challenges were encountered. The results were en-

couraging and showed the applicability of using process mining in providing new insights of the

healthcare process.

There are a number of papers that provide a literature review of process mining in healthcare.

Four of them have discussed a general review of healthcare process mining. The centric of these

papers are to explore different aspects of techniques, process based questions, case studies that

are applied on healthcare process mining [18] [19] [29] [30]. On the other hand, another four

review papers are focused on a particular domain that has used process mining for healthcare

such as oncology [31], cardiology [32], elderly care [33] and primary care [34].

In this section we are interested in highlighting the findings of the general literature reviews

since they provide bigger picture of healthcare process mining techniques and future directions.

In [18], 37 process mining papers that are published between 2004 and 2013 were examined.

The results showed that three major areas have been covered which are process discovery, pro-

cess variations analysis and process model improvement and evaluation.

For process discovery, different techniques are used such as Heuristic miner, fuzzy miner with

clustering and association rules mining. Although these techniques generated understandable

process models, they failed to produce an accurate or generalised model that reflects the reality

of healthcare processes.

The area of analysing process variations was examined through conformance checks under a

standard model. Heuristic miner was used but was unable to detect variations because of the
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complex and detailed model. While the association rule miner successfully detected outliers,

the generated model suffered from confusion around the AND/XOR joint, as well as split or

missing events. As a result, the model lacked simplicity.

The third and least explored area of discussion from existing literature concerns the application

of process mining and how process models can be improved in the context of healthcare. The

idea behind process model enhancement involves adding new event log data to improve the

model or keep it updated.

The findings of [18] have broadly shown the drawbacks and limitations of current process min-

ing techniques in clinical pathway analysis. This is because of the unsuitability with highly

dynamic, unstructured nature of the health care environment and the lack of comprehensive

clinical process mining framework that is able to combine more than one process perspective

analysis. The authors of [18] have asserted the need for further improvements on clinical process

mining techniques, especially for challenging aspects of healthcare domain such as variations

analysis and their influences, patients identification, unceasing model adaptation and active

clinical process model recommender.

Another review paper [19], has a wider scope of healthcare process mining studies where 74

papers were investigated. For each study different aspects have been explored included the

kinds of data used in process mining, key questions that should be answered, process mining

tool that is used, the perspective of the analysis , medical case study and process mining al-

gorithms that are applied. The findings for each aspect are summarized as follows. Two main

types of data were explored which are medical treatment process that includes vital signs and

other medication events or organisational process that includes administrative events. There

were also two kinds of questions asked: the first about what happens generally in healthcare

organisations and the second about guideline compliance among processes. Most process tools

that were used are ProM and Disco. The review paper found that all process perspectives,

which are mentioned early in the introduction, were explored in healthcare process mining re-

search. The top medical case studies that adopted and utilised process mining were oncology

and surgery. Lastly, the most frequent process mining algorithms that were applied were fuzzy

miner, Heuristic miner and sequence clustering which is sometimes known as trace clustering

approach, these algorithms will be discussed later in this chapter.

In addition, the author of [19] suggested possible future directions for process mining in health-

care such as the design of a portable clinical process mining framework easily integrated within

any hospital information system and the shift to process-aware information systems able to

automatically support clinical pathway decisions. More efforts should be advocated to improve

clinical pathways visualisation and to create a simple and uncomplicated process model to elim-

inate the necessity of experts.

The two other literature review papers [29] [30] have emphasized on the same challenges and

trends however, [30] is focused mainly on the importance and challenges of conformance check-
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ing in healthcare. The aim of this paper was to investigate what kind of features can help in

building conformance analyser tool for healthcare process. Interestingly, the paper has found

that only few studies (3 out of 11 examined papers) have proposed process enhancement using

some insights that were suggested by conformance checking results. The author of [30] asserted

the need for building more appropriate conformance tool for measuring the compliance of com-

plex healthcare process.

Variations analysis is mentioned often as a significant companied issue of complexity in all

literature review papers. It is an essential goal in healthcare process mining because of highly

divergent patients pathways. Variations analysis comes at the following step after finding the

mainstream process care in a complex environment. Recently, variations analysis has received

considerable attention by healthcare process miners and some studies have showed promising

results. The detection and analysis of pathway deviations can be addressed using different

methods.

One of the methods, which was suggested by Rebuge and Ferreira in [35], was to recognise

mainstream and deviation pathways in an emergency radiology process using Markov sequence

clustering as a preliminary step before using ProM tool for model discovery. Sequence clustering

method in this paper is an extended work of [36] and it aimed to split an event log into smaller

groups and build a process model related for each event log subset. It was designed to group se-

quences into only three clusters, set by threshold. One cluster is for the most frequent sequence

and its similar sequences, the second cluster is for variant sequences and the third cluster is for

infrequent sequences. However, this method tested on one single department where processes

are presumably not very complex, also this method lacked a clearly defined evaluation metric,

which is a common issue in clustering evaluation, and depended on a user defined threshold for

setting the number of clusters.

Leemans et al. [37] have proposed a new process miner algorithm called the inductive miner,

which was designed to improve variations extracting and visualisation. The inductive miner was

able to explore the type of deviation whether it is resulted from adding new event that is absent

in event log or some events that are not permitted by the model. Another approach for process

anomaly detection was reported by Bouarfa & Dankelman [38]. They used multiple sequence

alignment algorithm to extract outliers and find consensus sequence from surgery event logs.

Hompes et al. [39] have discussed variations analysis from different perspective. They have

adopted Markov cluster algorithm (MCL), which is a graph clustering algorithm, in order to

cluster sequences based on different attributes for example diagnosis-based clustering or age-

based clustering. This technique has focused on detecting variations within a synthetic patient

log according to data perspective and not a control flow perspective. Using MCL allowed clus-

tering the sequences into unpredefined number of clusters with different sizes. The idea behind

the MCL relied on using a transition matrix probability that represents the likelihood of tran-

sitions between events in all sequences.
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Depaire et al. [40] also proposed a framework for process variation analysis. This framework

aimed to answer administrative questions regarding swapped activities, repeated subsequence

and deviations places. This paper highlighted different categories of deviations and distin-

guished between exception - a positive deviation based on deviation outcome- and anomaly- a

negative deviation refers to human error or fraud.

It should be noted that, all these studies have tackled variations detection without further

analysis of other critical questions, such as the possible reasons for pathway deviations or how

deviation correlates to positive/negative outcomes.

Very few papers that have attempted to find the correlation between pathway deviations and

outcomes. An example of this is the work of Li et al. [41] where they transformed clinical

behaviours into first-order logic sequences and used a particular metric which helps in pattern

recognition. This method returned promising results regarding the correlation between devia-

tions and outcomes. For instance, they found a positive correlation between different congestive

heart failure care-flows and the frequency of patient readmission.

2.4 Complexity in healthcare processes

Modelling the healthcare processes is a challenging task due to the inherent complexity of pa-

tient care. Processes may vary considerably within the same cohort of patients as organizations

and clinicians vary in response to each individual patients different physiological, psychological

or social needs. Process mining techniques can play a significant role in understanding these

real patterns of care through the application of machine learning algorithms to the event logs

extracted from Electronic Health Record (EHR) systems [19].

EHRs log numerous events during a patients visit to a hospital including medical, administra-

tive, laboratory, intensive care and billing events. An event log records each event as a tuple

with identifiable attributes including event name, event time and patient ID. Many healthcare

events overlap or occur in conjunction with other events which aptly reflecting the “interrelat-

edness” of healthcare processes [1].

2.4.1 Complexity Definition

From healthcare point of view, the term complexity has been defined in [1] based on the interac-

tion between systems components which include both people or department. These interactions

are refereed to as “interrelatedness”. This definition is commonly agreed on and adopted from

non-healthcare fields as [42] [43]. The complexity increases by increasing the number of system

components, the interaction between them and the uniqueness relations of interaction, how of-

ten an interaction happens once or repeatedly is a key consideration in determining a processs

complexity.

We believe that the definition of healthcare complexity should not be defined as per these three
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factors alone as there might be hidden contributing factors, such as emergent events or the day

when the healthcare service was needed. Yet we can think of those factors as implications or

fingerprints of complexity, which then allows us to measure how complex an interaction really

is.

From process mining point of view, however, complexity is defined as confounding factor that

can prevent generating useful models [44]. In this thesis, we think the first definition, health-

care definition for complexity, is more meaningful and should be embraced to where healthcare

process model complexity is defined by how a component corresponds to an event; how an inter-

action represents a link or edge between events; and how unique an interaction or relationship

is based on the variation of sequence of events. Furthermore, the type of interrelatedness is

significant in process modelling, and we consider it the fourth factor that increases complexity.

Examples of different types of interaction in process modelling known as process structures such

as; sequence, parallel and choice. These fundamental process structures are explained later in

Table 2.1 in this chapter.

Therefore, we suggest to modify the range of complexity that is mentioned in [1] to include

the type of interrelatedness. The complexity increases as the interaction may represent several

types as illustrated in Figure 2.1. This adapted figure outlines different levels of complexity.

Increasing the number of components and interaction, where this interaction represents dif-

ferent types of interrelatedness between components, resulting in a more complex healthcare

process. Unlike a simple healthcare process, with only a small number of components and near

homogeneous interactions between components.

Figure 2.1: Range of complexity in healthcare processes, a modified Figure from [1].
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From a theoretical point of view, when the term complexity is mentioned, we should consider

Occam Razor’s and its principle of favouring simple solutions over complex ones.

2.4.2 Causes of Complexity

Complexity in healthcare is a hot topic and has been discussed widely in healthcare papers. It

is an expected result of several reasons that have to be taken to meet individual patients needs

as discussed in [45].

A primary reason for complexity is the variation within care processes. This variation is in-

evitable in the healthcare domain due to a range of causes. The causes can be categorised

into; medical causes, organisational causes and implications of both medical and organisational

causes.

• Medical causes include such variables as patient condition and treatment required. We as

process miners have no control over these causes.

• Organisational causes involve multiple care dimensions, such as healthcare system providers,

who might follow rules that are different than other systems; doctors, who diagnose patients

and decide on the best treatment or intervention; and nurses, who help patients throughout

their process of care, record patient notes and all three of these dimensions interact with the

system.

• Implications of both medical and organisational causes that left fingerprints on event logs it

could be improved using process mining techniques such as repeated events, care events that

are recorded with different levels of granularity, looping over number of events. The result-

ing complexity from all these factors combined will dramatically affect on the understanding,

description, prediction and management of healthcare processes.

2.4.3 Complexity Measurement

Based on the complexity measurements that are discussed in [46], [47] and [48] we can classify

these measurements into two types which are; measures that are generated from event log and

measures that are generated from process model. It should be noted that, the measurements

attained through process models are subject to the algorithm type that is used for discovering

that model. Event log measurements are based on the number of cases and the number of events

while process model measurements require more complex formulas for generation, including:

• Size: it measures how big a model is which is sometimes depending on the number of nodes

in a model or the number of nodes in addition to the control flow elements [49].

• Control-Flow Complexity (CFC): which is the number of branching edges from all nodes.

• Structuredness: this metric is concerned with the structure of the control flow where every

split node must have a corresponding joint node. For instance, a node with outgoing edges

should have a node of incoming edges to ensure a (single-entry single-exit) block structure

between the outgoing node and the incoming one. It can be calculated as one minus the
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number of nodes inside a structured block divided by the number of total nodes in a model.

•Understandability: an objective metric for which there is no accurate measure. This metric

is, however, affected by previous complexity measurements.

According to [50], structuredness does not necessarily improve model comprehensibility; two

models may have the same structuredness score, but a model of bigger size will result in low

understandability, just as the more edges or branches a model has, the less understandable it

will be. Therefore, the challenges of designing a process model in a structured and meaningful

way are difficult to quantify.

2.5 General process mining techniques

There are several techniques and approaches that have been implemented to do process mining

such as Alpha miner, Heuristic miner and Inductive miner. According to [9], the difference

between process mining techniques mainly relies on the adopted process discovery method and

how this method addresses two major aspects; representational bias and noise and incomplete-

ness.

The first aspect is representational bias, which refers to the capability of a modelling repre-

sentation language to represent various process structures. Basically , there are a number of

modelling languages that can express and model processes such as Petri net, which is the most

prominent one in ProM tool, BPMN (Business Process Modelling Notation), heuristic net that

is known as causal nets or (C-nets) and process tree. For more detail about these languages

see [51]. Every one of these languages has its own strengths and limitations however they all

try to demonstrate high expressiveness of various process structures. Process structures, some-

times called constructs, represent the type of relation between events. A sample of fundamental

process structures are outlined in Table 2.1.

Table 2.1: Examples of fundamental process structures

Process structure Definition Synonym
Sequence event x is followed by event y -
Parallel event x is followed by some

events for instance event y and
event z regardless of their order

AND , fork

Choice event x is followed by at least one
or more of events; event y, event
z or both y and z

OR

Exclusive Choice event x is followed by either
event y or event z

XOR

Loop Event x is followed by event x for
at least one time

iteration, cycle

It should be noted that, there is a workflow pattern initiative1, which is supported by Eind-

1http://www.workflowpatterns.com/
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hoven University of Technology and Queensland University of Technology, it aims to identify

all possible process topologies or structures.

These topologies are captured within process mining and workflow management research and

the initiative has categorised them based on their relevant mining perspective for instance,

process structures that are captured when mining control-flow, data or resource perspectives.

This initiative helps in understanding the representational bias of various modelling languages.

The second aspect relates to noise and assumptions of incompleteness. Methods that are

designed for process discovery are presumed to have mechanism to cope with noise and incom-

pleteness of event log. Noise in this context, as defined by Wil van der Aalst in his book [9],

means infrequent process instance in event log that is very dissimilar of the mainstream pro-

cess. While incompleteness is related to the ability of a process discovery method to discover

a generalizable model that can reflect all process instances presented in event log and other

possible processes that are very similar but might be missing in the log.

2.5.1 Alpha miner

Alpha miner [13] was the first process mining algorithm that attempted to discover process

model and to bridge the knowledge gap between event log and business modelling. The main

idea of Alpha miner is to scan all process instances of event log to find possible relations between

events and use them to build what is called “footprint” matrix. The basic algorithm of Alpha

miner was able to detect only four basics process structures which are direct follow relation

(event ‘a’ is followed directly by event ‘b’) no direct follow relation (event ‘a’ is never followed

directly by event ‘b’), dependency relation which is a special type of direct follow (event ‘a’ is

followed directly by event ‘b’ and event ‘b’ is never followed directly by event ‘a’) hence, there

is a dependency relation between ‘a’ and ‘b’, and the last relation that is used in Alpha miner

is the parallel relation that is discussed above.

Alpha miner uses Petri net modelling language that supports simple and understandable nota-

tions. Alpha miner has been improved upon several times and extended to include advanced

process structures for instance, loop and XOR.

Although Alpha miner can produce a simple and understandable model in the form of Petri

net, model quality was low in terms of fitness and precision metrics, which will be discussed

later in this chapter. Also,the Alpha miner cannot handle infrequent process instances since all

process instances are used to build the “footprint” matrix, that is used for building a process

model.

2.5.2 Heuristic miner

Heuristic miner [52] was designed to deal with noise and incompleteness in event logs. It focuses

on extracting the relation between events for instance, finding the dependency of two events.
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Constructing a process model using a Heuristic miner can be achieved through three main

steps. The first step involves extracting dependency and frequency information between events

(for example find the frequency of event ‘a’ when it is followed by event ‘b’). The second

step requires the construction a graph based on dependency and frequency information. In

other words, some rules are derived from the dependency and frequency information based on a

predefined threshold of relations occurrence. This step shows how Heuristic miner can deal with

noise, infrequent process instance, of event logs. The third step calls for the design of a process

model based on the second step. Heuristic miner uses causal nets, C-nets, as a representation

modelling language.

Further improvement of Heuristic miner is implemented using time perspective to construct

a causal dependency matrix. For instance, some sequences of a log have event ‘a’ that is

followed by event ‘b’ but in other sequence event ‘b’ occurred before event ‘a’ is finished. This

means there is no causal dependency between event ‘a’ and ‘b’. Although Heuristic miner

tried to eliminate low frequent sequences, noise, it is impractical miner because it may generate

unreadable model for logs with high number of events. In addition of generating unsound

model, which violates model quality where the model has a fired transition that cannot reach

the end of the process. The overall quality of process models generated by the Heuristic miner

depends highly on the configuration of removing infrequent sequence that affect on the extracted

relations of dependency [53].

2.5.3 Inductive miner

Inductive miner [54] was created to explore process through the support of different configu-

rations of process model. It was also developed to cope with model unsoundness, which is a

major limitation in Heuristic miner [55]. It applies divide and conquer technique by splitting

the log into sub-log recursively. This can be done by finding a proper cut-off relations such as

sequence, exclusive choice and parallel. Moreover, the Inductive miner supports a visualization

of deviated sequences with its frequency besides a number of process instances filtering tech-

niques. Models that are discovered by the Inductive miner are built in the form of a process

tree, which in turn can be converted to a Petri net.

The most advantageous feature of the Inductive miner is the ability to replay all process in-

stances which guarantees high model fitness. On the other hand, it has a limited number of

cut-off relations and a problematic representation of long dependency between events. From

our experience and based on [55], in the case of large event logs which might have high variable

process instances, the Inductive miner may generate a useless model where imprecise cut-off

points can be found. Hence, the discovered model will be in the form of ‘flower model’, as

described by [55], where all transitions between events are allowed.
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2.6 Process mining techniques targeted complexity

The process mining algorithms previously mentioned are used to discover models of structured

processes, and thus they cannot handle complex processes and generate ‘spaghetti-like’ process

models. However, there are some process mining algorithms that are designed to generate un-

derstandable models from complex environment.

A guideline of the properties that should characterise any algorithm intended to address com-

plexity is outlined in [56]. The authors aimed to bring structure to unstructured or complex

process using map metaphor. The four properties suggested by [56] are aggregation, abstrac-

tion, emphasise and customization. Aggregation is concerned with minimising the amount of

information on the map, while abstraction is to do with hiding unnecessary information but

with the ability to recover it at any time. Emphasis is used to highlight important marks on

the map using colour or contrast, and customisation refers to how the user can customise the

map based on his or her preference.

Several techniques have been proposed to address complex processes; these techniques are dis-

cussed below. The following algorithms have tried to include one or more of the above discussed

properties.

2.6.1 Fuzzy miner

The main purpose of the fuzzy miner, which is discussed in [57],[58] and [59], is to simplify

process model that is generated from a very flexible environment, such as hospitals.

The fuzzy miner uses a simple mechanism aims to find highly frequent events and preserves

them. The less frequent but highly connected events are aggregated into clusters, while the

less frequent and less connected events are removed. The word fuzzy in its name refers to the

degree of abstraction and vagueness of the output model. The resultant model is constructed

using fuzzy model representation language, which is a graph that consists of nodes (events)

and edges (relations). The graph model does not, however, distinguish between fundamental

process structures such as choice, parallelism and others. In addition, a fuzzy model cannot be

converted into a Petri net, in cases where further performance analysis is needed. It requires

considerable time for selecting the best setting configuration such as setting the frequency

threshold and other parameters.

Despite Fuzzy miner does not show all sequences that are presented in logs, by neglecting excep-

tional process instances, it is still the most used technique in process mining applications [57].

This is due to the powerful features that are provided for instance, an interactive and zoom-able

model, using different colours to boost model visibility; for example, fuzzy miner uses darker

colours corresponding to the high frequency events in the log, and wider lines corresponding to

highly connected events. In addition to using configurable parameters to show different levels

of model details.
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2.6.2 Abstraction based Methods

The word abstraction in the field of Computer Science can be used in different contexts, such as

object oriented programming, software engineering and data representation, the latter of which

is the scope of this thesis. However, the meaning of abstraction in all contexts is similar.

There are some definitions of abstraction in literature. According to Oxford dictionary of Com-

puter Science2, the word abstraction is defined as“The principle of ignoring those aspects of a

subject that are not relevant to the current purpose in order to concentrate solely on those that

are”.

A similar definition mentioned by Guttag in [60, pg.43] “The essence of abstractions is preserv-

ing information that is relevant in a given context, and forgetting information that is irrelevant

in that context.”

Colburn and Gary in [61, pg.174] highlighted the aim of abstraction as “abstraction in computer

science facilitates the modelling of interaction”. While Aho and Ullman in [62, pg.1] defined

abstraction as a method for problem solving “science of abstraction - creating the right model

for thinking about a problem and devising the appropriate mechanizable techniques to solve it.”

Process mining methods that address complex model issues mostly rely on the concept of

event abstraction. Some papers called it as a Two-step strategy because firstly, events should

be abstracted then, a process model is built.

A general review of process mining literature identifies three major approaches adopted for

event abstraction: the supervised-based approach; the pattern-based approach; and the local

process model approach.

a) Supervised based approach

In complex organizational environments such as healthcare the details of specific events are

often recorded with a different degree of granularity. Variable granularity events produce com-

plex process models which can be reduced by mapping low level event, highly specific events,

to high level main event.

This mapping is approachable through two main ways; domain expert knowledge or the avail-

ability of ground truth source.

• Using domain expert knowledge:

In [63], the authors suggested a formal method for mapping events to activities using the do-

main knowledge provided by stakeholders. This method has successfully captured m:n mapping

relations between low level events and high level activities.

Previous work in [5] utilized a domain expert in identifying and mapping events. Although

they have produced a valuable process model, this strategy was extremely time consuming and

2http://www.oxfordreference.com/
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expensive in terms of domain expert participation. Another paper [64] proposed a supervised

event mapping method by involving a domain expert to identify activities patterns.

• Mapping with ground truth data:

Ground truth data can be found in the intended system which consider as internal source or

external source. An example of internal source is the data available in event log. The ground

truth data method is dependent on information availability from the event logs or the system

used to extract the event log. For instance, modelling the process based on organisational roles

in a hospital as mentioned in [65] where model nodes represent who has performed an event,

if it is performed by a nurse, physician or technician. Also, similar work is discussed in [66],

where care sub processes were modelled using the name of hospital premises, where that events

occurred, for tracking patients locations.

On the other hand, an example of external data source is data can be available on-line. Some

simple mapping can be achieved where low level event names are grouped into categories or

medical ontologies such as SNOMED-CT3, as highlighted in [67].

b) Pattern based approach

Several events abstraction methods are suggested by [68] as preprocessing steps for mining

process models. The goal is to explore various definitions of patterns and how these patterns

might be linked to process constructors on the models. The focus of the patterns was on loop

structure, which was treated as an array of event with different time and was considered as a

conserved pattern. Techniques for extracting primitive patterns such as maximal and super-

maximal repeats were used. The method was tested on real-world healthcare processes and the

results showed a relative simplification of the model.

Special patterns can be extracted based on their frequency as discussed in [69] where the author

aimed to find what he called an ‘episode’, which is an unordered subset of events that occurred

frequently within process instances. An example of this approach is the episode miner in the

ProM tool, which can extract events with direct follow and parallel relations only.

Such an approach does not support exclusive or and loop relations and can be extremely slow

with large event logs. Also, users must select initial parameters to limit the length of the

extracted episode. Then such groups of episodes can be used for abstracting events and conse-

quently, discovering process model over abstracted episodes.

c) Local process model approach

A local process model approach aims to discover related events that are not necessarily have ex-

plicit sequential order. These events may come with different relations such as parallel, choice

3http://www.ihtsdo.org/snomed-ct/snomed-ct0/
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and loops. The proposed algorithm works incrementally on subsets of events to build local

model based on a process tree.

Niek et al. in [70] developed a method to find the best-fit local process models through the

generation of multiple possible local models from a limited number of events and a recursive

process tree exploration approach. An evaluation of the generated models using four different

suggested quality criteria is performed. These criteria are; confidence, determinism, language

and coverage where confidence is the average number of observing events in a local model,

determinism concerns about the ability of local model to predict next event, language here

measure the ratio of all allowed behaviour and the observed pattern and lastly coverage metric

aims to calculate the ratio of total number of events in the log to the number of events included

in local model. The resulted models are ranked based on weighted average score of the proposed

metrics.

Although this method has successfully discovered frequent non-sequential patterns , it has two

major limitations. First, this approach cannot capture start-to-end process. Basically, it is de-

signed to discover local process model that is fit between episode miner, which has mentioned

above, and process discovery miner. Second issue is that, the limited number of potential events

that could be discovered which ranges between three and five.

Using local process model for events abstraction is suggested in [71]. The proposed method

aimed to pick the top ranked local models for abstracting sub-logs. Although this method has

effectively abstracted some sub-logs, it required a large number of parameters configurations in

addition to the ambiguity of selecting multiple local models with the same score.

2.7 Machine learning techniques for unstructured process

discovery

Several machine learning techniques have been used to address complexity in unstructured pro-

cesses. Examples of techniques such as clustering and sequential model learning are discussed

below.

2.7.1 Model-based sequence clustering

Clustering in process mining is used also to simplify complex models. Generally, model-based

clustering methods depend on a metric for similarity and a clustering algorithm. As explored in

[72], computing similarity between sequences is different than other data and attention should

be paid for the order of events. Therefore, the authors have suggested a transformation tech-

nique to convert every sequence to a vector and call that vector sequence profile. After that,

some well-known distance measures such as Euclidean and Hamming distance can be used for
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computing the similarity score over processes.

Several clustering algorithms are investigated in [72] for instance, k-means, Agglomerative Hier-

archical Clustering (AHC), and sequence clustering [35]and [36], the latter are mentioned earlier

in variation analysis section. The results were promising and algorithms have found multiple

processes clusters. The concept of sequence profile has helped in clustering similar cases for

complex logs and could be extended for adding further attributes in sequence vector.

In order to develop a more robust clustering technique, the researcher in [73] has proposed a

semantic clustering method. The aim was to use the metric of edit distance and improve it to

be context aware metric. This method involved differentiating edit operations weighting. In

other words, the weights of edit operations for example, addition, deletion or substitution will

vary based on the frequency of occurrence. The proposed edit distance has outperformed other

sequence clustering techniques in terms of fitness and precision score for the resulted clusters.

It should be noted that, the idea of context aware edit distance is used in this research for

computing state compactness, as will be discussed later in Chapter 5.

HMM Background

This section provides a general background of HMM algorithm that is used widely for modelling

sequences. Some relevant algorithms such as the EM and Viterbi are discussed likewise. A

discussion of the canonical problems that can be solved using Hidden Markov Model is out of

the scope of this chapter for further detail the reader refer to [74].

2.7.2 Hidden Markov Model (HMM) - late 1960s

Hidden Markov model (HMM) is a probabilistic model developed for modelling sequences. It

has been used widely in different fields such as language and speak recognition and bioinformat-

ics. The origin of HMM comes from Markov chains which provide a representation of transitions

between observations. The transitions between observed states, in the case of Markov chain, or

hidden states, in the case of HMM, are controlled by the Markov assumption where a transition

to the next state depends on the current state or in other words, the future depends on the

present.

The theory of HMMs can be described mathematically by these parameters λ =(A, B, π ):

• An initial state probability which describes where a system can start. It is represented by a

vector π where:
∑n

i=1 πi = 1

• A set of states S = s1, s2, s3, ..., sn where n is the number of states.

• A set of transitions A = a11, a12, ..., ann where A is the transition probability matrix.

• A set of events or (observation) symbols E = e1, e2, e3, ..., em where m is the number of event

types.

• A set of observations B = be1s1, be2s1, ..., bemsn where B is the observation probability matrix.
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a) The Expectation-Maximisation (EM) algorithm

In most cases on HMM is used for unsupervised learning which means the hidden states that

have generated sequences are unknown. The Baum Welch or forward-backward algorithm,

which is a form of Expectation-Maximisation (EM) algorithm, is used for HMM parameter

estimation. Learning the parameters from sequences includes estimating the probability of

transition matrix and the probability of observation matrix given a set of observations and a

number of hidden states. There are three basic questions that should be answered in order to

estimate HMM parameters:

• The first question is how likely is a state to be the first state in the process?

• The second question is how likely is an event e be observed in state s?

• The third question is how likely a state si will transit to state sj?

All these questions can be combined into one general question which is ‘what is the proba-

bility of a specific event occurring in our data?’. The basic answer would to find the expected

count of an event which is equal to the sum of the probability of that event happens in the data

[75].

The EM algorithm provides an efficient technique to answer this question through two steps;

Expectation (E step) and Maximisation (M step). In the E step, the aim is to count the expected

probability of transitions between states and observing events in states using the initialization

values of λ =(A, B, π ).

The forward-backward algorithm is used here to find the expected probability by summing over

all possible paths. The M step, takes the expected count generated by the E-step and considers

it as a real count to produce the maximum likelihood. For instance, the maximum likelihood

of a transition between state i to state j is the expected count of that transition normalised by

the total number of transitions from state i as presented in the following equations where aij

is used for updating the transition matrix and bj(e) is used for updating the observation matrix.

aij = expected number of transitions from state i to state j
expected number of transitions from state i

bj(e) = expected number of times in state j and observing event e
expected number of times in state j

The E-step and M-step are iteratively computed until convergence.

The convergence is reached when the difference between two subsequent models is very small

based on a predefined tolerance rate [25]. The EM algorithm computes the likelihood of gener-

ating sequences from estimated parameters using the Forward algorithm at each iteration and

this step is known as an evaluation procedure. For more detail of the calculations in the EM

algorithm refer to [74].
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b) Viterbi algorithm

The Viterbi algorithm is a standard decoder used for finding the best sequence of hidden states

[76]. This algorithm [77] is used after HMM model training step to understand the underlying

states that most likely generate the observations. The Viterbi algorithm efficiently finds the

most probable sequence of hidden states by picking the path with the maximum state probability

for the entire sequence. Also, it supports an internal pointer to backtracking the states that

maximize the probability. The forward-backward algorithm can also be used for decoding the

sequence of underlying states. It aims to find the most likely state at each position of the

sequence then assemble these states to construct the underlying path. However, this may result

in finding unpermitted transition between states for instance, state at time t has zero probability

to transition to state at time t+1 [78].

2.7.3 HMMs in process mining literature

Although hidden Markov models (HMMs) have been widely used in various domains such as

bioinformatics, speech recognition and handwriting recognition for handling sequences, there is

a limited number of research that has applied HMMs in process mining. According to Rojas

et al. [19], only 4% of healthcare process mining techniques have been done by HMMs. In this

section we aim to present how HMMs have been employed in process mining field.

Peters et al.[79] and Poelmans et al. [80] used a hybrid method consists of data discovery

technique such as formal concept analysis (FCA) and Hidden Markov model. The aim of using

FCA is to extract semantic information about different patients clusters and then feed these

clusters to the available Matlab toolbox HMM model for process discovery.

This approach has achieved good results in [80] for finding exceptions care flow in each clus-

ter and simplifying correlation analysis between length of stay in hospital and some missing

treatment practise. Also, in [79] this hybrid method found some process improvements sugges-

tions. However, the adopted method had a priori separation of process into different clusters

before process discovery step and consequently, the results are highly affected by the validity

of clustering method. Also, discovering the mainstream process model is not applicable using

this method.

Carrera & Jung [81] have utilized a HMM to model resources workflow and improve resources

allocation. The novelty of this work comes from combining organizational, control-flow and

probabilistic perspectives in one process model.

HMM parameters were initialized manually not randomly by constructing footprint matrix with

frequencies for observations, where observations here are the resources names, and states, which

represent events. Initial transition probability was created based on a dummy start/end obser-

vation. The algorithm of Expectation-Maximisation was used to learn the hidden structure of

resource workflow. Results showed that HMM can be used to model resources workflow and
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consequently improve managing resources allocation and avoiding overload.

Rozinat et al. [82] have employed HMM to measure the quality of process model. This work was

motivated by the need for finding new evaluation metrics for process model to measure what is

beyond the ability for replying process instances such as noise resistance and incompleteness.

A Petri net model was constructed and each labelled tasks on that model is mapped to a hid-

den state on HMM. The experiment aimed to gradually inject noise to several event logs then

standard process model metrics for instance fitness and precision are measured.

They found that HMM can provide a reliable method to evaluate model accuracy in the ex-

istence of noise besides other common metrics such as precision, fitness and simplicity, which

will be discussed in the following section.

Applying HMMs for sequences clustering has been proposed by Elghazel et al. [83] and Silva

[84]. In [83], they proposed a hybrid approach of graph-based clustering and HMMs. In the

first step, patients pathways are clustered based on a graph clustering method suggested in [85].

The second step is learning HMM for each cluster.

Although this method could suggested a pathway for new different patient, however, this ap-

proach applied on healthcare events during hospital stay only which considers relatively short

process. The scalability of this approach has not been tested on complex processes. Besides of

the same shortcomings of previous methods which is inability to model the mainstream care

process.

In similar work of [84], HMMs performed as a framework to do a general sequences clustering

method. The clustering relies on the probability of a sequence that may generate from a con-

structed HMM. The probability of generating a sequence is calculated and then the sequence

is added to the most similar cluster.

This paper has discussed a theoretical framework for applying HMM in process mining but no

experimental results were presented.

On the other hand, Khodabandelou et al.[86] have offered a new application of using HMMs to

extract intentional process model from business event log (not healthcare processes) where hid-

den states correspond to user behaviour. Several HMMs were trained with different number of

hidden states suggested by the stakeholder and the best model was selected using a well-known

metric the Bayesian information criterion (BIC) .

Moreover, an extended work of that is a comparison between supervised and unsupervised

learning is experimented by Khodabandelou et al. [87] using different event logs. The aim was

to test if HMM capable to drive new insights on customer strategies comparing with strategies

that already known to the stakeholder. They have developed a framework called ‘map miner’

which uses a HMM to learn transitions between customer behaviour and events. Then the

transition matrix and observation matrix are imported to a map miner algorithm in order to

visualize customers behaviour.
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Interestingly, HMM has revealed many strategies more than the expected ones and the results

were promising and have been verified by stakeholder. It should be noted that, this method

used business event logs which mostly represent structured processes. Also, selecting the best

model relied on the validity of BIC metric.

For prediction purpose, Meier et al. [88] suggested a clinical decision support system using

HMMs that help physician explore the best treatment flow for a specific cohort of patients

and predict the current phase of oncology treatment. Their method has intended to learn two

different HMMs with three and seven hidden states which was recommended by physicians with

experience using that data.

Li et al.[89] has implemented HMMs for similar goal which is detecting variations in multi-stage

treatment disorder. Two steps are included, first, the model identifies treatment stage based

on patients data then displays number of variations of the current stage. HMM was learned

with annotated processes where stage label is known. Therefore, the model represented high

performance in detecting accurate treatment stage.

The following table provides a summary of how HMMs are used in process mining research

that have been proposed, the case studies, whether these techniques are available and ready

to use and the general approach of adopting HMM. Four out of nine of the proposed meth-

ods are applied on healthcare data. Interestingly, the majority of these papers have trained

HMMs closely with domain experts or by using a priori clustering technique to divide the pro-

cess before process model discovery, which consequently prevents an ideal representation of

mainstream process model.
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Table 2.2: HMMs approaches and ProM.

HMM in Process
mining papers

Case study Available
to reuse

Approach

Poelmans et al. [80] Breast cancer patients No multiple HMMs for each a
priori set number of clusters

Peters et al.[79] Synthetic data for busi-
ness process

No multiple HMMs for each a
priori set number of clusters

Carrera & Jung [81] Synthetic data for busi-
ness process

No single HMM with a priori set
number of states

Rozinat et al. [82] Synthetic data Yes mapping Petri net to HMM
Elghazel et al. [83] Real healthcare process No multiple HMMs for each a

priori set number of clusters
Silva[84] Synthetic data No theoretical discussion of us-

ing HMM for sequence clus-
tering

Khodabandelou et al.
[87] [86]

Real Eclipse developers
log

Intended to
install on
ProM

single HMM selected by BIC

Meier et al. [88] oncology No two different HMMs where
number of states are recom-
manded by physicians

Li et al. [89] congestive heart failure No single HMM with a priori set
number of states

2.8 Models quality metrics in process mining

Model evaluation is a critical issue in process modelling due to the fact that there might be

more than one model that can represent the data. Also, a question of “what is the best model?”

is difficult to answer and depends highly on the domain itself.

Furthermore, event logs are built from the reality thus, negative examples of the process would

not be found in the log. Interestingly and according to [90], there are two different character-

istics of event logs, that seem to be conflicted, which are :

Event logs are (trustworthy) because everything that is recorded in the log must have hap-

pened, however, not everything that might have happened is recorded in the log (incomplete-

ness). To cope with the incompleteness issue, a model should be able to represent other possible

behaviours that might be allowed, but attention should be paid to prevent modelling ones that

are not allowed.

In order to resolve evaluation issues, some metrics must be developed. Plenty of research such

as [90] and [91] have discussed several process model evaluation metrics. Those metrics are used

to assess process models from different perspectives such as fitness, precision, generalisation and

simplicity.



35 2.8. Models quality metrics in process mining

(a) Fitness

Fitness, sometimes called as reply fitness, is the ability of a model to reflect all processes that

are recorded in the log. The idea of model fitness can be derived by counting how many false

negative examples that cannot be presented in a model but are exist in the log.

Fitness is calculated in our experiments based on [92], where simple alignment score costs on

move on log (if event is observed on log only) and move on model (if event is observed on model

only) and no cost is made for a synchronized move that is occurred between log and model. The

alignment cost is calculated for each individual process instance with respect to the generated

model after finding the optimal alignment. Then alignment cost is normalized by the cost of

the worst scenario that may happen where no synchronisation move occurs between the log and

model (the denominator). The best fitness score is 1 and the worst model fitness is 0. Fitness

score is calculated for each individual trace then normalised by the number of total traces.

fitness = 1− optimal cost(log,model)

move(log) +move(model)
(2.1)

For more explanation an example for fitness calculation is discussed. Suppose we have a model

M that is presented in Figure 2.2(left) and trace (a,b,c,d,e,g). First we need to calculate the

alignment between the trace and model M which counts the moves between model and trace.

Different alignments can be found such as the alignments that are presented in (A) and (B),

however, ProM tool uses an algorithm that guarantees the optimal alignments [92] such as the

alignment in (B) where the cost = 2 however, the cost of alignment in (A)= 4.

Figure 2.2: Fitness calculation example, the symbol ‘>>’ represents no synchronisation.

Hence, using the fitness formula that is presented in (2.1), the fitness(M,trace) of alignment

(A) = 1− 4
6+6 = 0.67 and the fitness(M,trace) of alignment (B) = 1− 2

6+6 = 0.83 which is the

used fitness in ProM tool. It should be noted that, evaluating the process model by measuring

its ability for reflecting reality (fitness reply) is not enough because of the incompleteness issue

and the lack of negative examples.

(b) Precision

Precision metric aims to measure the fraction of the behaviours that are presented in the log

compared with the allowed behaviours on the model. In other words, a non-precise model is
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the model that represents a negative trace (if the definition of negative examples are known)

or an extremely anomaly process that is different than the observed ones on the log.

In our evaluation, precision is computed using [48] and [93] which counts the score of alignment

between traces and model with considering illegal behaviour that is never seen in the log.

precision = 1− number of observed events in log at a particular position

number of allowed events on model at that position
(2.2)

To calculate the numerator and the denominator they used the best alignment sequence to

construct a tree of prefix automata that is weighted by the occurrence of a prefix of events

in each position. Then the prefix automata is enriched by the edges between prefix that are

allowed by the model but not observed in the log which they called it as escaping edge. The

method can help in identifying the set of observed behaviour besides the set of invalid ones that

have generated from the model. An example of the precision calculation is adopted from [2]

and explained here.

Figure 2.3: Precision calculation example adopted from [2, pg.5]

Suppose we have the model M in (a), log L1 includes two traces [(a,c), (a,d)] that are shown in

the prefix tree in (b) and log L2 includes three traces [(a,c),(a,d),(a,b,a,b,a,b,a,b,a,b,a,c)] that

are presented in the prefix tree in (c). The red edges represent the moves that are allowed by the

model only and not observed in the log. The gray circles of the prefix automata are weighted by

the number of tokens that enabled the move. Based on the model M and the precision formula

in (2.2), the precision (L1, M)= 2∗1+2∗2+1∗0+1∗0
2∗1+2∗3+1∗0+1∗0= 6

8= 0.75 and precision (L2, M)= 0.714

Models with low precision allow a high number of unobserved events in a particular move,

however, models with high precision only permit observed events. As in data mining evaluation

metrics, the F-score measurement is used to balance between both accuracy metrics (fitness

and precision) using the formula;

F − score = 2 ∗ fitness ∗ precision
fitness + precision

(2.3)
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An attention should be paid for preferring a high precision model due to the risk of getting

poor generalizable model conversely.

(d) Generalisation

Generalisation is the ability of a model to represent other possible behaviours that are not

recorded in the log to cope with incompleteness of an event log. However, attention should be

paid to the tolerance of behaviour generalisation to prevent modelling negative behaviour.

In our evaluation, generalisation score is calculated based on [47] where k-fold cross validation

method is used. Fitness score is calculated for each time between the hold-out part and model

generated by other parts. Then , the average of fitness scores is the generalisation score.

(e) Simplicity

Despite the fact that understandability is a subjective metric, a study showed that the main

reason for perceived complexity is the size of the process model [94].

Although the available metrics try to help in assessing the quality of process models, this is

still an open issue subjective to domain criteria.

2.9 Summary

This chapter has discussed the nature of healthcare processes and their implications on mod-

elling the healthcare processes. A general background of process mining research in healthcare is

provided. Two main areas are identified by process mining literature review as important areas

which are healthcare complexity and variations analysis, which will be the focus of the following

chapters. Also, this chapter explained several process mining techniques that are implemented

for simple structure process and unstructured complex process to provide sufficient width of the

available process mining techniques. The theoretical basics of Hidden Markov model (HMM)

and how HMMs were used in some process mining research are discussed in order to formulate

a potential use of this technique. In addition to, the discussion of process mining metrics for

evaluating process models, which will be used later for evaluating the discovered process models.
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Chapter 3

Event Log Extraction and

Pre-processing

3.1 Overview

This chapter focuses on the early steps of our method, which are event log extraction and

preprocessing. MIMIC-III is the centric of this chapter due to the need for using it in exploring

our method and validate it. Detailed steps of acquiring event log are presented. Event log

extraction and preprocessing are critical steps for process mining research and this is recognized

in the 2011 Process Mining Manifesto [14] as the first challenge for process mining.

Figure 3.1: Research method and the scope of Chapter 3

3.2 Medical Information Mart for Intensive Care (MIMIC-

III)

MIMIC-III (Medical Information Mart for Intensive Care)[22] is a publicly available medical

research database of de-identified records of patients who were admitted to the Beth Israel

Deaconess Medical Centre in Boston, USA between 2001 and 2012.

The MIMIC-III database is integrated from multiple sources which include the hospital elec-

tronic health records, social security administration death master file and two distinct critical

39
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information systems that are called Philips CareVue and iMDSoft Metavision. The different

data structures between the two critical information systems used by the hospital have largely

been resolved at the database integration stage. It is an important medical database that

provides free access to researchers under agreement licenses which prohibit any attempt to re-

identify patients. Different types of medical data are available, such as readings of vital signs,

medications, laboratory tests, nurses and physicians observations and notes, fluid balance, di-

agnosis and treatments codes, care giver information, length of stay and time of death.

The data comprise 58,976 hospital admissions, and 46,520 distinct patients. 55.9% of the pa-

tients are male and 44.1% are female. There are around 380 types of laboratory measurements

and 4,579 types of Intensive Care Unit (ICU) charted observations, such as heart rate and

blood pressure. The admissions cover five critical care units which are the Coronary Care Unit

(CCU), Cardiac Surgery Recovery Unit (CSRU), Medical Intensive Care Unit (MICU), Surgical

Intensive Care Unit (SICU) and Trauma Surgical Intensive Care Unit (TSICU).

According to [23], the MIMIC dataset has been used in 134 publications mostly describing

data mining and machine learning approaches. None of these have described a process mining

approach. In this chapter and as published in our related paper [20], we describe how we have

used the MIMIC-III database to extract and process mined an event log in order to explore

patients pathways for diabetes patients as a precursor to further work in diabetes. Further work

done by our research group published in [95] to offer a structured assessment of the data quality

issues related to process mining of MIMIC-III. In addition to the work in [96] which explores

the potential of using MIMIC-III for getting insights on the cardiovascular disease trajectories

using a process mining approach.

3.3 MIMIC-III and process mining

MIMIC-III can be used as a rich data source for process mining applications because it has

many records with timestamps that can be extracted as medical events. There are 16 out

of 26 tables in MIMIC-III database that contain medical events. These tables are used as a

healthcare data reference model, which is discussed in the following section, for our healthcare

process mining research.

In our earlier paper [20] we have mentioned that, in order to respect patient confidentiality

the MIMIC-III dataset de-identification process included obfuscation of dates. The dates of

all events have been shifted into the future using time offsets randomly generated for each

patient. This approach preserves the time intervals and ensures the sequence of medical events

are internally consistent, but it means that certain process mining analytics approaches such

as looking for arrival time bottlenecks cannot be used.

There are two main data types for time attributes in MIMIC-III which are chart time and chart

date. They provide different time resolution of the event, for instance, the chart date field has

date only without time, this is because the accurate time for that event is not known, whereas
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chart time field has date and time with hour, minute and second of that event.

Most of chart time fields are recorded in the database with two columns, store time and chart

time. In healthcare processes, observations are usually charted and then validated by a care

provider such as a nurse. The validation process usually happens within an hour [22]. Therefore,

chart time is the time when an observation is charted while store time is the time when the

observation is validated. In the scope of this research, we use chart time as the event time

because it is the closest to reality according to MIMIC-III documentation [23].

3.4 The healthcare reference model

A healthcare data model is a model that shows the relation between tables in a medical database

that may contain healthcare events. The data model is significant in process mining research

because it helps to extract event logs and to understand process oriented questions [5]. We

developed a healthcare data reference model by analysing the MIMIC-III database and using

table descriptions based on [22] and [23]. Figure 3.2 shows the Entity-Relationship(E-R) dia-

gram we constructed for the MIMIC-III database using PostgreSQL editor.

Figure 3.2: MIMIC-III data reference model generated in this research
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The relevant healthcare events in our data model can be categorized into six groups of events

which are administrative events, charted events, test events, medication events, billing events

and report events.

In the following section, a description of the six event categories is provided along with a brief

description of the sourced tables, for more detail about the tables the reader may refer to [22].

1. Administrative events identify patients admission pathways which show if a patient has

been admitted from an emergency department or the patient has a pre-arranged admis-

sion. Also, administrative events include all patient transportation activities during their

stay in different care units of the hospital through to a discharge event. This group of

events is located in Admissions, Callout, Transfer and ICU stay tables.

Admissions table : holds demographic information about the patient, admission time,

emergency department (ED) registration time ‘edreg’, emergency department out time

‘edout’, discharge and death time, discharge and death time.

Callout table : contains information about the time of discharge request and the time of

the request outcome if it is fulfilled or cancelled.

Transfer table : holds information about patient transportation such as the time when

a patient is moved in or moved out of different wards which include different critical care

units.

ICU stay table : this is a sub-table from Transfer table especially for patients’ trans-

portations in Intensive Care Units (ICUs).

Services table : shows which medical service that a patient was admitted for. This table

is a sub-table from Transfer table.

2. Charted events contain all bedside observations that are related to vital signs measure-

ments such as heart rate and blood pressure or other care intervention. This group of

events is stored in the Chart-events and DateTime-events tables.

Chart − events table : has all patients charted observations. There are more than 4500

types of charted observation. The table includes information about the time when an

observation is taken and the time of observation validation performed by clinical staff.

DateT ime− events table : this table contains the observation date of particular interven-

tions such as dialysis or insertion of lines.

3. Test events correspond to all tests that have been measured on the patient such as lab-

oratory tests and test results. This category of events is captured in Out-put-events,

Microbiology-events and Lab-events tables.

Output−event table :has all output measurements for example, urine or blood. This table

stores the time and value of the output measurement when is taken from the patient.

Microbiology − events table : this table contains information about tests and antibiotic

sensitivities.

Lab − events table : this table has around 380 items for measurements some of them
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related to hematology and chemistry. It records output and microbiology results.

4. Medication events include prescribed medication and intravenous medication. These

events can be extracted from Prescription and Input-events-CV and Input-events-MV

tables.

Prescription table : this table contains information about when a drug starts and ends

besides prescription order if it is needed.

InputCV − events and InputMV − events tables : inputs are any fluids that can be

given to the patient such as oral or tube feeding and intravenous medications. Input

events tables are generated from different healthcare information systems (CareVue and

Metavision) but both contain information about the time when a medication intake is

occurred, for example enteral feeding is recorded and its value. Some more transactional

events are supported by Input-events-MV table such as the time when intake is ended or

an intake order is updated.

5. Billing events contain a list of medical procedures that are performed on patients that are

used for billing services. Billing events can be extracted from CPT-events table.

CPT−events table : this table has a list of Current Procedural Terminology (CPT) codes

for medical billing purposes. It contains information that shows the time of performed

procedures.

6. Report events include different types of reports such as nurse notes and radiology notes.

Report events are captured in the Note-event table.

Note− event table : this table has information about different types of notes, the date of

reported notes and the ID of the caregiver who reported it.

It should be noted that, these events are distributed in various tables however, all tables

have the basic requirements of process mining such as, a unique subject id, which corre-

sponds to patient id, and a unique admission id, event, event time, some event attributes

and some resources are associated with events which can be generated from the care-givers

table.
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The following Table 3.1 provides a summary of process mining principle components in MIMIC-

III.

Table 3.1: Summary of process mining principle components in MIMIC-III

Table has timestamps has duration has observed item id has care giver id
Time and date Date only

Admissions yes yes yes no
Chart-event yes no yes yes
Input-CV yes no yes yes
Input-MV yes yes yes yes
Output yes no yes yes
Lab-event yes no yes yes
Prescription yes yes yes no
Note-event yes no no yes
Call yes yes no no
CPT-event yes no yes no
Procedure MV yes yes yes yes
Transfer yes yes no no
ICU stay yes yes yes no
Service yes yes no no
Date-time event yes no yes yes
Microbiology yes no yes no

3.5 Data acquisition from MIMIC-III

Although many modern business information systems automatically generate event logs, there

are some information systems, including electronic health records that store process activities

implicitly and consequently need a method for event log extraction.

The MIMIC-III database is constructed from healthcare information systems that are not

process-aware oriented systems. It is an object-relational database that is built using a Post-

greSQL database management system and we have therefore extracted the event log using SQL

queries. Figure 3.3 shows an overview of data acquisition from MIMIC-III. The healthcare data

reference model is used to guide event log extraction.

Figure 3.3: An overview diagram of getting data from MIMIC-III (XES is eXtensible Event
Stream, which is the standard format for an event log)
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Getting the event log from MIMIC-III can be done in two steps, the first step is creating event

log from MIMIC-III and the second step is extracting event logs for specific cohorts of patients.

This two steps approach is efficient because it reduces the time for multiple extractions of dif-

ferent groups of patients and provides efficient storage in the database. This steps are explained

in detail below.

3.5.1 Creating an event log from MIMIC-III

Creating event log from MIMIC-III can done through several steps:

1. Access and install MIMIC-III

In order to install MIMIC-III we need to get access to its server. This step requires passing

a compulsory online ethics course as a preliminary step to ensure data confidentiality. For

installation follow the instruction provided in

(https://mimic.physionet.org/gettingstarted/access/).

2. Create one table that includes all healthcare events

There are 16 tables can be used for extracting healthcare events that patient went through.

Combining these events based on their temporal order will form complete process of

healthcare service. The idea of extracting healthcare processes from MIMIC-III aims to

provide one big table that holds all process mining essential components as shown in 3.1.

The correct format of the event log is each row represents one event therefore designing

the big table as this structure is essential.

An SQL example for creating the main log table is shown in Figure 3.4.

Figure 3.4: An SQL example for creating the main log table

3. Import the data iteratively into this table using the next query for each table that is in

the reference model. Each table has its own event attributes such as cost, item id and

duration. The order of the attributes is important when inserting the data into the log

table. An SQL example for inserting events from admission table to the main log table is

is shown in Figure 3.5.

Figure 3.5: An SQL example for inserting events to the main log table
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4. Explore the event log from the created log table then export it to csv file. It should be

noted that, in this step we have created event log for all patients in MIMIC-III with all

diagnoses. Extracting a specific cohort of patients should be done in a separate step as

will be discussed in the next section. General event log characteristics after creating the

main log table is shown in Table 3.2

Table 3.2: General statistics of the created log table

patients admission emergency registration death

46,520 58,976 30,877 5854

3.5.2 Extracting an event log for specific cohort of patients

In order to extract an event log from the created log table we need to do two steps:

1. Extract patients IDs of a specific cohort of patients from MIMIC-III. In MIMIC-III a

unique ID can be either patient id ‘subject id’, admission id ‘hadm id’ or a combination

of both. Selecting the IDs depends on the research questions.

2. Extract all healthcare events from the created main log table using the unique IDs.

The extraction of healthcare process from the created log table is a straightforward step

after getting the required patient IDs.

Regarding the first step, there are different ways to extract patient IDs from MIMIC-III as

shown below:

(a) Extraction using free text in the admissions table

In the admissions table there is a column called diagnosis where a preliminary diagnosis

is recorded. Diagnosis is recorded as free text which may require a text retrieval approach

to avoid typing mistakes. An example of SQL query that is used to extract event logs

using diagnosis column and admission id is shown below in Figure 3.6.

Figure 3.6: An SQL example for extracting using free text in admissions table

Using text matching as in the previous extraction method might not be efficient. This

is because all cases that are extracted using text matching are correctly diagnosed with

congestive heart failure, however, there might be other cases have congestive heart failure

but it was recorded with other description for example, heart failure or more general

description as weakness.
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(b) Extraction using International Classification of Diseases version-9 (ICD9)1

For more accurate extraction, MIMIC-III has two tables are called diagnoses − icd and

d− icd− diagnoses they include all information needed for patients diagnosis.

The diagnosis is coded using a standard coding system known as the ICD9 code. We can

use both tables for extraction where d−icd−diagnoses is a dictionary table that contains

short and long title of the diagnosis and diagnoses− icd links the diagnosis with patient

table.

In the scope of the thesis, this method is used and we have extracted two different groups

of patients from MIMIC-III as examples:

• Diabetes type II patients

In the first example we were interested to apply process mining on diabetes patients. We

used ICD9 code to extract the log of diabetes type II patients. A list of ICD9 codes that

is used for extraction is available in (Appendix A). However, the pathway of diabetes

patients that includes regular checks and other clinics events can be found in primary

care units such as general practise. In contrast, MIMIC-III, which is our data source,

is considered as a secondary care unit that contains medical data for patients, who have

admitted to the hospital. The event log of Diabetes type II patients is used in this chapter

as a running example to demonstrate the extraction and preprocessing methods.

• Colorectal cancer patients

The second example is the event log of Colorectal cancer patients. Selecting Colorectal

cancer patients as a case study is because at that time of the research we wanted to have

a potential domain expert who can evaluate our method later after process discovery. We

extracted this log using ICD9 code and a list of ICD9 codes that is used for extraction is

available in (Appendix B). This case study will be used later in Chapter 4.

3.6 Different approaches for event log pre-processing

In this section, we demonstrate two possible approaches of event log preparation in order to

provide a baseline event log for mining healthcare processes. These steps fall into two approaches

which are aggregation and temporal approaches. The aggregation preprocessing steps try to

prepare the order of events and it affects on the sequence of the process. On the other hand,

the temporal preprocessing steps aim to prepare and clean the time aspect of events.

The motivation behind these methods is to prepare an event log with reasonable quality that

helps in process modelling and in the same time without losing a lot of information about the

process.

1http://www.icd9data.com/
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3.6.1 Aggregation approaches for event log pre-processing

This method aims to improve the sequential order of the events which includes two steps; solve

batch events and mapping fine-grained events into main event.

(a) Event log manipulation: solve batch events

There are some data quality issues related to MIMIC-III data such as missing accurate times-

tamps. This issue may be resulted from batched events. Batch processing is the execution of

several events at once and recording them with the same time, for example a group of labo-

ratory results received at the same time. The issue of batch processing also leads to a huge

number of fine-grain events that increase process model complexity. In our data model, the

tables Chart-events and Lab-events contain a large number of batch events which should be

addressed as a preliminary step for mining patient pathways.

Each patient in the ICU has been checked on a regular basis at varying intervals. The differ-

ent measurements that are taken in each check have been recorded with the same time. For

process mining purposes we are focusing on the process of charted observations regardless of

which items are checked therefore, all items are consolidated into a single charted event. Our

hypothesis is that handling batched events as a single event simplifies the process model and

improves process mining quality.

This problem is addressed in the extraction stage. Batched events are re-extracted with the

same event label. The extraction includes tables that have batched events such as chart-event

and lab-event. More precisely, for different chart measurements in the chart-event table such

as Calcium, Glucose and Platelet count are all extracted under the name of Chart event. An

SQL example for re-extraction of batched events is shown in Figure 3.7.

Figure 3.7: An SQL example for avoiding batch events

This method has significantly reduced the number of events which in turn reduced model

complexity. It should be noted that, reducing the number of events using this method does

not lead to significant information loss for our purpose in this research. We believe that, from

a process mining perspective, the exact name of measurements in the ICU is less important

when we aim to mine the general abstracted process model. We are able to capture the events

occurred in chart-event and lab-event tables.

Although this method reduces the number of activities and events, the variation of patients

pathways is still extremely high and the event log needs further manipulations.

(b) Event log manipulation: mapping fine-grained events into main activity

Another data quality issue in MIMIC-III is the different level of granularity of recorded events.

The relation between these events can be represented as ontological events which have a semantic
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relation with a main activity. For example, an admission activity can have a number of events

where the patient may have been admitted into different wards such as Medical Intensive Care

Unit (MICU) or Coronary Care Unit (CCU). Our hypothesis is that mapping fine-grained events

into main activity will simplify the patient pathway model and reduce event numbers to help

finding interesting patterns.

Using our data model, the categories of fine-grain events are relatively limited for some tables.

Ontological events are located in Admissions and Transfer tables. Mapping the fine-grain events

into main activity was done using the Add Mapping of Activity Names log enhancement filter

in ProM. The events are mapped into main activities as illustrated in Table 3.3.

The results of this experiment shows that the number of different types of activities was

Table 3.3: Mapping ontological events

Ontological events Mapped activity

admit CCU Admission
admit CSRU Admission
admit MICU Admission
admit SICU Admission

admit TSICU Admission
transfer CCU Transfer
transfer CSRU Transfer
transfer MICU Transfer
transfer SICU Transfer

transfer TSICU Transfer

reduced by nearly half of the previous processing step. Also, the number of events was reduced

and consequently the mean of events per case is reduced likewise.

On the other hand, the number of process variations remained high and was not affected by

mapping fine-grain events.

3.6.2 Temporal approaches for event log pre-processing

Outliers events can be defined as events that prevent capturing clear patterns; such events affect

the quality of process mining efforts. Repeated events, which known as duplicate tasks, occur

when the same event type has been executed multiple times in the same case. In critical care,

for example, the incidence of repeated events is high because events include periodic monitoring

(known as charting) of heart rate, blood pressure and other vital signs.

This method aims to improve the temporal aspect of the events. There are three temporal

aspects of healthcare events which are the recorded time resolution, event duration and event

interval. The following section will discuss these aspects and how to tackle them in detail.
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(a) Recorded time resolution

An event can be stored with different time resolutions. It could be stored with a timestamp

that shows the date and time or date only. Also timestamps can be stored with hours, minutes

and seconds. This is considered as data quality related issue which has a strong impact on the

quality of process models as mentioned by [95].

For instance, mining the process of a group of events with inconsistent temporal resolution

can produce a misleading process model. This is because inconsistent temporal resolution may

change the actual order of the events. In MIMIC-III, for example, the Prescription event is

stored with date only while other event types are stored with different resolution that includes

timestamps of hours, minutes and seconds. Therefore, the process model will allocate the

Prescription event an inaccurate order.

Getting the accurate time for Prescription events from MIMIC-III database is not applicable

because this depends originally on the storage schema of the MIMIC-III database where the

field for storing a Prescription event is defined on a Date format only.

(b) Duration of care activity

The duration of an activity can be defined as the elapsed time since the activity started to the

end of that activity. It is a feature for an activity. Some papers refer to it as execution time

[97].

In MIMIC-III there is another category of fine-grained events besides ontological events which

are transactional events. A transactional event is an event that provides information about the

duration of an activity - when it starts, updates, comments and finishes.

This type of event is very common in healthcare processes for example, the process of trans-

ferring a patient inside a hospital which starts when a nurse creates a call for transfer, the call

might be updated or cancelled, then the call should be acknowledged and the outcome should

be recorded.

Transactional events are located in the Call and Input tables. Mapping these fine-grained events

into the main activity was done using the Add Mapping of Activity Names log enhancement

filter in ProM as presented in Table 3.4
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Table 3.4: Mapping transactional events

Transactional events Mapped activity

call create Call
call update Call

call acknowledge Call
call outcome Call

call first reservation Call
call current reservation Call

input start Input
input store Input

input comment Input
input end Input

(c) Interval of care event

The interval of care event can be defined as the time gap between two events. Interval time is

a feature of an event. There are different ways it can be used to leverage this feature. In the

following section, we investigate the potential of using the interval feature of same type events

to reduce model complexity.

3.6.3 Interval-based event pre-processing

From a process mining point of view, repeated events is a significant confounding factor that

can prevent generating useful models [44]. Typically, the handling of frequently repeated tasks

has been addressed in a model discovery phase [98] [99] [100] however, most current methods

are tied to specific process discovery algorithms which restrict more general use.

Dealing with repeated events as a preprocessing step has received relatively little attention in

the process mining community. Moreover, to the best of our knowledge, no existing work has

tackled variation reduction of repeated events using events temporal patterns. Although there

are around 20 plugins in the ProM (version 6.8) process mining tool for log preparation, only

two filters can be used for cleaning repeated events. These filters are called Merge Subsequent

Events and Remove Event Type. They help to reduce the number of events however, no atten-

tion is paid for preserving time information about merged/removed events.

A few papers in the process mining literature have addressed repeated events as a preprocess-

ing step. In [101], the problem of repeating tasks was addressed by refining events labels in

a pre-process stage. This solution labelled repeated events based on its context for instance,

‘payment’ events can occur at the start of a process instance and/or at the end. Although this

approach adopted accurate steps for detecting repeated events, the method is not applicable in

the case of large amount of repeated events, such as those we found in healthcare data, because

it increases the number of distinct events.

Two papers [102] [103] have mentioned the idea of merging repeated events into one single
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event. This approach is implemented in ProM as an event log enhancement filter named ‘Merge

Subsequent Events’. It aims to merge consecutive events of the same type. The merge sub-

sequent events filter has three options of merging which are merge by keeping the first event,

merge by keeping the last event or merge by considering the first as start time and the last

as end time. Using this method helps to reduce the number of events however, there are a

number of limitations to be discussed. The first and second options of merging ignore the time

aspect between events and concentrate on reducing the number of events at the cost of losing

time information. The third type of merging may result in misleading event duration. In the

following section, our aim is to improve on these methods to address the specific challenges of

remove outliers in healthcare periodic events.

3.6.4 The rationale for an interval-based event selection method

In this section, we define outlier events based on the time interval between events. Our start-

ing assumption is that an event is regarded as an outlier if it occurs more frequently than a

threshold interval determined from the central tendency and measure of dispersion of intervals

for that event, as described in our work [20] .

We take into consideration that process mining focuses on capturing events that comply with

the mainstream process. For instance, in the case of blood measurements, two successive mea-

surements that occur within a short interval may occur because of an error in the measurement

value. Therefore, removing one of those events will not lead to information loss as both events

correspond to the same observation. This assumption is supported by some data observation

as shown in the following Table 3.5

Table 3.5: Example of events from Input table in MIMIC-III

Admission id Time Item-id Amount Care giver id Status
101659 2137-02-27 23:00:00 221749 1.400105 14953 changed
101659 2137-02-27 23:00:00 225158 5.833345 14953 changed
101659 2137-02-27 23:35:00 221749 5.603825 14953 changed
101659 2137-02-27 00:45:00 225158 23.34927 14953 changed
101659 2137-02-27 00:45:00 221749 6.970018 14953 changed

The above table shows events extracted from the Input table. The first and third highlighted

rows belong to the same observed item where item id = 221749 for the same patient and the

same ICU number. Based on Table 3.7, the interval pattern of input event type is 1 hour, the

third row displays that this event occurred 35 mins after the previous one. It appears that this

event is repeated because the carer has changed the amount of the intake item.
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3.6.5 Method

In this section, some formal definitions are provided to avoid ambiguity in the method. The

definitions are illustrated in Figure 3.8

Definition1: consecutive events (e1,e2), e1, e2 are consecutive events ∈ same event type E.

Definition2: interval i, is the period of time, the gap, between events (e1, e2).

Definition3: observed item x, is a distinguished attribute of an event e related to the item that

was observed.

Figure 3.8: Illustration of interval-based pre-processing method

Our approach has several steps:

1. Create histograms of intervals i for each event type.

2. Use histograms to determine the central tendency and dispersion of the intervals to cal-

culate a threshold value to identify outliers. Examples may be the mean, median and

standard deviation depending on the shape of the distribution.

3. For each case c in the log, get event type E and compare the interval between its con-

secutive events (e1,e2) until the end of the case. The interval between each consecutive

events (e1,e2) is computed by finding the time difference between e1 and e2.

4. If the interval between consecutive events (e1,e2) is less than the threshold value of that

event type, remove the second event as this event can be an outlier based on our assump-

tion.

5. Otherwise, if the interval is equal or longer than the threshold value, keep both events

because they comply with the pattern.

This cleaning method aims to remove outlier events which have occurred in a time that is shorter

than the selected threshold. Lets suppose three events x, y, z are consecutive care events of the

periodic event ‘Charting’ which occurred at the times 03:54, 04:00, 04:30 respectively for the

patient ID 100908 as shown in Figure 3.9.
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Figure 3.9: Example of remove an outlier event from the periodic Chart event

The interval between x and y is computed which is 6 mins. This is shorter than the threshold

value of 34.6 minutes that is reported in Table 3.7 for Chart event, therefore, the y event is

removed as it is an outlier. After removing y, the interval between x and z is computed as they

become consecutive events. The interval = 36 mins which is longer than the threshold value.

Hence, event z is remained and the algorithm moves forward to compare it with the next event.

3.7 Example of event log pre-processing

The discussed preprocessing approaches are applied on the Diabetes type II event log that is

extracted from the MIMIC-III database. This event log has some characteristics as presented in

Table 3.6. It can be clearly seen that, the numbers of event types, event and mean , minimum

and maximum number of events per case have decreased through preprocessing. This table

reports event log statistics before and after applying the preprocessing steps.

Table 3.6: Event log characteristics of Diabetes type II and preprocessing steps

Event log characteristics of
Diabetes type II

raw log batch event
preprocessing

mapping pre-
processing

interval based
preprocessing

Admissions (cases) 296 296 296 296
Patients 264 264 264 264
Variations 100% 100% 100% 100%
Event types (distinct event) ∼ 2, 300 35 15 15
Events ∼ 1, 900, 000 252,454 210,139 208580
Mean event per case ∼ 7, 000 853 710 705
Minimum event per case 55 28 21 21
Maximum event per case ∼ 71, 200 10639 9246 9189

The extraction has resulted in 15 main event types which are Input, Chartevent, Output,

Labevent, Prescreption, Noteevents, Call, CPTevent, Transfer, Datetimeevents, Microbology,

Admission, Discharge, Edout and Edreg. Although of the clear reduction in the number of

events after log preprocessing, the process variation percentage, which is computed using the

following formula, is still high and reached 100% in every step of the preprocessing.

Variation percentage =
Number of process variants

Number of total cases
∗ 100 (3.1)
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This means every patient has followed a different process of care and the common pattern of

care between this group of patients cannot be discovered yet. Here is more explantation about

the interval based preprocessing since this step has interim results that need to be explained.

The histograms are used to illustrate the interval of the periodical events. Figure 3.10 shows

interval histograms for some activities such as Chart, Lab and Notes events. The threshold

value is selected based on the mean for most of the activities because it represents the majority

of the cases however, it depends on the interval distribution and the user preferences.

Table 3.7: Mean interval of repeated events

Care event Interval

Chart event 34.6 mins
Lab event 6.0 hours

Input 1.1 hours
Note event 8.9 hours
Transfer 52.8 hours

Call 1.5 hours
Prescription 25.2 hours
CPT event 27.5 hours

Output 1.6 hours
Microbiology 66 hours

Table 3.7 shows the mean interval of repeated events in MIMIC-III. These intervals are extracted

from histograms of repeated events that are presented in Figure 3.10.
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Figure 3.10: Interval histogram for some repeated events in MIMIC-III

Removing the outliers events from the event log using interval based event selection has reduced

the number of events, mean and maximum events per case while other pathway characteristics

such as variations, number of event types and the minimum number of events have not been

affected. Moreover, this method has a different impact on different event types. Some event

types have been affected strongly by removing outliers events such as Current Procedural Ter-

minology (CPT), which is used for a payment event, where 248 outliers events are removed

from the CPT event. On the other hand, Chart event and Output event have the least impact

with 56 outliers events in Chart event and 64 in Output event.

Discussion

As mentioned earlier in Section 3.6, the main goal of applying event log preprocessing methods

is to prepare a reasonable event log quality that helps in process modelling without losing main

elements that are essential for capturing the mainstream healthcare process. Both approaches

of event log preprocessing, aggregation and temporal, try to reduce the number of events in

order to reduce complexity. Such approaches have reduced the number of events as reported

in Table 3.6, however, these methods have failed to reduce process variations. Figure 3.11
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shows that all steps of event log preparation have successfully reduced the number of events,

the line illustrates the drop of events number. Unexpectedly, process variation percentage has

not improved, not reduced, after log preprocessing it is still the same.

Figure 3.11: The affect of pre-processing steps on the number of events

It should be noted that, the interval based preprocessing step has improved the variation of

repeated events. This can be seen in Figure 3.12 where Input event has the highest reduction

in its variation while the Transfer event has the lowest variation reduction which indicates that

the Transfer event was mostly repeated in a consistent temporal pattern.

Figure 3.12: The number of variants in the periodic events in the intensive care units

The prepared cleaned event log now is presumed to be ready for process model discovery. There

are different techniques in process mining that tried to discover process model of highly variable

event log and address complexity by supporting events abstraction. Using these techniques on
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the prepared event log is supposed to generate understandable valuable process models, however,

the results were not as expected and this will be demonstrated in the following section.

3.8 The practical limitations of some techniques used for

discovering unstructured processes

The aim of this section is to use the prepared event log of Diabetes type II patients for modelling

the healthcare processes. Two techniques that are originally designed to cope with complex

and unstructured processes are chosen. These techniques are Fuzzy miner and Local Process

Models mining (LMs), that were discussed in Chapter 2. Both of these techniques support the

concept of events abstraction. The results are explained below.

3.8.1 Fuzzy miner results

The fuzzy miner without abstraction has generated a complex model as presented in Figure 3.13.

However, this technique supports an interactive abstraction where the nodes can be abstracted

manually using a slider which provides the cut-off threshold of node significance. Figure 3.14

shows two different models (left), the top model with node significance cut-off ∼ 0.5 has four

events which are input, discharge, chartevent and output and two clusters of random number

18 and 19 with significance 0.051 and 0.118 respectively. The significance of cluster is the sum

of the significance of related events which is basically based on event frequency. On the other

hand, the bottom abstracted model has one event, input (with the highest significance = 1) ,

and two clusters but with different related events and significance scores which are 0.261 and

0.235 for clusters 18 and 19 respectively.

Figure 3.13: The discovered model using fuzzy miner in ProM6.8

The technique of abstracting node in fuzzy miner is simple where the high frequent event is
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preserved, the less frequent and high correlated events are clustered and the low frequent events

are removed. A hierarchy modelling is supported as well when clicking on the clusters. Further

analysis of the events that are included in cluster 19 and 18 is shown in Figure 3.14 as well.

These clusters show that the gray edges represent the links from the previous abstracted model

(with 0.5 cut-off). The actual number of elements inside cluster 19 is 4 elements (Prescription,

CPTevent, Edreg and Edout) while cluster 18 has 5 elements (Datetimeevents, Admission,

Transfer, Noteevent and Call). The Laboratory and Microbiology events are removed after

abstraction since they were not significant based on this threshold.

Figure 3.14: Fuzzy model with abstraction

Although fuzzy miner has reduced model complexity, it has some practical limitations can be

summarized in:

1. The fuzzy miner is an interactive technique and does not discover automated process

model directly where it requires manual adaptation of discovery parameters and model

tuning.

2. It models the sequence of events but cannot discover different process constructors such

as parallel and choice.

3. The produced fuzzy model cannot be converted to a Petri net therefore, it cannot be used
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for model evaluation and conformance checking with the related event log.

4. Events are assigned into clusters in one-to-one mapping which makes the model unable

to discover same events with different context. This is a major limitation where no

semantic clustering is supported. For instance, the examined healthcare process here is

generated form a hospital with different Intensive Care Unit (ICUs). The charted events

can be recorded in different ICUs, which represent different contexts of care. Therefore,

clustering events based only on the frequency as provided by fuzzy miner is not efficient

for distinguishing different care contexts/states.

5. The model may start with any random node where the start node might be changed after

refreshing the model and no clear start and end node are presented at the process.

6. Low frequency events are removed from the abstract model such as Laboratory and Mi-

crobiology events. We believe that, low frequency events can be significant and may have

an effect on the flow of healthcare process, therefore, such events are preferable to be

presented in the abstract model in order to provide comprehensive process model.

3.8.2 Local process mining results

Based on the best of our knowledge, the latest method of unsupervised pattern extraction in

process mining is mining local process models that is discussed in Chapter 2. The implemen-

tation of this approach is supported by the ProM process mining tool. The aim is to discover

abstract model and reduce model complexity with local process models detection. For this

experiment we use the plug-in ‘Mine Local Process Models’ in ProM6.8.

In order to discover local models (LM), a number of settings should be set first such as; the

number of local process models that will be discovered and what kind of process constructors

that should be used for modelling. In this experiment, the parameters that are used before

model discovery are 50 local process models and the process constructors of sequence, choice

and loop. This has resulted in 50 local process model for 43 groups of events, where one group

of event might be expressed using multiple local models. This will be explained in the results

of LM below. The results of mining local models are ranked based on a score that is built

on 4 metrics which are; confidence, determinism, language and coverage. These metrics are

explained in Chapter 2 and for more information refer to [70].

Some samples of top ranked local models are presented below where, each event has two num-

bers in the form of (event frequency in this pattern/total number of this event):
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Figure 3.15: Local process models of group 1

Figure 3.16: Local process models of group 2

(a) LM1 of group 3

(b) LM2 of group 3

(c) LM3 of group 3

Figure 3.17: Local process models of group 3

Figure 3.15 shows the top local process models for group 1 of events which includes admission

and discharge where this local model represents the long dependency between admission and

discharge. Admission event is observed 296 times in total but 295 times has occurred in this

pattern. Also, discharge event is always observed in this pattern with 295 times in total. This

local model has a score of 0.870 based on the different criteria such as frequency, confidence and

coverage that are used in the discovery process. Figure 3.16 shows the pattern of emergency

department register(edreg) then transfer to a hospital ward where a loop of transfer event is

possible. The event (edreg) is observed 227 out of 245 in this pattern and transfer is observed

569 out of 697 in this patter as well.

Figure 3.17 presents the three top local models of group 3 which includes emergency department

register(edreg), emergency department out(edout) and discharge events. These three local
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models are ordered based on their scores which are 0.839,0.831 and 0.826. It should be noted

that, similar models are discovered for the same group of events but not presented here to

prevent redundancy.

It is important to note that, there are 50 local process models that are generated hence, the

above models are picked manually to illustrate a sample of the results of mining local models.

Although mining local model has extracted local pattern in unsupervised way and has captured

the long dependency between events, it has a number of limitations can be outlined as follows:

1. Mining local process models aims to discover internal patterns which are restricted to three

to five event types and cannot discover the whole process represented in a start-to-end

model.

2. Mining local model requires time and careful selection of several parameters that should

be set before doing process discovery. Four main parameters which are the number of

local process models to be discovered, operators type (whether sequence or loop and so

on), maximum and minim number of pattern occurrence and some temporal constraints

such as time gap between subsequent events. These parameters have a heavy impact on

the resulted models.

3. Although mining local process provides unsupervised pattern extraction, it generates a

large number of local process models with the similar score and may have overlapping

events. This requires a domain preference to select the most representative local model

for each group of events.

4. The local process model cannot be used for hierarchy modelling such as the one that is

supported by fuzzy miner.

5. Local process mining can be inefficient method and cannot scale with large event log. We

have tried using this technique with the colorectal cancer patients logs however, the local

models could not be discovered due to multiple crashes of ProM tool that have happened

during local models discovery.

Exploring these two current techniques of process mining has emphasized the need for developing

more robust abstraction method that can do the following; supports an automatic abstraction

for start to end process model and discovers the general care of pattern for a complex large

event log with the ability of handling process variations. Also, the required method should

be able to generate a process model that can be evaluated and assessed within the available

process mining frameworks in addition to distinguishing care events that may occur in different

contexts of the process.
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3.9 Conclusion

This chapter focused on the early steps of our methodology which is the extraction of event log

and the pre-processing. An online medical database known as ‘MIMIC-III’ is used for the first

time in this research and process mining principle components in MIMIC-III are discussed as

well. Two main event log pre-processing approaches are explored which are aggregating and

temporal preparations. These approaches have reduced the number of events in healthcare event

log, however, further method should be used to reduce healthcare process variations and hence,

improve complexity. Two techniques for process mining were used to discover understandable

process model which are fuzzy miner and local process mining. Both methods provided a

mean of event abstraction, however, they have some limitations. The major limitations of

using fuzzy miner is the inability of using such model for evaluation since the model cannot

be converted to a Petri net, which is the formal model for conducting conformance checking

and model evaluation. In addition to the shortcoming of one-to-one mapping that prevented

capturing different contexts based on the surrounded events. Local process mining needed a

domain expert for selecting the representative local model to be used for abstraction. Also,

the discovery of internal patterns does not allow for abstracting start-to-end process models.

Hence, there is a need for a new method that can discover comprehensible start-to-end process

model in an unsupervised way and can be used for evaluation as well. In the next chapter, a

machine learning approach will be explored to apply unsupervised healthcare events abstraction

to discover a start-to-end pattern of care and reduce process complexity.
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Chapter 4

Machine Learning Approach for

Healthcare Process Abstraction

4.1 Overview

The aim of this chapter is to investigate the applicability of using a machine learning technique,

in particular HMMs, for discovering the general process model. In this chapter we present the

method of using HMM for process abstraction in three main steps; learning, model selection

and decoding, as shown in Figure 4.1. These steps are reordered in our research method as will

be explained throughout the thesis. Some well-known information criteria metrics that are used

in literature for model selection are described. Then different empirical results are discussed

which in turn provide some evidences of a number of practical issues that can be found in HMM

models, which are selected as best models. This chapter helps in identifying the limitations of

the adopted metric that can be used for selecting the best number of states in HMMs.

Figure 4.1: Research method and the scope of Chapter 4

4.2 Detection of healthcare hidden processes

Machine learning approaches such as Hidden Markov Models (HMM) may assist in healthcare

process refinement through detecting and abstracting healthcare processes. We have searched

65
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the literature as discussed in Chapter 2 (section 2.7.3) and we found that, HMMs have been

explored in process mining research but mainly advocated for patient pathways clustering pur-

poses. However, we argue that these models can also be utilized for detecting hidden pro-

cesses and consequently, help in events abstraction and visualizing abstracted healthcare pro-

cess model. In this chapter, we explore the use of an unsupervised method for detecting hidden

healthcare sub-processes using HMMs, in particular the Viterbi algorithm.

4.3 Method

The following method of modelling healthcare process with state abstraction has been applied

in process mining research [86] for mining customers intentions, however, it is originally adopted

from other fields that have used HMMs for sequence modelling in speech recognition and bioin-

formatics [104].

In order to model healthcare process using state based abstraction we need to go through three

main stages:

1. Learning:

The algorithm that is used for learning is the Expectation-Maximisation (EM) as men-

tioned in Chapter 2. There are two parameters that should be set before starting model

learning stage which are; maximum iteration and change tolerance for two iterative mod-

els. Other parameters such as transition and observation matrix are initialised randomly

several times to avoid trapping in local minimum. The learning stage aims to populate a

number of HMMs and this requires an iterative increasing of the number of hidden states

where it starts from minimum 2 to maximum the number of event types in the process.

2. Selection:

Selecting the best model based on different information criteria metrics, that will be

discussed in the following section.

3. Decoding:

Decoding is done by running the Viterbi algorithm over sequences to see the underlying

sequences of the hidden states that are likely generated the processes.

Model selection is a critical step built on comparing different models, hence, the following

section elaborates on some well-known metrics that are used for HMMs selection.

4.3.1 Metrics for HMM models selection

In model selection, the log likelihood can be used when models have the same number of

states however, models with different number of states can be compared using information

criterion measures based on penalised likelihood such as AIC, BIC, ICL and cross validated
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likelihood [105] [106]. These metrics are typically used for selecting models that are estimated

using maximum likelihood technique. In general we can use any one of them since all of these

measures try to balance between model likelihood and model complexity [107] [108]. In our

experiments we are focused on BIC since it is the most widely used metric in literature and

has outperformed other metrics in recognizing the true number of hidden states in the data

[109],[110] and [111].

Akaike information criterion (AIC-1974)

AIC [112], is a metric for model selection that penalizes the likelihood of a model for having

unneeded parameters, which leads to a complex model. It considers the predictive density of a

model to generate the given data. Model with less value of AIC is a good model. AIC metric

is presented in the following formula:

AIC = -2 log(likelihood)︸ ︷︷ ︸
Term1

+ 2 par︸ ︷︷ ︸
Term2

(4.1)

where par, is the number of parameters in the model, which is discussed in detail with BIC

metric below. In this formula, Term 1 decreases as we get a model that fits data which rewards

fitting the data well. Term 2 increases as we increase the number of parameters in the model

thus penalising selecting a complex model.

Bayesian Information Criterion (BIC-1978)

BIC [113], is one of the most widely used measures for statistical model selection. It is an

extension of AIC. It aims to penalise the model with more parameters. Models with lower

value of BIC are considered to be better [114]. There are different formulas of BIC however, we

adopt the original formula that is supported by R statistical framework which can be computed

as follows:

BIC = -2 log(likelihood)︸ ︷︷ ︸
Term1

+ log(n) par︸ ︷︷ ︸
Term2

(4.2)

Term 1 decreases as we get a model that fits the data which rewards fitting the data well. Term

2 increases as we increase the number of parameters in the model and also as the number of

observations increase this penalising selecting a complex model with a large amount of data.

Where; n is the sample size and par is the number of parameters. The parameters can be

defined as every probability distribution that we need to estimate, in HMM case we need three

main probability distribution which are the distribution of initial probability, state transition

distribution and observation distribution.

The number of parameters, which is sometimes called the degree of freedom as an indication

of the number of variables that are allowed to be varied, is a key term in BIC calculation and
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for a model with k state and e distinct events, the degree of freedom can be calculated as:

par = k + k2 + ke (4.3)

Where, k2 allows for staying in the same state. This formula can be simplified by considering

probability redundancy constraints where we can calculate k(k−1) rather than k2 as the prob-

ability of the last element can be deduced from the total probability as suggested by [115].

Further simplification can be achieved by considering all zero probabilities as structural zeros

as suggested by [25] therefore, the number of parameters can be calculated as:

par = size(π > 0)− 1 + size(A > 0)− k + size(B > 0)− k (4.4)

Using the notations of HMM that are discussed in section (2.7.2) where, A is the transition

probability matrix and B is the observation probability matrix. From above we can conclude

that BIC tends to penalize an unstable model. In other words, if a model has a high number

of transitions between states, this will consequently increase the number of parameters. BIC

has outperformed AIC in most studies because it provides more realistic results in terms of

involving the amount of data besides the number of parameters as stated in [107]. Also, the

penalty impact of model complexity in BIC is stronger than AIC.

Despite the fact that BIC is better than AIC, some literature raised potential concerns about

using BIC in high dimensional data [116]. They have reported that BIC cannot handle high

dimensional data because the number of parameters is computed based on the initial model.

The risk of this comes as some probability turn to be zero after converging in high dimensional

data which results in a misleading BIC value [115].

Integrated Completed Likelihood (ICL- 2000)

This metric [117] aims to pay more attention to the underlying states when considering the

likelihood of generating the data. It calculates the joint probability of the observations and

states and prefers a model with high partitioning between states. The formula for ICL is

presented here;

ICL = −2log(likelihood, states) + log(n)par (4.5)

It supports an entropy based metric for calculating the separation between states. Although

this metric seems to be applicable to our motivation in this research, we have not adopted it

because this metric was not tested for practical uses in the literature. In addition to the limited

understanding of the behaviour of this metric with large data, which is reported in [106].
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Cross validation likelihood approach

Cross validation approach is a well-known technique for model evaluation in data mining. Se-

lecting the number of state in Hidden Markov Model with cross-validated likelihood has been

explored in [116]. This approach aims to select the best model based on its predictive per-

formance where the data is used as one-sample-out for testing. The result of this work was

promising and showed that cross validated likelihood is equivalent to BIC in most experiments,

however, this method consumes more time for model selection and requires more computational

resources for large data.

Despite the potential limitations of BIC with large data, it has been widely used as a stan-

dard metric for HMMs selection. Therefore, in the following section, we aim to adopt BIC for

model selection and to investigate possible improvements areas to cope with its tendency for

over-fitting with large space data.

4.4 The effect of high dimensional space on BIC

In high dimensional data when the number of events is large and cases have different lengths of

observations, which results in a sparse matrix, BIC tends to favour overfitting models [118] [119]

[120]. Furthermore, BIC highly depends on the prior estimation of the number of parameters

which is sometimes not accurate [115].

There are several modified versions of BIC that try to cope with high dimensional data such as

extended BIC (EBIC) that aims to increase the penalty of sample size into the original formula

[121]. However, [122] has proved that all modified versions of BIC are equivalents in a very

sparse search space.

4.5 Issues on models selected by BIC

Most studies that have mentioned BIC shortcomings with high dimensions data have only

evaluated BIC based on a previously known number of clusters or states in the data and

whether BIC has selected the true model or not.

In this research, we are motivated to provide an empirical investigation of issues that can be

found in models selected by BIC. Initial results of our experiments have shown that there

are three main issues found in models selected by BIC and trained with several size of event

log. These issues are the existence of strong connected components, models ended by multiple

similar states or non-significant (not representative) states.

4.5.1 Existence of strong connected components

The hypothesis of the existence of a higher level abstraction is presumed because of the strong

connection between models states. In order to identify such issue, an established principle in



Chapter 4. Machine Learning Approach for Healthcare Process Abstraction 70

Graph theory that is known as ‘strong connected components/community detection’ is used.

It helps in finding the best partitions between nodes, which are the states in our case, and

highlighting the nodes that are linked strongly to each other. There are different algorithms

that can be used to detect groups of connected nodes, however, we have used a simple widely

used algorithm which is known as edge betweenness-community detection method [123].

The edge betweenness partitioning algorithm aims to find the highest score of edges betweenness

(weights). The idea behind this algorithm is that, the edge of high weight represents the shortest

path that links between different communities. Hence, removing the edge of high weight is the

starting point of breaking the graph into distinct chunks. This algorithm runs iteratively and

each time it breaks the highest score edge and stops when there are no edges left. For each

iteration, a modularity score is calculated which aims to measure how well the graph structure

is. There are different formulas for calculating graph modularity, however, all of these formulas

aim to find the fraction of edges inside community with all possible edges between the nodes

without partitioning. Therefore, the best partitioning is chosen based on the highest number

of modularity between components [124].

4.5.2 Existence of multiple similar states

The second practical issue of models selected by BIC is the multiple presence of similar states.

Before explaining this issue, a proper description of hidden states should be introduced.

From our investigation, hidden states can be characterised based on state type and state class.

On one hand, four main types of states in Hidden Markov models are identified which are pro-

duction, simple, composite and complex states.

Production state is a state has only one event type and it is called so conventionally with other

literature of state modelling [125] that was identified this type. This type of state produces

one single event type and is considered as the leaf of the model. Simple state, as we define, is

a state has several event types but 80% of the state is occupied by maximum 2 event types.

Hence we can say, every production state is a simple state but not vice versa. The third type

is composite state which is a state has several event types and 80% of the state is occupied by

more than 2 event types. Lastly complex state, which is a composite state that contains high

variable processes and this variability makes the process complex and difficult to comprehend.

Complex state will be used later to decide if a state needs further modelling (hierarchical).

On the other hand, state class characteristic which is determined by the event types (distinct

events) that are included in that state. Same-class states are states constructed from the same

distinct events. It should be noted that, same class states can be found in any type of hidden

states, for instance, a model may have two simple states of same class.

Hence, the issue of multiple similar states can be detected through these two characteristics;

state class or state type. Testing the similarity of states using state class perspective is trivial.

It requires looking into the event types related to each state and if two states have identical
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event types, they would be similar and called ‘same-class’ states. However, this perspective

provides a definitive notion of similarity. For more explanation, events are assigned in a state

based on probability where some events have a very small probability of association with a

state. Therefore, if two states are almost identical but have difference of small probability

events, these states are not similar because they are not ‘same-class’ states.

In contrast, detecting the issue of similar state by considering state type perspective provides

more realistic similarity measure. It requires two steps which are; first, check state type, and

second, examine the main events that occupied 80% of both states. Checking state type can be

identified easily by plotting Pareto chart, then if the event types that formed 80% of the states

are the same then these states are similar. It should be noted that, the state type perspective

will be used for detecting the issue of multiple similar states in this research.

4.5.3 Existence of non-significant states

A state can be defined as significant if it is presented in most of the cases. It is a simple metric

that shows the coverage of state in regard to number of cases who have activated that state.

State importance metric is calculated as:

State importance =
number of cases in a state ∗ 100

total number of cases
≥ threshold (4.6)

In this thesis we set an initial threshold of state significance to be more than or equal to 50%

of cases in order to see the states that represent at least half of the patients. This threshold

can be customised based on users preference.

4.6 Empirical results of different space size

In this section we aim to demonstrate how BIC behaves with different sizes of event logs. Four

different sizes and sparseness of event logs are investigated. The size depends on the number

of cases, here patients ID, and number of events while the sparsity is counted by the number of

nulls of variable lengths sequences. Hence, we have provided small, medium and large synthetic

logs and one complex real event log.

Several experiments are conducted in order to characterise a good model and thus prevent

undesirable ones. Initial results showed that the three discussed issues can be found in models

trained with high size and sparse event log as explained below.

4.6.1 Method

Several hidden Markov models (HMM) are learned using four different size event logs. The

package “SeqHMM” version (1.0.8-1) in R is used for learning. A number of random initializa-

tions were tested to avoid trapping in local minimum.
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(a) Small event log

This log was created manually to reflect the healthcare processes inside a general Accident

and Emergency room. It is a fictional data describes how a patient can be treated through a

number of events such as, arrival to emergency room, initial assessment, seeing a doctor and

other event types that are illustrated in Figure 4.2. The synthetic log consists of the following

characteristics:

Table 4.1: Small size log characteristics

Number of cases Number of event types Number of events Number of variants

10 9 84 6

The log has processes with similar length; minimum 8 and maximum 9. The log space has 10*9

dimensions and there are only 6 null values which means the space here has a very low sparsity.

Figure 4.2 shows traces of the created process.

Figure 4.2: Generated traces of Accident and Emergency room (experiment 1)

The result of training HMM with different number of hidden states starting from minimum 2

to maximum 9, which is the total number of event types, is shown in Table 4.2 below.



73 4.6. Empirical results of different space size

Table 4.2: Training HMMs with different number of hidden states (experiment 1)

Number of states Iterations
=(MX)3000

Initial log Final Log likelihood BIC (Bayesian
information
criterion)

2 49 -188.0499 -155 394
3 37 -191.1419 -125 392
4 21 -191.237 -101 411
5 87 -192.6807 -76 437
6 63 -188.9694 -80 529
7 41 -188.3411 -54 568
8 26 -183.6116 -50 663
9 86 -186.2574 -40 756

The results in Table 4.2 show that the model with 3 states is the best model because it has

the lowest value of BIC. Figure 4.3 below illustrates the events distribution over states and the

transitions between the states of 3states model.

Figure 4.3: HMM of small synthetic data (experiment 1)

The numbering of the states is random and it is distributed from left to right where state 1 is

the left most state. The process starts in state 3 where it has full probability (below the state)

as the starting state. The model shows the healthcare process starts by the patient’s arrival to

the Accident and Emergency room and initial assessment. Then, the patient may be seen by a

clinician or specialist. If a patient needs to be admitted to the hospital, a bed is requested for

him. After that, some patients may be discharged or admitted to the hospital and leave the

Emergency department.

Results

As was mentioned in the first chapter, the process has a natural flow. Generally the process

follows directional steps, sequential events, until reaches the end. If we assumed there must be

a mainstream pattern of the processes, the model should be able to identify the main transition

points between blocks of events.

This model has several good characteristics for modelling processes:

• It has a natural flow of the process by providing a clear direction of the process or sub-

process/states and the states have sequential transitions between them.
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• Processes are abstracted into distinct states where each state corresponds to different blocks

of events. In other words, this model tends to have high dissimilarity between states.

• There is no production state which has only one event types. States have allowed reasonable

variance.

• All states are important because they cover all cases as shown in Table 4.3.

Table 4.3: State importance of the selected model in experiment1

state1 state2 state3

# of cases 10 10 10

percentage 100% 100% 100%

state important yes yes yes

(b) Medium event log

The goal of creating this synthetic log is to provide a controlled size of sparse space and increase

the number of cases. This log is created using a simulation tool called “NETIMIS” [126].

The tool is developed to help modelling artificial processes for the aim of answering “what-if”

questions. The synthetic log has a number of the characteristics that are reported in Table 4.4.

Table 4.4: Medium size log characteristics

Number of cases Number of event types Number of events Number of variants

500 6 2348 6

The log has traces with different lengths; minimum 3 and maximum 6. The log space has 500*6

dimensions and there are 652 null values which make the space relatively sparse. A sample of

the traces that are simulated for this experiment is illustrated in Figure 4.4.
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Figure 4.4: Generated synthetic traces by NETIMIS (experiment 2)

The result of training HMM with different numbers of hidden states starting from 2 to 6, which

is the total number of event types, is shown in Table 4.5 below.

Table 4.5: Training HMMs with different number of hidden states (experiment 2)

Number of states Iterations
=(MX)3000

Initial log Final Log likelihood BIC (Bayesian
information
criterion)

2 70 -4512.326 -3220 6541
3 28 -4867.832 -1963 4106
4 24 -4545.877 -2013 4299
5 13 -4610.926 -812 2005
6 23 -4366.252 -812 2129

The results show that the 5states model is the best model because it has the lowest value of

BIC. Figure 4.5 below illustrates the events distribution over states and the transitions between

states of 5states model.

Figure 4.5: HMM of medium synthetic data (experiment 2)



Chapter 4. Machine Learning Approach for Healthcare Process Abstraction 76

The numbering of the states is random and it starts from left to right where state 1 is the state

of ‘e’ event. The temporal order of the process started from state 5 where it has 1 probability,

appeared in the centre of that state, as the starting state.

Results

It can be clearly seen that in this model when a trace reaches state 3 it will certainly transition

to state 1 and next to state 2. This is because the probability of transition from state 3 to

state 1 is 1 and from state 1 to state 2 is 1 likewise. Hence, we anticipate that a better

generalisable state abstraction exists as suggested in Figure 4.6. We would like to see a higher

level abstraction that combines state 3, state 1 and state 2 since they all linked to each other.

Another possible abstraction can be revealed between state 5 and state 4 since the probability

of a process that started in state 5 will transition to state 4. Although providing this kind of

high level abstraction may degrade model accuracy, it prevents model over-fitting and provides

better generalisability.

Figure 4.6: HMM of the synthetic data with possible higher level abstraction

A simple experiment has been performed to test our hypothesis of the existence of a high level

abstraction between states. We used the ‘strong connected components’ detection approach.

This helps in highlighting states that are linked to each other based on the high connectivity

between them. Figure 4.7 displays two possible groups of higher abstraction and this conforms

with our previous hypothesis. The first group, the red colour, combines state 1, state 2 and

state 3 because they are strongly connected whereas the second group, the blue colour, includes

state 4 and state 5.
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Figure 4.7: States of Figure 4.5 after using strong connected components detection

(c) Large event log

The aim of creating this synthetic log is to provide a higher process variability and sparsity

than the event log used before. This log is created after adding some events using log filters in

ProM tool [127] on the same event log that is used in the previous experiment (experiment 2).

Increasing event numbers may come in the form of adding, swapping or repeating some events.

The generated log has the following characteristics, see Table 4.6.

Table 4.6: Large size log characteristics

Number of cases Number of event types Number of events Number of variants

500 6 3560 455

This log has a large number of process variants where 455 unique process instances are followed.

Processes also have highly variable lengths; minimum 3 and maximum 11. The log space has

500*11 dimensions and there are 1851 null values which make the space sparse. Sample of the

generated traces is presented in Figure 4.8.
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Figure 4.8: Generated traces of large log (experiment 3)

The result of training HMM with different number of hidden states starting from 2 to 6, is

shown in Table 4.7 below.

Table 4.7: Training HMMs with different number of hidden states (experiment 3)

Number of states Iterations
=(MX)3000

Initial log Final Log likelihood BIC (Bayesian
information
criterion)

2 44 -6610.772 -6218 12543
3 273 -6485.913 -6152 12492
4 159 -6421.052 -6014 12315
5 315 -6714.449 -5808 12018
6 188 -6470.779 -5777 12088

The results show that model with 5 states is the best model because it has the lowest value of

BIC. Figure 4.9 below illustrates the events distribution over states and the transitions between

states of 5states model.
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Figure 4.9: HMM of large synthetic data (experiment 3)

Results

Clearly, the presence of possible higher abstraction can be found between state 1, state 3 and

state 4 due to the high probability of transitions between them. State 4 has 0.72 probability to

transition to state 3 and state 3 has 0.69 probability to transition to state 1. However, there

are two other issues can be found in this model :

• Similar States

In the model presented in Figure 4.9, state 3 and state 4 are similar. Although state 3 is a

production state and state 4 is a simple state (contains event ‘a’ and very small probability of

event ‘b’), they are similar states. This is because more than 80% of both states are occupied

by the same event ‘a’, see Pareto chart in Figure 4.10 below for exact probability for events in

each state.

(a) Pareto chart of state 3 (b) Pareto chart of state 4

Figure 4.10: Pareto chart of simple states in large event log

• Unimportant States

The model that is shown in Figure 4.9 has 5 states however, not all presented states are

significant. State importance as has been defined early, is a state that has 50% or more of

cases. Therefore, states have less than 50% should not be presented in the mainstream process
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model. State importance in this model is shown in the following Table 4.8.

Table 4.8: State importance of the selected model in experiment3

state1 state2 state3 state4 state5

# of cases 367 104 389 297 346

percentage 73.4% 20.8% 77.8% 59.4% 69.2%

state important yes no yes yes yes

(d) Complex real event log

The goal of using real event log here is to provide a larger space and observe the behaviour

of BIC with high sparsity and distinct process instances (extremely variable processes) where

every patient has followed a unique healthcare process. Using the MIMIC-III as explained in

Chapter 3 , we have extracted an event log of a group of patients with ‘colorectal cancer’. This

real event log consists of the following characteristics in Table 4.9.

Table 4.9: Colorectal cancer log characteristics

Number of cases Number of event types Number of events Number of variants

1197 15 270,429 1197

This log includes 15 event types including administration events such as admission, transfer

and discharge in addition to other intensive care events such as bedside charting and nurse

noting. For more description of the care events that are included in this healthcare process

refer to Chapter 3. This event log has 1197 traces with highly variable lengths; minimum 32

and maximum 1188. Log space has 1197*1188 dimension and there are 1,151,607 null values

which make the space very sparse. Sample of colorectal cancer processes is illustrated in Figure

4.11.
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Figure 4.11: Colorectal cancer real traces (experiment 4)

The result of training HMM with different numbers of hidden states starting from 2 to 15, is

shown in Table 4.10 below.

Table 4.10: Training HMMs with different number of hidden states

Number of states Iterations
=(MX)3000

Initial log Final Log likelihood BIC (Bayesian
information
criterion)

2 78 -733528.7 -439262 878912
3 182 -781375.1 -432114 864852
4 348 -790453.2 -424301 849489
5 462 -757942 -420207 841588
6 530 -723263 -415769 833025
7 1340 -717309 -415519 832864
8 849 -698582 -412234 826657
9 901 -710080.1 -411706 825987
10 1022 -720699.8 -409399 821786
11 885 -732276.1 -401820 807066
12 1142 -737459.4 -402900 809689
13 1028 -707600 -402944 810265
14 974 -738786.1 -404369 813628
15 1412 -741162.2 -403276 811979

The results show that model with 11 states is the best model because it has the lowest value of
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BIC. Figure 4.12 below shows the events distribution over states and the transitions between

states of the best model with 11 states.

Figure 4.12: HMM of colorectal cancer data (experiment 4)

The majority of the processes started in state 10 with 0.96 probability while few processes

started in state 6 with 0.037 probability.

Results

There are three issues found in this model:

• The first issue is the potential of the existence of higher level abstraction among states as

shown in Figure4.13.

Figure 4.13: States of Figure 4.12 after using strong connected components detection

The technique of connected components detection has found three possible groups for abstrac-
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tion which are, red group includes state 1, state 2 and state 3, green group includes state 5

, state 7 and state 8 and blue group that consists of state 9 and state 11. Hence, this model

provides detail that hinder capturing the main pattern of care in colorectal cancer process.

• The second issue is the presence of unimportant states. Based on Table 4.11, there are

two states, state 5 and state 8, that provide undesirable details in a model that is supposed to

present the mainstream process for colorectal cancer patients.

Table 4.11: State importance of the selected model in experiment 4

state1 state2 state3 state4 state5 state6 state7 state8 state9 state10 state11
number
of cases

671 669 676 692 545 1166 560 643 1197 1147 1067

percentage 56% 56% 56% 57% 45% 97% 46% 53% 100% 96% 89%
state im-
portant

yes yes yes yes no yes no yes yes yes yes

• The third issue is the presence of similar states. By looking at the model of Figure 4.12, we

can see there is a high similarity between state 1 and state 8 and suspected similarity between

state 2 and state 7.

In order to test this similarity we first check the type of states for both state 1 and state 8, and

second for state 2 and state 7. Plotting Pareto chart is used here to test the states similarity.

(a) Pareto chart of state 1 (b) Pareto chart of state 8

Figure 4.14: Pareto chart of simple states in complex event log

State 1 and state 8 appear to be simple and similar states as shown in 4.14. Simple states

because 80% of both states is occupied by maximum 2 event types. Similar since the event

types that cover 80% are the same which is Chart event.

Visualizing the sub-models of that states using Disco, a process mining tool, has proved that

there is no significant difference in terms of their process, see Figure 4.15. The process of state
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1 (a) is very similar to the process of state 8 (b) except ‘Input’ event, which has low frequency.

It might be preferred for these two states to be combined in one single representative state that

includes the three events; Chart, Labevent and Input events.

(a) sub-model of state 1 (b) sub-model of state 8

Figure 4.15: Sub-models comparison of similar states in complex event log

On the other hand, investigating the suspected similarity between state 2 and state 7 has re-

vealed that both states of type composite as shown in Figure 4.16. However, they are not similar

since the main event types that covered 80% of both states are different. In other words, the

main event types of state 2 Figure 4.16 (a) are (Input, Output and Chart events) while the

main event types of state 7 Figure 4.16 (b) are (Output, Input and Note events) where states

differ in the third event type.

(a) Pareto chart of state 2 (b) Pareto chart of state 7

Figure 4.16: Pareto chart of composite states in complex event log
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4.6.2 Discussion

The adopted method of state modelling, which includes; learning, selecting and decoding, pro-

vides a valid approach for automated abstracting of healthcare processes. However, it requires

a metric for selecting the good model. BIC is a well-known metric and widely used for selecting

models that are generated from learning HMMs of different states. Although BIC finds the

best of candidate models with the aim to balance between fitness and complexity, it takes the

models under the assumption that there must be a good model among the candidates. In other

words, BIC does not examine the goodness of the states.

The empirical findings of the presented experiments confirm that models selected by BIC can

suffer from some issues such as overfitting which leads to the potential of higher abstraction,

the existence of multiple similar states and unimportant states.

There are several reasons that may trigger these issues. Our experiments in this chapter have

focused on data size, process variability and sparsity. However, a considerable amount of litera-

ture has already proved that the EM algorithm, which is used in HMM learning, is guaranteed

to optimise around the given initialization. Therefore, the deficiency of the models here is

likely to be influenced by the initialization of model parameters in addition to event log size

and sparsity.

However, the need for new method is essential in order to provide better abstract process model.

Table 4.12, summarizes the three issues found in the previous experiments. We can conclude

that BIC is sensitive to the size and sparsity of the data. It has effectively selected a good

model for only the first experiment that has a small size and non sparse space.

Table 4.12: Qualitative logs description and issues found in models selected by BIC

Experiment size sparse connected
components

similar
states

unimportant
states

Experiment 1 small log not sparse no no no
Experiment 2 medium limited sparsity yes no no
Experiment 3 large sparse yes yes yes
Experiment 4 complex high sparsity yes yes yes

It should be noted that, the method of state abstraction using HMMs has a computational

processing related issue. The required time for learning HMMs in our experiments is affected

by the event log size and the number of hidden states. Therefore, the learning stage needs

longer time as the sample size and the number of hidden states increase.

4.7 Conclusion

This chapter has provided machine learning method based on HMMs for using state abstraction

modelling. Several model selection metrics are discussed for example, AIC, BIC and ICL. We

have conducted some empirical experiments using toy data and colorectal cancer real log that
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is extracted from MIMIC-III. The used event logs were ranging of size, process variability and

sparsity. Three main issues were detected on models selected as the best models. These issues

are; the potential of higher abstraction, existence of multiple similar states and unimportant

states. Interestingly, BIC metric could select a good model with small size event log and this

enlighten us for characterising what a good model should be.

In the next chapter, a new method for model selection is suggested. This method is motivated

by finding a good model that is free, or has less suffering, of the limitations that were identified

in BIC models. The proposed selection method is based on some criteria that are inspired from

the empirical results of this chapter.



Chapter 5

Multi-objective Optimisation for

Process Abstraction

5.1 Overview

This chapter explores four proposed criteria that may help in selecting the most desirable ab-

stracted process model. These criteria are linearity, state compactness, cross state similarity and

state importance. The rationale behind these criteria and their calculations are presented here.

In addition to demonstrating the criteria properties and steps for designing a multi-objective

function. This chapter focuses on the optimisation role of the designed multi-objective function,

which is an important step in our methodology, see Figure 5.1. We conclude this chapter by

adopting and improving the method of modelling complex process using state abstraction that

is discussed previously in Chapter 4.

Figure 5.1: Research method and the scope of Chapter 5

5.2 Multi-objective optimisation

Multi-objective optimisation is a class of optimisation technique that is firstly discussed in the

mid of 1990s as reported in [128]. It has been initially explored in different fields such as

economy and engineering. Adopting this type of optimisation in machine learning recently has

87
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received more attention because of it is inherit matching of real world optimisation problems.

The main difference between this kind of optimising and other more common optimising tech-

niques for instance, single objective function, is the representation of the objective function

that is used in the optimisation process. The multi-objective function is represented in a vector

form rather a scalar function. Vector representation provides better capability for optimising a

problem with different or conflict objectives, which is the case of most real world problems.

In this research, the search space of a complex event log is used to populate a number of

converged HMMs, then the proposed multi-objective function optimises the space of candidate

HMMs models to the space of best models that are selected based on our criteria, as illustrated

in Figure 5.2.

Figure 5.2: Search spaces transformation in our method

5.2.1 Pareto Optimal Solutions

Generally the aim of using multi-objective function is to optimise multiple solutions for the

problem to be solved. This collection of solutions in multi-objective optimisation is known

as Pareto solutions, which is named after the economist “Vilfredo Pareto” [128]. The Pareto

solutions can be categorised into two types of solutions which are; optimal and feasible solu-

tions. The optimal solutions guarantee the best trade-off between optimisation criteria among

candidates space and they dominate other feasible solutions. It should be noted that, some

practical search space techniques may populate candidates that are non globally optimal and

hence, Pareto optimal solutions that are resulted in the optimisation step might not be optimal

as well [129].

In this research and as mentioned earlier, the ‘EM’ algorithm is used to generate the candidates

space of HMMs and this algorithm cannot guarantee finding global optimal solutions since it

might be converged to locally optimal models. Thus, the results of our multi-objective opti-
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misation are not necessarily Pareto optimal solutions in regard to the search space. In this

research we call objectives as criteria, which are discussed in the following section.

5.3 Proposed criteria for model selection

In multi-objective function each function correspond to a particular criteria that is significant in

model selection. Despite the exploratory nature of our experiments in Chapter 4, the findings

offered some insights into desirable model characteristics. We identify four key criteria that

play significant roles in the selection of the best process model which are; linearity, state com-

pactness, cross state similarity and state importance. The rationale of proposed these criteria

and calculation methods for them are discussed below.

5.3.1 Rationale behind the proposed criteria

In order to avoid or mitigate issues found in models that were selected by BIC, we need to

understand possible factors that may control such issues. We are motivated by adopting the

same principles of the ideal model that was selected in experiment 1 in Chapter 4 due to its

good characteristics for modelling processes as discussed earlier.

Investigating the structure of the hidden states of our desirable model has revealed important

insights into the effect of increasing the number of states to a model. Figure 5.3 shows the

projection of hidden states over sequences for models with different number of states. We used

the event log that has generated the ideal model with 3 states and it is characterised in Table

4.1. It has simple tractable processes as shown in 5.3 (a) Accident and Emergency fictional

observations (A&E) which help us in analysing the process qualitatively. An iterative decoding

using the Viterbi algorithm is applied starting from 2 hidden states to 9 hidden states which is

the total number of distinct events and presented in Figure 5.3 (b - i).
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(a) Accident and Emergency room fictional processes

(b) 2state model (c) 3state model

(d) 4state model (e) 5state model

(f) 6state model (g) 7state model

(h) 8state model (i) 9state model

Figure 5.3: The impact of increasing the number of states to a model
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In Figure 5.3 (b), two hidden states are used which results in a bad process modelling. Too

few states leads to a model of high inverse transition rate (unstable model) where a process

changes rapidly from one state to another. Moreover, state 1 and state 2 contain groups of

highly different events, for example events occurred in state1; arrive , seen by clinician, request

a bed, admission to ward and also discharge. This makes both states have a high variance

which contributes to under-fitting the model.

In Figure 5.3 (c), three states are used for training. This model represents the natural flow of

the process which helps in providing a good segmentation of the process into blocks of events.

The model is stable which results in a linear flow of the process. There are no overlapping

events between states which leads to desirable variance in all states.

In Figure 5.3 (d), the model was trained using four hidden states. Although this model seems

to be stable and provides a good segmentation of the process, it has a production state which

is state 1. A production state, as defined earlier, is a state has a single event type. This type

of state is characterised with a very low state variance.

The phenomena of production state is expected here since we deal with a small scale event log

and it might be an indication of over-fitting.

In Figure 5.3 (e - i), the model was trained by 5,6,7,8 and 9 hidden states respectively. The

phenomena of production state is growing in all models which leads to highly non-preferred

over-fitting models.

5.3.2 The proposed criteria

Taking the previous analysis into consideration, we propose several criteria that may work

as control factors. These factors contribute effectively in characterising a good model. The

suggested criteria are linearity, state compactness, cross state similarity and state importance.

(a) Linearity

Linearity can be defined as the sequential flow of the process where staying in the same state is

accepted but no inverse flow is allowed. Linear HMM may include both well known structures

‘left-to-right’ or ‘right-to-left’ . More linearity means less inverse transition is preferable.

The linearity principle is natural idea with the intuitive understanding of healthcare processes.

In other words, a patient is exposed to a series of healthcare steps starting from the need for

healthcare, traversing intermediate investigation and ending by a healthcare outcome. This

flow is highlighted by [130] in the description of a general clinical pathway guide that implies

the movement from one stage to another.

We argue that although a healthcare process model looks complex at the first glance, there

must be a mainstream pattern of care followed. Taking into consideration the process nature

in terms of sequential direction of events and under the assumption of the hidden linearity in

healthcare process, it would be a good idea to prefer a model that has captured the highest
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linearity between states. This model is anticipated to have the best cut off points between

blocks of care/state but is not necessarily the best fit for the data.

(b) State compactness

State compactness aims to measure the similarity of inner state processes. It is an important

metric for demonstrating the validity of process clustering and quantifying state variance. There

are different internal cluster validation metrics that can be used, such as entropy based metrics,

however, we aim to use a metric that is more appropriate for sequence clustering validation. It

is preferable to have a high compactness score which means high similarity of processes.

(c) Cross state similarity

Cross state similarity aims to measure the similarity of processes between states. This is to

ensure relatively distinct states and to reduce the chance of overlapping events between states.

Cross state similarity is measured by the number of common nodes and common edges. Models

with high dissimilarity score between states are desirable.

(d) State importance

A state can be defined as significant if it is activated by most of the cases. In this thesis we set

a threshold of state importance to be more than or equal to 50% of cases in order to capture

the main process followed by at least half of patients.

5.4 Calculation of the proposed criteria

This section explains in detail the calculation for our criteria; linearity, state compactness, cross

state similarity and state importance.

5.4.1 How to calculate linearity

Left-to-right topology of a HMM can be constructed by controlling the upper triangle of the

transition matrix and right-to-left HMM is controlled by the lower triangle of the transition

matrix. Both topologies represent a form of linearity. For instance, a transition probability

matrix T of a 3states right-to-left HMM is constructed as:

T =


S1 S2 S3

S1 1 0 0

S2 0.6 0.4 0

S3 0 0.5 0.5
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Where the sum of probabilities of each row = 1. The linearity of this model can be calculated

as:

L =
∑

probability of each row
number of states , L = 3

3 = 1

In a non-linear HMM model such as the case of a model with inverse transitions that has a

probability transition matrix T1

T1 =


S1 S2 S3

S1 0.6 0.2 0.2

S2 0.7 0.3 0

S3 0 0.5 0.5



First, we need to know what the main direction of the model is. We can deduce the direction

of the model from the probability of transition matrix.

If the sum of the transitions of upper triangle part is higher than the sum of the transitions of

lower triangle part then the model is mostly linear with left-to-right direction and vice versa.

For instance, in T1 the sum of the transitions of upper triangle (left-to-right direction) is =

1.8 whereas the the sum of the transitions of lower triangle (right-to-left) direction is = 2.6

therefore, model linearity is;

L =
∑

sum of the transitions of the most intensive traingular
number of states

L = 2.6
3 = 0.86

Practical steps for linearity calculation

After learning an HMM, the model has converged and the parameters can be extracted from

model’s object as described in the following R code lines:

require(seqHMM)

require(gdata)

sum(lowerTriangle(model$transition probs, diag = TRUE, byrow = TRUE)) = 2.152835

sum(upperTriangle(model$transition probs, diag = TRUE, byrow = TRUE)) = 3.095071

% divide the largest value / number of state

3.095071/4 = 0.7737677

5.4.2 How to calculate state compactness

The similarity of processes inside a state can be measured using an optimal string alignment

(OSA) score which is an extension of the edit distance score that is suggested in [131]. Optimal

string alignment is designed for measuring text similarity therefore, the event log must be in

the form of horizontal sequences (all events that are belong to a particular case must be in one
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single row). OSA transforms a sequence to be identical to another sequence. It allows four

transformation operations; inserting, deleting, substituting and transposing. For example:

• admission, blood test, charting − > blood test, charting: insertion of admission.

• admission, blood test, charting − > admission, blood test, noteevent: substitution of

charting to noteevent.

• admission, blood test, charting − > admission, charting, blood test: transposition of

blood test to charting.

• blood test, charting, discharge − > blood test, discharge: deletion of charting.

Each operation can be weighted hence, in healthcare application we believe that the weight

of transposing should be more tolerant because transposition between events is expected and

often happens in healthcare processes. The setting used for operations weight is; insertion,

substitution and deletion = 1 while transposition = 0.5.

OSA calculates the pairwise alignment score between sequences. For example, an event log

with N sequences will generate an N × N alignment matrix. Then the average score will be

taken as the score of state compactness.

Practical steps for state compactness calculation

1. Install “stringdist” package in R.

2. Extract processes of each state individually.

3. Calculate the alignment score using seq distmatrix() function in ‘stringdist ’ package.

4. Take the average score as the score of state compactness.

5.4.3 How to calculate cross state process similarity

Computing cross state similarity using the same method of OSA is not efficient as a result of

the pairwise similarity calculations that are required for each sequence from one state against

all the sequences in the other states. For cross state similarity we aim to measure the similarity

between groups of processes/sequences between states. The work in [132] provides a review of

different measurements for process comparison. We have adopted one measure which is based

on the similarity of common nodes and common edges between processes.

Practical steps for cross state similarity calculation

1. Extract processes of each state individually where each state is considered as a sub-log

(L).

2. Calculate similarity and this includes:
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– Extract common nodes (event types).

– Calculate node (n) similarity using:

sim(L1, L2) = 2 ∗ number of (n1 ∩ n2)

number of (n1 + n2)
(5.1)

– Extract common edges using the method of 2-gram extraction between two consec-

utive nodes.

– Calculate edge (e) similarity using:

sim(L1, L2) = 2 ∗ number of (e1 ∩ e2)

number of (e1 + e2)
(5.2)

– Calculate total similarity score as:

Total sim(L1, L2) =
node similarity score + edge simialirty score

2
(5.3)

3. Take the average score of the symmetric matrix that holds cross state similarity of all sub

logs as a score of that model.

5.4.4 How to calculate state importance

State importance is a simple metric and is calculated as:

State importance =
number of cases in a state ∗ 100

number of all cases
≥ threshold (5.4)

This metric returns how many non-significant states a model has.

5.5 Criteria Properties

The investigation of the property of the proposed criteria aiming at understanding how these

criteria can be used to cope with the issues found in HMMs. It should be noted that, state

importance is a constraint criteria, since it has a predefined threshold, and will play a penalty

role in our multi-objective function. Therefore, we explore here the property of unconstrained

criteria which are; linearity, state compactness and cross state similarity.

The figures used here are related to event logs that were used in experiments 1,2 and 4 in

Chapter 4. The event log of experiment 3 is discarded to avoid redundancy since it has trained

with same number of hidden states in experiment 2.

Models in X axis in all figures started from the smallest number of hidden states to the largest

for, instance, model number 1 is trained with 2 hidden states and model number 2 is trained

with 3 hidden states and so on.
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5.5.1 Linearity

High linearity models are likely to be models with a small number of states. The more states

the lower the linearity will be. Figure 5.4 shows that, high linear process is found in model

number 3 in (a), model number 2 in (b) and model number 1 in (c) where these models have

4, 3 and 2 hidden states respectively.

(a) Synthetic process (b) Emergency room process (c) Colorectal cancer process

Figure 5.4: Linearity criteria property

5.5.2 State compactness

Models with highest compactness are likely to be models with a large number of states. The

higher the number of states, the better compactness where the distance between processes inside

a state approaches 0. The compactness keep improves as we go positively in X axis as shown

in Figure 5.5. The best compactness is model number 5 , 8 and 10 for (a) synthetic process,

(b) emergency process and (c) colorectal cancer process respectively.

(a) Synthetic process (b) Emergency room process (c) Colorectal cancer process

Figure 5.5: State compactness criteria property

5.5.3 Cross state similarity

Cross state similarity has also a fluctuating pattern where it starts with high cross similarity

score, then drops with low score after that some high scores might be found again. Generally,

models with desirable low cross state similarity are likely to be captured before approaching
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best compactness points.

It can be clearly seen in Figure 5.6 that several minimum points of cross state similarity are

reached before approaching the point of best compactness. For example, in (a) synthetic process,

the cross state similarity has dropped in model number 4 before model number 5, which has

best compactness.

Also, in (b) emergency process, low similarity between states is detected in model number 3,

4 and 6 before model number 8, that has best compactness. Likewise in (c) colorectal cancer

process has several models with a very low cross state similarity score such as model number

6, 7 and 9 before best compactness model, model number 10.

(a) Synthetic process (b) Emergency room process (c) Colorectal cancer process

Figure 5.6: Cross state similarity criteria property

5.5.4 Discussion

Exploring the criteria properties helps in understanding the potential impact of the proposed

criteria on HMMs issues. For more clarification, the empirical results in Chapter 4 have shown

that the higher number of states in a model, the more likely of detecting strong connected

components. Also, high linearity model is likely to be a model with few number of states.

Thus, linearity criteria may act as an effective factor that helps in choosing the model with less

number of connected components.

On the other hand, results of previous experiments reported that similar states issue is not

only restricted to models with high number of states but can be found in models of few number

of states likewise, see Figure 5.6. This might be because of the bad initialization which is a

consequence of the lack of knowledge about the data. Adopting a metric that prefers a model

with high dissimilarity between states might help in coping with this similar states issue. Hence,

the criteria of cross state similarity could play a role for addressing such issue.

An attention should be paid for preferring a model with high dissimilarity between states since

it may result in choosing a model with a large number of states where each state holds one

single event type. Therefore, the risk of preferring a model with high dissimilarity between

states can be mitigated by favouring a model with a reasonable states variance along with

dissimilar states. State compactness here may play a role in preferring a model of moderate
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states variance.

Moving to the third issue that is related to the presence of unimportant states where this

problem seems to be resulted form insufficient data along with bad initialization. Some concerns

may rise regarding the EM algorithm, that is used for learning HMM models, which is not smart

enough to decide if a state is significant or not. Therefore, we intend to use a penalty term

where a process miner can set a threshold for state importance that should be presented in the

model.

5.6 Designing the multi-objective optimisation function

In order to quantify the optimal model we need to design an objective function that combines

and represents our criteria. We are interested in finding a model with high linearity (l), moderate

state compactness (sc), low cross state similarity (css) and includes only important states (si).

The idea of weighted parameters is widely used in multi-objective function optimisation [133]

which is in the form of

max
∑n

i=1 wi ∗ fi(x), where w is the weight and f(x) is the desired function

Adopting this principle can help us in designing our multi-objective function especially when

the goal is not for finding a global optimum solution.

We have developed the following multi-objective functions to find the most desirable model for

process abstraction. Two types for optimisation are developed which are soft optimisation and

strict optimisation.

1- Soft optimisation uses multi-objective function that is presented in the Equation(5.5)

for optimising candidate models space. This function represents only unconstrained criteria;

linearity, state compactness and cross state similarity. It has a tolerance toward unimportant

states. The purpose of this flexibility is to pick a model that represents the mainstream pro-

cess regardless how many cases related in each state, hence model selected using this type of

optimisation may hold a level of detail about the process.

f(1) = max{ 2 (li)︸ ︷︷ ︸
Term2

− 1

2
(sci)− cssi︸ ︷︷ ︸

Term1

: i = 1..n} (5.5)

2- Strict optimisation uses multi-objective function that is showed in the Equation(5.6)

for optimising candidates model space. This function represents both constrained and uncon-

strained criteria; linearity, state compactness, cross state similarity and state importance. As

its name means, this type of optimisation takes state coverage into consideration and tends to

penalize model with unimportant states. This function is developed to pick the best model that
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represents the mainstream process without detail about the process.

f(2) = max{1− sii︸ ︷︷ ︸
Term3

[2 (li)︸ ︷︷ ︸
Term2

− 1

2
(sci)− cssi]︸ ︷︷ ︸

Term1

: i = 1..n} (5.6)

state importance here is normalized using the following simple normalisation method:

normalized state importance (si) = original value - minimum value
maximum value - minimum value

The proposed multi-objective functions have main terms:

Term1 consists of two functions which are state compactness and cross state similarity. State

compactness decreases as we get high similarity inside states which leads to low state variance.

knowing that state compactness keeps decreasing has derived us to reduce the weight of state

compactness to half. This helps in penalising a model of having very low state variance. Cross

state similarity decreases as we get less overlapping processes between states which is preferable.

Term2 is linearity which increases as we get a more linear model and this rewards a model for

providing better segmentation/partitioning. It is multiplied by 2 to ensure equal forces in the

space. For more clarification, choosing this weight for linearity is a result of several empirical

investigations as will be explained in the next section.

Term3 further penalises a model that has unimportant states.

This final version of the strict and soft multi-objective optimisation is a result of several attempts

to understand each function individually and how all criteria may affect on each other.

5.6.1 Steps for designing the proposed multi-objective function

Before demonstrating our steps for designing the multi-objective function, it is important to

take into consideration the property of each criteria and the relations between them. This has

helped in criteria weightings and explaining how the criteria could contribute in a trade-off

relation.

Criteria trade-off and weightings

Finding a solution in search space requires finding a balance between conflict criteria. This

is because a model with high linearity is unlikely to have high state compactness or high dis-

similarity between states. The weighting here focuses on unconstrained criteria since state

importance will be treated as a penalty term after optimising the space using soft optimisation.
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Figure 5.7: Process abstraction model and different forces

We have applied simple heuristic for criteria weighting tuning which has done using our synthetic

logs and real data of colorectal cancer log. The following presented figures are generated from

the colorectal cancer event log to avoid redundancy, however, other synthetic event logs that

were presented in Chapter 4 have shown the same behaviour of criteria tuning. The calculation

of the criteria using colorectal cancer data is reported in Table 5.1.

Table 5.1: Criteria calculation of colorectal cancer event log.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14
States 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s
Linearity 0.99 0.75 0.78 0.79 0.78 0.72 0.71 0.71 0.65 0.74 0.73 0.66 0.67 0.65
compactness 0.76 0.42 0.44 0.26 0.28 0.23 0.18 0.16 0.15 0.15 0.35 0.32 0.33 0.28
cross sim. 0.89 0.84 0.76 0.50 0.47 0.44 0.45 0.51 0.43 0.47 0.47 0.47 0.43 0.42

During weights tuning process, we aimed to investigate the behaviour of state compactness and

cross state similarity with linearity. Basically, combining state compactness and linearity in

one function shows the dominance of the compactness over linearity where the model of the

maximum value is the model of the best compactness score as shown in Figure 5.8.

f0 = max{linearityi − state compactnessi : i = 1..n} (5.7)

Figure 5.8: State compactness and linearity in colorectal cancer log

Hence, we have minimised the weight of state compactness to the half as below;

f1 = max{linearityi −
state compactnessi

2
: i = 1..n} (5.8)



101 5.6. Designing the multi-objective optimisation function

Figure 5.9: State compactness and linearity after weighing

It can be clearly seen in Figure 5.9, that linearity has started to affect on function behaviour

where model number 4, which has high linearity, seems to be equivalent to model with high

compactness.

On the other hand, the relation between cross state similarity and linearity without weights has

provided a balance between their forces where no one of these criteria has a dominance effect

on the function behaviour.

f2 = max{linearityi − cross states similarityi : i = 1..n} (5.9)

Figure 5.10: Cross state similarity and linearity criteria

The best model as presented in Figure 5.10, is model number 5, which is free of controlling by

linearity or cross state similarity thus, there is no need to tuning their weights.

Investigating the behaviour of our multi-objective function after involving the three criteria has

shown the dominance of the compactness again. This result seems to be plausible since the

equation includes two forces which are compactness and cross state similarity and both pull the

selection of the best model towards the right, high number of state as presented in Figure 5.11

f3 = max{linearityi −
1

2
∗ (state compactnessi)− cross state similarityi : i = 1..n} (5.10)
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Figure 5.11: The three criteria in one function

Therefore, increasing the weight of linearity is suggested to provide a balance point in the space.

Hence, the candidate space now has two forces (compactness and cross state similarity) that

encourage the selection to go to high number of states and one force (linearity) with double

weight to prefer the model of less number of states, see the following equation.

f4 = max{2∗linearityi−
1

2
∗(state compactnessi)−cross states similarityi : i = 1..n} (5.11)

Figure 5.12: Fitted weights for all criteria

Modifying the weight of linearity as suggested above has helped our multi-objective function to

select a balanced model that is non-dominant by one of the criteria and represents resistance

to all forces as illustrated in Figure 5.12.

This equation is the proposed multi-objective function which guarantees non of the criteria is

dominant and assumes a balance of different forces is found.

5.7 Putting it all together: The proposed improved method

for state abstraction modelling

In order to develop a robust method for state abstraction modelling, the method that is dis-

cussed in Chapter 4 (Section 4.3) is adopted and improved. The improvements include:
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– Involving our multi-objective optimisation as a main step in the method before the selec-

tion stage.

– Replacing the traditional metrics for selecting the best models by the results that are

suggested using our optimisation.

– Applying a hierarchical modelling if the best selected model has a special type of states

that is defined as a complex state. The reason for that is to provide better modelling

since the complex state usually represents complex processes and to compensate model

fitting.

The improved method of state based abstraction for healthcare process modelling has eight

stages as follows:

1. Extraction: The required event logs are extracted using the methods that are explained

in Chapter 3, which are applicable to most electronic health records data.

2. Preprocessing: The event logs need to be prepared and cleaned. The prepared logs

should be converted to horizontal sequences format to be suitable input for the next

stage.

3. Learning: This stage is the start of the abstraction stage. The algorithm that is used

for learning is the Expectation-Maximisation (EM).

4. Decoding: Decoding is performed by running the Viterbi algorithm over sequences. The

number of hidden state for each relevant event is extracted to enrich the event log with

state numbers as an added attribute.

5. Optimisation: Optimising the space using our proposed multi-objective function and

applying both types of optimisations in order to provide some sort of flexibility. We

suggest that, the strict optimisation is applied first in order to get the mainstream process

model and improve the understandability of the process, then the soft optimisation is

performed which may provide further detail about the process.

6. Selection: Selecting the best model based on the maximum score for both optimisation

types and at this step the abstraction stage ends.

7. Model Visualization: Visualizing the selected model using our new state based ab-

straction model. Process model visualization using the available package in R,‘Seqhmm’,

is not helpful because of the lack of the understandability in terms of the start and end

of the process. In addition to the non desirable probability that is shown on the edges

where the probability of incoming edges are not necessarily equal to the outgoing edges.

This may cause a confusion in tracking the flow of the process. We think this probabil-

ity may not help in increasing the understandability of the process. Also, the layout of

the model is not suitable for modelling a process as it is plotted in one line where the
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transitions between states become hard to follow. Therefore, we have implemented a new

visualization function as an enhancement of the old function in ‘Seqhmm’ to cope with

these limitations. The new function is used to visualize all process models of our case

studies that are illustrated in Chapter 6 and Chapter 7.

8. Evaluation: Models are evaluated using three different aspects which are models selection

validation, process model quality metrics and lastly domain expert evaluation.

As a further step is applying a hierarchical modelling if needs. These eight steps are repeated if

the best selected model has a special type of states that is defined as a complex state. Checking

the type of states is needed to provide a better abstract process model through a hierarchical

modelling for complex states.

5.7.1 Multi-objective optimisation algorithm

Steps of the proposed multi-objective function for selecting the best abstracted model are pre-

sented in the following pseudocode, see Algorithm 1 below.

This algorithm explains the sequence of steps should be taken to optimise HMMs candidate

space. Line(8-11) show the first step for optimisation which is the generation of HMMs candi-

dates. The generated models start by at least two hidden states and increase iteratively to the

upper bound which is the number of distinct events in event log.

Line (12-27) show the primary contributions of this thesis where the proposed criteria are calcu-

lated for every model. Then two types of optimisations are computed and a vector that includes

the optimisation scores and the best model’s index for each optimisation type is returned. In

Line (24-26), checking if the best model has a complex state, a state is complex when 80% of

that state is occupied by more than two event types and has a highly variable processes. If a

complex state is found, then start hierarchical modelling and do the same steps again.
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Algorithm 1

1: Given: N; the number of distinct events
2: Lg; the event log
3: i; index for model
4: j; index for decoder
5: s; state
6: w; a threshold for state importance
7: θ ; HMM initial random parameters
8: for state number : 2, N do . Generating HMM candidates
9: M(i)← model learning(θ, Lg)

10: D(j)← viterbi decoding(M(i), Lg)
11: end for
12: procedure Optimisation(M,D) . Optimising candidates space
13: for i : 1,M do
14: l(i)← linearity(M(i)) . see criteria calculation in Section 5.4
15: end for
16: for j : 1, D do
17: comp(j)← state compactness(D(js), Lg)
18: cross(j)← cross similarity(D(js), Lg)
19: importance(j)← state coverage(D(js), Lg, w)
20: end for
21: soft[score, indx]← max soft optimized(l, comp, cross) . Equation 5.5
22: strict[score, indx]← max strict optimized(l, comp, cross, importance) . Equation 5.6
23: return soft, strict
24: if ( s is complex) then . for hierarchical modelling
25: extract events of this state and go to line 8
26: end if
27: end procedure

5.8 Conclusion

This chapter discussed four suggested criteria for modelling state abstracted healthcare model.

The criteria are linearity, state compactness, cross state similarity and state importance. The

rationale of selecting these criteria is explained and the calculation is discussed elaborately.

Exploring criteria properties and the relations between the criteria have helped in tuning ap-

propriate weights, based on simple heuristic, and designing our multi-objective function. Two

types for optimisations are suggested which are soft and strict optimisations. Soft optimisation

used unconstrained criteria while strict optimisation used unconstrained criteria in addition

to constrained function which is state importance. Lastly, a robust method is developed to

include the suggested optimisation in the process of healthcare state abstraction modelling. In

this chapter, criteria exploring and weights tuning have done using synthetic data and real event

log that is extracted from MIMIC-III database. In the next chapter, the developed method will

be tested on a different source for healthcare process namely PPM database in order to evaluate

the results with a domain expert as the last stage of our method.
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Chapter 6

Case Study 1: Chemotherapy

cycles of breast cancer patients

6.1 Overview

The aim of this chapter is to explain how to test our improved abstraction method on discovering

the mainstream model using real world data for healthcare processes. A case study of breast

cancer patients is extracted from the PPM electronic healthcare system. The experiment in this

chapter has followed the steps of our method that is discussed in Chapter 5 and illustrated in

Figure 6.1. Both types of optimisations are applied. The strict optimisation model is used for

describing the main healthcare processes while the soft optimisation models is used for process

outcomes analysis since this model provides more detail about the process. Process model

is visualized using our new enhanced visualization method and evaluated through different

aspects.

Figure 6.1: Research method and the scope of Chapter 6 and Chapter 7

6.2 Breast Cancer Healthcare Process in the UK

According to World Health Organisation (WHO, 2019), breast cancer is the second leading

cause to death in the world. However, “Although the incidence of breast cancer is increasing

107
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in the UK, mortality is decreasing thanks to significant achievements in the organisation and

delivery of breast cancer care, with multidisciplinary working at its centre.” [134, pg.1]

Based on [134], breast cancer patients generally start the healthcare journey following a re-

ferral. Then a patient case is discussed with a multidisciplinary team of specialists to agree

on treatment type and strategy. There are several interventions that can be taken. Cancer is

usually controlled first by surgery if it is suitable for patient condition and this is considered

as a primary treatment. Then, the adjuvant treatment type is planned which aims to prevent

cancer reoccurring such as radiotherapy, chemotherapy or hormone therapy.

If chemotherapy is described, based on [135], the chemotherapy treatment is not only one ses-

sion. The oncologist decides the treatment course and how many cycles a patient needs in

addition to identifying a treatment plan, which is known as the chemotherapy regimen. Each

regimen usually includes one or more chemotherapy drugs with determined doses. The oncolo-

gist selects a chemotherapy regimen based on different factors such as the type and part of body

where the cancer is located and if it has spread or not. If a primary treatment such as surgery

was not applicable due to the size of tumour or other reasons, a neoadjuvant treatment type is

planned, which is given before primary treatment to help shrink the tumour and, consequently,

improve the chance of managing and removing it. There is another type of treatment called

palliative treatment which is used to improve the quality of life for patients who cannot be

completely cured from cancer due to the spread of the tumour.

6.3 Patient Pathway Manager (PPM)

Patient Pathway Manager [24] is an Electronic Health Record (EHR) used to store clinical and

coded data of all patients who have cancer at the Leeds Cancer Centre, which is one of the

largest cancer centres in the UK. It was developed by Leeds Teaching Hospitals Trust (LTHT)

in 2003 and extended to include different kinds of healthcare data that is integrated from

different sources for example, Patients Administration System (PAS) to access inpatients and

outpatients data, Chemocare system for cancer treatment data and other healthcare systems

to include radiotherapy and laboratory results.

The PPM data includes diagnosis of patients from 1921 to now (2019). It has clinical records of

more than 2.39 million patients [16] which contain a considerable amount of routine healthcare

data that might be used for mining patients pathways.

In this chapter we use an extract data of the PPM EHR that represents all care events for

several visits of patients where these care events can be tracked using patients IDs as shown in

Figure 6.2. The extract of the data was guided by experts interests on some tables of the PPM

system.
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Figure 6.2: Healthcare process perspective in PPM

6.4 Data acquisition from PPM

An event log is the core item of process mining research and the first step of applying process

mining is accessing the system and extracting required event logs. The PPM system is not a

process-aware system which means event logs do not automatically exist in the system but a

process miner needs to extract them through several steps as mentioned early in Chapter 3.

The steps for acquiring event logs from PPM are explained below:

6.4.1 Creating an event log from the PPM

Creating an event log from the PPM can be done through a number of steps:

1. Firstly, getting access to the data. Access to the data is given after arrangements with

PPM data providers. This research forms part of the work funded in the SBRI- 1 grant,

(project number 1203SBRSB2DANRSBRI Application. doc 20504-149147). The work

was hosted by Leeds Teaching Hospitals NHS Trust (LTHT). This work was sanctioned

according to local LTHT research and development policy. Data extraction was carried

out under strict information governance procedures, including anonymisation of patient-

level data. The extract data of the PPM database has been made accessible to us in

13 individual files in the format of comma separated files. All files are stored on an en-

crypted pinned secure hard drive that is accessible only for authorised researchers. A form

contains the Standard Operating Procedure (SOP) for using this pinned secure drive is

written and signed to ensure the appropriate use of the data. Also, patients data were

anonymized to ensure patients confidentiality.

2. Secondly, creating the local database. In order to extract event logs from PPM files, a

local version of the extract data of PPM is created and located on our secure drive. The

13 provided files are imported into the created database.



Chapter 6. Case Study 1: Chemotherapy cycles of breast cancer patients 110

6.4.2 Extraction an event log for the required cohort of patients

PPM data reference model is constructed in this research using the Entity Relationship Diagram

in PostgreSQL Database editor (ERD). This Diagram helps to extract the event logs and identify

possible care events in the EHR. Figure 6.3 shows all the tables that have temporal fields which

are needed for process mining. A process can be tracked using a patient’s ID. The extraction

criteria for each case study and the description of care events are discussed in this chapter for

case study 1 and Chapter 7 for case study 2 and 3.

Figure 6.3: PPM data reference model generated in this research

It should be noted that, the PPM extract data that we obtained might be affected by the

provenance chain of getting the data where it was extracted for a previous research project,

that is discussed in [16], with different aims. Initial exploring for the tables has shown that

the table of ‘chemodrugs’, which contains data about the drugs labels, drugs doses and other

drugs related information, has an ambiguous date of when a drug is given. In other words, the
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event of taken a drug is recorded with a date that was before a chemotherapy cycle starting. A

discussion with an expert who works on the PPM data has suggested that this date is confusing

where the chemodrug should be given on the same day of getting chemotherapy and the recorded

date might be resulted from data quality issues. Therefore, events generated from ‘chemodrugs’

table are excluded in this research to avoid misleading results.

Time issues in the PPM extract data:

Although the extract of the PPM data has the three components of mining patients process

which are patient id, event name and event date, the temporal fields were recorded in a number

of days (integer format) as a step of date manipulation to protect patients confidentiality. This

number corresponds to the age of a patient when an event happened. Therefore, a method for

a valid timestamped format reconstruction is required.

(a) Reconstructing ‘timestamped’ format from age determined event

In order to construct ‘timestamped’ format from the number of days of an event occurring, we

need to set a default day as a start point for that. The date ‘2020-01-01 12:00:00’ is chosen

as an artificial default day and then the number of days is subtracted from the default date.

This method has converted the age in number of days into a valid timestamped format that

can be parsed by process mining tools.

Despite the successful reconstruction of the time format, a further issue relating to event order

is raised as discussed below in (b).

(b) Reconstructing events order

One of the major event logs quality issues as discussed by [95] is the level of temporal resolu-

tion. Some events are recorded by time resolution which can be down to the second or time

resolution down to the day only. We found that all events are recorded on ‘day only’ time

resolution. Consequently, knowing the order in which events have happened on the same day

is not applicable.

Hence, the order of same-day events is given based on an expected sequence of those events

which have been validated by a domain expert.

Examples of same-day events are:

1- ‘Admission’ and ‘Ward stay’, as a patient should be admitted first and then stay in a ward.

2- ‘Regimen start’ and ‘Chemotherapy session’, Regimen of treatment should be discussed and

approved then chemotherapy treatments are given.
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6.5 Extraction criteria of case study 1

The first case study focuses on extracting a relatively complex healthcare process of breast

cancer patients who have chemotherapy treatment. The extraction here follows the breast

cancer extraction criteria that has done in a related work in [16] where we believe this extraction

provides a relatively complex processes since it has a limited scope of patients selection and

event selection as will be discussed below. We aim to extract a specific cohort of patients

who have been diagnosed with breast cancer (ICD-10 code ‘C50’) between 2004 and 2013 and

received epirubicin and cyclophosphamide (EC90) chemotherapy as adjuvant treatment.

Figure 6.4: Chemotherapy cycles frequency

Based on [135] and [16], a chemotherapy course is expected to last for 6 cycles and this may

increase or decrease based on patient condition. We found that there are a large number of

chemotherapy cycles which reached 52 cycles for few patients as shown in Figure 6.4. This

number of cycles is validated later with the domain expert as will be discussed in the evalua-

tion section (6.9.3). It can be clearly seen that the number of cycles drops dramatically after

cycle 6. Thus, we have focused on mining the process of chemotherapy patients using the 6

chemotherapy cycles only. The selection of care events concerns about the main events for

healthcare process such as admission, discharge, chemotherapy cycles, blood test, death and

acute event such as neutropenia sepsis. Neutropenia sepsis is a potentially fatal event and can

be identified by a neutrophil count that is less than 1.5 ∗ 109/L according to [16].

Table 6.1: Log characteristics of single type of treatment for breast cancer

total cases distinct event total events variants variation (%) nulls case length

min avg max
739 13 30996 640 86 208440 8 40 324

The inclusion criteria of this case study as shown in Table 6.1 has extracted 739 patients and



113 6.6. Models learning and decoding

13 distinct events. The length of case is based on the number of events where the longest

process has 324 events whereas the shortest process has 8 events only. The extracted event

log is sparse as indicated by the number of nulls that are generated from the variable length

process instances. The frequency of events is presented in Figure 6.5. 739 cases demonstrate

640 variants of processes which results in 86.6% of process variation.

Figure 6.5: Screenshot of case study 1 events and frequency

6.6 Models learning and decoding

Applying our method to this event log has resulted in populating 12 possible models with 13

hidden states, which is the upper bound based on the number of distinct events, as shown in

Table 6.2.

Table 6.2: Learning HMMs with different number of hidden states in case study 1

Model number Number of
states

Iterations
=(MX)3000

Initial log Final Log
likelihood

BIC (Bayesian infor-
mation criterion)

1 2 151 -81625.06 -49059.08 98397.39
2 3 236 -75183.38 -34022.01 68499.05
3 4 198 -76121.36 -30501.01 61653.55
4 5 521 -87077.66 -30441.22 61751.13
5 6 762 -77192.73 -29246.65 59599.85
6 7 440 -74412.32 -28418.14 58201.36
7 8 1345 -75817.65 -28677.09 58998.50
8 9 584 -81967.37 -27933.81 57811.83
9 10 608 -81395.04 -27331.45 56927.72
10 11 387 -80045.33 -28177.09 58960.26
11 12 1217 -79262.91 -26930.91 56829.86
12 13 678 -75377.57 -26809.92 56970.52

The standard metric of selecting best model of HMM, BIC, has selected a model with 12

states(highlighted) as the best model. However, we believe less number of states can represent

the main pattern of care since BIC tends to select an over-fitting model. Following the steps

of the proposed method, all models are decoded using the Viterbi algorithm as a pre-step for

models candidate optimisation.
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6.7 Optimisation

We have run both versions of our multi-objective function to optimise models candidates space:

1- Strict optimisation for models’ candidate space

Selecting the best model with considering state importance is achievable using the strict opti-

misation of our proposed multi-objective function (Equation 5.6). In this case, we would like to

see the process model of most patients where each state should have no less than 50% of cases.

Criteria calculation using the strict optimisation is reported in Table 6.3.

Table 6.3: Criteria calculation in case study 1 (strict optimisation)

Model 1 2 3 4 5 6 7 8 9 10 11 12
States 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s
Linearity 0.99 0.66 0.73 0.62 0.66 0.69 0.55 0.74 0.63 0.60 0.57 0.60
Compactness 0.172 0.034 0.022 0.017 0.014 0.014 0.009 0.009 0.008 0.013 0.014 0.012
Cross sim. 0.835 0.687 0.433 0.419 0.368 0.345 0.311 0.298 0.287 0.337 0.338 0.306
Normalized
importance

0.8 1.0 1.0 0.8 0.8 0.8 0.8 0.2 0.6 0.0 0.4 0.2

Strict opti-
misation

0.862 0.635 1.023 0.656 0.764 0.825 0.640 0.237 0.584 0.000 0.324 0.179

Plotting the three functions in a scatter plot is shown in Figure 6.6. Models can be selected

based on a specific criteria for example the model with best linearity (model of 2 hidden states

- black dot at the top) or the model with the best compactness and cross state similarity, which

in this case study is found in the same model (model of 10 states - black dot at the bottom).

The red lines show the direction for criteria best values. Optimising the candidate space of

12 models using the strict optimisation has selected model of 4 states is the best model with

maximum value of 1.023.

Figure 6.6: 3D visualization of the criteria in
case study 1 Figure 6.7: Strict optimisation scores in case

study 1
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In Figure 6.7, the X-axis represents the number of models where the first model consists of two

hidden states and the last model consists of 13 hidden states. Clearly, model of 4 states is the

highest whereas the 10th model, which has 11 states, is the worst model since it has 5 unim-

portant states. State importance threshold that is used in our experiments is 50% however,

different thresholds can be tested as presented in Table 6.4.

Table 6.4: State coverage and importance in case study 1

Model State coverage percentage

# of unimportant
states of

two thresholds
50% 30%

2s 9.60 96 1 1
3s 100 99 99 0 0
4s 94 94 92 50 0 0
5s 94 7 92 94 50 1 1
6s 48 94 94 98 98 96 1 0
7s 22 50 92 92 92 91 92 1 1
8s 90 92 46 88 94 88 50 94 1 0
9s 11 33 23 92 92 91 41 89 92 4 2
10s 56 92 91 92 92 49 92 41 91 50 2 0
11s 93 18 80 36 22 90 92 13 15 89 92 5 4
12s 94 54 98 87 90 91 41 11 11 88 87 53 3 2
13s 94 84 93 91 91 92 36 34 17 14 77 53 92 4 2

Based on the 50% threshold, 11states model has the highest number of unimportant states

where 5 out of 11 states represent less than 50% of cases. Both 9states model and 13states

model are also non-representative models where both of them have 4 unimportant states. On

the other hand, 3state model and 4states model are the best model since all of their states rep-

resent more than 50% of cases. However, 4state model has the best score to balance between

other optimisation criteria; linearity, compactness and cross state similarity.
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6.7.1 Healthcare process analysis using the strict model

Figure 6.8: The best model of case study 1 selected by the strict optimisation

The strict model, which is the model that is selected by the strict optimisation, is presented in

Figure 6.8 and demonstrates the mainstream pathway of breast cancer who had chemotherapy

sessions as adjuvant treatment between 2004 - 2013. This model shows the healthcare process

for multiple visits of breast cancer patients. It should be noted that, the number on the edges

linked to the Start and End nodes represent case frequency, which shows how many number of

patients were on that edge, however, the number of the edges in between states represent the

absolute frequency that reflects how many times this transition has happened in the data. The

state number is random and does not hold any meaning also, loop on same state is removed to

simplify the model. Moreover, very low frequency events of less than 5 occurrence might not

appear in the graph node.

The majority of the patients, n=652, have started their healthcare journey through admission

either elective or emergency as shown in state1. Interestingly, the transition from (admis-
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sions(s1) → Discharge(s2)) means that, most of the patients have been discharged directly

after admission where no care event was recorded in between. A possible hypothesis for inter-

preting this pattern is that it might be an indication to the primary treatment that was given

to the patients before starting chemotherapy treatment, which is not our focus on extraction

this case study since the patients here have adjuvant chemotherapy that is given post a primary

treatment. Another possible interpretation of the pattern; admission then discharge without

care events in between, is that the incompleteness of PPM data extract that was given to us.

Digging deeper to the data has confirmed our first hypothesis, this pattern of care, admission

followed directly by discharge, has mostly happened in the beginning of patients records where

the primary treatment has occurred.

Figure 6.9: Active and passive time for breast cancer process in PPM

Figure 6.9 illustrates that the process of breast cancer patients go through active time and

passive time. Active time is when the treatment starts usually by getting chemotherapy ses-

sions for this case study in particular, to the end of the chemotherapy course which is mostly

6 cycles. Passive time is the time when a patient admitted to the hospital for any other reason

except chemotherapy session. The absolute frequency of the passive time pattern, which is the

transition from state 1 to state 2, in this case study is 6412 and this pattern could happen

before starting the treatment. Time gap between passive time and active time may vary where

it might be months or weeks before chemotherapy.

On the other hand, the pattern (Discharge(s2) → admission(s1)) is an expected sequence of

the multiple visits for patients. After the admissions state, a patient moves to chemotherapy

sessions which include cyclel, cycle2, cycle3, cycle4, cycle5 and cycle6. Once a patient finishes

their chemotherapy session they will be discharged. A blood test may be taken at the begin-

ning of the healthcare process and/or for the upcoming cycles before taking their chemotherapy

session to avoid an acute event such as neutropenia sepsis.

Interestingly, the model has allocated a particular state (s4) for highly different patterns of

chemotherapy process. In order to have a deeper insight of the process inside each state we can

use any process mining tool and explore the processes of each states individually.

For instance, patterns of care inside state 4 in our model can be investigated using the Dotted

chart in ProM as illustrated in Figure 6.10. This Figure shows vertically the number of patients
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and horizontally the process instances where care events are ordered by the time when a case

started and coloured by states numbers. It can be clearly seen that, two main different patterns

represent two different groups of patients.

Using the Traces explorer plugin in ProM, the first group, which is the top pattern A, are

patients who have started their treatment by chemotherapy cycles directly where no admis-

sions event are recorded and they represent 44 cases. The second group, the bottom pattern

B, are patients who had blood test to check if they may experienced an acute event such as

neutropenia sepsis and they represent 43 cases while 284 cases have blood test in the middle of

their treatment. This state represents 50% of cases.

Figure 6.10: Dotted chart for examining patterns inside state 4 combined with two main
patterns generated from Traces explorer

By analysing the healthcare model and investigating the distinct events of each state we could

relabel the states initially based on the main events that contribute in forming the states, see

Figure 6.11 which shows the model with initial states labels.
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Figure 6.11: Initial labelled states of breast cancer process in case study 1

2- Soft optimisation for models’ candidate space

Selecting the best model with flexibility toward state importance can be done using our soft

optimisation (Equation 5.5). Our method has optimised the space of candidate models for this

case study and the criteria are calculated as displayed in Table 6.5.
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Table 6.5: Criteria calculation in case study 1 (soft optimisation)

Model 1 2 3 4 5 6 7 8 9 10 11 12
States 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s
Linearity 0.99 0.66 0.73 0.62 0.66 0.69 0.55 0.74 0.63 0.60 0.57 0.60
Compactness 0.172 0.034 0.022 0.017 0.014 0.014 0.009 0.009 0.008 0.013 0.014 0.012
Cross simi-
larity

0.835 0.687 0.433 0.419 0.368 0.345 0.311 0.298 0.287 0.337 0.338 0.306

Soft opti-
misation

1.078 0.635 1.023 0.820 0.955 1.031 0.800 1.183 0.973 0.861 0.810 0.895

The best model is a model of 9 states, which is presented in Figure 6.13, where it has the

maximum score of the optimisation function which is 1.183. The worst model is model number

2 which is the model of 3 state where it has 0.635 score as plotted in Figure 6.12

Figure 6.12: Soft optimisation scores in case study 1
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6.7.2 Healthcare process analysis using the soft model

By relaxing the constraint of state importance, our optimisation has selected the 9states model

as the best model. The soft model, that is visualized in Figure 6.13, represents the whole journey

of breast cancer patients starting from the need for care to the end of recorded treatment. Hence,

the model demonstrates multiple visits of the patients. Interestingly, state 4 in the first model

has been split into two different states; state 1 and state 7. State 7 is dedicated for patients

who started their chemotherapy directly without admission, which is an unexpected pattern.

State 1 shows the pattern of care for acute event patients and blood test.

This model provides further details in terms of discharge and admissions events. The model

has distinguished between two contexts of discharge event. The first context is that a discharge

follows admissions directly with no care event in between and this was presented in the strict

model as well. This context is shown in the link between state 5 and state 6, state 2 and state

6, state 3 and state 4 and lastly between state 2 and state 4. This state, as discussed earlier,

may represent history record of the number of times when a patient needed care previously.

The second context is discharge that happens after finishing follow up chemotherapy cycles as

shown in the transition between state 9 to state 4.

On the other hand, admissions are split over 4 states which are state 5, state 2, state 3 and

state 8. Firstly, state 5 which includes both types of admission (elective-emergency) this state

is allocated for the first visits for most of the patients. State 2 represents only emergency

admission that might happen in the follow up visits. State 3 is for elective admission that

mostly happen after recovering from an acute event, which was occurred in state1. Lastly, state

8 which shows elective admission as well but this state is for patients with non-acute event who

are for following visits.

Clearly, this model provides details that are unneeded for discovering the mainstream pattern

in addition to the low coverage of some states as shown in Figure 6.13.

6.8 Discussion

In order to identify possible critical healthcare states and get interesting insights on the given

healthcare process, we suggest using the soft model for analysing process outcomes since this

model provides further detail about the processes. Analysing the model that is shown in Figure

6.13 resulted in three interesting pathways we would like to consider these pathways as outcomes

of the experiments. We can categorize the outcomes into good and bad outcomes. Bad outcomes

are the result of the presence of two events: death or acute event. Pathways that do not include

any of these events are considered a good outcome.

1- Death event:

There are 79 death cases out of 739 patients = 10% of this case study. The death event can

occur in several states; state 5, state 8, state 7, state 3 or state 2. Mining the direct relations

between events for cases where a death event occurs might help in understanding when the
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death is likely to happen.

In order to do this, cases with death events are selected, then events are augmented with their

state number. Using the BupaR tool [136] (version 0.4.2) in R, a precedence matrix (sometimes

known as dependency matrix) is generated as displayed in Figure 6.14. The precedence matrix

basically demonstrates the direct relations between events. Here, events are associated with

states numbers. As we can see in the red rectangle, most of death events were recorded after

discharge (57 after discharge in state 6 and 11 after discharge in state 4). Few of death cases

were recorded after admissions. Apparently, this dependency matrix does not help in capturing

the care events that have occurred before discharge.

Therefore, we have filtered out discharge and admissions events to explore previous care event

as shown in Figure 6.15.

Figure 6.14: Direct relations of events associated with states for cases have death event (axes
label is in the form of ‘event+state number’)

Figure 6.15 shows different care events associated with state numbers that happened before

death. The number of deaths in patients who transited from state 9 is higher than the number

of deaths for patients who transited from state7 with total of death 57 and 18 for state 9 and

state 7 respectively, while only 4 death cases occurred after blood test that happened in state

1. However, this might not be a significant increase of state 9 over state 7 since the number of

patients who came through state 9 is 431 whereas the number of cases who came from state 7
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is 51 cases.

Analysing the correlation between chemotherapy cycles and death has shown that death is

likely to happen after cycle 6 for patients who came from state 9 with 13 cases. In contrast to

patients who came from state 7 where the death was correlated equally for cycle1 and cycle6

with 5 death cases in each.

Figure 6.15: Direct relations of death events associated with states

2- Acute event:

There are 20 patients who have an acute event such as neutropenia sepsis which represents

2.7% of this case study. The neutropenia sepsis event is recorded 46 times and the maximum

repetition was 5 times for one single case who died. There are 3 patients who had neutropenia

sepsis have died as shown in Figure 6.16 which represents 15% of this case study. The occurrence

of neutropenia sepsis has no clear correlation with a particular chemotherapy cycle. It may

happen after any cycle as shown in Figure 6.16.
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Figure 6.16: Direct relations of neutropenia sepsis events associated with states

In summary:

1- A good outcome is a pathway that is free from two events either death or acute event. Ex-

ample of a good outcome can be captured in this pattern: start, state 5, state 9, state 4 and

for the upcoming visits starting from state 8 through state 9 then state 4.

2- Bad outcome can be seen in two types of events either death or acute event. Example for

bad outcome is the pathway of ; start, state 1, state 5 or end which shows that patient has a

cute event and then ended by death or there is no recorded events.

6.9 Model Evaluation

In this section, three aspects for models evaluation are discussed which are models selection

validation, model evaluation using process mining conventional metric and evaluation based on

domain experts.

6.9.1 Model selection validation for case study 1

In this section we aim to check the validity of model selection of this case study against issues

which were key motivations for our optimisation. Also, the same model validation metrics are

applied on models that are selected by the Bayesian Information Criteria (BIC) in order to

provide a comparison between the two selection methods.

The models presented in Figure 6.19 are visualized using the original function of the ‘SeqHMM’
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package. The reason for not using our new visualization function here is because the goal is to

investigate validation aspects not to visualize the process models. Hence, using the old visual-

ization function is sufficient for this purpose.

Model validation is an important step that comes after model selection. As discussed earlier

in Chapter 4, there are three main issues that may generate undesirable abstraction model

which are the existence of highly connected states that reflects the potential of higher level of

abstraction, similar states and unimportant states.

We will validate model selection against these issues. The way of quantifying these issues are

provided in Chapter 4 and here is a brief reminder:

1- The issue of strong connected states is identified using the graph theory technique for strong

components detection.

2- The issue of multiple similar states is detected using state type similarity measure, where

states are similar if they have same state type for instance, simple, composite and complex and

same event types that occupied 80% of both states. A list of all states types for this case study

and case studies that will be discussed in the following chapter is provided in Appendix C. The

presence of similar state is scored by counting how many same-type similar states a model has.

3- The issue of unimportant states corresponds to state converge where it shows the percentage

of how many cases are involved in a state.

In the following section, the validation for models selection is presented and the methods that

are used for identifying validation metrics are explained in detail likewise. The proposed op-

timisation methods both strict and soft have selected fewer number of states compared with

BIC. The best model that is selected using the strict optimisation is the 4state model and using

the soft optimisation is the 9state model whereas BIC has selected a model of 12 states as the

best model. Figure 6.17 shows the best model for our optimisation with maximum score of

optimisation whereas the best model using BIC has the minimum value.
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Figure 6.17: Best models of different metrics in case study 1

1- Connected components:

The highly connected states are abundantly observed in the 12states model that is selected by

BIC, as shown in Figure 6.18(a). There are 4 possible higher abstraction that can be detected

in this model where each cluster must have at least two states.

In contrast to Figure 6.18(b) and (c), the number of connected states is few where there are 2

and 1 clusters of states in the models selected by soft and strict optimisation respectively.
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(a) model selected by BIC (b) model selected by soft optimisation

(c) model selected by strict optimisation

Figure 6.18: Connected components detection in case study 1

2- Similar states:

The model in Figure 6.19(a) has three same-type similar states. Detecting multiple similar

states for all these types have resulted in finding:

1- Production states (Discharge) are shown in state 1, 2, 3 and 10.

2- Simple states (Admission-Elective) are state 5, 9 and 11.

3- Composite states (Chemotherapy cycles) are state 6 and state 7.

The model presented in 6.19(b) has three same-type similar states as follows:

1- Production states (Discharge) are state 4 and state 6.

2- Simple states (Admission-Elective) which are states 3, 5 and 8.

3- Composite states (Chemotherapy cycles) are state 7 and state 9.
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The model presented in 6.19(c) has no similar states all states are constructed from different

event types.

(a) similar states model selected by BIC

(b) similar states of soft optimisation model

(c) similar states of strict optimisation model

Figure 6.19: Similar states detection in case study 1(states numbering starts from left to right)

3- Unimportant states:

Based on state importance percentage that is extracted and reported in Table 6.4, we use the

threshold of 50% to determine if a state is important or not. The threshold can be adjusted

based on user preference. The result showed that, as expected the states in model selected by

the strict optimisation were all significant. Unlike to states in soft model where this model

contained 4 non-significant states. It should be noted that, as discussed in Chapter 5, the issue
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of unimportant states might be related to bad model initialization that cannot be addressed in

the optimisation.

A summary of model selection validation metrics is presented in Table 6.6. Clearly, the three

issues are more likely to be found in the model that is selected by BIC whereas these issues

are hardly observed in the model that is selected by the strict optimisation. Although the

soft model and BIC model have the same number of similar states, the number of states for

each similar type in BIC model is higher than soft model. For example, there are 4 states of

production type (Discharge) in BIC model whereas only 2 states of production type (Discharge)

in the soft model. Also, the soft model has better scores of all the proposed criteria compared

to BIC model.

Table 6.6: Validation metrics of case study 1

Issues strict optimisation soft optimisation BIC

found count found count found count
strong connected components yes 1 yes 2 yes 4
similar states no - yes 3 yes 3
unimportant states ( <50%) no - yes 4 yes 3

6.9.2 Models evaluation based on process mining metrics

In this section we present the results of evaluating our models using all conventional process

mining metrics that are discussed in Chapter 2 section 2.8 which are fitness, precision, f-measure,

generalisation. In addition to the complexity metrics that are discussed in section 2.4.3 which

are size, control-flow-complexity (CFC) and structuredness (struct). According to the review

study of process mining discovery evaluation that is conducted by [47], there are three main

algorithms that can generate reliable results for process model evaluation. These algorithms

are Inductive Miner, Split Miner and Evolutionary Tree Miner and they have outperformed

other algorithms in terms of model evaluation metrics. Thus, we have used Inductive Miner

(IM), which is discussed in Chapter 2, and Split Miner (SM) [137], which is built on the same

principles of inductive miner but it aims to include the choice construct of the process as well,

for process model discovery. However, the Evolutionary Tree Miner is computationally expen-

sive and required high performance computer which is not applicable in our case, hence it is

excluded from our experiment.

Table 6.7 shows process evaluation metrics of the extracted event log. These metrics concern

about complexity, accuracy and performance (execution time). We aim to compare the process

models metrics of the raw event logs and the process models of these logs after abstraction

using both strict and soft optimisations. Table 6.8 reports the results of the discovered process

models using IM and SM after using the strict and soft optimisation models for abstraction. In

all three complexity metrics that are used for evaluation, there is a noticeable improvement in

the process model complexity for the abstracted models. The size and CFC have improved in

both models. However, in soft optimisation with the SM, the struct metric has a small degra-
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dation compared to the original log of case study 1. This might be due to the shortcoming of

the SM in building struct model as discussed in [137].

On the other hand, the accuracy metrics except generalization show an overall increase. In

contrast to what has been mentioned in [138], where the author indicated that the precision

metric is not significantly important since the process in healthcare are very flexible. Our results

show that despite the flexibility of healthcare processes, the abstraction has improved the model

precision in both strict and soft models. There is a small decrease in the fitness of case study 1-

and consequently on the model generalization- after soft abstraction. However, compared with

the increase of the precision and F-measure, we believe this decrease in fitness does not have

a significant affect on model accuracy measurements. Furthermore, the execution time that

is needed for discovering process models using the IM and SM in both models has improved

dramatically after abstraction which is an expected result for smaller size models. Generally,

the abstraction methods have improved model complexity, accuracy and performance metrics.

Analysing the process variation percentage before and after abstraction has showed that the

variation percentage has clearly decreased using both models from 86% in the original event

log to 76% and 75% in strict and soft models respectively.

Table 6.7: Process evaluation of case study 1 before abstraction

Logs Variation Discovery
algorithm

Complexity Accuracy Execution
time

size CFC struct fitness precision f-measure generalization

Case study 1
86% IM 38 29 1 1 0.482 0.651 1 1089 ms

SM 42 33 1 0.91 0.50 0.64 0.917 206 ms

Table 6.8: Process evaluation of case study 1 after abstraction using strict and soft optimisation

Logs Variation Abstraction Discovery
algorithm

Complexity Accuracy Execution
time

size CFC struct fitness precision f-measure generalization

Case study 1
76% Strict IM 17 12 1 1 0.653 0.790 0.999 601 ms

SM 18 13 1 0.963 0.711 0.818 0.963 101 ms

Case study 1
75% Soft IM 27 19 1 1 0.600 0.75 0.99 926 ms

SM 28 17 0.821 0.899 0.739 0.811 0.902 229 ms

6.9.3 Models evaluation based on domain experts

As a final step of the evaluation, we aim to evaluate the utility of our method using domain

expert’s opinion. For this purpose we arranged a meeting with two domain experts who work

closely with the PPM system and have a strong background of cancer healthcare processes in

the PPM and we presented the results of the abstracted models. To simplify the discussion in

the meeting, the case study 1 was used first to explain the steps of the research method and

the criteria of model optimisation in detail. Then the results of the abstracted models for both

optimisation types are demonstrated and discussed. The discussion mainly aimed to ensure

that the models are sensible and indeed described the general healthcare processes for breast
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cancer in the PPM data.

The experts have agreed on the correctness of the modelled processes. Also, they have clarified

some possible reasons for the pattern (Admission then Discharge) without care events in between

which has been observed in both models. The possible reason for this pattern is that a patient

needed a care for other health conditions that are not related to the cancer or that represent

the primary treatment, as we have anticipated. Moreover, the experts have confirmed that

the chemotherapy sessions cannot be given without admission to the hospital. In contrast to

our model, this pattern is shown in case study 1 in the model that is selected by the strict

optimisation in state 4 and in the soft optimisation in state 7. Discovering this pattern in a

specific state in HMM has shown the usefulness of using HMM to identify data recording issues,

where the domain expert indicated the potential of not recording the care events by healthcare

practitioners as supposed to be. Also, we have asked the experts about the large unexpected

number of chemotherapy cycles that is shown in Figure 6.4. They justified the number of

cycles in which might be affected by the way of how the data is recorded. Some practitioners

may record a new cycle of chemotherapy, that is given after finishing the first course that was

suggested, as a follow up cycle. This may happen often especially when the chemo-regimen

would be the same for both courses. Finally, the domain experts have asserted the usefulness

of our method and agreed on the improved understandability of the models provided. Our

method has discovered the main pattern of care and provided conceptually-valid abstractions

on complex healthcare processes. In addition of that, this method has successfully reduced the

time of experts involvement in this research.

6.10 Conclusion

Testing the proposed unsupervised abstraction method on the case study of chemotherapy cycles

of adjuvant breast cancer patients has shown promising results of discovering the healthcare

process models without the need for domain experts in the abstraction stage. Models that are

discovered using the strict optimisation have provided the general picture of the breast cancer

healthcare processes. However, the soft optimisation tend to be more tolerant toward process

detail that may happen for few cases. Models are evaluated and have reduced the complexity

of original healthcare process based on complexity and accuracy metrics that are discussed.

Issues found in BIC model might be found in soft model but they were mitigated in terms of

the number of appearance of these issues. Unlike the strict model where was free of such issues.

Finding a good or bad process outcome in our discussion is dependable on the presence or

absence of an interesting event, such as death, or acute event such as neutropenia sepsis.

After discovering the process models using state abstraction method, the task of similar cohort

selection became easier. This chapter provided a relatively complex real world healthcare

for applying our proposed unsupervised abstraction method. Our method has successfully

discovered the mainstream process models and reduced model complexity. In the next chapter,
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we aim to extract two further case studies from the PPM healthcare data in order to provide

larger scale of complexity and test the proposed method as well.



Chapter 7

Further Experiments: Case study

2 and case study 3

7.1 Overview

The aim of this chapter is to explain how to provide more complexity of breast cancer healthcare

process in order to test our method for larger scale of complexity than the one discussed in

Chapter 6. Two different case studies are extracted from the PPM data extract. We apply

the same proposed method, that is applied in the previous chapter, on these case studies to

reduce process models complexity and consequently discover the general process of the given

healthcare. Then the abstract process models will be validated and evaluated as well. To

highlight a further functionality of state based model, a new strategy that helps in selecting

similar patients is discussed. The focus of this strategy is on process perspectives similarity.

7.2 Case study 2: Different treatment types of breast can-

cer patients

Our hypothesis for adding further healthcare process complexity is that; including larger sample

size and wider scope of care events increases the complexity of healthcare processes. Adding

larger sample size of patients can be done by extracting patients who treated with different

treatment types of breast cancer chemotherapy such as the type of neoadjuvant and palliative

treatments in addition to the adjuvant treatment, that was used in case study 1. On the other

hand, including wider scope of care events can be achieved by extracting different care events

that can show the complete process of care. In contrast to case study 1, in which care events

were limited to chemotherapy cycles only.

135
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7.2.1 Extraction criteria

The same inclusion criteria from the previous case study is used in addition to different treat-

ment types of chemotherapy. Three types of treatments are extracted using SQL and based

on the field of integerent in chemoregimens table of PPM database, see Figure 6.3. Treatment

types differ based on the order of chemotherapy event; for instance, if chemotherapy is given

before surgical intervention (neoadjuvant) or after surgery to prevent recurrent cancer (adju-

vant) or (palliative) treatment type to improve patient life quality. Figure 7.1 shows that the

adjuvant treatment is the more frequent treatment that is given to the PPM extract patients.

Figure 7.1: ‘EC 90’ regimen with different treatment types

The focus of extracting care events in this case study is broader than the scope of health-

care events in case study 1. The care events in this case study include admission, ward stay,

discharge, diagnosis, visiting outpatient clinic, chemo-regimen start, blood test, microbiology

test, surgery, radiotherapy, death and chemotherapy session, which represents chemotherapy

cycles in general. The extraction criteria has selected 981 patients with high process variation

percentage 99% and high variable length traces that resulted in high sparse space. The length

of the process instances is ranging from very short processes with only 8 events to very long

processes with 926 events as shown in Table 7.1.

Table 7.1: Log characteristics of different treatment types of breast cancer

total cases distinct event total events variants variation (%) nulls case length

min avg max
981 14 79453 979 99 828953 8 81 926

There are 14 distinct events based on our selection scope. Events names and frequency are

displayed in Figure 7.2 below.
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Figure 7.2: Screenshot of case study 2 events and frequency

7.2.2 Models learning and decoding

Applying our method on this event log has resulted in populating 13 possible models with

maximum 14 hidden states, which is the upper bound based on the number of distinct events,

as shown in Table 7.2.

Table 7.2: Learning HMMs with different number of hidden states in case study 2

Model number Number of
states

Iterations
=(MX)3000

Initial log Final Log
likelihood

BIC (Bayesian infor-
mation criterion)

1 2 277 -214510.6 -139404.2 279135.7
2 3 128 -206149.0 -114101.10 228732.5
3 4 246 -207841.3 -92955.16 186666.3
4 5 186 -229435.4 -82194.50 165393.2
5 6 222 -215143.9 -74725.21 150725.4
6 7 291 -204938.5 -74555.86 150680.0
7 8 197 -215066.3 -72251.40 146387.0
8 9 221 -221676.6 -71336.22 144895.2
9 10 421 -206018.9 -70062.12 142708.0
10 11 1061 -207672.0 -69126.59 141220.6
11 12 840 -211616.9 -67370.60 138114.8
12 13 1404 -204456.4 -66764.45 137331.2
13 14 1036 -216796.5 -66426.67 137107.0

The standard metric of selecting the best model of HMM, BIC, has selected a model with 14

states as the best model. However, we believe that, less number of hidden states can discover

the mainstream pattern of the process. All models are decoded using the Viterbi algorithm as

a pre-step for models candidate optimisation. The results of our method are explained below.

7.2.3 Optimisation

We have run the two different versions of our proposed multi-objective function to optimise

models candidate space:
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Strict and soft optimisation for models’ candidate space

Using our method both types of optimisation have selected the same model as shown in Table

7.3. Model of 8 states is the best abstracted model based on our criteria. This model has the

maximum score of strict optimisation and soft optimisation which is 1.248 because all the states

in this model are important, based on the threshold.

Table 7.3: Criteria calculation in case study 2 (strict and soft optimisation)

Model 1 2 3 4 5 6 7 8 9 10 11 12 13
States 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s
Linearity 0.68 0.79 0.61 0.69 0.56 0.75 0.72 0.63 0.61 0.56 0.68 0.57 0.69
Compactness 0.246 0.086 0.036 0.023 0.015 0.013 0.011 0.011 0.012 0.017 0.019 0.024 0.035
Cross sim. 0.670 0.470 0.444 0.273 0.327 0.279 0.186 0.315 0.291 0.236 0.252 0.235 0.258
Normalized
importance

1 1 1 1 1 1 1 0 0 1 0 1 0

Strict opti-
misation

0.567 1.067 0.758 1.095 0.786 1.215 1.248 0.000 0.000 0.876 0.000 0.893 0.000

Soft optimi-
sation

0.567 1.067 0.758 1.095 0.785 1.215 1.248 0.939 0.923 0.875 1.098 0.893 1.104

Due to the absence of unimportant states in most of the models, the optimisation scores have

not changed in these models. In contrast of models with a single unimportant state, where they

have been penalised and their scores became zeros, see Figure 7.3(b).

(a) Soft optimisation scores in case study 2 (b) Strict optimisation scores in case study 2

Figure 7.3: Multi-objective optimisations scores in case study 2

The percentage of state importance over all models is presented in Figure 7.4. We can see that,

four models only have one single unimportant state based on 50% threshold which are 9states

model, 10states model, 12states model and 14states model.
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Table 7.4: State coverage and importance in case study 2

Model State coverage percentage

# of unimportant
states of

two threshold
50% 30%

2s 100 100 0 0
3s 100 100 100 0 0
4s 100 99 100 100 0 0
5s 100 100 100 100 99 0 0
6s 100 100 98 100 100 99 0 0
7s 100 98 98 100 99 99 100 0 0
8s 100 100 99 98 100 100 67 51 0 0
9s 83 99 98 100 99 100 23 63 100 1 0
10s 100 99 99 66 98 99 42 99 99 98 1 0
11s 100 99 99 98 100 65 67 98 99 99 99 0 0
12s 100 82 98 85 64 99 87 99 84 99 99 49 1 0
13s 100 100 99 99 99 98 95 66 68 80 99 99 98 0 0
14s 100 100 99 99 95 68 98 48 98 98 97 99 98 98 1 0

7.2.4 Healthcare process analysis

Figure 7.4: The best model of case study 2 selected by both strict and soft optimisations



Chapter 7. Further Experiments: Case study 2 and case study 3 140

Visualizing the process model using state abstraction is shown in Figure 7.4. This model shows

the process of different types of treatment for breast cancer patients in PPM healthcare system.

The general common pattern is that: patients start their treatment by visiting outpatients clinic

in state 1 and have different laboratory tests and diagnosed. Then, patients can be admitted

to the hospital either elective or emergency in state 2. After that, patients stay in a hospital

ward in state 5. Inside the ward, patients may get several medical interventions depending on

their need for instance, surgery or chemotherapy as shown in state 3. At the end of the medical

interventions, patients are discharged to home either in the same day or after a while. Interest-

ingly, this model has distinguished between different contexts of chemotherapy, radiotherapy

and regimen start events where theses events are located in multiple states. The analysis of

different states is done by the same way in case study 1 using the precedence matrix to show

the direct relations between different events.

Analysing Chemotherapy states:

There are two main related states for chemotherapy which are state 3 and state 8. 552 of pa-

tients who have chemotherapy course only in state 3, 8 of patients took their chemotherapy only

in state 8 and 409 of patients where overlapping between state 3 and state 8. Chemotherapy is

also captured in state 4 but with a very few cases for example, there are 5 patients have their

chemotherapy session in both state 3 and state 4 and only 7 cases have their chemotherapy in

overlapping between state 3, state 8 and state 4.

The main difference between chemotherapy in state 3, state 4 and state 8 is that chemotherapy

in state 3 must happen inside hospital ward, chemotherapy in state 4 happens mostly after

admission emergency whereas chemotherapy in state 8 always happens without admission to

the hospital. Chemotherapy in state 3 is mostly correlated with microbiology test however,

chemotherapy in state 8 is mostly correlated with radiotherapy.

Analysing radiotherapy states:

In this case study, there are 812 of cases have experienced radiotherapy in their treatment. In

contrast, 169 cases have treatments without radiotherapy. There are two main related states

of radiotherapy which are state 1 and state 8. 624 cases have radiotherapy in state 1 and 188

cases have radiotherapy in state 8.

Both of the radiotherapy states happen outside the hospital in outpatient clinics. However,

the main difference between them is that radiotherapy in state 1 is given after discharge and it

is given as expected in outpatients clinics. Some exceptions have occurred such as, 2 patients

have started with history record of radiotherapy and 49 cases have ended the treatment by

radiotherapy.

Radiotherapy in state 1 is more correlated with diagnosis or visiting outpatients clinic. On the

other hand, radiotherapy in state 8 mostly followed by chemotherapy, that is under taken in

state 8.
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For more explanation, (54%,n=101) of patients have radiotherapy directly after chemotherapy

in state 8, however, the time gap between chemotherapy and radiotherapy is 23 days. Few

cases, n=3, have instant sequences between chemotherapy in state 8 and radiotherapy in state

8 which means they are recorded with the same day. We believe this was recorded for a given

care that happened in the past tense because the time gap between radiotherapy and the fol-

lowing events (diagnosis or admission electively) is 13 months as average.

Analysing chemotherapy regimens states:

In the model presented in Figure 7.4, the care event of chemotherapy regimen is located in three

different states; state 3, state 4 and state 7. The difference between these states is that regimen

in state 3 has always proceeded by being in a ward, regimen in state 4 has mostly happened

after admission electively to the hospital whereas regimen in state 7 has mostly occurred after

visiting outpatients clinics.

There are (41%, n=403) patients who have started their regimen in state 4 and only 6 patients

who started their regimen in state 7. Interestingly, both of them =(41.6%, n=409) have been

exposed to one single regimen throughout their care process.

In contrast,(58.3%, n=572) have changed their chemotherapy regimen multiple times where 10

patients have their chemotherapy regimen in state 7 and 562 have first regimen in state 4 and

the follow up regimens in state 7.

Interestingly, the temporal pattern of regimen change is different in each state. The temporal

pattern of regimen change for patients in state 7 is faster than patients who have started their

regimen in state 4 as shown in Figure 7.5. In other words, patients in state 7 are likely to stay

with their regimen just for 8 weeks as an average time, however, patients in state 4 are more

persistent to their regimen where they stay 12 weeks as an average.

Figure 7.5: The temporal pattern of changing chemo-regimen. This Figure is generated from
ProM log explorer

Based on the above analysis of the hidden states and by examining the distinct events related

to states, we have provided initial labels for the states that will be validated later with the

domain expert, see Figure 7.6.
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Figure 7.6: Initial labelled states of breast cancer process in case study 2

Discussion

The discussion of different outcomes here is derived by identifying possible critical states that

can be used to provide healthcare precautions. Approaching such critical states may affect

badly on patient pathway such as a pathway that may have death event or cancer reoccurring.

The event of cancer reoccurring is based on the number of times that a patient is diagnosed

with cancer after first diagnosis.

1- Death event:

In all treatment types there are 188 death cases (19%). Death event is observed in state 7

and most likely to occur after patient was discharged from the hospital as the model shows,

however, this is subjective to how accurate the time of the death is recorded in the system.

For instance, a patient come to take chemotherapy and died in the hospital as shown in Figure

7.7. The exact time of death is not known since all events, in this case, are recorded with same

admission day. Therefore, death could also happen in a ward then a patient is discharged.
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In this case study, palliative treatment has the highest percentage of death among all other

therapy types where 45% of the patients have died. In contrast, neoadjuvant treatment is the

lowest percentage of death with only 11% as reported in Table 7.5.

Figure 7.7: Example of events that are recorded with the same day of death (time is shown as
instant)

2- Cancer reoccurring:

There are 626 (63%) of patients have a cancer diagnose event at least twice in this case study.

The event of cancer reoccurring is based on the number of time that a patient was diagnosed

with cancer after first diagnosis. Cancer reoccurring is discovered in state 3 or state 8.

The potential correlation between cancer reoccurring and death can be worthy to explore.

Numbers in the following table reports that the majority of death, more than 80% of cases

(n= 158), have happened for patients with reoccurring cancer in all treatment types; adjuvant,

neoadjuvant and palliative. On the other hand, two cases have been diagnosed with cancer 8

times but they have survived.
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Table 7.5: Bad outcomes in different treatment types of cancer therapy

Treatment
type

Patients Death Cancer re-
occurring

average
of reoc-
curring

Death in reoc-
curring cancer
patients

Temporal pat-
tern of cancer
reoccurring

Adjuvant
treatment

495 77
(15%)

280(56%) 2 61 (79%) 32 months

Neoadjuvant
treatment

322 36
(11%)

220(68%) 2 30 (83%) 31 months

Palliative
treatment

164 75
(45%)

126(25%) 2 67 (40%) 12 months

Neoadjuvant treatment is the highest number of cancer reoccurring with 68% of patients whereas

palliative treatment has the lowest number of cancer reoccurring. Despite the fact that palliative

treatment has the lowest number of cancer reoccurring, this does not mean a good outcome. A

possible reason for this low percentage is that due to the palliative patients have an advanced

stage of cancer disease and the cancer is not expected to be cured. The number of average

cancer reoccurring for all treatment types is the same. The time gap for cancer reoccurring is

roughly the same for adjuvant and neoadjuvant which is a round 30 months while in palliative

treatment cancer can reoccur after 12 months.

It should be noted that, the selected abstract model of case study 2 will be evaluated and

discussed at the end of this chapter in section 7.5.

7.3 Strategy for selecting a cohort of patients using state-

based abstraction model

The description of the above case studies, 1 and 2, is motivated by analysing the general process

models. However, analysing process variations for similar group of patients is also important

and this has been emphasised by the process mining reviews papers that were discussed in

Chapter 2. The applicability of analysing the process variations comes at the next step of

discovering the mainstream pattern. Hence, in this section we describe a strategy that helps

in selecting a cohort of patients based on process similarity. This strategy provides the link

between the abstraction method that is developed for modelling complex processes and other

process mining approaches that were designed for relatively structured processes. The following

top-down strategy is designed to guide the selection of a cohort of patients, who are presumably

have similar process variants, using different similarity perspectives. We can select a similar

cohort of patients based on a common state, based on a common event or based on a pattern

of an event, as we will see in the case study 2. The strategy that is shown in Figure 7.8 should

be followed after selecting the best model of the related case study.
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Figure 7.8: Strategy for patients selection in state based abstraction model

Once the perspective is chosen, the selection of the patients is narrowed down for a smaller

cohorts of patients. Eventually, the process of the selected cohorts of patients are analysed

using any available process mining algorithm.

7.3.1 Example of selection similar cohort of patients

In order to demonstrate the proposed strategy, case study 2 is used here as our running exam-

ple, however, this strategy can be generally applied on any case study. Based on the best model

that is illustrated in Figure 7.4, some significant events such as surgery and chemotherapy are

distributed over multiple different states. Hence, we suggest that selecting patients based on a

specific event that is related to a particular state can separate patients into possibly distinct

groups.

The focus here is on analysing the variations of healthcare processes that are followed in differ-

ent surgical therapies with considering the performance outcome. These treatments differ if a

patient has a surgery or not and when the surgery has happened. For instance, patients have a

surgery after chemotherapy(neoadjuvant), surgery before chemotherapy (adjuvant), a surgery

that is proceeded and followed by a chemotherapy course and lastly, patients who have not
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experienced surgical treatment in the healthcare process.

Group 1: This group represents the patients who have surgical treatment in the pattern of a

surgery that is followed by a chemotherapy (adjuvant). The results show that, there are (n=

495, 50.4%) of patients who met this condition. Surgery event has happened at most once for

all patients. There are 331 variants and the most followed process is: diagnosis → surgery →
chemotherapy → radiotherapy → visiting outpatient clinic,

where it has been followed by 21 patients (4.5%). Other processes are mostly varied on the

radiotherapy and blood or microbiology test events. By considering different contexts of the

surgery event that are detected using the state abstracted model in Figure 7.4, we found that

surgery can be occurred in two different states. There are 333 patients who have surgery in

state 1 which might mean a surgery has happened in the past where it is recorded after diag-

nosis event instantly (both events are recorded with the same day) whereas 162 patients have

surgery in state 3 which means surgery has been operated inside the hospital after staying in a

ward.

Patients who have a surgery in state 1 have been diagnosed by cancer and the surgery event

is recorded with the same time of diagnosis. The majority of patients (n= 235) were admit-

ted multiple times to the hospital before they have been diagnosed. The patients had the

surgery then after an average time of 2 months of the primary treatment, the patients had their

chemotherapy. Also, 23 of them have radiotherapy in the healthcare process.

On the other hand, patients who have surgery in state 3 which means the surgery is operated

inside the hospital ward. The majority of patients (n=114) started by diagnosis in state 1 then

after 40 days have been admitted to the hospital electively and do the surgery. The chemother-

apy sessions started after 46 days of the surgery.

Group 2: This group is for patients who have surgical treatment in the pattern of chemother-

apy followed by surgery (neoadjuvant). We found that, there are (n= 322, 32.82%) of patients

who met this condition. Surgery event has happened at most once for all patients.

There are 247 variants of the process and the most followed variant is: diagnosis→ chemother-

apy → radiotherapy → visiting outpatient clinic → surgery

Where it has been followed by 16 patients (4.8%). Other processes mostly varied on radiother-

apy and blood or microbiology test events. By examining different contexts of surgery event, we

found that surgery can be occurred in three different states. There are 199 patients who have

surgery in state 1 which means surgery has happened in the past, 116 patients have surgery

in state 3 which means surgery has been operated inside the hospital and only 7 patient have

surgery in state 4 which has happened in the hospital after admission elective directly but ward

stay event was not recorded before surgery event.

Patients who have surgery in state 1 have started from state 1 and have been diagnosed in

the clinic. Then after 75 days they get chemotherapy. After the chemotherapy by average 22
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months the patients had the surgery.

Patients who have surgery in state 3 have been diagnosed in the outpatient clinics (start from

state 1). After 62 days they started chemotherapy and then do the surgery after 18 months as

average. All cases have previous multiple elective and emergency admissions. Patients who have

surgery in state 4 have a very different context where the surgery was recorded after admission

elective directly. This sequence of events might be related to data quality issue since the patents

need to be set in a ward before doing the surgery. The patients have been diagnosed and after

78 days have been given chemotherapy. Then after an average of 21 months, the patients have

a surgery.

Group 3: Patients here have a surgery and they have the pattern of chemotherapy followed by

surgery then another chemotherapy is given. The result shows that, there are (n= 156, 15.9%)

who have met this selection.

There are 144 variants of the process and the most followed variant is: diagnosis→ chemother-

apy → surgery → chemotherapy → radiotherapy → visiting outpatient clinic → diagnosis

Where it has been followed by 8 patients (5.12%). Other processes are mostly varied on the

radiotherapy and blood or microbiology test and if a patient has repeated diagnosis. Analysing

the states related to surgery event, we found that the surgery can be occurred in three different

states. There are 83 patients have surgery in state 1, 70 cases have surgery in state 3 and only

3 patients have surgery in state 4.

Patients who have surgery in state 1 are diagnosed in state 1 then after 61 days of diagno-

sis, chemotherapy is given. Then after 85 days patients had the surgery that is followed by a

chemotherapy course after an average of 27 days.

Patients who have surgery in state 3 they were diagnosed in state 1. Then after 69 days

chemotherapy is taken. After 78 days of chemotherapy, patients had the surgery which is fol-

lowed by a chemotherapy treatment after 29 days as an average. Patients who have surgery

in state 4 has a different context where surgery has occurred after admission emergency di-

rectly. 3 of patients in this states are diagnosed in state 1 then after 54 days of diagnosis, the

chemotherapy is taken. Then after 20 days, the patients had the surgery which is followed by

a chemotherapy course after an average of 11 days.

Group 4: Patients here do not have any surgery throughout their healthcare process. There

are only (n= 8, 0.81%) who met this condition.

In this group, 6 of the patients took chemotherapy and radiotherapy, however, 2 of them have

only chemotherapy. Totally, (50%, n=4) of them ended by death.

Although of the few number of patients in this cohort, there is no common variant of process

among them.

Table 7.6 shows a summary of the main characteristics of groups of patients in case study 2.
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Group 1 has the largest number of patients whereas group 4 has the smallest number of pa-

tients. Despite group 1 is the largest group, it has the lowest percentage of processes variation.

In contrast to group 4 which has only 8 cases, but it is the most varied processes.

The main pattern of the surgical treatment is surgery followed by chemotherapy (adjuvant)

in group 1, chemotherapy then surgery (neoadjuvant) in group 2 and chemotherapy followed

by surgery then another chemotherapy course is given in group 3. Based on different con-

texts(states) for surgery event, the temporal average between surgery and chemotherapy is

different in all groups. For group 1, the shortest time between surgery and chemotherapy is

nearly a month and 2 months for the surgery that is operated inside the hospital(state3) and

for history surgery (state1) respectively.

The longest time between surgery and chemotherapy is 5 months and this for the surgery that

is operated after admission but no ward stay event is recorded(state4), which may be affected

by data quality issue where this event is mistakenly not recorded. For group 2, the temporal

average is roughly the same for the three different surgical contexts which is around 20 months.

In group 3, the time between chemotherapy and surgery is longer than the time between surgery

and chemotherapy where the time of the latter is less than a month. As overall, the adjuvant

treatment of group 1 is the fastest pathway because it has the least time gap between surgery

and chemotherapy than group 2 and group 3.

Table 7.6: Summary of the characteristics of groups of patients in case study 2

group 1 group 2 group 3 group 4
number of patients 495 322 156 8
number of variants 331 (66%) 247 (76%) 144 (92%) 8 (100%)
surgical treatment pattern surgery then

chemotherapy
chemotherapy
then surgery

chemotherapy,
surgery then
chemotherapy

no
surgery

temporal average between
surgery and chemotherapy in
state 1

2 months 22 months 2.7 months
then 27 days

-

temporal average between
surgery and chemotherapy in
state 3

1.4 months 18 months 2.5 months
then 29 days

-

temporal average between
surgery and chemotherapy in
state 4

- 21 months 20 days then
11 days

-

The proposed strategy for patients selection has helped in identifying similar groups of patients

based on common process characteristics. It should be noted that, although the discussed

strategy is based on hidden state modelling, there are other techniques can be used as well for

patients selection such as selecting patients based on their demographic data for instance, age

or gender. However, the aim of the suggested strategy is to focus on events related to different

contexts in the process.
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7.4 Case study 3: Different regimens and treatment types

of breast cancer patients with an acute event

In this case study, we would like to include further complexity of the healthcare processes. Our

hypothesis, which is the same one that is adopted in case study 2, that is broaden the selection

of patients and care events increases the healthcare process complexity. One way to do that is by

extracting a larger group of patients which includes patients who have different chemotherapy

regimens. For instance, extracting a mixture of breast cancer chemo-regimens with all treat-

ment types which are adjuvant, neoadjuvant and palliative. In addition to expanding the care

events that are used in case study 2 to include an acute event such as Neutropenia sepsis as well.

7.4.1 Extraction criteria

We have extracted the same inclusion criteria for previous case studies in addition to different

chemotherapy regimens besides the ‘EC90’ that was used before. In the PPM data there are

more than 600 combinations of regimen and treatment type that is used for breast cancer

treatment. The tops three regimens which are; ‘EC 90’ , ‘Tamoxifen breast’ and ‘Anastrozole’

were selected with different treatment types such as adjuvant, neoadjuvant and palliative, see

Figure 7.9.

Figure 7.9: Top three regimens in the PPM data extract with different treatment types

Clearly, the regimen ‘EC 90’ is the most given chemotherapy regimen in PPM data extract for
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breast cancer patients. Furthermore, adjuvant treatment type is the most frequent therapy in

all extracted regimens.

In ‘EC 90’ neoadjuvant is the second treatment given, however, the other two regimens ‘Tamox-

ifen breast’ and ‘Anastrozole’ are mostly given for palliative therapy as the second treatment

type after adjuvant therapy.

The extraction criteria selected 1520 patients with high variation percentage 99% of the pro-

cess and high variable lengths processes that are ranging from a very short process with only 8

events to a very long process with 926 events as shown in Table 7.7.

Table 7.7: Log characteristics of different regimens and treatment types of breast cancer

total cases distinct event total events variants variation (%) nulls case length

min avg max
1520 15 115737 1505 99 1291786 8 76 926

The extracted event log has 15 event types. It should be noted that, in this case study we

used all the tables that are available in the PPM data extract that was given to us except

chemo-drugs table due to data quality issues. The reason for excluding this table is discussed

in Chapter 6. Events names and frequency are displayed in Figure 7.10 below.

Figure 7.10: Screenshot of case study 3 events and frequency

7.4.2 Models learning and decoding

Applying our method on this case study has resulted in populating 14 possible models with

maximum 15 hidden states, which is the upper bound based on the number of distinct events,

as shown in Table 7.8.
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Table 7.8: Learning HMMs with different number of hidden states in case study 3

Model number Number of
states

Iterations
=(MX)3000

Initial log Final Log
likelihood

BIC (Bayesian infor-
mation criterion)

1 2 235 -309493.5 -207884 416129.4
2 3 226 -336767.1 -164145 328873
3 4 259 -321287.4 -147933.9 296695.5
4 5 426 -323283.5 -125076.7 251249.3
5 6 328 -308651.8 -125856.9 253101.3
6 7 230 -304885.1 -113322 228346.3
7 8 283 -326334.5 -110093.7 222227.8
8 9 470 -326085.1 -111439.6 225280.9
9 10 443 -312510.3 -107884.2 218555
10 11 1038 -311682.2 -107527.6 218249.7
11 12 985 -317009.6 -102026.9 207679.7
12 13 731 -321741.9 -104197.4 212475.4
13 14 1054 -313520.2 -99997.62 204553.9
14 15 2066 -319227.2 -104223.2 213506.4

The standard metric of selecting the best model of HMM, BIC, has selected a model with 14

states as the best model. However, this model suffers from the limitations that were discussed

in Chapter 4, we believe that the general process model can be discovered using fewer number

of hidden states. Therefore, all models are decoded using the Viterbi algorithm as a pre-step

for models candidate optimisation. The results of our method are explained below.

7.4.3 Optimisation

The two different types of our proposed multi-objective function are performed to optimise

models candidate space:

Strict and soft optimisation for models’ candidate space

Using our method both types of optimisation have selected the same model as shown in Table

7.9. Model of 3 states is the best abstracted model based on our criteria. This model has the

maximum score of the strict optimisation and soft optimisation which is 1.049.

Table 7.9: Criteria calculation in case study 3 (strict and soft optimisation)

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14
States 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s
Linearity 0.685 0.844 0.743 0.624 0.623 0.577 0.582 0.593 0.595 0.638 0.636 0.563 0.574 0.638
Compactness 0.289 0.097 0.043 0.027 0.017 0.014 0.013 0.011 0.013 0.013 0.030 0.028 0.018 0.044
Cross sim. 0.727 0.590 0.581 0.415 0.312 0.305 0.313 0.291 0.327 0.301 0.247 0.238 0.303 0.307
Normalized
importance

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5 1.0

Strict opti-
misation

0.499 1.049 0.883 0.819 0.925 0.842 0.844 0.890 0.428 0.000 0.505 0.874 0.418 0.948

Soft opti-
misation

0.499 1.049 0.883 0.819 0.925 0.842 0.844 0.890 0.856 0.969 1.011 0.874 0.836 0.948
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Similarly to the second case study, due to the absence of unimportant states in most of the

models, the optimisation scores have not changed. In contrast of the 11states model, with two

unimportant states, where it has been penalised and its scores turned to zero, see Figure 7.11.

(a) Soft optimisation scores in case study 3 (b) Strict optimisation scores in case study 3

Figure 7.11: Multi-objective optimisations scores in case study 3

The percentage of state importance over all models is presented in Figure 7.10. We can see that,

three models only have one single unimportant state and only one model has two unimportant

states based on 50% threshold.

Table 7.10: State coverage and importance in case study 3

Model State coverage percentage

# of unimportant
states of

two thresholds
50% 30%

2s 100 100 0 0
3s 100 100 100 0 0
4s 100 98 100 100 0 0
5s 99 100 98 100 100 0 0
6s 89 89 100 96 100 100 0 0
7s 100 100 79 100 89 99 79 0 0
8s 99 100 76 89 100 96 97 89 0 0
9s 85 79 99 91 98 96 93 99 98 0 0
10s 80 99 74 99 44 66 99 99 88 79 1 1
11s 100 97 86 79 79 99 41 15 88 99 99 2 2
12s 99 99 78 63 14 78 100 99 88 89 97 79 1 1
13s 100 99 99 79 79 79 60 100 64 76 99 99 99 0 0
14s 100 99 99 98 79 73 79 79 98 99 79 68 27 63 1 1
15s 10 99 98 99 99 98 92 83 78 85 79 88 85 99 95 0 0
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Figure 7.12: The best model of case study 3 selected by both strict and soft optimisation

Despite the high variety processes in this case study(variation = 99%), this model provides the

general pattern that is followed for all different regimens patients. The majority of the patients

(68%, n=1038) have started their process in state 3 where (77%, n=808) of patients have firstly

diagnosed with cancer. (23%, n=230) of patients may have blood test or visiting outpatients

clinic.

Then patients are allowed to be admitted to the hospital to get their treatment through state

1. After admission, patients move to a ward and start their chemotherapy regimen as shown in

state 2. Inside the hospital ward patients can have several medical intervention based on their

need in state 3 and lastly they will be discharged.

It could be clearly seen that, state 3 here represents multiple event types and this may not be

the best modelling of the processes. Also, state 3 in this model is considered as a composite

state, based on our classification of state type, because 80% of the state is occupied by more

than two events as shown in Figure 7.13
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Figure 7.13: State 3 is a complex state in this model (since it is of the type composite with
high process variations)

We believe that doing a further modelling for events in state 3 may help in getting better

understanding of the process. In order to decide if a state needs a hierarchical modelling, the

state type metric is not enough but the variation percentage inside the state should be measured

as well. Hence, we found that the variation of processes in state 3 = 97%, consequently, a

hierarchical modelling of process in state 3 is recommended.

7.4.4 Hierarchical modelling for complex state in case study 3

In Hierarchical Hidden Markov model (HHMM), every state can be considered as a single HMM

and has its own probabilistic parameters [125]. The structure of Hierarchical Hidden Markov

model (HHMM) consists of a root state, internal state, which is sometimes called abstract

state, and production state, which is the leaf of the HHMM. In this research, we aim to apply

a hierarchical modelling for any complex state that can be found in HMM. The structure of

HHMM here is the same with the standard structure where we introduce three types of internal

hidden states which are simple, composite and complex state besides the production state. The

aim of the HHMM is to provide better process modelling that can be represented in different

levels.

In case study 3, all events that are observed in state 3 are extracted as a sub log using ProM

process mining tool. This sub log has the following characteristics as reported in Table 7.11.
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Table 7.11: Sub-log characteristics of different regimens and treatment types of breast cancer

total cases distinct event total events variants variation (%) nulls case length

min avg max
1520 14 58535 1501 97% 668025 4 39 478

There are 14 distinct events included in state 3. This state covers 100% of cases and has high

variable length processes.

Models learning and decoding

Applying our method to this event log has resulted in populating 13 possible models with 14

hidden states, which is the upper bound based on the number of distinct events, as shown in

Table 7.12. BIC has selected a model with 14 states as the best model.

Table 7.12: Learning HMMs with different number of hidden states in the sub-log of case
study 3

Model number Number of
states

Iterations
=(MX)3000

Initial log Final Log
likelihood

BIC (Bayesian infor-
mation criterion)

1 2 284 -153285.5 -92919.94 186158.2
2 3 417 -168773.1 -85869.19 172254.3
3 4 667 -161079.2 -85250.69 171236.9
4 5 536 -156003.6 -79684.09 160345.2
5 6 580 -153330.6 -77769.38 156779.2
6 7 1124 -155356.7 -77008.11 155542.1
7 8 1407 -150470.9 -75831.88 153497.0
8 9 905 -168378.5 -73586.61 149335.8
9 10 1567 -153328.5 -73737.72 149989.3
10 11 942 -159939.6 -73522.12 149931.3
11 12 987 -161585.5 -71124.90 145532.0
12 13 857 -157687.5 -70136.24 143971.9
13 14 2864 -149930.9 -69405.84 142950.2

Based on our method all models are decoded using the Viterbi algorithm to provide the input

of the next optimisation stage. The results of our method are explained below.

Optimisation

The results of applying our proposed multi-objective functions to optimise models candidate

space is discussed here.

1- Strict optimisation for models’ candidate space

Selecting the best model with considering state importance is done using the strict type of our

proposed multi-objective function (Equation 5.6). In this case, we would like to see the process

model of most patients where each state should have no less than 50% of cases.
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Table 7.13: Criteria calculation in the sub-log of case study 3 (strict optimisation)

Model 1 2 3 4 5 6 7 8 9 10 11 12 13
States 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s
Linearity 0.622 0.726 0.627 0.769 0.759 0.696 0.757 0.722 0.682 0.683 0.713 0.736 0.693
Compactness 0.610 0.588 0.417 0.355 0.302 0.225 0.202 0.175 0.180 0.212 0.245 0.251 0.239
Cross sim. 0.839 0.773 0.665 0.551 0.486 0.561 0.483 0.461 0.428 0.426 0.506 0.465 0.416
Normalized
importance

1 1 1 0.857 0.714 0.857 0.714 0.571 0.429 0.571 0.571 0 0.429

Strict optimi-
sation

0.101 0.386 0.381 0.694 0.629 0.616 0.664 0.512 0.363 0.476 0.455 0.000 0.364

Optimising the candidate space of 13 models using the strict optimisation has selected model

of 5 states as the best model with the maximum value of 0.694, see Table 7.13.

Figure 7.14: Strict optimisation scores in the sub log of case study 3

As can be seen in Figure 7.14, model of 5 states is the highest whereas the 12th model, which

has 13 states, is the worst model since it has 7 unimportant states. State importance threshold

that is used in our experiments is 50%, however, different thresholds can be tested as presented

in Figure 7.14.
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Table 7.14: State coverage and importance in case study 3 sub log

Model State coverage percentage

# of unimportant
states of

two thresholds
50% 30%

2s 100 100 0 0
3s 72 72 100 0 0
4s 95 99 87 88 0 0
5s 92 75 21 95 88 1 1
6s 95 72 41 29 93 72 2 1
7s 54 97 71 79 71 31 95 1 0
8s 75 52 70 71 42 93 56 41 2 0
9s 18 65 88 93 68 20 44 65 69 3 2
10s 94 30 64 30 46 52 68 25 68 93 4 1
11s 84 30 56 66 93 72 85 77 28 64 40 3 1
12s 72 82 96 50 84 74 66 68 6 6 60 7 3 3
13s 95 38 81 68 68 7 7 18 71 39 49 27 73 7 4
14s 99 57 85 75 66 76 93 41 67 26 26 56 76 15 4 3

The percentage of state importance over all models is presented in Figure 7.14. In this case

study, only three models consist of important states and these models have a few number of

states. Other models have a range of unimportant states. These models have from 1 to 4

unimportant states in addition to one model, which is the worst, has 7 unimportant states

based on 50% threshold.
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Figure 7.15: The best model of the sub-log of case study 3 selected by the strict optimisation

Strict optimisation has penalised the models with a high number of unimportant states. At

the same time it aims to balance between other criteria. Although the selected model has one

single unimportant state, it has a balance of other criteria; linearity, compactness and cross

state similarity.

This model represents different kinds of medical interventions that may happen in patient visits.

It should be noted that, each state in this model has the discharge event which indicates the

end of the current visit. This implies a non-observed transition to level 1 model.

The majority of the patients start with diagnosis in state 3.4 then move to state 3.1 where the

chemo-regimen start or to do a radiotherapy. After starting chemotherapy regimen, patients

move to state 3.5 for the chemotherapy sessions then they can be discharged.

78 of patients may start with state 3.3 for a blood test in order to avoid an acute event such as

Neutropenia, which has occurred 81 times for 36 patients.
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2- Soft optimisation for models’ candidate space

Selecting the best model with a flexibility toward state importance can be done using our soft

optimisation in (Equation 5.5). Our method has optimised the space of candidate models for

this sub log and then the criteria are calculated as displayed in Table 7.15. The best model

is a model of 8 states where it has the maximum score of the optimisation function which is 0.929.

Table 7.15: Criteria calculation in the sub-log of case study 3 (soft optimisation)

Criteria 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s
Linearity 0.622 0.726 0.627 0.769 0.759 0.696 0.757 0.722 0.682 0.683 0.713 0.736 0.693
Compactness 0.610 0.588 0.417 0.355 0.302 0.225 0.202 0.175 0.180 0.212 0.245 0.251 0.239
Cross sim. 0.839 0.773 0.665 0.551 0.486 0.561 0.483 0.461 0.428 0.426 0.506 0.465 0.416
Soft opti-
misation

0.101 0.386 0.381 0.810 0.880 0.719 0.929 0.896 0.847 0.833 0.797 0.882 0.850

The worst model is the first model which is the model of 2 state where it has 0.101 score as can

be seen in Figure 7.16.

Figure 7.16: Soft optimisation scores in the sub log of case study 3
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Figure 7.17: The best model of the sub-log of case study 3 selected by the soft optimisation

Soft optimisation selects the best model that provides a balance between all criteria without

considering state importance. In this case study, model of 8 states is the best model. It repre-

sents the same general process of previous model, that is selected by strict optimisation, however

it splits the discharge event into two distinct states 3.4 and 3.8. Also, this model distributes

start process into fine-grained states such as state 3.6 which is derived from state 3.4 in the

model selected by strict optimisation previously.

Hierarchical visualization of process model:

Focusing on the discovering of the mainstream process model has lead us to use the model of

the strict optimisation, which is 5states model, for the hierarchical visualization for our process
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model. By examining the distinct events and process of each state we can relabel the states

initially based on the main events that contribute in forming the states, see Figure 7.18.

Figure 7.18: A two level abstracted model in case study 3 showing initially labelled states

7.4.5 Discussion

In this case study, we could discover the general pattern of care as presented in the model in

Figure 7.18. This might help in identifying different outcomes. Bad outcome in this case study

can be a pathway that may have death event or multiple change of chemotherapy regimens.

Change of chemotherapy regimens in cancer treatment means the exposing to at least two dif-

ferent regimens whether the reason for the change is the change of the regimen components

such as regimen drug or change of the doses. Multiple changes in chemotherapy regimens may

imply not responsive treatment where the oncologist needs to adjust treatment plan [135]. In

this discussion, the change of regimen in a patient treatment is identified if the regimen start

event is observed at least twice in the process.

1- Death event:

Total death in this case study is 344 cases. As in case study 2, death event here is mostly hap-

pened after discharge however, 127 cases of death happened inside hospital ward. Interestingly,

those cases have been admitted as emergency after getting a chemotherapy session. All death
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events are observed in state 1.

2- Multiple change in chemotherapy regimens:

In this case study the majority of cases (74%, n=1137) patients have changed their chemo-

regimen. As mentioned above, change in regimen does not necessarily mean moving to other

types of chemotherapy regimens for instance, changing from EC90 to Anastrozole. It includes

any change that may happen into the regimen either change of regimen drug or dose. Chemo-

regimens might change in state 2, state 3.1 or state 3.3.

There might be a kind of correlation between the exposing to different regimens and death.

Numbers in the following table reports that the majority of death, more than 90% of cases,(313/344*100)

have happened for patients with multiple change of chemotherapy regimens.

On the other hand, one single case has been changing its regimen at most 28 times, but this

patient has survived.

Table 7.16: Bad outcomes in different regimens of cancer therapy

Regimen type patients death change regi-
men

average of
regimen
change

death in regimen
changed patients

temporal pattern
of changing regi-
men

EC90 772 143 590 (76%) 3 127 (21%) 86 days
Anastrozole 263 55 110 (41%) 2 43 (39%) 17 weeks
Tamoxifen
breast

221 86 155 (70%) 4 83 (96%) 22 weeks

Mixed 264 60 264 (100%) 3 60 (22%) 14 weeks

7.5 Models evaluation for case study 2 and case study 3

This section provides an evaluation of the model selected in case study 2 and case study 3. The

evaluation includes; model selection validation, evaluation using process model quality metrics

and evaluation using domain expert.

7.5.1 Model selection validation for case study 2

In order to avoid repetition, the methods of identifying validation metrics, that were plotted

in case study 1, are not presented in case study 2 and case study 3. However, the results are

reported here. In case study 2, the proposed optimisation methods both strict and soft have

selected the same model that has less states, 8 states, compared with BIC that has selected a

model of 14 states as the best model. Figure 7.19 shows the best model for our optimisation with

maximum score whereas the best model using BIC has the minimum value. A summary of the

validation issues is discussed through three aspects which are the number of highly connected

states, similar states and non-significant states.
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Figure 7.19: Best models of different metrics in case study 2

1- Connected components:

The strong connected component detection shows the possible connectivity between states of

the 14states model, which is selected by BIC. The number of components in this model is 3

where each component(cluster) has at least 3 states. Likewise the model that is selected using

our method, where there are 3 possible clusters. However, the number of states inside each

cluster is 2 states only.

2- Similar state:

The model selected by BIC has three same-type similar states as follows:

1- Production states (Discharge) are shown in state 2 and 13.

2- Production state (Ward stay) are state 3, 5, 7 and 10.

3- Production states (Admission-Elective) are shown in state 11 and 14.

The model selected by our method has one same-type similar states which is:

1- Simple state (Regimen start) which are state 4 and state 7.

3- Unimportant states:

Adopting state importance percentage that is reported in Table 7.4, we use the threshold of

50% to determine state importance. The result showed that our model represents the significant

states, however, BIC model has one unimportant state.

A summary of model selection validation metrics are presented in Table 7.17. Although the

model that is selected by BIC and our methods have the same number of connected components,

the number of inner states in the components is less in our model. The model that is selected

using our method has a lower number of similar states and all the presented states are important.
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Table 7.17: Validation metrics of case study 2

Issues Strict and soft optimisation BIC

found count found count
strong connected components yes 3 yes 3
similar states yes 1 yes 3
unimportant states no - yes 1

7.5.2 Model selection validation for case study 3

In case study 3, the proposed optimisation methods both of them have selected less number

of states, the 3 state model, compared with BIC that has selected 14 state model as the best

model. Figure 7.20 shows the best model for our optimisation with maximum score whereas

the best model using BIC has the minimum value.

Figure 7.20: Best models of different metrics in case study 3

1- Connected components:

The number of connected states is high in the model selected by BIC, which is the model of 14

states. There are 3 possible higher abstraction that can be detected in this model.

In contrast to our model, the number of connected states is very few where there is only 1

possible cluster of states in this models that is selected by both soft and strict optimisation.

2- Similar state:

The model selected using BIC has three same-type similar states which are:

1- Production states (Ward stay) are shown in state 1, 4 and 11.

2- Production states (Discharge) are state 3 and 7.

3- Simple state (Regimen start) are state 2 and 6.

The model selected by our method has no states of similar states all states are constructed from

different event types.

3-Unimportant state:

Using state importance percentage that is discussed Table 7.10, all states in our model were
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significant whereas BIC model had a non-significant state. A summary of model selection

validation metrics are reported in Table 7.18 where the model that is selected by our method

is better than the model that is selected by BIC in all three issues.

Table 7.18: Validation metrics of case study 3

Issues Strict and soft optimisation BIC

found count found count
strong connected components yes 1 yes 3
similar states no - yes 3
unimportant states no - yes 1

7.5.3 Model selection validation for hierarchical case study 3

The proposed optimisation method both strict and soft have selected fewer number of states

comparing with BIC. The strict optimisation selected the 5states model and the soft optimi-

sation picked the 8states model. Unlike BIC that has selected a model of 14 states as the

best model. Figure 7.21 shows the best model for our optimisation with maximum score of

optimisation whereas the best model using BIC has the minimum value.

Figure 7.21: Best models of different metrics in the sub log of case study 3

1- Connected components:

The existence of highly connected states is abundantly observed in model of 14 states that is

selected by BIC. There are 5 possible clusters can be detected in this model where each cluster

has at least two states.

In contrast to our method, the number of connected states fewer where there are 2 and 1 cluster

of states in models selected by soft and strict optimisation respectively.

2- Similar state:

The model selected by BIC has two same-type similar states which are:

1- Production states (Discharge) are shown in state 1, 5 and 13.
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2- Simple states (Chemotherapy session) are shown in state 2, 9 and 10.

The model selected by the soft optimisation has one same-type similar states which is:

1- Production states (Discharge) are state 4 and state 5.

The model selected by the strict optimisation has no similar states where all states are con-

structed from different event types.

3- Unimportant states:

The state importance percentage that is presented in Table 7.14, showed that there are 4, 2 and

1 number of unimportant states that were found in BIC, soft and strict models respectively.

A summary of model selection validation metrics are presented in Table 7.19. The model that

is selected by BIC has the highest number of connected components, similar states and unim-

portant states. In contrast to the model that is selected by our method, in particular the

strict optimisation, has no similar states, only one unimportant state and one possible of higher

abstraction.

Table 7.19: Validation metrics of the sub-log of case study 3

Issues Strict optimisation Soft optimisation BIC

found count found count found count
strong connected components yes 1 yes 2 yes 5
similar states no - yes 1 yes 2
unimportant states yes 1 yes 2 yes 4

7.5.4 Models evaluation based on process mining metrics

As we did in case study 1, different process mining metrics are used to evaluate the abstracted

models against models built using the original logs. Table 7.20 shows process evaluation metrics

of the extracted event logs. These metrics concern about complexity, accuracy and performance.

Table 7.21 shows the results of the discovered process models using IM and SM after using the

strict and soft optimisation models. The three complexity metrics that are used for evaluation,

have improved in the abstracted models.

On the other hand, the accuracy metrics show an overall increase in all case studies. However,

the model of case study 3 that is generated by the IM has a less precision after abstraction. We

believe this might be affected by the already known limitation of the IM, that is discussed in

Chapter 2, where this algorithm tends to generate a flower under-fitting model with large event

log. However, applying hierarchical abstraction for this case study has improved the precision

as well. Case study 2 and the sub-log of case study 3 show improvement in all accuracy metrics

including the generalization. In case study 3, the generalization remains the same before and

after abstraction. Moreover, the performance of building the models has required less time after

abstraction. Also, the process variation percentage has decreased in the abstracted models for

all case studies.
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Table 7.20: Process evaluation of case study 2 and case study 3 before abstraction

Logs Variation Discovery
algorithm

Complexity Accuracy Execution
time

size CFC struct fitness precision f-measure generalization

Case study 2
99% IM 34 25 1 1 0.261 0.414 0.99 3081 ms

SM 58 46 0.5 0.921 0.543 0.683 0.92 415 ms

Case study 3
99% IM 30 22 1 1 0.31 0.48 0.99 1862 ms

SM 53 41 0.81 0.89 0.54 0.67 0.89 436 ms

Sub-log of cs3
97% IM 30 23 1 1 0.238 0.386 1 1049 ms

SM 44 33 0.901 0.838 0.492 0.620 0.838 245 ms

Table 7.21: Process evaluation of case study 2 and case study 3 after abstraction using our
optimisation

Logs Variation Abstraction Discovery
algorithm

Complexity Accuracy Execution
time

size CFC struct fitness precision f-measure generalization

Case study 2
79% Both IM 30 22 1 1 0.458 0.628 0.99 2680 ms

SM 35 26 1 0.965 0.677 0.796 0.97 378 ms

Case study 3
19% Both IM 17 11 1 1 0.26 0.41 0.99 1135 ms

SM 13 8 1 0.98 0.72 0.83 0.98 422 ms

Sub-log of cs3
52% Strict IM 24 17 1 1 0.460 0.578 1 591 ms

SM 16 10 1 0.866 0.796 0.826 0.860 118 ms

Sub-log of cs3
64% Soft IM 25 18 1 1 0.401 0.572 0.99 602 ms

SM 23 16 1 0.449 0.913 0.602 0.731 238 ms

7.5.5 Models evaluation based on domain experts

Case study 2 and case study 3 were also demonstrated to the domain experts. After explaining

the case study 1 in the meeting with the experts, the models of case study 2 and case study 3

were discussed in a brief way. The experts have confirmed that models were comprehensible and

the processes were realistic based on their knowledge of the breast cancer healthcare process in

the PPM. The domain experts have commented on the model in case study 2 that was selected

by both strict and soft optimisation. The model showed that the radiotherapy (in state 1

and state 8) can be given without admission to the hospital. This was confirmed by the expert

where they said radiotherapy is mostly taken in outpatients clinics where no admission is needed.

Also, the domain experts have emphasized the usefulness of the hierarchical representation of

the complex state in case study 3 in order to provide more understandable process models.

7.6 Discussion

Based on our experiments, the size of the event log, that is based on patients and events selec-

tion, has a strong influence on the proposed method for abstraction. On one hand, model with

complex state type is found only in the largest size of our case studies, case study 3. Therefore,

a hierarchical modelling is applied for that complex state in order to get better insights about

the process as shown previously.

On the other hand, investigating the relation between the size of event log and the percentage
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of processes variation has lead us to an interesting healthcare finding. From the experiments

of our case studies we found that, breast cancer patients in Leeds cancer centre follow the

same general process of healthcare regardless of the chemotherapy drug that is used. For more

explanation, the scope of patients selection in case study 1 was focused on patients who had

one single chemotherapy regimen (EC-90 drug) that was given as (adjuvant) treatment type.

While in case study 2, we aimed to get more complex processes by including different treat-

ment types such as adjuvant, neoadjuvant and palliative breast cancer treatments. This has

indeed increased the complexity of the healthcare processes, due to the increase of the number

of events and number of patients. Also, the processes variation, that is calculated in formula

(3.1), has increased likewise. However, including different chemotherapy regimens such as Ta-

moxifen breast and Anastrozole, as we did in case study 3, did not increase processes variation

but the complexity has increased.

From healthcare point of view, this may reveal an unknown property for healthcare process

variation where it suggested that, the variation keeps increasing until it reaches a point that

will never increase after it. This property is illustrated in Figure 7.22. The figure shows the

relation between the number of cases(patients), number of events and the percentage of process

variation. The variation has increased in case study 2 and reached 99% compared to case study

1 which was 86%, however in case study 3 the percentage of variation did not change. Consid-

ering a different formula for calculating process variation percentage has resulted in the same

conclusion. We have calculated the percentage of process variation by considering the number

of process variants that represented 80% of cases only, to get more realistic conception of the

process variability. The percentage of process variation in the three case studies were; 66%,

79% and 79% for case study1, 2 and 3 respectively.

This may also be an indication to process standardisation between different cancer treatment

regimens. All regimens follow the same healthcare general processes but the process differ ac-

cording to the treatment type of cancer therapy whether adjuvant, neoadjuvant or palliative.

It should be noted that, there might be some differences of the processes of different chemo-

regimens at low level details. However, these details are not captured in the abstract models

primarily due to the event selection scope in the extraction stage.
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Figure 7.22: A conceptual illustration of the discovered property of process variations in the
three case studies

From process mining point of view, the unvarying process variation percentage in case study

3 suggests reconsidering our hypothesis of increasing the complexity, which was based on the

selection of patients and care events. In our experiments we found that, expanding the scope

of care events extraction does not necessarily increase the process variations. This is mainly

depend on the nature of the included events. For example, the included event in case study

3 was the acute event ’neutropenia sepsis’ which was observed only 81 times for 36 patients,

which is a very small number of the total sample of 1520. Hence, due to the limited occurring

of this event in terms of the number of neutropenic patients, the process variations have not

affected. Paying more attention to the affect of care events with regard to process variation can

offer a new way for healthcare events extraction. In other words, in order to control processes

variability, a gradual incrementing extraction of healthcare events is advised which can help in

early identification of care events that cause process variability.

Furthermore, the size of the event log impacts significantly on the computational processing

time of our method. The time needed for the stages of learning and decoding increases by

the the increase of event log size. Figure 7.23 shows the the required time for learning HMMs

and decoding of five event logs of different number of cases. It can be seen that, the event log

with 296 cases has the least time of processing which is 30 hours due to its relatively small

sample size. In contrast, event log with number of cases = 1520 required around 120 hours

of processing. The approximate processing times depends on machine specifications where we

have used a desktop computer with the following specifications; Intel Core I7 processor with 16

GB memory. Thus, using high performance machine would reduce the time of our abstraction
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method.

Figure 7.23: Computational processing time required for learning and decoding stages for
event logs of different sample sizes

7.7 Conclusion

The two experiments in this chapter aimed to provide further complexity and test the capability

of our proposed method of finding the main care pattern and reduce complexity. We applied

our method on both case study 2 and case study 3. The candidate HMM models, for each case

study, were optimised using the strict and soft optimisation methods. The models that were

selected have successfully discover the main care pattern based on domain expert evaluation.

Also, the resulted models have reduced the complexity by measuring different process models

complexity metrics. In addition to that, the abstracted models have improved the models

accuracy as well.

Finding a good or bad process outcome in our discussion is dependable on the presence or

absence of an interesting event, such as interesting sequence of events, for instance, regimen

start that is followed by another regimen start which means the change of the treatment plan.

Another possible process outcome may be suggested is the use of the temporal pattern of an

event as a constraint for identifying good or bad outcome. For example, if cancer reoccurring

event is occurred after 1 year of the first diagnosis.



Chapter 8

Conclusion

8.1 Overview

This is the final chapter of the thesis and outlines the main challenges and contributions of

the research. It contains a summary of each chapter followed by a discussion and concludes by

explaining the limitations of this research and suggestions for possible future work. In summary,

this research has successfully achieved the aims and objectives of this thesis. Using our proposed

method we have reduced the complexity of healthcare process models and discovered the general

process models of different complex healthcare processes. This was achieved without involving

the domain experts in the abstraction stage. The large amount of process variation initially

perceived when using process mining for healthcare processes may lead one to assume there is

no general pattern of care. However the abstracted models presented within this thesis have

demonstrated that the main care pattern is often hidden and can be discovered within the

complexities of the unprocessed data. The method has been applied successfully to discover the

healthcare process of breast cancer patients in Leeds Cancer Centre. The results of the process

model evaluation have shown that as the complexity of the process models decreases the true

care patterns are more easily revealed. Finally this research has been evaluated by domain

experts who have confirmed the correctness and improved understandability of the discovered

process models.

8.2 Summary of the challenges addressed in this thesis

This thesis has addressed five different challenges concerned with applying process mining to

healthcare data.

The first and most important challenge is the complexity of healthcare process models as has

been discussed in Chapter 1 and 2. Healthcare processes are highly complex due to the different

choices that can be taken in order to meet the variety of patients needs. For this challenge, we

171
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aimed to answer two simple questions:

1. ‘Does a main care pattern exist for a group of patients with a similar diagnosis?’

2. ‘If it is thought a main pattern of care does exist, can it be found using existing process

mining methods?’

Analysing the different reasons for such complexity apart from the medical reasons, has helped

us in knowing what kind of components may contribute in simplifying the complexity of health-

care process models such as the number of events and the links between these events.

The second challenge is related to the involvement of domain experts during the abstraction

stage. In the process mining literature we have explored the methods that are suggested to cope

with complex and highly unstructured processes. We established that all of these methods have

relied on the concept of process abstraction, however they are all heavily dependent on the inclu-

sion of domain experts during the abstraction stage. The involving of domain experts is costly

in terms of time, money and the arrangement efforts that are needed for organizing regular

meetings for all people who participate in the process discovery research. In order to meet this

challenge, we have used an abstraction method that is based on machine learning technique in

particular Hidden Markov Model (HMM) and the algorithms Expectation-Maximization (EM)

and the Viterbi decoder. Our initial work was published in [3] to show the potential of using

HMM in process modelling.

The third challenge is the extraction of care events from electronic health records (EHR). As

mentioned in Chapter 3, most current electronic healthcare systems are not process-aware and

care events are not recorded in a specific event log, instead they are often distributed over

different database tables. In this thesis, two different EHR datasets were used; MIMIC-III and

PPM. The MIMIC-III dataset is from an American intensive care hospital, while the PPM is

from a British secondary care healthcare system, thus, represent different healthcare contexts.

For both of these datasets a number of steps have been taken to create a large event log. The

event logs contain all care events available in the system and required further next steps for

extracting a specific group of patients.

The fourth challenge is knowing which model is best for complex unstructured processes. Defin-

ing the best model is subjective to different points of view and could have a clear definition if

it is provided by domain experts. The best choice may be the most precise model or the model

with the best replay fitness. However, metrics such as fitness and precision have sometimes

be worthless when dealing with complex processes due to the discovery of either spaghetti-like

model, that results in over-fitting and poor understandability, or flower model, that results in

a highly imprecise under-fitting model.

As we aimed not to include domain expert in the process discovery phase, we adopted clus-

ter validation metrics for our abstraction approach. The aim was to find states in the HMM
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compact enough where the processes inside a state are similar. Also, it is preferred that the

processes between states are highly dissimilar. Another criteria is the linearity of the model,

which ensured a clear flow between states(block of events). We suggested a criteria which helps

to select the best abstracted model based on state importance. State importance discovers the

model that has total significant states that have a high coverage with regard to the number of

related cases.

The fifth and final challenge has highlighted the role of model visualization. Using abstraction

for addressing the complexity has imposed a further challenge regarding model visualization.

Current techniques for process model visualization use the name of the event type for node

labelling, however using abstraction, the single node may be a discovered state with a number

of event types. Considering the correct labelling for these abstracted states requires the use of

domain knowledge. We have therefore developed a new transparent (events can be seen through

the pie plot states) abstracted model which is inspired by the current visualization of HMM

in (SeqHMM) R package to be more appropriate for visualizing the abstracted process model

without the need for node labelling.

8.3 Summary of the contributions of this research

This research has resulted in seven contributions to knowledge. The first contribution was using

a new medical database, MIMIC-III, for process mining research. The MIMIC-III database has

been publicly available since 2016, however, according to [23] there are 134 publications mostly

describing data mining and machine learning approaches for medical research. Therefore, to

the best of our knowledge, our published work in [20] is the first research that uses MIMIC-III

for process mining purposes. This healthcare resource has provided the first healthcare event

log written using the English language. The only healthcare event logs available on-line have

been extracted from a Dutch Academic Hospital with the events recorded using the Dutch. It

has been provided by the Business Process Management (BPM)1 for process mining annual

challenges. To ease the work for other process mining researchers, the steps to create an event

log from MIMIC-III and extraction of the log for a specific group of patients is explained in our

published work [20].

For our second contribution we developed a novel pre-processing method targeting the events

that have a periodic presence in the process. The aim was to improve capturing the temporal

pattern of such events and reduce the complexity of the process. For example, the event of

measuring blood pressure should happen every 45 minutes on average in an intensive care unit.

Therefore if these events reoccur in less than 45 minutes they are hidden. This method has

1https://www.win.tue.nl/bpi/doku.php?id=2011:challenge
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improved the visualization of temporal patterns with repeating events and has decreased the

variation of this kind of events as discussed in Chapter 3.

The third contribution is the development of an improved approach to using Hidden Markov

model for process abstraction. The motivation for this was to better manage the limitations of

the Bayesian Information Criteria (BIC) metric in model selection of high dimensional sparse

data. We have demonstrated three practical issues that can be found in models selected by BIC

as best models. These issues are the existence of higher level of abstraction between states that

are strongly connected to one another, the issue of similar states and the issue of unimportant

states based on our definition where these kind of states do not have high case coverage. The

improved approach required the use of a combination of new criteria that may help in selecting

the best desirable process model. We have investigated different experimental results for models

trained with toy and real processes in order to analyse the characteristics of the more desirable

process models. This resulted in four important criteria which are linearity, state compact-

ness, cross state similarity and state importance. The properties of the proposed criteria were

explored and helped in designing the multi-objective function that combined the criteria and

in choosing the appropriate weights for each criteria. The multi-objective function is used for

optimising the space of the candidates HMM. We proposed two types of optimisations; strict

optimisation and soft optimisation. The former tried to select a model with balance of all cri-

teria and aimed to select the model that provided the general flow of the healthcare processes

whereas the latter is relaxed regarding the state importance where it can select a model with

states that may have low case coverage.

The fourth contribution is the proposed strategy for selecting similar patients based on the state

abstraction model. Detecting similarities between patients based on their healthcare processes

is not achievable with complex spaghetti-like models, therefore, this strategy for finding similar

groups of patients is one of the main contributions of this thesis. The suggested strategy is

applicable after finding the best abstracted model that is resulted from the optimisation. In

this top-down strategy we can explore different perspectives for process similarity which are;

similarity based on common state, common event or common event with a particular attribute,

such as the event of chemo-regimens where the chemo-regimen label is EC90 or Tamoxifen

breast. In Chapter 7, case study 2 was used to demonstrate an example of cohort selection

strategy based on common event, surgery, that was observed in different states.

The fifth contribution is the implementation of a new visualization tool for state abstraction

model that is inspired from the package ‘SeqHMM’ within the R platform. This tool aims

to support different enhancements which include; providing clear start and end nodes for the

process, using frequency of transition rather than probability and providing better model lay-

out instead of representing all states in one single row (either left-to-right or right-to-left layout).
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For the sixth contribution we have identified three new types of hidden states which are simple,

composite and complex. There are two possible types of hidden states that have been discussed

in literature [125]. These states are production and abstract node. Our new types of hidden

states can be used as a classification for the abstract states which may help in providing an

indication for the need of further hierarchical modelling. These types take into consideration

the percentage of process variation inside a state in addition to how many event types occupy

80% of the state.

The seventh and final contribution provides the implementation of our method which includes

two types of soft and strict optimisations, criteria calculations and the visualization method

as an open source package in the R language. The package documentation is supplemented in

appendix D.

8.4 Chapters summary and overall discussion

In Chapter 1, we explained the motivations of this research by outlining the main challenges of

using process mining in healthcare. Research problem statement was discussed in addition to

the proposed research method. The main contributions of this research are described besides

the work that were published throughout this research.

In Chapter 2, we have explained the nature of healthcare processes and the implications for

process mining in healthcare. A discussion of applying process mining in healthcare is now

provided. The complexity, which is the most challenging part of modelling healthcare processes

is discussed in detail with the causes of such complexity and how it can be measured. We have

adopted the complexity definition from [1] and included the fourth component of complexity

which is the type of interrelatedness. From a process mining view, the type of connection be-

tween events can be represented as process constructors, which can increase the complexity of

the process model.

The chapter explored a background of general process mining algorithms and algorithms that

aim to address complexity. Methods that tackle complexity can be categorised as a supervised

method, abstraction with domain expert, or a pattern based method. The available methods

have helped in identifying the second challenge in our research which is the involvement of

domain experts in the abstraction. The algorithms that are designed to cope with complexity

mostly have four properties as suggested in [56] which are aggregation, abstraction, emphasise

and customisation. We have taken these properties into account during the development of our

method. Chapter 2 has provided a background of HMM and its related algorithms which are

the EM and the Viterbi and a brief review and discussion of the use of HMM in process mining.

This has shown that clustering based methods mainly aimed to split groups of patients into
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different clusters before process discovery to solve the complexity, hence, cannot discover the

general process model for the whole extracted log.

In Chapter 3, we investigated the use of a new healthcare resource, MIMIC-III, for modelling

patient processes. Before this thesis the only healthcare data that was available on-line was

the BPI challenge data which was recorded in Dutch, not English. MIMIC-III provided a ter-

tiary care data source from a hospital and for inpatients who required special expertise and

equipment. The steps for producing the event log for a specific cohort are explained in detail.

This chapter demonstrates the third challenge of our thesis which is the extraction of care

processes from non-process aware systems. We have explored different approaches for event log

pre-processing which include aggregation and temporal methods. The aggregation approach

dramatically reduced the number of events. The temporal approach related to the interval

aspect of an event was used as an ad-hoc approach for MIMIC-III since it had a high number

of repeated events such as chart event in the intensive care units. Although the number of

events significantly reduced after the pre-processing steps in this chapter, the variation of the

process was still high. Therefore, some process mining techniques such as fuzzy miner and local

process mining were tested and they presented a number of limitations that prevent generating

understandable models.

In Chapter 4, we described how we applied the method of HMMs for state abstraction mod-

elling. Several model selection metrics are discussed for example, AIC, BIC, ICL and cross

validation likelihood which showed BIC was the best metric for selecting the most right model,

however, some concerns were raised in using BIC with high dimensional data. In order to

investigate these concerns, we have conducted some empirical experiments using toy data and

colorectal cancer real data that was extracted from MIMIC-III. The data used were varied in

size and sparsity. Three main issues were empirically detected on models selected by BIC as

best models. These issues are; the potential for higher abstraction, the existence of multiple

similar states and unimportant states. The issue of similar states lead us to identify the new

classification of the hidden states types that are mentioned in the contributions. Interestingly,

using the BIC metric has selected a good model with a small event log and this helped us to

characterise what a good model can be for larger scale processes.

In Chapter 5, we introduced the idea of multi-objective optimisation. The question of what is

the best model was not easy to answer, however, we suggest four possible criteria which may

help when selecting the best state abstracted healthcare model. These criteria were linearity,

state compactness, cross state similarity and state importance. We have demonstrated the ra-

tionale for selecting these criteria and how they can be calculated. A simple calculation using

the transition matrix is used to compute model linearity. For the state compactness calcula-

tion, a context-aware score is used where the weight of events transposing was reduced to half
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because transposition between healthcare events is expected based on our data observation.

In cross state similarity we adopted the general process similarity metric that has used the

common node and common edges for measuring the similarity. Regarding the final criteria,

the importance threshold can be set by the user, however we selected 50% as state importance

percentage aiming at discovering the general model where states represent at least half of the

patients. It should be noted that, the idea of this multi-objective function is built upon the

idea of general clustering validation in addition to the linearity of the model and considering

case coverage that is represented by state significance.

Criteria properties and the relations between the criteria have helped in weighting the parame-

ters of the multi-objective function. In this chapter, criteria exploring and weights tuning have

been achieved using toy data and a real event log data extracted from MIMIC-III. In order to

provide some flexibility in model selection, two types of optimisation are suggested which are

soft and strict. Soft optimisation used unconstrained criteria, which are linearity, compactness

and cross state similarity, while strict optimisation included the constrained criteria as well

which is state importance. Lastly, a robust method is developed to include the suggested opti-

misation as a previous step before model selection.

In Chapter 6, we moved to a different healthcare data source, PPM, with the aim of testing

our method through a number of case studies then evaluating the models with a domain ex-

pert. Our PPM dataset contained de-identified electronic health records for cancer patients in

Leeds cancer centre in the UK. We extracted the first case study which contained event data

of chemotherapy cycles of breast cancer patients. There were some challenges in preparing the

PPM data particularly for process mining. Our abstraction method successfully discovered the

general process model for this case study. In this chapter we discussed how the definition of a

good and bad outcome is depend on the selection made by the process analyst and the concept

of quality that might be important for stakeholders. For example, process model outcomes can

rely on the presence or absence of an interesting event or pattern. An interesting finding is

that our approach has differentiated between the different contexts of the main steps in the

healthcare process. For instance, the HMM that was selected using soft optimisation identified

two different states for chemotherapy cycles and this was confirmed by the domain expert in

the evaluation session. Models were validated against the issues that were key drivers for our

optimisation and evaluated also using process mining quality metrics that evaluate a models

complexity, such as size, and model accuracy, such as fitness and precision.

In Chapter 7, we extracted two further case studies of patients with breast cancer. The complex-

ity of the models varied depending on the number of patients, number of events and sparsity.

The aim of extracting these case studies was to test the proposed method of discovering the

general process model with more complex processes. The proposed method was applied on both

case studies, however, in case study 3 we needed to apply hierarchical modelling for complex
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states. The results of the extraction have also shown that the changing of treatment types for

breast cancer that happened in case study 2 increased both the complexity and the process vari-

ation in comparison to case study 1. However, the changing of chemo-regimens that happened

in case study 3 has not increased the variation in comparison to case study 2, though this has

increased the complexity of the model. In order to have more details about a specific cohort

of patients, we proposed a top-down strategy for selecting and analysing similar cohorts based

on the similarity of their processes. At the last stage, models were evaluated and the results

showed that models’ complexity had improved in both case studies based on different metrics

such as size, control-flow-complexity (CFC) and structuredness. Furthermore, models’ accuracy

metrics based on fitness, precision and generalization had improved in both case studies. Also,

the models were evaluated with domain experts where they have agreed on the correctness of

the resulted process model and they emphasised the clear understandability of the healthcare

process models for all cases of breast cancer patients.

8.5 Limitations

Although this research has successfully improved model understandability and reduced health-

care model complexity, there are some limitations that should be stated:

• A methodological limitation related to the use of hidden Markov models which is subjected

to Markov assumption. The assumption implies that the transition to the next state

depends only on the current state. This makes the model not able to capture the long

dependency between events.

• When discovering the abstract process models, discovering the main pattern of care re-

quired several steps of data transformation and selection of a number of events, especially

when solving the batch events. Therefore, the selection of events may have impacted our

abstract model.

• We have successfully developed a method that targeted complexity. However, referring

to the properties, that are discussed in section 2.6, of the methods that should be able to

address the process complexity, our method needs to support more flexible customization.

This means the developed method in this research supported two types of optimisations,

but there might be other aspects which can be explored based on user preference. For

instance, the tool can support different options of visualizing the best model based on

single criteria such as the model with the best linearity or best cross state similarity.

• Long computational processing time that is required for the stages of model learning and

decoding.

• Our method is not intended to discover business process structures such as parallel, choice

and exclusive-or. We do not consider this a problem as these constructors rarely exist in
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healthcare processes due to the impact of variety and flexibility.

8.6 Future work

The methodology developed in this thesis could be extended and applied in the future in the

following ways:

• Integrating further functionality of HMMs. There is a potential of harnessing the prob-

ability nature of hidden Markov model to be used for operational support in healthcare

processes such as prediction and recommendation of the next state of care process.

• Adopting an interactive abstracting approach for modelling hierarchical patients path-

ways. In case study 3, we have applied hierarchical modelling for complex state by man-

ually extraction of the events. However, the approach for automating the hierarchical

modelling can be done by extracting events related to the required state. Then, provides

these events as a sub-log input for the subsequent stages of learning, decoding, optimising,

selecting and visualizing. Figure 8.1 shows our vision for the extension proposed tool.

Figure 8.1: Our vision of an interactive hierarchical state modelling for mining patients
pathway. This figure is presented in the conference where our work [3] was published.

The automation of our approach might be extended to include patients selecting from the

abstracted HMM instead of selecting patients using another process mining tool.
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• Using high-order hidden Markov models to capture long dependencies between events and

not only first order-hidden Markov model.

• Broadening the scope of the proposed optimisation and its applicability in other domains.

Our optimisation method could be used alone as a metric for selecting the best model of

hidden Markov model in sparse data in non-healthcare domains.

• Using state types, such as simple or composite types, and the similarity score for merging

similar states as another method to cope with the limitations of BIC metric in sparse

data.

• Involving process temporal constraints on state transition matrix. For example; if there is

a persistent state which means patients may take longer time in this state we could make

use of time constraint on state change. However this may require domain knowledge to

set the appropriate related time for each state.

• Investigate the applicability of using other algorithms that are designed for handling

different sequences such as genetic sequences alignment algorithm and examining the

strength and weakness of using such cross disciplinary algorithms.

In conclusion, this thesis has shown that our method of unsupervised abstraction of care events

has successfully discovered the general process models of complex healthcare processes rep-

resented in three real case studies of breast cancer patients from Leeds Cancer Centre. Our

developed abstraction method supported an automatic abstraction for start-to-end process mod-

els and discovered the general care of pattern for a complex large event log with the ability

of handling process variations. Moreover, the generated abstracted process models could be

evaluated and assessed within the available process mining frameworks besides the capability

of distinguishing care events that occurred in different contexts of the process.
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A ICD9 code for Diabetes

Type 2 Diabetes Mellitus: Commonly Used ICD-9 Codes according to [139].

V58.67 Long term, current insulin use

250.0 Diabetes mellitus without mention of complication

250.00 Diabetes mellitus without complication type 2 or unspecified type not stated as uncon-

trolled

250.02 Diabetes mellitus without complication type 2 or unspecified type uncontrolled

250.1 Diabetes with ketoacidosis

250.10 Diabetes mellitus with ketoacidosis type 2 or unspecified type not stated as uncontrolled

250.12 Diabetes mellitus with ketoacidosis type 2 or unspecified type uncontrolled

250. 4 Diabetes with renal manifestations

250.40 Diabetes mellitus with renal manifestations type 2 or unspecified type not stated as

uncontrolled

250.42 Diabetes mellitus with renal manifestations type 2 or unspecified type uncontrolled

250.5 Diabetes with ophthalmic manifestations

250.50 Diabetes mellitus with ophthalmic manifestations type 2 or unspecified type not stated

as uncontrolled

250.52 Diabetes mellitus with ophthalmic manifestations type 2 or unspecified type uncontrolled

250.6 Diabetes with neurological manifestations

250.60 Diabetes mellitus with neurological manifestations type 2 or unspecified type not stated

as uncontrolled

250.62 Diabetes mellitus with neurological manifestations type 2 or unspecified type uncon-

trolled

250.7 Diabetes with peripheral circulatory disorders

250.70 Diabetes mellitus with peripheral circulatory disorders type 2 or unspecified type not

stated as uncontrolled

250.72 Diabetes mellitus with peripheral circulatory disorders type 2 or unspecified type un-

controlled

250.9 Diabetes with unspecified complication

250.90 Diabetes mellitus with unspecified complication type 2 or unspecified type not stated as

uncontrolled

250.92 Diabetes mellitus with unspecified complication type 2 or unspecified type uncontrolled
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B ICD9 code for Colorectal caner

Colorectal cancer mostly used ICD9 code according to [139].

V10.05 Personal history of malignant neoplasm of large intestine (high risk screening code)

V10.06 Personal history of malignant neoplasm of rectum, rectosigmoid junction, and anus

(high risk screening code)

V12.72 Personal history of adenomatous colonic polyps (high risk screening code)

V16.0 Family history of malignant neoplasm of gastrointestinal tract (first degree relative-

sibling, parent, child) (high risk screening code)

V18.51 Family history, adenomatous colonic polyps (high risk screening code)

V76.41 Special screening for malignant neoplasms of rectum

V76.51 Special screening for malignant neoplasm of colon

V84.09 Genetic susceptibility to other malignant neoplasm (not covered by all payers)

153.0-154.9 Malignant neoplasm of colon, rectum, rectosigmoid junction and anus

209.11-209.17 Malignant carcinoid tumours of the appendix, large intestine, and rectum

209.50-209.57 Benign carcinoid tumours of the appendix, large intestine, and rectum

211.3 Benign neoplasm of colon

211.4 Benign neoplasm of rectum and anal canal

569.0 Anal and rectal polyp
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C Checking the presence of multiple similar states

The following figures are for simple and composite states types of the best models selected in

the three case studies that were demonstrated in chapter 6 and chapter 7.

(a) simple state (state 4) (b) composite state (state 6) (c) composite state (state 7)

1: states has same main events (chemotherapy cycles)

(d) simple state (state 5) (e) simple state (state 9) (f) simple state (state 11)

2: states has same main events (Admissions)

Pareto chart of suspicious similar states of 12states model that is selected by BIC in case
study 1
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(a) simple state (state 3) (b) simple state (state 5) (c) simple state (state 8)

1: states has same main events (Admission-Elective)

(d) composite state (state 7) (e) composite state (state 9)

2: states has same main events (chemotherapy cycles)

Pareto chart of suspicious similar states of 9states model that is selected by soft optimisation
in case study 1
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(a) simple state (state 2) (b) simple state (state 13)

1: states has same main events (Discharge)

(c) simple state (state 3) (d) simple state (state 5)

2: states has same main events (Ward stay)

(e) simple state (state 11) (f) simple state (state 14)

3: states has same main events (Admission-Elective)

Pareto chart of suspicious similar states of 14states model that is selected by BIC in case
study 2
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(a) simple state (state 4) (b) simple state (state 7)

2: states has same main events (Regimen start)

Pareto chart of suspicious similar states of 8states model that is selected by strict and soft
optimisation in case study 2
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(a) simple state (state 2) (b) simple state (state 6)

1: states has same main events (Regimen start)

(c) simple state (state 8) (d) simple state (state 10)

2: states has same main events (Admissions)

(e) simple state (state 5) (f) simple state (state 12)

3: states has same main events (chemotherapy session)

Pareto chart of suspicious similar states of 14states model that is selected by BIC in case
study 3
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(a) simple state (state 1) (b) simple state (state 4)

(c) simple state (state 5) (d) simple state (state 13)

1: states has same main events (Discharge)

(e) simple state (state 2) (f) simple state (state 9) (g) simple state (state 10)

2: states has same main events (chemotherapy session)

Pareto chart of suspicious similar states of 14states model in hierarchical case study 3
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(a) simple state (state 2) (b) simple state (state 3)

1: states has same main events (chemotherapy session)

Pareto chart of suspicious similar states of 8states model in hierarchical case study 3



192

D Package ‘AbstractHMM’

Package ‘AbstractHMM’

June , 2019

Title Selecting the best Hidden Markov Model for abstracting complex process models.

Version 1.0

Description This package is designed to select the best Hidden Markov Model for abstracting

complex process models. This version of the package is compatible with the structure of HMM

that is trained using ‘seqhmm’ package in R. The package provides four different criteria that

can be used for selecting the best number of hidden states. It is used as an alternative for

information criteria metrics such as BIC and AIC. Models should be trained in unsupervised

before using this package. Two types of optimisation are supported which are strict and soft

optimisation. The strict optimisation takes state importance into consideration and selects a

model that has a high state coverage in every state. Soft optimisation allows more flexibility

towards model with low coverage states.

Depends R (>3.2.0)

Imports SeqHMM, igraph, devtools, stringdist, hashr, dplyr, ldply, ngram, bupa

License GPL (>2)

Encoding UTF-8

Author Amirah Alharbi

Repository CRAN

Package Functions:

1- linearity()

2- state compactness()

3- cross state sim()

4- state importance()

5- st sf optimization()

6- abstract process model()
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linearity Compute to what extent a model is linear

Description

This function is designed to know what the main direction of Hidden Markov model is. The

direction can be deduced from the probability of transition matrix. If the sum of the transitions

of upper triangular part is higher than the sum of the transitions of lower triangular part then

the model is mostly linear with left-to-right direction and vice versa.

Usage

linearity(HMM)

Arguments

This function takes a hidden Markov model as input and compute the linearity.

Value

linearity score

Dependent package

require(gdata)

state compactness Calculate the compactness of a state

Description

This function calculates the compactness of states which will be used later as one criteria for the

optimisation and selecting the best model. The model should be learned first using ‘Seqhmm’

package and decoded using the Viterbi algorithm. compactness is measured using an optimal

string alignment (OSA) between processes inside a state.

Usage

state compactness(HMM, viterbi decoder = NULL, log)

Arguments

This function takes three inputs; HMM after learning using ‘seqhmm’, the Viterbi decoder is

optional parameter if it is not available this function will decode the log with the viterbi decoder

and the event log.

Value

compact score which is the average compactness score of model’s states.
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See Also

fit model(), hidden paths()

Dependent package

require(stringdist) , require(hashr)

cross state sim Calculate the similarity score between model states

Description

This function calculates the similarity of the process between states. The criteria is computed

based on the similarity of common nodes and common edges between processes.

Usage

cross state sim(HMM, decoder = NULL, log)

Arguments

This function takes three inputs; HMM after learning using ‘seqhmm’, the Viterbi decoder is

optional parameter if it is not available this function will decode the log with the viterbi decoder

and the event log.

Value

cross sim score which is the average of cross state similarity for a model.

See Also

fit model(), hidden paths()

Dependent package

require(plyr) , require(ngram)

state importance check if state is important or not based on user threshold

Description

This function checks if a state is important or not based on the state coverage percentage which

is defined by the user. It counts how many states that are not important in a model.

Usage

state importance(HMM, decoder = NULL, log , total cases, importance threshold)
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Arguments

This function takes five inputs; HMM after learning using ‘seqhmm’, the Viterbi decoder is op-

tional parameter if it is not available this function will decode the log with the viterbi decoder,

the event log, the total number of cases that have been learnt and percentage threshold.

Value

importance weight which shows the number of unimportant states to be used later in the strict

optimisation.

Examples

state importance(HMM1, decoder1 , eventLog , 100, 50)

st sf optimization Strict and Soft optimisation for candidates of HMMs

Description

This function optimize the space of HMMs candidates in order to select the best abstract pro-

cess model. The optimisation is based on four criteria, linearity, state compactness, cross state

similarity and state importance.

Usage

st sf optimization(linearity, compact score, cross sim score, importance weight = NULL)

Arguments

This function takes four input parameters. If the parameter importance weight is Null then the

soft optimisation is applied using this formula;

f(1) = max{2(li)− 1
2 (sci)− cssi : i = 1..n}

otherwise the strict optimisation is computed using the following formula;

f(2) = max{1− sii[2(li)− 1
2 (sci)− cssi] : i = 1..n}

Value

optimization result which is a vector of two elements. The first element is the optimisation

score and the second element is the index of the model.

abstract process model Visualization of the abstract process model

Description

This function provides a visualization of the best process model that is selected after the op-

timisation. The visualization includes two steps. The first step aims to know the structure of
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the abstract model, for instance how many node a model has. The second step aims to fill the

nodes with the relevant events and assigns different colour for each event.

Usage

abstract process model(graph, log)

Arguments

This function takes two inputs which are graph for the abstract model and the event log that

is enriched with state number for every event.

Value

igraph object for the abstract process model.

Example

log = read xes(eventlog)

precedence = log %>% precedence matrix()

edgelist= as.matrix(precedence[,1:2])

g = graph from edgelist(edgelist, directed = TRUE)

abstract process model(g, log)

Dependent package

require(qdap), require(dplyr), require(bupaR)
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