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ABSTRACT 

 

LINKING FUNCTIONAL BRAIN NETWORKS  

TO PSYCHOPATHOLOGY AND BEYOND 

Huchuan Xia 

Theodore D. Satterthwaite, M.D.,M.A., Danielle S. Bassett, Ph.D. 

Neurobiological abnormalities associated with neuropsychiatric disorders 

do not map well to existing diagnostic categories. High co-morbidity suggests 

dimensional circuit-level abnormalities that cross diagnoses. As neuropsychiatric 

disorders are increasingly reconceptualized as disorders of brain development, 

deviations from normative brain network reconfiguration during development are 

hypothesized to underlie many illness that arise in young adulthood. In this 

dissertation, we first applied recent advances in machine learning to a large 

imaging dataset of youth (n=999) to delineate brain-guided dimensions of 

psychopathology across clinical diagnostic boundaries. Specifically, using sparse 

Canonical Correlation Analysis, an unsupervised learning method that seeks to 

capture sources of variation common to two high-dimensional datasets, we 

discovered four linked dimensions of psychopathology and connectivity in 

functional brain networks, namely, mood, psychosis, fear, and externalizing 

behavior. While each dimension exhibited an unique pattern of functional brain 

connectivity, loss of network segregation between the default mode and 

executive networks emerged as a shared connectopathy common across four 

dimensions of psychopathology.  
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Building upon this work, in the second part of the dissertation, we 

designed, implemented, and deployed a new penalized statistical learning 

approach, Multi-Scale Network Regression (MSNR), to study brain network 

connectivity and a wide variety of phenotypes, beyond psychopathology. MSNR 

explicitly respects both edge- and community-level information by assuming a 

low rank and sparse structure, both encouraging less complex and more 

interpretably modeling. Capitalizing on a large neuroimaging cohort (n=1,051), 

we demonstrated that MSNR recapitulated interpretably and statistically 

significant associations between functional connectivity patterns with brain 

development, sex differences, and motion-related artifacts. Compared to 

common single-scale approaches, MSNR achieved a balance between prediction 

performance and model complexity, with improved interpretability. 

Together, integrating recent advances in multiple disciplines across 

machine learning, network science, developmental neuroscience, and psychiatry, 

this body of work fits into the broader context of computational psychiatry, where 

there is intense interest in the quest of delineating brain network patterns 

associated with psychopathology, among a diverse range of phenotypes.  
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CHAPTER 1  

 

General Introduction 
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Heterogeneity and Comorbidity in Neuropsychiatric Illness 

It is increasingly clear that psychiatric diagnostic labels do not “carve 

nature at its joint.” (Singh & Rose, 2009) In other words, clinical boundaries do 

not map cleanly onto the underlying neurobiology of mental disorders (B. T. R. 

Insel & Cuthbert, 2015). Two phenomena highlight such mismatch between 

existing diagnostic categories and distinct neurobiological abnormalities: 1) the 

marked levels of heterogeneity within an individual diagnosis (Hodgkinson et al., 

1987), and 2) co-morbidity across diagnoses (Jacobi et al., 2004). Accordingly, 

studies have demonstrated different “subtypes” within discrete psychiatric 

disorders, potentially explaining such heterogeneity (Clementz et al., 2016; 

Drysdale et al., 2016). Similarly, research has also reported common structural, 

functional, and genetic abnormalities across psychiatric syndromes, potentially 

explaining such co-morbidity (Goodkind et al., 2015; Lee et al., 2013; McTeague 

et al., 2017). This large body of literature gives prominence to the lack of direct 

correspondence between clinical diagnostic categories and the underlying 

pathophysiology. 

Neurodevelopmental Model of Psychopathology 

Another important observation regarding psychopathology is the fact that 

many major neuropsychiatric disorders first begin in adolescence, with as much 

as 75% of symptom onset occur before the age of 25 (Tomás Paus, Keshavan, & 



 

 
3 

Giedd, 2008). This early age of onset, together with insufficient therapeutic 

interventions, contributes to the tremendous lifetime burden of psychiatric illness, 

which routinely ranks as having the greatest impact on quality of life worldwide 

(Whiteford et al., 2013). Not coincidentally, throughout adolescence and early 

adulthood, the brain undergoes dramatic and complex changes (Cao, Huang, 

Peng, Dong, & He, 2016; Giedd & Rapoport, 2010; Tomáš Paus, 2005). These 

evidence indicates that abnormal brain maturation during critical phases of 

development may be associated with psychopathology (Bassett, Xia, & 

Satterthwaite, 2018; Rapoport, Giedd, & Gogtay, 2012). Despite the growing 

appreciation that abnormal neurodevelopment is involved in many psychiatric 

disorders, much is still unknown about how specific abnormalities of brain 

development are associated with psychopathology. 

These contexts have strongly motivated the goal to identify common 

circuit-level abnormalities, especially in the developing brain, that may give rise 

to the heterogeneous psychiatric symptoms across clinical diagnostic categories 

(Cuthbert & Insel, 2013). Broadly, this is supported by an initiative championed 

by the Research Domain Criteria (RDoC) of the National Institute of Mental 

Health (T. Insel et al., 2010). RDoC seeks to construct a biologically-grounded 

research framework for investigating psychiatric diseases. Critically, RDoC aims 

to “explore dimensions of functioning that span the full range of human behavior 

from normal to abnormal”, by integrating multimodal data, including genetic, 

imaging, and behavior (Casey, Oliveri, & Insel, 2014).  
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Network Neuroscience of Neurodevelopment and Disease 

Network neuroscience is a powerful approach to study the myriad brain 

systems implicated in psychopathology (Bassett & Sporns, 2017; Bassett et al., 

2018). Research in the past two decades in this emerging field has found 

converging patterns of normal neurodevelopment, using both functional 

connectivity (e.g. temporal correlation of blood-oxygen-level-dependent, or 

BOLD, signals) (Gu et al., 2015; Power, Fair, Schlaggar, & Petersen, 2010; 

Satterthwaite et al., 2013), and structural connectivity (e.g. estimation of white 

matter tract based fractional anisotropy) networks (Baum et al., 2016). A 

commonly studied network feature is the connectivity within- and between- 

community of the network, also called network modules (Sporns & Betzel, 2016). 

A network community is a collection of brain regions that are highly connected to 

each other, but form sparse connections with regions outside of the community. 

In other words, network community is internally dense, and externally sparse. 

During normative development, within-community connectivity tend to strengthen 

with age; whereas between-community connectivity tend to weaken with age 

(Baum et al., 2016; Power et al., 2010; Satterthwaite et al., 2013). This pattern of 

network reconfiguration suggests that the developing brain becomes more 

segregated and specialized during this critical period of plasticity. Given the 

neurodevelopmental model of psychopathology, this widely replicated network 

findings during development suggests that deviations from this normative 
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network could underlie much vulnerability to psychopathology (Bassett et al., 

2018; Casey et al., 2014). 

Indeed, prior studies using human imaging data and animal models have 

found brain network patterns do not neatly respect the clinical categories defined 

in the Diagnostic and Statistical Manual. For example, abnormalities of within- 

and between-community connectivity of the default mode network and executive 

networks have been implicated in a diverse range of psychopathology, including 

both internalizing symptoms (e.g., mood and anxiety) (Berman et al., 2011; 

Greicius, Supekar, Menon, & Dougherty, 2009; Skudlarski et al., 2010; Whitfield-

Gabrieli et al., 2009) and externalizing symptoms (e.g., attention deficit and 

misconduct behaviors) (Castellanos et al., 2008; Skudlarski et al., 2010; Uddin et 

al., 2010; von Rhein et al., 2016). In animal studies, local and long-range 

synchrony of neuronal activity, such as local field potential activity in the !-band, 

has been shown to exhibit common abnormal patterns in animal models of a 

wide range of neuropsychiatric disorders (Adhikari, Topiwala, & Gordon, 2010; 

Grayson et al., 2016; Hultman et al., 2016; Sigurdsson, Stark, Karayiorgou, 

Gogos, & Gordon, 2010; Uhlhaas & Singer, 2010). 

Despite the increasing recognition that brain network abnormalities do not 

map cleanly to current clinical categories, existing studies taking a trans-

diagnostic approach have been limited in several respects. First, most were 

restricted to one single dimension of psychopathology, missing the opportunity to 
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parse heterogeneity across the multiplicity of diagnoses (Satterthwaite et al., 

2015). Second, dimensions of psychopathology derived from traditional factor 

analyses only examined the clinical symptomatology. While such approach, 

including our prior work (Calkins et al., 2015; A N Kaczkurkin et al., 2017; 

Antonia N. Kaczkurkin et al., 2016; Shanmugan et al., 2016), exploited a diverse 

range of psychiatric symptoms, the lack of guidance by brain features limited its 

impact to delineate the underlying neurobiology. Third, the vast majority of past 

research efforts have focused on adults, unable to answer the prevailing 

hypothesis of psychopathology as disorders of brain development (T. R. Insel, 

2014). Finally, existing work that were able to study the critical window of brain 

development unfortunately suffered from small sample size, with dozens of 

participants. Modern multivariate analysis often requires much larger sample 

sizes to have the power to link high-dimensional brain patterns to complex 

behavioral and clinical measures (Bzdok & Yeo, 2017). 

Multi-Scale Brain networks 

Without a doubt, investigating how complex brain connectivity patterns are 

associated with neuropsychiatric illness has been an active area of research in 

the neuroscience community (Bassett & Sporns, 2017; Bzdok et al., 2016; 

Rubinov & Sporns, 2009). More broadly, the availability of large, open 

neuroimaging datasets as well as modern analytical tools and computational 

power have empowered scientists to uncover brain-phenotype relationships 
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across many domains, including development and aging, cognition, and 

neuropsychiatric illness (Biswal et al., 2010; Jernigan et al., 2016; Schumann et 

al., 2010; Van Essen et al., 2012).  

However, most of these studies used general purpose statistical tools, 

without explicitly taking advantage of or taking into account of features that are 

unique to brain connectivity networks. This gap between the abundance of brain 

network data and shortage of appropriate analytical tools remains largely unfilled 

today. The ongoing quest to extract meaningful brain-phenotype relationships 

using connectomic data demands a network-specific approach (Craddock, 

Tungaraza, & Milham, 2015; Varoquaux & Craddock, 2013). 

In modern network neuroscience, brain networks are represented by 

nodes, which denote the anatomical brain regions, and edges, which represent 

the connections between any pair of nodes (Rubinov & Sporns, 2009). As a 

stereotypical network can be made up of hundreds of nodes, and in turn, tens of 

thousands edges, one can investigate the properties of the network at different 

scales. At the micro-scale, one can investigate the individual edges (Craddock et 

al., 2015). At the meso-scale, assemble of edges form communities or modules, 

which are internal sparse and external dense structures that are thought to form 

the basis for specialized sub-units of information processing (Betzel, Medaglia, & 

Bassett, 2018). Finally, at the macro-level, networks can be studied using global 

summary statistics from classical graph theory measurement, including global 
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efficiency, characteristic path length, and clustering coefficient (Rubinov & 

Sporns, 2009). 

Histological tracing and brain imaging studies have extensively 

documented these scales of network architecture in the nervous systems of 

humans and other species. This large body of work includes C. elegans (Sohn, 

Choi, Ahn, Lee, & Jeong, 2011), Drosophila (Shih et al., 2015), mouse (Wang, 

Sporns, & Burkhalter, 2012), rat (Bota, Sporns, & Swanson, 2015), cat (de Reus 

& van den Heuvel, 2013), and macaque (Modha & Singh, 2010). Additionally, 

prior work has also demonstrated that brain network architecture present on 

these different scales are associated with development, aging, learning, memory, 

cognition, neurological, and psychiatric illness (Bassett et al., 2018; Betzel et al., 

2014; Braun et al., 2016; Bressler & Menon, 2010; Crossley et al., 2013; Fornito, 

Zalesky, & Breakspear, 2015; Grillon et al., 2013; Gu et al., 2015; Kernbach et 

al., 2018; Park & Friston, 2013; Power et al., 2010; Xia et al., 2018; Yu et al., 

2019). 

Single-Scale Approaches to Study Brain-Phenotype Relationships 

Common strategies for studying brain connectivity and phenotype 

relationship consider brain network features one individual scale at a time, either 

with edge, community, or global statistics alone. For example, researchers have 

found that patients with schizophrenia had elevated global efficiency, a macro-
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scale measure, in their functional brain networks compared to healthy controls 

(Lynall et al., 2010). While this approach has shown to be powerful in a great 

number of studies at demonstrating network abnormalities in neurological and 

psychiatric disorders, global network measures at the macro-scale inevitably fail 

to capture a large amount of information about complex brain systems at smaller 

scales. 

Alternatively, on the micro-scale, there exist strategies that focus on 

group-level comparisons of individual edges. It takes in the form of mass 

univariate analysis, where a statistical test, such as a linear model, is applied to 

every edge (Craddock et al., 2015; Varoquaux & Craddock, 2013). While this 

procedure is methodologically easy to implement, a few drawbacks make it less 

practical. Chief among these caveats is the need to correct for a larger number of 

multiple comparisons, which ultimately dampens power for discovering potentially 

weak relationships between individual edge and phenotypes (Storey, 2002). In 

the process of reducing type I error, this approach can be very conservative and 

result in high type II error rates. To achieve balance between detection power 

and false discovery, alternative edge-based methods have been developed, such 

as the network based statistic (Zalesky, Fornito, & Bullmore, 2010) and 

multivariate distance matrix regression (Zapala & Schork, 2012). While these 

methods largely address the need for accounting for multiple comparison testing 

on each edge through family wise error rate correction procedures similar to 

those employed by conventional fMRI studies, they nonetheless focus 
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exclusively on the microscale of edges while ignoring innate data structures in 

the brain network, producing edge-level results that are difficult to interpret. With 

a select attention on each element of the adjacency matrix without appreciation 

of information present at a larger scale, edge-only approaches cannot see the 

forest for the trees. 

Another equally problematic caveat of the edge-based approach is that it 

requires first vectorizing the connectivity matrix. This manipulation of the data 

structure transforms the original symmetric adjacency matrices into a wide 

feature table, where each column represents the edge strength across subjects. 

This unavoidably disrupts structures in the data, most notably block structures 

that represent meso-scale network features. To explicitly respect this community-

level network information, one could calculate the within- and between- 

community connectivity as dependent variables in the linear models similar to the 

mass univariate analysis using edges (Betzel et al., 2014; Crossley et al., 2013; 

Gu et al., 2015). However, analogous to a high-order smoothing operation, 

extracting the mean connectivity of community pairs mixes disparate signals and 

also misses microscale information. While optimized for interpretability and low 

dimensionality in an attempt to improve signal to noise ratio, the community-

based approach could be throwing the baby (signal) out with the bathwater 

(noise). 
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All told, single-scale approaches to study connectome-phenotype 

relationship, whether on a microscale (edge) or mesoscale (community), present 

with their own unique set of challenges of statistical power and interpretability. 

Thus, a regression method that integrates information across multiple scales with 

proper constraints could potentially achieve the best from both worlds. Indeed, 

recent theoretical and experimental studies have described many complex 

systems, including the financial system (Fenn et al., 2011), protein structure 

(Delmotte, Tate, Yaliraki, & Barahona, 2011), physical particles (Bassett, Owens, 

Porter, Manning, & Daniels, 2015), and the brain (Bassett & Siebenhühner, 2013; 

Betzel & Bassett, 2017) from a multi-scale perspective. However, this body of 

literature mostly concerns itself with network characterization and multi-scale 

community detection, rather than how to extract relationship between brain 

network and phenotypes in a multi-scale manner. 

In this dissertation, the overall arching goal is to study complex 

connectivity patterns in functional brain networks that are linked to a diverse 

range of measurement, in particular, psychopathology. In both studies that follow, 

we applied advanced machine learning techniques to delineate multivariate 

patterns of functional connectivity.  

In Chapter 2, we set out to map out linked dimensions of psychopathology 

that are highly associated with patterns of functional connectivity. Specifically, to 

delineate brain-guided dimensions that cut across existing diagnostic categories, 
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we applied sparse canonical correlational analysis (sCCA) (Witten, Tibshirani, & 

Hastie, 2009) to the Philadelphia Neurodevelopmental Cohort (PNC) 

(Satterthwaite et al., 2014), a large cohort of youth with multimodal imaging and 

item-wise psychiatric symptoms. We discovered four linked dimensions of 

psychopathology and brain connectivity patterns, namely mood, psychosis, fear, 

and externalizing behavior. These brain-guided psychopathological dimensions 

cross traditional categorical boundaries while concurring with clinical experience. 

Each dimension exhibited unique brain connectivity patterns; however, across all 

psychopathology, loss of normative segregation between the default mode and 

executive networks emerged as a common feature of connectivity dysfunction. 

In Chapter 3, we introduce a new regression method specifically designed 

to analyze the associations between high-dimensional connectomic data and 

phenotypes of interest, which we refer to as Multi-Scale Network Regression 

(MSNR). Specifically, we designed a penalized multivariate approach to explicitly 

exploit both edge and community level information to extract brain-phenotype 

relationships. By constraining a low rank and sparse structure on edges and 

community level information, respectively, MSNR encourages less complex and 

more interpretable modeling while achieves higher out-of-sample prediction 

performance and statistical significance via permutation tests. We applied MSNR 

to PNC and found that MSNR recapitulated known functional brain connectivity 

patterns in association with age, sex, and in-scanner motion. In a head-to-head 

comparison with common single-scale approaches that consider either edges or 
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community connectivity alone, MSNR achieved a balance between out-of-sample 

prediction and model complexity, with improved interpretability.
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Abstract 

Neurobiological abnormalities associated with psychiatric disorders do not 

map well to existing diagnostic categories. High co-morbidity suggests 

dimensional circuit-level abnormalities that cross diagnoses. Here we seek to 

identify brain-based dimensions of psychopathology using sparse canonical 

correlation analysis in a sample of 663 youths. This analysis reveals correlated 

patterns of functional connectivity and psychiatric symptoms. We find that four 

dimensions of psychopathology – mood, psychosis, fear, and externalizing 

behavior – are associated (r = 0.68–0.71) with distinct patterns of connectivity. 

Loss of network segregation between the default mode network and executive 

networks emerges as a common feature across all dimensions. Connectivity 

linked to mood and psychosis becomes more prominent with development, and 

sex differences are present for connectivity related to mood and fear. Critically, 

findings largely replicate in an independent dataset (n = 336). These results 

delineate connectivity-guided dimensions of psychopathology that cross clinical 

diagnostic categories, which could serve as a foundation for developing network-

based biomarkers in psychiatry. 
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Introduction 

Psychiatry relies on signs and symptoms for clinical decision making, 

without the use of established biomarkers to aid in diagnosis, prognosis, and 

treatment selection. It is increasingly recognized that existing clinical 

diagnostic categories could hinder the search for biomarkers in psychiatry 

(Singh & Rose, 2009), as they  are not clearly associated with distinct 

neurobiological abnormalities (B. T. R. Insel & Cuthbert, 2015). The high co-

morbidity among psychiatric disorders exacerbates this problem (Jacobi et al., 

2004). Furthermore, studies have demonstrated common structural, functional, 

and genetic abnormalities across psychiatric syndromes, potentially explaining 

such co-morbidity (Goodkind et al., 2015; Lee, Ripke, Neale, Faraone, Purcell, 

Perlis, Mowry, Wray, et al., 2013; McTeague et al., 2017). This body of 

evidence underscores the lack of direct mapping between clinical diagnostic 

categories and the underlying pathophysiology. 

This context has motivated the development of the National Institute of 

Mental Health’s Research Domain Criteria, which seek to construct a 

biologically-grounded framework for psychiatric diseases (Cuthbert & Insel, 

2013). In such a model, the symptoms of individual patients are conceptualized 

as the result of mixed dimensional abnormalities of specific brain circuits. 

While such a model system is theoretically attractive, it has been challenging 

to implement in practice due to both the multiplicity of clinical symptoms and 

the many brain systems implicated in psychiatric disorders. 
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Network neuroscience is a powerful approach for examining brain 

systems implicated in psychopathology (Bassett & Sporns, 2017; Bullmore & 

Sporns, 2009). One network property commonly evaluated is its community 

structure, or modular architecture. A network module (also called a sub-

network or a community) is a group of densely interconnected nodes, which 

may form the basis for specialized sub-units of information processing. 

Converging results across data sets, methods, and laboratories provide 

substantial agreement on large-scale functional brain modules such as the 

somatomotor, visual, default mode, and fronto-parietal control networks 

(Gordon et al., 2016; Power et al., 2011; Yeo et al., 2011). Furthermore, 

multiple studies documented abnormalities within this modular topology in 

psychiatric disorders (Bassett & Bullmore, 2009; Lynall et al., 2010). 

Specifically, evidence suggests that many psychiatric disorders are associated 

with abnormalities in network modules subserving higher-order cognitive 

processes, including the default mode and fronto-parietal control networks 

(Bassett, Xia, & Satterthwaite, 2018; Satterthwaite, Vandekar, et al., 2015). 

In addition to such module-specific deficits, studies in mood disorders 

(Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015; Li et al., 2014), psychosis 

(Alexander-Bloch et al., 2012; Lynall et al., 2010), and other disorders (Fornito, 

Zalesky, & Breakspear, 2015; Rudie et al., 2013) have reported abnormal 

interactions between modules that are typically segregated from each other at  
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rest. This is of particular interest as modular segregation of both functional 

(Power, Fair, Schlaggar, & Petersen, 2010) and structural (Baum et al., 2017) 

brain networks is refined during adolescence, a critical period when many 

psychiatric disorders emerge. Such findings have led many disorders to be 

considered “neurodevelopmental connectopathies.” (Paus, 2005) Describing 

the developmental substrates of psychiatric disorders is a necessary step 

towards early identification of at-risk youth, and might ultimately allow for 

interventions that “bend the curve” of maturation to achieve improved 

functional outcomes (T. R. Insel, 2014). 

Despite the increasing interest in describing how abnormalities of brain 

network development lead to the emergence of psychiatric disorders, existing 

studies have been limited in several respects. First, most have adopted a 

categorical case-control approach, or only examined a single dimension of 

psychopathology (Satterthwaite, Vandekar, et al., 2015), and are therefore 

unable to capture heterogeneity across diagnoses. Second, dimensional 

psychopathology derived from factor analyses, including our prior work 

(Calkins et al., 2015; A N Kaczkurkin et al., 2017; Antonia N. Kaczkurkin et al., 

2016; Shanmugan et al., 2016), were solely driven by covariance in the clinical 

symptomatology, rather than being guided by both brain and behavior features. 

Third, especially in contrast to adult studies, existing work in youth has often 

used relatively small samples (e.g., dozens of participants). While multivariate  
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techniques allow the examination of both multiple brain systems and clinical 

dimensions simultaneously, such techniques usually require large samples 

(Bzdok & Yeo, 2017). 

In the current study, we seek to delineate functional network 

abnormalities associated with a broad array of psychopathology in youth. We 

have capitalized on a large sample of youth from the Philadelphia 

Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014) by applying a 

recently-developed machine learning technique called sparse canonical 

correlation analysis (sCCA) (Witten, Tibshirani, & Hastie, 2009). As a 

multivariate method, sCCA is capable of discovering complex linear 

relationships between two high-dimensional datasets (Avants et al., 2014; 

Smith et al., 2015). It should be noted that the approach of the current study is 

distinct from prior work discovering biotypes within categories of 

psychopathology, based purely on imaging features themselves (e.g., 

functional connectivity (Drysdale et al., 2016) and gray matter density 

(Clementz et al., 2016)). In contrast, we seek to link a broad range of 

symptoms that are present across categories to individual differences in 

functional brain networks. Such an approach has been successfully applied in 

prior work on neurodegenerative diseases (Avants et al., 2014) as well as 

normal brain-behavior relationships (Smith et al., 2015). 
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Here, we use sCCA to delineate linked dimensions of psychopathology 

and functional connectivity. As described below, we uncover dimensions of 

connectivity that  are highly correlated with specific, interpretable dimensions 

of psychopathology. We find that each psychopathological dimension is 

associated with a distinct pattern of abnormal connectivity, and that all 

dimensions are characterized by decreased segregation of default mode and 

executive networks (fronto-parietal and salience). These network features 

linked to each dimension of psychopathology show expected developmental 

changes and sex differences. Finally, our results are largely replicated in an 

independent dataset. 
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Methods 

PARTICIPANTS 

Resting-state functional magnetic resonance imaging (rs-fMRI) datasets 

were acquired as part of the Philadelphia Neurodevelopmental Cohort (PNC), 

a large community-based study of brain development (Satterthwaite et al., 

2014). In total, 1601 participants completed the cross-sectional neuroimaging 

protocol (Table 2-1, Figure 2-1). One subject had missing clinical data. To 

create two independent samples for discovery and replication analyses, we 

performed a random split of the remaining 1600 participants using the CARET 

package in R. Specifically, using the function createDataPartition, a 

discovery sample (n = 1069) and a replication sample (n = 531) were created 

that were stratified by overall psychopathology (Supplementary Figure 2-1). 

The two samples were confirmed to also have similar distributions in regards to 

age, sex, and race (Figure 2-1), as well as motion (Supplementary Figure 2-

2). Overall psychopathology is the general factor score reported previously 

from factor analysis of the clinical data alone (Calkins et al., 2015; Shanmugan 

et al., 2016). 

Of the discovery sample (n = 1069), 111 were excluded due to gross 

radiological abnormalities or a history of medical problems that might affect 

brain function. Of the remaining 958 participants, 45 were excluded for having 

low quality T1-weighted images, and 250 were excluded for missing rs-fMRI, 
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incomplete image coverage, or excessive motion during the functional scan, 

which is defined as having an average framewise motion more than 0.20 mm 

or more than 20 frames exhibiting over 0.25 mm movement (using the 

Jenkinson calculation (Jenkinson, Bannister, Brady, & Smith, 2002)). These 

exclusion criteria produced a final discovery sample consisting of 663 youths 

(mean age 15.82, SD = 3.32; 293 males and 370 females). Applying the same 

exclusion criteria to the replication sample produced 336 participants (mean 

age 15.65, SD = 3.32; 155 males and 181 females). See Table 2-1 and Figure 

2-1 for detailed demographics of each sample. 

PSYCHIATRIC ASSESSMENT 

Psychopathology symptoms were evaluated using a structured 

screening interview (GOASSESS), which has been described in detail 

elsewhere (Calkins et al., 2015). To allow rapid training and standardization 

across a large number of assessors, GOASSESS was designed to be highly 

structured, with screen-level symptom and episode information. The instrument 

is abbreviated and modified from the epidemiologic version of the NIMH 

Genetic Epidemiology Research Branch Kiddie-SADS (Merikangas et al., 

2010). The psychopathology screen in GOASSESS assessed lifetime 

occurrence of major domains of psychopathology including psychosis 

spectrum symptoms, mood (major depressive episode, mania), anxiety 

(agoraphobia, generalized anxiety, panic, specific phobia, social phobia, 
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separation anxiety), behavioral disorders (oppositional defiant, attention 

deficit/hyperactivity, conduct), eating disorders (anorexia, bulimia), and suicidal 

thinking and behavior (Supplementary Table 2-1). The 111 item-level 

symptoms used in this study were described in prior factor analysis of the 

clinical data in PNC (Shanmugan et al., 2016). For the specific items, see 

Supplementary Data 2-1. 

IMAGE ACQUISITION 

Structural and functional subject data were acquired on a 3T Siemens 

Tim Trio scanner with a 32-channel head coil (Erlangen, Germany), as 

previously described (Satterthwaite et al., 2014). High-resolution structural 

images were acquired in order to facilitate alignment of individual subject 

images into a common space. Structural images were acquired using a 

magnetization-prepared, rapid-acquisition gradient-echo (MPRAGE) T1-

weighted sequence (TR = 1810ms; TE = 3.51 ms; FoV = 180 × 240 mm; 

resolution 0.9375 × 0.9375 × 1 mm). Approximately 6 minutes of task-free 

functional data were acquired for each subject using a blood oxygen level-

dependent (BOLD-weighted) sequence (TR = 3000 ms; TE = 32 ms; 

FoV = 192 × 192 mm; resolution 3 mm isotropic; 124 volumes). Prior to 

scanning, in order to acclimate subjects to the MRI environment and to help 

subjects learn to remain still during the actual scanning session, a mock 

scanning session was conducted using a decommissioned MRI scanner and 
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head coil. Mock scanning was accompanied by acoustic recordings of the 

noise produced by gradient coils for each scanning pulse sequence. During 

these sessions, feedback regarding head movement was provided using the 

MoTrack motion tracking system (Psychology Software Tools, Inc., 

Sharpsburg, PA). Motion feedback was only given during the mock scanning 

session. In order to further minimize motion, prior to data acquisition subjects’ 

heads were stabilized in the head coil using one foam pad over each ear and a 

third over the top of the head. During the resting-state scan, a fixation cross 

was displayed as images were acquired. Subjects were instructed to stay 

awake, keep their eyes open, fixate on the displayed crosshair, and remain 

still. 

STRUCTURAL PREPROCESSING 

A study-specific template was generated from a sample of 120 PNC 

subjects balanced across sex, race, and age bins using the 

buildtemplateparallel procedure in ANTS (Avants, Tustison, Song, et al., 2011). 

Study-specific tissue priors were created using a multi-atlas segmentation 

procedure (Wang et al., 2014). Subject anatomical images were independently 

rated by three highly trained image analysts. Any image that did not pass 

manual inspection was removed from the analysis. Each subject’s high-

resolution structural image was processed using the ANTS Cortical Thickness 

Pipeline (Tustison et al., 2014). Following bias field correction (Tustison et al., 



 

 
35 

2010), each structural image was diffeomorphically registered to the study-

specific PNC template using the top-performing SYN deformation provided by 

ANTS (Klein et al., 2009). Study-specific tissue priors were used to guide brain 

extraction and segmentation of the subject’s structural image (Avants, 

Tustison, Wu, Cook, & Gee, 2011). 

FUNCTIONAL PREPROCESSING 

Task-free functional images were processed using one of the top-

performing pipelines for removal of motion-related artifact (Ciric et al., 2017). 

Preprocessing steps included (1) correction for distortions induced by magnetic 

field inhomogeneities using FSL’s FUGUE utility, (2) removal of the 4 initial 

volumes of each acquisition, (3) realignment of all volumes to a selected 

reference volume using MCFLIRT (Jenkinson et al., 2002), (4) removal of and 

interpolation over intensity outliers in each voxel’s time series using AFNI’s 

3Ddespike utility,� (5) demeaning and removal of any linear or quadratic 

trends, and (6) co-registration of functional data to the high-resolution 

structural image using boundary-based registration (Greve & Fischl, 2009). 

The artefactual variance in the data was modelled using a total of 36 

parameters, including the six framewise estimates of motion, the mean signal 

extracted from eroded white matter and cerebrospinal fluid compartments, the 

mean signal extracted from the entire brain, the derivatives of each of these 

nine parameters, and quadratic terms of each of the nine parameters and their 
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derivatives. Importantly, our findings are robust to the methodological choice of 

regressing out global signal (Supplementary Figure 2-3 and Supplementary 

Figure 2-4). Both the BOLD-weighted time series and the artefactual model 

time series were temporally filtered using a first-order Butterworth filter with a 

passband between 0.01 and 0.08 Hz (Hallquist, Hwang, & Luna, 2013). 

NETWORK CONSTRUCTION 

We built a functional connectivity network using the residual timeseries 

(following de-noising) of all parcels of a common parcellation (Power et al., 

2011). The parcellation used in the main analysis consists of 264 spherical 

nodes of 20 mm diameter distributed across the brain (Power et al., 2011). The 

a priori communities for this set of nodes were originally delineated using the 

Infomap algorithm (Rosvall & Bergstrom, 2008) and were replicated in an 

independent sample. This parcellation was particularly suitable for our analysis 

as it has been previously used for studying developmental changes in 

connectivity and network modularity (Power et al., 2010) and has been used as 

part of several studies in this dataset in the past (Chai et al., 2017; Ciric et al., 

2017; Gu et al., 2015). As part of the supplementary analysis to demonstrate 

the robustness of the results independent of parcellation choices 

(Supplementary Figure 2-8), we also constructed networks based on an 

alternative parcellation developed by Gordon et al. (2016). This set of nodes 

was derived using edge detection and boundary mapping to define areal 
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parcels. The functional connectivity between any pair of brain regions was 

operationalized as the Pearson correlation coefficient between the mean 

activation timeseries extracted from those regions. For each parcellation, 

an n × n weighted adjacency matrix encoding the connectome was thus 

obtained, where n represents the total number of nodes (or parcels) in that 

parcellation. Community boundaries were defined a priori for each parcellation 

scheme. 

To ensure that potential confounders did not drive the canonical 

correlations, we regressed out relevant covariates out of the input matrices. 

Specifically, using the glm and residual.glm functions in R, we regressed 

age, sex, race, and in-scanner motion out of the connectivity data, and 

regressed age, sex, and race out of the clinical data. Importantly, we found that 

the canonical variates derived from regressed and non-regressed datasets 

were comparable, with highly correlated feature weights (Supplementary 

Table 2-2). 

DIMENSIONALITY REDUCTION 

Each correlation matrix comprised 34,980 unique connectivity features. 

We reasoned that since sCCA seeks to capture sources of variation common 

to both datasets, connectivity features that are most predictive of psychiatric 

symptoms would be those with high variance across participants. Therefore, to 

reduce dimensionality of the connectivity matrices, we selected the top edges 
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with the highest median absolute deviation (MAD) (Supplementary Figure 2-

5). MAD is defined as "#$%&'(|*+ − "#$%&'(*)|), or the median of the absolute 

deviations from the vector’s median. We chose MAD as a measurement for 

variance estimation, because it is a robust statistic, being more resilient to 

outliers in a data set than other measures such as the standard deviation. To 

illustrate which edges were selected based on MAD, we visualized the network 

adjacency matrix with all edges, at 95th, 90th, and 75th percentile 

(Supplementary Figure 2-5c). 

An alternative approach for dimensionality reduction is principal 

component analysis (PCA), from which we selected the top 111 components 

(explaining 37% of variance) as connectivity features entered into sCCA. As 

detailed in Supplementary Figure 2-8, using PCA yielded similar canonical 

variates as MAD. We ultimately chose feature selection with MAD because it 

allowed direct use of individual connectivity strength instead of latent variables 

(e.g. components from PCA) as the input features to sCCA, thus increasing the 

interpretability of our results. 

SPARSE CANONICAL CORRELATION ANALYSIS 

sCCA is a multivariate procedure that seeks maximal correlations 

between linear combinations of variables in both sets, with regularization to 

achieve sparsity (Witten et al., 2009). In essence, given two matrices, *.×0 

and 1.×2, where ' is the number of observations (e.g., 
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participants), 3 and 4 are the number of variables (e.g., clinical and 

connectivity features, respectively), sCCA involves finding 5 and 6, which are 

loading vectors, that maximize 789(*5, 16). Mathematically, this optimization 

problem can be expressed as 

 

maximize	5
B
*
B
16, 

subject	to	‖5‖K
K
≤ 1, ‖6‖K

K
≤ 1, ‖5‖N ≤ 7N, ‖6‖N ≤ 7K. 

	(1)  

Since both PN(‖∙‖N) and PK(‖∙‖K)-norm are used, this is an elastic net 

regularization that combines the LASSO and ridge penalties. The penalty 

parameters for the PK norm are fixed for both 5 and 6 at 1, but those of PN norm, 

namely 7N and 7K, are set by the user and need to be tuned (see below). 

We chose a linear kernel over non-linear implementations of sCCA for 

two reasons. First, while a more complex model may potentially better fit the 

data, increased model complexity often results in reduced interpretability. 

Secondly, a non-linear model may require a larger sample size to accurately 

estimate the increased number of parameters. 

GRID SEARCH FOR REGULARIZATION PARAMETERS 

We tuned the PN regularization parameters for the connectivity and the 

clinical features, respectively (see Supplementary Figure 2-6). The range of 

sparsity parameters are constrained to be between 0 and 1 in the PMA 
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package (Witten et al., 2009), where 0 indicates the smallest number of 

features (i.e., highest level of sparsity) and 1 indicates the largest number of 

features (i.e., lowest level of sparsity). We conducted a grid search in 

increments of 0.1 to determine the combination of parameters that would yield 

the highest canonical correlation of the first variate across 10 randomly 

resampled samples, each consisting of two-thirds of the discovery dataset. 

Note that the parameters were only tuned on the discovery sample and the 

same regularization parameters were applied in the replication analysis. 

PERMUTATION TESTING 

To assess the statistical significance of each canonical variate, we used 

a permutation testing procedure to create a null distribution of correlations 

(Supplementary Figure 2-7). Essentially, we held the connectivity matrix 

constant, and then shuffled the rows of the clinical matrix so as to break the 

linkage of participants’ brain features and their symptom features. Then we 

performed sCCA using the same set of regularization parameters to generate a 

null distribution of correlations after permuting the input data 1000 times (B). 

As permutation could induce arbitrary axis rotation, which changes the order of 

canonical variates, or axis reflection, which causes a sign change for the 

weights, we matched the canonical variates resulting from permuted data 

matrices to the ones derived from the original data matrix by comparing the 

clinical loadings (6) (Mišić et al., 2016). The 3RST value was estimated as the 
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number of null correlations (9+) that exceeded the average sCCA correlations 

estimated on the original dataset (9̅), with false discovery rate correction 

(FDR, q < 0.05) across the top seven selected canonical variates: 

 

30VWXYZ[Z+\. =

∑ _
1, %`	9+ ≥ 9̅

0, %`	9+ < 9̅

d

+eN

f
. (2)

 

 

 

In other words, we randomly assigned subjects’ clinical features to other 

subjects’ connectivity features, therefore breaking up the internal co-varying 

structures of the original dataset. The canonical variates resulting from these 

re-aligned datasets with preserved data distribution will then serve as the null 

distribution against which the real correlations are compared. The logic is that 

any significant co-varying relationships will have to be greater than the signals 

in a permuted data structure. 

RESAMPLING PROCEDURE 

To further select features that consistently contributed to each canonical 

variate, we performed a resampling procedure (Supplementary Figure 2-9). 

In each of 1000 samples, we randomly selected two-thirds of the discovery 

sample and then randomly replaced the remaining one-third from those two-

thirds (similar to bootstrapping with replacement). Similar to the permutation 

procedure, we matched the corresponding canonical variates from resampled 
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matrices to the original one to obtain a set of comparable decompositions 

(Mišić et al., 2016). Features whose 95% and 99% confidence intervals (for 

clinical and connectivity features, respectively) did not cross zero were 

considered significant, suggesting that they were stable across different 

sampling cohorts. 

NETWORK MODULE ANALYSIS 

To visualize and understand the high dimensional connectivity loading 

matrix, we summarized it as mean within- and between-module loadings 

according to the a priori community assignment of the Power parcellation 

(Supplementary Figure 2-10a) (Power et al., 2011). Specifically, within-

module connectivity loading is defined as 

 ∑ 2h+i+,i∈X

|k| × (|k| − 1)
		 , (3) 

 

 

where h+i is the sCCA loading of the functional connectivity between 

nodes % and m, which both belong to the same community " in k. The 

cardinality of the community assignment vector, |k|, represents the number of 

nodes in each community. Between-module connectivity loading is defined as 
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 ∑ h+i+∈X,i∈.

|k| × (|n|)
			 , (4) 

 

 

where h+i is the sCCA loading of the functional connectivity between 

nodes % and m, which belong to community " in k and community ' in n , 

respectively. 

We used a permutation test based on randomly assigning community 

memberships to each node while controlling for community size to assess the 

statistical significance of the mean connectivity loadings (Supplementary 

Figure 2-10b). Empirical p-values were calculated similar to Eq. (2) and were 

FDR-corrected. 

ANALYSIS OF COMMON CONNECTIVITY FEATURES ACROSS 

DIMENSIONS 

Each connectivity loading matrix was first binarized based on the 

presence of a significant edge feature after the resampling procedure in a 

given canonical variate. All four binarized matrices were then added and 

thresholded at 4 (i.e. common to all four dimensions), generating an 

overlapping edge matrix. Statistical significance was assessed by comparing 

this concordant feature matrix to a null model. The null model was constructed 

by computing the overlapping edges, repeated 1000 times, of four randomly 
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generated loading matrices, each preserving the edge density of the original 

loading matrix. Any edge that appeared at least once in the null model was 

eliminated from further analysis. With only the statistically significant common 

edge features, we calculated the mean absolute loading in each edge feature 

across four dimensions as well as the nodal loading strength using Brain 

Connectivity Toolbox (Rubinov & Sporns, 2009) and visualized it with BrainNet 

Viewer (Xia, Wang, & He, 2013) both in MATLAB. 

ANALYSIS OF AGE EFFECTS AND SEX DIFFERENCES 

As previously (Baum et al., 2017; Nassar et al., 2018; Shanmugan et al., 

2016), generalized additive models (GAMs), using the MGCV package in R, 

were used to characterize age-related effects and sex differences on the 

specific dysconnectivity pattern associated with each psychopathology 

dimension. A GAM is similar to a generalized linear model, where predictors 

can be replaced by smooth functions of themselves, offering efficient and 

flexible estimation of non-linear effects. For each linked dimension %, a GAM 

was fit: 

 p8''#7q%r%qs	t789#+	~	v#w + v(&y#). (5)  

Additionally, we also separately tested whether age by sex interactions 

were present. 

DATA AVAILABILITY 
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The data reported in this paper have been deposited in database of 

Genotypes and Phenotypes (dbGaP): accession no. [phs000607.v3.p2]. 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2) 

CODE AVAILABILITY 

All analysis code is available 

here: https://github.com/cedricx/sCCA/tree/master/sCCA/code/final. 
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Results 

LINKED DIMENSIONS OF PSYCHOPATHOLOGY AND 

CONNECTIVITY 

We sought to delineate multivariate relationships between functional 

connectivity and psychiatric symptoms in a large sample of youth. To do this, 

we used sCCA, an unsupervised learning technique that seeks to find 

correlations between two high-dimensional datasets (Witten et al., 2009). In 

total, we studied 999 participants of ages 8–22 who completed both functional 

neuroimaging and a comprehensive evaluation of psychiatric symptoms as part 

of the PNC (Calkins et al., 2015; Satterthwaite et al., 2014) (Table 2-1 and 

Figure 2-1). Participants in the PNC were recruited from Children’s Hospital of 

Philadelphia pediatric network in the greater Philadelphia area. In this 

community-based study, participants were not recruited from psychiatric 

services. As such, the prevalence of screening into specific psychopathology 

categories generally aligned with epidemiologically ascertained samples, as 

previously described (Calkins et al., 2015) (see Supplementary Table 2-1). 

We divided this sample into discovery (n = 663) and replication datasets 

(n = 336) that were matched on age, sex, race, and overall psychopathology 

(Figure 2-1 and Supplementary Figure 2-1). Following pre-processing using 

a validated pipeline that minimizes the impact of in-scanner motion (Ciric et al., 

2017) (see Supplementary Figure 2-2, Supplementary Figure 2-3, and 
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Supplementary Figure 2-4), we constructed subject-level functional networks 

using a 264-node parcellation system that includes an a priori assignment of 

nodes to network communities (Power et al., 2011) (Figure 2-2a–c, e.g., 

modules or sub-networks; see Methods section). Prior to analysis with sCCA, 

we regressed age, sex, race, and motion out of both the connectivity and 

clinical data to ensure that these potential confounders did not drive results. As 

features that do not vary across subjects cannot be predictive of individual 

differences, we limited our analysis of connectivity data to the top ten percent 

most variable connections, as measured by median absolute deviation, which 

is more robust against outliers than standard deviation (Supplementary 

Figure 2-5). The input data thus consisted of 3410 unique functional 

connections (Figure 2-2b) and 111 clinical items (Figure 2-2c). The clinical 

items were drawn from the structured GOASSESS interview (Calkins et al., 

2015), and covers a diverse range of psychopathological domains, including 

mood and anxiety disorders, psychosis-spectrum symptoms, attention-

deficit/hyperactivity disorder (ADHD), and other disorders (see details in 

Supplementary Data 2-1). Using elastic net regularization (PN + PK) and 

parameter tuning over both the clinical and connectivity features, sCCA was 

able to obtain a sparse and interpretable model while minimizing over-fitting 

(Figure 2-2d and Supplementary Figure 2-6). Ultimately, sCCA identified 

specific patterns (“canonical variates”) of functional connectivity that were 

linked to distinct combinations of psychiatric symptoms. 
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Based on the scree plot of covariance explained (Figure 2-3a), we 

selected the first seven canonical variates for further analysis. Significance of 

each of these linked dimensions of symptoms and connectivity was assessed 

using a permutation test, which compares the canonical correlate of each 

variate to a null distribution built by randomly re-assigning subjects’ brain and 

clinical features (see Methods section and Supplementary Figure 2-7); False 

Discovery Rate (FDR) was used to control for type I error rate due to multiple 

testing. Of these seven canonical variates, three were significant (Pearson 

correlation r = 0.71, 3RST < 0.001; r = 0.70, 3RST < 0.001, r = 0.68, 3RST < 0.01, 

respectively) (Figure 2-3b), with the fourth showing a trend toward significance 

(r = 0.68, 3RST = 0.07, 3Y.|\WWV|ZV} = 0.04 ). Notably, these results were robust to 

many different methodological choices, including the number of features 

entered into the initial analysis (Supplementary Figure 2-8a), the parcellation 

system (Supplementary Figure 2-8b), and the use of regularization with 

elastic net versus data reduction with principal component analysis 

(Supplementary Figure 2-8c). 

Each canonical variate represented a distinct pattern that relates a 

weighted set of psychiatric symptoms to a weighted set of functional 

connections. Inspection of the most heavily weighted clinical symptom for each 

dimension provided an initial indication regarding their content (Figure 2-3c–f). 

For example, “feeling sad” was the most heavily weighted clinical feature in the 

first dimension, while “auditory perceptions” was the most prominent symptom 
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in the second. Next, we conducted detailed analyses to describe the clinical 

and connectivity features driving the observed multivariate relationships. 

BRAIN-GUIDED DIMENSIONS OF PSYCHOPATHOLOGY 

CROSS CLINICAL DIAGNOSTIC CATEGORIES 

To understand the characteristics of each linked dimension, we used a 

resampling procedure to identify both clinical and connectivity features that 

were consistently significant across subsets of the data (see Methods section 

and Supplementary Figure 2-9). This procedure revealed that 37 out of 111 

psychiatric symptoms reliably contributed to at least one of the four dimensions 

(Figure 2-4). Next, we mapped these data-driven items to typical clinical 

diagnostic categories. This revealed that the features selected by multivariate 

analyses generally accord with clinical phenomenology. Specifically, despite 

being selected on the basis of their relationship with functional connectivity, the 

first three canonical variates delineated dimensions that resemble clinically 

coherent dimensions of mood, psychosis, and fear (e.g., phobias). The fourth 

dimension, which was present at an uncorrected threshold, mapped to 

externalizing behaviors (ADHD and oppositional defiant disorder (ODD)). 

While each canonical variate mapped onto coherent clinical features, 

each dimension contained symptoms from several different clinical diagnostic 

categories. For example, the mood dimension was comprised of symptoms 

from categorical domains of depression (“feeling sad” received the highest 
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loading), mania (“irritability”), and obsessive-compulsive disorder (OCD; 

“recurrent thoughts of harming self or others”) (Figure 2-4a). Similarly, while 

the second dimension mostly consisted of psychosis-spectrum symptoms 

(such as “auditory verbal hallucinations”), two manic symptoms (i.e., “overly 

energetic” and “pressured speech”) were included as well (Figure 2-4b). The 

third dimension was composed of fear symptoms, including both agoraphobia 

and social phobia (Figure 2-4c). The fourth dimension was driven primarily by 

symptoms of both ADHD and ODD, but also included the irritability item from 

the depression domain (Figure 2-4d). The connectivity-guided clinical 

dimensions were significantly correlated with, but not identical to, previous 

factor models such as the bifactor models (Shanmugan et al., 2016) (see 

Supplementary Figure 2-12). These data-driven dimensions of 

psychopathology align with clinical phenomenology, but in a dimensional 

fashion that does not adhere to discrete categories. 

COMMON AND DISSOCIABLE PATTERNS OF CONNECTIVITY 

sCCA identified each dimension of psychopathology through shared 

associations between clinical data and specific patterns of connectivity. Next, 

we investigated the loadings of connectivity features that underlie each 

canonical variate. To aid visualization of the high-dimensional connectivity 

data, we summarized loading patterns according to network communities 

established a priori by the parcellation system. Specifically, we examined 
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patterns of both within-network and between-network connectivity 

(Supplementary Figure 2-10; see Methods section), as this framework has 

been useful in prior investigations of both brain development (Power et al., 

2010; Satterthwaite et al., 2013) and psychopathology (Alexander-Bloch et al., 

2012; Kaiser et al., 2015; Sharp, Scott, & Leech, 2014; Sylvester et al., 2012). 

This procedure revealed specific patterns of network-level connectivity that 

were related to the four dimensions of psychopathology (Figure 2-5). For 

example, the mood dimension was characterized by a marked increase in 

connectivity between the ventral attention and salience networks (Figure 2-5a, 

e, i), while the psychosis dimension received the highest loadings in 

connectivity between the default mode and executive systems (salience and 

fronto-parietal networks (Figure 2-5b, f, j). In contrast, increased within-

network connectivity of the fronto-parietal network was most evident in the fear 

dimension (Figure 2-5c, g, k). Alterations of the salience system were 

particularly prominent for the externalizing behavior dimension, including lower 

connectivity with the default mode network and greater connectivity with the 

fronto-parietal control network (Figure 2-5d, h, l). Quantitatively, the specific 

loadings of within- and between-network connectivity in each dimension did not 

significantly correlate with each other (all p > 0.05), demonstrating that each 

dimension of psychopathology was characterized by a unique pattern of 

network connectivity. 



 

 
52 

The results indicate that while each canonical variate was comprised of 

unique patterns of connectivity, there were several features that were shared 

across all dimensions. Such findings agree with accumulating evidence for 

common circuit-level dysfunction across psychiatric syndromes (Goodkind et 

al., 2015; Lee, Ripke, Neale, Faraone, Purcell, Perlis, Mowry, International 

Inflammatory Bowel Disease Genetics Consortium (IIBDGC), et al., 2013). To 

quantitatively assess such common features, we compared overlapping results 

against a null distribution using permutation testing (see Methods section). 

This procedure revealed an ensemble of edges that were consistently 

implicated across all four dimensions. These connections can be mapped to 

individual nodes, and revealed that the regions most impacted across all 

dimensions included the frontal pole, superior frontal gyrus, dorsomedial 

prefrontal cortex, medial temporal gyrus, and amygdala (Figure 2-6a). Similar 

analysis at the level of sub-networks (Figure 2-6b) illustrated that 

abnormalities of connectivity within the default mode and fronto-parietal 

networks were present in all four psychopathological dimensions (Figure 2-

6c). Furthermore, reduced segregation between the default mode and 

executive networks, such as the fronto-parietal and salience systems, was 

common to all dimensions. These shared connectivity features complement 

each dimension-specific pattern, and offer evidence for both common and 

dissociable patterns of connectivity associated with psychopathology. 

DEVELOPMENTAL EFFECTS AND SEX DIFFERENCES 
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In the above analyses, we examined multivariate associations between 

connectivity and psychopathology while controlling for participant age. 

However, given that abnormal brain development is thought to underlie many 

psychiatric disorders (T. R. Insel, 2014; Paus, 2005), we next examined 

whether connectivity patterns significantly associated with psychopathology 

differ as a function of age or sex in this large developmental cohort. We 

repeated the analysis conducted above using connectivity and clinical features, 

but in this case did not regress out age and sex; race and motion 

were  regressed as prior. Notably, the dimensions derived were quite similar, 

with highly correlated feature weights (Supplementary Table 2-2). As in prior 

work (Baum et al., 2017; Gennatas et al., 2017), developmental associations 

were examined using generalized additive models with penalized splines, 

which allows for statistically rigorous modeling of both linear and non-linear 

effects while minimizing over-fitting. Using this approach, we found that the 

brain connectivity patterns associated with both mood and psychosis became 

significantly more prominent with age (Figure 2-7a, b, 3RST~N�ÄÅÇ	, 3RST~N�ÄÉ	, 

respectively). Additionally, brain connectivity patterns linked to mood and fear 

were both stronger in female participants than males (Figure 2-7c, 

d, 3RST~N�ÄÑ	, 3RST~N�ÄÖ	, respectively). We did not observe age by sex 

interaction effects in any dimension. 

LINKED DIMENSIONS ARE REPLICATED IN AN INDEPENDENT 

SAMPLE 
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Throughout our analysis of the discovery sample, we used procedures 

both to guard against over-fitting and to enhance the generalizability of results 

(regularization, permutation testing, resampling). As a final step, we tested the 

replicability of our findings using an independent sample, which was left-out 

from all analyses described above (n = 336, Table 2-1, Figure 2-1, and 

Supplementary Figure 2-1). Although this replication sample was half the size 

of our original discovery sample, sCCA identified four canonical variates that 

highly resemble the original four linked dimensions of psychopathology. 

Specifically, the correlations between the clinical loadings in the discovery 

sample and those in the replication sample were r = 0.85 for psychosis 

(PFDR < 4.4 × 10−16), r = 0.73 for externalizing (PFDR < 4.4 × 10−16), r = 0.59 for 

fear (PFDR = 8.43 × 10−12), and r = 0.23 for mood (PFDR = 0.01). In the replication 

sample, three out of four dimensions were significant after FDR correction of 

permutation tests (Figure 2-8 and Supplementary Figure 2-11). While the 

bootstrap analysis identified 37 out of 111 symptoms in the discovery sample 

to consistently contribute to the four linked-dimensions (Figure 2-4), the same 

analysis in the replication sample yielded similar sets of symptoms (80%, 64%, 

63%, and 50% overlapping for psychosis, externalizing behavior, fear, and 

mood, respectively). Additionally, connectivity patterns associated with mood 

symptoms increased significantly with age (PFDR = 0.0082), while connectivity 

patterns associated with psychosis symptoms showed a trend towards 

increasing with age (Puncorrected = 0.027, PFDR = 0.053). As in the discovery 
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sample, connectivity patterns associated with fear (PFDR = 0.039) and mood 

(PFDR = 0.0083) were both elevated in females in the replication sample. 
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Discussion 

Leveraging a large neuroimaging data set of youth and recent advances 

in machine learning, we discovered several multivariate patterns of functional 

connectivity linked to interpretable dimensions of psychopathology that cross 

traditional diagnostic categories. These patterns of abnormal connectivity 

were largely replicable in an independent dataset. While each dimension 

displayed a specific pattern of connectivity abnormalities, loss of network 

segregation between the default mode and executive networks was common to 

all dimensions. Furthermore, patterns of connectivity displayed unique 

developmental effects and sex differences. Together, these results suggest 

that complex psychiatric symptoms are associated with specific patterns of 

abnormal connectivity during brain development. 

Both the co-morbidity among psychiatric diagnoses and the notable 

heterogeneity within each diagnostic category suggest that our current 

symptom-based diagnostic criteria do not “carve nature at its joints” (B. T. R. 

Insel & Cuthbert, 2015). Establishing biologically-targeted interventions in 

psychiatry is predicated upon delineation of the underlying neurobiology. This 

challenge has motivated the NIMH Research Domain Criteria (RDoC) effort, 

which seeks to link circuit-level abnormalities in specific brain systems to 

symptoms that might be present across clinical diagnoses (Cuthbert & Insel, 

2010). Accordingly, there has been a proliferation of studies that focus on 
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linking specific brain circuit(s) to a specific symptom dimension or behavioral 

measure across diagnostic categories (Satterthwaite, Kable, et al., 2015; 

Sharma et al., 2017). However, by focusing on a single behavioral measure or 

symptom domain, many studies ignore the co-morbidity among psychiatric 

symptoms. A common way to attempt to evaluate such co-morbidity is to find 

latent dimensions of psychopathology using factor analysis or related 

techniques. For example, factor analyses of clinical psychopathology have 

suggested the presence of dimensions including internalizing symptoms, 

externalizing symptoms, and psychosis symptoms (Calkins et al., 2015; 

Shanmugan et al., 2016). While such dimensions are reliable, they are drawn 

entirely from the covariance structure of self-report or interview-based clinical 

data, and are not informed by neurobiology. 

An alternative and increasingly pursued approach is to parse 

heterogeneity in psychiatric conditions using multivariate analysis of biomarker 

data such as neuroimaging. For example, researchers have used functional 

connectivity (Drysdale et al., 2016) and gray matter density (Clementz et al., 

2016) to study the heterogeneity within major depressive disorder and 

psychotic disorders, respectively. However, most studies have principally 

considered only one or two clinical diagnostic categories, and typically the 

analytic approach yields discrete subtypes (or “biotypes”). By definition, such a 

design is unable to discover continuous dimensions that span multiple 

categories. Further, there is tension between the dimensional schema 
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suggested by RDoC and categorical biotypes; as suggested by RDoC, it 

seems more plausible that psychopathology in an individual results from a 

mixture of abnormalities across several brain systems. Finally, unsupervised 

learning approaches using only imaging data and not considering clinical data 

may frequently yield solutions that are difficult to interpret, and do not align 

with clinical experience. 

In contrast, in this study we used a multivariate analysis technique – 

sCCA – that allowed simultaneous consideration of clinical and functional 

connectivity data in a large sample with diverse psychopathology. This method 

allowed us to uncover linked dimensions of psychopathology and connectivity 

that cross diagnostic categories yet remain clinically interpretable. 

Compared to supervised classification methods (e.g., case-control, or multi-

class), where each subject is categorized into one discrete class, 

unsupervised sCCA overcomes the inherent limitation of using discrete 

diagnostic categories (such as those provided by the Diagnostic and Statistical 

Manual of Mental Disorders) and allows continuous dimensions of 

psychopathology to be present in an individual to a varying degree. In addition, 

in contrast to “one-view” multivariate studies (such as factor analysis of clinical 

data or clustering of imaging data) (Calkins et al., 2015; Shanmugan et al., 

2016), the sCCA-derived clinical dimensions were explicitly selected on the 

basis of co-varying signals that were present as both individual differences of 

connectivity and clinical symptoms. Such an unsupervised “two-view” approach 
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has been successfully applied in studies of neurodegenerative diseases 

(Avants et al., 2014) and normal brain-behavior relationships (Smith et al., 

2015). In this dimensional, trans-diagnostic approach, the psychopathology of 

an individual is represented as a mixture of dimensional brain circuit 

abnormalities, which together produce a specific combination of psychiatric 

symptoms. 

Notably, the brain-driven dimensions described here incorporated 

symptoms across several diagnostic categories while remaining congruent with 

prevailing models of psychopathology. For example, the mood dimension was 

composed of items from five sections of the clinical interview: depression, 

mania, OCD, suicidality, and psychosis-spectrum. Despite disparate origins, 

the content of the items forms a clinically coherent picture, including depressed 

mood, anhedonia, loss of sense of self, recurrent thoughts of self-harm, and 

irritability. Notably, symptoms of irritability were also significantly represented 

in the externalizing behavior dimension, suggesting that irritability may have 

heterogeneous, divergent neurobiological antecedents. The fear dimension, on 

the other hand, represents a more homogeneous picture of various types of 

phobias (e.g. social phobia and agoraphobia), that had little overlap with other 

categorical symptoms. Finally, the psychosis dimension (which was only 

significant in the discovery sample) was mainly comprised of psychotic 

symptoms, but also included symptoms of mania. This result accords with 

studies demonstrating shared inheritance patterns of schizophrenia and bipolar 
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disorder, and findings that specific common genetic variants increase risk of 

both disorders (Purcell et al., 2009). Instead of averaging over many clinical 

features within a diagnostic category, sCCA selected specific items that were 

most tightly linked to patterns of connectivity. These groups of symptoms 

remained highly interpretable, and were largely reproducible in the replication 

data set. 

Each of the clinical dimensions identified was highly correlated with 

patterns of dysconnectivity. These patterns were summarized according to 

their location between and within functional network modules, which has been 

a useful framework for understanding both brain development and 

psychopathology (Alexander-Bloch et al., 2012; Satterthwaite et al., 2013). 

While each dimension of psychopathology was associated with a unique 

pattern of dysconnectivity, one of the most striking findings to emerge was 

evidence that reduction of functional segregation between the default mode 

and fronto-parietal networks was a common feature of all dimensions. The 

exact connections implicated in each dimension might vary, but permutation-

based analyses demonstrated that loss of segregation between these two 

networks was present in all four dimensions. Fox et al. (2005) originally 

demonstrated that the default mode network is anti-correlated with task-

positive functional brain systems including the fronto-parietal network. 

Furthermore, studies of brain maturation have shown that age-related 

segregation of functional brain modules is a robust and reproducible finding 
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regarding adolescent brain development (Baum et al., 2017; Satterthwaite et 

al., 2013). As part of this process, connections within network modules 

strengthen and connections between two network modules weaken. This 

process is apparent using functional connectivity (Power et al., 2010; 

Satterthwaite et al., 2013) as well as structural connectivity (Baum et al., 

2017). Notably, case-control studies of psychiatric disorders in adults have 

found abnormalities consistent with a failure of developmental network 

segregation, in particular between executive networks, such as the fronto-

parietal and salience networks, and the default mode network (Woodward & 

Cascio, 2015). Using a purely data-driven analysis, our results support the 

possibility that loss of segregation between the default mode and executive 

networks may be a common neurobiological mechanism underlying 

vulnerability to a wide range of psychiatric symptoms, lending new evidence for 

the triple-network model of psychiatric disorders (Lefebvre et al., 2016; Menon, 

2011). 

In addition to such common abnormalities that were present across 

dimensions, each dimension of psychopathology was associated with a 

unique, highly correlated pattern of dysconnectivity. For example, connectivity 

features linked to the mood dimension included hyper-connectivity within the 

default mode, fronto-parietal and salience networks. These dimensional results 

from a multivariate analysis are remarkably consistent with prior work, which 

has provided evidence of default mode hyper-connectivity using conventional 
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case-control designs and univariate analysis (Berman et al., 2011; Sheline et 

al., 2009). However, the data-driven approach used here allowed us to 

discover a combination of novel connectivity features that was more predictive 

than traditional univariate association analyses. These features included 

enhanced connectivity between both the dorsal attention and fronto-parietal 

networks as well as between the ventral attention and salience networks. The 

fear, externalizing, and psychosis dimensions were defined by a similar mix 

between novel features and a convergence with prior studies. Specifically, fear 

was characterized by weakened connectivity within default mode network, 

enhanced connectivity within fronto-parietal network, and – in contrast to mood 

– decreased connectivity between ventral attention and salience networks. In 

contrast to other dimensions, externalizing behavior exhibited increased 

connectivity in the visual network and decreased connectivity between fronto-

parietal and dorsal attention networks. Finally, the psychosis dimension 

exhibited stronger connectivity in default mode network and reduced 

segregation from executive networks (fronto-parietal and salience). Notably, 

while prior studies have focused on the central role of default mode 

dysconnectivity in schizophrenia (Whitfield-Gabrieli & Ford, 2012) with mixed 

evidence for hyper-connectivity (Zhou et al., 2007) and hypo-connectivity 

(Pankow et al., 2015), in the present data the effect within default mode 

network itself was not nearly as strong as its reduced segregation from the 

executive networks. Indeed, this finding is consistent with recent data that in 

psychosis the disruption of segregation between the default mode and task 
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positive networks is a more consistent feature than dysconnectivity within the 

default mode itself (Lefort-Besnard et al., 2018). 

Importantly, each of these dimensions was initially discovered while 

controlling for the effects of age and sex. However, given that many psychiatric 

symptoms during adolescence show a clear evolution with development 

(Casey, Oliveri, & Insel, 2014) and marked disparities between males and 

females (Rapoport, Giedd, & Gogtay, 2012), we evaluated how the connectivity 

features associated with each dimension were correlated with age and sex. We 

found that the patterns of dysconnectivity that linked to mood and psychosis 

symptoms strengthened with age during the adolescent period. This finding is 

consistent with the well-described clinical trajectory of both mood and 

psychosis disorders, which often emerge in adolescence and escalate in 

severity during the transition to adulthood (Harrow, Carone, & Westermeyer, 

1985). In contrast, no age effects were found for externalizing or fear 

symptoms, which are typically present earlier in childhood and have a more 

stable time-course (Bongers, Koot, Van Der Ende, & Verhulst, 2004). 

Additionally, we observed marked sex differences in the patterns of 

connectivity that linked to mood and fear symptoms, with these patterns being 

more prominent in females across the age range studied. This result accords 

with data from large-scale epidemiological studies, which have documented a 

far higher risk of mood and anxiety disorders in females (Albert, 2015; Kessler, 

2003). Despite marked differences in risk by sex (i.e., double in some 
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samples), the mechanism of such vulnerability has been only sparsely studied 

in the past (Satterthwaite, Wolf, et al., 2015). The present results suggest that 

sex differences in functional connectivity may in part mediate the risk of mood 

and fear symptoms. 

Although this study benefited from a large sample, advanced 

multivariate methods, and replication of results in an independent sample, 

several limitations should be noted. First, it should be emphasized that our 

approach did not seek to define biotypes within clinical diagnostic categories in 

a fully data-driven manner, as in influential prior work (Clementz et al., 2016; 

Drysdale et al., 2016). Rather, here we sought to provide complementary 

understanding of heterogeneity by linking symptoms that are present across 

clinical diagnostic categories to alterations of functional connectivity, 

uncovering dimensions of psychopathology that are guided by and linked to 

underlying network abnormalities. However, this approach necessarily is 

limited by the clinical data being used, in this case item-level data from a 

structured clinical interview. Although the item-level data used do not explicitly 

consider clinical diagnostic categories, the items themselves were nonetheless 

drawn from a standard clinical interview. Incorporating additional data types 

such as genomics may capture different sources of important biological 

heterogeneity. Second, while we successfully replicated our findings (except 

for the psychosis dimension) in an independent sample, the generalizability of 

the study should be further evaluated in datasets that are acquired in different 
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settings. Third, all data considered in this study were cross-sectional, which 

has inherent limitations for studies of development. Ongoing follow-up of this 

cohort will yield informative data that will allow us to evaluate the suitability of 

these brain-derived dimensions of psychopathology for charting developmental 

trajectories and prediction of clinical outcome. Fourth, our replication sample 

was constructed from the PNC data. Using an independently acquired dataset 

to validate our findings would provide evidence of greater generalizability than 

splitting the original data into two samples. However, this approach was 

dictated by the lack of correspondence with clinical instruments used in other 

large-scale developmental imaging studies. This limitation underscores the 

need for harmonization of not just imaging data but also clinical measures 

across studies moving forward. Finally, our current analysis only considered 

functional connectivity and clinical psychopathology. Future research could 

incorporate rich multi-modal imaging data, cognitive measures, and genomics. 

In summary, in this study we discovered and replicated multivariate 

patterns of connectivity that are highly correlated with dimensions of 

psychopathology in a large sample of youth. These dimensions cross 

traditional clinical diagnostic categories, yet align with clinical experience. Each 

dimension was composed of unique features of connectivity, while a lack of 

functional segregation between the default mode network and executive 

networks was common to all dimensions. Paralleling the clinical trajectory of 

each disorder and known disparities in prevalence between males and 
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females, we observed both marked developmental effects and sex differences 

in these patterns of connectivity. As suggested by the NIMH Research Domain 

Criteria, our findings demonstrate how specific circuit-level abnormalities in the 

brain’s functional network architecture may give rise to a diverse panoply of 

psychiatric symptoms. Such an approach has the potential to clarify the high 

co-morbidity between psychiatric diagnoses and the great heterogeneity within 

each diagnostic category. Moving forward, the ability of these dimensions to 

predict disease trajectory and response to treatment should be evaluated, as 

such a neurobiologically-grounded framework could accelerate the rise of 

personalized medicine in psychiatry. 
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Tables 

Table 2-1: Philadelphia neurodevelopmental cohort (PNC) 

  Discovery Replication Total 

n  663 336 999 

Sex 

Male 293 155 448 

Female 370 181 551 

Race 

White 306 153 459 

Black 286 141 427 

Other 71 42 113 

Age 

8-10 70 40 110 

11-13 125 63 188 

14-16 195 102 297 

17-19 206 100 306 

20-22 58 30 88 

>22 9 1 10 

Mean 15.82 ± 3.32 15.65± 3.32 15.76±3.32 

Table 2-1 The cross-sectional sample of the PNC has 1601 participants in 

total. After applying health, structural, and functional imaging quality exclusion 

criteria (details in Online Methods section), 663 and 336 subjects were included 

in the final discovery and replication samples, respectively. 
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Figures 

Figure 2-1: 

   

 

Figure 2-1 Participants demographics. The discovery and replication samples 

had similar demographic composition, including similar distributions of age, race, 

sex, and overall psychopathology. 
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Figure 2-2 
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Figure 2-2: Schematic of sparse canonical correlation analysis 

(sCCA). (a) Resting-state fMRI data analysis schematic and workflow. After 

preprocessing, blood-oxygen-level dependent (BOLD) signal time series were 

extracted from 264 spherical regions of interest distributed across the cortex 

and subcortical structures. Nodes of the same color belong to the same a priori 

community as defined by Power et al. (2011) (b) A whole-brain, 264 × 264 

functional connectivity matrix was constructed for each subject in the discovery 

sample (n = 663 subjects). (c) Item-level data from a psychiatric screening 

interview (111 items, based on K-SADS (Merikangas et al., 2010) were entered 

into sCCA as clinical features (see details in Supplementary Data 2-

1). (d) sCCA seeks linear combinations of connectivity and clinical symptoms 

that maximize their correlation. A priori community assignment: 

somatosensory/motor network (SMT), cingulo-opercular network (COP), 

auditory network (AUD), default mode network (DMN), visual network (VIS), 

fronto-parietal network (FPT), salience network (SAL), subcortical 

network (SBC), ventral attention network (VAT), dorsal attention 

network (DAT), Cerebellar and unsorted nodes not visualized. 

Psychopathology domains: psychotic and subthreshold symptoms (PSY), 

depression (DEP), mania (MAN), suicidality (SUI), attention-deficit 

hyperactivity disorder (ADD), oppositional defiant disorder (ODD), conduct 

disorder (CON), obsessive-compulsive disorder (OCD), separation 

anxiety (SEP), generalized anxiety disorder (GAD), specific phobias (PHB), 
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mental health treatment (TRT), panic disorder (PAN), post-traumatic stress 

disorder (PTSD). 
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Figure 2-3 

 

 
 



 

 
73 

Figure 2-3 sCCA reveals multivariate patterns of linked dimensions of 

psychopathology and connectivity. (a) The first seven canonical variates 

were selected based on covariance explained. Dashed line marks the average 

covariance explained. (b) Three canonical correlations were statistically 

significant by permutation testing with FDR correction (q < 0.05), with the fourth 

one showing an effect at uncorrected thresholds. Corresponding variates are 

circled in (a). Error bars denote standard error. Dimensions are ordered by 

their permutation-based P value. (c–f) Scatter plots of brain and clinical scores 

(linear combinations of functional connectivity and psychiatric symptoms, 

respectively) demonstrate the correlated multivariate patterns of connectomic 

and clinical features. Colored dots in each panel indicate the severity of a 

representative clinical symptom that contributed the most to this canonical 

variate. Each insert displays the null distribution of sCCA correlation by 

permutation testing. Dashed line marks the actual correlation. ***PFDR < 0.001, 

**PFDR < 0.01, †Puncorrected = 0.04 
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Figure 2-4 
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Figure 2-4 Connectivity-informed dimensions of psychopathology cross 

clinical diagnostic categories. (a) The mood dimension was composed of a 

mixture of depressive symptoms, suicidality, irritability, and recurrent thoughts 

of self-harm. (b) The psychotic dimension was composed of psychosis-

spectrum symptoms, as well as two manic symptoms. (c) The fear dimension 

was comprised of social phobia and agoraphobia symptoms. (d) The 

externalizing behavior dimension showed a mixture of symptoms from 

attention-deficit and oppositional defiant disorders, as well as irritability from 

the depression section. The outermost labels are the item-level psychiatric 

symptoms (see details in Supplementary Data 2-1). The color arcs represent 

categories from clinical screening interview and the Diagnostic and Statistical 

Manual of Mental Disorders (DSM). Numbers in the inner rings represent 

sCCA loadings for each symptom in their respective dimension. Only loadings 

determined to be statistically significant by a resampling procedure are shown 

here. 
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Figure 2-5 
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Figure 2-5 Patterns of within- and between-network connectivity contribute to 

linked psychopathological dimensions. (a–d) Modular (community) level 

connectivity pattern associated with each psychopathology dimension. Both 

increased (e–h) and diminished (i–l) connectivity in specific edges contributed 

to each dimension of psychopathology. The outer labels represent the 

anatomical names of nodes. The inner arcs indicate the community 

membership of nodes. The thickness of the chords represents the loadings of 

connectivity features. 
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Figure 2-6 

 
 

Figure 2-6 Loss of segregation between default mode and executive 

networks is shared across dimensions. (a) By searching for overlap of 

edges that contributed significantly to each dimension, we found common 

edges that were implicated across all dimensions of psychopathology. These 

were then summarized at a nodal level by the sum of their absolute loadings. 

Nodes that contributed significantly to every dimension included the frontal 

pole, superior frontal gyrus, dorsomedial prefrontal cortex, medial temporal 

gyrus, and amygdala. (b) Results of a similar analysis conducted at the module 

level. (c) Loss of segregation between the default mode and executive 

networks was shared across all four dimensions. 
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Figure 2-7 

 

 
 

Figure 2-7 Developmental effects and sex differences are concentrated in 

specific dimensions. Connectivity patterns associated with both the mood (a) 

and psychosis (b) dimensions increased significantly with age. Additionally, 

connectivity patterns associated with both the mood (c) and fear 

(d)  dimensions were significantly more prominent in females than males. 

Multiple comparisons were controlled for using the False Discovery Rate 

(q < 0.05). Dashed lines and boxes indicate the 95% confidence interval. 
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Figure 2-8 

 
 

 
 
 

Figure 2-8 Linked dimensions of psychopathology were replicated in an 

independent sample. All procedures were repeated in an independent 

replication sample of 336 participants. (a) The first four canonical variates in 

the replication sample were selected for further analysis based on covariance 

explained. Dashed line marks the average covariance explained. (b) The 

mood, fear, and externalizing behavior dimensions were significant by 

permutation testing. Corresponding variates are circled in (a). Error bars 

denote standard error. **PFDR < 0.01 
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Supplementary Information 

Supplementary Figure 2-1 

 

Supplementary Figure 2-1 Sample Construction. The cross-sectional 

sample of the Philadelphia Neurodevelopmental Cohort (PNC) has 1601 

participants in total. Excluding the one missing clinical data, 1600 participants 

were randomly stratified into a discovery (n=1069) and a replication sample 

(n=531). Applying quality exclusion criteria for health, structural imaging, and 

functional imaging (details in Methods), 663 and 336 subjects were included in 

the final discovery and replication samples, respectively. 
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Supplementary Figure 2-2 

 

 

Supplementary Figure 2-2  In-scanner motion of subjects. (a) 1405 out of 

1601 participants of PNC had acquired resting- state fMRI. The histogram shows 

the distribution of mean framewise displacement using the Jenkinson calculation. 

The exclusion criteria of motion for the final sample is 0.2mm or greater, which is 

colored in red (n=229). (b) After applying all exclusion criteria, including health, 

structural and functional imaging quality exclusion criteria, 999 subjects were 
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included in the final sample. The histogram shows the head motion distribution of 

the final sample, which consists of a discovery sample (c), and a replication 

sample (d). 
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Supplementary Figure 2-3 

 

Supplementary Figure 2-3 Pre-processed data without global signal 

regression (GSR). (a) We preprocessed the functional data with 12 parameter + 

aCompCor, which is the one of the best performing preprocessing procedures to 

correct for motion without GSR (Behzadi, Restom, Liau, & Liu, 2007; Ciric et al., 

2017; Muschelli et al., 2014; Parkes, Fulcher, Yücel, & Fornito, 2018). 

Subsequently, we followed the same procedures as in the main analysis. The 

first five canonical variates were selected for further analysis based on 

covariance explained. Dashed line marks the average covariance explained. (b) 

The original four dimensions -— psychosis, mood, fear, and externalizing 

behavior –– and a fifth dimension (corresponding to OCD-spectrum symptoms) 

were significant by permutation testing. Corresponding variates are circled in 

panel (a). Error bars denote standard error. *** PFDR < 0.001, ** PFDR < 0.01, * 

PFDR < 0.05. 
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Supplementary Figure 2-4 

 

 

Supplementary Figure 2-4 Comparison of GSR effects in low and high 

motion subjects. (a) Histogram of subject in-scanner motion in the discovery 

cohort (n=663), of which those with the lowest motion (< 0.041 mm, n = 200) and 
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those with the highest motion (> 0.077 mm, n =199) were selected for the 

comparison of their CCA dimensional scores processed with and without GSR. 

(b) We calculated the correlation coefficient between the CCA dimensional 

scores (i.e. connectivity and clinical scores) processed without GSR (x axis) and 

those processed with GSR (y axis) in each motion group for each of the four 

canonical dimensions. All correlation coefficients were highly significant (P < 2.2 

× 10−16). 
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Supplementary Figure 2-5 

 

 

Supplementary Figure 2-5 Connectivity feature selection using median 

absolute deviation (MAD). Since sCCA seeks to capture sources of variation 

common to both datasets, we selected top 10% or 3410 connectivity features 
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that were variable across the discovery sample. (a) The variance was calculated 

using the median absolute deviation (MAD). It is defined as the median of the 

difference between each element and the median in a vector. (b) MAD of each 

edge strength in decreasing order. The 95th, 90th, and 75th percentile are 

labeled, where the 90th corresponds to 3410 edges. (c) Average connectivity 

matrix across all participants of edges with MAD at 100th, 95th, 90th, and 75th 

percentile levels. 
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Supplementary Figure 2-6 

 

 

Supplementary Figure 2-6 Grid search for regularization parameters. We 

tuned the L1 regularization parameters for the connectivity and the clinical 

features in sCCA. The range of sparsity parameters is constrained to be between 

0 and 1 in the PMA package (Witten et al., 2009), where 0 indicates the smallest 

number of features (i.e. highest level of sparsity) and 1 indicates the largest 

number of features (i.e. lowest level of sparsity). We conducted a grid search in 

increment of 0.1 to determine the combination of parameters that would yield the 
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highest canonical correlation of the first variate across 10 randomly resampled 

datasets, each consisting of two-thirds of the discovery dataset. 
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Supplementary Figure 2-7 

 

 

Supplementary Figure 2-7 Permutation testing to assess significance of 

linked dimensions. (a) Schematic of permutation procedure. Connectivity data 

was held constant, while the rows of the clinical matrix were randomly shuffled, 

so as to break the linkage of participants’ connectivity features and their 

symptom features. As permutation could induce arbitrary axis rotation, which 

changes the order of canonical variates, or axis reflection, which causes a sign 

change for the weights, we matched the canonical variates resulting from 

permuted data matrices to the ones derived from the original data matrix by 

comparing the clinical loadings (6) (Mišić et al., 2016). (b) Null distributions of 
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correlations generated by the permuted data. Dashed line represents the 

correlation from the original dataset. 
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Supplementary Figure 2-8 
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Supplementary Figure 2-8 Patterns of canonical variates were robust to 

methodological choices. We found four canon- ical variates based on 

covariance explained and correlation across methodological choices, including 

(a) the number of features entered into the analysis (edges with top 5% variance 

based on MAD), (b) an alternative parcellation (Gordon et al., 2016), and (c) 

using alternative techniques of dimensionality reduction (the first 111 principal 

components). Dashed line marks the average covariance explained. 

Corresponding variates on the right panels are circled in the left. Error bars 

denote standard error. 
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Supplementary Figure 2-9 

 

 

Supplementary Figure 2-9 Resampling procedure to identify stable features 

contributing to each linked dimension. (a) Schematic of the resampling 

procedure. In each sample, two-thirds of the discovery dataset was first randomly 

selected. The sample size was completed to be the same as the original by 
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replacing with those already selected. (b) Resampling distribution for clinical 

features in each linked dimension. Each bar represents the 95% confidence 

interval. DSM categories to which each symptom item belongs are shown. 
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Supplementary Figure 2-10 

 

 

 

Supplementary Figure 2-10 Network module analysis. (a) Summarizing 

loadings on a between- and within-network basis using a priori community 

assignment from the parcellation of Power et al. (2011) (b) Schematic for 

generating null model for modular analysis. Community membership was 

randomly assigned to each node while controlling for community size. Mean 



 

 
98 

between- and within-module loadings were then calculated based on these 

permuted modules, which we used to assess the statistical significance by 

comparing the original values against the null distribution. 
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Supplementary Figure 2-11 

 

Supplementary Figure 2-11 Canonical variates in the replication sample 

accord with findings in the discovery sample. Scatter plots of brain and 

clinical scores (linear combinations of functional connectivity and psychiatric 

symptoms, respectively) demonstrate the correlated multivariate patterns of 

connectomic and clinical features. Colored dots in each panel indicate the 

severity of a representative clinical symptom that contributed the most to this 
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canonical variate. Each insert displays the null distribution of sCCA correlation by 

permutation testing. Dashed line marks the actual correlation. 
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Supplementary Figure 2-12 
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Supplementary Figure 2-12 Correlations between canonical variates and 

previous factor analysis model. To under- stand how similar connectivity-

guided dimensions of psychopathology are to those derived from pure clinical 

items reported before, we examined the correlation between the canonical 

variate clinical scores and (a) overall psychopathol- ogy score, and (b) 

dimensional bifactor models scores, both initially reported in Shanmugan et al., 

(2016). 
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Supplementary Table 2-1 

 

Supplementary Table 2-1 Clinical Psychopathology Levels in the PNC. 
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Supplementary Table 2-2 

 

       

 

Supplementary Table 2-2 Correlations of loadings between covariate-

regressed and non-regressed features. Loadings of both connectivity and 

clinical features across dimensions were highly correlated between input data 

that had age and sex regressed out of and those that had not. All correlations 

were statistically significant (PFDR < 0.001). 
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Supplementary Table 2-3 

Questions from the GOASESS Semi-Structured Interview 

DSM Label Question 

A
tt

e
n

ti
o

n
 D

e
fi

ci
t 

D
is

o
rd

e
r  

ADD011 

Did you often have trouble paying attention or keeping your mind on your 

school, work, chores, or other activities that you were doing? (trouble paying 
attention)  

ADD012 
Did you often have problems following instructions and often fail to finish school, 

work, or other things you meant to get done? 

ADD013 
Did you often dislike, avoid, or put off school or homework (or any other activity 

requiring concentration) (problems following instructions)  

ADD014 

Did you often lose things you needed for school or projects at home 

(assignments or books) or make careless mistakes in school work or other 

activities? (making careless mistakes) 

ADD015 
Did you often have trouble making plans, doing things that had to be done in a 

certain kind of order, or that had a lot of different steps? (trouble making plans)  

ADD016 
Did you often have people tell you that you did not seem to be listen- ing when 

they spoke to you or that you were daydreaming? (trouble listening)  

ADD020 

Did you often have difficulty sitting still for more than a few minutes at a time, 

even after being asked to stay seated, or did you often fidget with your hands or 

feet or wiggle in your seat or were you ”always on the go”? (difficulty sitting still)  

ADD021 
Did you often blurt out answers to other people’s questions before they finished 

speaking or interrupt people abruptly?  

ADD022 

Did you often join other people’s conversations or have trouble waiting your turn 

(e.g., waiting in line, waiting for a teacher to call on you in class)? (difficulty 
waiting turns)  

A
g

o
ra

p
h

o
b

ia
 

AGR001 
Looking at this card, have you ever been very nervous or afraid of being in 

crowds (for example, a classroom, cafeteria, restaurant, or movie theater)?  

AGR002 
Looking at this card, have you ever been very nervous or afraid of going to public 

places (such as a store or shopping mall)?  

AGR003 
Looking at this card, have you ever been very nervous or afraid of being in an 

open field?  

AGR004 
Looking at this card, have you ever been very nervous or afraid of going over 

bridges or through tunnels? (bridges/tunnels)  

AGR005 
Looking at this card, have you ever been very nervous or afraid of traveling by 

yourself? (solo travel)  

AGR006 
Looking at this card, have you ever been very nervous or afraid of traveling away 

from home? (leaving home)  

AGR007 
Looking at this card, have you ever been very nervous or afraid of traveling in a 

car?  

AGR008 
Looking at this card, have you ever been very nervous or afraid of using public 

transportation like a bus or SEPTA? (public transit)  

C
o

n
d

u
ct

 

D
is

o
rd

e
r  

CDD001 

Was there ever a time when you often did things that got you into trouble with 

adults like lying or stealing (something worth more than $5), from family, others, 

or stores?  

CDD002 
Did you ever skip school, stay out at night later than you were supposed to (more 

than 2 hours), or run away from home overnight? 
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CDD003 
Did you ever set fires, break into cars, or destroy someone else’s property on 

purpose? 

CDD004 Do you have a probation officer or have you ever been on probation?  

CDD005 

Did you often bully others (hitting, threatening or scaring someone who was 

younger or smaller), threaten or frighten someone on purpose, or often start 

physical fights with others? 

CDD006 Have you ever been physically cruel to an animal or person (on purpose)?  

CDD007 
Did you ever try to hurt someone with a weapon (a bat, brick, broken bottle, 

knife, or gun)? 

CDD008 Did you ever threaten someone?  

D
e

p
re

ss
io

n
 

DEP001 
Has there ever been a time when you felt sad or depressed most of the time? 

(feeling sad)  
DEP002 Has there ever been a time when you cried a lot, or felt like crying? (crying)  

DEP004 
Has there ever been a time when you felt grouchy, irritable or in a bad mood 

most of the time; even little things would make you mad? (irritability)  

DEP006 
Has there ever been a time when nothing was fun for you and you just weren’t 

interested in anything? (anhedonia)  

G
e

n

e
ra

li

ze
d

 

A
n

xi

e
ty

 

GAD001 Have you ever been a worrier? 

GAD002 Did you worry a lot more than most children/people your age?  

M
a

n
ic

 D
is

o
rd

e
r 

MAN001 

Have there been times when you were much more active, excited or en- ergetic 

than usual, had problems sitting still, or needed to move around a lot? (overly 
energetic)  

MAN002 
Has there ever been a time when you felt so full of energy that you couldn’t stop 

doing things and didn’t get tired?  

MAN003 Has there ever been a time when you felt like you hardly needed sleep?  

MAN004 

Have there been times when you kept talking a lot, couldn’t stop talking, talked 

faster than usual, had thoughts faster than usual, or had so many ideas in your 

head that you could hardly keep track of them? (pressured speech)  

MAN005 
Have you ever had a time when you felt much more happy or excited than you 

usually do when there was nothing special going on?  

MAN006 Have you ever had a time when you felt like you could do almost anything?  

MAN007 
Has there ever been a time when you felt unusually grouchy, cranky, or irritable; 

when the smallest things would make you really mad? (irritability)  

O
b

se
ss

iv
e

 C
o

m
p

u
ls

iv
e

 D
is

o
rd

e
r  

OCD001 

Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as concern with harming 

others/self? (thoughts of harming)  

OCD002 
Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as pictures of violent things?  

OCD003 

Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as thoughts about 

contamination/germs/illness?  

OCD004 

Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as fear that you would do 

something/say something bad without intending to?  

OCD005 

Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as feelings that bad things 

that happened were your fault?  
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OCD006 
Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as forbid- den/bad thoughts?  

OCD007 

Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as need for 

symmetry/exactness?  

OCD008 
Have you ever been bothered by thoughts that don’t make sense to you, that 

come over and over again and won’t go away, such as religious thoughts?  

OCD011 

Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like cleaning or washing (for 

example, your hands, house)?  

OCD012 
Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like counting?  

OCD013 

Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like checking (for example, doors, 

locks, ovens)?  

OCD014 

Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like getting dressed over and over 

again?  

OCD015 

Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like going in and out a door over and 

over again?  

OCD016 
Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like ordering or arranging things?  

OCD017 

Have you ever had to do something over and over again - that would have made 

you feel really nervous if you couldn’t do it, like doing things over and over again 

at bedtime, like arranging the pillows, sheets, or other things?  

OCD018 
Have you ever saved up so many things that people complained or they got in 

the way?  

OCD019 Do you feel the need to do things just right (like they have to be perfect)?  

O
p
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o

si
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o
n

a
l 
D

e
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a
n

t 
D
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o
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e
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ODD001 

Was there a time when you often did things that got you into trouble with adults 

such as losing your temper, arguing with or talking back to adults, or being 

grouchy or irritable with them? (losing temper)  

ODD002 
Was there a time when you often got into trouble with adults for refusing to do 

what they told you to do or for breaking rules at home/school? (breaking rules)  

ODD003 
Did you often annoy other people on purpose or blame other people for your 

mistakes (excluding siblings)?  

ODD005 
Did you often annoy other people on purpose or blame other people for your 

mistakes (excluding siblings)?  

ODD006 
Were you often irritable or grouchy, or did you often get angry because you 

thought that things were unfair? (irritability due to unfairness)  

P
a

n
ic

 D
is

o
rd

e
r  PAN001 Have you ever had an attack like this? 

PAN003 

Has there ever been a time when all of a sudden you felt very, very scared or 

uncomfortable - and your chest hurt, you couldn’t catch your breath, your heart 

beat very fast, you felt very shaky, and sweaty/tingly/numb in your hands or 

feet?  

PAN004 

Has there ever been a time when all of a sudden, you felt that you were losing 

control, something terrible was going to happen, that you were going crazy, or 

going to die?  

P
h

o

b
ia

 

PHB001 
Looking at this card, have you ever been very nervous or afraid of animals or 

bugs, like dogs, snakes, or spiders?  
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PHB002 
Looking at this card, have you ever been very nervous or afraid of being in really 

high places, like a roof or tall building?  

PHB003 
Looking at this card, have you ever been very nervous or afraid of water or 

situations involving water, such as a swimming pool, lake, or ocean?  

PHB004 
Looking at this card, have you ever been very nervous or afraid of storms, 

thunder, or lightning? 

PHB005 
Looking at this card, have you ever been very nervous or afraid of doctors, 

needles, or blood? 

PHB006 
Looking at this card, have you ever been very nervous or afraid of closed spaces, 

like elevators or closets? 

PHB007 
Looking at this card, have you ever been very nervous or afraid of flying or 

airplanes? 

PHB008 
Looking at this card, have you ever been very nervous or afraid of any other 

things or situations?  

P
sy

ch
o

si
s 

PSY001 
Have you ever heard voices when no one was there? (auditory verbal 
hallucination)  

PSY029 Have you ever seen visions or seen things which other people could not see?  

PSY050 Have you ever smelled strange odors other people could not smell?  

PSY060 
Have you ever had strange feelings in your body like things were crawling on you 

or someone touching you and nothing or no one was there?  

PSY070 
Have you ever believed in things that most other people or your parents don’t 

believe in? 

PSY071 

Have you ever believed in things and later found out they weren’t true, like 

people being out to get you, or talking about you behind your back, or controlling 

what you do or think? (persecutory/suspicious)  

S
u

b
th

re
sh

o
ld

 P
sy

ch
o

si
s 

SIP003 
I think that I have felt that there are odd or unusual things going on that I can’t 

explain. (odd/unusual thoughts)  
SIP004 I think that I might be able to predict the future. 

SIP005 
I may have felt that there could possibly be something interrupting or controlling 

my thoughts, feelings, or actions. (thought control) 

SIP006 
I have had the experience of doing something differently because of my 

superstitions. (superstitions) 

SIP007 
I think I may get confused at times whether something I experience or perceive 

may be real or may be just part of my imagination or dreams. (reality confusion)  

SIP008 
I have thought that it might be possible that other people can read my mind, or 

that I can read others’ minds  

SIP009 I wonder if people may be planning to hurt me or even may be about to hurt me.  

SIP010 
I believe that I have special natural or supernatural gifts beyond my talents and 

natural strengths.  

SIP011 I think I might feel like my mind is ”playing tricks” on me. (mind tricks)  

SIP012 
I have had the experience of hearing faint or clear sounds of people or a person 

mumbling or talking when there is no one near me. (auditory perception) 
SIP013 I think that I may hear my own thoughts being said out loud. (audible thoughts)  
SIP014 I have been concerned that I might be ”going crazy.” 

SIP027 Do people ever tell you that they can’t understand you? 

SIP028 Do people ever seem to have difficulty understanding you? 

SIP032 
Do you ever feel a loss of sense of self or feel disconnected from yourself or your 

life? (loss sense of self) 
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SIP033 
Has anyone pointed out to you that you are less emotional or connected to 

people than you used to be? 

SIP038 
Within the past 6 months, are you having a harder time getting your work or 

schoolwork done? 

SIP039 
Within the past 6 months, are you having a harder time getting normal activities 

done?  

P
T

S
D

 

PTD001 
Have you ever been very upset by seeing a dead body or by seeing pictures of the 

dead body of somebody you knew well?  

T
re
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e
n

t 
S

e
e
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g
 

SCR001 

Have you ever talked to a counselor, psychologist, social worker, psychiatrist or 

some other professional about your feelings or problems with your mood or 

behaviors?  

SCR006 Are you currently taking medication because of your emotions and/or behaviors?  

SCR007 
Have you ever had to go to a hospital and stay overnight because of problems 

with your mood, feelings, or how you were acting?  

SCR008 

Have you or anyone else (like your friends, parents, or teachers) ever thought 

you needed help because of problems with your mood, feelings, or how you 

were acting?  

S
e

p
a

ra
ti

o
n

 A
n

xi
e

ty
 

SEP500 

Since you were 5 years old, has there ever been a time when you had a lot of 

worries about your (attachment figures) and were very upset or got sick (for 

example, felt sick to your stomach, headaches, thrown-up) when you were away 

from him/her?  

SEP508 
Has there ever been a time when you wanted to stay home from school or not go 

to other places (for example, sleep-overs) without your (attachment figures)?  

SEP509 

When you knew that you were going to be away from home or (at- tachment 

figure(s)), did you get very upset and worry (e.g., when you learned (attachment 

figure(s)) were going on an upcoming trip or night out)?  

SEP510 
Did you ever worry/have bad dreams about something terrible happen- ing to 

you or your (attachment figures) so that you would not see them again?  

SEP511 
Were you scared to be alone in your room (or any place in your house) or did you 

need your (attachment figure(s)) to stay with you while you fell asleep?  

S
o

ci
a

l 
P

h
o
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SOC001 

Looking at this card, was there ever a time in your life when you felt afraid or 

uncomfortable or really, really shy with people, like meeting new people, going 

to parties, or eating or drinking, writing or doing homework in front of others? 

(focus of social situation)  

SOC002 

Looking at this card, was there ever a time in your life when you felt afraid or 

uncomfortable talking on the telephone or with people your own age who you 

don’t know very well? (novel social situations)  

SOC003 

Looking at this card, was there ever a time in your life when you felt afraid or 

uncomfortable when you had to do something in front of a group of people, like 

speaking in class?  

SOC004 

Looking at this card, was there ever a time in your life when you felt afraid or 

uncomfortable acting, performing, giving a talk/speech, play- ing a sport or doing 

a musical performance, or taking an important test or exam (even though you 

studied enough)? (public performance)  

SOC005 
Looking at this card, was there ever a time in your life when you felt afraid or 

uncomfortable because you were the center of attention and were concerned 
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something embarrassing might happen and you felt very afraid or felt 

uncomfortable? (center of attention)  

S
u

ic
id

a
li

ty
 

SUI001 Have you ever thought a lot about death or dying? 

SUI002 Have you ever thought about killing yourself? (suicidality)  
 

Supplementary Table 2-3 Item-wise psychiatric symptoms included 

as part of the data analysis. We included 111 psychiatric symptoms as input 

data to the sCCA. Item with bolded abbreviation were the symptoms highlighted 

in Figure 2-4.  
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Abstract 

Complex brain networks are increasingly characterized at different scales, 

including global summary statistics, community connectivity, and individual 

edges. While research relating brain networks to demographic and behavioral 

measurements have yielded many insights into brain-phenotype relationships, 

common analytical approaches only consider network information at a single 

scale, thus failing to incorporate rich information present at other scales. Here, 

we designed, implemented, and deployed Multi-Scale Network Regression 

(MSNR), a penalized multivariate approach for modeling brain networks that 

explicitly respects both edge- and community-level information by assuming a 

low rank and sparse structure, both encouraging less complex and more 

interpretable modeling. Capitalizing on a large neuroimaging cohort (' = 1051), 

we demonstrate that MSNR recapitulates interpretable and statistically significant 

connectivity patterns associated with brain development, sex differences, and 

motion-related artifacts. Notably, compared to single-scale methods, MSNR 

achieves a balance between out-of-sample prediction and  model interpretability. 

Together, by jointly exploiting both edge- and community-level information,  

MSNR has the potential to yield novel insights into brain-behavior relationships. 
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Introduction 

Studying brain-phenotype relationships in high-dimensional connectomics 

is an active area of research in the neuroscience community (Bassett & Sporns, 

2017; Bullmore & Sporns, 2009). The advent of large neuroimaging datasets that 

have measures of brain connectivity for unprecedented numbers of subjects 

(Biswal et al., 2010; Bzdok & Yeo, 2017; Jernigan et al., 2016; Mennes, Biswal, 

Castellanos, & Milham, 2013; Satterthwaite et al., 2014; Schumann et al., 2010; 

Van Essen et al., 2012) have yielded novel insights into brain development (Fair 

et al., 2007; Power, Fair, Schlaggar, & Petersen, 2010; Satterthwaite et al., 

2013), sex differences (Gur & Gur, 2016; Ingalhalikar et al., 2014; Dardo Tomasi 

& Volkow, 2012) neurological diseases (Buckner et al., 2009; Khambhati, Davis, 

Lucas, Litt, & Bassett, 2016) and psychiatric illnesses (Bassett, Xia, & 

Satterthwaite, 2018; Drysdale et al., 2016). As the availability of datasets with 

rich neural, genetic, and behavioral measurements from large numbers of 

subjects continues to increase, there is a growing need for statistical methods 

that are tailored for the discovery of complex relationships between brain 

networks and phenotypes (Craddock, Tungaraza, & Milham, 2015; Varoquaux & 

Craddock, 2013). 

A typical brain network consists of hundreds of nodes, which denote 

anatomical brain regions and tens of thousands of edges, which indicate 

connections between pairs of nodes (Rubinov & Sporns, 2009).The network can 

be viewed on the micro-scale, meso-scale, or macro-scale. The set of edges that 

comprise the network make up the micro-scale. The macro-scale includes the 
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network’s modularity, characteristic path, global efficiency, and other global 

summary statistics (Rubinov & Sporns, 2009). The meso-scale falls in between 

the micro-scale and macro-scale, and includes the communities that make up the 

network (Sporns & Betzel, 2016). A community refers to a collection of nodes 

that are highly connected to each other and have little connection to nodes in 

other communities. Prior work has demonstrated that brain network architecture 

present on these different scales is associated with development (Gu et al., 

2015; Power et al., 2010), aging (Betzel et al., 2014; Damoiseaux et al., 2008; D 

Tomasi & Volkow, 2012), learning (Bassett, Yang, Wymbs, & Grafton, 2015; 

Jarosiewicz et al., 2008; Lewis, Baldassarre, Committeri, Romani, & Corbetta, 

2009), cognition (Bressler & Menon, 2010; Crossley et al., 2013; Park & Friston, 

2013), and neuropsychiatric diseases (Alexander-Bloch et al., 2010; Bassett et 

al., 2018; Fornito, Zalesky, & Breakspear, 2015; Xia et al., 2018).  

Despite increased appreciation that multi-scale organization of the brain 

may be responsible for some of its major functions (Bassett & Siebenhühner, 

2013; Betzel & Bassett, 2017), thus far, common strategies for studying the 

relationship between brain connectivity and phenotypes consider network 

features at a single scale (Craddock et al., 2015). For example, a popular single-

scale strategy focuses on group-level comparisons of individual connections (i.e. 

edges) in brain networks (Craddock et al., 2015; Varoquaux & Craddock, 2013). 

This approach involves performing a statistical test on each edge. While this 

procedure is  easy to implement, several drawbacks limit its effectiveness. Chief 

among these limitations are the need to account for  multiple  comparisons,  and 
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a lack of interpretability (Craddock et al., 2015; Varoquaux & Craddock, 2013).  

To achieve high power while controlling false discovery, alternative edge-based 

methods have been developed, such as the network-based statistic (Zalesky, 

Fornito, & Bullmore, 2010) and multivariate distance matrix regression (Zapala & 

Schork, 2012). While these strategies have yielded important insights, they 

nonetheless focus exclusively on the micro-scale, often producing results that are 

difficult to interpret and that do not exploit the multi-scale information present in 

the brain networks. 

Given the importance of community structure in brain networks and their 

readily interpretable characteristics (Betzel, Medaglia, & Bassett, 2018), it might 

be tempting to conduct a mass-univariate analysis at the meso-scale, 

considering within- and between-community connectivity as the input features. 

Such an approach dramatically reduces the dimensionality of the data, which in 

turn decreases the burden of multiple comparisons correction. A community-

based approach also has the added benefit of not having to vectorize the 

connectivity matrix, as in an edge-based approach, which inevitably disrupts the 

innate structure in the data. However, summarizing hundreds or thousands of 

edges as one single number to represent the connection within or between brain 

communities can be problematic, especially for large communities such as the 

default mode network (Power et al., 2011), whose edges are spatially distributed 

across the anterior and posterior portions of the brain (Raichle, 2015). Stated 

another way, extracting the mean connectivity at the community level risks 

mixing disparate signals. 
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In this paper, we introduce Multi-Scale Network Regression (MSNR),  

which simultaneously incorporates information across multiple scales in order to 

reveal associations between high-dimensional connectomic data and phenotypes 

of interest. We first describe the MSNR model and introduce an algorithm to fit it. 

Next, we capitalize on one of the largest neurodevelopmental imaging cohorts, 

the Philadelphia Neurodevelopmental Cohort (PNC), to empirically test MSNR's 

ability in delineating brain connectivity patterns that are associated with a wide 

variety of phenotypes. Importantly, we conduct head-to-head comparisons 

between MSNR and common single-scale strategies (both edge- and 

community-based), and show that MSNR achieves a balance between prediction 

performance and interpretability by considering information at multiple network 

scales. 
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Statistical Methodology 

A STATISTICAL MODEL FOR MULTI-SCALE NETWORK REGRESSION  

Given ' subjects, let ÜN,… , Ü. ∈ à0×0 denote the symmetric adjacency 

matrices corresponding to their functional connectivity networks, where 3 is the 

number of nodes. For instance, Ü
ii
â

+
 could represent the Pearson correlation, a 

common measure of functional connectivity, between the mth and mäth nodes for 

the %th subject. Furthermore, we assume that the 3 nodes can be partitioned into 

ã distinct communities pN, … , på that are known a priori: ∪éeN
å

pé = {1,… , 3}, pé ∩

péâ ≠ ∅ if î ≠ îä. The notation m ∈ pé indicates that the mth node is in the îth 

community. If ã = 3, then the community structure is trivial, in the sense that 

each node belongs to its own community. Moreover, for each subject, ï 

covariates have been measured, so that *ñ = ó*ñ
ò
		*ñ

ô
	…		*

ñ

ï
ö
õ

∈ ℝ
ï is a covariate 

vector for the ñth subject, ñ = ò,… , ù. 

In what follows,  we consider the model 

Ü
ii
â

+
= Θiiâ +ü 	

2

†eN

°
+

†
∙ ¢ü 	

å

éeN

ü 	

å
â

éâeN

Γ
éé

â

†
1ói∈§•,i

â
∈§

•
âö
¶ + ß

ii
â

+
, % = 1,… , ', m, m

ä
= 1,… , 3, (1) 

Where ß
ii
â

+
 is a mean-zero noise term, and ß

ii
â

+
= ß

i
â
i

+
. Θ is a symmetric 3 × 3 

matrix that summarizes the mean connectivity, across all of the subjects, of each 

pair nodes, in the absence of covariates. Finally, for ` = 1,… , 4, Γ† is a 

symmetric ã × ã matrix that quantifies the association between the `th feature 

and the functional connectivity between each pair of communities. For instance, 
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a one-unit increase in °
+

†
 is associated with a Γ

éé
â

†
 increase in the mean 

functional connectivity between nodes in the îth and îäth communities. 

 We now define a 3 × ã matrix h	for which hié = 1(i∈§•), where 1(∙) 

denotes an indicator variable. Then (1) can be re-written as 

Ü
+
= Θ +ü 	

2

†eN

°
+

†
∙ (hΓ

†
h
B) + ß

+
, % = 1,… , '.		 (2)	 

In order to fit the model (2), we make two assumptions about the structures of the 

unknown parameter matrices Θ and ΓN, … , Γ2. 

 Üvv®"3q%8'	1:	Θ has low rank (Leonardi et al., 2013; K. Li, Guo, 

Nie, Li, & Liu, 2009; Smith et al., 2015). That is, Θ = ™™B where ™ is a 3 × $ 

matrix, for a small positive constant $. This means that the 3 nodes effectively 

reside in a reduced subspace of $ dimensions. The mean connectivity between 

any pair of nodes is simply given by their inner product in this low-dimensional 

subspace. 

 Üvv®"3q%8'	2: ΓN, … , Γ2 are sparse (Meunier, Lambiotte, & 

Bullmore, 2010; Newman, 2006; Xia et al., 2018). That is, most of their elements 

are exactly equal to zero. If Γ
éé

â

†
= 0, then the value of the `th feature is 

unassociated with the mean connectivity between nodes in the îth and îäth 

communities. We note that Assumption 1 is closely related to the random dot 

product graph model and related models (Durante & Dunson, 2018; Durante, 

Dunson, & Vogelstein, 2017; Fosdick & Hoff, 2015; Tang, Athreya, Sussman, 
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Lyzinski, & Priebe, 2017; Young & Scheinerman, 2007), whereas Assumption 2 

is a standard sparsity assumption for high-dimensional regression (Hastie, 

Tibshirani, & Friedman, 2008; Hastie, Tibshirani, Wainwright, Tibshirani, & 

Wainwright, 2015; Tibshirani, 1996). Under these two assumptions, a schematic 

of the model (2) can be seen in Figure 3-1.  

Model (2) is closely related to both the stochastic block model (D. S. Choi, 

Wolfe, & Airoldi, 2012) and the random dot product graph model (Young & 

Scheinerman, 2007). In particular, if Θ = 0, 4 = 1, and °+
N
= 1 for % = 1,… , ', then 

(2) reduces to a stochastic block model with known communities pN, … , på. And if 

Γ
N
= ⋯ = Γ

2
= 0 and Assumption 1 holds, then (2) reduces to a random dot 

product graph model. However, unlike those two models (2) explicitly allows for 

the mean of the adjacency matrix to be a function of covariates, and effectively 

incorporates both edge- and community-level network information. 

OPTIMIZATION PROBLEM 

 We now consider the task of fitting the model (2), under 

Assumptions 1 and 2. It is natural to consider the optimization problem 

⎩

⎨

⎧

ü	

.

+eN

ØÜ
+
− ∞Θ +ü	

2

†eN
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+

†
∙ (hΓ

†
h
B)±Ø
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K

+ ≤N9&'î(Θ) + ≤Kü 	
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⎭

⎬

⎫

	, (3) 

Where the notation ‖ ∙ ‖
R

K
 indicates the squared Frobenius norm of a 

matrix, i.e. ‖∑‖
R

K
= ∑ ∑ ∑

ii
â

K0

iâ

0

ieN
, and the notatiton ‖ ∙ ‖

�

	
 indicates the element-
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wise cardinality (or P� norm) of a matrix, i.e. ‖∑‖
�

	
= ∑ ∑ 1(S

∏∏â
π�)

0

iâeN

0

ieN
. In (3), ≤N 

and ≤K are non-negative tuning parameter values that control the rank of ∫ and 

the sparsity of ΓN = ⋯ = Γ
2, respectively. 

 Unfortunately, due to the presence of the rank and P� penalties, the 

optimization problem (3) is highly non-convex, and no efficient algorithms are 

available to solve it. Therefore, in what follows, we will consider an alternative to 

(3), which results from replacing the non-convex rank and P� penalties in (3) with 

their convex relaxations. This leads to the optimization problem 

minimize
º,	ΩÅ,…,Ωæ

øü¿Ü
+
− ¢Θ +ü°

+

†
∙ (hΓ

†
h
B)

2

†eN

¶¿

.

+eN
R

K

+ λN‖Θ‖∗ + λKü≥Γ
†
≥
N

2

†eN

√	. (4) 

In (4), the notation ‖ ∙ ‖
∗
 indicates the nuclear norm of a matrix, i.e. the sum of its 

singular values (Bien & Witten, 2016; Fazel, 2002; Recht, Fazel, & Parrilo, 2010). 

The nuclear norm is a convex surrogate for the rank of a matrix. The notation 

‖ ∙ ‖
N
 indicates the element-wise PN (or lasso) norm of a matrix, i.e. ‖∑‖

N
=

∑ ∑ ƒ∑iiâƒ
0

iâeN

0

ieN
; this is a convex relaxation of the P� norm (Hastie, 2015; Hastie et 

al., 2008; Tibshirani, 1996). In (4), the non-negative tuning parameters λN and λK 

encourage Θ	and 	ΓN, … , Γ2 to be low-rank and sparse, respectively.  

 Importantly, the optimization problem (4) is convex, and so fast 

algorithms are available to solve it for the global optimum. In the next section, we 

derive a block coordinate descent algorithm for solving (4). Simulation studies 
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indicated that MSNR behaved in the manner that was dependent on the signal-

to-noise ratio and the observation-to-feature ratio, particularly in its ability to 

model underlying connectivity patterns (see Supplementary Information). 

BLOCK COORDINATE DESCENT ALGORITHM TO SOLVE (4) 

 We now derive a block coordinate descent algorithm for solving (4) 

(Bien & Witten, 2016; Friedman, Hastie, Höfling, & Tibshirani, 2007; Hastie et al., 

2008; Tseng, 2001). Roughly speaking, we will cycle through the parameters 

Θ, 	Γ
1
= ⋯ = Γ

4
, and minimize the objective (4) with respect to each one in turn, 

holding all others fixed. Because the loss function is differentiable and the 

penalties are separable with respect to each block of parameters, this approach 

is guaranteed to yield the global optimum. The algorithm is as follows: 

1. Initialize a 3 × 3 matrix Θ∆, and ã × ã matrices 

Γ«
N
, … , Γ«

2
. 

2. Iterate until convergence: 

a. Update Θ by minimizing (4) with respect to Θ, 

holding Γ«
N
, … , Γ«

» fixed: 

Θ∆ ← øü¿Ü
+
− ¢∫ +ü°

+

†
∙ óhΓ«

†
h
B
ö

2

†eN

¶¿

.

+eN
R

K

+ λN‖Θ‖∗√.		 (5)	 

 

b. For ` = 1,… , 4, update Γ† by minimizing (4) 

with respect to Γ†, holding Θ∆ and Γ«
N
, … , Γ«

† N
, Γ«
†ÀN
, … , Γ«

2 fixed: 
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.		 (6)			 

 Both (5) and (6) are convex optimization problems, for which closed 

form solutions are available, as detailed in the following propositions. These 

propositions make use of the soft-thresholding operator, defined as 

t(&, Õ) = (|&| − Õ, 0)	v%y'(&), (7)	 

and applied element-wise to the elements of a matrix. 

Proposition 1. Define 

Aœ
–
≡ A

–
−üX–

”
∙ óWΓ«

”
W
’
ö

»

”eN

,	

 and let UDV’denote the singular value decomposition of 
N

Ÿ
∑ Aœ

–Ÿ

–eN : 

that is, 
N

Ÿ
∑ Aœ

–Ÿ

–eN = UDV
’, where U and V are p × p matrices, U’U = UU’ = V’V =

VV
’
= I, and D is a diagonal matrix with non-negative elements on the diagonal 

elements on the diagonal. Then, the solution to the optimization problem (5) is  

Θ∆ = US›D,
λ1

2n
fiV

T
,	

where the soft-thresholding operator defined in (7) is applied element-

wise. 

 Let p‡ ≡ |C‡|, the cardinality of the kth community; note that 

∑ p‡
„

‡eN = p. 
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 Proposition 2. Let W‰ denote the jth row of the matrix W. For f =

1,… , q, define  

AÁ‰‰â ≡ A‰‰â
–
− ΘÁ‰‰â − ∑ X–
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		.	

 Then, the solution to the optimization problem (6) is of the form 

ΓÏ‡‡â
”
≡ S ›yÈ

‡‡
â

”
,
λÏ
‡‡
â

”

2
fi.	

 Proofs of Propositions 1 and 2 are provided in the Appendix. 

CODE AVAILABILITY 

 An implementation of the algorithm described above is available in 

R at bitbucker.org/rshinohara/networkregression. 
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Methods 

PHILADELPHIA NEURODEVELOPMENTAL COHORT 

Resting-state functional magnetic resonance imaging (rs-fMRI) datasets 

were acquired as part of the Philadelphia Neurodevelopmental Cohort (PNC), a 

large community-based study of brain development (Satterthwaite et al., 2016, 

2014). In total, 1601 participants completed the cross-sectional neuroimaging 

protocol. Of these participants, 154 were excluded for meeting any of the 

following criteria: gross radiological abnormalities, history of medical problems 

that might affect brain function, history of inpatient psychiatric hospitalization, use 

of psychoactive medications at the time of data acquisition. Of the remaining 

1447 participants, 51 were excluded for low quality or incomplete FreeSurfer 

reconstruction of T1-weighted images. Of the remaining 1396 participants, 381 

were excluded for missing rs-fMRI, voxelwise coverage or excessive motion, 

which is defined as having an average framewise motion more than 0.20mm and 

more than 20 frames exhibiting over 0.25mm movement (using calculation from 

Jenkinson, Bannister, Brady, & Smith, 2002). These exclusions produced a final 

sample consisting of 1015 youths (mean age 15.78, SD = 3.34; 461 males and 

554 females).  

IMAGING ACQUISITION 

Structural and functional subject data were acquired on a 3T Siemens Tim 

Trio scanner with a 32-channel head coil (Erlangen, Germany), as previously 
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described (Satterthwaite et al., 2016, 2014). High-resolution structural images 

were acquired in order to facilitate alignment of individual subject images into a 

common space. Structural images were acquired using a magnetization-

prepared, rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequence 

(ÌT = 1810	"v; ÌÔ = 3.51	"v; 8™ = 180 × 240	""; resolution 0.9375 × 0.9375 ×

1	""). Approximately 6 minutes of task-free functional data were acquired for 

each subject using a blood oxygen level-dependent (BOLD-weighted) sequence 

(ÌT = 3000	"v, ÌÔ = 32	"v; 	8™ = 192 × 192	""; resolution 3	"" isotropic; 124 

volumes). Prior to scanning, in order to acclimatize subjects to the MRI 

environment and to help subjects learn to remain still during the actual scanning 

session, a mock scanning session was conducted using a decommissioned MRI 

scanner and head coil. Mock scanning was accompanied by acoustic recordings 

of the noise produced by gradient coils for each scanning pulse sequence. 

During these sessions, feedback regarding head movement was provided using 

the MoTrack motion tracking system (Psychology Software Tools, Inc, 

Sharpsburg, PA). Motion feedback was only given during the mock scanning 

session. In order to further minimize motion, prior to data acquisition subjects' 

heads were stabilized in the head coil using one foam pad over each ear and a 

third over the top of the head. During the resting-state scan, a fixation cross was 

displayed as images were acquired. Subjects were instructed to stay awake, 

keep their eyes open, fixate on the displayed crosshair, and remain still. 

STRUCTURAL PRE-PROCESSING 
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A study-specific template was generated from a sample of 120 PNC 

subjects balanced across sex, race, and age using the 

buildTemplateParallel procedure in ANTs (Avants, Tustison, Song, et al., 

2011). Study-specific tissue priors were created using a multi-atlas segmentation 

procedure (Wang et al., 2013). Next, each subject's high-resolution structural 

image was processed using the ANTs Cortical Thickness Pipeline (Tustison et 

al., 2014). Following bias field correction (Tustison et al., 2010), each structural 

image was diffeomorphically registered to the study-specific PNC template using 

the top-performing SyN deformation (Klein et al., 2009). Study-specific tissue 

priors were used to guide brain extraction and segmentation of the subject's 

structural image (Avants, Tustison, Wu, Cook, & Gee, 2011). 

FUNCTIONAL PRE-PROCESSING 

Task-free functional images were processed using the XCP Engine (Ciric 

et al., 2018, 2017a), which was configured to execute a top-performing pipeline 

for removal of motion-related variance (Ciric et al., 2018). Preprocessing steps 

included (1) correction for distortions induced by magnetic field inhomogeneities 

using FSL's FUGUE utility, (2) removal of the 4 initial volumes of each acquisition, 

(3) realignment of all volumes to a selected reference volume using mcflirt 

(Jenkinson et al., 2002) (4) removal of and interpolation over intensity outliers in 

each voxel's time series using AFNI's 3Ddespike utility, (5) demeaning and 

removal of any linear or quadratic trends, and (6) co-registration of functional 

data to the high-resolution structural image using boundary-based registration 
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(Greve & Fischl, 2009). Confounding signals in the data were modelled using a 

total of 36 parameters, including the 6 framewise estimates of motion, the mean 

signal extracted from eroded white matter and cerebrospinal fluid compartments, 

the mean extracted from the entire brain, the derivatives of each of these 9 

parameters, and quadratic terms of each of the 9 parameters and their 

derivatives. Both the BOLD-weighted time series and the artefactual model time 

series were temporally filtered using a first-order Butterworth filter with a 

passband between 0.01 and 0.08 Hz (Hallquist, Hwang, & Luna, 2013). 

NETWORK CONSTRUCTION 

 The functional connectivity between any pair of brain regions was 

operationalised as the Pearson correlation coefficient between the mean 

activation timeseries extracted from those regions. Connectomes were computed 

across all regions within a common parcellation with 264 nodes and 13 

communities (Power et al., 2011). We excluded 28 nodes that were not sorted 

into any community, therefore resulting in the final 3 = 236 and ã = 13 (Figure 

3-1a). The a priori community structure for this set of nodes was delineated using 

the Infomap algorithm (Rosvall & Bergstrom, 2008) and were replicated in an 

independent sample. This parcellation was selected for our analysis as it has 

been previously used for studying individual differences in brain connectivity, 

including those related to brain development (Gu et al., 2015; Satterthwaite et al., 

2013), sex differences (Satterthwaite et al., 2015), and in-scanner motion (Ciric 

et al., 2018). 
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CROSS-VALIDATION 

We first randomly selected 20% of the total sample (' = 1015) to serve as 

the left-out validation set (' = 202). We then performed five-fold cross validation 

on the remaining 80% of the sample (' = 813) in order to select the values of the  

tuning parameters ≤N	and ≤K for MSNR (James, Witten, Hastie, & Tibshirani, 

2013, Figure 3-2b). In each fold, the independent variables (°.×2) were centered 

to a mean of zero and scaled by each column's standard deviation. 

The prediction error used in cross-validation was the Frobenius norm of 

the difference between estimated and true connectivity matrices in the test set, 

‖Ü
+
− ÜÛ

+
‖
R

K

 (Figure 3-2c). We ensured the prediction error was sample size 

independent by using the average prediction error over all subjects in the test 

set. 

PERMUTATION PROCEDURE 

To estimate the distribution of  prediction error under the null hypothesis of 

no association between functional connectivity and phenotype, we permuted the 

rows of the covariate matrix °.×2. For each permutation, we tuned ≤N	and ≤K 

using cross-validation, and calculated the prediction error in the left-out validation 

set. The  3-value was defined to be  the proportion of prediction errors  among 

the 1,000 permuted datasets that are smaller than the prediction error on the 

observed data, 
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30VWXYZ[Z+\. =
∑ 1VÅÙV̅
N���
N

1000
, (8)	 

where #N, … , #N��� denote the prediction errors on the 1,000 permuted data 

sets, and #̅ denotes the prediction error on the original data. Here, 1(ı) is an 

indicator variable that equals 1 if the event Ü, and 0 otherwise. 

COMPARISON TO SINGLE-SCALE APPROACHES 

We compared the performance of MSNR to two single-scale network 

regression strategies, namely individual edge model (Grillon et al., 2013; Lewis et 

al., 2009) and community mean model (Betzel et al., 2014; King et al., 2018; Yan 

et al., 2019; Yu et al., 2019). These two approaches have been commonly used 

to study connectivity-phenotype relationships (Craddock et al., 2015; Varoquaux 

& Craddock, 2013) and differ primarily in terms of the scale of brain network 

examined (Figure 3-3). Details are as follows: 

Individual edge model. We vectorized the upper triangle of the adjacency 

matrix Ü+ for the %th subject, % = 1,… , ', in order to create a ' × 3(3 − 1)/2 matrix. 

For each of the 3(3 − 1)/2 columns of this matrix, we fit a linear regression to 

model that column using three covariates: age, sex, and in-scanner motion 

(Figure 3-3a). Specifically, we built a linear model for each edge using mgcv 

package in R, with the formula edge ~ age + sex + motion (Wood, 2017, 

Figure 3-3b). This included a penalization on roughness, and we estimated the 

penalty parameter by recasting the problem as a mixed effect model and 

estimating this via restricted maximum likelihood or REML (Wood, 2011; Wood, 
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Pya, & Säfken, 2016). We corrected the results for multiple comparisons using 

the false discovery rate (FDR, 4 < 0.05, Storey, 2002) and reshaped the 3(3 −

1)/2 columns to a 3 × 3 matrix for visualizing significant coefficients. For 

calculating out-of-sample prediction error, we used linear models fit for all edges. 

The prediction error was calculated in the same way as in MSNR. 

Community mean model. Community-based linear models were built with 

mean within- and between-community connectivity as the dependent variables. 

The within-community connectivity is defined as 

∑ Ü
iiâ
+	

i,iâ∈§•

|pé| × |pé − 1|
	 , (9)	 

where Ü
ii
â

+
 is the weighted edge strength between the node m and node mä both of 

which belong to the same community pé, for the %th subject.  The cardinality of 

the community assignment vector, |pî|, represents the number of nodes in the 

îth community. The between-community connectivity is defined as 

∑ Ü
ii
â

+	

i∈§•,i
â∈§

•â

|pé| × |péâ|
	 . (10)	 

Here, pé and péâ represent two different communities, and |pî| and ˜p
î
′˜ 

are the number of nodes in each community, respectively. 

By applying (9) and (10) to each subject, we created a ' × [
å(å N)

K
+ ã]	 

matrix. For each of the 
å(å N)

K
+ ã columns of this matric, we fit a linear model to 

predict that column using three covariates: age, sex, and in-scanner motion. 
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Similar to the edge-based model, we built a linear model for each edge using 

mgcv package in R, with the formula community ~ age + sex + motion 

(Wood, 2017) and roughness penalty estimation by REML (Wood, 2011; Wood et 

al., 2016, Figure 3-3b). We corrected the results for multiple comparisons using 

the false discovery rate (FDR, 4 < 0.05, Storey, 2002) and reshaped the 
å(å N)

K
+

ã columns to a ã × ã matrix for visualizing significant coefficients. For calculating 

out-of-sample prediction eorr, we used linear models fit for all communities. The 

prediction error was calculated in the same way as in MSNR. 
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Results 

MSNR SHOWS HIGH ACCURACY IN A LARGE DEVELOPMENTAL 

SAMPLE 

We applied MSNR to data from the Philadelphia Neurodevelopmental 

Cohort (PNC) (Satterthwaite et al., 2016, 2014) in order to uncover meaningful 

brain-phenotype relationships. In total, we studied ' = 1015 participants aged 8-

22, who completed resting state functional neuroimaging as part of the PNC. We 

constructed functional connectivity matrices from a commonly-used parcellation 

scheme ( 3 = 236 nodes) and community membership assignment ( ã = 13 

communities) (Power et al., 2011, Figure 3-2a). We first randomly selected 20% 

of the total sample as the left-out validation set (' = 202), with which we 

assessed the prediction performance of all subsequent models Figure 3-2b). 

The prediction performance was defined as the Frobenius norm of the difference 

between the observed and estimated adjacency matrices in the validation set 

(Figure 3-2c).  For this proof-of-concept empirical study, we examined the 

association of functional connectivity with age, sex, and in-scanner motion. On 

the remaining 80% of the observations, we selected tuning parameters, λN and 

λK, through five-fold cross-validation (Figure 3-2b). We iteratively refined the 

cross-validation grid (Figure 3-4a-c) in order to obtain the best possible tuning 

parameter values. Importantly, no boundary effect was observed in any of the 

iterations during successive grid searches, revealing a smooth convex landscape 

for the objective (Figure 3-4d). 
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We subsequently evaluated the model's out-of-sample prediction error on 

the 20% of observations that made up the left-out validation set. The prediction 

error on the validation set was comparable to the average error in the cross-

validation procedure (Figure 3-4e). In addition, we performed a permutation test 

to compare the model's prediction error to the distribution of prediction error 

under the null hypothesis of no association between brain networks and the 

predictors (Figure 3-4e), which we estimated by permuting the rows of the 

covariate data matrix. This procedure disrupted the linkage between functional 

connectivity and phenotypes, while preserving the covariance structure of the 

covariates. For each permutation, we repeated the process of selecting tuning 

parameter values by cross-validation, fitting an MSNR model on the training set, 

and calculating its prediction error on the validation set. Out of 1,000 

permutations, no out-of-sample prediction error was lower than that of the MSNR 

model built using the original data, indicating that the multivariate model had 

significantly better prediction performance (3 < 0.001). 

MSNR RECAPITULATES KNOWN INDIVIDUAL DIFFERENCES IN 

FUNCTIONAL CONNECTIVITY 

The connectivity-phenotype relationships are summarized in the matrices  

Γ
N, ΓK, and Γ˚ in the MSNR model. We counted the number of positive and 

negative coefficients within each estimated matrix; these represent, respectively, 

positive and negative associations between community membership and age, 

sex, and in-scanner motion (Figure 3-5). Consistent with the previous literature 
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(Satterthwaite et al., 2013), we found that as age increased, there were more 

within-community, rather than between-community connectivity, that 

strengthened over age. (Figure 3-5a). Conversely, as age increased, there were 

more between-community, rather than within-community connectivity, that 

weakened over age. This pattern suggests that functional brain networks tend to 

segregate during normative brain development. Replicating findings from a 

previous report which evaluated a different subsample of PNC data using mass-

univariate analyses (Satterthwaite et al., 2015), here we observed that stronger 

within-community connectivity, rather than between-community, was more  

representative of functional brain networks in males; whereas stronger between-

community connectivity, rather than within-community, was more representative 

of functional brain networks in females (Figure 3-5b). Finally, following on prior 

studies, we evaluated the degree to which the association between in-scanner 

motion and connectivity varies by inter-node distance, defined as the Euclidean 

distance between two spherical brain parcellations in the MNI space (Brett, 

Johnsrude, & Owen, 2002, Figure 3-5c).  As expected, the MSNR coefficients 

for in-scanner motion in relation to functional connectivity were negatively 

correlated with the distances between pairs of communities. In other words, 

when two brain regions are close together, the presence of in-scanner motion 

typically is associated with an increase in their connectivity. This is consistent 

with prior reports that in-scanner motion induces a distance-dependent bias in 

estimation of functional connectivity (Ciric et al., 2017b; Satterthwaite et al., 

2012). 
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COMPARISON WITH TYPICAL MASS-UNIVARIATE SINGLE-SCALE 

STRATEGIES 

Next, we compared MSNR to common single-scale mass-univariate 

approaches that make use of linear models at the edge-level or the community-

level (Figure 3-6). We computed the out-of-sample performances of the two 

single-scale approaches  using the left-out validation set. The prediction error of 

the community-based model on the left-out validation set was poor, whereas the 

prediction error of the edge-based model was similar to that of MSNR (Figure 3-

6a). Given that not all models built in the mass-univariate analyses were 

significant, our estimation of prediction error for edge- and community-based 

models were likely to be overly optimistic since we used all fitted models for the 

purpose of out-of-sample prediction.  

Next, we examined the interpretability of coefficients obtained in each 

model after applying FDR correction to control for multiple comparisons in single-

scale approaches (Storey, 2002). We found that while the edge-based model and 

MSNR achieved similar out-of-sample prediction, coefficients estimated in MSNR 

(Figure 3-6b) were more interpretable than those from edge-based models 

(Figure 3-6c). The number of coefficients in edge-based models for each 

covariate exceeded that of MSNR by three orders of magnitude. On the other 

hand, at the expense of low out-of-sample prediction performance, community-

based models exhibited similar interpretability as MSNR (Figure 3-6d). 
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Discussion 

In the past decade, the neuroscience community has shifted away from 

studying localized regions of the brain towards studying inter-regional 

relationships, or connectivity (Bassett & Sporns, 2017; Rubinov & Sporns, 2009). 

The association of connectivity network architecture with learning and memory 

(Solomon et al., 2017), decision-making (Neubert, Mars, Sallet, & Rushworth, 

2015), development and aging throughout the lifespan (Baum et al., 2016; Betzel 

et al., 2014; Fair et al., 2007; Power et al., 2010), and neuropsychiatric disorders 

(Bassett et al., 2018; van den Heuvel & Fornito, 2014; Xia et al., 2018) is of 

profound interest to the burgeoning network neuroscience literature, and can be 

studied on the scale of individual edges (micro-scale), communities (meso-

scale), or the network as a whole (macro-scale) (Betzel & Bassett, 2017). Most 

existing approaches for analyzing networks, such as mass-univariate analyses, 

operate on a single scale (Betzel et al., 2014; Grillon et al., 2013; King et al., 

2018; Lewis et al., 2009; Yan et al., 2019; Yu et al., 2019).  

In recent years, interest has centered on multi-scale modeling approaches 

(Breakspear & Stam, 2005; Jenatton et al., 2012; Y. Li et al., 2013, 2011), which 

aim to integrate information across homogeneous regions in the brain while still 

modeling data on finer scales. These methods have mainly focused on the 

problem of smoothing without prior knowledge of anatomical or functional 

parcellations of the brain, and have been adapted for both classification (H. Choi 

& Baraniuk, 2001; Romberg, Hyeokho Choi, Baraniuk, & Kingbury, 2000) and 
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regression (Y. Li et al., 2011) as well as in longitudinal settings (Y. Li et al., 

2013).  

Building upon this recent work, we developed multi-scale network 

regression (MSNR) to study relationships between high-dimensional brain 

networks and variables of interest. Specifically, our proposal models the 

adjacency matrix for each observation by integrating both micro- and meso-scale 

information. By applying a low-rank assumption to the mean functional 

connectivity network (Leonardi et al., 2013; K. Li et al., 2009; Smith et al., 2015) 

and a sparsity assumption to the community-level network (Crossley et al., 2013; 

Meunier et al., 2010; Newman, 2006), we substantially decrease the number of 

parameters and encourage interpretable brain-phenotype relationships.  

Leveraging a large neuroimaging dataset of over one thousand youths, we 

demonstrated that MSNR recapitulates known individual differences in functional 

connectivity, including those related to development (Satterthwaite et al., 2013), 

sex differences (Satterthwaite et al., 2015), and in-scanner motion (Satterthwaite 

et al., 2012). Additionally, compared to common single-scale mass-univariate 

regression methods, MSNR achieved a balance between prediction performance 

and model complexity, with improved interpretability. All told, MSNR represents a 

new method for identifying individual differences in high-dimensional brain 

networks. 
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Several limitations of the MSNR approach  should be noted. First, “scale” 

does not have a single definition. In fact, as pointed out by (Betzel & Bassett, 

2017), scale can represent at least three different entities depending on the 

context: multi-scale topological structure, multi-scale temporal structure, and 

multi-scale spatial structure. In MSNR, we only considered multi-scale topological 

structure. Incorporating additional information from multiple scales beyond 

network topology will likely generate more nuanced and richer models for brain 

networks. Second, while we carefully conducted a permutation test to assess the 

statistical significance of the entire model, we did not provide an inferential 

procedure for determining the association between brain networks and each 

variable of interest. In particular, MSNR makes no claim of statistical significance 

for the coefficients in the matrices ΓN, … , Γ», which describe the community-level 

relationships with the covariates. Due to the inclusion of penalty terms in the 

MSNR framework, making such inferential statements is a challenging open 

problem. 

In summary, by explicitly modeling variability at the edge and community 

levels, we developed a multi-scale network regression approach that achieved a 

balance between the trade-off of prediction and model complexity, potentially 

offering enhanced interpretability. Empirically, we demonstrated its advantages 

over alternative methods and illustrated its ability to uncover meaningful signals 

in a large neuroimaging dataset. Approaches such as MSNR have the potential 
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to yield novel insights into brain-behavior relationships that incorporate realistic 

multi-scale network architecture. 
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Supplementary Information 

SIMULATION STUDY 

We used the Brain Connectivity Toolbox (Rubinov & Sporns, 2009) to 

create random modular small-world adjacency matrices of dimension 3 × 3 with 

specified community assignments (ã = 4) representing the edge-level 

information. There adjacency matrices were then used as the ground truth mean 

connectivity in stimulated data, Θ�. We also created sparse ã × ã matrices 

Γ�
N
, … , Γ

�

2
, representing ground truth community-level brain-phenotype 

relationships. We constructed the ground truth adjacency matrix for the %th 

observation as Ü�
+
= Θ� + !∑ °

+

†
∙ (hΓ

�

†
h
B2

†eN
), where the elements °

+

†
were 

independently generated from a normal distribution, scaled by a factor of ! to 

represent the effect size. Then, we generated the observed connectivity matrix 

Ü
+
= Ü�

+
+ ß+ for a noise matrix ß+. 

We created synthetic data with varying characteristics, such as different 

numbers of nodes (3 ∈ {32, 64, 128}), sample sizes (' ∈ {50, 100, 150}), effect 

sizes (! ∈ {0, 0.1, 0.5, 1}), and noise levels (ß	 ∈ {0, 0.1, 0.5, 1}), for a total of 108 

combinations of these parameters. For each combination, we generated three 

equally-size sets, for training, testing, and validation. Tuning parameters λN and  

λK were selected using the training and testing sets, and the out-of-sample 

prediction error was computed on the validation set. 
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We found that MSNR achieved the lowest out-of-sample prediction error 

when the ratio between the number of subjects and the number of nodes was the 

largest (' = 150, 3 = 32) (Supplementary Figure 1). In addition, the amount of 

noise impacted MSNR's prediction performance in a graded fashion, with a three-

fold difference between the lowest noise level (0.1) and the highest noise level 

(1). In contrast, MSNR was less sensitive to the varying levels of !, which 

represents the effect size of the community level relationship of the covariates. 

These results were to be expected. 

 

Proof of Proposition 1. 

Given the definition of Ü̧+, (5) reduces to the optimization problem 

minimize
Θ

˝ü≥Θ − Ü̧+≥
R

K

+ ≤N‖Θ‖∗

.

+eN

˛ . (11) 

We notice that 

ü

≥Θ− Ü̧
+
≥
R

K

= ' ˇ‖Θ‖R
K
− 2q9&7# !ΘˇüÜ̧

+

'

.

+eN

"#"+ p

= ' $Θ −ü Ü̧
+

'

.

+eN

$
R

K

+ p
ä
,

.

+eN

 

where p and pä are not a function of Θ. Therefore, (11) can be re-written 

as 

minimize
Θ

˝$Θ −ü Ü̧
+

'

.

+eN

$
R

K

+ ≤N‖Θ‖∗˛ . (12) 

The result follows directly from Lemma 1 of Mazumder et al. (2010).  
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Proof of Proposition 2. 

We wish to solve the problem 

minimize
Ω%

⎩

⎨

⎧

üØÜ
+
− ∞Θ∆ + ü °

+

†
â

∙ óhΓ«
†
â

h
B
ö

†âπ†

+ °
+

†
∙ (hΓ

†
h
B)±Ø

R

K

.

+eN

+ ≤K≥Γ
†
≥
N

⎭

⎬

⎫

. 

Given the definition of Ü̅+, this amounts to solving 

minimize
Ω%

˝ü≥Ü̅
+
− °

+

†
∙ (hΓ

†
h
B)≥

R

K

.

+eN

+ ≤K≥Γ
†≥
N
˛ .

	

		 (13) 

So, for î = 1,… , ã and îä = 1,… , ã, we must solve the problem 

minimize

Ω
••â

%
&üü ü 'Ü̅

ii
â

+
− °

+

†
Γ
éé

â

† (
K

+ ≤KƒΓééâ
†
ƒ

iâ∈§
•â

i∈§•

.

+eN

) .		 (14) 

And note that 
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where p is not a function of Γ†. So the problem of interest amounts to 

minimizing 
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Figures 

Figure 3-1 

 

 

 

 

 

 

Figure 3-1 A schematic for Multi-Scale Network Regression. Under model 

(2), Ü+ is the adjacency matrix for the %th subject, Θ is a low-rank matrix 

representing the mean connectivity across all subjects, ΓN, . . . , Γ2 are sparse 

matrices representing the community-level connectivity associated with the 

covariates ó°+
N
, … , °

+

2
ö, and ß+ is the noise. 
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Figure 3-2 

 

 

 

Figure 3-2: A schematic for MSNR model training and evaluation. a) MSNR 

is designed to study the brain connectivity-phenotype relationship by taking into 

account both edge- and community-level information. The model takes in a 



 

 
157 

'	 × 	3	 × 	3 matrix, where ' is the number of subjects and where 3 is the number 

of nodes in each symmetric adjacency matrix. The nodes belong to ã 

communities, determined a priori. b) 20% ('	 = 	202) of the total sample ('	 =

	1, 015) were randomly selected as the left-out validation data. We conducted 

five-fold cross-validation to select the values of the tuning parameters ≤N and ≤K, 

which were applied to the nuclear norm penalty on the mean connectivity matrix 

(Θ) and the PN norm of the community-level connectivity-covariate relationship 

matrices (ΓN, . . . , Γ2), respectively. c) The model was then trained using the tuning 

parameters determined in b) on the 80% (' = 813) of the total data not in the left-

out validation set. Out-of-sample prediction error was then calculated as the 

Frobenius norm of the difference between the known and estimated connectivity 

matrices on the validation set. d) We also evaluated the final model through a 

permutation procedure, where we broke the linkage between brain connectivity 

and covariate data to generate a null distribution of out-of-sample prediction 

error.  
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Figure 3-3 

 

 

Figure 3-3: Benchmarking MSNR against common single-scale approaches. 

a) On the PNC data, we considered prediction of out-of-sample connectivity 

matrices from age, sex, and in-scanner motion. Specifically, input network data 

were '	 × 	3	 × 	3 connectivity matrices of ' subjects with 3 nodes sorted a priori 

into ã communities. Additionally, covariate data were a '	 × 	4 matrix of 4 

measurements, with each column centered with zero mean and scaled by its 

standard deviation. b) Specifically, we compared MSNR to two common network 

analysis approaches that only consider information present on a single scale. 

Linear models were fit for each edge or community connectivity for the individual 

edge and community mean model, respectively.  
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Figure 3-4 
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Figure 3-4 Tuning parameter selection and model evaluation of MSNR in a 

real-world large neuroimaging dataset. a) We used five-fold cross-validation to 

estimate the test prediction error associated with various values of ≤N and ≤K. b) 

After the initial search, we conducted another search on a finer scale, focusing 

on the range of ≤N and ≤K indicated by the dashed-line box. c) The optimal tuning 

parameter values were found to be ≤N = 5.76 and ≤K = 135. No boundary effect 

was observed in the grid search, revealing a smooth convex landscape for the 

objective, also visualized in d), with warmer color indicating lower prediction 

error. e)  The permutation procedure indicated that MSNR fit to the original data 

significantly outperformed MSNR fit to permuted data, with an out-of-sample 

prediction error about six standard deviations below the mean of the null 

distribution (3 < 0.001). 
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Figure 3-5 

 

 

Figure 3-5: MSNR describes meaningful individual differences in brain 

connectivity. a) More within-community, rather than between-community, 

connectivity strengthened as the age increased. Conversely, more between-

community, rather than within-community, connectivity weakened over age. b) 

Stronger within-community than between-community connectivity was more 

representative of male functional brain networks, whereas stronger between-

community than within-community connectivity was more representative of 

female functional brain networks. c) Coefficient for in-scanner motion was 

negatively correlated with the average Euclidean distance between communities 

(3	 < 	0.001).  
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Figure 3-6 

 

 

Figure 3-6: MSNR achieves a balance between out-of-sample prediction 

performance and model interpretability compared to common single-scale 

mass-univariate approaches. a) We compared out-of-sample prediction 

performance of MSNR to edge- and community-based single-scale approaches. 
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The community-based approach performed poorly, while the edge-based 

approach and MSNR had similar out-of-sample prediction error. All models fitted 

in mass-univariate approaches were used to calculate prediction error. b) MSNR 

coefficients in ΓN, ΓK, Γ˚, correspond to age, sex, and in-scanner motion, 

respectively. Warm colors indicate increased connectivity and cold colors 

indicate decreased connectivity as the covariate increased. White color indicates 

zero values. Results from single-scale models were visualized in c) for edge-

based and in d) for community-based approaches. Multiple comparisons were 

corrected using FDR.  
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Figure 3-7 

 

Supplementary Figure 1: Performance of MSNR in a simulation study. We 

simulated data with varying numbers of observations (') and nodes (3), effect 

size (!) of ΓN, . . . Γ2, and noise levels (*). As expected, the performance of MSNR 

improved as the ratio of ' to 3 increased, and as the signal-to-noise ratio 

increased. In contrast, MSNR was less sensitive to the varying levels of	!, which 

represents the effect size of the community level relationship of the covariates. 
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General Discussion 
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Synthesis of results and overall discussion 

The marked level of co-morbidity across psychiatric diagnoses and 

heterogeneity within individual diagnostic categories suggest that current 

symptomology-based diagnostic criteria do not “carve nature at its 

joints.”(Cuthbert & Insel, 2010; B. T. R. Insel & Cuthbert, 2015) Brain 

reconfiguration during adolescence is a complex neurodevelopmental process, 

deviations from which may underlie many mental illnesses that arise in young 

adulthood (Bassett, Xia, & Satterthwaite, 2018; T. R. Insel, 2014). Circuit-level 

abnormalities, theorized as a result of brain network misconfiguration during 

development, do not neatly respect clinical diagnostic boundaries, suggesting 

common mechanisms that cut across clinically diagnosed psychiatric disorders 

(Kapur, Phillips, & Insel, 2012). However, a fundamental understanding of how 

specific deviations from the normal remodeling in the developing brain are 

associated with a diverse range of psychiatric symptoms has remained elusive.  

 In chapter 2, we delineated linked dimensions of psychopathology that 

were highly associated with complex patterns of functional brain connectivity. 

Specifically, we leveraged a large cohort of youth as part of the Philadelphia 

Neurodevelopmental Cohort (PNC), who have completed functional MRI imaging 

and comprehensive psychiatric symptom evaluation (Calkins et al., 2015; 

Satterthwaite et al., 2016). Explicitly agnostic to any specific diagnosis, we 

applied sparse Canonical Correlation Analysis (Witten, Tibshirani, & Hastie, 
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2009), an unsupervised learning method, to extract latent representations of 

symptom-connectivity relationships in a multivariate fashion. As a result, we 

discovered four linked dimensions of psychopathology and functional brain 

connectivity patterns – mood, psychosis, fear, and externalizing behavior. These 

brain-guided psychopathological dimensions crossed traditional categorical 

boundaries, while concurring with clinical experience. Each linked dimension 

exhibited unique connectivity patterns; however, across all psychopathology, loss 

of normative segregation between the default mode and executive networks 

emerged as a common feature of connectivity dysfunction. Moreover, significant 

development effect was present for mood and psychosis dimensions, and sex 

differences were present for dimensions of mood and fear. 

In chapter 3, we built upon the momentum in the neuroscience community 

of investigating complex functional connectivity patterns that are associated with 

a wide range of measurements, including psychopathology that we examined in 

the previous chapter. Specifically, we recognized both the intense need and 

relative deficiency in proper methods to study brain-phenotype relationships, 

especially in high-dimensional brain networks, where number of features often far 

exceeds the number of observations available. To this end, we designed, 

implemented, and deployed a new penalized multivariate analytical tool to study 

brain-phenotype relationship based on a multi-scale perspective of brain 

networks, which we call Multi-Scale Network Regression (MSNR). In particular, 

compared to common single-scale networks that only consider the edge or the 
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community level information of networks alone, MSNR achieved a balance 

between out-of-sample prediction performance and model interpretability. To do 

this, MSNR imposed a low rank and a sparse structure on the edge and 

community features, respectively. In an empirical study where we deployed 

MSNR to the PNC dataset, MSNR recapitulated known multivariate relationships 

between functional brain networks and age, sex, as well as in-scanner motion.  

In sum, this dissertation uncovered latent representations of 

psychopathological dimensions that are linked to common and dissociable 

connectivity patterns, which cut across existing diagnostic categories. In addition, 

we extended the approach to incorporate information present at multiple scales 

of brain networks that can be used to model a variety of phenotype 

measurements. By considering more realistic network architecture, the new 

method, named Multi-Scale Network Regression, could yield novel insights to 

brain-phenotype relationships with improved generalizability and interpretability. 

Future directions 

In the preceding chapters, leveraging a large neuroimaging dataset of 

youth and recent advance in machine learning, we provided evidence of common 

and dissociable brain connectivity patterns that are correlated with dimensions of 

psychopathology across diagnostic criteria, and offered a new statistical learning 

tool to investigate multivariate connectivity patterns with diverse range of 
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measurement, beyond psychopathology, in a generalizable and interpretable 

fashion.  However, there are a few limitations in both studies that would restrict 

the potential impact of the findings and tools, but at the same time offer exciting 

opportunities for follow up investigations.  

In chapter 2, using sparse Canonical Correlation Analysis and functional 

brain networks of nearly 1,000 youth, we demonstrated that complex psychiatric 

symptoms are associated with specific patterns of abnormal connectivity during 

brain development. Although this study benefited from a large sample, advanced 

multivariate methods, and replication of results in a left-out-sample, several 

limitations should be noted. First, this approach of linking symptoms across 

diagnostic categories to aberrations in functional connectivity is limited by the 

item-level clinical data used. In particular, while we were agnostic to subjects’ 

exact diagnosis, the individual symptoms were from a structured clinical 

interview, legacy from categorical conceptualization of psychopathology (Calkins 

et al., 2015). Second, the generalizability of the current is impaired by the fact we 

could not use a truly independent dataset to validate our findings (James, Witten, 

Hastie, & Tibshirani, 2013). The use of a left-out one-third of the total data was a 

reasonable, but far from perfect, proxy to independent data acquired in a different 

setting. Third, the cross-sectional nature of the data further limited our ability to 

answer question how deviations from normative process of brain development 

underlie vulnerability to psychopathology. Finally, functional connectivity was only 

a small set of the richness present in the PNC dataset (Satterthwaite et al., 
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2016). Inevitably, we were only able to capture a small set of variation and 

potential signals pertaining to individual differences in their biology.  

Given these limitations of the study in chapter 2, future follow up studies 

should focus on: 1) Incorporating additional datatypes including digital 

phenotyping and genomics to capture different sources of important biological 

heterogeneity (T. R. Insel, 2017); 2) harmonizing datasets across clinical and 

imaging methodologies so that findings in this study could be validated in a truly 

independent dataset acquired in different settings (Fortin et al., 2018, 2017; Yu et 

al., 2018); 3) taking advance of the longitudinal component of the PNC to more 

robustly test how individual development of their brain associate with their 

psychiatric and behavioral changes (Satterthwaite et al., 2016); 4) incorporating 

multi-modal imaging data, beyond functional connectivity, to examine dimensions 

of structural as well as function-structure coupling that are associated with 

psychopathology in the developing brain. 

In chapter 3, we proposed a new tool to extract brain-phenotype 

relationship in high-dimensional connectomics. By integrating information present 

on multiple levels of brain networks, we designed a multi-scale approach, MSNR, 

to study complex connectivity patterns underlying phenotype-of-interests. With its 

ability to achieve a balance between out-of-sample prediction and model 

interpretability, this multivariate analysis tool has the potential to yield novel 

insights into brain-phenotype associations. Several limitations should be noted. 
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First, the current only addressed the scale in a narrow sense. Specifically, here 

scale referred to the topological scale of brain networks under investigation, 

including microscale edges, mesoscale community structure, and macroscale 

global summary statistics. However, scale of the network could also include 

temporal scale and spatial structures, not just limited to topology (Bassett & 

Siebenhühner, 2013; Betzel & Bassett, 2017). Second, the ability to make 

inference on the resulting model from MSNR is limited to the multivariate patterns 

associated with all covariates included in the model. Due to low rank and sparsity 

constraints present, the current study did not address the potentially more useful 

question of how one would make inference on one individual variable tested in 

the model.  

Given these limitations of the study in chapter 3, future follow up study 

should focus on: 1) extending MSNR to incorporate information present on other 

definitions of scales, such as time-varying dynamic networks and spatial 

networks that acknowledge unique brain anatomy. 2) implementing a practical 

way to test the statistical significance of each of the community-level coefficients, 

namely, ΓN …Γ2. To the potential end-users of MSNR in the broad neuroscience 

community, this tool would be much more useful if one could make inference on 

one variable in the context of multivariate analysis. 

Conclusions 
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In summary, this body of work fits into the broad context of computational 

psychiatry, where there is intense interest in the quest for brain-based 

biomarkers for psychopathology to overcome the barriers of heterogeneity and 

co-morbidity in current categorical diagnostic framework. Integrating recent 

advances in multiple disciplines, across machine learning, network science, 

developmental neuroscience, and psychiatry, this work delineated common and 

dissociable functional brain connectivity patterns that are linked to dimensions of 

psychopathology across clinical boundaries. We also offered a new tool to 

extend such multivariate method to extract brain-phenotype relationships beyond 

psychopathology to a wide range of measurements. Going forward, marrying the 

appropriate hammer to clinically critical questions would be the key to evaluating 

the suitability of these brain-derived dimensions of psychopathology for charting 

developmental trajectories and prediction of clinical outcome. 
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Appendix  

 

A Figure Gallery 
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Appendix 

 

One of my passions in science is the communication of complex data through 

appealing visualization. In addition to the figures in Chapter 2 and 3 that are part of my 

first-author work, I also contributed visually to various other projects throughout my 

graduate work. Below is a select collection of the illustrations I helped create. 
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Appendix Figure 1 

 

 

 

Published as the Graphic Abstract in Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F., 

Moore, T. M., Shinohara, R. T., Kahn, A.E., Vandekar, S.N., Rupert. P.E., Quarmley, M., 

Cook, P.A., Elliott, M.A., Ruparel, K., Gur, R.E., Gur, R.C., Bassett, D.S., Satterthwaite, 

T. D. (2017). Modular Segregation of Structural Brain Networks Supports the 

Development of Executive Function in Youth. Current Biology, 27(11), 1561-1572.e8. 

 

 



 

 
190 

Appendix Figure 2 

 

 

 

Published as Figure 1 in Satterthwaite, T. D., Xia., C.H., Bassett, D.S.,  (2018). 

Personalized Neuroscience: Common and Individual-Specific Features in Functional 

Brain Networks. Neuron, 98, 243-245 
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Appendix Figure 3 

 

 

 

 

 

 

 

Published as Figure 3 in Nassar, R., Kaczkurkin, A.N.,  Xia, C.H., Sotiras, A., 

Pehlivanova, M., Moore, T.M., Garcia de la Garza, A., Roalf, D.R., Rosen, A.F.G., Lorch, 

S.A., Ruparel, K., Shinohara, R.T., Davatzikos, C., Gur, R.C., Gur, R.E., Satterthwaite, 

T.D.  (2019). Gestational age is dimensionally associated with structural brain network 

abnormalities across development. Cerebal Cortex, 98(5), 2102-2114 

  



 

 
192 

Appendix Figure 4 

 

 

 

 

 

Published as Figure 1 in Wang, H.T., Smallwood, J., Mourao-Miranda, J., Xia, C.H., 

Satterthwaite, T.D., Bassett, D.S., Bzdok, D. (2019). Finding the needle in high-

dimensional haystack: a tutorial on canonical correlation analysis. arXiv:1812.02598 
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Appendix Figure 5 

 

 

 

 

 

Prepared originally for Roalf, D.R., Garcia de la Garza, A., Rosen, A., Calkins, M.E., 

Moore, T.M., Quarmley, M., Ruparel, Ko., Xia, C.H., Rupert, P.E., Satterthwaite, T.D., 

Shinohara, R.T., Elliott, M.A., Gur, R.C., Gur, R.E. (2019) Alterations in white matter 

microstructure in individuals at persistent risk for psychosis. Molecular Psychiatry 
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Appendix Figure 6 

 

 

 

 

 

 

Prepared originally for a now funded R01 grant by Desmond Oathes, Danielle Bassett, 

and Ted Satterthwaite, named “network control and functional context: mechanisms for 

TMS response”. 
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