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Introduction 

Shiga-toxin producing E.coli (STEC) are a group of bacteria associated with human disease and are 

defined by the presence of one or both phage encoded Shiga toxin genes; stx1 and stx2 [1]. The main 

reservoir is ruminant animals, particularly cows and sheep.  

First recognised as a human pathogen in 1982 [2], STEC are now globally distributed [3]. There is 

evidence that a common ancestor of STEC was introduced to countries around the world on a 

number of occasions in the past, likely due to international transport of animals and/or contaminated 

animal feed [4]. Following introduction, localised genetic variation has occurred leading to a 

patchwork of strains that are related at the global level, but show distinct geographical differences. 

Infection with STEC is the result of complex set of interactions between distal and proximal risk 

factors related to the reservoir, the environment, the pathogen, the host and opportunities for 

transmission [5]. The relative importance of these factors may vary at different spatial scales [6]. For 

example, the same seasonal distribution of cases is seen in countries separated by large distances and 

this is thought to reflect the presence of similar agricultural and climatic risk factors [5]. However, 

these factors alone are unlikely to explain the considerable variation of infection rates between [7-

11], and within [12], countries around the world, particularly when considering the comparable 

levels of carriage by cattle in those countries [13].  

Within the United Kingdom, rates of STEC infection in Scotland are more than twice that of England 

[14]. Within England, rates of infection vary considerably from 0.40 to 1.34 cases per 100,000 

person years in London and the North respectively [6, 15] and there is evidence that this relates to 

living in areas with high densities of farmed animals [6]. However, the strains infecting humans are 

not always the same as those circulating in the „local‟ ruminant reservoir [16, 17]. The reasons for 

this are unclear but may be due to widespread exposure to a remote source of infection, or localised 

exposure to a source where the availability of comparative microbiological information is scant [6, 
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17]. Conversely, evidence from outbreak investigations shows that transmission of highly related 

strains can occur via multiple routes from geographically restricted sources [18, 19].  

Identifying geographical areas with significantly higher or lower rates of infection therefore has the 

potential to provide important aetiological clues. These can then be used to inform the design of 

epidemiological studies to generate the evidence base needed for sound public health policies 

designed to reduce morbidity. Routine integration of spatial information with infectious disease 

surveillance data is increasingly common and statistical methods that allow precise delineation of 

high and low risk areas are widely available. These methods include area-based studies; global, local 

and focused tests for spatial clustering; estimates of spatially varying risk; and spatiotemporal 

modelling.   

Area-based studies compare disease rates or counts between different populations, often combined 

with other data, to examine the effect of risk factors. Global tests for spatial clustering, such as 

Moran‟s I [20] and the Diggle-Chetwynd statistic [21], identify whether there is a general tendency 

for cases to occur more closely together than would be expected compared to the underlying 

population at risk. Local and focused tests for clustering, such as Local Indicators of Spatial 

Association (LISA) [22] and Kuldorff‟s scan statistic [23], are used to identify specific 

concentrations of disease that are statistically significant and may require further investigation. 

Methods to estimate spatial variation in risk are used to describe the change in risk over a given 

study area and include kernel smoothing, which forms a key component in the estimation of the 

kernel density-ratio or relative risk function [24-27], and spatial interpolation methods such as 

inverse distance weighting [28] and kriging [29]. Modelling approaches can either take the form of 

empirical or mechanistic models that consider the effect of space and time alongside other factors 

[30-32]. 
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Smith et al. [33] systematically reviewed the use of spatial methods in infectious disease outbreaks 

between 1979 and 2013. Most reports were from the United Kingdom and a range of techniques was 

used, including simple dot maps, cluster analyses and modelling approaches.  Spatial methods were 

used in only 0.4% of the total number of published outbreaks, predominately for environmental or 

waterborne infections, and were applied in only one foodborne outbreak. Since 2013, spatial methods 

have been applied specifically to infectious intestinal disease data and have included tests for global 

[34-38] and local [34, 35, 37, 39-44] clustering, spatial variation in risk [36, 45, 46], modelling and 

other approaches [31, 35, 36, 39, 41, 42, 45, 47, 48]. 

The aims of this study were to first estimate the spatial variation in risk of STEC O157 in England; 

second, to estimate the space-time variation in risk over the study period; and, finally to explore any 

difference between the residential locations of cases reporting travel and those not reporting travel.  

 

Methods 

In England, isolates of E. coli O157 identified locally are sent for confirmation and typing at the 

Gastrointestinal Bacterial Reference Unit (GBRU). Detection and confirmation of STEC includes 

biochemical identification and serotyping of bacterial isolates. Since 1989, strains belonging to E. 

coli O157 have been further differentiated using a phage typing (PT) scheme developed in Canada 

[15]. Retrospective real-time polymerase chain reaction (PCR) targeting stx1 or stx2 and the intimin 

(eae) gene, associated with intimate attachment of the bacteria to the host gut mucosa, was 

introduced in 2012 [15]. Since 2015, all isolates have been routinely sequenced allowing 

identification of genetic lineage/sub-lineage and stx subtypes [49, 50].  

The National Enhanced Surveillance System for STEC (NESSS) was introduced in England in 2009. 

The system collects clinical and epidemiological information for each laboratory confirmed case 

using a standardised questionnaire. This includes details about whether they had travelled abroad or 

                  



5 
 

within the UK prior to their illness onset and the residential postcode of each case (an alphanumeric 

reference developed by the UK Post Office to facilitate the delivery of mail, each containing around 

15 addresses). This information is linked to reference microbiology information including PT, 

presence of virulence factors and whole genome sequence data [1]. 

Case selection 

We selected primary cases of STEC O157 with valid postcodes reported to the NESSS between 2009 

and 2015. Strains of STEC O157 circulating in humans fall into three distinct lineages (I, II and I/II) 

descended from a common ancestor. Lineage I contains PT 21/28 and PT32; strains encoding stx2 

only and associated with more severe disease. Lineage II contains PT8 and Lineage I/II PT2 [49]. 

Cases were categorised into these Lineages and Lineage II was further divided into sub-lineages IIa, 

IIb and IIc. Because routine whole genome sequencing (WGS) was not introduced until 2015, we 

extrapolated the phenotypic characteristics of PT and stx of strains identified by whole genome 

sequencing to isolates falling into Lineage II. This was not possible for isolates in Lineage I because 

sub-lineages are identified using the stx subtype which is inferred from the sequence result. The 

categorisation and numbers of strains are presented in Table 1.  

The NESSS categorises cases into primary, co-primary, secondary or unknown. This categorisation 

is given at the time of the case interview and is quality checked when the data are entered into the 

system. Primary cases are either those that are not epidemiologically linked to other cases or, in the 

case of household outbreaks, the case that developed symptoms first. We selected primary cases only 

and cases linked to known outbreaks were excluded.   

Control selection 

Controls were randomly sampled from the National Population Database (NPD) [51]. The NPD is a 

point-based Geographical Information System (GIS) dataset that combines locational information 
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from providers like the Ordnance Survey with population information about those locations, mainly 

sourced from UK government statistics. It consists of a number of dataset layers, including 

population data from the 2011 Census [52]. Data are provided in a 100-metre by 100-metre grid 

situated on a centroid of the square with the population generalised to this level [51, 53]. Four 

control locations per case were drawn without replacement. The probability of a location being 

sampled was weighted by the summed population of each grid square to reflect the spatially varying 

nature of the underlying population at risk.  

Analytical strategy  

We chose the kernel smoothing method because our primary interest was to identify large scale 

variation in risk as opposed to small-scale localised clustering [54]. This method is also well suited 

to studying the occurrence of cases relative to the heterogeneous nature of the underlying at-risk 

population present in our data and the tools with which to perform the analyses are free and easily 

accessible [55]. 

The data used to estimate a particular relative risk surface are given as two distinct samples of planar 

points assumed to originate from (unknown, possibly equivalent) density functions f (cases) and g 

(controls) [55]. A fixed or adaptive [56, 57] bandwidth determines the spread of smoothing kernels 

centred on each point, producing a nonparametric density estimate that can be evaluated at all 

locations within the spatial study region. The ratio of case density to control density is calculated to 

provide a continuous estimate of relative risk which can then be plotted on a map. Where f > g there 

is a peak in the surface (indicative of heightened risk); where f ≅ g, the surface is flat (no difference 

in risk); and where f < g, there is a trough in the surface (lower risk). Specialised coordinate-wise 

hypothesis tests permit detection of statistically significant departures of these peaks and troughs 

from uniformity, and any such sub-regions can be delineated by drawing associated tolerance 

contours upon the risk surface in question [26, 27, 56]. 
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Spatially varying risk 

To estimate the spatially varying risk we created case-control datasets for all PTs, Lineages I, II and 

I/II and Sub-Lineages IIa, IIb and IIc. For all PTs, we included cases that reported travel abroad or 

within the UK in the seven days prior to the onset of symptoms. For the Lineage and Sub-Lineage 

analysis, only cases who reported no travel were included. The same control dataset described earlier 

was used for each analysis.  

For all spatial risk surfaces we used adaptive kernel estimation following Abramson‟s square-root 

rule [58]. This adaptation reduces the smoothing in areas of high point density (to capture more 

detail in the final estimate where we have an abundance of data), while increasing the smoothing in 

areas where the observations are relatively sparse (reflecting our greater uncertainty in areas where 

we do not have as much information). Such an approach has been shown to work extremely well for 

applications in geographical epidemiology [56, 57, 59], but the issue of bandwidth selection is more 

complicated than in the fixed bandwidth case; we require selection of both a “pilot” and a “global” 

bandwidth value to initialise the estimator for a single density estimate. To simplify the selection 

problem, recent work has shown constraining these two values to be equal, as well as following an 

established practice of choosing equal values between both the case and control density estimates 

[26] offers both theoretical and practical benefits for the resulting risk function estimate. 

As such, we follow these guidelines in producing all spatial risk surfaces in this work, calculated as 

symmetric adaptive risk function estimates using the pooled case/control data set to compute the 

variable bandwidth factors [57], using equal global and pilot bandwidths chosen simultaneously via 

the likelihood cross-validation methodology described in [60]. The global bandwidth value was used 

for the fixed estimate in the sensitivity analyses. The far-right hand column of Table 1 reports the 

common case/control bandwidth found for each estimate.   
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All estimates are edge-corrected to account for kernel weight lost over the boundary of the study 

region [61, 62] and results are reported as log-relative risk surfaces log f – log g for symmetry around 

the „null‟ log risk value of zero. Finally, corresponding asymptotic p-value surfaces were estimated 

for each surface [56, 57], and contours were superimposed at the 5% significance level to delineate 

areas of significantly higher or lower risk. 

To estimate the spatial effect of reported travel, we created a dataset containing case data only. Cases 

were marked with the following travel status categories: „Foreign travel‟ (cases reporting travel 

outside the UK in the seven days prior to onset); „Any travel‟ (cases reporting foreign travel and/or 

travel within the UK in the seven days prior to onset) and; „No travel‟ (cases reporting no travel 

either in the UK or abroad in the seven days prior to onset). We calculated the spatial relative risk for 

reported foreign travel by comparing cases in the „Foreign travel‟ category to those falling into the 

“Any” and “No” travel categories. To produce the risk surface for „Any travel‟, we compared cases 

falling into the „Any travel‟ category with those in the „No travel category‟.  

Rural residence is known to be associated with an increased risk of STEC infection in England [6]. 

To explore the potential confounding effects of this on our analysis, we conducted two sensitivity 

analyses using both fixed and adaptive bandwidths. The first was restricted to rural areas only and 

the second used data stratified by urban/rural residence. For both these analyses we compared fixed 

to adaptive bandwidths to explore whether they produce similar results.  

Spatio-temporal risk 

Creating a dataset containing all cases marked with the month of disease onset as a temporal event 

permits exploration of the temporal variation in the spatial risk of STEC O157. However, estimation 

of spatio-temporal relative risk is somewhat more complicated than purely spatial risk, and the 

properties of adaptive kernel estimators for such functions have not yet been studied in sufficient 

detail in the statistical literature. Thus, we approach these estimates using the Fernando-Hazelton 
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fixed bandwidth kernel estimator [63]. Each spatio-temporal density estimate requires a separate 

smoothing bandwidth for the spatial and the temporal margins of the data. As in the purely spatial 

setting, it is recommended to choose the same values of these bandwidths between the case and 

control estimates. For the sake of comparison, we produced fixed-bandwidth relative risk surfaces 

[63] using two bandwidth prescriptions. The first used the maximal smoothing principle proposed by 

Terrell [64] applied separately to the spatial and temporal margins of the data. The second used the 

fixed bandwidth cross-validated likelihood method [60] to produce a risk surface with less 

smoothing. Estimates were edge corrected using the same methodology as mentioned earlier and 

results are reported as raw-risk estimates for ease of interpretation. Asymptotic p-value contours are 

again superimposed to identify areas of elevated risk only at the 5%, 1% and 0.01% significance 

levels. 

Data preparation was performed using ArcMap v10.2 [65]. All subsequent analyses were performed 

using the contributed packages sparr [55] and spatstat [66, 67] in the R language [68]. Bandwidth 

selections were performed using cases and/or controls falling within a simplified polygon of the 

mainland boundary of England. 

Results 

The spatial locations of all unmarked cases and controls are shown in Figure 1. A total of 3,592 cases 

and 14,392 controls were considered for analysis. The majority of cases fell into Lineages I and II 

(Table 1). Just over half of all cases (1,942; 54%) reported no travel in the seven days preceding the 

onset of their symptoms, 29% (1,029) reported foreign travel and 17% (621) reported travelling 

within the UK (Table 1). Over half of the cases (2011;56%) were female and most (2157; 60.1%) 

were adults aged over 18 years or more. One fifth of cases (735; 20.1%) were children aged five 

years or less and the remainder (700; 19.5%) were children aged between 6 and 18 years. 
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The relative risk surface for all cases (including those reporting travel) is shown in Figure 2. There 

were three main areas where risk was significantly higher compared to the underlying population at 

risk. These were in the north/north-west of the country and the south-west. Areas of significantly 

lower risk were largely confined to the south. 

The relative risk surfaces for Lineages I, II and I/II are presented in Figure 3. For Lineage I, the 

greatest risk was largely seen in the north-west and south-west of the country. Areas of lower risk 

were confined to the midlands and south as well as a small urban area in the north-west.  

Compared to Lineage I, the risk surface for Lineage II was more uniform across the country. Areas 

of significantly elevated risk for Lineage II were confined to the north and north-west, and two areas 

in the south-west of the country. Areas of significantly lower risk were largely restricted to the 

extreme south and south-east of the country.  

For Lineage I/II, areas of significantly higher risk were restricted to the north, the east and the far 

south-west of the country. Areas of significantly lower risk were located in the south-east. 

The relative risk surfaces for Sub-Lineages IIa, IIb and IIc are presented in Figure 4. For Sub-

Lineage IIc, areas of significantly elevated risk appeared in the north-west and the south-west. Areas 

of significantly lower risk were located in the south and the far south-east. The risk for IIa appeared 

highest in the far south-west and for IIb across the north and south-west of the country but these were 

not statistically significant.  

The results of the spatiotemporal analysis are best viewed in the animation provided here (Insert link 

to MP4). This shows that the spatio-temporal risk was largely confined to the north and south west of 

the country but was highly dynamic within and between these areas. The over-smoothed surface (left 

panel in the animation), showed an area of elevated risk largely restricted to the far north-west. In 
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late 2010, this area expanded to the east and south and persisted across the north of England for two 

years before disappearing towards the end of 2013.  

In the south-west, risk was similar to the north but lower between 2010 and 2013, after which the 

highest risk areas were seen in this area. Compared to the north, the areas of high risk were more 

mobile and appeared in different areas from year to year. 

Figure 5 shows the two risk surfaces for cases reporting foreign travel and for those reporting foreign 

travel or travel within the UK in the seven days preceding onset of symptoms. Cases reporting travel 

were significantly more likely to live in the south and south east of the country than cases who 

reported no travel, who were more likely to live in the north or south west.  

The results of the sensitivity analysis comparing the main results with those of the rural areas only 

and the analysis stratified by urban/rural residence are presented in Figures S1 and S2 respectively. 

Each analysis identified broadly the same areas of higher and lower risk identified by the main 

analysis. When compared to the adaptive surfaces, those produced using the fixed bandwidths were 

„noisier‟, even though both generally agree on areas of heightened and lowered risk. This is likely the 

result of simultaneous over- and under-smoothing in different areas of the study region; a common 

symptom of fixed-bandwidth estimation [59].  

Discussion 

Our analysis provides evidence that the distribution of STEC O157 infection in England is non-

uniform with respect to the distribution of the at-risk population; that the spatial distribution of the 

three main genetic lineages infecting humans differs significantly and that the spatio-temporal risk is 

highly dynamic. We also provide evidence that cases of STEC O157 reporting travel within or 

outside the UK are more likely to live in the south/south-east of the country, meaning that their 

residential location may not reflect the location of exposure that led to their infection. We propose 
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that the observed variation in risk is likely to reflect a differential exposure to a source of STEC 

O157 that is geographically prescribed. 

Comparison with other studies 

Contact with the agricultural environment is a known risk factor for STEC infection [6, 69-71]. 

Within the British Isles, increased risk of STEC O157 infection is associated with rural areas  

where there are high densities of animals (particularly cattle and sheep) and less likely to be 

served by mains water supplies [6, 14, 72, 73]. There is evidence that the spatial distribution 

and relative importance of risk factors differ by pathogen sub-type [6, 45, 73] and similar 

findings have been produced from Northern European countries [14, 74-79], the United States 

[45], Canada [74, 80] and New Zealand[12].  

Our analysis is exploratory and therefore inference regarding causation cannot be drawn. However, 

the areas of elevated risk presented here are consistent with findings from other studies in that they 

are predominately rural areas with sparse populations, high densities of farmed animals and with 

greater numbers of private water supplies [6]. They also share similar locations to national parks; 

popular destinations for day trips for local residents and longer holidays, particularly for those 

living in the south and south east of England [81]. In contrast to most farmland in England, 

public access to National Parks is largely unrestricted and visitors often camp, walk or cycle in 

areas where animals and/or their faeces are present  [81, 82].  

The importance of the pathways through which pathogens are transferred from the environment 

to humans is subject to debate [82].However, because of their low infectious dose, widespread 

prevalence in farmed animals and their ability to survive in the environment for extended 

periods of time STEC are well suited to environmental transmission. Recent studies using boot 

sock sampling over wide geographical areas demonstrate that Campylobacter [82] and STEC 

[83] can be recovered from boots following recreational walks in the countryside. The rate of 

recovery for both pathogens was highest in North West England (47% for Campylobacter and 
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25% for STEC) and is likely a reflection of high densities of cattle and sheep in this part of the 

country [82]. 

Spatial variation in risk at Lineage and Sub-Lineage level 

Strains falling into Lineage I/II were the dominant strain infecting humans in England for 

many years but are now uncommon [15] and our analysis demonstrates that these strains are 

also spatially restricted. Lineages I and II have dominated since the late nineties [15] and this 

is reflected in the geographically widespread areas of elevated risk seen in broadly similar 

areas of the country. However, at regional level, the spatial distribution of the three lineages 

differed. Increased risk of infection with STEC in England is generally associated with 

residential proximity to high densities of farmed animals, however, risk of infection with 

Lineage I strains is particularly associated with sheep density[6]. This suggests that the 

presence of particular lineages in the environment is uneven and dependent, at least to some 

extent, on the underlying distribution of the zoonotic reservoir. This finding is consistent with 

the distribution of Campylobacter sp. in the environment relative to the presence of different 

animal species in England [82].  

 

Spatio-temporal relative risk 

The two versions of the animated spatiotemporal risk surface provide the opportunity to 

critically appraise the detected sub-regions of significantly elevated risk. For example, a large 

area that remains significant over a long period of time in the over smoothed estimate (left 

panel in animation) could to a certain extent be a methodological artefact arising from too 

generous a bandwidth. However, if certain smaller pockets within such a sub-region persist for 

noticeable periods in the noisy (“less-smooth”) estimate (right panel), this indicates that 

anomalies in the infection rates are genuine, in turn suggesting these are a result of 

geographically restricted source. This was indeed the case, particularly in the north and south 
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west. The appearance, persistence and decline of an area of very high risk in the north of 

England between 2010 and 2013 appeared distinct to activity elsewhere in the country and 

corresponds with an unexplained decline in Lineage 1 strains, particularly in rural areas[6].  

Bandwidth selection for kernel estimation 

Choosing an optimal bandwidth is important for making reliable inference from relative risk 

surfaces. Even with tailored bandwidth selection methods [84], classical fixed bandwidth estimators 

can be unstable and do not cope well with the smoothing requirements of highly heterogeneous 

patterns [55, 56, 85].  However, choosing appropriate smoothing parameters for the more 

sophisticated adaptive estimator is far more difficult, and this is an active area of research [59, 85] .  

We used a recently developed likelihood-based selection strategy for the purely spatial analyses [60], 

and while theoretically valid, further research into how well this type of simultaneous global/pilot 

bandwidth selection might perform in practice is warranted. This bandwidth selection method did not 

identify an optimal bandwidth within a scale-appropriate range for the risk surfaces of Sub-lineages 

IIa and IIb, erring toward excessive smoothing. Such a result is suggestive of spatial uniformity of 

risk, though the relatively low numbers of cases falling into these sub-lineages may, at least in part, 

be to blame in these instances. Of note is that Sub-lineage IIb (an unusual clone of PT8 encoding 

stx2), only emerged in significant numbers following an outbreak towards the end of 2015 [19, 86] 

and so fell outside the scope of our analysis. Further work on the recent spatio-temporal nature of 

this event is recommended. 

 

Cases reporting foreign travel or travel within the UK 

To provide the best estimate of indigenous risk, our study design at Lineage and Sub-lineage 

level did not consider cases reporting travel and did not therefore capture the possible location 

of exposure related to foreign or UK travel. Notwithstanding this, the inclusion of cases 

reporting travel made little difference to the overall results suggesting that the distribution of 
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these cases is broadly similar to the underlying population at risk. However, when considering 

spatial relative risk between cases, those who did report travel were significantly more likely to 

live in the south and south-east of the country. This is consistent with previous findings that 

for these cases, exposure to risk factors not present in their residential environment are 

important when considering the source of their infections [6]. 

Data quality and potential limitations  

One potential limitation to our study is that for every STEC O157 infection reported to national 

surveillance systems in England, there are an estimated 7.4 in the community [87]. The reasons for 

this are likely to be related to severity of disease, health seeking behaviours and whether a clinician 

takes a sample and requests a microbiological examination from a laboratory. It is unknown whether 

these reporting biases vary geographically and hence would affect the spatial patterns presented in 

this paper.  

There were no changes to laboratory methods or surveillance systems during the study period [15]. 

However, a large petting farm outbreak in 2009 [88] attracted media attention and prompted a review 

of national guidelines for the public health management of STEC which had the potential to improve 

case ascertainment and follow-up from 2010 onwards. 

In addition, the Health Protection (Notification) Regulations 2010 [89] came into force during the 

study period. This legislation introduced the mandatory reporting of STEC as a causative agent, and 

haemolytic uraeamic syndrome (HUS) as a notifiable disease. Our results do not suggest that these 

events created a reporting differential based on severity of disease because risk is elevated in similar 

geographical areas for Sub-lineage IIc strains that tend to be associated with less severe symptoms 

than those falling into Lineage I.  
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We also considered the effect of rural versus urban residence in our sensitivity analysis, the results of 

which suggest that the observed spatial variation is unlikely to be explained by rural residence alone 

and that, and that the adaptive bandwidths used in this paper do not produce different results to fixed 

bandwidths.  

Conclusion 

To conclude, the risk of sporadic infection with STEC O157 varies significantly across England. We 

suggest that this is due to differential exposure of the population to geographically restricted risk 

factors. The appearance, expansion and decline of an area of significantly elevated risk in the north 

of England between 2010 and 2013 corresponds with an overall reduction of STEC O157 in 

England, seen most acutely in PT21/28 reported in rural areas [6]. Cases reporting travel prior to 

onset of illness were more likely to live in south of England.  

These differences could be related to a combination of changes in the strains circulating in the 

ruminant reservoir, animal movements (livestock, birds or wildlife), contaminated animal feed 

or the behavior of individuals prior to infection. Further work to identify the importance of 

behaviours and exposures reported by cases relative to residential location is needed. Statistically 

speaking, designing a semi-parametric, generalised additive style of model (see for example  [90, 

91]) is one way we could build in extraneous predictors and estimate any associated effects on 

infection risk in such an analysis. We anticipate the findings in this work will help guide such future 

research endeavours.  
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Table 1. Case selection criteria and associated common case-control bandwidths.  

Case details  
PTs stx n 

Common  

smoothing 

 bandwidth 

 (km) 

All cases  
- - 3,592 9.39 

Reporting foreign travel  
- - 1,029 31.84 

Reporting any travel  
- - 1,650 31.84 

Lineage I* 
 21/28, 32 2 752 12.37 

Lineage II* 
 4,8,34,54 - 778 18.10 

 Sublineage IIa 
34,54 2 134 92.79 

 Sublineage IIb 
4,8 2 140 60.15 

 Sublineage IIc 
8,54 1&2 493 20.31 

Lineage I/II*  
2 2 120 21.69 

Others  1,14,31,33,46,51,8 (stx1),4(stx1&2) - 652 - 

* Cases reporting no travel.
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Figure 1 Spatial location of 3,592 STEC O157 cases (left panel) and 14,392 randomly selected controls (right panel). 
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Figure 2. Estimated log relative risk for all cases of STEC O157 (including cases 

reporting travel). Tolerance contours are superimposed as solid lines at the 95% 

confidence level. Solid lines indicate areas of significantly higher risk and dashed lines 

indicate areas of lower risk. 
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Figure 3. Estimated log relative risk for STEC O157 Lineages I, II and I/II in cases reporting no travel. Darker areas indicate areas of 

lower risk. Tolerance contours are superimposed as solid lines at the 95% confidence level. Solid lines indicate areas of significantly 

higher risk and dashed lines indicate areas of lower risk.
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Figure 4. Estimated log relative risk for STEC O157 sub-lineages of Lineage II in cases reporting no travel. Darker areas indicate areas 

of lower risk. Tolerance contours are superimposed as solid lines at the 95% confidence level. Solid lines indicate areas of significantly  
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Figure 5. Estimated log relative risk for cases of STEC O157 reporting foreign travel (left panel) and those reporting any travel. 

Tolerance contours are superimposed at the 95% confidence level. Solid lines indicate areas of significantly higher risk and dashed lines 

indicate areas of lower risk higher risk and dashed lines indicate areas of lower risk.  
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