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Abstract. Given a collection A of holomorphic functions, we consider how to describe all the holo-

morphic functions locally definable from A. The notion of local definability of holomorphic functions
was introduced by Wilkie, who gave a complete description of all functions locally definable from

A in the neighbourhood of a generic point. We prove that this description is no longer complete in
the neighbourhood of non-generic points. More precisely, we produce three examples of holomorphic

functions which suggest that at least three new operations need to be added to Wilkie’s description in

order to capture local definability in its entirety. The constructions illustrate the interaction between
resolution of singularities and definability in the o-minimal setting.
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1. Introduction

There has long been interaction between the theory of first-order definability and functional tran-
scendence. For instance [Bia97, JKS16, Sfo12, LGR09, LG10, Ran14] use various results on alge-
braic independence of certain functions to establish results on definability and nondefinability in o-
minimal expansions of the real field. The nondefinability results give in turn natural strengthenings
of statements from functional transcendence. For instance, van den Dries, Macintyre and Marker,
showed, among many other things, that

∫
exp(−x2) dx is not definable in Ran, exp (Theorem 5.11 in

[vdDMM97]). This gives a much stronger form of Liouville’s result that this antiderivative is not an
elementary function ([Lio33]).

In this spirit, we investigate the holomorphic functions which are locally definable from a given
collection A of holomorphic functions. Roughly speaking, these are the functions whose graph (seen
as a subset of R2N , for a suitable N) can be described, locally, by a first order formula involving finite
sums, products and compositions of (the real and imaginary parts of) functions in A (see Definition
2.1). It is natural, both from the logical point of view and also from the perspective of analytic
geometry, to seek a complex analytic characterization of the holomorphic functions locally definable
from A.

Wilkie gave such a characterization around generic points in [Wil08]. He showed that if f is a locally
definable holomorphic function then around a generic point f is contained in the smallest collection
of holomorphic functions containing both the functions in A and all polynomials, and closed under
partial differentiation, Schwarz reflection, composition and extraction of implicit functions. Wilkie
conjectured that the same result would hold even without the genericity hypothesis. The aim of this
paper is to show that in fact this description is no longer complete around non-generic points. We
give three examples of functions which between them suggest that at least three further operations
need to be added to those considered by Wilkie in order to capture local definability. We construct
functions f1, f2, f3 and g1, g2, g3 with the germ of fi definable from gi, but not obtainable from gi by
the operations above. To obtain fi from gi requires further operations: f1 needs monomial division,
f2 needs deramification and f3 needs blowing-down (Theorems A, B and C, respectively, in Section 2).
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These three new operations arise naturally in resolution of singularities [BM88], which is an essential
tool from analytic geometry used in o-minimality (see for example [RSW03, RS15]). This is consistent
with Wilkie’s observation that his conjecture is related to resolution of singularities. It is natural
to ask whether the operations introduced so far would suffice to give a complete description of the
holomorphic functions locally definable from A (see Question 2.9). Indeed exactly these operations
appear in the piecewise description of definable functions given in [RS15]. And based on the latter, it
will be shown in the forthcoming [LGSVB17] that, if A is a collection of real analytic functions, then
the real analytic functions which are locally definable from A can be obtained from A and polynomials
by the same list of operations (except Schwarz reflection). Since in the description given in [RS15],
the operations involved do not respect any underlying complex structure (for example, exceptional
divisors of blow-downs generally have real co-dimension 1), we cannot directly deduce an answer to
Question 2.9 from an answer to its real counterpart.

It is also natural to ask if these three new operations are independent, and indeed what the depen-
dencies between them and the other operations are. We introduce the new operations in the order
monomial division, deramification, and blowing-down, and our proofs show that each one cannot be
obtained from the previous operations. We do expect that none of these three is obtainable from all
the other operations, but we do not prove it. However, one can define differentiation using mono-
mial division and the other operations, for example, so giving a complete description of dependencies
between all the operations is not a completely trivial matter.

We now briefly discuss the proofs of Theorems A, B and C.
For Theorem A, we use Ax’s functional version of Schanuel’s conjecture to prove that the function

(ez − 1)/z cannot be obtained from ez without monomial division. There is a connection here with
previous work on nondefinability, for example [Bia97, JKS16]. However, these papers concerned ar-
bitrary first-order definability, reduced to existential definability via model completeness. Here, we
consider a restricted form of definability characterized by analytic rather than logical considerations.

The proofs of Theorems B and C are less explicit. For Theorem B, we first observe that deramifica-
tion is independent from the operations used by Wilkie and monomial division (see Proposition 5.2).
It is however not easy to witness this independence with a natural function. So instead we build on
some of the ideas contained in [LG10]. In particular, we adapt the notion of strongly transcendental
function considered there to the setting of several complex variables. A related notion of strongly
transcendental function was also independently introduced by Boris Zilber [Zil02] under the name of
‘generic functions with derivatives’, in connection with finding analogues of Schanuel’s conjecture for
other complex functions. Our present work then proves the existence of such functions, which was not
considered by Zilber.

For Theorem C, the independence of blow-downs from the other operations simply follows from the
fact that, unlike the other operators considered here, blow-downs are not local operators: they are
applied to all the germs of a function along the exceptional divisor of the corresponding blow-up. As in
the case of theorem B, it is not clear how to find an explicit function which witnesses this independence,
and we again make use of strongly transcendental functions.

The paper is organized as follows. In Section 2 we introduce some operators and algebras which
allow us to give the precise formulations of our results. In Section 3 we define a notion of strong
transcendence for holomorphic functions in C2, and prove that the notion is not void and implies
an independence property which is the key point for constructing our last two examples. Finally, in
Sections 4, 5 and 6 we prove Theorems A, B and C, respectively.

2. Main definitions and results

In this section we introduce some notation, and the various operators and functions we consider.
We then give precise statements of our results.

Throughout this paper, we will use the word definable in the sense of first-order logic. Unless
otherwise specified, sets and functions definable in a given first-order structure will be understood to
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be definable with parameters from the domain of the structure. We will use the term ∅-definable to
denote sets and functions definable without parameters.

Following Wilkie in [Wil08], we say that the restriction g � ∆ of a holomorphic map g : U → C
defined on an open set U ⊆ Cn is a proper restriction if ∆ ⊂ U is an open box, relatively compact
in U . Given a family A of holomorphic functions defined on open subsets of Cn (for various n ∈ N), we
denote by A� the collection of all proper restrictions to boxes with corners in the Gaussian rationals,
Q(i), of all functions in A. We let RA� = 〈R; 0, 1,+, ·, <,A� 〉 be the expansion of the real ordered field
by the functions in A�, seen as functions from some (even) power of R to R2, by identifying C with
R2.

Definition 2.1. A function g : U ⊂ Cn → C is locally definable in RA� if all its proper restrictions,
interpreted as real functions, are definable in RA�. If all the proper restrictions of g to boxes with
Gaussian rational corners are ∅-definable in R, we say that g is locally ∅-definable.

The symbol A will always denote a collection of holomorphic functions defined on open subsets of
Cn, for various n ∈ N. More precisely, A is a family {An (U) : n ∈ N, U ⊆ Cn open}, where An(U) is
a collection of holomorphic functions defined on U . It is convenient to suppose that A is closed under
gluing and restrictions, which can always be done, by enriching A. More precisely, we suppose that, if
(Uλ)λ∈Λ is a collection of open subsets of Cn, then

f ∈ An

(⋃
λ∈Λ

Uλ

)
⇔ ∀λ ∈ Λ, f �Uλ ∈ An(Uλ).

Thus An can be viewed as a sheaf, for each fixed dimension n, whose stalk at z ∈ Cn, denoted by
Az, is the collection of all germs at z of the functions which belong to some An(U) with z ∈ U . Note
that closing A under gluing and restrictions does not affect local (∅-)definability in RA�. By a classical
argument of local compactness, writing fz for the germ of f at z, we have f ∈ A(U) if and only if for
all z ∈ U , fz ∈ Az.

By abuse of terminology, we will say that A is a sheaf, and write A ⊆ B as a shorthand for
∀n ∈ N,∀U ⊆ Cn, An(U) ⊆ Bn(U). In the same way, if An is the sheafification of a family of
functions, we will often drop the index n. For instance, we will write A = {exp} as a shorthand for

∀U ⊆ Cn, An(U) =

{
∅ if n 6= 1

{exp�U} if n = 1
.

We fix a collection A of holomorphic functions as in the discussion above. We now construct new
sheaves B, C,D, E ,F by closing A under certain operations. The operations involved in the definition
of B, C,D are local, hence we define them by their action on germs. We denote by On(U) the collection
of all holomorphic functions defined on U ⊆ Cn and by Oa the collection of all holomorphic germs at
a ∈ Cn. We let P be the collection of all complex polynomials (in any number of variables) and PG
be the subcollection of all polynomials with Gaussian rational coefficients. We also use the following
notation: z′ = (z1, . . . , zn−1) and z = (z′, zn). If a ∈ Cn then we write a = (a′, an) ∈ Cn−1 × C.

Definition 2.2. We define the following operators:

(1) Polynomial and Gaussian polynomial operators. The polynomial operators are operators
of arity 0, defined for each P ∈ P and a ∈ Cn which map the empty set to the germ Pa ∈ Oa.
The Gaussian polynomial operators are similar, but restricted to polynomials P ∈ PG.

(2) The Schwarz reflection operator at a ∈ Cn maps a germ f ∈ Oa to the germ z 7→ f(z) ∈ Oa.
(3) Composition operators: if a ∈ Cn and b ∈ Cm, then we consider the operator that maps

(f, g1, . . . , gn) ∈ Oa× (Ob)n to the germ f ◦ (g1, . . . , gn) ∈ Ob, whenever (g1(b), . . . , gn(b)) = a.
(4) Partial derivative operators: for a ∈ Cn and j ∈ {1, . . . , n}, the j-th partial derivative is the

operator that maps f ∈ Oa to the germ ∂f
∂zj
∈ Oa.

(5) The implicit function operator at a ∈ Cn maps a germ f ∈ Oa satisfying f(a) = 0 and
∂f
∂zn

(a) 6= 0 to the (unique) germ ϕ ∈ Oa′ satisfying f(z′, ϕ(z′)) ≡ 0 and ϕ(a′) = an.
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(6) Monomial division operators: if a ∈ Cn, then we consider the operator that maps f ∈ Oa
to the germ at a of the extension by continuity of z 7→ f(z)

(zn−an) , whenever the germ z′ 7→
f (z′, an) ∈ Oa′ is identically zero.

(7) Deramification: if a ∈ Cn and m ∈ N×, then we consider the operator which maps f ∈ Oa
to the germ z 7→ f(z′, an + m

√
zn − an) ∈ Oa, whenever the germ f satisfies

f (z) = f
(
z′, an + e

2iπ
m (zn − an)

)
.

Here the condition on f implies that this expression does not depend on the choice of an
mth-root for zn − an.

Notice that elementary operators can be composed as long as their arities match.

Definition 2.3. We define B∗ to be the set of all operators which can be expressed as finite composi-
tions of polynomial, Schwarz reflection, composition, partial derivative and implicit function operators.
The collection B∅∗ is defined similarly, with Gaussian polynomial operators in place of polynomial op-
erators. Analogously, we let C∗ and C∅∗ be the sets of all operators which can be expressed as finite
compositions of monomial division operators and operators in B∗ and B∅∗, respectively. And we let
D∗ and D∅∗ be the sets of all operators which can be expressed as finite compositions of deramification
operators and operators in C∗ C∅∗, respectively.

Once we have defined these operators, we can construct the set of all functions which are “locally
obtained from A” by the action of such operators. For example, B will denote the set of all functions
which are locally obtained from A ∪ P by composition, Schwarz reflection, taking partial derivatives
and extracting implicit functions.

More formally:

Definition 2.4. We let B,B∅, C, C∅,D and D∅ be the smallest sheaves containing A with stalks stable
under the action of the operators in B∗,B∅∗, C∗, C∅∗,D∗ and D∅∗, respectively.

Remark 2.5. If U is an open subset of Cn and f ∈ A (U) satisfies f (x′, 0) = 0, the germ at (a′, 0)

of g(x) =
f(x′,xn)

xn
belongs to C(a′,0) by construction. One might wonder if the germ of g at any

a ∈ U belongs to Ca, to ensure g ∈ C(U). Actually, if an 6= 0, the germ ga is the implicit function of
xn+1xn − f (x′, xn) at a, so ga ∈ Ba. A similar argument holds for functions obtained by taking an
mth-root. Along the same lines, if ϕ : U → C is the implicit function of f , its germ at any a ∈ U is
obtained by applying the implicit function operator to f at (a, ϕ(a)). In particular, B∅ coincides with

the algebra denoted by F̃ in [Wil08, Definition 1.7].

It remains to define the functions locally obtained by blow-downs. For this, we say that a sheaf
G ⊆ O is stable under blow-downs if for every n ∈ N, every open subset U ⊆ Cn and every blow-up
π : V → U of a smooth analytic manifold X ⊆ U , which is locally defined by a system of equations in
G, we have that if f ◦ π ∈ G(V ) then f ∈ G(U). A more precise (but heavier) definition could be given
with no mention of G(V ) (note that V is not an open subset of a power of C), using local coordinates,
but in this paper we will only mention the blow-up of 0 ∈ C2 and introduce the corresponding local
coordinates in Section 6.

Definition 2.6. Let E and E∅ be the smallest sheaves which are stable under blow-downs and under
the action of the operators in D∗ and D∅∗, respectively.

Finally, we denote by F and F∅ the sheaves of all locally definable holomorphic functions and all
locally ∅-definable holomorphic functions, respectively.

Thanks to the compactness of the fibres of blow-ups, if f is the blow-down of g and g is locally
definable in RA�, then f is also locally definable in RA�.

By construction we have :

A ⊆ B∅ ⊆ C∅ ⊆ D∅ ⊆ E∅ ⊆ F∅⊆ ⊆ ⊆ ⊆ ⊆

B ⊆ C ⊆ D ⊆ E ⊆ F ⊆ O.
(∗)
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We can now give a precise formulation of the results announced in the introduction.
Wilkie proposed the following conjecture.

Conjecture 2.7 ([Wil08, Conjecture 1.8]). Let A be a family of complex holomorphic functions. Let
z ∈ Cn, U be an open neighbourhood of z and f : U → C be a holomorphic function which is locally
∅-definable in RA�. Then there is an open box with Gaussian rational corners ∆ ⊆ U such that z ∈ ∆
and f �∆ can be obtained from A∪PG by finitely many applications of composition, Schwarz reflection,
taking partial derivatives and extracting implicit functions.

Conjecture 2.7 can be restated as follows: B∅ = F∅. By adding all constant functions to A, the
conjecture implies also that B = F . The conjecture is however not true in general. We show that the
six horizontal inclusions between B∅ and E in diagram (∗) are strict in general:

Theorem A (Monomial division). Suppose A = {exp} is the complex exponential function. Then the
function f : z 7→ (ez − 1)/z (extended by continuity at z = 0) is holomorphic and locally ∅-definable
in RA�, but no restriction of f to any neighbourhood of 0 can be obtained from A ∪ PG by finitely
many applications of composition, Schwarz reflection, taking partial derivatives and extracting implicit
functions.
More precisely, the germ at 0 of f belongs to C∅0 \ B0. In particular, B∅ 6= C∅ and B 6= C.

Theorem B (Deramification). There exists a holomorphic function g, with domain a neighbourhood
of 0 ∈ C, such that the function f : z 7→ g(

√
z) is well defined, holomorphic in a neighbourhood of 0

and locally ∅-definable in RA� (where A = {g}), but no restriction of f to any neighbourhood of 0 can
be obtained from A ∪ PG by finitely many applications of composition, Schwarz reflection, monomial
division, taking partial derivatives and extracting implicit functions.
More precisely, the germ at 0 of f belongs to D∅0 \ C0. In particular, C∅ 6= D∅ and C 6= D.

Theorem C (Blow-down). Let π be the blow-up of the origin in C2. Then there exists a holomorphic
function f , with domain a neighbourhood of 0 ∈ C2, such that, if A = {f ◦ π}, then f is locally
∅-definable in RA�, but no restriction of f to any neighbourhood of 0 can be obtained from A ∪ PG
by finitely many applications of composition, Schwarz reflection, monomial division, deramification,
taking partial derivatives and extracting implicit functions.
More precisely, the germ at 0 of f belongs to E∅0 \ D0. In particular, D∅ 6= E∅ and D 6= E.

Remark 2.8. Wilkie proves in [Wil08, Theorem 1.10] that Conjecture 2.7 holds for all points z which
are generic with respect to a suitable pregeometry associated to A. Since the points at which we
apply the operators in E∗ \ B∗ are not generic, the theorems above are consistent with Wilkie’s result.
In particular, if z is generic point, then we can restate Wilkie’s result [Wil08, Theorem 1.10] in the
following form: B∅z = C∅z = D∅z = E∅z = F∅z .

The purpose of [Wil08, Conjecture 1.8 and Theorem 1.10] was to describe the holomorphic functions
locally definable from A in terms of the functions in A, using purely complex operations. Since our
examples are obtained by means of three natural complex operations, we could consider a modification
of conjecture 2.7. But we prefer to formulate this as a question.

Question 2.9. Let A be a family of complex holomorphic functions. Let z ∈ Cn, U be an open
neighbourhood of z and f : U → C be a holomorphic function which is locally ∅-definable in RA�. Is
there an open box with Gaussian rational corners ∆ ⊆ U such that z ∈ ∆ and f �∆ can be obtained
from A ∪ PG by finitely many applications of composition, Schwarz reflection, monomial division,
deramification, blow-downs, taking partial derivatives and extracting implicit functions?

Question 2.9 can therefore be restated as follows: do E∅ and F∅ coincide?

We conclude this section with some considerations on the local operators defined above, which will
be useful to prove our main results.

The operators in D∗ act on germs of holomorphic functions, hence they can also be seen as acting
on the Taylor expansion of such germs (we do not make a distinction between an analytic germ and
its Taylor expansion). Let us fix some notation.



6 JONES, KIRBY, LE GAL, AND SERVI

Notation 2.10. We will often use the following notation for tuples: if k ∈ N \ {0}, then z = z(k) means
that z is a k-tuple of variables. Similarly, we write a = a(k) for a point in Ck.

If α ∈ Nk and z = (z1, . . . , zk) ∈ Ck then zα = zα1
1 zα2

2 . . . zαkk . We set α! = α1! . . . αk!, |α| =
∑k
i=1 αi

and denote by ∂αf the partial derivative ∂|α|f
∂zα of a function f : Ck → C. If α = 0, then ∂αf = f .

Definition 2.11. If U ⊆ Cm, f ∈ O(U) and a = (a
(m)
1 , . . . , a

(m)
n ) ∈ Un, the jet of order k of f at a

is the tuple jknf(a) of all partial derivatives ∂αf for |α| ≤ k, evaluated at the points ai, for i = 1, . . . , n:

jknf(a) = (∂αf(a
(m)
1 ), . . . , ∂αf(a(m)

n ))|α|≤k.

We omit the subscript n if n = 1.
For given a = (a1, . . . , ak) ∈ Cm1 × . . .× Cmk and N ∈ N, we denote by ZNa the set

ZNa = {(h1, . . . , hk) ∈ Oa1 × · · · × Oak : ∀i = 1 . . . , k, jNhi(ai) = 0}.
These ZNa , when N varies, form a base neighborhood of 0 for a topology on Oa1 × · · ·×Oak called the
Krull topology.

The action of our operators on Taylor expansions can be described as follows.

Proposition 2.12. Let k, n,m1, . . . ,mk ∈ N and a1 ∈ Cm1 , . . . , ak ∈ Cmk , b ∈ Cn. Let L : Oa1 ×
· · · × Oak → Ob be an operator in D∗, and (f1, . . . , fk) ∈ Oa1 × · · · × Oak be a k-tuple of germs in the
domain of definition of L. Then, there exist

• a neighbourhood W of (f1, . . . , fk) for the Krull topology,
• a tuple of constants c = (c1, . . . , c`) ∈ C` (for some ` ∈ N),
• for each α ∈ Nn, an integer nα ∈ N and a polynomial Pα ∈ Q[y, y], where y = y(Nα) and Nα

can be a computed from k,m1, . . . ,mk, `, nα,

such that, for each (g1, . . . , gk) ∈W , L(g1, . . . , gk) has a Taylor expansion at b of the form

L(g1, . . . , gk)(x) =
∑
α∈Nn

Pα(c1, . . . , c`, j
nαg1(a1), . . . , jnαgk(ak))(x− b)α.

Proof. We first prove that the proposition is true if L is an elementary operator.
For all but the implicit function operator, the neighbourhood W will be the whole space. Note that

for all but the polynomial and the composition operators, we have k = 1 (hence in these cases we will
write g instead of g1).

(1) If L is a polynomial operator, then nα = 0 and the constants ci can be computed from the
coefficients of the polynomial and the coordinates of b.

(2) If L is the Schwarz reflection operator, then nα = |α| and Pα(j|α|g(a)) = (α!)−1∂αg(a).
(3) If L is a composition operator, then the proposition follows from the so called Faà Di Bruno

formula (see for example [Arb00, p. 92. §115]), with nα = |α|.
(4) If L is the partial derivative operator ∂

∂zj
, then nα = |α|+1 and Pα(jnαg(a)) =

αj
α!

∂
∂zj

(∂αg(a)).

(5) If L is the implicit function operator, then set c1 =
(
∂f
∂zn

(a)
)−1

, nα = |α|, and

W =

{
g : g(a) = 0,

∂g

∂zn
(a) =

∂f

∂zn
(a)

}
.

It is easy to see that the coefficients of the Taylor expansion up to order |α| of L (g) at the
point b = (a1, . . . , an−1) can be expressed as polynomials (with coefficients in Z [c1]) in the
derivatives up to order |α| of g at the point a. Hence, nα = |α| and Pα is a polynomial in the
jet of order |α| of g and c1.

In order for Pα to be a polynomial and not a rational function, we need ∂g
∂zn

(a) to be constant
and hence to restrict our claim to the neighbourhood W .

(6) If L is a monomial division operator, then nα = |α|+ 1 and

Pα(j|α|g(a)) = ((αn + 1) · α!)
−1 ∂

∂zn
(∂αg (a)) .
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(7) If L is the mth-deramification operator, then nα = m|α|; we leave it to the reader to find the
expression for Pα in this case.

Each operator in D∗ is a composition of elementary operators. Suppose that the proposition holds
for an operator L. If f ∈ Ob is in the image of L and V ⊆ Ob is an open neighbourhood of f
in the Krull topology, then L−1 (V ) is an open neighbourhood of L−1 (f). This observation and an
easy computation show that the conclusion of the proposition is preserved under composition. We
illustrate the proof for the composition of two operators L : Oa → Ob and M : Ob → Od, the general
case following as a straightforward but tedious exercise. Suppose that

L (f) (y) =
∑
α

Pα (cL, j
nαf (a)) (y − b)α ,

M (g) (z) =
∑
β

Qβ (cM, j
mβg (b)) (z − d)

β
.

Then jmβL (f) (b) = (∂γ (
∑
α Pα (cL, j

nαf (a)) (y − b)α)( b))|γ|≤mβ = (γ!Pγ (cL, j
nγf (a)))|γ|≤mβ . Hence

we can write

M (L (f)) (z) =
∑
β

Q̃β (cL, cM, j
mβf (a)) (z − d)

β
,

for some suitable polynomials Q̃β .
�

3. Strong Transcendence

To prove Theorems B and C, we will need to work with holomorphic functions which satisfy very
few functional relations. For this reason, we extend to the complex and multi-dimensional setting the
notion of strong transcendence, which was introduced in [LG10] in a real and one-dimensional context.
Thanks to Proposition 3.4 below, the germs of a strongly transcendental holomorphic function satisfy
very few relations. Proposition 3.2 shows that the definition is not empty: strongly transcendental
holomorphic functions do exist.

We will use the notation introduced in 2.10 and 2.11.

Definition 3.1. A holomorphic function f : U ⊆ Cm → C is strongly transcendental if, for every

(k, n) ∈ N2 and for every z = (z
(m)
1 , . . . , z

(m)
n ) an n-tuple of distinct points of U , we have

trdegQQ(z, z, jknf(z), jknf(z)) ≥ length(jknf(z), jknf(z)).

We first show that such functions exist, then we prove an independence result for their germs at
distinct points.

Proposition 3.2. Let U be an open subset of Cm. Then the set

ST (U) = {f ∈ O(U); f is strongly transcendental }

is residual in O(U) with respect to the topology induced by uniform convergence on the compact subsets
of U . In particular, by the Baire Category Theorem, ST (U) 6= ∅.

Note that strong transcendence is preserved under restriction but not under gluing, so ST is a
presheaf but not a sheaf.

Notation 3.3. If F : U → V is a differentiable map between C1 manifolds, the differential of F at
u ∈ U is denoted by DF (u); it belongs to the space of linear maps L(TuU, TF (u)V ), where TuU denotes
the tangent space of U at u.

Proof. The proof goes as follows. First we express ST (U) as a countable intersection of subsets Bn,k,P
of O(U). Each Bn,k,P is the complement of the image of a certain map π. We apply a version of the
Sard-Smale Theorem for Fréchet manifolds, due to Eftekharinasab in [Eft11], to this π, and obtain
that the set of regular values of π is residual. Moreover, we observe that π is everywhere critical, so
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the set of its regular values is the complement of its image, then coincides with Bn,k,P . Hence, ST (U)
is a countable intersection of residual sets, therefore also a residual set.

Let us recall that a point (p, q) ∈ (C2mn×C2N ) has transcendence degree over Q at least 2N if and
only if (p, q) does not satisfy any nonsingular system of 2mn+ 1 polynomial equations over Z. Hence,
given an open subset U of Cm, a function f ∈ O(U) belongs to ST (U) if and only if

∀n ∈ N∗, ∀k ∈ N, ∀P ∈ (Z[y(2mn+2N)])2mn+1,

∀z = (z
(m)
1 , . . . , z

(m)
n ) ∈ (Cm)n \∆n,

if rk(DP (z, z, jknf(z), jknf(z))) = 2mn+ 1

then P (z, z, jknf(z), jknf(z)) 6= 0,

where N = n

(
m+ k
k

)
is the cardinality of the tuple jknf(z) and ∆n = {(z(m)

1 , . . . , z
(m)
n ) ∈ (Cm)n :

∃i 6= j, z
(m)
i = z

(m)
j }.

In other words, ST (U) can be described as the following countable intersection

ST (U) =
⋂

n ∈ N∗, k ∈ N,
P ∈ Z[y(2mn+2N)]

Bn,k,P ,

where

Bn,k,P = {f ∈ O(U) : ∀z = (z
(m)
1 , . . . , z

(m)
n ) ∈ (Cm)n \∆n

rk(DP (z, z, jknf(z), jknf(z))) = 2mn+ 1⇒ P (z, z, jknf(z), jknf(z)) 6= 0}.

We fix n, k, P as above, define the set V :

V := {(z, f) ∈ ((Cm)n \∆n)×O(U) : P (z, z, jknf(z), jknf(z)) = 0,

rk(DP (z, z, jknf(z), jknf(z))) = 2mn+ 1},

and equip V with the topology induced by the family of seminorms, indexed by the compact subsets
K of U :

|| · ||K : (z, f) 7→ max

{
||z||, sup

x∈K
|f(x)|

}
.

We can see Bn,k,P as O(U) \ π (V ), where π : V → O (U) is the restriction to V of the projection
(Cm)

n ×O (U)→ O(U) onto the second factor.
Since the equations which define V involve conjugations, V does not inherit a complex structure.

However, V is a real Frechet manifold, whose tangent space T(z,f)V at (z, f) ∈ V is the real vector
space given by

T(z,f)V = {(x, g) ∈ (Cm)n ×O(U) :

DP
(
z, z, jknf (z) , jknf (z)

)
·
[
x, x,Djknf (z) · x+ jkng (z) , Djknf (z) · x+ jkng (z)

]
= 0}.

Let us show that the Sard-Smale Theorem for Fréchet manifolds applies to π. We fix (z, f) ∈ V ,
and denote byMk

z the subset of O(U) of all the functions whose jets of order k at z are equal to zero:

Mk
z = {g ∈ O(U) : jkng(z) = 0}.

First observe that π is a C1-Lipschitz-Fredholm function:

• π is a C1 function, and

Dπ(z, f) : (x, g) ∈ T(z,f)V 7→ g ∈ O(U)

is a Lipschitz (with constant 1) operator;
• The kernel of Dπ(z, f) is included in (Cm)n × {0}, hence it has finite dimension;
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• Since (0, g) ∈ T(z,f)V if g ∈Mk
z , we have

Mk
z ⊆ Im(Dπ(z, f)),

so the co-kernel of Dπ(z, f) is a quotient of O(U)/Mk
z . The space O(U)/Mk

z has finite
dimension 2N over R, so co-ker(Dπ(z, f)) has finite dimension too.

It remains to compute the index of Dπ(z, f). For this, observe that

• kerDπ(z, f) ⊆ (Cm)n × {0}. In particular,

kerDπ(z, f) ∩
(
(Cm)n ×Mk

z

)
⊆ (Cm)n × {0};

• the equations which define T(z,f)V only involve (in terms of g) the jet jkng(z) of order k.

Let T̃(z,f)V be the quotient of T(z,f)V by ({0} ×Mk
z) ∩ T(z,f)V and Õ(U) = O(U)/Mk

z . It follows
from the previous observations that Dπ(z, f) factors to

˜Dπ(z, f) : T̃(z,f)V → Õ(U)

and that the index of Dπ(z, f) is equal to the index of ˜Dπ(z, f). Since ˜Dπ(z, f) is a linear map

between the finite dimensional spaces T̃(z,f)V and Õ(U), the index of ˜Dπ(z, f) is simply dim T̃(z,f)V −
dim Õ(U). Now,

T̃(z,f)V = {(x, g) ∈ (Cm)n × Õ(U) :

DP
(
z, z, jknf (z) , jknf (z)

)
·
[
x, x,Djknf (z) · x+ jkng (z) , Djknf (z) · x+ jkng (z)

]
= 0}.

is a subspace of a real (2mn+ 2N)-dimensional space given by 2(2mn + 1) equations. Among this

equations, at least 2mn+ 1 are independent, since rk
(
DP

(
z, z, jknf (z) , jknf (z)

))
= 2mn+ 1. Hence

dim(T̃(z,f)) ≤ 2N − 1. On the other hand, dim Õ(U) = 2N , therefore

index(Dπ(z, f)) ≤ (2N − 1)− 2N = −1.

We can now conclude. The version of the Sard-Smale Theorem in [Eft11, Theorem 4.3] applies to π
since π is C1 and 1 > 0 = max {0, index (Dπ (z, f))}. We deduce that the set of regular values of π is
residual in O(U). On the other hand, since it has negative index, Dπ(z, f) has non trivial co-kernel,
so π is nowhere a submersion. In particular the set of its critical values coincides with its image.
Hence Bn,k,P , the complement of this image, is residual. Being a countable intersection of residual
sets, ST (U) is residual, which completes the proof.

�

The following proposition expresses strong transcendence in terms of the lack of relations between
the germs at distinct points: except for the trivial operator, no operator in D∗ vanishes at any tuple
of germs of any strongly transcendental function.

Proposition 3.4. Let U be an open subset of Cm, f ∈ ST (U) be a strongly transcendental holomorphic
function on U , a = (a1, . . . , ak) ∈ (Cm)k be a k-tuple of distinct points of U , b ∈ Cn and L :
Oa1 × · · · × Oak → Ob be an operator in D∗. If L(fa1 , . . . , fak) = 0, then there exists a neighbourhood
W of (fa1 , . . . , fak) for the Krull topology such that L�W = 0.

Proof. We follow the main steps of the proof of Lemma 3.6 in [LG10]. Suppose that L satisfies the
hypotheses of the proposition. Apply Proposition 2.12 to L and fi = fai to obtain, for all (g1, . . . , gk)
in some neighbourhood W ′ of (fa1 , . . . , fak),

L(g1, . . . , gk)(x) =
∑
α∈Nn

Pα(c1, . . . , c`, j
nαg1(a1), . . . , jnαgk(ak))(x− b)α.

From the fact that L(fa1 , . . . , fak) = 0, we deduce that

∀α ∈ Nn, Pα(c1, . . . , c`, j
nα
k f(a1, . . . , ak)) = 0.
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Denote by c ∈ C` the tuple c = (c1, . . . , c`). Since f ∈ ST (U), for all α ∈ Nn the tuple (a, a, jnαk f(a), jnαk f(a))
satisfies at most 2mk algebraically independent relations. Since the transcendence degree is sub-
additive,

trdegQ(c, c, jnαk f(a), jnαk f(a)) ≥ trdegQ(jnαk f(a), jnαk f(a))

≥ trdegQ(a, a, jnαk f(a), jnαk f(a))

≥ trdegQ(jnαk f(a), jnαk f(a))− 2`,

so (c, c, jnαk f(a), jnαk f(a)) satisfies at most 2`+ 2mk independent algebraic relations. In particular, all
but finitely many of the relations Pα(c, jnαk f(a)) = 0 are dependent (recall that the Pα are polynomials
over Q in their arguments and their conjugates). This implies that {nα : α ∈ Nn} is bounded by some
constant K ∈ N.

Let W be the neighbourhood of (fa1 , . . . , fak) given by

W = W ′ ∩ {(g1, . . . , gk) ∈ Oa1 × · · · × Oak : ∀i = 1, . . . , k, jKgi(ai) = jKf(ai)}
Then, for every (g1, . . . , gk) ∈W and every α, we have jnαgi(ai) = jnαf(ai). It follows that

L(g1, . . . , gk)(x) =
∑
α∈Nn

Pα(c1, . . . , c`, j
nαg1(a1), . . . , jnαgk(ak))(x− b)α

=
∑
α∈Nn

Pα(c1, . . . , c`, j
nα
k f(a1, . . . , ak))(x− b)α

= L(fa1 , . . . , fak)(x)
= 0.

Therefore L�W = 0, which finishes the proof. �

4. Monomial division

In this section we let A = {exp}, and define

f(z) =
ez − 1

z
for z 6= 0 and f(0) = 1,

so that f is holomorphic and locally ∅-definable in RA�.

We shall prove Theorem A. This amounts to proving that the germ of f at zero belongs to C∅ \ B
(so in particular B∅ ( C∅ and B ( C).
The strategy is the following. Using the differential equation satisfied by the exponential function,
it is easy to see that the germs in B∅ satisfy certain nonsingular systems of exponential polynomial
equations (Lemma 4.3). Therefore, if f ∈ B∅, then there is a tuple Ψ of analytic germs (and some
1
df(dz) is one of them) such that the germs and their exponentials satisfy a nonsingular system of
polynomial equations. This gives a certain upper bound M on the transcendence degree of the tuple
(Ψ, exp(Ψ)) over C. On the other hand, by Ax’s Theorem [Ax71, Corollary 2], the components of the
tuple (Ψ, exp(Ψ)) satisfy few algebraic relations, so that the transcendence degree of the tuple must
be at least M + 1. This contradicts the fact that f ∈ B∅ and proves Theorem A.

Notation 4.1. Let k, l ∈ N, x = (x1, . . . , xk) and x′ be a sub-tuple of x. If F (x) = (F1 (x) , . . . , Fl (x))
is an l-tuple of functions and i ∈ {1, . . . , l}, then we denote by ∂Fi

∂x′ (x) the column vector whose entries

are ∂Fi
∂xj

(x), for xj belonging to x′. We denote by ∂F
∂x′ (x) the matrix whose columns are the vectors

∂Fi
∂x′ (x), for i ∈ {1, . . . , l}. Finally, we denote by ex the k-tuple (ex1 , . . . , exk).

Definition 4.2. Let n ∈ N, x = (x0, x1, . . . , xn) and x′ = (x1, . . . , xn). Let a ∈ C, g ∈ Oa and
G a sheaf of holomorphic functions. We say that g is n-implicitly defined from G if there exist
F = (F1, . . . , Fn) ∈ (Gn+1)

n
and Ψ = (ψ0, ψ1, . . . , ψn) ∈ (Oa)

n+1
such that ψ0 (z) = z, ψ1 (z) =

g (z) , F (Ψ (z)) = 0 and the matrix ∂F
∂x′ (Ψ (a)) is invertible. In this case, F is called an implicit

system (with coordinates in G) of size n and Ψ is an implicit solution.

Lemma 4.3. Let a ∈ C and g ∈ Oa. Then g ∈ Ba if and only if there exists n ∈ N such that g is
n-implicitly defined from C [x, ex].
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The proof of the lemma is routine and is postponed to the end of the section. We now prove
Theorem A.

Proof of Theorem A. The germ f0 of f at zero belongs to C∅ since it is obtained from the germ
exp0 ∈ A0 by monomial division.

Suppose for a contradiction that f0 ∈ B0.
By Lemma 4.3, there exists n ∈ N such that f0 is n-implicitly defined from C [x, ex]. Choose n

minimal with respect to the following property:

∃d ∈ N× s.t.
1

d
f0 (dz) is n-implicitly defined from C [x, ex] .

In other words, for all n′, d ∈ N×, if
1

d
f0 (dz) is n′-implicitly defined, then n′ ≥ n.

Let x = (x0, x1, . . . , xn) and x′ = (x1, . . . , xn). Let F = (F1, . . . , Fn) ∈ (C [x, ex])
n

and Ψ =

(ψ0, ψ1, . . . , ψn) ∈ (O0)
n+1

be such that ψ0 (z) = z, ψ1 (z) = 1
df0 (dz) , F (Ψ (z)) = 0 and the matrix

∂F

∂x′
(Ψ (0)) is invertible. Write F (x) = P (x, ex), where P = (P1, . . . , Pn) is an n-tuple of polynomials

in 2 (n+ 1) variables.
Our first task is to use the minimality of n to prove that the components of the vector

(z, ψ1 (z)− ψ1 (0) , ψ2 (z)− ψ2 (0) , . . . , ψn (z)− ψn (0))

are Q-linearly independent.
If this is not the case, then there are d̃, a0, . . . , an−1 ∈ Z where we may suppose without loss of

generality that d̃ ∈ N×, and there is K = ψn(0)−
∑n−1
i=0 aiψi(0) ∈ C such that

d̃ψn (z) =

n−1∑
i=0

aiψi (z) +K.

Let
x̃ = (x0, x1, . . . , xn−1) , x̃′ = (x1, . . . , xn−1)

ϕ (x̃) =

(
d̃x0, d̃x1, . . . , d̃xn−1,

n−1∑
i=0

aixi +K

)

Ψ̃ (z) =

(
ψ0 (z)

d̃
,
ψ1 (z)

d̃
, . . . ,

ψn−1 (z)

d̃

)
,

so that ϕ ◦ Ψ̃ = Ψ. Let G = F ◦ ϕ. Note that G ∈ (C
[
x̃, ex̃

]
)n and G(Ψ̃(z)) = F (Ψ(z)) = 0. Remark

that
∂G

∂x̃′
(Ψ̃(0)) =

∂F

∂x′
(Ψ(0)) · ∂ϕ

∂x̃′
(Ψ̃(0)).

Since ∂F
∂x′ (Ψ(0)) is invertible and ∂ϕ

∂x̃′ (Ψ̃(0)) has rank n − 1, there exist n − 1 components of G, say

G1, . . . , Gn−1, such that ∂(G1,...,Gn−1)
∂x̃′ (Ψ̃(0)) is invertible. It follows that Ψ̃

(
d̃z
)

satisfies the implicit

system G̃ = 0. Hence,
1

d̃d
f0

(
d̃dz
)

is (n− 1)-implicitly defined, which contradicts the minimality of n.

We have thus proved that the components of the vector

(z, ψ1 (z)− ψ1 (0) , ψ2 (z)− ψ2 (0) , . . . , ψn (z)− ψn (0))

are Q-linearly independent.
By Ax’s Theorem [Ax71, Corollary 2], we have that

trdegCC
(

Ψ (z) , eΨ(z)
)
≥ (n+ 1) + 1 = n+ 2.

On the other hand, we claim that the tuple
(
Ψ (z) , eΨ(z)

)
satisfies a nonsingular system of (n+ 1)

polynomial equations in 2 (n+ 1) variables, and hence

trdegCC
(

Ψ (z) , eΨ(z)
)
≤ 2 (n+ 1)− (n+ 1) = n+ 1.
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This will provide a contradiction and will prove the theorem.
To prove this second claim, let y = (y0, y1, . . . , yn) = (y0, y

′) and P0 (x, y) = dx0x1 + 1 − (y0)d.
Notice that, if F0 (x) = P0 (x, ex), then F0 (Ψ (z)) = 0.

We know that
∂F

∂xj
(x) =

∂P

∂xj
(x, ex) + exj

∂P

∂yj
(x, ex) ∀j = 1, . . . , n

and that the matrix
∂F

∂x′
(Ψ (0)) is invertible.

Hence there are u1, . . . , un ∈ {x1, . . . , xn, y1, . . . , yn} such that the vectors

∂P

∂u1

(
Ψ (0) , eΨ(0)

)
, . . . ,

∂P

∂un

(
Ψ (0) , eΨ(0)

)
are C-linearly independent. Let P̃ = (P0, P1, . . . , Pn). Since the first coordinate of the vector

∂P̃

∂x0

(
Ψ (0) , eΨ(0)

)
is
∂P0

∂x0

(
Ψ (0) , eΨ(0)

)
= f0 (0) = 1 and the first coordinate of the vectors

∂P̃

∂u1

(
Ψ (0) , eΨ(0)

)
, . . . ,

∂P̃

∂un

(
Ψ (0) , eΨ(0)

)
is
∂P0

∂uj

(
Ψ (0) , eΨ(0)

)
= 0, these (n+ 1) vectors are C-linearly independent. This proves the claim and

finishes the proof of the theorem. �

We finish this section by giving a proof of Lemma 4.3.

Proof. We first proceed to prove, by induction on the size n of the system, that Ba contains the coordi-
nates of all implicit solutions of every implicit system with coordinates in B. Since A ⊆ C [x, ex] ⊆ B,
this will prove the right-to-left implication.

If n = 1, then the assertion follows from the fact that Ba is closed under extracting implicit functions.
If n > 1, then suppose that Ba contains the coordinates of all implicit solutions of all implicit systems
of size n− 1 with coordinates in B.

Let F be an implicit system of size n with coordinates in B and let Ψ be an implicit solution. After
possibly permuting the variables and the coordinates of F , we may suppose that ∂Fn

∂xn
(Ψ (a)) 6= 0.

Let x̃ = (x0, x1, . . . , xn−1) = (x0, x̃
′) , Ψ̃ (z) = (ψ0 (z) , ψ1 (z) , . . . , ψn−1 (z)) and let ϕ (x̃) ∈ BΨ̃(a)

be the implicit function of Fn at Ψ̃ (a), so that ψn (a) = ϕ
(

Ψ̃ (a)
)

. If we let F̃i (x̃) = Fi (x̃, ϕ (x̃)) for

i = 1, . . . , n, then for j = 1, . . . , n− 1, we have

∂F̃i
∂xj

(x̃) =
∂Fi
∂xj

(x̃, ϕ (x̃)) +
∂ϕ

∂xj
(x̃)

∂Fi
∂xn

(x̃, ϕ (x̃)) .

Since the vectors
∂F

∂x1
(Ψ (a)) , . . . ,

∂F

∂xn
(Ψ (a)) are linearly independent, there are i1, . . . , in−1 ∈ {1, . . . , n}

such that Ψ̃ is an implicit solution of the implicit system F̃ =
(
F̃i1 , . . . , F̃in−1

)
, which has coordinates

in B, since B is closed under composition.
By the inductive hypothesis, Ψ̃ ∈ (Ba)n−1, and, since

ψn(z) = ϕ
(

Ψ̃ (z)
)
,

we also have ψn ∈ Ba.
It remains to prove the left-to-right implication. Let A′ be the family of all holomorphic functions

such that for every k ∈ N and a = a(k) ∈ Ck, A′a is the collection of all germs f ∈ Oa such that f is
n-implicitly defined from C [x, ex] (for some n ∈ N). More precisely, let z = z(k) and t = t(n) be tuples
of variables and define
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A′a ={f ∈ Oa : ∃n ∈ N, ∃F ∈
(
C
[
z, t, ez, et

])k+n
, ∃Φ ∈ (Oa)

n−1
such that,

if Ψ (z) = (z, f (z) ,Φ (z)) , then F (Ψ (z)) = 0 and
∂F

∂t
(Ψ (a)) is invertible}.(∗)

We prove that A′ is stable under the operators in B∗. Since A′ ⊇ A and B is the smallest collection
containing A and stable under the action of B∗, this will imply that B ⊆ A′.

(1) Schwarz reflection.
It suffices to note that

F (Ψ (z)) = 0 and
∂F

∂t
(Ψ (a)) is invertible⇔ F

(
Ψ (z)

)
= 0 and

∂F

∂t

(
Ψ
(
a
))

is invertible.

Hence, if f (z) ∈ A′a then g (z) := f (z) ∈ A′a.
(2) Composition.

Let f ∈ A′a be n-implicitly defined (following the notation in (∗)). Let s ∈ N, b = b(s) ∈ Cs

and g = (g1, . . . , gk) ∈ (A′b)
k
. Suppose that g (b) = a and let h := f ◦ g ∈ Ob. We aim to prove

that h ∈ A′b.
It is easy to see that we may suppose that the components of g are implicitly defined by the
same implicit system G. In other words, we may suppose that there exists m ∈ N such that,

if x = x(s), u = u(m) are tuples of variables, then there exist G ∈ (C [x, z, u, ex, ez, eu])
k+m

and Γ ∈ (Ob)m such that, if Ω (x) = (x, g (x) ,Γ (x)), then G (Ω (x)) = 0 and ∂G
∂(z,u) (Ω (b)) is

invertible.
Let

H (x, z, u, t) := (G (x, z, u) , F (z, t)) ∈
(
C
[
x, z, u, t, ex, ez, eu, et

])k+m+n

and

Θ (x) := (Ω (x) , h (x) ,Φ (g (x))) ∈ (Ob)s+k+m+n
.

Then H (Θ (b)) = 0 and

∂H

∂ (z, u, t)
(Θ (b)) =

(
∂G

∂(z,u) (Ω (b)) 0
∂F

∂(z,u) (Ψ (a)) ∂F
∂t (Ψ (a))

)
,

which is invertible. Hence, up to a permutation, h is (k +m+ n)-implicitly defined.
(3) Derivatives.

Let f ∈ A′a be n-implicitly defined (following the notation in (∗)) and let i ∈ {1, . . . , k}. We

aim to prove that ∂f
∂zi
∈ A′a. Let w = w(n) be a tuple of variables and

F̃ (z, t, w) :=
∂F

∂zi
(z, t) +

∂F

∂t
(z, t) · w.

Notice that ∂F̃
∂w (z, t, w) = ∂F

∂t (z, t). Let

F ∗ (z, t, w) =
(
F (z, t) , F̃ (z, t, w)

)
∈
(
C
[
z, t, w, ez, et, ew

])2n
and

Ψ∗ (z) =

(
Ψ (z) ,

∂f

∂zi
(z) ,

∂Φ

∂zi
(z)

)
∈ (Oa)

k+2n
.

Then F ∗ (Ψ∗ (z)) = 0 and

∂F ∗

∂ (t, w)
(Ψ∗ (z)) =

( ∂F
∂t (Ψ (z)) 0
∂F̃
∂t (Ψ∗ (z)) ∂F

∂t (Ψ (z))

)
,

which is invertible. Hence, up to a permutation, ∂f
∂zi

is 2n-implicitly defined.
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(4) Implicit function.

Let f ∈ A′a be n-implicitly defined (following the notation in (∗)) and suppose that ∂f
∂zk

(a) 6= 0.

Write a = (a′, ak) ∈ Ck−1 × C and z = (z′, zk), where z′ = (z1, . . . , zk−1). Let ϕ ∈ Oa′ be
the implicit function of f at a. We aim to prove that ϕ ∈ A′a′ . Write t = (t1, t

′), where
t′ = (t2, . . . , tn), and let

F ∗ (z′, zk, t) = (F (z′, zk, t) , t1) ∈
(
C
[
z′, zk, t, e

z′ , ezk , et
])n+1

and
Ψ∗ (z′) = Ψ (z′, ϕ (z′)) ∈ (Oa′)(k−1)+(n+1)

.

Then F ∗ (Ψ∗ (z)) = 0 and

∂F ∗

∂ (zk, t1, t′)
(Ψ∗ (z′)) =

(
∂F
∂zk

∂F
∂t1

∂F
∂t′

0 1 0

)
(Ψ (z′, ϕ (z′))).

(Here we mean the derivative of F ∗ is evaluated at Ψ∗(z′)).

Differentiating the identity F (Ψ(z)) = 0 with respect to the variable zk we find that

∂F

∂zk
(Ψ(z)) = −∂F

∂t1
(Ψ(z)) · ∂f

∂zk
(Ψ(z))− ∂F

∂t′
(Ψ(z)) · ∂Φ

∂zk
(z)

hence the vector ∂F
∂zk

(Ψ∗ (a′)) (which is equal to ∂F
∂zk

(Ψ(a))) is C-linearly independent from

the (C-linearly independent) vectors

∂F

∂t2
(Ψ∗ (a′)) , . . . ,

∂F

∂tn
(Ψ∗ (a′)) .

so that ∂F∗

∂(zk,t1,t′)
(Ψ∗(a′)) has full rank.

�

5. Deramification

In this section we prove Theorem B.
In order to do this, we associate to each operator L in D∗ a function which measures the index shift

between a (tuple of) series in the domain of L and the image under L of such series.

Definition 5.1. Let L : Oa1 × · · · × Oam → Ob be an operator in D∗. The shift of L is the function
dL : N→ N given by

dL(n) = min{k ∈ N : ∀ (f1, . . . , fm) , (g1, . . . , gm) ∈ Oa1 × · · · × Oam ,

if ∀i = 1 . . . ,m, jkfi (ai) = jkgi (ai) , then jnL(f1, . . . , fm)(b) = jnL(g1, . . . , gm)(b)}.

The shift function has the following interpretation: to compute the terms of order n of L(F ) it
suffices to consider the set of terms of F of order k with k ≤ dL(n). Thanks to Proposition 2.12,
the function dL(n) is well defined for all L ∈ D∗. We can be more precise: dL(n) = n if L is either
the Schwarz reflection, or the composition, or the implicit function operator; dL(n) = n + 1 if L is a
monomial division or a partial derivative operator; finally, dL(n) = mn if L is the mth-deramification
operator. Moreover, we have:

Proposition 5.2. Let L be an operator in C∗. Then, there exists a constant NL ∈ N such that
dL(n) ≤ n+NL ∀n ∈ N.

Proof. The operators in C∗ are finite compositions of operators among polynomials, Schwarz reflec-
tions, compositions, implicit functions, for which we set NL = 0, and monomial division and partial
derivation, for which we set NL = 1. To obtain a bound on the shift for a general operator L ∈ C∗, we
first note that if M,N1, . . . ,Nk are operators in D∗, then the shift of the composition satisfies

dM◦(N1,...,Nk)(n) ≤ max
i
dNi(dM(n)).
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Hence, setting

N ′M(N1,...,Nk) = N ′M + max
i
N ′Ni ,

we find integers N ′L associated to the representation of L as a particular composition of elementary
operators in C∗. We can then take NL to be the minimum of these integers over all representations of
L as a composition of elementary operators in C∗. �

This proposition shows in particular that no operator of composition with roots belongs to C∗.
However, there are examples of functions f such that z 7→ f(

√
z) is obtained from f via operators in

C∗. For instance, if f(z) = 1
1−z2 , then we have f(

√
z) = f(z) + zf(z). Hence, to produce our example

we need a function which do not satisfy these kind of relations. Strongly transcendental functions have
this property.

The following proposition, together with Proposition 3.4, implies Theorem B.

Proposition 5.3. Let f ∈ ST (U), where U is an open neighbourhood of 0 ∈ C. Set g(z) = f(z2) and

A = {g}. Then, the germ f0 of f at 0 belongs to D∅0 \ C0.

Proof. Since g(z) = f(z2), the germ f0 is the image of g0 under the square deramification operator,

and hence belongs to D∅0 .
Suppose now for a contradiction that f0 ∈ C0. Then there exist distinct points a0, . . . , ak ∈ C and

an operator L ∈ C∗ such that f0 = L(ga0 , . . . , gak); we may assume that a0 = 0, so that the germ g0

does indeed occur in the list. Since g(z) = f(z2), if we denote by Ni the operator Ni : Oa2i 7→ Oai of

composition with the polynomial z 7→ z2, we can rewrite this equality as

f0 = L(N0(f0),N1(fa21), . . . ,Nk(fa2k)).

Hence the operator M : (φ0, . . . , φk) 7→ L(N0(φ0),N1(φ1), . . . ,Nk(φk)) − φ0, vanishes at the tuple of
the germs at distinct points of a strongly transcendental function. By Proposition 3.4, since M∈ C∗,
this operator vanishes identically on a neighbourhood of (f0, fa21 , . . . , fa2n). For a large enough `, we

have that M vanishes at (f0 + λz`, fa21 . . . , fa2n) for all λ ∈ C, from which it follows that

∀λ ∈ C, f0 + λz`0 = L(g0 + λz2`, ga1 , . . . , gak).

From this expression we deduce that dL(`) ≥ 2` for all sufficiently large `. This, together with
Proposition 5.2, contradicts the hypothesis L ∈ C∗. �

6. Blow-downs

In this section we prove Theorem C.

Notation 6.1. We fix the usual coordinate system for the blow-up of 0 ∈ C2.
Recall that the blow-up of 0 ∈ C2 is the map π : V → C2 where

V = {(z, p) ∈ C2 × CP1 : z ∈ p}
and π(z, p) = z. Let D = π−1(0) = {0} ×CP1 be the exceptional divisor. On the analytic manifold V
we consider the atlas given by the following charts cλ, for λ ∈ C := C ∪ {∞}:

cλ : C2 3 (z1, z2) 7→ (z1, (λ+ z2)z1, [1 : λ+ z2]) if λ 6=∞
c∞ : C2 3 (z1, z2) 7→ (z1z2, z2, [z1 : 1]),

which, after composition with π, give rise to the following system πλ = π ◦ cλ of local expressions for
π:

πλ : C2 3 (z1, z2) 7→ (z1, (λ+ z2)z1) if λ 6=∞
π∞ : C2 3 (z1, z2) 7→ (z1z2, z2)

.

If f : U ⊆ C2 → C is a function, then the blow-up of f is the function f ◦ π : π−1(U)→ C, and f is
the blow-down of f ◦ π. Since we do not want to introduce sheaves on manifolds other than Cn, we
will only use local coordinates. Hence, the blow-up of f : U ⊆ C2 → C centered at λ is the function
f ◦ πλ : π−1

λ (U) → C; we then say that f is the blow-down of the family (f ◦ πλ)λ∈C. Note that
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the blow-ups of f are obtained from f by composing with polynomials (operators in B∗). Hence, the
fact that E is stable under blow-downs implies that

f0 ∈ E0 ⇔ ∀λ ∈ C, (f ◦ πλ)0 ∈ E0.

The key idea which allows us to construct our counterexample is the observation that blow-downs
are not local operators. Let g : V → C be a function and suppose that the blow-down f of g exists.
Choosing f wisely, we can show that to obtain the germ f0, we need the germs of g at all points of the
exceptional divisor D, whereas if f were obtained from g via operators from D∗, one would only need
the germs of g at finitely many points to construct f0. To make this argument work we need to choose
an f which satisfies very few relations. The following proposition is useful to establish that strongly
transcendental functions have this desired property.

Proposition 6.2. Let f ∈ ST (U) be strongly transcendental on an open subset U of C2, let L be
an operator in D∗ of arity n and let (b0, b1, . . . , bn) ∈ Un+1 be distinct points in U . Then fb0 6=
L(fb1 , . . . , fbn).

Proof. Suppose fb0 = L(fb1 , . . . , fbn). Then the operator M defined by

M(h0, h1, . . . , hn) = L(h1, . . . , hn)− h0

belongs to D∗ as the composition of the operator of composition with a polynomial and the operator
L. Moreover, M vanishes at (fb0 , fb1 , . . . , fbn), and hence, according to Proposition 3.4, on some
neighbourhood W of (fb0 , fb1 , . . . , fbn).

For every k ∈ N, let

Bk = {(h0, . . . , hn) ∈ Ob0 × · · · × Obn : jkh0(b0) = 0, . . . , jkhn(bn) = 0}

and choose k ∈ N sufficiently large such that (fb0 , . . . , fbn) + Bk ⊆ W . Denote by bi = (b1,i, b2,i) the
coordinates of bi for i = 0, . . . , n, and let P be the polynomial

P (z1, z2) =

n∏
i=0

(z1 − b1,i)k(z2 − b2,i)k.

Since (Pb0 , Pb1 , . . . , Pbn+1) and (0, Pb1 , . . . , Pbn) both belong to Bk, we have

L(fb1 + Pb1 , . . . , fbn + Pbn)− (fb0 + Pb0) = 0

and L(fb1 + Pb1 , . . . , fbn + Pbn)− (fb0) = 0,

from which we deduce Pb0 = 0, which is absurd. �

The following proposition, together with Proposition 3.4, implies Theorem C.

Proposition 6.3. Let U be a neighbourhood of 0 ∈ C2 and f : U → C be a strongly transcendental
function. Let π be the blow-up of 0 ∈ C2 and A = {f ◦ πλ : λ ∈ C}. Then f0 ∈ E∅0 \ D0.

Proof. The germ f0 is in E∅0 since it is the blow-down of the family {(f ◦πλ)0 : λ ∈ C}, whose elements
belong to A0.

Let us suppose for a contradiction that f0 ∈ D0. Then there exist N ∈ D∗, (a1, . . . , ak) ∈ (C2)k

and (λ1, . . . , λk) ∈ (C)k such that

(1) f0 = N ((f ◦ πλ1
)a1 , . . . , (f ◦ πλk)ak).

Let U ′ be a neighbourhood of {cλ1
(a1), . . . , cλk(ak)} in V such that D 6⊆ U ′ (so that π(U ′) is not a

neighbourhood of 0). Define A′ = {(f ◦ πλ)�c−1
λ (U ′) : λ ∈ C} and let D′ be the closure of A′ under the

action of D∗.
Equation (1) above shows that f0 ∈ D′0, so by definition there exists a neighbourhood U ′′ of 0 such

that f�U ′′ ∈ D′(U ′′). Since π(U ′) is not a neighbourhood of 0, U ′′ \ π(U ′) 6= ∅. We fix b0 ∈ U ′′ \ π(U ′).
Now, since f�U ′′ ∈ D′(U ′′), the germ of f at b0 can be expressed in terms of some of the germs of the
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restriction of f ◦ π to U ′. So there exist M ∈ D∗, (µ1, . . . , µn) ∈ (C)n and (a′1, . . . , a
′
n) ∈ (C2)n with

a′i ∈ c−1
µi (U ′) for i = 1, . . . , n, such that

fb0 =M((f ◦ πµ1
)a′1 , . . . , (f ◦ πµn)a′n).

This equation can be reformulated as a relation between the germs of f at b0 and b1, . . . , bn, where
bi = πµi(a

′
i). If Ni : Obi → Oa′i is the operator of composition with the polynomial πµi , then Ni ∈ B∗

and (f ◦ πµi)a′i = Ni(fbi). So we obtain

fb0 =M(N1(fb1), . . . ,Nn(fbn)).

Setting L = M(N1, . . . ,Nn), the operator L is in D∗, since it is a composition of operators of D∗,
and we have fb0 = L(fb1 , . . . , fbn). Up to decreasing n, we may suppose that the points b1, . . . , bn are
all distinct. Moreover, observe that b0 /∈ {b1, . . . , bn}: for i = 1, . . . , n, a′i ∈ c−1

µi (U ′), so bi ∈ π(U ′)
while b0 has been chosen outside π(U ′). Hence the points b0, . . . , bn are all distinct, so Proposition 6.2
applies. But this contradicts the fact that fb0 = L(fb1 , . . . , fbn). �
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