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The unprecedented processing demand, posed by the explosion of big data, challenges researchers to 
design efficient and adaptive machine learning algorithms that do not require persistent retraining and 
avoid learning redundant information. Inspired from learning techniques of intelligent biological agents, 
identifying transferable knowledge across learning problems has been a significant research focus to 
improve 

machine learning algorithms. In this thesis, we address the challenges of knowledge transfer through 
embedding spaces that capture and store hierarchical knowledge. 

In the first part of the thesis, we focus on the problem of cross-domain knowledge transfer. We first 
address zero-shot image classification, where the goal is to identify images from unseen classes using 
semantic descriptions of these classes. We train two coupled dictionaries which align visual and 
semantic domains via an intermediate embedding space. We then extend this idea by training deep 
networks that match data distributions of two visual domains in a shared cross-domain embedding 
space. Our approach addresses both semi-supervised and unsupervised domain adaptation settings. 

In the second part of the thesis, we investigate the problem of cross-task knowledge transfer. Here, the 
goal is to identify relations and similarities of multiple machine learning tasks to improve performance 
across the tasks. We first address the problem of zero-shot learning in a lifelong machine learning setting, 
where the goal is to learn tasks with no data using high-level task descriptions. Our idea is to relate high-
level task descriptors to the optimal task parameters through an embedding space. We then develop a 
method to overcome the problem of catastrophic forgetting within continual learning setting of deep 
neural networks by enforcing the tasks to share the same distribution in the embedding space. We further 
demonstrate that our model can address the challenges of domain adaptation in the continual learning 
setting. 

Finally, we consider the problem of cross-agent knowledge transfer in the third part of the thesis. We 
demonstrate that multiple lifelong machine learning agents can collaborate to increase individual 
performance by sharing learned knowledge in an embedding space without sharing private data through a 
shared embedding space. 

We demonstrate that despite major differences, problems within the above learning scenarios can be 
tackled through learning an intermediate embedding space that allows transferring knowledge effectively. 
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ABSTRACT

LEARNING TRANSFERABLE KNOWLEDGE THROUGH EMBEDDING SPACES

Mohammad Rostami

Eric R. Eaton

Daniel D. Lee

The unprecedented processing demand, posed by the explosion of big data, challenges researchers to

design efficient and adaptive machine learning algorithms that do not require persistent retraining

and avoid learning redundant information. Inspired from learning techniques of intelligent biological

agents, identifying transferable knowledge across learning problems has been a significant research

focus to improve machine learning algorithms. In this thesis, we address the challenges of knowledge

transfer through embedding spaces that capture and store hierarchical knowledge.

In the first part of the thesis, we focus on the problem of cross-domain knowledge transfer. We first

address zero-shot image classification, where the goal is to identify images from unseen classes using

semantic descriptions of these classes. We train two coupled dictionaries which align visual and

semantic domains via an intermediate embedding space. We then extend this idea by training deep

networks that match data distributions of two visual domains in a shared cross-domain embedding

space. Our approach addresses both semi-supervised and unsupervised domain adaptation settings.

In the second part of the thesis, we investigate the problem of cross-task knowledge transfer. Here, the

goal is to identify relations and similarities of multiple machine learning tasks to improve performance

across the tasks. We first address the problem of zero-shot learning in a lifelong machine learning

setting, where the goal is to learn tasks with no data using high-level task descriptions. Our idea is to

relate high-level task descriptors to the optimal task parameters through an embedding space. We

then develop a method to overcome the problem of catastrophic forgetting within continual learning

setting of deep neural networks by enforcing the tasks to share the same distribution in the embedding

space. We further demonstrate that our model can address the challenges of domain adaptation in the

vi



continual learning setting.

Finally, we consider the problem of cross-agent knowledge transfer in the third part of the thesis. We

demonstrate that multiple lifelong machine learning agents can collaborate to increase individual

performance by sharing learned knowledge using an embedding space in a fully distributed learning

setting.

We demonstrate that despite major differences, problems within the above learning scenarios can be

tackled through learning an intermediate embedding space.
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Chapter 1 : Introduction

The emergence of data-driven industries, high-performance computing technologies, the Internet of

Things (IoT), and crowdsourcing platforms has led to the unprecedented deployment of Machine

Learning (ML) algorithms and techniques in a broad range of applications. These applications

include problems within computer vision, natural language processing, robotics, complex network

science, and decision-making, among many others. Despite the diversity of these applications, the

common goal for practical purposes is to develop algorithms and techniques that can mimic humans

and replace or augment them in tasks at which humans are slow, inefficient, or inaccurate.

Some of the current ML algorithms have reached human-level performance, readily are used in

practice, and their impact on the economy can be observed. In the consumer market, we can see that

commercial personal assistant robots are available to purchase, the first commercial drone delivery

service kicked off recently, autonomous vehicles are being tested at the moment, and even some

ML-based medical diagnosis algorithms are as good as trained specialists. Progress in ML and

Artificial Intelligence (AI) is not limited to handful of examples. In the stock market, we can see

that nine of the ten largest companies by market capital are companies that heavily invest in and

use ML [2]. In the labor market, a study predicts that if the current trend continues for another

decade, 30 percent of work activities in sixty percent of current occupations will be automated by

the year 2030 [3]. It is not easy to judge how accurate this or other similar predictions are, but there

are clear signs that demonstrate even the general public is concerned. For example, one key issue

in presidential campaigns is addressing the potential socioeconomical consequences of the rapid

changes that are going to happen to the labor force as a result of AI and ML advancement [4]. All

the above demonstrates that the importance of AI and ML has gone far beyond just a research area

and many unexplored aspects need to be addressed by people outside the AI academic community.

Unsurprisingly, research interest in ML has gained huge momentum in academic circles recently as

well, partially as the result of commercial successes of ML algorithms. For example, the number

of papers that are submitted to main AI conferences has tripled over just the past five years [5] and
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attendance at the major AI and ML conferences has grown to unprecedented numbers. However,

despite their dramatic progress, current ML algorithms still need significant improvement to replace

humans in many applications; machine learning is still a fertile ground for academic research. A

major deficiency of ML is that current state-of-the-art ML algorithms depend on plentiful and

high-quality datasets to train ML models. Generating such datasets has been challenging until quite

recently when crowdsourcing platforms such as Amazon Mechanical Turk (AMT) were developed.

Since then, data labeling has become a business of its own. Although data labeling has been

resolved for common applications, generating high quality labeled datasets is still time-consuming

and potentially infeasible for many more specific applications [6]. Even if a model can be learned

using a high quality labeled training dataset, the data distribution may change over time. Drifts in data

distributions will result in distribution discrepancy for the testing data samples, leading to poor model

generalization and the need to continually retrain the model. Despite considerable advancement of

computing technologies, since ML models such as deep neural networks are becoming consistently

more complex and more challenging to train, continual model training is not feasible given the

current computational power resources. For these reasons, it is important to develop algorithms that

can learn selectively to use computational resources efficiently, reuse previously learned knowledge

for efficient learning, and avoid redundant learning.

Further improvement seems possible because, in contrast to current ML methods, humans are able to

learn much more efficiently. Humans can learn some tasks from only a few examples, generalize

their knowledge to conditions that have not been experienced before, and continuously adapt and

update their skills to perform a wide range of tasks and problems. This seems possible because

humans effectively use knowledge acquired from past experiences and identify similarities across

different learning problems. Humans also benefit from collective and collaborative learning by

sharing their expertise. Building upon the experiences of other humans eliminates the need to learn

everything from scratch. Inspired from these abilities of humans and due to the fact that performance

of single-task ML techniques is reaching theoretical learning upper-bounds, research in ML has

shifted from learning a single task in isolation to investigating how knowledge can be transferred

across different domains, tasks, and agents that are related. Transfer Learning is a term that has
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been used to refer to this broad research area. The goal of transfer learning is to improve learning

quality and speed of the current ML algorithm through overcoming labeled data scarceness, avoiding

redundant learning and model retraining, and using computational power resources efficiently. In

particular, since deep neural networks are becoming dominant models in machine learning, training

complex models with several millions of parameters has become a standard practice which makes

model retraining expensive. Transfer learning can be very useful since labeling millions of data

points is not practical for many real-world problems. For these reasons, it has been predicted that

“transfer learning will be the next driver of ML success” [7].

In a classic supervised learning setup, the goal is to train a model for a specific task or domain

using a labeled training data. In a broad class of ML algorithms, the model is parameterized to form

a hypothesis space. The model selection process is implemented by learning parameters through

solving an optimization problem over the set of the labeled training dataset. The idea behind this

process is that the training dataset represents the data distribution and hence, the optimal model

over this set approximates the Bayes-optimal solution. Under quite well-studied conditions, the

trained model will generalize well on testing data points that are drawn from the data probability

distribution. However, this framework is inapplicable when sufficient labeled data for the learning

problem does not exist, i.e., training dataset does not represent the data distribution well, or when the

data distribution changes after training the model. As a result, often trained models underperform

on new tasks and domains that are not encountered during training. Knowledge transfer techniques

tackle challenges of labeled data scarceness and distributional drifts through exploiting the knowledge

that is gained by learning related tasks or during past experiences.

Various learning scenarios and applications can benefit from knowledge transfer. For example,

in many multi-class classification problems in vision domain, there are classes without sufficient

labeled data points, potentially none. Learning to transfer knowledge from classes with sufficient

labeled data points can help to recognize images that belong to classes with few labeled data points.

In some problems within natural language processing, there exists sufficient labeled data in few

common-spoken languages, but the labeled data is scarce in many less common-spoken languages. It
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is desirable to transfer knowledge from more common-spoken languages with sufficient annotated

data to learn similar tasks on less common languages. In many robotics applications, e.g., rescue

robots, a robot explores the external world and almost certainly encounters situations and conditions

that are new and has not been explored before. Transferring knowledge from past experience can

help to learn to handle such conditions fast. Even when labeled training data is accessible, knowledge

transfer can help to learn more efficiently either in terms of starting from a better initial point, learning

speed, or asymptotic performance. We can use many ideas to implement and use knowledge transfer.

In this thesis, we focus on transferring knowledge through embedding spaces that relate several ML

problems and capture dependencies and structures across the ML problems. We demonstrate that

this common strategy can be used to address the challenges of various learning scenarios.

1.1. Knowledge Transfer through Embedding Space

In a knowledge transfer scenario, the problem that knowledge is gained from is called the source

problem, and the problem that knowledge is transferred to is called the target problem. The primary

question that needs to be addressed is “how can we transfer knowledge successfully to the target

problem(s) given the source problems?". Many different approaches have been proposed to answer

this question. Since the goal of AI and ML is to mimic and replicate the abilities of humans, an

approach inspired by the nervous system can be helpful and lead to successful algorithms. Works

within Parallel Distributed Processing (PDP) framework suggest that embedding spaces can be used

to model cognitive processes as cognition is a result of representing data using synaptic connections

that are changed based on experiences [8]. An embedding space can be considered as a way of

representing data such that the data representations become meaningful and discriminative for a

particular task. Throughout the thesis, we loosely are inspired from this idea to find relations and

correspondences between ML problems by coupling their data representations in a shared embedding

space.

PDP framework has not been the dominant framework for AI. In the early days of AI, modal logic

was more a source of inspiration for AI researchers. Following modal logic, early AI models were

developed based on using categories and propositions [9]. Quillian suggested that concepts can
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Figure 1: Quillian’s hierarchical model for the broad concept of animals (inspired and adapted
from [8]). Each straight line denotes a proposition from the predicate in its start and the subject in
its tail with the relation written on it, e.g. “can” and “has”. The arrows denote “IS A” relations and
denote one more level of the hierarchy. In addition to direct propositions, hierarchical propositions
can be deduced through the ancestor nodes, e.g. “salmon has gill” and salmon “can move”.

be organized in hierarchical tree structures similar to tree of life, as denoted in Figure 1). In this

structure, specific categories are denoted by leaves of more general categories, then propositions that

are true about a group of concepts can be stored at the first common ancestor node that all those

concepts are leaves of it. Upon forming this structure, we can use it to answer whether a proposition

is true about a concept. It only suffices to start from the concept and look into its immediate ancestor

node to see if the proposition is stored in that node. If not, we can search the higher level ancestor

nodes until the proposition is found, or reaching the root node, which means the proposition is not

true.

Despite intuitiveness of Quillian’s framework, experiments on the human nervous system do not

confirm its predictions. For example, this model predicts that it is easier for humans to verify

more specific properties of concepts compared to boarder properties. Because these properties are

stored closer to the concepts, and hence, less search is required. But psychological experiments do

not confirm this prediction [10]. Additionally, this idea implies that more specific properties of a
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concept form a stronger bond with the concept compared to more general properties, but this does

not seem to be the case either. Findings related to a special type of neurological disorder, called

semantic dementia, provide evidence for an alternative model for cognition. Patients with this disease

progressively lose the ability to associate properties with concepts [8]. However, they lose specific

properties first, e.g., a zebra has stripes, and gradually lose more general properties, e.g., a zebra

has four legs. When the patients lose specific properties of two similar concepts, then he/she cannot

distinguish between the two concepts, e.g., a zebra versus a donkey. As a result, patients would draw

those concepts similarly which demonstrate that those concepts are encoded similarly in the nervous

system. These observations suggest that concepts are grouped according to their properties in the

brain in a hierarchical structure. However, concepts that have the same property are grouped such

that similar synaptic connections encode all those concepts. As we will see in the next chapters,

this process can be modeled mathematically, by assuming that those concepts are mapped in an

embedding space that is shared across those concepts. This means that if we represent the human

semantic space with a vector space in which each dimension denotes a specific property, e.g., having

stripes or being able to swim, then concepts that share many common properties, lie close to each

other in this space. An important advantage of this approach is that it is feasible to train models that

encode data according to abstract similarities in an embedding space.

Following the above discussion, our goal throughout this thesis is to represent the data from different

ML problems in an embedding space such that the resulting representations would capture relations

among several learning domains and tasks. Upon learning this embedding space, we can map data

points from different domains and tasks to the shared embedding space and use the relationships

in the embedding space to transfer knowledge from (a) source domain(s) to the target domain(s).

The common challenge that we need to address in different learning scenarios is how to enforce the

embedding space to capture hyper-relations among the ML problems.

1.2. Thesis Structure and Organization

Knowledge transfer problems and challenges can be manifested in a wide range of research areas and

learning scenarios. In this thesis, our contributions are in three major areas of knowledge transfer:
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cross-domain knowledge transfer, cross-task knowledge transfer, and cross-agent knowledge transfer.

1.2.1. Cross-Domain Knowledge Transfer

Knowledge transfer across related domains is our first focus, e.g., visual and textual domains,

which are the two dominant information domains. Cross-domain knowledge transfer is helpful in

performing tasks for which obtaining information in a particular domain might be challenging, but

easier in a related more accessible domain. Humans always benefit from this type of knowledge

transfer. For example, in dark lighting conditions, people usually rely on a combination of haptic

perception and imagination to improve their visual perception of an object. This is an example of

transferring knowledge from the haptic domain to the visual domain. This seems possible for humans

because the brain is able to relate haptic and visual sensory information. Similarly, consider image

retrieval ability of Google search engine for a query. Handling the image search query directly in

the visual domain is a challenging task, but the task becomes a lot easier through asking the user to

provide a textual description about the query or automatically extracting a textual description of the

input image and then transferring knowledge from textural domain, e.g. processing and comparing

the captions that are normally provided or the surrounding texts for images in the database against

the textual description for the query.

More specifically, we first focus on the problem of zero-shot learning for multi-class image classifi-

cation in chapter 3. The goal in this learning scenario is to recognize images from unseen classes,

i.e., without any labeled training data. Humans can easily recognize objects that they have not seen

before but are given their semantic descriptions. From ML perspective, successful implementation of

this strategy is highly beneficial because with the help of open-source web-based encyclopedias such

as Wikipedia, and recent NLP techniques, acquiring semantic descriptions of almost any class is very

cheap compared to acquiring a large number of annotated images. Data labeling is, in particular,

more challenging when classification involves a large number of classes or persistent emergence of

new classes. Our idea is to learn a shared embedding between these two domains that allows mapping

data from one domain to the other. To this end, we assume that for a subset of classes, both visual

labeled data and semantic descriptions are available, i.e., seen classes. This is a major assumption
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that makes cross-domain knowledge transfer between the visual and textual domains feasible. We use

these seen classes to learn an embedding that couples the visual and semantic domain. In particular,

we learn two coupled dictionaries [11] that coupled the visual and the semantic domain knowledge.

Our contribution in chapter 3 is to train these two dictionaries jointly by enforcing the visual and the

semantic features for all seen images to share the same sparse vector in the embedding space. Upon

learning these dictionaries, we can map an unseen class image to the learned embedding using the

visual dictionary and sparse vector recovery methods. Classification then can be performed in the

embedding space by searching for the class with the closest semantic description in the embedding

space. Additionally, our approach is able to address the problems of domain shift and hubness with

ZSL.

We then investigate the problem of domain adaptation through learning a domain-invariant embedding

space in chapter 4 and 5. In this learning setting the goal is to solve a task in a target domain, where

labeled data is scarce, by transferring knowledge from a source domain, where sufficient labeled data

is accessible to solve the task. We consider the multiclass classification task in two visual domains.

Humans always are very good at this task. For example, upon learning numeral characters, most

humans are able to classify numeral characters in a new domain, e.g., calligraphy font, very fast by

observing few and potentially no samples. This means that when a class concept is formed in the

human brain, this concept can be generalized and identified in new domains quite fast. This ability

suggests that the concepts are encoded in higher levels of the nervous system that can be modeled as

an embedding space. Inspired by this intuition, we propose to transfer knowledge by minimizing the

discrepancy between the probability distributions of the two source and target visual domains in an

intermediate embedding space. To this end, we consider deep encoders that map data points from two

domains to a joint embedding space in its output such that the discrepancy between the probability

distributions is minimized. A shared deep classifier network is trained to map the data points to

the labels. Learning a shared and domain-agnostic embedding space provides an effective solution

to use the deep classification network that is trained on the source domain on the target domain.

Due to minimal distribution discrepancy, the network will generalize well on the target domain with

unlabeled training data. Such an embedding allows for cross-domain knowledge transfer by training

8



the classifier network via solely labeled data from the source domain.

More specifically, our contribution is that we use a shared end-to-end model across the two domains

in chapter 4 and align the distributions of both domains class-conditionally in the embedding space.

We select two problems with small domain-gap which allows to use a shared end-to-end model. In

chapter 4, we use two domain-specific encoders that share their output and a shared classifier from

this shared output to the label space. This stricture allows for more domain gap. We consider a

few-shot domain adaptation setting and use the target domain labeled data to match the distributions

class-conditionally. In both of these chapters, we use the Sliced Wasserstein Distance metric to

minimize distribution discrepancy.

1.2.2. Cross-Task Knowledge Transfer

Our second area of focus is knowledge transfer across related tasks. We use the term task to refer to

a common problem in classic ML, e.g., regression, classification, or reinforcement learning tasks.

Humans extensively use cross-task knowledge transfer by identifying the prior learned skills that can

be used to solve a new task. This means that challenging tasks are broken into subtasks that are more

basic and can be used across different tasks. This suggests the existence of hierarchies in acquiring

skills that relate the tasks through embedding spaces that encode similarities.

We first investigate the problem of zero-shot learning within a multi-task learning setting in chapter 6.

Chapter 6 can be considered as an extension of chapter 3 to a continual learning setting. Here, the

goal is to transfer knowledge from past experiences to learn future tasks using no data. We consider

both sequential online lifelong learning setting and offline setting. In the offline setting, a group of

tasks is learned simultaneously before switching to tasks with no data. We assume that the tasks are

described using high-level descriptions. The core idea is to learn a mapping from the high-level task

descriptors to the optimal task parameters through an intermediate embedding space which couples

the optimal task parameters and the task descriptors. To learn this embedding, initially, some tasks

with both data and descriptors are used. Similar to chapter 3, we train two dictionaries jointly such the

task descriptor and the task optimal parameter share the same sparse vector in the shared embedding
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space. We demonstrate that using task descriptors not only improves the learning performance but

upon learning this embedding, one can learn a task with no data, through recovering the optimal

parameter using high-level task descriptors. It suffices to recover the shared sparse vector using the

task descriptor dictionary and then recover the task optimal parameters through multiplication with

the optimal parameter distribution.

In chapter 7, we focus on addressing the problem of catastrophic forgetting in a sequential multi-task

learning setting. When humans learn a new task, more often they do not forget what they have

learned before. This is not the case with most ML algorithms that use non-linear models as usually

new learned knowledge interferes with what has been before, causing performance degradation

on previously learned task. To overcome this challenge, we explore the idea of mapping the tasks

to an intermediate embedding space such that the distributions of the tasks are matched, i.e., the

embedding space becomes invariant with respect to the input task. As a result, when a new task is

learned, the newly acquired knowledge is added to the past learned knowledge consistently, which in

turn prevents catastrophic forgetting. To implement this idea, we train a shared end-to-end model

across the tasks. We also amend this model with a decoder to make it generative. We learn a shared

multi-mode distribution in the embedding space to generate pseudo-data points that can represent

the past learned tasks. These data points are replayed along with the current task data to mitigate

catastrophic forgetting.

We then focus on the problem continual concept learning in chapter 8, where the goal is to extend

and generalize a concept to new domains using only a few labeled data points. This chapter can

be considered as an extension of chapter 5 to a sequential online learning setting. We use the

idea of chapter 7 to extend the learned distribution for a task to incorporate new instances of a

number of concepts in a new domain. Our architecture is similar to chapter 7, but we can learn the

shared distribution using few labeled data points in future tasks. Since the learned distribution in

the embedding is enforced to remain stable, the concepts can be generalized to new domains by

observing only a few labeled data points.
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1.2.3. Cross-Agent Knowledge Transfer

Finally, we focus on the problem of distributed lifelong learning in chapter 9. Here, we assume

that multiple agents try to learn related tasks, and the goal is to improve learning quality and speed

through collaboration, i.e., cross-agent knowledge transfer. This area is less explored compared to

the previous two areas in the literature. But since IoT is becoming a common characteristic of daily

life, addressing ML problems in a distributed setting is becoming more important. We consider a

network of agents that learn sequential tasks in an online setting. Each agent is assumed to be a

lifelong learner which sequentially receives tasks and learns the current task through transferring

knowledge from past learned tasks and collaboration with neighboring agents. We extend the idea of

lifelong learning from a single agent to the network of multiple agents that potentially collectively

learn a series of tasks. Each agent faces some (potentially unique) set of tasks; the key idea is that

knowledge learned from these tasks may benefit other agents that are learning different (but related)

tasks. To enable knowledge transfer, we assume that a shared embedding can be learned for task

parameters. This embedding space captures structures of the tasks and allows knowledge transfer

among the agents. Our algorithm provides an efficient way for a network of agents to share their

learned knowledge in a distributed and decentralized manner while preserving the privacy of the

locally observed data as the data is not shared. We solve the learning problem in a decentralized

scheme, as a subclass of distributed algorithms, where a central server does not exist, and in addition

to data, computations are also distributed among the agents.

1.2.4. Thesis Organization

Figure 2 summarizes the problem and the challenges we address for each chapter of the thesis as

well as relations between the chapters in a nutshell. In this tree structure, we have listed the five

main challenges that need to be addressed in each part and chapter of the thesis. We have listed five

common ML topics to incorporate all challenges that need to be addressed in each chapter. These

topics are common in the machine learning literature, but our goal is to address them through learning

an intermediate embedding space. We have developed an ML algorithm in each of the chapters 3 to

9 using “knowledge transfer through an embedding space”. The solid arrows in Figure 2 denote the
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challenges that need to be addressed for each chapter and part. The dotted blue arrows denote that in

some chapters, reading the previous chapters can be helpful to understand those chapters. Readers

who might be interested in reading a particular aspect of the thesis can use Figure 2 to identify the

proper part and chapter.
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Chapter 2 : Background and Related Work

In this chapter, we explain and survey the machine learning problems that we investigate in this

thesis and survey recent related works that address challenges of knowledge transfer by learning an

embedding space to provide a background on prior similar works and introduce the specific problem

that we investigate throughout the thesis. We review the proposed algorithms in the literature that use

this strategy to address few- and zero-shot learning, domain adaptation, online and offline multi-task

learning, lifelong and continual learning, and collective and distributed learning. We mainly focus

on the works that are the most related works to the theme of the thesis and many important less

relevant works are not included in this chapter. For broad surveys on transfer learning/knowledge

transfer, interested readers may refer to the papers such as the paper by Pan et al. [12] or Taylor and

Stone [13].

From a numerical analysis point of view, most machine learning problems are function approximation

problems. Throughout the thesis, we assume that the goal for solving a single ML problem is to find

a predictive function given a dataset drawn from an unknown probability distribution. A single ML

problem can be a regression, classification, or reinforcement learning problem, where the goal is

to solve for an optimal parameter for the predictive function [14]. This function predicts the label

for an input data point for classification tasks, the suitable value for independent input variable for

regression tasks, and the corresponding action for an input state for reinforcement learning tasks. The

prediction of the function must be optimal in some sense; usually Bayes-optimal criterion is used,

and the broad challenge is to approximate such a function. Each problem is Probably Approximately

Correct (PAC)-learnable. This assumption means that given enough data and time, solving for an

optimal model for each problem is feasible. Due to the various types of constraints that we covered

in the previous chapter, our goal is to transfer knowledge across similar and related problems that are

defined over different domains, tasks, or agents to improve learning quality and speed, as compared

to learning the problems in isolation. The strategy that we explore for this purpose is transferring

knowledge through an embedding space that couples the underlying ML problems.
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Figure 3: Knowledge transfer through an embedding space: in this figure, the solid arrows denote
functions that map the abstract notions, e.g., images, into the embedding space, the dots in the
embedding space denote the data representations in the embedding space, and the dotted arrows
indicate correspondences among across two problems, e.g., two classes that are shared between
two classification problems. Throughout this thesis, we focus on learning these arrows in terms
of parametric functions. The global challenge that we address in this thesis is how to relate two
problems through the embedding space.

The idea of learning a latent embedding space has been extensively used for single-task learning,

where the goal is to learn a mapping such that similar task data points lie nearby on a space which

can be models as lower-dimensional embedding space. The goal is to measure an abstract type of

similarity, e.g., objects that belong to a concept class, in terms of well-defined mathematical distances.

Figure 3 visualizes this idea using visual classification tasks. The notion of “zebra” and “lion” are

abstract concepts that form human mental representations which remain consistent for a large number

of input visual stimuli (for the moment, consider only problem 1 in Figure 3). Humans are able

to identify these concepts on a wide range of variations which supersede many current computer

vision algorithms. The idea that Figure 3 presents for solving a single classification problem is to

learn how to map input visual stimuli that correspond to a concept to an embedding space such that,
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abstract similarities can be encoded according to geometric distance, as evident from Figure 3. We

have represented this procedure in Figure 3, by showing that images that belong to the same class in

problem 1 form a cluster of data points in the embedding space. Simultaneously, the class clusters

have more distance from each other, which means that geometric distance in the embedding space

correlates with similarities in the input space. We can see that instances of each concept form a

cluster in the embedding space. The hard challenge would be to learn the mapping, i.e., feature

extraction method, from the input data space to the embedding space. This process converts abstract

similarities to measurable geometric distances which makes data processing and model training a lot

more feasible as it is usually tractable to solve optimization problems using geometrical distance as a

similarity measure in the embedding space. As it can be seen in Figure 3, the abstract classes are

separable in the embedding space for problem 1. This has been inspired from the way that the brain

encodes and represents input stimuli in large populations of neurons [15]. Note that this idea can be

applied to a broader range of ML problems. We just used visual classification as an example which

gives a more intuitive explanation for this idea.

Knowledge transfer across several problems is a further step to learn a problem-level similarity

among multiple probability distributions and captures relations between several ML problems. In this

thesis, our goal is to extend the idea of learning a discriminative embedding space for a single ML

problem to transfer knowledge across several ML problems. We use a shared embedding space across

several machine learning problems to identify cross-problem similarities in order to make learning

more efficient in some problems. We have presented this idea in Figure 3. In this figure we see three

classes of “zebra”, “lion”, and “dog” in two ML problems. For each concept-class, we have two types

of input spaces: electro-optical (EO) and infrared (IR) images. In each input space, we can define

independent classification problems. However, these problems are related as they share the same

abstract concept-classes. As demonstrated in Figure 3, if we can learn problem-independent relations

between the classes in the embedding space, then we may be able to transfer knowledge from one

domain to the other domain. For example, if the geometric arrangement and relative location of

classes with respect to each other are similar (as in Figure 3), then it is easy to use knowledge about

these relations in the source problem, to solve the target problem. This is a high-level description
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of the strategy that we explore in this thesis to improve learning performance and speed in a target

domain(s) by transferring knowledge from the source domain(s). There are various approaches

to relate two ML problems. we As we will see, many learning scenarios may benefit from this

knowledge transfer strategy. In what follows, we explain about learning settings that can benefit from

this idea and survey the related papers in each scenario to give the reader an insight into the prior

works.

2.1. Knowledge Transfer through Shared Representation Spaces

LetZ(u) denote an ML problem with an unknown probability distribution p(u)(x,y) which is defined

over the input and output spaces X (u) and Y(u). The goal of learning is to find a predictive function

f (u) : X (u) → Y(u) such that the true risk is minimized R = E(x,y)∼p(u)(`(f
(u)(x),y)), where `

is a point-wise loss function. For a single PAC-learnable problem, usually we are given a training

dataset D(u) = 〈X(u),Y (u)〉, the function f (u)(·) is parameterized to form a hypothesis class, and

the optimal parameter θ(u) is computed using Empirical Risk Minimization (ERM) to approximate

the Bayes-optimal predictive function. Almost all parametric ML algorithms can be fit into this

framework. Moreover, for many common base hypothesis classes there are learning bound that relate

the accuracy of ERM-optimal model to the accuracy of the Bayes-optimal model in terms of the size

of the the training dataset.

As we explained, we can benefit from knowledge transfer when the goal is to learn multiple learning

problems, i.e., u ∈ U for countable set U. To implement the idea of “using a shared embedding

space for transferring knowledge”, we assume that the functions f (u)(·) can be decomposed as

f (u)(·) = h(u)(ψ(u)(·)), where ψ(u)(·) : X (u) → Z map data points of the corresponding problem

into the shared embedding space Z , where similarities and structures between the distributions of

problems are captured. Doing so, we can formulate the following training problem to benefit from
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knowledge transfer:

min
f (1),...,f (u)

U∑
u=1

λ(u)L(u)(f (u)(X(u)))︸ ︷︷ ︸
Problem-Specific Regularization and Loss Terms

+

U∑
u,v=1

γ(u,v)Mu,v(ψ(u)(X(u)), ψ(v)(X(v)))︸ ︷︷ ︸
Problem Alignment Terms

,

(2.1)

where λ(u) and γ(u,v) are trade-off parameters, L is a loss function over D(u), andM is a functional

to measure some notion of pairwise-distance between two problems.

The terms in the first sum in Eq. 2.1 can be thought of regularization terms which are either computed

using some prior knowledge about the problem distribution or most often are empirical risk terms (if

Y (u) is available). These terms are problem-specific and are computed for each problem, irrespective

of other problems. The second sum consists of pairwise problem alignment terms that couple the

problems and are computed after mapping data into the shared embedding. The goal is to use

problem/class-wise relations and shared representations to enforce knowledge integration in the

embedding to transfer knowledge across the problems.

Given a specific learning setting and prior knowledge, a suitable strategy should be developed to

define the loss and alignment functions. Throughout this thesis, we investigate several important

knowledge transfer scenarios (analogous to categorizations that we provided in the previous chapter):

• If the input spaces are different, we face a cross-domain knowledge transfer scenario. In this

scenario, usually, U = 2 (sometimes more for multi-view learning) and the problems are

mostly classification tasks. There may be data scarcity in all domains or, in one domain we

may have sufficient labeled data and labeled data maybe scarce in the other domain(s). Domain

adaptation, multi-view learning, and zero/few-shot learning are common settings where cross-

domain knowledge transfer is helpful. This area is becoming important as nowadays sensors

are becoming cheaper and usually various data modalities are recorded and processed to

perform a learning task.

• If X (u) = X , Y(u) = Y , and U � 1, we face a cross-task knowledge transfer scenario. Each
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problem can be either a classification, regression, or reinforcement learning task. Transfer

learning, multi-task learning, and lifelong learning are common settings for cross-domain

knowledge transfer. Cross-task knowledge transfer is in particular important when learning is

performed at extended time periods, where usually distributions change. Hence, even the same

task is not going to be the same in the future.

• Finally, the datasets D(u) might not be centrally accessible and be distributed among a number

of agents. This would be a cross-agent knowledge transfer scenario, where the goal is to

learn the problems without sharing full data by sharing individual knowledge of the agents.

Distributed learning, collective learning, and collaborative learning are common settings for

this scenario. Development of wearable devices and Internet of Things (IoT) have made this

area an important learning scenario.

The above terminologies and categorizations are not universal, nor they are exclusive, but they help

to categorize the knowledge transfer literature, which covers a broad range of ML literature. For this

reason, we use this categorization to arrange the topics of the thesis.

2.2. Cross-Domain Knowledge Transfer

For cross-domain knowledge transfer, the challenge is to explore correspondences across domains

X (u) via prior information. In this thesis, we investigate two important sub-problems within cross-

domain knowledge transfer: zero-shot learning and domain adaptation.

2.2.1. Zero-Shot Learning

In the zero-shot learning (ZSL) setting, the problem of multi-class classification is investigated,

where while for some classes sufficient labeled data is accessible (seen classes), for some classes,

no labeled data is accessible (unseen classes). ZSL is a common situation in modern applications

where new classes constantly emerge over time, and hence, continual data labeling is not feasible.

Additionally, even if data labeling is feasible, re-training a model from scratch to incorporate the new

classes is inefficient and time-consuming. The goal is to learn unseen classes through knowledge

19



transfer from the semantic textual domain. This is a helpful strategy as textual descriptions about

a category is easy to obtain nowadays, e.g., using the internet. A major line of ZSL methods

learn a shared embedding space to couple the visual and the semantic domains using the seen

classes as information about both domains is accessible for seen classes. Let X (v) denote the visual

domain and X (t) denote the textual domain. In a standard ZSL setting, we are given the training

dataset D(v) = 〈X(v),Y (v)〉 ∈ Rd×n × Rk×n which denotes visual features, e.g. deep net features,

and the labels of n images for k seen classes. Additionally, we have a second training dataset

D(t) = 〈X(t),Y (v)〉 ∈ Rd′×n × Rk×n of textual feature descriptions for the same images in the

semantic domain, e.g. word vectors or binary semantic attributes. Note that textual descriptions

are mostly class-level and hence values in X(t) can be repetitive. For unseen classes, we have

access only to textual descriptions of the class in the semantic space. Since we have point-wise level

cross-domain correspondence for the data points of seen classes through Y (1), we can solve the

following instance of Eq. 2.1 to couple the two domains:

min
θ(v),θ(t)

∑
i

`(ψ
(t)

θ(t)
(x

(t)
i ), ψ

(v)

θ(v)
(x

(v)
i )) , (2.2)

where θ(v) and θ(t) are learnable parameters, and ` is a point-wise distance functions, e.g. Euclidean

distance.

For simplicity, it is assumed that only unseen classes are present during testing in the standard ZSL

setting. Upon learning ψ(v) and ψ(t), zero-shot classification is feasible by mapping images from

unseen classes as well as semantic descriptions of all unseen classes to the embedding space using

ψ(v) and ψ(t), respectively. Classification then can be performed by assigning the image to the

closest class description, using `. Variations of ZSL methods result from different selections for

ψ(v), ψ(2), and `. An important class of ZSL methods considers the semantic space itself to be the

embedding space and project the visual features to the semantic space. The pioneering work by

Lampert et al. [16] use a group of binary linear SVM classifiers, identity mapping, and Euclidean

distance (nearest neighbor), respectively. Socher et al. [17] use a shallow two-layer neural network,

identity mapping, and Gaussian classifiers. Romera et al. [18] use a linear projection function,
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identity mapping, and inner product similarity. Another group of ZSL methods, consider a shared

intermediate space as the embedding space. Zhang et al. [19] use the class-dependent ReLU and

intersection functions, sparse reconstruction based projection, and inner product similarity. Kodirov

et al. [20] train an autoencoder over the visual domain. In Eq. (2.1), this means ψt = (ψv)−1

and ψt ◦ ψv(x(v)
i ) is enforced to match the semantic attribute. They use Euclidean distance for

classification.

ZSL algorithms that solely solve Eq. (2.2) face two major issues: domain shift and hubness problem.

Domain shift occurs when the visual feature mapping ψ(v) is not discriminative for unseen classes.

As a result, the embedding space is not semantically meaningful for unseen classes. The reason is that

this mapping is learned only via seen classes during training, while the distribution of unseen classes

may be very different. To tackle this challenge, the mapping ψ(v) that is learned using seen classes

attributes, needs to be adapted towards attributes of unseen classes. Kodirov et al. [21] use identity

function, linear projection, and Euclidean distance for ZSL. To tackle the domain shift problem, we

can learn the linear projection such that the visual features become sparse in the embedding. The

learned linear projection is then updated during testing by solving a standard dictionary learning

problem for unseen classes.

The hubness problem is a version of the curse of dimensionality for ZSL. It occurs because often the

shared embedding space needs to be high-dimensional to couple the semantic and the visual domains.

As a result, a small number of points, i.e., hubs, can be the nearest neighbor of many points. This

counterintuitive effect would make the search of the true label in the embedding space impossible

because the nearest neighbor search mostly recovers the hubs regardless of the test image class [22].

The hubness problem has been mitigated by considering the visual space as the embedding space [23].

More recent, ZSL methods focus on the more realistic setting of generalized zero-shot learning,

where seen classes are present during testing [24]. In this thesis, we consider ZSL in both chapter 3

and chapter 6. Chapter 3 considers a classic ZSL setting as we described above but chapter 6 focuses

on a cross-task ZSL scenario where the goal is to learn a task without data using what has been

learned from other similar past learned tasks. Despite this major difference, we use a similar strategy
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to tackle the challenges of ZSL in both learning setting.

2.2.2. Domain Adaptation

In domain adaptation settings, usually Y(t) = Y(s) for both source and target domains. Usually, the

problems are classification tasks with the same label space. This is a common situation when a task

distribution is non-stationary. As a result, after training a classifier, when the task distribution changes

over time, it is desirable as well as efficient to adapt the learned classifier using minimal labeled data

to generalize well again. Domain adaptation is a common strategy to address problems in computer

vision beyond the visible spectrum as collecting labeled data is challenging. Since similar problems

likely have been addressed in the visible domain, transfer from visible spectrum domains can be

helpful. Personalizing a service is another area when we want to adopt a general predictive function

for each user using minimum labeled samples. A major assumption in ZSL setting is that we have

point-wise correspondence in the training data as the textual and visual features of seen images are

given. However, point-wise correspondences are not always accessible.

Unsupervised domain adaptation (UDA) is a more common scenario where we are given a labeled

training dataset D(s) = 〈X(s),Y (s)〉 ∈ Rd×n × Rk×n in a source domain and a second unlabeled

dataset D(t) = 〈X(t)〉 ∈ Rd′×m in a target domain. The goal is transferring knowledge from the

source domain to train a model for the target domains. Due to lack of point-wise correspondences in

UDA, solving Eq. 2.2 is not feasible. Instead, we solve:

min
θ(s),θ(t),κ(t)

L(s)(h
(s)

κ(s)
(ψ

(s)

θ(s)
(X(s))),Y (s)) + γM(ψ

(s)

θ(s)
(X(s)), ψ

(t)

θ(t)
(X(t))) , (2.3)

where the predictive functions are parameterized and, θ(s), θ(t), κ(t) are learnable parameters. The

first term is the Empirical Risk Minimization (ERM) objective function for the labeled domain,

and the second term minimizes the distance between the distributions of both domains in the

embedding space. Upon learning ψ(t), ψ(s), and h(s), the learned embedding would be discrim-

inative for classification and invariant with respect to both domains. Hence, the classifier h(s)

would work and generalize well on the target domain even though it is learned solely using
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source domain samples. Since the target domain data is unlabeled, usually the distance be-

tween marginal distributions, ψ(s)(p(s)(x)) and ψ(t)(p(t)(x)), in the embedding is minimized, i.e.,

M(ψ
(s)

θ(s)
(X(s)), ψ

(t)

θ(t)
(X(t))) = A(ψ

(s)

θ(s)
(p(X(s))), ψ

(t)

θ(t)
(p(X(t)))) whereA is probability distance

measure, e.g., KL-divergence.

Different UDA methods select suitable models ψ(t), ψ(s), h(s), and the probability distance measure

A and then solve Eq. (2.3). For simplicity, some UDA methods do not learn the mapping functions

and use common dimensionality reduction methods to map data into a shared linear subspace that

can capture similarities of distribution of both domains. Gong et al. [25] use PCA-based linear

projection, PCA-based linear projection, and KL-divergence, respectively. Fernando et al. [26] use

PCA-based linear projection, PCA-based linear projection, and Bregman divergence. Baktashmotlagh

et al. [27] use Gaussian kernel-based projection, Gaussian kernel-based projection, and maximum

mean discrepancy (MMD) metric. Another group of methods, learn the mapping functions. Ganin

and Lempitsky [28] use deep neural networks as mapping functions. The challenge for using deep

networks is that common probability distance measures such as KL-divergence have to vanish

gradients when two distributions have non-overlapping supports. As a result, they are suitable for

deep net models as first-order gradient-based optimization is used for training deep models. Ganin

and Lempitsky [28] useH∆H-distance instead, which has been introduced for theoretical analysis of

domain adaptation [29]. Intuitively,H∆H-distance measures the most prediction difference between

two classifiers that belong to the same hypothesis class on two distinct distributions. Courty et al. [30]

use optimal transport distance for domain adaptation. In addition to having a non-vanishing gradient,

a major benefit of using optimal transport is that is can be computed using drawn samples without

any need for parameterization. On the other hand, the downside of using optimal transport is that it is

defined in terms of an optimization problem, and solving this problem is computationally expensive.

The above-mentioned methods minimize the distance between distributions by directly matching

the distributions. Development of generative adversarial networks (GAN) has introduced another

tool to mix two domains indirectly. In the UDA setting,M can be set to be a discriminative network

which is trained to distinguish between the representations of the target and the source data points.
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This network is trained such that it cannot distinguish between the two domains, and as a result, the

embedding space becomes invariant, i.e., the distributions are matched indirectly. Tzeng et al. [31]

use this technique to match the distributions for UDA. Zhu et al. [32] introduce the novel notion of

cycle-consistency loss. The idea is to concatenate two GANs and then train them such that the pair

form an identity mapping across the domains by minimizing the cycle-consistency loss. This is very

important as no pair-wise correspondence is going to be necessary anymore.

In this thesis, we address domain adaptation in chapter 4 and chapter 5. Chapter 4 focus on UDA

where both domains are from the same data modality, whereas in chapter 5, we address semi-

supervised DA, where the data modality between the two domains is different. More specifically, we

consider knowledge transfer from electro-optical (EO) domains to synthetic aperture radar (SAR)

domains.

2.3. Cross-Task Knowledge Transfer

Since the input and output spaces are usually equal for cross-task knowledge transfer, the challenge

for knowledge transfer is to identify task relations and similarities. If the data for all tasks are

accessible simultaneously, the learning setting is called Multi-task learning. In contrast, if the tasks

are learned sequentially, the setting is called lifelong learning.

2.3.1. Multi-Task Learning

Multi-task learning (MTL) setting is quite different from domain adaptation or ZSL as usually

we have access to labeled data in all problems. Hence, the goal is not to transfer knowledge

unidirectionally from some source tasks with abundant labeled data to some other target tasks, where

we face labeled data scarcity. The goal is to identify and use relations and similarities between the

tasks and transfer knowledge across all tasks bidirectionally to improve generalization error for all

tasks. The tasks can be regression, classification, or reinforcement learning tasks. Usually, the same

type of tasks are considered in MTL settings.

We formulate MTL for classification and regression tasks, but we will show in chapter 6 that our
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formulation is applicable to reinforcement learning tasks as well. A naive approach is to assume that

in Eq. (2.1), parameterize all models by assuming h(u)(·) = h(·). We can then train all models by

minimizing the average risk over all task:

min
θ(1),...,θ(U)

U∑
u=1

1

U
L(u)(f

(u)

θ(u)
(X(u)),Y (u)) , (2.4)

where θ(u)’s are learnable model parameters, usually selected to be (deep) neural networks. This

formalism enforces ψ(u)(p(y|x)) = ψ(p(y|x) in the shared embedding space for all tasks. Despite

the simplicity, this formulation is in particular effective for NLP applications [33], where the shared

embedding can be interpreted as a semantic meaning space that transcends vocabulary of languages.

In an MTL setting, usually u� 1 and hence the tasks are likely diverse. If we use the formulation

of Eq. (2.4) on diverse tasks, coupling all tasks can degrade performance compared to learning

single tasks individually. This can occur as the tasks are enforced to have the same distribution in

the embedding space, while they may be unrelated. This phenomenon is known as the problem of

negative transfer in MTL literature. To allow for more diversity across the tasks, Tommasi et al. [34]

generalized the formalism of Eq. (2.4) by considering two orthogonal subspaces for each task. One

of these spaces is assumed to be shared across the tasks, while the other is a task-specific space that

captures variations across the tasks. Since for each task, these two spaces are orthogonal, task-specific

knowledge and shared-knowledge naturally are divided. This will reduce negative knowledge transfer.

This formalism also can address multi-view problems. Broadly speaking, multi-view learning can

be formulated as a special case for MTL where each data view is a task and corresponds across the

views is captured point-wise by the training data.

Another group of MTL algorithms model task diversity by allowing the mapping functionsψ(u)(p(y|x))

to be different. For the case of linear models, i.e., y = w>x, the GO-MTL algorithm assumes that

ψ(u)(·) = ψ(·), ψ(u)x = L>x, where L ∈ Rd×k, and h(u)(x) = g((s(u))>x), where s(u) ∈ Rk

and is a nonlinear function such as softmax to allow classification [35]. In other words, it is assumed

that data points for all tasks are mapped into row space of a dictionary that is shared across all tasks.
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This transform on its own is not helpful but if the task-specific vectors s(u) are enforced to be sparse,

then data for each task is going to be mapped to a subspace formed by few rows of the matrix L. As a

result, if two similar tasks then would share the same rows and hence tasks with similar distributions

are grouped. As a result, their distributions are enforced to be similar indirectly, and negative transfer

can be mitigated. This process can be implemented by enforcing the vectors s(u) to have minimal

`1-norm. Doing so, Eq. (2.1) would reduce to:

min
Ls(1),...,s(u)

U∑
u=1

1

U

∑
i

`
(
g
(
(s(u))>L>x

(u)
i

)
,x

(u)
i

)
+ α‖s(u)‖1 + β‖L‖2F , (2.5)

where ‖·‖2F denotes the Frobenius norm that controls model complexity, and α and β are regularization

parameters. Eq. (2.1) is a biconvex problem for convex `(·) and can be solved by alternating

iterations over the variables. The Go-MTL algorithm has been extended to handle non-linear tasks

by considering deep models [36; 37].

Most RL methods require a significant amount of time and data to learn effective policies for complex

tasks such as playing Atari games. MTL method can help to improve the performance of RL tasks

by identifying skills that are effective across the tasks. Teh et al. [38] address MTL within RL by

considering that a shared cross-tasks policy exists, called distilled policy. The task-specific policies

are regularized to have minimal KL-divergence distance with the distilled policy, which enforces the

distilled policy to capture actions that are helpful for all tasks with high probabilities. The distilled

policy and task-specific policies are parameterized by deep networks that share their output in the

action space. Experiments on complex RL tasks demonstrate that MTL helps to learn more stable

and robust policies in a shorter time period.

2.3.2. Lifelong Learning

In a lifelong machine learning (LML) setting [1], consecutive tasks are learned sequentially. Upon

receiving data for the current tasks, the task is learned, the newly obtained knowledge is accumulated

to a repository of knowledge, and the LML agent advances to learn the next task. The goal is to learn

the current task by transferring knowledge from previous experiences, gained from learning past
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tasks. Since the previous tasks may be encountered at any time, performance across all tasks seen so

far must be optimized. Ideally, the lifelong learning agent should scale effectively to large numbers

of tasks over its lifetime.

Building upon the Go-MTL formulation, ELLA solves Eq. (2.5) in a lifelong learning setting [1].

For this purpose, a second-order Taylor expansion of each individual loss function around the single

task optimal parameter θ̃(t) is used to approximate the risk terms. This would simplify Eq. (2.5) as:

min
Ls(1),...,s(T )

T∑
t=1

1

T
‖Ls(t) − θ̃(t)‖2

Γ(t) + α‖s(t)‖1 + β‖L‖2F , (2.6)

where Γ(t) is the Hessian matrix for individual loss terms and ‖v‖2A = v>Av. To solve Eq. (2.6)

in an online scheme, a sparse coefficient s(t) is only updated when the corresponding current task

is learned at each time step. This process reduces the MTL objective to a sparse coding problem

to solve for s(t) in the shared dictionary L. The shared dictionary is then updated using the task

parameters learned so far to accumulate the learned knowledge. This procedure makes LML feasible

and improves learning speed by two to three orders of magnitude. ELLA algorithm can also address

reinforcement learning tasks in LML setting [39]. The idea is to approximate the expected return

function for an RL task using the second-order Taylor expansion around the task-specific optimal

policy and enforce the policies to be sparse in a shared dictionary domain. The resulting problem is

an instance of Eq. (2.6), which can be addressed using ELLA.

Lifelong learning methods have also been developed using deep models. Deep nets have been

shown to be very effective for MTL, but an important problem for lifelong learning with deep neural

network models is to address catastrophic forgetting. Catastrophic forgetting occurs when obtained

knowledge about the current task interferes with what has been learned before. As a result, the

network forgets past obtained knowledge when new tasks are learned in an LML setting. Rannen

et al. [40] address this challenge for classification tasks by training a shared encoder that maps the

data for all tasks into a shared embedding space. Task-specific classifiers are trained to map the

encoded data from the shared encoding space into the label spaces of the tasks. Additionally, a set
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of task-specific autoencoders are trained with the encoded data as their input. When a new task

is learned, trained autoencoder for past tasks are used to reconstruct features learned for the new

task and then prevent them from changing to avoid forgetting. As a result, memory requirement

grows linearly in terms of learnable parameters of the autoencoders. The number of these learnable

parameters is considerably less than the parameters that we need to store all the past task data.

Another approach to address this challenge is to replay data points from past tasks during training

a network on new tasks. This process is called experience replay which regularizes the network

to retain distribution of past tasks. In other words, experience replay recasts the lifelong learning

setting into a Multi-task learning setting for which catastrophic forgetting does not occur. Experience

replay can be implemented by storing a subset of data points for past tasks, but this would require

a memory buffer to store data. As a result, implementing experience replay is challenging when

memory constraints exist. Building upon the success of generative models, experience replay can

be implemented without any need for a memory buffer by appending the main deep network with a

structure that can generate pseudo-data points for the past learned tasks. To this end, we can enforce

the tasks to share a common distribution in a shared embedding space. Since the model is generative,

we can use samples from this distribution to generate pseudo-data points for all past tasks when the

current task is being learned. Shin et al. [41] use adversarial learning to mix the distributions of all

tasks in the embedding. As a result, the generator network is able to generate pseudo-data points for

past tasks.

We address cross-task knowledge transfer in Part II in chapters 5 through 6. As mentioned, chapter 5

addresses ZSL in a sequential task learning setting. In chapter 6, we address catastrophic forgetting

for this setting, where deep nets are base models. In chapter 7, we address domain adaptation in a

lifelong learning setting, i.e., adapting a model to generalize well on new tasks using few labeled

data points without forgetting the past.

2.4. Cross-Agent Knowledge Transfer

Most ML algorithms consider a single learning agent, which has centralized access to problem data.

However, in many real-world applications, multiple (virtual) agents must collectively solve a set of
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problems because data is distributed among them. For example, data may only be partially accessible

by each learning agent, local data processing can be inevitable, or data communication to a central

server may be costly or time-consuming due to limited bandwidth. Cross-agent knowledge transfer is

an important tool to address the emerging challenges of these important learning schemes. To model

multi-agent learning settings, graphs are suitable models where each node in the graph represents

a portion of data or an agent and communication modes between the agents is modeled via edge

set (potentially dynamic) of the graph. The challenge is to design a mechanism to optimize the

objective functions of individual agents and share knowledge across them over the communication

graph without sharing data.

Cross-agent knowledge is a natural setting for RL agents as in many applications; there are many

similar RL agents, e.g., personal assistance robots that operate for different people. Since the agents

perform similar tasks, the agents can learn collectively and collaboratively to accelerate RL learning

speed for each agent. Gupta et al. [42] address cross-agent transfer for two agents with deep models

that learn multiple skills to handle RL tasks. The agents learn similar tasks, but their state space,

actions space, and transition functions can be different. For example, two different robots that are

trained to do the same task. The idea is to use the skills that are acquired by both agents and train

two deep neural networks to map the optimal policies for each agent into a shared invariant feature

space such that the distribution of the optimal policies become similar. Upon learning the shared

space, the agents map any acquired new skill into the shared space. Each agent can then benefit from

skills that are acquired only by the other agent through tracking the corresponding features for that

skill in the shared space and subsequently its own actions. By doing so, each agent can accelerate its

learning substantially using skills that are learned by the other agent.

Cross-agent knowledge transfer is more challenging when the agents process time-dependent data.

A simple approach to model this case is to assume that in Eq. (2.1), there are K agents and

L(u)(f (u)(X(u))) =
∑

k L
(u)
k (f

(u)
k (X

(u)
k )). In consensus learning scenarios, it is assumed that all

agents try to reach consensus on learning a parameter that is shared across the agents. We have

addressed this cross-agent knowledge-transfer scenario within an LML scenario [43] in chapter 9.
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2.5. Conclusions

In this chapter, we presented “learning embedding” spaces as a common strategy for transferring

knowledge and listed related prior works that benefit from this learning strategy. A major contribution

of this thesis is to present transfer learning through embedding spaces as a common strategy to

address the challenges of broad classes of learning scenarios. In particular, in this chapter, we listed

the important learning scenarios and setting to categorize our investigations throughout the rest of

the thesis. After a brief introduction and familiarity with background works, we explain about our

novel ideas in the subsequent chapters to develop algorithms that can address the challenges of each

learning scenario.
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Part I

Cross-Domain Knowledge Transfer
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In the first part of this thesis, we focus on knowledge transfer across different domains. We use the

term domain to refer to the input space of the model that is trained to perform a task. The domains

can be from two different data modalities, e.g., heterogeneous domains such as visual and textual

domains, or the same modality, e.g., two homogeneous visual domains. The major challenge that is

addressed in cross-domain knowledge transfer is to tackle labeled data scarcity. Given the complexity

of the current state of the art ML models, i.e., deep networks, addressing this challenge has become

more important. The common idea to addressed labeled data scarcity is to transfer knowledge from a

related domain, where labeled data is accessible. In this part of the thesis, we address problems of

zero-shot learning and domain adaptation through learning an embedding space which couples two

knowledge domains, in chapter 1 to chapter 3, respectively. In a zero-shot learning setting, we have a

multi-class classification problem, where for some classes, no labeled data is accessible. We learn

a shared embedding space to couple the visual and semantic domain using seen classes for which

labeled data is accessible. In a domain adaptation setting, the two domain share the same classes.

Our goal is to find a one-to-one correspondence among the classes across the two domains
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Chapter 3 : Zero-Shot Image Classification through

Coupled Visual and Semantic Embedding

Spaces

We focus on Zero-shot learning (ZSL) in this chapter. ZSL is a framework to classify instances

belonging to unseen target classes based on solely semantic information about these unseen classes.

The key challenge in performing zero-shot learning is to map an image into its semantic descriptions,

i.e., attributes. This mapping can be learned using the seen source classes in the training stage of ZS

via a shared embedding space.

Figure 4 present the idea within our broad idea of using an embedding space for transferring

knowledge. In this figure, each small circle denotes representation of an image in the embedding

space and the bigger circles denote the representations for the semantic description of the classes

in the embedding space. If we can use the classes with both labeled images and the semantic

descriptions, i.e., classes zebra and puma in Figure 4, to learn an embedding which captures semantic

similarities, then ZSL is feasible. This means that images that belong to a class should lie close to the

semantic description of the class in the embedding space. Classifying images from an unseen class,

i.e., tiger class is going to be possible by mapping an image from an unseen class to the embedding

space and then searching for the closest class description.

Building upon the above intuition, we propose to use coupled dictionary learning (CDL) as the

method to learn a shared embedding to map images to their semantic descriptions in this chapter.

The core idea is that the visual features and the semantic attributes of an image can be enforced

to share the same sparse representation in an intermediate space. In the ZSL training stage, we

use images from seen classes and semantic attributes from seen and unseen classes to learn two

dictionaries that can represent the visual and semantic feature vectors of an image sparsely. Upon

training the coupled dictionaries, images from unseen classes can be mapped into the attribute space
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Figure 4: Zero-shot learning through an intermediate embedding space: in this figure, the small
circles in the embedding space denote representations of images and the bigger circles denote
representations of the semantic descriptions for the classes in the embedding space. An image
which belongs to an unseen class can be classified by mapping it into the embedding space and then
searching for its class by finding the closest semantic description in the embedding space.

by finding the joint sparse representation using merely the visual data. The image is then classified in

the attribute space given semantic descriptions of unseen classes. Results of this chapter have been

presented in [44; 45; 46].

3.1. Overview

Image classification and categorization are two of the most effective and well-studied application

areas of machine learning and computer vision. Despite tremendous advances in these areas and

development of various algorithms that are as accurate as humans in many applications, most of

these approaches are supervised learning algorithms that require a large pool of manually labeled

images for decent performance. This amount may be thousands of images, if not tens of thousands

of images for deep classifiers, where millions of model parameters need to be learned. Data labeling
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is becoming more challenging as the numbers of classes are growing and fine-grained classification

is becoming more critical. While learning using fully labeled data is practical for some applications,

manual labeling of data is economically and time-wise infeasible for many other applications due to

complications such as:

• The exponential growth of visual data (e.g., photograph-sharing websites, medical imaging).

• The need for fine-grained multi-class classification (e.g., thousands of classes for animal catego-

rization).

• The persistent and dynamic emergence of new classes (e.g., new products on shopping websites).

• Classes with highly infrequent members.

As a result, current supervised algorithms for image classification suffer from scalability issues in

practice. Consequently, it is critical to developing algorithms that can classify objects using few

training samples and even from unseen classes with no training samples, and algorithms that beyond

merely the seen classes and can incorporate new emerging classes without substantial retraining.

Humans have this remarkable ability to learn enormous numbers of classes from little data. As an

example, consider the classification of animal images. It is estimated that as many as one million

different species of animals have been identified, with as many as ten thousand new species being

discovered annually. This classification problem is a case when ZSL can be extremely helpful. Most

people probably have not seen an image of a “tardigrade”, nor heard of this species, but we can

intuitively demonstrate the potential of ZSL for this class. Consider the following sentence from

Wikipedia: “Tardigrades (also known as water bears or moss piglets) are water-dwelling, eight-

legged, segmented micro animals.” Given this textual description, most humans can easily identify

the creature in Figure 5 (Left) as a Tardigrade, even though they may have never seen one before.

Humans can easily perform this ZSL task by: 1) identifying the semantic features that describe the

class Tardigrade as “bear-like”, “piglet-like”, “water-dwelling”, “eight-legged”, “segmented”, and

“microscopic animal”, 2) parsing the image into its visual attributes (see Figure 5), and 3) matching
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the parsed visual features to the parsed textual information

Following a similar strategy, ZSL can be implemented in computer vision. The textual features can

be parsed into a vector of either predetermined binary attributes, e.g., water-dwelling, or features

extracted from large unlabeled text corpora, e.g., word2vec [47] or glove [48]. Deep convolutional

neural networks (CNNs) [49; 50; 51] can extract visually rich and descriptive features from natural

images to parse the visual information. Numerous ZSL algorithms have been developed to learn a

mapping between the visual features and semantic attributes using a shared space [52; 53; 54; 55; 56;

19]. In this chapter, we focus on this latter issue of learning the mapping for ZSL, using the novel

approach of coupled dictionary learning (CDL) [57] to relate the visual features and the semantic

attributes.

CDL was developed in the image processing community to learn two overcomplete dictionaries

to couple two feature spaces to address a diverse set of image processing tasks. In many image

processing algorithms(e.g., single image super-resolution) there exist two feature spaces (i.e., high-

and low-resolution images) and the challenge is that given an instance in one of these spaces (low-

resolution image), to find the corresponding instance in the second space (high-resolution image) or

simply find it in a pool of instances. In such applications, it seems natural to assume instances related

to the same entity (i.e., high- and low-resolution images) share some type of common aspects. CDL

proposes that there exists a single sparse representation for both features that can be recovered using

two coupled dictionaries. These two dictionaries can be learned from data. We can use a pool of

training data from both feature spaces, and then the learned dictionaries are used to perform desired

tasks. CDL has been used to develop algorithms for image super-resolution [57], cross-domain image

recognition [58], image fusion [59], image deblurring [60], and lifelong learning [61]. Building upon

this progress, our contribution is to use CDL to couple the visual and the semantic spaces to perform

zero-shot image classification.

Similarly, upon learning the coupled dictionaries, we can map a given image from an unseen class

to the semantic description of the class using the joint-sparse representation, where we can classify

the image. -Moreover, we incorporate an entropy minimization term into the CDL optimization
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problem [21] to increase the discriminative power of CDL. Our novel attribute-aware formulation

also provides an algorithmic solution to the common domain shift/hubness problem in ZSL [22; 62].

We also provide theoretical analysis on PAC-learnability of our algorithm and finally demonstrate the

practicality of the approach through extensive experiments.

3.2. Problem Formulation and Technical Rationale

We are interested in a ZSL setting where semantic information leverages learning unseen classes.

We follow Palatucci et al. [52] to formulate ZSL as a two-stage estimation problem. Consider a

visual feature metric space F of dimension p, a semantic metric space A with dimension of q as

well as a class label set Y with dimension K that ranges over a finite alphabet of size K (images can

potentially have multiple memberships in the classes). As an example F = Rp for the visual features

extracted from a deep CNN and A = {0, 1}q when a binary code of length q is used to identify

the presence/absence of various characteristics in an object [56]. We are given a labeled dataset

D = {((xi, zi),yi)}Ni=1 of features of seen images and their corresponding semantic attributes,

where ∀i : xi ∈ F , zi ∈ A, and yi ∈ Y . We are also given the unlabeled attributes of unseen classes

D′ = {z′j ,y′j}Mj=1, i.e., we have access to textual information for a wide variety of objects but not

have access to the corresponding visual information. Following the standard assumption in ZSL,

we also assume that the set of seen and unseen classes are disjoint. The challenge is how to learn a

model on the labeled set and transfer the learned knowledge to the unlabeled set. We also assume

that the same semantic attributes could not describe two different classes of objects. This assumption

ensures that knowing the semantic attribute of an image one can classify that image.

The goal is to learn from the labeled dataset how to classify images of unseen classes indirectly

from the unlabeled dataset. For further clarification, consider an instance of ZSL in which features

extracted from images of horses and tigers are included in seen visual features X = [x1, ...,xN ],

where xi ∈ F , but X does not contain features of zebra images. On the other hand, the semantic

attributes contain information of all seen Z = [z1, ...,zN ] for zi ∈ A and unseen Z ′ = [z′1, ...,z
′
M ]

for z′j ∈ A images including the zebras. The goal is that by learning the relationship between the

image features and the attributes “horse-like” and “has stripes” from the seen images, we are able to
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assign an unseen zebra image to its corresponding attribute.

Within this paradigm, ZSL can be performed by a two-stage estimation. First, the visual features

can be mapped to the semantic space and then the label is estimated in the semantic space. More

formally, we want to learn the mapping φ : F → A, which relates the visual space and the attribute

space. We also assume that ψ : A → Y is the mapping between the semantic space and the label

space. The mapping ψ can be as simple as nearest neighbor, assigning labels according to the closest

semantic attribute in the semantic attribute space. Having learned this mapping, for an unseen image

one can recover the corresponding attribute vector using the image features and then classify the

image using a second mapping y = (ψ ◦ φ)(x), where ◦ represents function composition. The goal

is to introduce a type of bias to learn both mappings using the labeled dataset. Having learned both

mappings, ZSL is feasible in the testing stage. Because, if the mapping φ(·) can map an unseen

image close enough to its true semantic features, then intuitively the mapping ψ(·) can still recover

the corresponding class label. Following our example, if the function φ(·) can recover that an unseen

image of a zebra is “horse-like” and “has stripes”, then it is likely that the mapping ψ(·) can classify

the unseen image.

3.2.1. Proposed Idea

The idea of using coupled dictionaries to map data from a given metric space to a second related

metric space was first proposed by Yang et al. [11] for single image super-resolution problem.

Their pioneering idea is to assume that the high-resolution and corresponding low-resolution patches

of the image can be represented with a unique joint sparse vector in two low- and high-resolution

dictionaries. The core idea is that in the absence of a high-resolution image and given a low-resolution

image, the joint-sparse representation can be computed using sparse signal recovery [63]. The sparse

vector is then used to generate the high-resolution image patches using the low-resolution image.

They also propose an efficient algorithm to learn the low- and the high-resolution dictionaries using a

training set, consisting of both the low- and the high-resolution version of natural images. Our goal

is to follow the same approach but replacing low- and high-resolution metric spaces with the visual

and the semantic spaces, respectively.
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Figure 5: A high-level overview of our approach. Left & right: visual and attribute feature extraction
and representation using a union of subspaces. We couple the two domains by enforcing features
of an image to share the same space representation in this embedding space. Middle: mapping the
features in the shared space.
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As a big-picture to understand our approach, Figure 5 captures the gist of our idea based on the

work proposed in [11]. Visual features are extracted via CNNs (left sub-figure). For example, the

last fully-connected layer of a trained CNN can be removed, and the rest of the deep net can be

used as a feature extractor given an input image. These features have been demonstrated to be

highly descriptive and lead to the state of the art performance for many computer vision and image

processing tasks [64].

To perform ZSL, we need the textual description of classes, too. Textual descriptions of many

classes are cheap to obtain, e.g., Wikipedia. The semantic attributes then can be provided via textual

feature extractors like word2vec or potentially via human annotations (right sub-figure). Both the

visual features and the semantic attributes are assumed sparsely represented in a shared union of

linear subspaces embedding domain using the visual and the attribute dictionaries (left and right

sub-figures). The idea here is that the sparse representation vectors for both feature vectors are equal

and thus, the visual and the attribute feature spaces are coupled through the joint sparse vector. Thus,

one can map an image to its textual description in this space (middle sub-figure).

The intuition from a co-view perspective [65] is that both the visual and the attribute features provide

information about the same class or entity, and so each can augment the learning of the other. Each

underlying class is common to both views, and so we can find task embeddings that are consistent

for both the visual features and their corresponding attribute features. The main challenge is to

learn these dictionaries for the visual and the attribute spaces. After training these two dictionaries,

zero-shot classification can be performed by mapping images of unseen classes into the attribute

space, where classification can be simply done via nearest neighbor or more advanced clustering

approaches. Given the coupled nature of the learned dictionaries, an image can be mapped to its

semantic attributes by first finding the sparse representation with respect to the visual dictionary.

Our algorithm is also equipped with a novel entropy minimization regularizer [66], which facili-

tates the solution to the ZSL problem and addresses the challenge of domain shift for ZSL. Next,

the semantic attribute dictionary can be used to recover the attribute vector from the joint-sparse

representation, which can then be used for classification. We also show that a transductive approach
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applied to our attribute-aware JD-ZSL formulation provides state-of-the-art or close to state-of-the-art

performance on various benchmark datasets.

3.2.2. Technical Rationale

For the rest of our discussion, we assume that F = Rp,A = Rq, and Y ⊂ RK . Most ZSL algorithms

focus on learning φ(·) because even using a simple method like nearest neighbor classification for

ψ(·) yields descent ZSL performance. The simplest ZSL approach is to assume that the mapping

φ : Rp → Rq is linear, φ(x) = W Tx where W ∈ Rp×q, and then minimize the regression error

1
N

∑
i ‖W Txi − zi‖22 to learn W . Even though a closed-form solution exists for W , the solution

contains the inverse of the covariance matrix of X , ( 1
N

∑
i(xix

T
i ))−1, which requires a large number

of data points for accurate estimation. Various regularizations are considered for W to overcome

this problem. Decomposition of W as W = PΛQ, where P ∈ Rp×l, Λ ∈ Rl×l, Q ∈ Rl×q, and

l < min(p, q) can also be helpful. Intuitively, P is a right linear operator that projects x’s into a

shared low-dimensional subspace, Q is a left linear operator that projects z into the same shared

subspace, and Λ provides a bi-linear similarity measure in the shared subspace. The regression

problem can then be transformed into maximizing 1
N

∑
i x

T
i PΛQzi, which is a weighted correlation

between the embedded x’s and z’s. This is the essence of many ZSL techniques, including Akata

et al. [53] and Romera-Paredes et al. [18]. This technique can be extended to nonlinear mappings

using kernel methods. However, the choice of kernels remains an open challenge, and usually, other

nonlinear models are used.

The mapping φ : Rp → Rq can be chosen to be highly nonlinear, as in deep nets. Let a deep net be

denoted by φ(.;θ), where θ represents the synaptic weights and biases. ZSL can then be addressed

by minimizing 1
N

∑
i ‖φ(xi;θ)− zi‖22 with respect to θ. Alternatively, one can nonlinearly embed

x’s and z’s in a shared metric space via deep nets, p(x;θx) : Rp → Rl and q(z; θz) : Rq → Rl, and

maximize their similarity measure in the embedded space, 1
N

∑
i p(xi;θx)T q(zi;θz), as in [67; 68].

This approach might improve performance for particular data sets, but in turn would require more

training samples, i.e., we will need more seen classes to train the deep network. Note that this might

not be plausible for ZSL because the very reason and motivation to perform ZSL is to learn from as
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few labeled data points as possible.

By comparing the above approaches, we conclude that nonlinear methods are computationally

expensive and require a larger training dataset. On the other hand, linear ZSL algorithms are

efficient, but their performances are lower than nonlinear methods. As a compromise, we can model

nonlinearities in data distributions as a union of linear subspaces using coupled dictionaries. The

relationship between the metric spaces is also reflected in the learned dictionaries. This allows a

nonlinear scheme with a computational complexity comparable to linear techniques.

3.3. Zero-Shot Learning Using Coupled Dictionary Learning

In standard dictionary learning, a sparsifying dictionary is learned using a given training sample set

X = [x1, ...,xN ] for a particular class of signals [69]. Unlike standard dictionary learning, coupled

dictionary learning has been proposed to couple related features from two metric spaces to learn the

mapping function between these spaces. Following the same framework, the gist of our approach is

to learn the mapping φ : Rp → Rq through two dictionaries, Dx ∈ Rp×r and Dz ∈ Rq×r for X and

[Z,Z ′] sets, respectively, where r > max(p, q). The goal is to find a shared sparse representation ai

for xi and zi, such that xi = Dxai and zi = Dzai, to be used for coupling the semantic and visual

features. We first explain how we can train the two dictionaries, and then how can we use these

dictionaries to estimate φ(·).

3.3.1. Training Phase

Standard dictionary learning is based upon minimizing the empirical average estimation error

1
N ‖X −DxA‖2F on a given training set X , where an additive `1 regularization penalty term on A

enforces sparsity:

D∗x, A
∗ = argmin

Dx,A

{
1

N
‖X −DxA‖2F + λ‖A‖1

}
s.t.
∥∥D[i]

x

∥∥2

2
≤ 1 .

(3.1)
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Here λ is the regularization parameter that controls sparsity level, and D[i]
x is the ith column of Dx.

The columns of the dictionary are normalized to obtain a unique dictionary. Alternatively, following

the Lagrange multiplier technique, the Frobenius norm of Dx could be used as a regularizer in place

of the constraint.

The above problem is not a convex optimization problem; it is biconvex with respect to the variables

Dx and A but is convex in each variable alone. As a result, most dictionary learning algorithms

use alternation on variables Dx and A to solve Eq. (3.1), leading to the iteration of two separate

optimization problems, each solely on one of the variables assuming the other variable to be constant.

Upon a suitable initialization, when the dictionary is fixed, Eq. (3.1) reduces to a number of parallel

sparse recovery, i.e., LASSO problems which can be solved efficiently [70]. Then, for a fixed A,

Eq. (3.1) reduces to a standard quadratically constrained quadratic program (QCQP) problem which

can be solved efficiently with iterative methods such as conjugate gradient descent algorithms even

for high-dimensional (large p) and huge problems (large r). This alternative procedure on variables

is repeated until some convergence criterion is met, e.g., reaching a semi-stationary point.

In our coupled dictionary learning framework, we aim to learn coupled dictionaries Dx and Dz

such that they share the sparse coefficients A to represent the seen visual features X and their

corresponding attributes Z, respectively. Intuitively this means that visual features for an object have

corresponding semantic features. On the other hand, Dz also needs to sparsify the semantic attributes

of other (unseen) classes, Z ′, in order to perform ZSL. Hence, we propose the following optimization

problem to learn both dictionaries:

D∗x, A
∗, D∗z , B

∗ = argmin
Dx,A,Dz ,B

{
1

Np

(
‖X −DxA‖2F +

pλ

r
‖A‖1

)
+

1

Nq
‖Z −DzA‖2F +

1

Mq

(
‖Z ′ −DzB‖2F +

qλ

r
‖B‖1

)}
s.t.:
∥∥D[i]

x

∥∥2

2
≤ 1,

∥∥D[i]
z

∥∥2

2
≤ 1 ,

(3.2)

The above formulation combines the dictionary learning problems for X and Z by coupling them via

joint-sparse code matrix A, and also enforces Dz to be a sparsifying dictionary for Z ′ with sparse
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Algorithm 1 Coupled Dictionary Learning ({X,Z,Z ′}, λ, r,itr)

1: Dx ← RandomMatrixp,r, Dz ← RandomMatrixq,r
2: Dz ← update(Dx, {X,Z,Z ′}, λ) Eq. 3.3
3: Dx ← update(Dz, {Z}, λ) Eq. 3.4

codes B. Similar to Eq. (3.1), the optimization in Eq. (3.2) is biconvex in (Dx, Dz) and (A,B), i.e.,

despite being convex in each individual term, it is highly nonconvex in all variables. Inspired by the

approach proposed by Yang et al. [57], we use an alternating scheme to update over Dx and Dz for

finding a local solution.

First we add the constraints on dictionary atoms in Eq. (3.2) as a penalty term the objective function

and solve:

min
A,Dx

||X −DxA||22 + λ||A||1 + β||Dx||22 (3.3)

by alternately solving the LASSO for A and taking gradient steps with respect to Dx. For compu-

tational and robustness reasons, we chose to work within a stochastic gradient descent framework,

in which we take random batches of rows from X and corresponding rows of A at each iteration to

recue the computational complexity.

Next we solve

min
B,Dz

||Z −DzA||22 + ||Z ′ −DzB||22 + λ||B||1 + β||Dz||22 , (3.4)

by alternately solving the LASSO for B and taking gradient steps with respect to Dz , (while holding

A fixed as the solution found in Eq. (3.3). Here we do not use stochastic batches for B since there

are many fewer rows than there were for A.

The learned dictionaries then can be used to perform ZSL using the procedure that we explained.

Algorithm 1 summarizes the coupled dictionary learning procedure.
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3.3.2. Prediction of Unseen Attributes

In the testing phase, we are only given the extracted features from unseen images, X ′ = [x′1, ...,x
′
l] ∈

Rp×l and the goal is to predict their corresponding semantic attributes. We propose two different

methods to predict the semantic attributes of the unseen images based on the learned dictionaries in

the training phase, namely attribute-agnostic prediction and attribute-aware prediction.

Attribute-Agnostic Prediction

The attribute-agnostic (AAg) method is the naive way of predicting semantic attributes from an

unseen image x′i. In the attribute-agnostic formulation, we first find the sparse representation αi of

the unseen image x′i by solving the following LASSO problem,

αi = argmina

{
1

p
‖xi −Dxa‖22 +

λ

r
‖a‖1

}
. (3.5)

and its corresponding attribute is estimated by ẑi = Dzαi. We call this formulation attribute-agnostic

because the sparse coefficients are found without any information from the attribute space. However,

given that the attributes of the unseen classes are given, we can improve this base-line estimate. We

use AAg as a baseline to demonstrate the effectiveness of the attribute-aware prediction.

Attribute-Aware Prediction

In the attribute-aware (AAw) formulation we would like to find the sparse representation αi to not

only approximate the input visual feature, x′i ≈ Dxαi, but also provide an attribute prediction,

ẑi = Dzαi, that is well resolved in the attribute space. Meaning that ideally ẑi = z′m for some

m ∈ {1, ...,M}, however since the dictionaries are biased towards seen classes as those classes are

used to couple the visual and the textual domains, the dictionaries are biased and the recovered labels

are more biased towards the seen classes. This is called the problem of domain shift in ZSL literature.

So, if we bias the recovered sparse vector towards the unseen classes, it is more likely that the correct

class label can be recovered. To achieve this, we define the soft assignment of ẑi to z′m, denoted by
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pm, using the Student’s t-distribution as a kernel to measure the similarity between ẑi = Dzαi and

z′m,

pm(αi) =

(
1 +

‖Dzαi−z′m‖22
ρ

)− ρ+1
2

∑
k

(
1 +

‖Dzαi−z′k‖
2
2

ρ

)− ρ+1
2

, (3.6)

where ρ is the kernel parameter. We chose the t-distribution as it is less sensitive to the choice of

kernel parameter, ρ.

Ideally, pm(αi) = 1 for some m ∈ {1, ...,M} and pj(αi) = 0 for j 6= m. In other words, the ideal

soft-assignment p = [p1, p2, ..., pM ] would be one-sparse and have minimum entropy which can be

used as an additional informative constraint. This motivates our attribute-aware formulation, which

penalizes Eq. 3.5 with the entropy of p.

αi = argmina

{
1

p
‖x′i −Dxa‖22 − γ

∑
m

pm(a) log(pm(a))︸ ︷︷ ︸
g(a)

+
λ

r
‖a‖1

}
,

(3.7)

where γ is the regularization parameter for entropy of the soft-assignment probability vector p,

Hp(α). The entropy minimization has been successfully used in several works [66; 71] either as

a sparsifying regularization or to boost the confidence of classifiers. Such regularization, however,

turns the optimization in Eq. (3.7) into a nonconvex problem. However, since g(a) is differentiable

and the `1 norm is continuous (and its proximal operator is simply the soft thresholding operator)

we can apply proximal gradient descent [72]. In our implementation we found that gradient descent

applied directly to Eq. (3.7) worked fine since Eq. (3.7) is differentiable almost everywhere.

Due to the non-convex nature of the objective function, a good initialization is needed to achieve a

sensible solution. Therefore we initialize α from the solution of the attribute-agnostic formulation

and update that solution. Finally the corresponding attributes are estimated by ẑi = Dzαi, for

i = 1, ..., l.
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Algorithm 2 Zero-shot Prediction (xi λ)
1: Attribute-Agnostic prediction:
2: αi ← argmina

1
p‖xi −Dxa‖22 + λ

r ‖a‖1
3: ẑi = Dzαi
4: z′m = argminz′∈Z′ ‖z′ − ẑi‖2
5: Attribute-Aware prediction:
6: αi ← argmina

1
p‖x′i −Dxa‖22 − γHp(α) + λ

r ‖a‖1
7: ẑi = Dzαi
8: z′m = argminz′∈Z′ ‖z′ − ẑi‖2
9: Transducer Prediction

10: Solve 3.7 to predict αi for all unseen samples.
11: Use label propagation to spread the labels.

3.3.3. From Predicted Attributes to Labels

In order to predict the image labels, one needs to assign the predicted attributes, Ẑ = [ẑ1, ..., ẑl],

to the M attributes of the unseen classes Z ′. This task can be performed in two ways, namely the

inductive approach and the transductive approach.

Inductive Approach

In the inductive approach, the inference could be performed using the nearest neighbor (NN) approach

in which the label of each individual ẑi is assigned to be the label of its nearest neighbor z′m. More

precisely,

z′m = argminz′∈Z′

{
‖z′ − ẑi‖2

}
, (3.8)

and the corresponding label of z′m is assigned to ẑi. In such an approach, the structure of ẑi’s is not

taken into account. Looking at the t-SNE embedding visualization [73] of ẑi’s and z′m’s in Figure 6

(b) (details are explained later) it can be seen that NN will not provide an optimal label assignment.

Transductive Learning

In the transductive attribute-aware (TAA) method, on the other hand, the attributes for all test images

(i.e., unseen) are first predicted to form Ẑ = [ẑ1, ..., ẑL]. Next, a graph is formed on [Z ′, Ẑ], where

the labels for Z ′ are known and the task is to infer the labels of Ẑ. Intuitively, we want the data
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points that are close together to have similar labels. This problem can be formulated as a graph-based

semi-supervised label propagation [74; 75].

We follow the work of Zhou et al. [75] and spread the labels of Z ′ to Ẑ. More precisely, we

form a graph G(V, E) where the set of nodes V = {v}M+L
1 = [z′1, ..., z

′
M , ẑ1, ..., ẑL], and E

is the set of edges whose weights reflect the similarities between the attributes. Note that the

first M nodes are labeled and our task is to use these labels to predict the labels of the rest of

the nodes. We use a Gaussian kernel to measure the edge weights between connected nodes,

Wmn = exp{−‖vm − vn‖2/2σ2}, where σ is the kernel parameter and Wii = 0. To construct the

graph G one can utilize efficient k-NN graph construction methods as in [76], where the assumption

is that: a neighbor of a neighbor is more likely to be a neighbor. Let F ∈ RM×(M+L) corresponds to

a classification of the nodes, where Fmn is the probability of vn belonging to the m’th class. Let

Y ∈ RM×(M+L) = [IM×M ,0M×L] represent the initial labels, where I denotes an identity matrix

and 0 denotes a zeros matrix. From a Graph-Signal Processing (GSP) point of view, F is a signal

defined on graph G, and one requires this signal to be smooth. Zhou et al. [75] proposed the following

optimization to obtain a smooth signal on a graph G that fits the initial known labels,

argminF

{
1

2

(∑
m,n

Wmn‖
Fm√
Dmm

− Fn√
Dnn
‖2+

µ
∑
m

‖Fm − Ym‖2
)}

,

(3.9)

where D ∈ R(M+L)×(M+L) is the diagonal degree matrix of graph G, Dmm =
∑

nWmn, and µ is

the fitness regularization. Note that the first term in Eq. (3.9) enforces the smoothness of signal F

and the second term enforces the fitness of F to the initial labels. The minimization in Eq. (3.9) has

the following closed-form solution:

F =
µ

1 + µ

(
I− 1

1 + µ
(D−

1
2WD−

1
2 )

)−1

Y . (3.10)

To avoid the matrix inversion in the above formulation, Fujiware et al. [77] proposed to iteratively

compute lower and upper-bounds of labeling scores to avoid unnecessary score computation and
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reduce computational cost. Algorithm 2 summarizes the zero-shot label prediction procedure.

3.4. Theoretical Discussion

In this section, we establish PAC-learnability of the proposed algorithm. Our goal is to provide

a PAC-style generalization error bound for the proposed ZSL algorithm. The goal is to establish

conditions under which our ZSL algorithm can identify instances from unseen classes. We use the

framework developed by Palatucci et al. [52], to derive this bound. The core idea is that if we are

able to recover the semantic attributes of a given image with high accuracy, then the correct label

can be recovered with high probability as well. Note that three probability events are involved in the

probability event of predicting an unseen class label correctly, denoted by Pt:

1. Given a certain confidence parameter δ and the error parameter ε, a dictionary can be learned with

Mε,δ samples. We denote this event by Dε. Hence P (Dε) = 1− δ and E(‖x−Da‖22) ≤ ε, where

E(·) denotes statistical expectation.

2. Given the event Dε (learned dictionaries), the semantic attribute can be estimated with high

probability. We denote this event by Sε|Dε.

3. Given the event Sε|Dε, the true label can be predicted. We denote this event by T |Sε and so

P (T |Sε) = 1− ζ.

Therefore, the event Pt can be expressed as the following probability decoupling by multiplying the

above probabilities:

Pt = P (Dε)P (Sε|Dε)P (T |Sε) . (3.11)

Our goal is: given the desired values for confidence parameters ζ and δ for the two ZSL stages,

i.e., P (Dε) = 1− δ and P (T |Sε) = 1− ζ, we compute the necessary ε for that level of prediction

confidence as well as P (Sε|Dε). We also need to compute the number of required training samples

to secure the desired errors. Given P (T |Sε) = 1− ζ, we compute ε and the conditional probability

P (Sε|Dε).
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To establish the error bound, we need to compute the maximum error in predicting the semantic

attributes of a given image, for which we still can predict the correct label with high probability.

Intuitively, this error depends on the geometry ofA and probability distribution of semantic attributes

of the classes in this space, P . For example, if semantic attributes of the two classes are very close,

then error tolerance for those classes will be less than two classes with distant attributes. To model

this intuition, we focus our analysis on nearest neighbor label recovery. Let ẑ denote the predicted

attribute for a given image by our algorithm. Let d(ẑ, z′) : Rq × Rq → R denote the distance

between this point and another point in the semantic space. We denote the distribution function

for this distance as Rẑ(t) = P (d(ẑ, z′) ≤ t). Let Tẑ denote the distance to the nearest neighbor

of ẑ and Wẑ(t) = P (Tẑ ≤ t) denotes its probability distribution. The latter distribution has been

computed by Ciaccia and Patella [78] as:

Wẑ(t) = 1−
(
1−Rẑ(t)

)n
, (3.12)

where n is the number of points drawn from the distribution P . Note that the function Rẑ(t) is an

empirical distribution which depends on the distribution of semantic feature space, P , and basically

is the fraction of sampled points from P that are less than some distance t away from ẑ.

Following the general PAC-learning framework, given a desired probability (confidence) ζ, we want

the distance Tẑ to be less than the distance of the predicted attribute ẑ from the true semantic descrip-

tion of the true class that it belongs to, i.e., orWẑ(τẑ) ≤ ζ . Now note that sinceWẑ(·) is a cumulative

distribution (never decreasing), W−1
ẑ (·) is well-defined as W−1

ẑ (ζ) = argmaxτẑ [Wẑ(τẑ) ≤ ζ]. If

τẑ ≤W−1
ẑ (ζ), then the correct label can be recovered with probability of 1− ζ . Hence, prior to label

prediction (which itself is done for a given confidence parameter δ), the semantic attributes must

be predicted with true error at most εmax = W−1
ẑ (ζ) and we need to ensure that semantic attribute

prediction achieves this error bound, that is Ez

(
‖z−Dza

∗‖22
)
≤W−1

ẑ (ζ). To ensure this to happen,

we rely on the following theorem on PAC-learnability of the dictionary learning (3.1) derived by

Gribonval et al. [79]:

Theorem 3.4.1. Consider dictionary learning problem in (3.1), and the confidence parameter δ
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(P (Dε) = 1− δ) and the error parameter εmax = W−1
ẑ (ζ) in standard PAC-learning setting. Then

the number of required samples to learn the dictionary MW−1
ẑ ,δ satisfies the following relation:

W−1
ẑ (ζ) ≥ 3

√√√√β log(MW−1
ẑ ,δ)

MW−1
ẑ ,δ

+

√
β + log(2/δ)/8

Mε,δ

β =
pr

8
max{1, log(6

√
8L)} ,

(3.13)

where L is a constant that depends on the loss function which measures the data fidelity. Given all

parameters, Eq. (3.13) can be solved for MW−1
ẑ ,δ.

So, according to Theorem 3.4.1 if we use at least MW−1
ẑ ,δ sample images to learn the coupled

dictionaries, we can achieve the required error rate εmax = W−1
ẑ (ζ). Now we need to determine the

probability of recovering the true label in the ZSL regime or P (Sε|Dε). Note that the core step for

predicting the semantic attributes in our scheme is to compute the joint-sparse representation for an

unseen image. Also note that Eq. 3.1 can be interpreted as a result of a maximum a posteriori (MAP)

inference within Bayesian perspective. This means that from a probabilistic perspective, α’s are

drawn from a Laplacian distribution and the dictionary D is a Gaussian matrix with elements drawn

i.i.d: dij ∼ N (0, ε). This means that given a drawn dataset, we learn MAP estimate of the Gaussian

matrix [Dx, Dz]
> and then use the Gaussian matrix Dz to estimate a in ZSL regime. To compute the

probability of recovering a in this setting, we can rely on the following theorem:

Theorem 3.4.2. (Theorem 3.1 in [80]): Consider the linear system xi = Dxai + ni with a sparse

solution, i.e., ‖ai‖0 = k, where Dx ∈ Rp×r is a random Gaussian matrix and ‖ni‖2 ≤ ε). Then the

unique solution of this system can be recovered by solving Eq. (3.5) with probability of (1− epξ) as

far as k ≤ c′p log( rp), where c′ and ξ are two constant parameters.

Theorem 3.4.1 suggests that we can use Eq. (3.5) to recover the sparse representation and subsequently

unseen attributes with high probability P (Sε|Dε) = (1− epξ). This theorem also suggests that for

our approach to work, the existence of a good sparsifying dictionary, as well as rich attribute data, is

essential. Therefore, given desired the error parameters 1− ζ and 1− δ for the two stages of ZSL

algorithm and the error parameter ε, the probability event of predicting the correct label for an unseen
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Figure 6: Attributes predicted from the input visual features for the unseen classes of images for
AWA1 dataset using our attribute-agnostic and attribute-aware formulations respectively in the top
and bottom rows. The nearest neighbor and label propagation assignment of the labels together with
the ground truth labels are visualized. It can be seen that the attribute-aware formulation, together
with the label propagation scheme overcomes the hubness and domain shift problems, enclosed in
yellow margins. Best viewed in color.

class can be computed as:

Pt = (1− δ)
(
1− epξ

)
(1− ζ) , (3.14)

which concludes our proof on PAC-learnability of the algorithm �

3.5. Experiments

We carried out experiments on three benchmark ZSL datasets: AwA, SUN, and CUB dataset (we

used both versions of the AwA dataset in our experiemnts). We empirically evaluated the resulting

performance against the existing state of the art ZSL algorithms.

Datasets: We conducted our experiments on three benchmark datasets namely: the Animals with

Attributes (AwA1) [56] and (AwA2), [81] the Scene UNderstanding (SUN) attribute [82], and the

Caltech-UCSD-Birds 200-2011 (CUB) bird [83] datasets.
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The Animals with Attributes (AwA1) dataset is a coarse-grained dataset containing 30475 images

of 50 types of animals with 85 corresponding attributes for these classes. Semantic attributes for

this dataset are obtained via human annotations. The images for the AWA1 dataset are not publicly

available; therefore, we use the publicly available features of dimension 4096 extracted from a

VGG19 convolutional neural network, which was pre-trained on the ImageNet dataset. Following

the conventional usage of this dataset, 40 classes are used as source classes to learn the model, and

the remaining ten classes are used as target (unseen) classes to test the performance of zero-shot

classification. The major disadvantage of AwA1 dataset is that only extracted features are available

for this dataset. The AwA2 dataset developed recently to compensate for this weakness by providing

the original images. The AWA2 dataset has a similar structure with the same 50 animal classes

and 85 attributes, but with 37,322 images. Because the original images are available, one can use

alternative deep net structures for feature extraction.

The Scene UNderstanding (SUN) dataset is a fine-grained dataset and contains 717 classes of different

scene categories with 20 images per category (14,340 images total). Each image is annotated with

102 attributes that describe the corresponding scene. There are two general approaches that has been

used in the literature to split this dataset into training and testing sets. Following [19], 707 classes

are used to learn the dictionaries, and the remaining ten classes are used for testing. Following the

second approach [56], we used 645 classes to learn the dictionaries, and the remaining 72 classes are

used for testing. Both splits are informative because together help to understand the effect of the

training set size on ZSL performance.

The Caltech-UCSD-Birds (CUB200) dataset is a fine-grained dataset containing 200 classes of

different types of birds with 11,788 images. There are 312 attributes and boundary segmentation for

each image of the dataset. The attributes are obtained via human annotation. The dataset is divided

into four almost equal folds, where three folds are used to learn the model, and the fourth fold is used

for testing.

For each dataset, except for AwA1 (where images are not available), we use features extracted by the

final layer before classification of VGG19 [50], Inception [84], ResNet [51], and DenseNet [85]. For
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AwA1, AwA2, and CUB200-2011 the networks were trained on ImageNet [49]. For SUN, they were

trained on Places [86].

Tuning parameters: Our experiments show that the regularization parameters λ, ρ, γ as well as

the number of dictionary atoms r need to be tuned for maximal performance. We simply used

the standard k-fold cross-validation to search for the optimal parameters for each dataset. After

splitting the datasets accordingly into training, validation, and testing sets, we used performance on

the validation set for tuning the parameters in a brute-force search. We used the common evaluation

metric in ZSL, flat hit@K classification accuracy, to measure the performance. This means that a

test image is said to be classified correctly if it is classified among the top K predicted labels. We

report hit@1 rate to measure ZSL image classification performance and hit@3 and hit@5 for image

retrieval performance.

Results: Each experiment is performed ten times, and the mean is reported in Table 1 (please check

the last pages of this chapter). For the sake of transparency and to provide the complete picture

to the reader, we included results for the AAg formulation using nearest neighbor, the AAw using

nearest neighbor, and AAw using the transductive approach, denoted as transductive attribute-aware

(TAAw) formulation. As can be seen, while the AAw formulation significantly improves the AAg

formulation, adding the transductive approach (i.e., label propagation on predicted attributes) to the

AAw formulation further boosts the classification accuracy, as also shown in Figure 6. These results

also support the logic behind our approach that: 1) the attribute aware optimization always boosts

the performance by addressing domain shift problem, and 2) the transductive prediction of labels

leads to a secondary boost in performance of our method by reducing the hubness effect. Finally, for

completeness hit@3 and hit@5 rates measure image retrieval performance for our algorithm. This

result demonstrates that ZSL can be used for image retrieval.

Figure 6 demonstrates the 2D t-SNE embedding for predicted attributes and actual class attributes

of the AWA1 dataset. It can be seen that our algorithm can cluster the dataset in the attribute space.

The actual attributes are depicted by colored circles with black edges. The first column of Figure 6

demonstrates the attribute prediction for AAg and AAw formulations. We also see that the entropy
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regularization in AAw formulation improves the clustering quality, decreases data overlap, and

reduces the domain shift problem. The nearest neighbor label assignment is shown in the second

column, which demonstrates the domain shift and hubness problems with NN label assignment in

the attribute space. The third column of Figure 6 shows the transductive approach in which a label

propagation is performed on the graph of the predicted attributes. Note that the label propagation

addresses the domain shift and hubness problem and when used with the AAw formulation provides

significantly better zero-shot classification accuracy.

Performance comparison results using VGG19 and GoogleNet extracted features are summarized

in Table 2 and Table 3, as these features have been used in the literature extensively. Note that in 3

we used AwA2 in order to be able to extract the ResNet and GoogleNet features. As pointed out by

Xian et al. [81] the variety of used image features (e.g., various DNNs and various combinations of

these features) as well as the variation of used attributes (by, e.g., word2vec, human annotation), and

different data splits make direct comparison with the ZSL methods in the literature very challenging.

In Table 2 and Table 3 we provide a fair comparison of our JDZSL performance to the recent methods

in the literature. All compared methods use the same visual features and the same attributes (i.e.,

the continuous or binned) provided in the dataset. Table 2 and Table 3 provide a comprehensive

explanation of the shown results. Note that our method achieves state-of-the-art or close to state-of-

the-art performance. Note that our approach leads to better and comparable performance in all three

datasets, which include zero-shot scene and object recognition tasks. More importantly, while the

other methods can perform well on a specific dataset, our algorithm leads to competitive performance

on all the three datasets.

3.6. Conclusions

A ZSL formulation is developed which models the relationship between visual features and semantic

attributes via coupled dictionaries that sparsify the visual and the semantic features. We established

the PAC-learnability of our method and demonstrated that while a classic coupled dictionary learning

approach suffers from the domain shift problem, an entropy regularization scheme can help with

this phenomenon and provide superior zero-shot performance. In addition, we demonstrated that a
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transductive approach towards assigning labels to the predicted attributes could boost the performance

considerably and lead to state-of-the-art zero-shot classification. Finally, we compared our method to

the state of the art approaches in the literature and demonstrated its competitiveness on benchmark

datasets. An important limitation of coupled dictionary learning is that the learning scheme is not

end-to-end, i.e., we need preprocessed features. The reason is that dictionary learning on unprocessed

natural images is computationally infeasible. In the next two chapters, we discuss how deep neural

networks can be used to couple two visual domains in an end-to-end data-driven training framework.
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Method SUN CUB AwA1
Romera-Paredes and Torr [18] 82.10 - 75.32

Zhang and Saligrama [19]† 82.5 30.41 76.33
Zhang and Saligrama [87]† 83.83 42.11 80.46

Bucher, Herbin, and Jurie [88]† 84.41 43.29 77.32
Xu et al. [89]† 83.5 53.6 84.5
Li et al. [90] † - 61.79 87.22

Ye and Guo [91]† 85.40 57.14 85.66
Ding, Shao, and Fu [92]† 86.0 45.2 82.8

Wang and Chen [93]† - 42.7 79.8
Kodirov, Xiang, and Gong [20]† 91.0 61.4 84.7

Ours AAg (3.5) 85.5 35.29 77.30
Ours AAw (3.6) 89.3 40.62 79.48
Ours Transductive AAw (TAAw) 91.00 48.41 89.35

Table 2: Zero-shot classification results for four benchmark datasets: all methods use VGG19 features
trained on the ImageNet dataset, and the original continuous (or binned) attributes provided by the
datasets. Here, † indicates that the results are extracted directly from the referred paper, ‡ indicates
that the results are reimplemented with VGG19 features, and “ -” indicates that the results are not
reported.

Method SUN CUB AwA2
Romera-Paredes and Torr [18]† 18.7 44.0 64.5

Norouzi et al. [55]† 51.9 36.2 63.3
Mensink et al. [94]† 47.9 40.8 61.8

Akata et al. [95]† 56.1 50.1 66.7
Lampert et al. [96]† 44.5 39.1 60.5

Changpinyo et al. [97] † 62.7 54.5 72.9
Bucher, Herbin, and Jurie [88]† - 43.3 77.3

Xian et al. [98]† - 45.5 71.9
Bucher et al. [99]† 56.4 60.1 55.3

Zhang and Saligrama [19]† - 30.4 76.3
Ours AAg (3.5) 55.7 35.3 39.1
Ours AAw (3.6) 56.0 40.3 47.6
Ours Transductive AAw (TAAw) 57.0 49.7 71.7

Table 3: Zero-shot classification results for three benchmark datasets: all methods use Inception
features trained on the ImageNet dataset, and the original continuous (or binned) attributes provided
by the datasets. Here “-" indicates that the results are not reported.
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Chapter 4 : Learning a Discriminative Embedding

for Unsupervised Domain Adaptation

In the previous chapter, we considered the problem of zero-shot learning, where the goal was to

transfer knowledge from the semantic domain to the visual domain. Although the focus was to solve

a classification problem, data scarcity was a challenge for a subset of classes and knowledge transfer

was performed within the same classification problem.

In this chapter and the next chapter, we focus on the problem of domain adaptation (DA). In a domain

adaptation learning scenario, usually, two domains from the same data modality are considered, e.g.,

two visual domains or two textual domains. In contrast to ZSL setting, we solve a classification

problem in each domain. The two domains are related as both classification problems share the same

classes. We face the problem of labeled data scarcity in a domain, i.e., the target domain, which

makes training a good model infeasible. The solution idea is to transfer knowledge from the other

related domain, i.e., the source domain, where labeled data is easy to obtain. Learning a shared

discriminate and domain-agnostic embedding space can help to transfer knowledge from the source

domain to the target domain as classification can be supervised via labeled data from solely the

source domain.

Figure 7 visualizes this idea to tackle domain adaptation. In this figure, we have two ternary

classification problems in the domains of natural and infrared images as the source and the target

domain, respectively. In the domain of natural images, it is easy to generate labeled data, but in the

domain of infrared images, we face labeled data scarcity. The idea is that if we can map the images

from these two domains into a shared embedding space such that similar classes lie close by in the

embedding space, then a classifier that is trained using labeled data of the source domain would

generalize well in the target domain. The major challenging is to learn a function that can map the

data points from both domains to the shared embedding space such that the corresponding classes lie

close by in the embedding space.
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Figure 7: Domain adaptation through an intermediate embedding space: in this figure, the darker
circles in the embedding space denote representations of images for the source domain, and the
lighter circles denote representations of images for the target domain. If the distribution of both
domains are aligned in the embedding space such that the same classes lie closely in the embedding
space, then a classifier that works well on the source domain would generalize well in the target
domain.

In this chapter, we learn such an embedding for unsupervised domain adaptation (UDA), where

we have no labeled data in the target domain. We tackle challenges of UDA by minimizing the

discrepancy between the distributions of the source and the target domains in the embedding space.

We learn a deep encoder such that it minimizes the Sliced-Wasserstein Distance (SWD) between

the embedded distributions of source and target domains, and captures discriminant features of the

source domain. Moreover, we align corresponding class pairs from both domains in the embedding

space by using high confidence pseudo-labels for the target domain, i.e., assigning the class for

which the source classifier has a high prediction probability, to tackle the class matching problem.

We demonstrate theoretically that our approach can be effective and validate our algorithm through

experiments on benchmark domain adaptation datasets. Results of this chapter have been presented

in [100; 101; 102].
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4.1. Overview

Transfer learning [12] and domain adaptation [103], terms sometimes used interchangeably, are

closely related paradigms to circumvent the problem of labeled data scarcity and used to improve

learning speed and model generalization. The core idea is to overcome labeled data scarcity in a

target domain of interest via transferring knowledge from a related auxiliary source domain where

labeled data is easy to obtain. For this reason, knowledge transfer has been a major research focus in

the machine learning literature.

A major line of research for cross-domain knowledge transfer is to map data from different domains

to a latent, intermediate embedding space such that the embedding captures semantically meaningful

relations. For example, if the source and the target data points are mixed in the embedding such

that they are statistically indistinguishable, then a model learned solely on the source dataset would

classify the target data points with similar accuracy. More specifically, if the data from source and

target domains have similar class-conditioned probability distributions in the embedding, i.e., data

points from both domains that belong to a single class geometrically form a cluster in the embedding,

then a classifier learned using solely the labeled data from the source domain, generalizes well on

data points from the target domain [104]. This can be achieved by learning a mapping that is shared

between both domains, e.g., a deep encoder, to map data points to the embedding space such that

the discrepancy between the source and target domain distributions in the latent space is minimized

with respect to a probability distribution metric [26]. This procedure can be performed in both

unsupervised and semi-supervised setting. If no labeled data point in the target domain is available,

the setting is called Unsupervised Domain Adaptation (UDA) [31]. In contrast, a small portion of the

target domain data points is labeled [105] in a semi-supervised setting. In this chapter, we focus on

the UDA setting, and in the next chapter, we will develop a semi-supervised algorithm.

We propose a novel UDA algorithm, following the above explained UDA procedure to learn a

discriminative embedding space. Our contribution is to learn the shared encoder by minimizing

the Sliced-Wasserstein Distance (SWD) [106] between the source and target distributions in the

embedding space, while simultaneously training a classifier network using source domain data. Our
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approach is a simpler, yet more effective alternative for adversarial learning techniques that have

been used recently to address probability matching for UDA [31; 107; 105]. This strategy, on its own,

might not succeed because distributions should be aligned class-conditionally. To circumvent the

class matching issue, we minimize SWD between conditional distributions in sequential iterations.

At each iteration, we assign pseudo-labels only to the target domain data that the source classifier

predicts the assigned class label with high probability and use this portion of target data to minimize

the SWD between conditional distributions. As more learning iterations are performed, the number

of target data points with confident pseudo-labels grows and progressively enforces distributions to

align conditionally.

4.2. Related Work

Unsupervised domain adaptation has been investigated extensively in the recent machine learning

literature [108; 109; 110; 111; 25; 112; 113]. The common theme among the majority of the prior

works is to match the source and target data points such that a classifier that is learned through

supervision via solely the source domain labeled data points, would generalize well on the target

data points. Initial domain adaptation works attempt to either extract domain invariant features [109]

or preprocess the target domain data points through mapping them to the source domain for this

purpose [110]. In contrast, while earlier works [111; 25] learn a domain-invariant subspace where

the target domain data points distribute similar to the source domain data points, more recent works

learn an intermediate space as the output of a deep neural network such that the source and the target

domain distributions possess minimal discrepancy in the corresponding embedding space. This

process has been done either via adversarial learning which matches distributions indirectly [114], or

direct probability matching [30].

Pioneered by Ganin et al. [112], several methods have used adversarial learning to match the target

and the source distributions in the embedding space implicitly. Inspired from the seminal work of

Generative Adversarial Networks (GAN) [114], Liu et al. [113] and Tzeng et al. [31] propose to

train two competing, i.e., adversarial, deep neural networks for unsupervised domain adaptation. A

generator network that maps data points from both domains to the domain-invariant space and a
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discriminator network that tries to distinguish between the representations of the target and the source

data points. The generator network is learned such that the discriminator cannot distinguish between

the two domains. As a result of this training procedure, the generator network is trained to map the

data points to an embedding space, where the source and the target domains are indistinguishable.

Zhu et al. [32] improved these works by introducing the notion of cycle-consistency loss. Their

idea was to train two GANs such that together they produce an identity mapping between the two

domains through minimizing the cycle-consistency loss. As a result, there is no need for pairwise

correspondence to learn the discriminator networks. Sankaranarayanan et al. [115] use GAN to

generate images from representations of both the source and the target data points in the embedding,

where discriminator distinguishes between real and fake data points. A classifier is then learned from

the learned embedding to predict the labels. Choi et al.[116] extended the work of Zhu et al. [32] to

multi-source domain adaptation scenario, where knowledge transfer from several domains can boost

performance accumulatively.

Despite the empirical success, probability matching is done indirectly via the discriminator network

in adversarial learning techniques. As a result, adversarial learning requires deliberate architecture

design, optimization initialization, and selection of hyper-parameters, e.g., regularization parameters

and the learning rate, to be stable [117]. Moreover, it is known to suffer from a phenomenon known

as mode collapse [118]. That is, if the data distribution is a multi-modal distribution, which is the

case for most classification problems, the generator network might not generate samples from some

modes of the distribution or at least generate samples from classes non-uniformly. In a classification

setting, this means that the generator might miss matching some of the classes properly. To address

the mode collapse problem, we can attempt to learn the embedding space directly, for example by

minimizing the distance between distributions with respect to a probability distance metric [30]

or using geometric constraints [119]. The major challenge is to select a suitable metric that can

be used for optimization as common probability distribution metrics such as KL-divergence or

Jensen–Shannon divergence are not suitable for gradient-based optimization. The reason is that

these metrics do not vary when two distributions do not possess overlapped supports, and hence, the

gradient vector would vanish. Initial attempts use the Maximum Mean Discrepancy (MMD) metric
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for this purpose [108]. MMD simply uses the distances between the mean of embedding features to

measure the distance between distributions. Haeusser et al. [119] used the idea of cycle-consistency

from adversarial learning to learn the embedding directly such that transforming the source data

points in the cycle source-embedding-target-embedding would keep data points of a particular class

close to each other in the embedding space with high probability.

A recent line of work use the Wasserstein metric [120] to address UDA [30; 121], which emerges from

the optimal mass transportation problem. The idea is to train an encoder such that the Wasserstein

metric between the source and the target domain distributions are minimized in the embedding.

In particular, Redko et al. [104] provided theoretical guarantees for using a Wasserstein metric to

address domain adaptation. They proved that the target generalization error can be upper-bounded by

the source generalization error and the Wasserstein distance between domain distributions. We use

their work to justify why our own algorithm can tackle UDA challenges. To calculate the Wasserstein

distance for distributions defined in a d-dimensional space (for d ≥ 2), however, a linear programming

optimization is required to be solved that is computationally expensive, often solved by training

another deep network. Although computationally efficient variations of the Wasserstein distance

have been recently proposed [122; 123; 124], these variations still require an additional optimization

in each iteration of the stochastic gradient descent (SGD) steps to match distributions. Courty et

al. [30] used a regularized version of the optimal transport for domain adaptation to circumvent

computational complexity. Seguy et al. [125] used a dual stochastic gradient algorithm for solving

the regularized optimal transport problem. In contrast to higher dimensions, the Wasserstein distance

for one-dimensional distributions has a closed-form solution which can be easily computed. This

motivates the definition of the SWD [106; 126; 127; 128]. SWD is a good approximation for

Wasserstein distance and can be computed efficiently as a summation of multiple one-dimensional

Wasserstein distances, making it a suitable computationally efficient replacement for Wasserstein

distance.
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4.3. Problem Statement

We focus on supervised learning setting, where the goal is to learn a classifier in a domain using a

training dataset. In particular, consider a source domain, DS = (XS ,YS), with N labeled samples,

whereXS = [xs1, . . . ,x
s
N ] ∈ X ⊂ Rd×N denotes the samples and YS = [ys1, ...,y

s
N ] ∈ Y ⊂ Rk×N

contains the corresponding labels. Note that label ysn identifies the membership of xsn to one or

multiple of the k classes (e.g., digits 1, ..., 10 for digit recognition). We assume that the source

samples are drawn i.i.d. from the source joint probability distribution, i.e., (xsi ,yi) ∼ p(xS , y). We

denote the source marginal distribution over xS with pS . Additionally, we have a related target

domain with M unlabeled data pointsXT = [xt1, . . . ,x
t
M ] ∈ Rd×M . The same type of labels in the

source domain hold for the target domain, and we assume that the samples are drawn from the target

marginal distribution xti ∼ pT . Despite describing similar classification problems, we also know that

distribution discrepancy exists between these two domains, i.e., pS 6= pT , and hence, they are distinct

domains. The main goal is to learn a classifier for the target domain such that its generalization error,

i.e., true risk, is minimal but since the target data points are unlabeled, the strategy is to learn such

a classifier through knowledge transfer from the source domain, where the data points are labeled.

The main challenge would be how to transfer knowledge effectively and selectively from the source

domain to the target domain?

Training a parametric classifier using the source labeled data points is a straightforward supervised

learning problem with known conditions for guaranteed generalization performance. Given a

large enough number of source samples, N , we can consider a family of parametric functions

fθ : Rd → Y , e.g., a deep neural network with concatenated learnable parameters θ, and solve for

an optimal parameter to map the data point samples to their corresponding labels using standard

supervised learning with minimal true risk, defined as follows:

e = E(x,y)∼p(xS ,yS)(L(fθ(x), y)) , (4.1)

where L(·) is a proper loss function, (e.g., cross-entropy loss). Training is conducted by finding an
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optimal θ̂ parameter for the mapping via minimizing the empirical risk on the training dataset, êθ, as

a surrogate for the true risk:

θ̂ = arg min
θ
êθ = arg min

θ

∑
i

L(fθ(x
s
i ),y

s
i ) . (4.2)

The learned classifier fθ̂ generalizes well on testing data points if they are drawn from the training

data point’s distributions. Only then, the empirical risk ê is a suitable surrogate for the true risk

function, e(θ). Given the discrepancy between the source and target distributions, fθ̂ does not

generalize well to the target domain. Therefore, there is a need for adapting the training procedure

for fθ̂ by incorporating unlabeled target data points such that the learned knowledge from the source

domain could be used to classify the data points drawn from the target domain distribution by

reducing the discrepancy between the source and the target domain distributions.

The main challenge is to circumvent the problem of discrepancy between the source and the target

domain distributions. To that end, the mapping fθ(·) can be decomposed into a feature extractor

φv(·) and a classifier hw(·), such that fθ = hw ◦ φv, wherew and v are the corresponding learnable

parameters, i.e., θ = (w,v). The feature extracting function φv : X → Z , maps the data points from

both domains to an intermediate embedding space Z ⊂ Rf (i.e., feature space) and the classifier

hw : Z → Y maps the data points representations in the embedding space to the label set. Note that,

as a deterministic function, the feature extractor function φv can change distribution of its input data.

The core idea is to learn the feature extractor function, φv, for both domains such that the domain

specific distribution of the extracted features to be similar to one another. Therefore, if φv is learned

such that the discrepancy between the source and target distributions is minimized in the embedding

space, i.e., discrepancy between pS(φ(xs)) and pT (φ(xt)), then the embedding becomes agnostic

and the classifier hw would generalize well on the target domain and could be used to label the target

domain data points even only trained using the source laebeled data points. This is the core idea

behind various prior domain adaptation approaches in the literature [129].
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Figure 8: The architecture of the proposed unsupervised domain adaptation framework: note that
the model is completely shared across the two domains. The shared encoder maps the data points
from both domains to a shared embedding space which is models as the output space of the encoder.
The classifier sub-network is trained using solely the label data from the source domain. Since
the distributions of the domains are matched in this embedding space, the classifier sub-network
generalizes well on the target domain.

4.4. Proposed Framework

We consider the case where the feature extractor, AA, is a deep convolutional encoder with weights B

and the classifier C is a shallow fully connected neural network with weightsw. The last layer of the

classifier network is a softmax layer that assigns a membership probability distribution to any given

data point. Following the maximum posterior estimate (MAP) rule, it is often the case that the labels

of data points are assigned according to the class with maximum predicted probability. In short, the

encoder network is learned to mix both domains such that the extracted features in the embedding

are: 1) domain agnostic in terms of data distributions, and 2) discriminative for the source domain

such that learning the classifier network hw leads to small classification error. Figure 8 demonstrates

a system-level block diagram representation of our framework. Following this framework, the UDA

reduces to solving the following optimization problem to solve for optimal learnable parameters v
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and w of the deep network:

min
v,w

N∑
i=1

L
(
hw(φv(xsi )),y

s
i

)
+ λD

(
pS(φv(XS)), pT (φv(XT ))

)
, (4.3)

where D(·, ·) is a discrepancy measure between the probabilities, and λ is a trade-off parameter. The

first term in Eq. (4.3) is an empirical risk for classifying the source labeled data points from the

embedding space to the label space, and the second term is the cross-domain probability matching

loss to make the embedding domain invariant. The learned embedding would be discriminative as a

result of using a convolutional encoder that is trained for classification in the source domain. The

encoder’s learnable parameters are learned using data points from both domains, and the learnable

classifier parameters are simultaneously learned using labeled data from the source domain in a

supervised setting. Hence, the embedding becomes both discriminative and domain-invariant.

The major remaining question is to select a proper distribution metric. KL-divergence and Jensen–Shannon

divergence are the standard measures of computing similarity between probability distributions,

but these measures are invariant in quantity when the two distributions do not have an overlapping

support, i.e., they possess vanishing gradients, which can be the case initially when the network

weights are initialized randomly. As a result, these metrics are not suitable for deep learning methods,

for the most part, as the deep learning optimization problems are usually solved using first-order

gradient-based techniques, e.g., stochastic gradient descent (SGD). A suitable metric for this purpose

is the optimal transport or Wasserstein metric [30] because this metric can effectively measure the

distance between distributions with no overlapping support, making it suitable for gradient-based op-

timization. Broadly speaking, to compute Wasserstein distance between two distributions, a min-max

optimization problem needs to be solved. However, note that the actual distributions pS(φ(XS)) and

pT (φ(XT )) are unknown and we can rely only on observed samples from these distributions. There-

fore, a sensible discrepancy measure, D(·, ·), should be able to measure the dissimilarity between

these distributions only based on the drawn samples. This introduces a challenge for computing the

Wasserstein distance as these samples are not necessarily paired. To benefit from nice properties

of Wasserstein distance, while reducing the computational complexity, we use the SWD [130] as it
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Figure 9: Visualization of the slicing and empirical calculation of the sliced-Wasserstein distance:
the shaded areas denote the Wasserstein distance for two random slices.

relies on closed-form solutions that are computationally efficient to compute from drawn samples

from the corresponding distributions compared to the optimal transport metric. The SWD is also a

good approximation for the optimal transport [131], which makes it an effective distribution metric

for our purpose.

4.4.1. Sliced Wasserstein Distance

The Wasserstein distance between two probability distributions pS and pT can be defined as [120]:

Wc(pS , pT ) = infγ∈Γ(pS ,pT )

∫
X×Y

c(x, y)dγ(x, y) , (4.4)

where Γ(pS , pT ) is the set of all joint distributions pS,T with marginal single variable distributions

pS and pT , and c : X × Y → R+ is the transportation cost, which normally is assumed to be

`2-norm Euclidean distance. As can be seen, computing the Wasserstein distance is not trivial and

requires solving an optimization problem which is a particular case of linear programming problems

as the subjective function in Eq. (4.4) and the constraint on γ are both linear. However, when the

distributions are one-dimensional, computing the Wasserstein distance reduces to a closed-form

solution as follows:

Wc(pS , pT ) =

∫ 1

0
c(P−1
S (τ), P−1

T (τ))dτ , (4.5)
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where PS and PT are the cumulative distributions of the one-dimensional distributions pS and pT .

This closed-form solution that has a much lower computational complexity compared to Eq. (4.4)

motivates the definition of SWD in order to extend the application of Eq.(4.5) on higher-dimensional

distributions.

The idea behind the SWD is based on the slice sampling [132]. The idea is to project two d-

dimensional probability distributions into their one-dimensional marginal distributions, i.e., slicing

the high-dimensional distributions and approximating the Wasserstein distance by integrating the

Wasserstein distances between the resulting one-dimensional marginal probability distributions

over all possible one-dimensional subspaces, which have a closed-form solution. This can be a

reasonable estimate for the optimal transport as any probability distribution can be represented

uniquely via the set of one-dimensional marginal projection distributions [133]. For the distribution

pS , a one-dimensional slice of the distribution is defined:

RpS(t;γ) =

∫
Sd−1

pS(x)δ(t− 〈γ,x〉)dx , (4.6)

where δ(·) denotes the Kronecker delta function, 〈·, ·〉 denotes the vector inner dot product, Sd−1

is the d-dimensional unit sphere, and γ is the projection direction. In other words, RpS(·;γ) is a

marginal distribution of pS obtained from integrating pS over the hyperplanes orthogonal to γ. The

SWD then is defined as integral of the Wasserstein distance between the sliced distributions over all

one-dimensional subspaces γ on the unit sphere:

SW (pS , pT ) =

∫
Sd−1

W (RpS(·; γ),RpT (·; γ))dγ (4.7)

where W (·) denotes the Wasserstein distance. The main advantage of using the SWD is that as

evident from Eq (4.7), unlike the Wasserstein distance, calculation of the SWD does not require a

numerically expensive optimization. This is due to the fact that the Wasserstein distance between

two one-dimensional probability distributions has a closed-form solution (see Figure 9). Since

only samples from distributions are available, the one-dimensional Wasserstein distance can be

approximated as the `p-distance between the sorted samples. Figure 9 demonstrates slicing of two
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two-dimensional distributions and the empirical calculation of the Wasserstein distance.

Note, however, this way we can compute merely the integrand function in Eq. (4.7) for a known

γ. To approximate the integral in Eq. (4.7), we can use a Monte Carlo style integration. First, we

sample the projection subspace γ from a uniform distribution that is defined over the unit sphere, and

then we compute one-dimensional Wasserstein distance on the sample. We can then approximate the

integral in Eq. (4.7) by computing the arithmetic average over a suitably large enough number of

drawn samples. Formally, the SWD between f -dimensional samples {φ(xSi ) ∈ Rf ∼ pS}Mi=1 and

{φ(xTi ) ∈ Rf ∼ pT }Mj=1 in our problem of interest can be approximated as the following sum:

SW 2(pS , pT ) ≈ 1

L

L∑
l=1

M∑
i=1

|〈γl, φ(xSsl[i]〉)− 〈γl , φ(xTtl[i])〉|
2 (4.8)

where γl ∈ Sf−1 is a uniformly-drawn random sample from the unit f -dimensional ball Sf−1, and

sl[i] and tl[i] are the sorted indices of {γl ·φ(xi)}Mi=1 for source and target domains, respectively. We

utilize the empirical version of SWD in Eq. (4.8) as the discrepancy measure between the probability

distributions to match them in the embedding space. Next, we discuss a major deficiency in Eq. (4.3)

and our remedy to tackle it for successful domain alignment.

4.4.2. Conditional Distribution Alignment

A main shortcoming of Eq. (4.3) is that minimizing the discrepancy between pS(φ(XS)) and

pT (φ(XT )) does not guarantee semantic consistency between the two domains because we are not

using any label information to minimize the discrepancy between the distributions. As a result, we

can end up learning an embedding in which the two distributions have low discrepancy without

having learned a discriminative embedding for both domains. To clarify this point, consider the

source and target domains to be images corresponding to printed digits and handwritten digits. While

the feature distributions in the embedding space could have low discrepancy, the classes might not be

correctly aligned in this space, e.g., digits from a class in the target domain could be matched to a

wrong class of the source domain or, even worse, digits from multiple classes in the target domain

could be matched to the cluster of a single digit of the source domain. In such cases, the source

71



Algorithm 3 DACAD (L, η, λ)

1: Input: data DS = (XS ,YS);DT = (XS),
2: Pre-training:
3: θ̂0 = (w0,v0) = arg minθ

∑
i L(fθ(x

s
i ),y

s
i )

4: for itr = 1, . . . , ITR do
5: DPL = {(xti, ŷti)|ŷti = fθ̂(x

t
i), p(ŷ

t
i |xti) > τ}

6: for alt = 1, . . . , ALT do
7: Update encoder parameters using pseudo-labels:
8: v̂ =

∑
j D
(
pS(φv(xS)|Cj), pSL(φv(xT )|Cj)

)
9: Update entire model:

10: v̂, ŵ = arg minw,v
∑N

i=1 L
(
hw(φ̂̂v(xsi )),y

s
i

)
11: end for
12: end for

classifier will not generalize well on the target domain. In other words, the shared embedding space,

Z , might not be a semantically meaningful space for the target domain if we solely minimize SWD

between pS(φ(XS)) and pT (φ(XT )). To solve this challenge, we should learn the encoder function

such that the class-conditioned probabilities of both domains in the embedding space are similar, i.e.,

pS(φ(xS)|Cj) ≈ pT (φ(xT )|Cj), where Cj denotes a particular class. In other words, we need to

consider the labels when we compute the distance between two distributions. Given this, we can

mitigate the class matching problem by using an adapted version of Eq. (4.3) as follows:

min
v,w

N∑
i=1

L
(
hw(φv(xsi )),y

s
i

)
+ λ

k∑
j=1

D
(
pS(φv(xS)|Cj), pT (φv(xT )|Cj)

)
,

(4.9)

where the discrepancy between distributions is minimized conditioned on classes, to enforce semantic

alignment in the embedding space by considering the labels. Solving Eq. (4.9), however, is not

tractable in the UDA setting as the labels for the target domain are not available and the conditional

distribution, pT (φ(xT )|Cj)
)
, is not known.

To tackle the above issue, we introduce a surrogate of the objective in Eq. (4.9) that can be computed

in the UDA setting. Our idea is to approximate pT (φ(xT )|Cj)
)

by generating pseudo-labels for

the target data points and use these pseudo-labels to align the domains class-conditionally. The
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pseudo-labels are obtained from the source classifier prediction, but only for the portion of target

data points that the source classifier provides a confident prediction. Such data points presumably

would exist as the two domains are related. As a result, a classifier learned merely on the source

domain is able to classify some of the target data points correctly. Our idea is to use an iterative loop

in which the confident pseudo-labels are used to align the distributions class-conditionally, and as a

result of more alignment, the number of confident pseudo-labels can be increased. More specifically,

we solve Eq. (4.9) in incremental gradient descent iterations. In particular, we first initialize the

encoder and then classifier networks by training them solely on the source data. We then update

the networks by using the data from both domains in an iterative scheme. At each iteration, we

alternate between optimizing the classification loss for the source data and SWD loss term at each

iteration. At each iteration, we pass the target domain data points into the classifier learned on the

source data and analyze the label probability distribution on the softmax layer of the classifier. We

choose a threshold τ , e.g., τ = 0.99, and assign pseudo-labels only to those target data points that the

classifier predicts the pseudo-labels with high confidence, i.e., p(yi|xti) > τ . Since the source and the

target domains are related, it is sensible that the source classifier can classify a subset of target data

points correctly with high confidence. We use these data points to approximate pT (φ(xT )|Cj)
)

in

Eq. (4.9) and update the encoder parameters, v, accordingly using only the data points with confident

pseudo-labels. We then update v by using the source labeled data points and the target data points that

have been pseudo-labeled, i.e., we consider pseudo-labeled data points to minimize the classification

loss. In our empirical experiments, we have observed that as more optimization iterations are

performed, the number of data points with confident pseudo-labels increases, suggesting a gradual

alignment of distributions as more optimization iterations are performed, and our approximation for

Eq. (4.9) improves and becomes more stable. This enforces the source and the target distributions to

align class conditionally in the embedding space, making the learned embedding discriminative for

both domains. Figure 10 visualizes this process using real data (to be explained in more details in

the Experimental Validations section). Our proposed framework, named Domain Adaptation with

Conditional Alignment of Distributions (DACAD) is summarized in Algorithm 3.
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4.5. Theoretical Analysis

In this section, we provide a theoretical justification for our proposed UDA algorithm and explain

why it can be effective. We employ existing theoretical results on the suitability of optimal transport

for domain adaptation [104] within our framework and demonstrate why our algorithm can train

models that generalize well on the target domain. In short, we demonstrate that our algorithm reduces

an upper-bound for the true risk of the target domains.

First, note that the hypothesis class within our framework is the set of all deep network models fθ(·)

that are parameterized by θ. For any given model in this hypothesis class, we denote the observed risk

on the source domain by eS . Analogously, eT denotes the observed risk on the target domain in the

UDA setting. Also, let µ̂S = 1
N

∑N
n=1 δ(x

s
n) denote the empirical source distribution, obtained from

the drawn training samples. We can define the empirical target distribution µ̂T = 1
M

∑M
m=1 δ(x

t
m)

similarly. Moreover, let fθ∗ denote the ideal model that minimizes the combined source and target

risks eC(θ∗), i.e., θ∗ = arg minθ eC(θ) = arg minθ{eS + eT }. If the hypothesis class is complex

enough and the presence of enough labeled target domain data, the joint model can be learned such

that it generalizes well on both domains. However, in the UDA setting, computing the joint model in

a supervised setting is not feasible. In order to justify that our algorithm is a feasible alternative, we

rely on the following theorem [30] that provides an upper-bound on the target domain risk given the

source domain risk.

Theorem 4.5.1. Under the assumptions described above for UDA, then for any d′ > d and ζ <
√

2,

there exists a constant number N0 depending on d′ such that for any ξ > 0 and min(N,M) ≥

max(ξ−(d′+2),1) with probability at least 1− ξ for all fθ, the following holds:

eT ≤eS +W (µ̂T , µ̂S) + eC(θ
∗)+√(

2 log(
1

ξ
)/ζ
)(√ 1

N
+

√
1

M

)
.

(4.10)

For simplicity, Theorem 4.5.1 originally is proven in the binary classification setting and consider 0-1

binary loss function L(·) (thresholded binary softmax). We also limit our analysis to this setting but
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note that these restrictions can be loosened to be broader multi-class classification case. The initial

consequence of the above theorem might seem that if for a given model with good performance

on the source domain, we minimize the Wasserstein distance between the source and the target

distributions in an embedding, then we can improve generalization error on the target domain because

this will make the inequality in Eq. (4.10) tighter on the target risk. Thus, performance on the target

domain will be similar to the source domain. However, it is crucial to note that Wasserstein distance

cannot be minimized independently from minimizing the source risk. In other words, we need to

use simultaneous joint optimization on both domains to make the inequality tight. More importantly,

there is no guarantee that doing so, an optimal joint model fθ∗ with small joint error would exist

after mapping the data points into the learned embedding space. This is important as the third term

in the right-hand side of Eq. (4.10) would become small only if such a joint model exists. For

example, in a binary classification scenario, if the opposite classes are matched in the embedding

space, then a good joint model would not exist. This suggests that it is essential that the feature

extractor network needs to be learned such that the third term in Eq. (4.10) becomes small. Note

that we cannot even approximate eC(θ∗) in the UDA framework as there is no labeled data in the

target domain. Hence, this theorem justifies why minimizing the Wasserstein distance can be helpful

but why is not sufficient, and why we should minimize the source empirical risk simultaneously

and minimize the Wasserstein distance such that corresponding classes align in the embedding to

consider all terms in Theorem 4.5.1. Note that although we minimize SWD in our framework and

our theoretical results are originally driven for the Wasserstein distance, it has been theoretically

demonstrated that SWD is a good approximation for computing the Wasserstein distance [131]:

SW2(pX , pY ) ≤W2(pX , pY ) ≤ αSW β
2 (pX , pY ) (4.11)

where α is a constant and β = (2(d+ 1))−1 (see [134] for more details).

Building above these existing results, we propose the following theorem to justify our UDA algorithm.

Theorem 4.5.2. Consider we use the pseudo-labeled target dataset DPL = {xti, ŷti}MPL
i=1 , which we

are confident with threshold τ , in an optimization iteration in the algorithm 3. Then, the following
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inequality holds:

eT ≤eS +W (µ̂S , µ̂PL) + eC′(θ
∗) + (1− τ)+√(

2 log(
1

ξ
)/ζ
)(√ 1

N
+

√
1

MPL

)
,

(4.12)

where eC′(θ∗) denotes the expected risk of the optimally joint model fθ∗ on both the source domain

and the confident pseudo-labeled target data points.

Proof: since all the pseudo-labeled data points are selected according to the threshold τ , if we select

a pseudo-labeled data point randomly, then the probability of the pseudo-label to be false is equal to

1− τ . We can define the difference between the error based on the true labels and the pseudo-label

for a particular data point as follows:

|L(fθ(x
t
i),y

t
i)− L(fθ(x

t
i), ŷ

t
i)| =


0, if yti = ŷti .

1, otherwise .

(4.13)

We can compute the expectation on the above error as:

E
(
|L(fθ(x

t
i),y

t
i)− L(fθ(x

t
i), ŷ

t
i)|
)
≤

|ePL − eT | ≤ (1− τ) .

(4.14)

Using Eq. (4.14) we can deduce:

eS + eT = eS + eT + ePL − ePL ≤

eS + ePL + |eT − ePL| ≤

eS + ePL + (1− τ) .

(4.15)

Note that since Eq. (4.15) is valid for all θ, if we consider the joint optimal parameter θ∗ in Eq. (4.15),

we deduce:

eC(θ∗) ≤ e′C(θ) + (1− τ) . (4.16)
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By considering Theorem 4.5.1, where the pseudo-labeled data points are the given target dataset, and

then applying Eq. (4.16) on Eq. (4.10), Theorem 4.5.2 follows �

Theorem 4.5.2 demonstrates why our algorithm can learn models that generalize well on the target

domain. We can see that at any given iteration, we minimize the upper-bound of the target error

as given in (4.12). We minimize the source risk eS through the supervised loss. We minimize

the Wasserstein distance by minimizing the SWD loss. The term eC′(θ
∗) is minimized because

the pseudo-labeled data points by definition are selected such that the true labels can be predicted

with high probability. Hence, the optimal model with parameter θ∗ can perform well both on the

source domain and the pseudo-labeled data points. The term 1− τ is also small because we only

select confident data points. We also note that if the number of confident pseudo-labeled data points

increase progressively, MPL, the constant term in the right-hand side of Eq. (4.12) (in the second

line) decreases, making generalization tighter. Hence our algorithm minimizes all the terms in

Eq. (4.12), which would reduce the true risk on the target domain.

4.6. Experimental Validation

We evaluate our algorithm on several UDA tasks, including various digit classification and image

recognition domains, and we compare our results against several recently developed UDA methods.

4.6.1. Experimental Methodology

Pre-training: Our experiments involve a pre-training stage to initialize the encoder and the classifier

networks solely using the source data. This is an essential step because the combined network

can generate confident pseudo-labels on the target domain only if initially trained on the related

source domain. In other words, this initially learned network can be served as a naive model on the

target domain. We then boost the performance on the target domain using our proposed algorithm,

demonstrating that our algorithm is indeed effective. In other words, we provide an ablation study to

demonstrate that the effectiveness of our algorithm stems from successful cross-domain knowledge

transfer. This a less-explored issue in the UDA literature because despite using standard benchmark

datasets, different UDA approaches use considerably different networks, both in terms of complexity,
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e.g., number of layers and convolution filters, and the structure, e.g., using an auto-encoder. This

is in particular very important because it is well known that a deep enough network can extract

domain invariant features for a wide range of recognition tasks [64]. Consequently, it is ambiguous

whether the performance of a particular UDA algorithm is due to successful knowledge transfer from

the source domain or just a good baseline network that performs well on the target domain even

without considerable cross-domain knowledge transfer from the source domain. To highlight that our

algorithm can indeed transfer knowledge, we use three different network architectures: DRCN [129],

VGG [50], and a small ResNet [51]. We then show that our algorithm can effectively boost base-line

performance (statistically significant) regardless of the underlying network. In most of the domain

adaptation tasks, we demonstrate that this boost indeed stems from transferring knowledge from the

source domain.

Data Augmentation: We use data augmentation to create additional training data by applying

reasonable transformations to input data in an effort to improve generalization. Confirming the

reported result in [129], we also empirically found that geometric transformations and noise, applied

to appropriate inputs, greatly improves performance and transferability of the source model to the

target data. The reason is that data augmentation can help to reduce the domain shift between the two

domains. The augmentations in this work are limited to translation, rotation, skew, zoom, Gaussian

noise, Binomial noise, and inverted pixels. Note that although using data augmentation enhances the

generalizability of the deep network, but this is fair, as other methods that we are comparing against

also use data augmentation. Moreover, the effect emerges in the baseline performance, and we show

that our algorithm boosts the baseline performance, demonstrating cross-domain knowledge transfer.

4.6.2. Digit Classification

We investigate the empirical performance of our proposed method on three commonly used bench-

marks digit classification datasets in UDA, namely: MNIST (M) [135], USPS (U ) [136], and Street

View House Numbers (SVHN) (S). These three datasets are 10 class (0-9) digit classification datasets.

MNIST and USPS are collections of hand written digits whereas SVHN is a collection of real world

RGB images of house numbers. While six domain adaptation problems can be defined among these
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Method M→ U U →M S →M S → U
GtA 92.8±0.9 90.8±1.3 92.4±0.9 -

CoGAN 91.2±0.8 89.1±0.8 - -
ADDA 89.4±0.2 90.1±0.8 76.0±1.8 -

CyCADA 95.6±0.2† 96.5±0.1† 90.4±0.4 -
I2I-Adapt 92.1† 87.2† 80.3 -

FADA 89.1 81.1 72.8 78.3
RevGrad 77.1±1.8‡ 73.0±2.0‡ 73.9 -
DRCN 91.8±0.1† 73.7±0.04† 82.0±0.2 -
AUDA - - 86.0 -
OPDA 70.0 60.2 - -
MML 77.9† 60.5† 62.9 -

Target (FS) 96.8±0.2 98.5±0.2 98.5±0.2 96.8±0.2
ResNet (FS) 95.8±0.4 98.0±0.5 98.0±0.5 95.8±0.4

VGG 90.1±2.6 80.2±5.7 67.3±2.6 66.7±2.7
DACAD 92.4±1.2 91.1±3.0 80.0±2.7 79.6±3.3
ResNet 86.6±6.8 82.9±9.3 62.3±3.6 64.3±3.2

DACAD 93.6±1.0 95.8±1.3 82.0±3.4 78.0±2.0
DRCN (Ours) 88.6±1.3 89.6±1.3 74.3±2.8 54.9±1.8

DACAD 94.5±0.7 97.7±0.3 88.2±2.8 82.6±2.9

Table 4: Classification accuracy for UDA between MNIST, USPS, and SVHN datasets.
Classification accuracy for UDA between MNIST, USPS, and SVHN datasets. † indicates using full
MNIST and USPS datasets as opposed to the subset that we described in this chapter. ‡ indicates

results, reimplemented in [31].

datasets, prior works often consider four of these six cases, as knowledge transfer from simple

MNIST and USPS datasets to a more challenging SVHN domain does not seem to be tractable.

Following the literature, we use 2000 randomly selected images from MNIST and 1800 images from

USPS in our experiments for the case of U →M and S →M [105]. In the remaining cases, we

used full datasets. All datasets have their images scaled to 32× 32 pixels, and the SVHN images are

converted to grayscale as the encoder network is shared between the domains. We report the target

classification accuracy across the tasks.

Figure 10 demonstrates how our algorithm successfully learns an embedding with the class-conditional

alignment of distributions (please check the last page of this chapter). This figure presents the two-

dimensional t_SNE visualization of the source and target domain data points in the shared embedding

space for the S → U task. The horizontal axis demonstrates the optimization iterations where each
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cell presents data visualization after a particular optimization iteration is performed. The top sub-

figures visualize the source data points, where each color represents a particular class. The bottom

sub-figures visualize the target data points, where the colored data points represent the pseudo-labeled

data points at each iteration, and the black points represent the rest of the data points. We can see

that, due to pre-training initialization, the embedding space is discriminative for the source domain in

the beginning, but the target distribution differs from the source distributions. As more optimization

iterations are performed, the number of the target pseudo-labeled data points increase, improving

our approximate of Eq. 4.9. As a result, the discrepancy between the two distributions progressively

decreases, and our algorithm learns a shared embedding which is discriminative for both domains,

making pseudo-labels a good prediction for the original labels, bottom, right-most sub-figure.

We compare our results against several recent UDA algorithms in Table 4. In particular, we compare

against the recent adversarial learning algorithms: Generate to Adapt (GtA) [115], CoGAN [113],

ADDA [31], CyCADA [137]. We also include FADA [105], which is originally a few-shot learning

technique.

For FADA, we list the reported one-shot accuracy, which is very close to the UDA setting (but it is

arguably a simpler problem). Additionally, we have included results for RevGrad [28], DRCN [129],

AUDA [138], OPDA [30], MML [125]. The latter methods are similar to our method because these

methods learn an embedding space to couple the domains. OPDA and MML are more similar as they

match distributions explicitly in the learned embedding. Finally, we have included the performance

of fully-supervised (FS) learning on the target domain as an upper-bound for UDA. In our own

results, we include the baseline target performance that we obtain by naively employing a DRCN

network as well as target performance from VGG and ResNet networks that are learned solely on the

source domain. Therefore, our results contain an ablation study to test the effect of the first and the

second term of our loss function on performance. We notice that in Table 4, our baseline performance

is better than some of the UDA algorithms for some tasks. This is a very crucial observation as it

demonstrates that, in some cases, a trained deep network with good data augmentation can extract

domain invariant features that make domain adaptation feasible even without any further learning
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procedure. The last row demonstrates that our method is effective in transferring knowledge to boost

the baseline performance statistically significant. We can also see that our algorithm leads to near- or

the state-of-the-art performance.

4.6.3. Object Recognition

We performed experiments on UDA tasks that can be defined between CIFAR (CI) and STL (ST )

object recognition datasets. Both STL and CIFAR datasets contain RGB images that belong to

nine object classes: airplane, car, bird, cat, deer, dog, horse, ship, and truck. We maintained their

RGB components and resized STL images to 32× 32 pixels, i.e., CIFAR size. Our algorithm was

evaluated on two cross-domain tasks that can be defined using these datasets. We again report the

target classification accuracy. Note that we do not consider office dataset [110], which is a more

common object recognition problem for UDA, because as pointed out in the literature [139], this

dataset has label-pollution problem, i.e., some classes contain other classes’ objects. This problem

makes conditional alignment challenging. Current UDA algorithms can succeed on this dataset only

via fine-tuning a pre-trained network using ImageNet which means that a second huge source dataset

is accessible. As a result, we suspect that reported performance in the literature mainly results from

the second source dataset, rather than knowledge transfer from the main source domain (see our

discussion in the Pre-training subsection).

We compare our results against several UDA algorithms that report results on these tasks in Table 5.

In particular, we compare against the UDA algorithms: SDA [140], UDASA [26], RevGrad [28],

DRCN [129], and ADA [119]. Comparing Table 5 with Table 4, we observe a similar conclusion

that our method provides a statistically significant boost in performance through knowledge transfer.

4.6.4. Sensitivity Study

In order to study the robustness of our algorithm, we performed a set of experiments on the sensitivity

of our method with respect to trade-off parameter λ for λ = 1e− 6, · · · , 1e− 2. Our experiments

on all the above UDA tasks demonstrate that our method is robust towards changes in this parameter.

We provide our experiments only for two domains as an example in Table 6. This result demonstrates
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Method ST → CI CI → ST
SDA 35.8± 0.07 42.3± 0.1

UDASA 54.0 62.9
RevGrad 56.9± 0.05 66.1±0.08
DRCN 58.9±0.1 66.4±0.1
ADA‡ - 61.2

Target (FS) 81.5±1.0 64.8±1.7
ResNet (FS) 81.3±1.6 55.2±1.5

VGG 53.8±1.4 63.4±1.2
DACAD 54.4±1.9 66.5±1.0
ResNet 44.3±0.8 63.3±1.2

DACAD 44.4±0.4 65.7±1.0
DRCN (Ours) 50.0±1.5 64.2±1.7

DACAD 55.0±1.4 65.9±1.4

Table 5: Classification accuracy for UDA between CIFAR and STL object recognition datasets. ‡

indicates results, reimplemented in [141].

λ
1e− 6 1e− 5 1e− 4 1e− 3 1e− 2

VGG 91.4 90.5 91.9 91.0 91.2
M→ U DRCN 93.7 93.1 93.7 92.9 92.4

ResNet 91.5 94.3 96.3 94.7 95.3
VGG 82.7 86.1 85.9 83.6 83.6

U →M DRCN 80.0 80.9 78.7 77.8 81.3
ResNet 81.2 81.4 80.5 80.2 82.2

Table 6: Performance sensitivity with respect to parameter λ forM→ U (rows 1-3) and S → U
(rows 4-6) tasks.

that the performance of our algorithm is robust and stable and does not require exhaustive parameter

fine-tuning.

4.7. Conclusions and Discussion

In this chapter, we propose a novel UDA algorithm to tackle the problem of labeled data scarcity

through knowledge transfer from a related domain where labeled data is accessible. We trained a

shared deep encoder to map all data points from these two domains to an embedding space such that

discrepancy between the transformed distributions is minimized. As a result, the classifier learned on

the source domain would generalize well on the target domain data. We used the SWD metric to
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match the distributions in the embedding space and assigned pseudo-labels to the target domain data

to align the classes across both domains. Experimental and theoretical validations demonstrate that

our method is effective. A major limitation of DACAD is that a single deep encoder is shared across

the two domains. This means that we learn and use the same features for two domains. If the two

domains are quite related, using shared features is a good idea. However, if the domains are distant,

we may need to learn different features. In the next chapter, we remove this limitation and propose a

domain adaptation algorithm to transfer knowledge across two domains with more domain gap.
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Chapter 5 : Few-Shot Image Classification through

Coupled Embedding Spaces

In the previous chapter, we investigated the problem of domain adaptation in the domain of natural

images, i.e., electro-optical (EO) images. In this chapter, we investigate the domain adaptation

problem when the data modality of the two domains are different. Our formulation is a general

framework, but we focus on knowledge transfer from the EO domain as the source domain to the

Synthetic Aperture Radar (SAR) domain as the target domain. This is a practical manifestation of

our framework for few-shot domain adaptation. In contrast to the UDA framework, we have access

to a few labeled data points in the target domain in a few-shot domain adaptation learning setting.

Unlike the EO domain, labeling the SAR domain data is a lot more challenging, and for various

reasons using crowdsourcing platforms is not feasible for labeling the SAR domain data. As a result,

training deep networks using supervised learning is more challenging in the SAR domain.

We present a new framework to train a deep neural network for classifying Synthetic Aperture Radar

(SAR) images by eliminating the need for a huge labeled dataset. Similar to the previous chapter, our

idea is based on transferring knowledge from a related EO domain problem as the source domain,

where labeled data is easy to obtain. We transfer knowledge from the EO domain through learning a

shared invariant cross-domain embedding space that is also discriminative for classification. However,

since the two domains are not homogeneous, and the domain gap is considerable, a shared encoder is

not a good solution to match the distributions. Instead, we train two deep encoders that are coupled

through their last layer to map data points from the EO and the SAR domains to the shared embedding

space such that the distance between the distributions of the two domains is minimized in the latent

embedding space. Similar to the previous chapter, we use the Sliced Wasserstein Distance (SWD) to

measure and minimize the distance between these two distributions. Additionally, we use a limited

number of SAR label data points to match the distributions class-conditionally. As a result of this

training procedure, a classifier trained from the embedding space to the label space using mostly the
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EO data would generalize well on the SAR domain. We provide theoretical analysis to demonstrate

why our approach is effective and validate our algorithm on the problem of ship classification in the

SAR domain by comparing against several other learning competing approaches. Results of this

chapter have been presented in [142; 143; 144; 145].

5.1. Overview

Historically and prior to the emergence of machine learning, most imaging devices were designed first

to generate outputs that are interpretable by humans, most natural images. As a result, the dominant

visual data that is collected even nowadays is the Electro-Optical (EO) domain data. Digital EO

images are generated by a planar grid of sensors that detect and record the magnitude and the color of

reflected visible light from the surface of an object in the form of a planner array of pixels. Naturally,

most machine learning algorithms that are developed for automation, also process EO domain data as

their input. Recently, the area of EO-based machine learning and computer vision has been successful

in developing classification and detection algorithms with a human-level performance for many

applications. In particular, the reemergence of neural networks in the form of deep Convolutional

Neural Networks (CNNs) has been crucial for this success. The major reason for the outperformance

of CNNs over many prior classic learning methods is that the time consuming and unclear procedure

of feature engineering in classic machine learning and computer vision can be bypassed when CNN’s

are trained. CNN’s are able to extract abstract and high-quality discriminative features for a given

task automatically in a blind end-to-end supervised training scheme, where CNN’s are trained using

a huge labeled dataset of images. Since the learned features are task-dependent, often lead to better

performance compared to engineered features that are usually defined for a broad range of tasks

without considering the specific structure of the data, e.g., wavelet, DFT, SIFT, etc.

Despite a wide range of applicability of EO imaging, it is also naturally constrained by limitations of

the human visual sensory system. In particular, in applications such as continuous environmental

monitoring and large-scale surveillance [146], and earth remote sensing [147], continuous imaging

at extended time periods and independent of the weather conditions is necessary. EO imaging is not

suitable for such applications because imaging during the night and cloudy weather is not feasible. In
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these applications, using other imaging techniques that are designed for imaging beyond the visible

spectrum are inevitable. Synthetic Aperture Radar (SAR) imaging is a major technique in this area

that is highly effective for remote sensing applications. SAR imaging benefits from radar signals

that can propagate in occluded weather and at night. Radar signals are emitted sequentially from a

moving antenna, and the reflected signals are collected for subsequent signal processing to generate

high-resolution images irrespective of the weather conditions and occlusions. While both the EO

and the SAR domain images describe the same physical world and often SAR data is represented

in a planner array form similar to an EO image, processing EO and SAR data and developing

suitable learning algorithms for these domains can be quite different. In particular, replicating the

success of CNN’s in supervised learning problems of the SAR domain is more challenging. This is

because training CNNs is conditioned on the availability of huge labeled datasets to supervise blind

end-to-end learning. Until quite recently, generating such datasets was challenging and expensive.

Nowadays, labeled datasets for the EO domain tasks are generated using crowdsourcing labeling

platforms such as Amazon Mechanical Turk, e.g., ImageNet [148]. In a crowdsourcing platform, a

pool of participants with common basic knowledge for labeling EO data points, i.e., natural images,

is recruited. These participants need minimal training and in many cases, are not even compensated

for their time and effort. Unlabeled images are presented to each participant independently, and each

participant selects a label for each given image. Upon collecting labels from several people from the

pool of participants, collected labels are aggregated according to the skills and reliability of each

participant to increase labeling accuracy [6]. Despite being very effective for generating high quality

labeled large dataset for EO domains, for various reasons using crowdsourcing platforms for labeling

SAR datasets is not feasible:

• Preparing devices for collecting SAR data, solely for generating training datasets is much more

expensive compared to EO datasets [149]. In many cases, EO datasets can even be generated

from the Internet using existing images that are taken by commercial cameras. In contrast,

SAR imaging devices are not commercially available and usually are expensive to operate and

only are operated by governments, e.g., satellites.
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• SAR images are often classified data because for many applications, the goal is surveillance

and target detection. This issue makes access to SAR data heavily regulated and limited to

certified cleared people. For this reason, while SAR data is consistently collected, only a

few datasets are publicly available, even for research purposes. This limits the number of

participants who can be hired to help with processing and labeling.

• Despite similarities, SAR images are not easy to interpret by an average untrained person. For

this reason, labeling SAR images needs trained experts who know how to interpret SAR data.

This is in contrast with tasks within the EO domain images, where ordinary people can label

images by minimal training and guidance [150]. This challenge makes labeling SAR data

more expensive as only professional trained people can perform labeling SAR data.

• Continuous collection of SAR data is common in SAR applications. As a result, the distribution

of data is likely to be non-stationery. As a result, even a high-quality labeled dataset is

generated, the data would become unrepresentative of the current distribution over extended

time intervals. This would obligate persistent data labeling to update a trained model, which,

as explained above, is expensive [151].

As a result of the above challenges, generating labeled detests for the SAR domain data is in general

difficult. In particular, given the size of most existing SAR datasets, training a CNN leads to overfitted

models as the number of data points are considerably less than the required sample complexity of

training a deep network [152; 153]. When the model is overfitted, naturally it will not generalize well

on test sets. In other words, we face situations in which the amount of accessible labeled SAR data is

not sufficient for training deep neural networks that extract useful features. In the machine learning

literature, challenges of learning in this scenario have been investigated within transfer learning [12].

The general idea that we focus on is to transfer knowledge from a secondary domain to reduce the

amount of labeled data that is necessary to train a model. Building upon prior works in the area of

transfer learning, several recent works have used the idea of knowledge transfer to address challenges

of SAR domains [151; 149; 154; 155; 156; 153]. The common idea in these works is to transfer

knowledge from a secondary related problem, where labeled data is easy and cheap to obtain. For
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example, the second domain can be a related task in the EO domain or a task generated by synthetic

data. Following this line of work, our goal in this chapter is to tackle the challenges of learning in

SAR domains when the labeled data is scarce. This particular setting of transfer learning is also

called domain adaptation in machine learning literature. In this setting, the domain with labeled data

scarcity is called the target domain, and the domain with sufficient labeled data is called the target

domain. We develop a method that benefits from cross-domain knowledge transfer from a related

task in EO domains as the source domain to address a task in SAR domains as the target domain.

More specifically, we consider a classification task with the same classes in two domains, i.e., SAR

and EO. This is a typical situation for many applications, as it is common to use both SAR and EO

imaging. We consider a domain adaptation setting, where we have sufficient labeled data points in

the source domain, i.e., EO. We also have access to abundant data points in the target domain, i.e.,

EO, but only a few labeled data points are labeled. This setting is called semi-supervised domain

adaptation in the machine learning literature [105].

Several approaches have been developed to address the problem of domain adaptation. A common

technique for cross-domain knowledge transfer is encoded data points of the two related domains

in a domain-invariant embedding space such that similarities between the tasks can be identified

and captured in the shared space. As a result, knowledge can be transferred across the domains

in the embedding space through correspondences that are captured between the domains in the

shared space. The key challenge is how to find such an embedding space. We model the shared

embedding space as the output space of deep encoders. We couple two deep encoders to map the

data points from the two domains into a shared embedding space as their outputs such that both

domains would have similar distributions in this space. If both domains have similar class-conditional

probability distributions in the embedding space, then if we train a classifier network using only

the source-domain labeled data points from the shared embedding to the label space, it will also

generalize well on the target domain test data points [104]. This goal can be achieved by training the

deep encoders as two deterministic functions using training data such that the empirical distribution

discrepancy between the two domains is minimized in the shared output of the deep encoders with

respect to some probability distribution metric[120; 108].
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Our contribution is to propose a novel semi-supervised domain adaptation algorithm to transfer

knowledge from the EO domain to the SAR domain using the above explained procedure. We

train the encoder networks by using the Sliced-Wasserstein Distance (SWD) [106] to measure and

then minimize the discrepancy between the source and the target domain distributions. There are

two majors reasons for using SWD. First, SWD is an effective metric for the space of probability

distributions that can be computed efficiently. Second, SWD is non-zero even for two probability

distributions with non-overlapping supports. As a result, it has non-vanishing gradients, and first-

order gradient-based optimization algorithms can be used to solve optimization problems involving

SWD terms [157; 104]. This is important as most optimization problems for training deep neural

networks are solved using gradient-based methods, e.g., stochastic gradient descent (SGD). The above

procedure might not succeed because while the distance between distributions may be minimized,

they may not be aligned class-conditionally. We use the few accessible labeled data points in the SAR

domain to align both distributions class-conditionally to tackle the class matching challenge [21].

We demonstrate theoretically why our approach is able to train a classifier with generalizability

on the target SAR domain. We also provide experimental results to validate our approach in the

area of maritime domain awareness, where the goal is to understand activities that could impact

the safety and the environment. Our results demonstrate that our approach is effective and leads to

state-of-the-art performance against common approaches that are currently used in the literature.

5.2. Related Work

Recently, several prior works have addressed classification in the SAR domain in the label-scarce

regime. Huang et al. [151] use an unsupervised learning approach to generate discriminative features.

Given that generating unlabeled SAR data is easier, their idea is to train a deep autoencoder using a

large pool of unlabeled SAR data. Upon training the autoencoder, features extracted in the middle-

layer of the autoencoder capture difference across different classes and can be used for classification.

For example, the trained encoder sub-network of the autoencoder can be concatenated with a classifier

network, and both would be fine-tuned using the labeled portion of data to map the data points to the

label space. In other words, the deep encoder is used as a task-dependent feature extractor.
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Hansen et al. [149] proposed to transfer knowledge using synthetic SAR images which are easy to

generate and are similar to real images. Their idea is to generate a simulated dataset for a given SAR

problem based on simulated object radar reflectivity. Upon generating the synthetic labeled dataset,

it can be used to train a CNN network prior to presenting the real data. The pre-trained CNN then

can be used as an initialization for the real SAR domain problem. Due to the pretraining stage and

similarities between the synthetic and the read data, the model can be thought of a better initial point

and hence fine-tuned using fewer real labeled data points. Zhang et al. [154] propose to transfer

knowledge from a secondary source SAR task, where labeled data is available. Similarly, a CNN

network can be pre-trained on the task with labeled data and then fine-tuned on the target task.

Lang et al. [156] use an automatic identification system (AIS) as the secondary domain for knowledge

transfer. AIS is a tracking system for monitoring movement of ships that can provide labeling

information. Shang et al. [153] amend a CNN with an information recorder. The recorder is used

to store spatial features of labeled samples, and the recorded features are used to predict labels of

unlabeled data points based on spatial similarity to increase the number of labeled samples.

Finally, Weng et al. [155] use an approach more similar to our framework. Their proposal is to

transfer knowledge from EO domain using VGGNet as a feature extractor in the learning pipeline,

which itself has been pretrained on a large EO dataset. Despite being effective, the common idea

of these past works is mostly using a deep network that is pretrained using a secondary source of

knowledge, which is then fine-tuned using few labeled data points on the target SAR task. Hence,

knowledge transfer occurs as a result of selecting a better initial point for the optimization problem

using the secondary source.

We follow a different approach by recasting the problem as a domain adaptation (DA) problem [108],

where the goal is to adapt a model trained on the source domain to generalize well in the target

domain. Our contribution is to demonstrate how to transfer knowledge from EO imaging domain in

order to train a deep network for the SAR domain. The idea is to use a related EO domain problem

with abundant labeled data when training a deep network on a related EO problem with abundant

labeled data and simultaneously adapt the model considering that only a few labeled SAR data points
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are accessible. In our training scheme, we enforce the distributions of both domains to become

similar within a mid-layer of the deep network.

Domain adaptation has been investigated in the computer vision literature for a broad range of

application for the EO domain problems. The goal in domain adaptation is to train a model on

a source data distribution with sufficient labeled data such that it generalizes well on a different,

but related target data distribution, where labeling data is challenging. Despite being different,

the common idea of DA approaches is to preprocess data from both domains or at least the target

domain such that the distributions of both domains become similar after preprocessing. As a result, a

classifier which is trained using the source data can also be used on the target domain due to similar

post-processing distributions. We consider that two deep convolutional neural networks preprocess

data to enforce both EO and SAR domains data to have similar probability distributions. To this

end, we couple two deep encoder sub-networks with a shared output space to model the embedding

space. This space can be considered as an intermediate embedding space between the input space

from each domain and the label space of a classifier network that is shared between the two domains.

These deep encoders are trained such that the discrepancy between the source and the target domain

distributions is minimized in the shared embedding space, while overall classification is supervised

mostly via the EO domain labeled data. This procedure can be done via adversarial learning [114],

where the distributions are matched indirectly. We can also formulate an optimization problem with

probability matching objective to match the distributions directly [30]. We use the latter approach

for in our approach. Similar to the previous chapter, we use the Sliced Wasserstein Distance (SWD)

to measure and minimize the distance between the probability distributions. Our rationale for the

selection is explained in the previous chapter.

5.3. Problem Formulation and Rationale

Let X (t) ⊂ Rd denote the domain space of SAR data. Consider a multiclass SAR classification

problem with k classes in this domain, where i.i.d data pairs are drawn from the joint probability

distribution, i.e., (xti,y
t
i) ∼ qT (x,y) which has the marginal distribution pT (x) over X (t). Here,

a label yti ∈ Y identifies the class membership of the vectorized SAR image xit to one of the k
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classes. We have access to M � 1 unlabeled images DT = (XT = [xt1, . . . ,x
t
M ]) ∈ Rd×M in

this target domain. Additionally, we have access to O labeled images D′T = (X′T ,Y
′
T ), where

X′S = [x
′t
1 , . . . ,x

′t
O] ∈ Rd×O and Y ′S = [y

′t
1 , . . . ,y

′t
O] ⊂ Rk×O contains the corresponding one-hot

labels. The goal is to train a parameterized classifier fθ : Rd → Y ⊂ Rk, i.e., a deep neural network

with weight parameters θ, on this domain by solving for the optimal parameters using labeled data.

Given that we have access to only few labeled data points and considering model complexity of

deep neural networks, training the deep network such that it generalizes well using solely the SAR

labeled data is not feasible as training would lead to overfitting on the few labeled data points such

that the trained network would generalize poorly on test data points. As we discussed, this is a major

challenge to benefit from deep learning in the SAR domain.

To tackle the problem of label scarcity, we consider a domain adaptation scenario. We assume that

a related source EO domain problem exists, where we have access to sufficient labeled data points

such that training a generalizable model is feasible. Let X (s) ⊂ Rd′ denotes the EO domain DS =

(XS ,YS) denotes the dataset in the EO domain, with XS ∈ X ⊂ Rd′×N and YS ∈ Y ⊂ Rk×N (

N � 1). Note that since we consider the same cross-domain classes, we are considering the same

classification problem in two domains. In other words, the relations between the two domains is

the existence of the same classes that are sensed by two types EO and SAR sensory systems. This

cross-domain similarity is necessary for making knowledge transfer feasible. In other words, we

have a classification problem with bi-modal data, but there is no point-wise correspondence across

the data modals, and in most data points in one of them are unlabeled. We assume the source samples

are drawn i.i.d. from the source joint probability distribution qS(x,y), which has the marginal

distribution pS . Note that despite similarities between the domains, the marginal distributions of the

domains are different. Given that extensive research and investigation has been done in EO domains,

we hypothesize that finding such a labeled dataset is likely feasible or labeling such an EO data is

easier than labeling more SAR data points. Our goal is to use the similarity between the EO and the

SAR domains and benefit from the unlabeled SAR data to train a model for classifying SAR images

using the knowledge that can be learned from the EO domain.
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Since we have access to sufficient labeled source data, training a parametric classifier for the source

domain is a straightforward supervised learning problem. Usually, we solve for an optimal parameter

to select the best model from the family of parametric functions fθ. We can solve for an optimal

parameter by minimizing the average empirical risk on the training labeled data points, i.e., empirical

risk minimization (ERM):

θ̂ = arg min
θ
êθ = arg min

θ

1

N

N∑
i=1

L(fθ(x
s
i ),y

s
i ) , (5.1)

where L is a proper loss function (e.g., cross entropy loss). Given enough training data points, the

empirical risk is a suitable surrogate for the real risk function:

e = E(x,y)∼pS(x,y)(L(fθ(x),y)) , (5.2)

which is the objective function for Bayes optimal inference. This means that the learned classifier

would generalize well on data points if they are drawn from pS . A naive approach to transfer

knowledge from the EO domain to the SAR domain is to use the classifier that is trained on the EO

domain directly in the target domain. However, since distribution discrepancy exists between the

two domains, i.e., pS 6= pT , the trained classifier on the source domain fθ̂, might not generalize

well on the target domain. Therefore, there is a need for adapting the training procedure for fθ̂. The

simplest approach which has been used in most prior works is to fine-tune the EO classifier using

the few labeled target data points to employ the model in the target domain. This approach would

add the constraint of d = d′ as the same input space is required to use the same network across the

domains. Usually, it is easy to use image interpolation to enforce this condition, but information may

be lost after interpolation. We want to use a more principled approach and remove the condition of

d = d′. Additionally, since SAR and EO images are quite different, the same features, i.e., features

extracted by the same encoder, may not be as equally good for both domains. More importantly, when

fine-tuning is used, unlabeled data is not used. However, unlabeled data can be used to determine the

data structure. We want to take advantage of the unlabeled SAR data points. Unlabeled data points

are accessible and provide additional information about the SAR domain marginal distribution.
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Figure 11 presents a block diagram visualization of our framework. In the figure, we have visualized

images from two related real world SAR and EO datasets that we have used in the experimental

section. The task is to classify ship images. Notice that SAR images are confusing for the untrained

human eye, while EO ship/no-ship images can be distinguished by minimal inspection. This suggests

that as we discussed before, SAR labeling is more challenging, and labeling SAR data requires

expertise. In our approach, we consider the EO deep network fθ(·) to be formed by a feature extractor

φv(·), i.e., convolutional layers of the network, which is followed by a classifier sub-network hw(·),

i.e., fully connected layers of the network, that inputs the extracted feature and maps them to the

label space. Here, w and v denote the corresponding learnable parameters for these sub-networks,

i.e., θ = (w,v). This decomposition is synthetic but helps to understand our approach. In other

words, the feature extractor sub-network φv : X → Z maps the data points into a discriminative

embedding space Z ⊂ Rf , where classification can be done easily by the classifier sub-network

hw : Z → Y . The success of deep learning stems from optimal feature extraction, which converts

the data distribution into a multimodal distribution, which makes class separation feasible. Following

the above, we can consider a second encoder network ψu(·) : Rd → Rf , which maps the SAR

data points to the same target embedding space at its output. Similar to the previous chapter, the

idea that we want to explore is based on training φv and ψu such that the discrepancy between the

source distribution pS(φ(x)) and target distribution pT (φ(x)) is minimized in the shared embedding

space, modeled as the shared output space of these two encoders. As a result of matching the two

distributions, the embedding space becomes invariant with respect to the domain. In other words,

data points from the two domains become indistinguishable in the embedding space, e.g., data points

belonging to the same class are mapped into the same geometric cluster in the shared embedding

space as depicted in Figure 11. Consequently, even if we train the classifier sub-network using solely

the source labeled data points, it will still generalize well when target data points are used for testing.

The key question is how to train the encoder sub-networks such that the embedding space becomes

invariant. We need to adapt the standard supervised learning in Eq. (5.1) by adding additional terms

that enforce cross-domain distribution matching.
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Figure 11: Block diagram architecture of the proposed framework for transferring knowledge from
the EO to the SAR domain. The encoder networks are domain-specific, but their outputs are shared
and fed into the shared classifier sub-networks

5.4. Proposed Solution

In our solution, the encoder sub-networks need to be learned such that the extracted features in the

encoder output are discriminative. Only then, the classes become separable for the classifier sub-

network (see Figure 11). This is a direct result of supervised learning for EO encoder. Additionally,

the encoders should mix the SAR and the EO domains such that the embedding becomes domain-

invariant. As a result, the SAR encoder is indirectly enforced to be discriminative for the SAR

domain. We enforce the embedding to be domain-invariant by minimizing the discrepancy between

the distributions of both domains in the embedding space. Following the above, we can formulate
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the following optimization problem for computing the optimal values for v,u and w:

min
v,u,w

1

N

N∑
i=1

L
(
hw(φv(xsi )),y

s
i

)
+

1

O

O∑
i=1

L
(
hw(ψu(x

′t
i )),y

′t
i

)
+ λD

(
φv(pS(XS)), ψu(pT (XT ))

)
+ η

k∑
j=1

D
(
φv(pS(XS)|Cj), ψu(pT (X′T )|Cj)

)
,

(5.3)

whereD(·, ·) is a discrepancy measure between the probabilities, and λ and η are trade-off parameters.

The first two terms in Eq. (5.3) are standard empirical risks for classifying the EO and SAR labeled

data points, respectively. The third term is the cross-domain unconditional probability matching loss.

We match the unconditional distributions as the SAR data is mostly unlabeled. The matching loss

is computed using all available data points from both domains to learn the learnable parameters of

encoder sub-networks and the classifier sub-network is simultaneously learned using the labeled

data from both domains. Finally, the last term is Eq. (5.3) is added to enforce semantic consistency

between the two domains by matching the distributions class-conditionally. This term is important

for knowledge transfer. To clarify this point, note that the domains might be aligned such that their

marginal distributions φ(pS(XS)) and ψ(pT (XT )) have minimal discrepancy, while the distance

between φ(qS(·, ·)) and ψ(qT (·, ·)) is not minimized. This means that the classes may not have

been aligned correctly, e.g., images belonging to a class in the target domain may be matched to a

wrong class in the source domain or, even worse, images from multiple classes in the target domain

may be matched to the cluster of another class of the source domain. In such cases, the classifier

will not generalize well on the target domain as it has been trained to be consistent with the spatial

arrangement of the source domain in the embedding space. This means that if we merely minimize

the distance between φ(pS(XS)) and ψ(pT (XT )), the shared embedding space might not be a

consistently discriminative space for both domains domain in terms of classes. As we discussed in

the previous chapter, the challenge of class-matching is a known problem in domain adaptation, and

several approaches have been developed to address this challenge [158]. In the previous chapter, we

could overcome this challenge by using pseudo-data points, but since we have more domain gap

and the encoder networks are domain-specific, that idea is not applicable in this chapter. Instead,
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Algorithm 4 FCS (L, η, λ)

1: Input: data
2:

3: DS = (XS ,YS);DT = (XT , ,YT ),D′T = (X′T ),
4:

5: Pre-training: initialization
6:

7: θ̂0 = (w0,v0) = arg minθ 1/N
∑N

i=1 L(fθ(x
s
i ),y

s
i )

8:

9: for itr = 1, . . . , ITR do
10:

11: Update encoder parameters using:
12:

13: v̂, û = λD
(
φv(pS(XS)), ψu(pT (XT ))

)
14:

15: +η
∑

j D
(
φv(pS(XS)|Cj), ψv(pSL(X′T )|Cj)

)
16:

17: Update entire parameters:
18:

19: v̂, û, ŵ = arg minw,v,u 1/N
∑N

i=1 L
(
hw(φ̂̂v(xsi )),y

s
i

)
20:

21: +1/O
∑O

i=1 L
(
hw(ψ̂̂u(x

′t
i )),y

′t
i

)
22:

23: end for

the few labeled data points in the target SAR domain can be used to match the classes consistently

across both domains. We use these data points to compute the fourth term in Eq. (5.3). This term

is added to match class-conditional probabilities of both domains in the embedding space, i.e.,

φ(pS(xS)|Cj) ≈ ψ(pT (x|Cj), where Cj denotes a particular class.

The remaining key question is selecting a proper metric to compute D(·, ·) in the last two terms of

Eq 11. Building upon our method in the previous chapter, we utilize the SWD as the discrepancy

measure between the probability distributions to match them in the embedding space (we refer to

the previous chapter and our discussion therein). Our proposed algorithm for few-shot SAR image

classification (FSC) using cross-domain knowledge transfer is summarized in Algorithm 4. Note that

we have added a pretraining step which trains the EO encoder and the shared classifier sub-network

solely on the EO domain for better initialization. Since our problem is non-convex, a reasonable

initial point is critical for finding a good local solution.
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5.5. Theoretical Analysis

In order to demonstrate that our approach is effective, we show that transferring knowledge from

the EO domain can reduce the real task on the SAR domain. Similar to the previous chapter, our

analysis is based on broad results for domain adaptation and is not limited to the case of EO-to-SAR

transfer. Again, we rely on the work by Redko et al. [104], where the focus is on using the same

shared classifier hw(·) on both the source and the target domain. This is analogous to our formulation

as the classifier network is shared across the domains in our framework. We use similar notions. The

hypothesis class is the set of all model hw(·) that are parameterized by θ, and the goal is to select

the best model from the hypothesis class. For any member of this hypothesis class, the true risk on

the source domain is denoted by eS and the true risk on the target domain with eT . Analogously,

µ̂S = 1
N

∑N
n=1 δ(x

s
n) denote the empirical marginal source distribution, which is computed using

the training samples and µ̂T = 1
M

∑M
m=1 δ(x

t
m) similarly denotes the empirical target distribution.

In this setting, conditioned on availability of labeled data on both domains, we can train a model

jointly on both distributions. Let hw∗ denote such a ideal model that minimizes the combined source

and target risks eC(w∗):

w∗ = arg min
w
eC(w) = arg min

w
{eS + eT } . (5.4)

If the hypothesis class is complex enough and given sufficient labeled target domain data, the joint

model can be trained such that it generalizes well on both domains. This term is to measure an

upper-bound for the target risk. For self-containment of this chapter, we reiterate the following

theorem by Redko et al. [104] that we use to analyze our algorithm.

Theorem 5.5.1. Under the assumptions described above for UDA, then for any d′ > d and ζ <
√

2,

there exists a constant number N0 depending on d′ such that for any ξ > 0 and min(N,M) ≥

max(ξ−(d′+2),1) with probability at least 1− ξ for all hw, the following holds:

eT ≤eS +W (µ̂T , µ̂S) + eC(w
∗) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M

)
. (5.5)
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Note that although we use SWD in our approach, it has been theoretically demonstrated that SWD is

a good approximation for computing the Wasserstein distance [131]:

SW2(pX , pY ) ≤W2(pX , pY ) ≤ αSW β
2 (pX , pY ) , (5.6)

where α is a constant and β = (2(d+1))−1 (see [134] for more details). For this reasons, minimizing

the SWD metric enforces minimizing WD.

The proof for Theorem 5.5.1 is based on the fact that the Wasserstein distance between a distribution

µ and its empirical approximation µ̂ using N identically drawn samples can be be made small as

desired given existence of large enough number of samples N [104]. More specifically, in the setting

of Theorem 5.5.1, we have:

W (µ, µ̂) ≤
√(

2 log(
1

ξ
)/ζ
)√ 1

N
. (5.7)

We need this property for our analysis. Additionally, we consider bounded loss functions and consider

the loss function is normalized by its upper-bound. Interested reader may refer to Redko et al. [104]

for more details of the derivation of this property.

As we discussed in the previous chapter, it is important to enforce the third term in the right-hand

side of Eq. (5.5) to become small only if such a joint model exists, i.e., the domains are matched class

conditionally. However, as opposed to the previous chapter since the domain gap is considerable, and

the domains are non-homogeneous, we cannot use pseudo-labels to tackle these challenges. Instead,

the few target labeled data points are used to minimize the joint model. Building upon the above

result, we provide the following lemma for our algorithm.

Lemma 5.5.1. Consider we use the target dataset labeled data in a semi-supervised domain adapta-

tion scenario in the algorithm 4. Then, the following inequality for the target true risk holds:

eT ≤eS +W (µ̂S , µ̂PL) + êC′(w
∗) +

√(
2 log(

1

ξ
)/ζ
)(

2

√
1

N
+

√
1

M
+

√
1

O

)
, (5.8)
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where êC′(w∗) denote the empirical risk of the optimally joint model hw∗ on both the source domain

and the target labeled data points.

Proof: We use µTS to denote the combined distribution of both domains. The model parameter w∗ is

trained for this distribution using ERM on the joint empirical distribution formed by the labeled data

points for the both source and target domains: µ̂TS = 1
N

∑N
n=1 δ(x

s
n) + 1

O

∑O
n=1 δ(x

′t
n). We note

that given this definition and considering the corresponding joint empirical distribution, pST (x,y), it

is easy to show that eT̂ S = êC′(w
∗). In other words, we can denote the empirical risk for the model

as the true risk for the empirical distribution.

eC′(w
∗) = êC′(w

∗) +
(
eC′(w

∗)− êC′(w∗)
)
≤ êC′(w∗) +W (µTS , µ̂TS)

≤ êC′(w∗)) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

O

)
.

(5.9)

We have used the definition of expectation and the Cauchy-Schwarz inequality to deduce the first

inequality in Eq. (5.9). We have also used the above mentioned property of the Wasserstein distance

in Eq. (5.7) to deduce the second inequality. A combining Eq. (5.9) and Eq. (5.5) yields the desired

result, as stated in the Lemma �

Lemma 5.5.1 explains that our algorithm is effective because it minimizes an upper-bound of the

risk in the SAR domain. According to Lemma 5.5.1, the most important samples also are the few

labeled samples in the target domain as the corresponding term is dominant among the constant

terms in Eq. (5.8) (note O �M and O � N ). This accords with our intuition. Since these samples

are important to circumvent the class matching challenge across the two domains, they carry more

important information compared to the unlabeled data.

5.6. Experimental Validation

In this section, we validate our approach empirically. We tested our method in the area of maritime

domain awareness on SAR ship detection problem.

101



5.6.1. Ship Detection in SAR Domain

We tested our approach in the binary problem of ship detection using SAR imaging [150]. This

problem arises within maritime domain awareness (MDA) where the goal is monitoring the ocean

continually to decipher maritime activities that could impact the safety of the environment. Detecting

ships is important in this application as the majority of important activities that are important is

related to ships and their movements. Traditionally, planes and patrol vessels are used for monitoring,

but these methods are effective only for limited areas and time periods. As the regulated area

expands and monitoring period becomes extended, these methods become time consuming and

inefficient. To circumvent these limitations, it is essential that we make this process automatic such

that it requires minimal human intervention. Satellite imaging is highly effective to reach this goal

because large areas of the ocean can be monitored. The generated satellite images can be processed

using image processing and machine learning techniques automatically. Satellite imaging has been

performed using satellite with both EO and SAR imaging devices. However, only SAR imaging

allows continual monitoring during a broad range of weather conditions and during the night. This

property is important because illegal activities likely to happen during the night and during occluded

weather, human errors are likely to occur. For these reasons, SAR imaging is very important in this

area, and hence, we can test our approach on this problem.

When satellite imaging is used, a huge amount of data is generated. However, a large portion of

data is not informative because a considerable portion of images contains only the surface of the

ocean with no important object of interest or potentially land areas adjacent to the sea. In order to

make the monitoring process efficient, classic image processing techniques are used to determine

regions of interest in aerial SAR images. A region of interest is a limited surface area, where the

existence of a ship is probable. First, land areas are removed, and then ships, ship-like, and ocean

regions are identified and then extracted as square image patches. These image patches are then fed

into a classification algorithm to determine whether the region corresponds to a ship or not. If a ship

detected with suspicious movement activity, then regulations can be enforced.

The dataset that we have used in our experiments is obtained from aerial SAR images of the South
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African Exclusive Economic Zone [150]. The dataset is preprocessed into 51× 51 pixels sub-images.

We define a binary classification problem, where each image instance is either contains ships (positive

data points), or no-ship (negative data points). The dataset contains 1436 positive examples and

1436 negative sub-images. The labels are provided by experts. We recast the problem as a few-

shot learning problem by assuming that only a few of the data points are labeled. To solve this

problem using knowledge transfer within our framework, we use the “EO Ships in Satellite Imagery"

dataset [159]. The dataset is prepared to automate monitoring port activity levels and supply chain

analysis and contains EO images extracted from Planet satellite imagery over the San Francisco

Bay area with 4000 RGB 80 × 80 images. Again, each instance is either a ship image (a positive

data point) or no-ship (a negative data point). The dataset is split evenly into positive and negative

samples. Instances from both datasets are visualized in Figure 11 (left). Note that since these datasets

are from extensively different regions, there are no correspondences between images.

5.6.2. Methodology

We consider a deep CNN with two layers of convolutional 3× 3 filters as SAR encoder. We use NF

and 2NF filters in these layers, respectively, where NF is a parameter to be determined. We have

used both maxpool and batch normalization layers in these convolutional layers. These layers are

used as the SAR encoder sub-network in our framework, φ. We have used a similar structure for EO

domain encoder, ψ, with the exception of using a CNN with three convolutional layers. The reason

is that the EO dataset seems to have more details, and a more complex model can learn information

content better. The third convolutional layer has 2NF filters as well. The convolutional layers are

followed by a flattening layer and a subsequent shared dense layer as the embedding space with

dimension f , which can be tuned as a parameter. After the embedding space layer, we have used a

shallow two-layer classifier based on Eq. (5.3). We used TensorFlow for implementation and Adam

optimizer [160].

For comparison purpose, we compared our results against the following learning settings:

1) Supervised training on the SAR domain (ST): we just trained a network directly in the SAR domain
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using the few labeled SAR data points to generate a lower-bound for our approach to demonstrate

that knowledge transfer is effective. This approach is also a lower-bound because unlabeled SAR

data points and their information content are discarded.

2) Direct transfer (DT): we just directly used the network that is trained on EO data directly in the

SAR domain. In order to do this end, we resized the EO domain to 51× 51 pixels so we can use the

same shared encoder networks for both domains. As a result, potentially helpful details may be lost.

This can be served as a second lower-bound to demonstrate that we can benefit from unlabeled SAR

data.

3) Fine-tuning (FT): we used the no transfer network from the previous method, and fine-tuned the

network using the few available SAR data points. As discussed before in the “Related Work" section,

this is the main strategy that several prior works have used in the literature to transfer knowledge from

the EO to the SAR domain and is served to compare against previous methods that use knowledge

transfer. The major benefit of our approach is using the information that can be obtained from the

unlabeled SAR data points. For this reason, the performance of FT can be served as an ablation study

to demonstrate that helpful information is encoded in the unlabeled data.

In our experiments, we used a 90/10 % random split for training the model and testing performance.

For each experiment, we report the performance on the SAR testing split to compare the methods.

We use the classification accuracy rate to measure performance, and whenever necessary, we used

cross-validation to tune the hyper parameters. We have repeated each experiment 20 times and

have reported the average and the standard error bound to demonstrate statistical significance in the

experiments.

In order to find the optimal parameters for the network structure, we used cross-validation. We first

performed a set of experiments to empirically study the effect of dimension size (f ) of the embedding

space on the performance of our algorithm. Figure 12a presents performance on SAR testing set

versus dimension of the embedding space when ten SAR labeled data per class is used for training.

The solid line denotes the average performance over ten trials, and the shaded region denotes the
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(a) Performance vs Embedding Dimension (b) Performance vs Number of Filters

Figure 12: The SAR test performance versus the dimension of the embedding space and the number
of filters.

standard error deviation. We observe that the performance is quite stable when the embedding space

dimension changes. This result suggests that because convolutional layers are served to reduce the

dimension of input data, if the learned embedding space is discriminative for the source domain,

then our method can successfully match the target domain distribution to the source distribution in

the embedding. We conclude that for computational efficiency, it is better to select the embedding

dimension to be as small as possible. We conclude from Figure 12a that increasing the dimension

beyond eight is not helpful. For this reason, we set the dimension of the embedding to be eight for the

rest of our experiments in this chapter. We performed a similar experiment to investigate the effect

of the number of filters NF on performance. Figure 12b presents performance on SAR testing set

versus this parameter. We conclude from Figure 12b that NF = 16 is a good choice as using more

filters in not helpful. We did not use a smaller value for NF to avoid overfitting when the number of

labeled data is less than ten.

5.6.3. Results

Figure 13 presents the performance results on the data test split for our method along with the three

mentioned methods above, versus the number of labeled data points per class that has been used for
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O 1 2 3 4 5 6 7

Supervised Training 58.5 74.0 79.2 84.1 85.2 84.9 87.2
Fine Tuning 75.5 75.6 73.5 85.5 87.6 84.2 88.5

Direct Transfer 71.5 67.6 71.4 68.5 71.4 71.0 73.1
Ours 86.3 86.3 82.8 94.2 87.8 96.0 91.1

Table 7: Comparison results for the SAR test performance.

the SAR domain. For each curve, the solid line denotes the average performance over all ten trials,

and the shaded region denotes the standard error deviation. These results accord with intuition. It

can be seen that direct transfer is the least effective method as it uses no information from the second

domain. Supervised training on the SAR domain is not effective in few-shot learning regime, i.e.,

its performance is close to chance. Direct transfer method boosts the performance of supervised

training in the one-shot regime but after 2-3 labeled samples per class, as expected supervised

training overtakes direct transfer. This is the consequence of using more target task data. In other

words, direct transfer only helps to test the network on a better initial point compared to the random

initialization. Fine-tuning can improve the direct performance, but the only few-shot regime, and

beyond few-shot learning regime, the performance is similar to supervised training. In comparison,

our method outperforms these methods as we have benefited from SAR unlabeled data points. For

a more clear quantitative comparison, we have presented data in Figure 13 in Table 7 for different

number of labeled SAR data points per class, O. It is also important to note that in the presence of

enough labeled data in the target domain, supervised training would outperform our method because

the network is trained using merely the target domain data.

For having better intuition, Figure 14 denotes the Umap visualization [161] of the EO and SAR

data points in the learned embedding as the output of the feature extractor encoders. Each point

denotes on a data point in the embedding which has been mapped to 2D plane for visualization.

In this figure, we have used five labeled data points per class in the SAR domain. In Figure 14,

each color corresponds to one of the classes. In Figures 14a and 14b, we have used real labels for

visualization, and in Figures 14c and 14d, we have used the predicted labels by networks trained

using our method for visualization. In Figure 14, the points with brighter red and darker blue colors

are the SAR labeled data points that have been used in training. By comparing the top row with
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Figure 13: The SAR test performance versus the number of labeled data per class. The shaded region
denotes the standard error deviation.

the bottom row, we see that the embedding is discriminative for both domains. Additionally, by

comparing the left column with the right column, we see that the domain distributions are matched

in the embedding class conditionally, suggesting our framework formulated is Eq. (5.3) is effective.

This result suggests that learning an invariant embedding space can be served as a helpful strategy for

transferring knowledge even when the two domains are not homogeneous. Additionally, we see that

labeled data points are important to determine the boundary between two classes, which suggests

that why part of one of the classes (blue) is predicted mistakenly. This observation suggests that

the boundary between classes depends on the labeled target data as the network is certain about the

labels of these data points, and they are matched to the right source class.

We also performed an experiment to serve as an ablation study for our framework. Our previous

experiments demonstrate that the first three terms in Eq. (5.3) are all important for successful

knowledge transfer. We explained that the fourth term is important for class-conditional alignment.
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(a) The EO Domain (real labels) (b) The SAR Domain (real labels)

(c) The EO Domain (predicted labels) (d) The SAR Domain (labeled and unlabeled)

Figure 14: Umap visualization of the EO versus the SAR dataset in the shared embedding space.
(best viewed in color.)

We solved Eq. (5.3) without considering the fourth term to study its effect. We have presented the

Umap visualization [161] of the datasets in the embedding space for a particular experiment in

Figure 15. We observe that as expected, the embedding is discriminative for EO dataset and predicted

labels are close to the real data labels as the classes are separable. However, despite following a

similar marginal distribution in the embedding space, the formed SAR clusters are not class-specific.

We can see that in each cluster, we have data points from both classes, and as a result, the SAR

classification rate is poor. This result demonstrates that all the terms in Eq. (5.3) are important for the

success of our algorithm. We highlight that Figure 15 visualizes results of a particular experiment.
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(a) The EO Domain (real labels) (b) The SAR Domain (real labels)

(c) The EO Domain (predicted labels) (d) The SAR Domain (predicted labels)

Figure 15: Umap visualization of the EO versus the SAR dataset for ablation study. (best viewed in
color.)

Note that we observed in some experiments, the classes were matched, even when no labeled target

data was used. However, these observations show that the method is not stable. Using the few-labeled

data helps to stabilize the algorithm.

5.7. Conclusions

We considered the problem of SAR image classification in the label-scarce regime. We developed an

algorithm for training deep neural networks when only few-labeled SAR samples are available. The

core idea was to transfer knowledge from a related EO domain problem with sufficient labeled data

to tackle the problem of label-scarcity. Due to non-homogeneity of the two domains, two coupled
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deep encoders were trained to map the data samples from both domains to a shared embedding

space, modeled as the output space of the encoders, such that the distributions of the domains are

matched. We demonstrated theoretically and empirically effectiveness for the problem of SAR ship

classification. It is important to note that despite focusing on EO-to-SAR knowledge transfer, our

framework can be applied on a broader range of semi-supervised domain adaptation problems.

The focus in Part I has been on cross-domain knowledge transfer. We considered knowledge transfer

scenarios in which transfer is usually unidirectional from a source domain to a target domain, where

either labeled data is scarce or obtaining labeled data is expensive. In the next part of this thesis, we

focus on cross-task knowledge transfer, where a group of related tasks is defined in a single domain.

Important learning scenarios, including multi-task learning and lifelong machine learning, focus on

tackling challenges of cross-task knowledge transfer. Cross-task knowledge transfer can be more

challenging because the data for all the tasks might not be accessible simultaneously. However,

similar to cross-domain knowledge transfer, we demonstrate that the idea transfer knowledge transfer

across several related tasks can be used to couple the tasks in an embedding space, where the task

relations are captured.
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Part II

Cross-Task Knowledge Transfer
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In Part I of the thesis, we focused on transferring knowledge across different manifestations of

the same ML problem across different domains. The major challenge was to address labeled data

scarcity in one of the domains or in some of the classes. In the second part of this thesis, we focus on

cross-task knowledge transfer. Sharing information across different ML problems that are defined

in the same domain is another area in which we can benefit from knowledge transfer. In this setting,

each problem is usually called a task, and the goal is to improve learning performance in terms of

speed or prediction accuracy against learning the tasks in isolation. This can be done by identifying

similarities between the tasks and using them to transfer knowledge. Knowledge transfer between

tasks can improve the performance of learned models by learning the inter-task relationships to

identify the relevant knowledge to transfer. These inter-task relationships are typically estimated

based on training data for each task. When the tasks can be learned simultaneously, the setting is

called multi-task learning, while lifelong learning deals with sequential task learning. In a multi-task

learning setting, the direction of knowledge transfer is bilateral across any pair of tasks. In contrast,

knowledge transfer is uni-directional in a sequential learning setting, where previous experiences

are used to learn the current task more efficiently. In Part II, we focus on addressing the challenges

of these learning settings by coupling the tasks in a shared embedding space that is shared across

the tasks. In chapter 6, we develop a method for zero-shot learning in a sequential learning setting.

In chapter 7, we address the challenge of catastrophic forgetting for this setting. Chapter 8 focuses

on continual concept learning, which can be considered as an extension for homogeneous domain

adaptation to a continual learning setting. We will show that the same idea of a shared embedding

which we used in Part I, can be used to address the challenges of these learning settings.
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Chapter 6 : Lifelong Zero-Shot Learning Using

High-Level Task Descriptors

In this chapter, we focus on addressing zero-shot learning in a lifelong learning scenario. ZSL in

this chapter is different from the learning setting that we addressed in chapter 3. In chapter 3, the

goal was to learn classes with no labeled data in a multiclass classification problem via transferring

knowledge from seen classes with labeled data. In this chapter, our goal is to learn a task with no

data via transferring knowledge from other similar tasks that have been learned before and for which

labeled data is accessible. These tasks are learned sequentially in a lifelong machine learning setting.

Estimating the inter-task relationships using training data for each task is inefficient in lifelong

learning settings as the goal is to learn each consecutive task rapidly from as little data as possible.

To reduce this burden, we develop a lifelong learning method based on coupled dictionary learning

that utilizes high-level task descriptions to model inter-task relationships. Our idea is similar to

chapter 2, but the goal is to couple the space of the tasks descriptors and the task data through these

two dictionaries.

Figure 16 presents a high-level description of our idea. In this figure, we have two sources of

information about each task: task data and high-level descriptors. Our idea is to embed the optimal

parameters for the tasks and the corresponding high-level descriptions in the embedding space

such that we can map the high-level descriptions to the optimal task parameters. This mapping is

learned using the past learned tasks for which we have both data and high-level descriptors. By

doing so, an optimal parameter for a particular task can be learned using the high-level descriptions

through the shared embedding space. We show that using task descriptors improves the performance

of the learned task policies, providing both theoretical justifications for the benefit and empirical

demonstration of the improvement across a variety of learning problems. Given only the descriptor

for a new task, the lifelong learner is also able to accurately predict a model for the new task through

zero-shot learning using the coupled dictionary, eliminating the need to gather training data before
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Figure 16: Zero-shot learning of sequential tasks using task descriptors through an embedding
space: in this figure, the red circles in the embedding space denote representations of optimal task
parameters, and the yellow circles indicate representations of the high-level descriptions for the tasks
in the embedding space. If we learn a mapping from the task descriptions to the optimal parameters,
denoted by dotted blue arrows, tasks can be learned with no data. It suffices to embed the task
descriptions and then use the mapping to find the optimal tasks parameter.

addressing the task.

6.1. Overview

Transfer learning (TL) and multi-task learning (MTL) methods reduce the amount of experience

needed to train individual task models by reusing knowledge from other related tasks. This transferred

knowledge can improve the training speed and model performance, as compared to learning the tasks

in isolation following the classical machine learning pipeline. TL and MTL techniques typically select

the relevant knowledge to transfer by modeling inter-task relationships using a shared representation,

based on training data for each task [162; 163; 164; 165]. Despite benefits over single-task learning,

this process requires sufficient training data for each task to identify these relationships before

knowledge transfer can succeed and improve generalization performance. This need for data is
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especially problematic in learning systems that are expected to rapidly learn to handle new tasks

during real-time interaction with the environment: when faced with a new task, the learner would

first need to gather data on the new task before bootstrapping a model via transfer, consequently

delaying how quickly the learner could address the new task.

Consider instead the human ability to bootstrap a model for a new task rapidly, given only a high-level

task description—before obtaining experience on the actual task. For example, viewing only the

image on the box of a new IKEA chair, we can immediately identify previous related assembly tasks

and begin formulating a plan to assemble the chair. Additionally, after assembling multiple IKEA

chairs, assembling new products become meaningfully easier. In the same manner, an experienced

inverted pole balancing agent may be able to predict the controller for a new pole given its mass

and length, prior to interacting with the physical system. These examples suggest that an agent

could similarly use high-level task information to bootstrap a model for a new task more efficiently

conditioned on gaining prior experience.

Inspired by this idea, we explore the use of high-level task descriptions to improve knowledge

transfer between multiple machine learning tasks, belonging to a single domain. We focus on lifelong

learning scenarios [166; 1], in which multiple tasks arrive consecutively, and the goal is to learn each

new task by building upon previous knowledge rapidly. Our approach to integrating task descriptors

into lifelong machine learning is general, as demonstrated on applications to reinforcement learning,

regression, and classification problems. In reinforcement learning settings, our idea can be compared

with the universal value function approximation algorithm by Schaul et al. [167] in that the goal is

to generalize the learned knowledge to other unexplored scenarios. Schaul et al. [167] incorporate

the goals of an RL learner into the value function so as to allow for generalization over unexplored

goals. In contrast, our goal is to learn a mapping from high-level task descriptions into the optimal

task parameters- that are generally learned using data- to learn future tasks without exploration using

solely high-level task descriptions. Results of this chapter have been presented in [168; 61].

Our algorithm, Task Descriptors for Lifelong Learning (TaDeLL), encodes task descriptions as

feature vectors that identify each task, treating these descriptors as side information in addition to
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training data on the individual tasks. The idea of using task features for knowledge transfer has

been explored previously by Bonilla et al. [169] in an offline batch MTL setting. Note that “batch

learning" in this context refers to offline learning when all tasks are available before processing

and is not related to the notion of the batch in the first-order optimization. A similar idea has been

used more recently by Sinapov et al. [170] in a computationally expensive method for estimating

transfer relationships between pairs of tasks. Svetlik et al. [171] also use task descriptors to generate

a curriculum that improves the learning performance in the target task by learning the optimal order

in which tasks should be learned. In comparison, our approach operates online over consecutive

tasks with the assumption that the agent does not control the order in which tasks are learned.

We use coupled dictionary learning to model the inter-task relationships between the task descriptions

and the individual task policies in lifelong learning. This can be seen as associating task descriptions

with task data across these two different feature spaces. The coupled dictionary enforces the notion

that tasks with similar descriptions should have similar policies, but still allows dictionary elements

the freedom to accurately represent the different task policies. We connect the coupled dictionaries to

the PAC-learning framework, providing theoretical justification for why the task descriptors improve

performance and verify this improvement empirically.

In addition to improving the task models, we show that the task descriptors enable the learner to

accurately predict the policies for unseen tasks given only their description—this process of learning

without data on “future tasks" is known as zero-shot learning. This capability is particularly important

in the online setting of lifelong learning. It enables the system to accurately predict policies for new

tasks through transfer from past tasks with data, without requiring the system to pause to gather

training data on each future tasks. In particular, it can speed up learning reinforcement learning tasks,

where generally learning speed is slow.

Specifically, we provide the following contributions:

• We develop a general mechanism based on coupled dictionary learning to incorporate task

descriptors into knowledge transfer algorithms that use a factorized representation of the
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learned knowledge to facilitate transfer [35; 165; 1; 44].

• Using this mechanism, we develop two algorithms, for lifelong learning (TaDeLL) and multi-

task learning (TaDeMTL), that incorporate task descriptors to improve learning performance.

These algorithms are general and apply to scenarios involving classification, regression, and

reinforcement learning tasks.

• Most critically, we show how these algorithms can achieve zero-shot transfer to bootstrap a

model for a novel task, given only the high-level task descriptor.

•We provide theoretical justification for the benefit of using task descriptors in lifelong learning

and MTL, building on the PAC-learnability of the framework.

• Finally, we demonstrate the empirical effectiveness of TaDeLL and TaDeMTL on reinforcement

learning scenarios involving the control of dynamical systems, and on prediction tasks in

classification and regression settings, showing the generality of our approach.

6.2. Related Work

Multi-task learning (MTL) [172] methods often model the relationships between tasks to identify

similarities between their datasets or underlying models. There are many different approaches for

modeling these task relationships. Bayesian approaches take a variety of forms, making use of

common priors [173; 174], using regularization terms that couple task parameters [175; 176], and

finding mixtures of experts that can be shared across tasks [177].

Where Bayesian MTL methods aim to find an appropriate bias to share among all task models,

transformation methods seek to make one dataset look like another, often in a transfer learning setting.

This can be accomplished with distribution matching [164], inter-task mapping [178], or manifold

alignment techniques [179; 180].

Both the Bayesian strategy of discovering biases and the shared spaces often used in transformation

techniques are implicitly connected to methods that learn shared knowledge representations for MTL.

For example, the original MTL framework developed by Caruana [172] and later variations [162]
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capture task relationships by sharing hidden nodes in neural networks that are trained on multiple

tasks. Related work in dictionary learning techniques for MTL [165; 35] factorize the learned models

into a shared latent dictionary over the model space to facilitate transfer. Individual task models are

then captured as sparse representations over this dictionary; the task relationships are captured in

these sparse codes which are used to reconstruct optimal parameters individual tasks [181; 182].

The Efficient Lifelong Learning Algorithm (ELLA) framework [1] used this same approach of a

shared latent dictionary, trained online, to facilitate transfer as tasks arrive consecutively. The ELLA

framework was first created for regression and classification [1], and later developed for policy

gradient reinforcement learning (PG-ELLA) [39]. Other approaches that extend MTL to online

settings also exist [183]. Saha et al. [184] use a task interaction matrix to model task relations online,

and Dekel et al. [185] propose a shared global loss function that can be minimized as tasks arrive.

However, all these methods use task data to characterize the task relationships—this explicitly

requires training on the data from each task in order to perform transfer. Our goal is to adapt

an established lifelong learning approach and develop a framework which uses task descriptions

to improve performance and allows for zero-shot learning. Instead of relying solely on the tasks’

training data, several works have explored the use of high-level task descriptors to model the inter-task

relationships in MTL and transfer learning settings. Task descriptors have been used in combination

with neural networks [177] to define a task-specific prior and to control the gating network between

individual task clusters. Bonilla et al. [169] explore similar techniques for multi-task kernel machines,

using task features in combination with the data for a gating network over individual task experts to

augment the original task training data. These papers focus on multi-task classification and regression

in batch settings where the system has access to the data and features for all tasks, in contrast to our

study of task descriptors for lifelong learning over consecutive tasks. We use coupled dictionary

learning to link the task description space with the task’s parameter space. This idea was originally

used in image processing [11] and was recently explored in the machine learning literature [186].

The core idea is that two feature spaces can be linked through two dictionaries, which are coupled by

a joint-sparse representation.
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In the work most similar to our problem setting, Sinapov et al. [170] use task descriptors to estimate

the transferability between each pair of tasks for transfer learning. Given the descriptor for a new

task, they identify the source task with the highest predicted transferability and use that source task

for a warm start in reinforcement learning (RL). Though effective, their approach is computationally

expensive, since they estimate the transferability for every task pair through repeated simulation,

which grows quadratically as the number of tasks increase. Their evaluation is also limited to a

transfer learning setting, and they do not consider the effects of transfer over consecutive tasks or

updates to the transferability model, as we do in the lifelong setting.

Our work is also related to the notion of zero-shot learning that was addressed in chapter 3. Because

ZSL in multiclass classification setting also seeks to successfully label out-of-distribution examples,

often through means of learning an underlying representation that extends to new tasks and using

outside information that appropriately maps to the latent space [52; 17]. For example, the Simple

Zero-Shot method by Romera-Paredes and Torr [18] also uses task descriptions. Their method learns

a multi-class linear model, and factorizes the linear model parameters, assuming the descriptors are

coefficients over a latent basis to reconstruct the models. Our approach assumes a more flexible

relationship: that both the model parameters and task descriptors can be reconstructed from separate

latent bases that are coupled together through their coefficients. In comparison to our lifelong learning

approach, the Simple Zero-Shot method operates in an offline multi-class setting.

6.3. Background

Our methods in the previous chapters mostly can address supervised learning setting. In contrast, our

proposed framework for lifelong learning with task descriptors supports both supervised learning

(classification and regression) and reinforcement learning settings. We briefly review these learn-

ing paradigms to demonstrate that despite major differences, reinforcement learning tasks can be

formulated similar to supervised learning tasks.
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6.3.1. Supervised Learning

Consider a standard batch supervised learning setting. Let x ∈ X ⊆ Rd be a d-dimensional vector

representing a single data instance with a corresponding label y ∈ Y . Given a set of n sample

observations X = {x1,x2, . . . , xn} with corresponding labels y = {y1, y2, . . . , yn}, the goal of

supervised learning is to learn a function fθ : X 7→ Y that labels inputsX with their outputs y and

generalizes well to unseen observations.

In regression tasks, the labels are assumed to be real-valued (i.e., Y = R). In classification tasks,

the labels are a set of discrete classes; for example, in binary classification, Y = {+1,−1}. We

assume that the learned model for both paradigms fθ can be parameterized by a vector θ. The model

is then trained to minimize the average loss over the training data between the model’s predictions

and the given target labels:

arg min
θ

1

n

n∑
i=1

L
(
f(xi,θ), yi

)
+R(fθ) ,

where L(·) is generally assumed to be a convex metric, and R(·) regularizes the learned model.

The form of the model f , loss function L(·), and the regularization method varies between learning

methods. This formulation encompasses a number of parametric learning methods, including linear

regression and logistic regression.

6.3.2. Reinforcement Learning

A reinforcement learning (RL) agent selects sequential actions in an environment to maximize

its expected return. An RL task is typically formulated as a Markov Decision Process (MDP)

〈X ,A, P,R, γ〉, where X is the set of states, and A is the set of actions that the agent may execute,

P : X ×A×X → [0, 1] is the state transition probability describing the systems dynamics, R :

X × A × X → R is the reward function, and γ ∈ [0, 1) is the discount assigned to rewards

over time. At time step h, the agent is in state xh ∈ X and chooses an action a ∈ A ac-

cording to policy π : X ×A 7→ [0, 1], which is represented as a function defined by a vector of
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control parameters θ ∈ Rd. The agents then receives reward rh according to R and transitions to

state xh+1 according to P . This sequence of states, actions, and rewards is given as a trajectory

τ = {(x1,a1, r1), . . . , (xH ,aH , rH)} over a horizon H . The goal of RL is to find the optimal

policy π∗ with parameters θ∗ that maximizes the expected reward. However, learning an individual

task still requires numerous trajectories, motivating the use of transfer to reduce the number of

interactions with the environment.

Policy Gradient (PG) methods [187], which we employ as our base learner for RL tasks, are a class

of RL algorithms that are effective for solving high dimensional problems with continuous state and

action spaces, such as robotic control [188]. PG methods are appealing for their ability to handle

continuous state and action spaces, as well as their ability to scale well to high dimensions. The goal

of PG is to optimize the expected average return: J (θ) = E
[

1
H

∑H
h=1 rh

]
=
∫
T pθ(τ )R(τ )dτ ,

where T is the set of all possible trajectories, the average reward on trajectory τ is given by R(τ ) =

1
H

∑H
h=1 rh, and pθ(τ ) = P0(x1)

∏H
h=1 p(xh+1 | xh,ah) π(ah | xh) is the probability of τ under

an initial state distribution P0 : X 7→ [0, 1]. Most PG methods (e.g., episodic REINFORCE [189],

PoWER [190], and Natural Actor Critic [188]) optimize the policy by employing supervised function

approximators to maximize a lower bound on the expected return of J (θ), comparing trajectories

generated by πθ against those generated by a new candidate policy πθ̃. This optimization is carried

out by generating trajectories using the current policy πθ, and then comparing the result with a new

policy πθ̃. Jensen’s inequality can then be used to lower bound the expected return [190]:

logJ
(
θ̃
)

= log

∫
T
pθ̃(τ ) R(τ ) dτ

= log

∫
T

pθ(τ )

pθ(τ )
pθ̃(τ ) R(τ ) dτ

≥
∫
T
pθ(τ ) R(τ ) log

pθ̃(τ )

pθ(τ )
dτ + constant

∝ −DKL
(
pθ(τ ) R(τ ) || pθ̃(τ )

)
= JL,θ

(
θ̃
)
,

where DKL
(
p(τ ) || q(τ )

)
=

∫
T
p(τ ) log

p(τ )

q(τ )
dτ . This is equivalent to minimizing the KL

divergence between the reward-weighted trajectory distribution of πθ and the trajectory distribution
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Figure 17: The lifelong machine learning process as based on ELLA framework [1]: as a new task
arrives, knowledge accumulated from previous tasks is selectively transferred to the new task to
improve learning. Newly learned knowledge is then stored for future use.

pθ̃ of the new policy πθ̃.

In our work, we treat the term JL,θ
(
θ̃
)

similar to the loss function L of a classification or regression

task. Consequently, both supervised learning tasks and RL tasks can be modeled in a unified

framework, where the goal is to minimize a convex loss function.

6.3.3. Lifelong Machine Learning

In a lifelong learning setting [166; 1], a learner faces multiple, consecutive tasks and must rapidly

learn each new task by building upon its previous experience. The learner may encounter a previous

task at any time, and so must optimize performance across all tasks seen so far. A priori, the agent

does not know the total number of tasks Tmax, the task distribution, or the task order.
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Figure 18: The task specific model (or policy) parameters θ(t) are factored into a shared knowledge
repository L and a sparse code s(t). The repository L stores chunks of knowledge that are useful
for multiple tasks, and the sparse code s(t) extracts the relevant pieces of knowledge for a particular
task’s model (or policy).

At time t, the lifelong learner encounters task Z(t). In our framework, all tasks are either regression

problems Z(t) = 〈X(t),y(t)〉, classification problems Z(t) = 〈X(t),y(t)〉 or reinforcement learning

problems specified by an MDP 〈X (t),A(t), P (t), R(t), γ(t)〉. Note that we do not mix the learning

paradigms and hence, a lifelong learning agent will only face one type of learning task during its

lifetime. The agent will learn each task consecutively, acquiring training data (i.e., trajectories or

samples) in each task before advancing to the next. The agent’s goal is to learn the optimal models

{f∗
θ(1)

, . . . , f∗
θ(T )} or policies {π∗

θ(1)
, . . . , π∗

θ(T )} with corresponding parameters {θ(1), . . . ,θ(T )},

where T is the number of unique tasks seen so far (1 ≤ T ≤ Tmax). Ideally, knowledge learned from

previous tasks {Z(1), . . . ,Z(T−1)} should accelerate training and improve performance on each new

task Z(T ). Also, the lifelong learner should scale effectively to large numbers of tasks, learning each

new task rapidly from minimal data. The lifelong learning framework is depicted in Figure 17.

The Efficient Lifelong Learning Algorithm (ELLA) [1] and PG-ELLA [39] were developed to

operate in this lifelong learning setting for classification/regression and RL tasks, respectively. Both

approaches assume the parameters for each task model can be factorized using a shared knowledge

base L, facilitating transfer between tasks. Specifically, the model parameters for task Z(t) are given

by θ(t) = Ls(t), where L ∈ Rd×k is the shared basis over the model space, and s(t) ∈ Rk are the

sparse coefficients over the basis. This factorization, depicted in Figure 18, has been effective for
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transfer in both lifelong and multi-task learning [35; 165].

Under this assumption, the MTL objective is:

min
L,S

1

T

T∑
t=1

[
L(θ(t)) + µ‖s(t)‖1

]
+ λ‖L‖2F , (6.1)

where S = [s(1) · · · s(T )] is the matrix of sparse vectors, L is the task-specific loss for task Z(t),

and ‖ · ‖F is the Frobenius norm. The L1 norm is used to approximate the true vector sparsity of s(t),

and µ and λ are regularization parameters. Note that for a convex loss function L(·), this problem is

convex in each of the variables L and S. Thus, one can use an alternating optimization approach

to solve it in a batch learning setting. To solve this objective in a lifelong learning setting, Ruvolo

and Eaton [1] take a second-order Taylor expansion to approximate the objective around an estimate

α(t) ∈ Rd of the single-task model parameters for each task Z(t), and update only the coefficients

s(t) for the current task at each time step. This process reduces the MTL objective to the problem

of sparse coding the single-task policies in the shared basis L, and enables S and L to be solved

efficiently by the following alternating online update rules that constitute ELLA [1]:

s(t) ← arg min
s
‖α(t) −Ls‖2

Γ(t) + µ‖s‖1 (6.2)

A← A+ (s(t)s(t)>)⊗ Γ(t) (6.3)

b← b+ vec
(
s(t)> ⊗

(
α(t)>Γ(t)

))
(6.4)

L← mat
((

1

T
A+ λIkd

)−1 1

T
b

)
, (6.5)

where ‖v‖2A = v>Av, the symbol ⊗ denotes the Kronecker product, Γ(t) is the Hessian of the loss

L(α(t)), Im is the m×m identity matrix, resulting from Taylor approximation,A is initialized to a

kd× kd zero matrix, and b ∈ Rkd is initialized to zeros.

This was extended to handle reinforcement learning by Bou Ammar et al. [39] via approximating the

RL multi-task objective by first substituting in the convex lower-bound to the PG objective J (α(t))

in order to make the optimization convex.
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Figure 19: The lifelong machine learning process with task descriptions: a model of task descriptors
is added into the lifelong learning framework and couple with the learned model. Because of the
learned coupling between model and description, the model for a new task can be predicted from the
task description.

While these methods are effective for lifelong learning, this approach requires training data to

estimate the model for each new task before the learner can solve it. Our key idea is to eliminate

this restriction by incorporating task descriptors into lifelong learning, enabling zero-shot transfer to

new tasks. That is, upon learning a few tasks, future task models can be predicted solely using task

descriptors.

6.4. Lifelong Learning with Task Descriptors

6.4.1. Task Descriptors

While most MTL and lifelong learning methods use task training data to model inter-task relationships,

high-level descriptions can describe task differences. For example, in multi-task medical domains,
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patients are often grouped into tasks by demographic data and disease presentation [191]. In control

problems, the dynamical system parameters (e.g., the spring, mass, and damper constants in a

spring-mass-damper system) describe the task. Descriptors can also be derived from external sources,

such as text descriptions [48; 192] or Wikipedia text associated with the task [17].

To incorporate task descriptors into the learning procedure, we assume that each task Z(t) has an

associated descriptor m(t) that is given to the learner upon the first presentation of the task. The

learner has no knowledge of future tasks or the distribution of task descriptors. The descriptor

is represented by a feature vector φ
(
m(t)

)
∈ Rdm , where φ(·) performs feature extraction and

(possibly) a non-linear basis transformation on the features. We make no assumptions on the

uniqueness of φ
(
m(t)

)
, although in general tasks will have different descriptors.1 In addition, each

task also has associated training dataX(t) to learn the model; in the case of RL tasks, the data consists

of trajectories that are dynamically acquired by the agent through experience in the environment.

We incorporate task descriptors into lifelong learning via sparse coding with a coupled dictionary,

enabling the descriptors and learning models to augment each other. This construction improves

performance and enables zero-shot lifelong learning. We show how our approach can be applied to

regression, classification, and RL tasks.

6.4.2. Coupled Dictionary Optimization

As described previously, many multi-task and lifelong learning approaches have found success with

factorizing the policy parameters θ(t) for each task as a sparse linear combination over a shared

basis: θ(t) = Ls(t). In effect, each column of the shared basis L serves as a reusable model or policy

component representing a cohesive chunk of knowledge. In lifelong learning, the basis L is refined

over time as the system learns more tasks over time. The coefficient vectors S = [s(1) . . . s(T )]

encode the task policies in this shared basis, providing an embedding of the tasks based on how their

policies share knowledge.

We make a similar assumption about the task descriptors—that the descriptor features φ
(
m(t)

)
1This raises the question of what descriptive features to use, and how task performance will change if some descriptive

features are unknown. We explore these issues in Section 6.8.1.
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Figure 20: The coupled dictionaries of TaDeLL, illustrated on an RL task. Policy parameters θ(t) are
factored into L and s(t) while the task description φ

(
m(t)

)
is factored intoD and s(t). Because we

force both dictionaries to use the same sparse code s(t), the relevant pieces of information for a task
become coupled with the description of the task.

can be linearly factorized2 using a latent basis D ∈ Rdm×k over the descriptor space. This basis

captures relationships among the descriptors, with coefficients that similarly embed tasks based

on commonalities in their descriptions. From a co-view perspective [65], both the policies and

descriptors provide information about the task, and so each can augment the learning of the other.

Each underlying task is common to both views, and so we seek to find task embeddings that are

consistent for both the policies and their corresponding task descriptors. As depicted in Figure 20,

we can enforce this by coupling the two bases L andD, sharing the same coefficient vectors S to

reconstruct both the policies and descriptors. Therefore, for task Z(t),

θ(t) = Ls(t) φ
(
m(t)

)
= Ds(t) . (6.6)

To optimize the coupled bases L andD during the lifelong learning process, we employ techniques

for coupled dictionary optimization from the sparse coding literature [11], which optimizes the

dictionaries for multiple feature spaces that share a joint-sparse representation. Accordingly, coupled

dictionary learning allows us to observe an instance in one feature space, and then recover its

2This is potentially non-linear with respect to m(t), since φ can be non-linear.
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underlying latent signal in the other feature spaces using the corresponding dictionaries and sparse

coding. This notion of coupled dictionary learning has led to high-performance algorithms for image

super-resolution [11], allowing the reconstruction of high-res images from low-res samples, and for

multi-modal retrieval [193], and cross-domain retrieval [65]. The core idea is that features in two

independent subspaces can have the same representation in a third subspace.

Given the factorization in Eq. 6.6, we can re-formulate the multi-task objective (Eq. 6.1) for the

coupled dictionaries as

min
L,D,S

1

T

∑
t

[
L
(
θ(t)
)

+ ρ
∥∥∥φ(m(t)

)
−Ds(t)

∥∥∥2

2
+ µ

∥∥∥s(t)
∥∥∥

1

]
+ λ(‖L‖2F + ‖D‖2F) , (6.7)

where ρ balances the model’s or policy’s fit to the task descriptor’s fit.

To solve Eq. 6.7 online, we approximate L(·) by a second-order Taylor expansion around α(t), the

ridge minimizer for the single-task learner:

α(t) = arg min
θ(t)
L
(
θ(t)
)

+ µs‖θ(t)‖22 , (6.8)

where µs is a regularization parameter. In reinforcement learning, πα(t) is the single-task policy for

Z(t) based on the observed trajectories [39]. In supervised learning, α(t) is the single-task model

parameters for Z(t) [1]. Note that these parameters are computed once, when the current task is

learned. Then we can expand L
(
θ(t)
)

for each task around α(t) as:

L
(
θ(t) = Ls(t)

)
= L

(
α(t)

)
+∇L

(
θ(t)
)>
θ(t)=α(t)

(
α(t)−Ls(t)

)
+
∥∥∥α(t)−Ls(t)

∥∥∥2

Γ(t)
, (6.9)

where ∇ denotes the gradient operator. Note that α(t) is the minimizer of the function L
(
θ(t)
)
,

and hence ∇L
(
θ(t)
)
θ(t)=α(t) = bm0. Also, since L

(
α(t)

)
is a constant term with respect to the

variables. As a result, this procedure leads to a unified simplified formalism that is independent of
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the learning paradigm (i.e., classification, regression, or RL). Approximating Eq. 6.7 leads to

min
L,D,S

1

T

∑
t

[∥∥∥α(t)−Ls(t)
∥∥∥2

Γ(t)
+ ρ

∥∥∥φ(m(t)
)
−Ds(t)

∥∥∥2

2
+ µ

∥∥∥s(t)
∥∥∥

1

]
+ λ(‖L‖2F + ‖D‖2F) .

(6.10)

We can merge pairs of terms in Eq. 6.10 by choosing:

β(t) =

 α(t)

φ
(
m(t)

)
 K=

L
D

 A(t) =

Γ(t) 0

0 ρIdm

 ,

where 0 is the zero matrix, letting us rewrite (6.10) concisely as

min
K,S

1

T

∑
t

[∥∥∥β(t)−Ks(t)
∥∥∥2

A(t)
+ µ

∥∥∥s(t)
∥∥∥

1

]
+λ‖K‖2F . (6.11)

This objective can now be solved efficiently online, as a series of per-task update rules given in

Algorithm 5, which we call TaDeLL (Task Descriptors for Lifelong Learning). When a task arrives,

the corresponding sparse vector s(t) is computed, and then the dictionaries are updated. Note that

Eq. (6.11) can be decoupled into two optimization problems with similar form on L andD, and then

L andD can be updated independently using Equations 6.3–6.5, following a recursive construction

based on an eigenvalue decomposition. Note that the objective function in Eq. (6.10) is biconvex and

hence it can also be solved in an offline setting through alternation on the variablesK and S, similar

to the GO-MTL [35]. At each iteration, one variable is fixed, and the other variable is optimized in

an offline setting as denoted in Algorithm 6. This gives rise to an offline version of TaDeLL which

we call TaDeMTL (Task Descriptors for Multi-task Learning) algorithm. Note that TaDeMTL has a

nested loop and computationally is demanding because at each iteration, sparse vectors for all tasks

are recomputed, and the dictionaries are updated from scratch. The major benefit is that TaDeMTL

can be thought as an upper-bound for TaDeLL which not only can be used to assess the quality of

online performance in the asymptotic regime, but a useful algorithm on its own when online learning

is not a priority and accuracy is the priority.
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Algorithm 5 TaDeLL (k, λ, µ)
1: L← RandomMatrixd,k, D ← RandomMatrixm,k
2: while some task

(
Z(t), φ

(
m(t)

))
is available do

3: T(t) ← collectData(Z(t))
4: Compute α(t) and Γ(t) from T(t)

5: s(t) ← arg mins
∥∥β(t)−Ks

∥∥2

A(t) + µ‖s‖1
6: L← updateL(L, s(t),α(t),Γ(t), λ) Eq. 6.3–6.5
7: D ← updateD(D, s(t), φ

(
m(t)

)
, ρIdm , λ) Eq. 6.3–6.5

8: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

9: end while

For the sake of clarity, we now explicitly state the differences between using TaDeLL for RL problems

and for classification and regression problems. In an RL setting, at each timestep, TaDeLL receives a

new RL task and samples trajectories for the new task. We use the single-task policy as computed

using a twice-differentiable policy gradient method as α(t). The Hessian Γ(t), calculated around the

point α(t), is derived according to the particular policy gradient method being used. Bou Ammar et

al. [39] derive it for the cases of Episodic REINFORCE and Natural Actor-Critic. The reconstructed

θ(t) is then used as the policy for the task Z(t).

In the case of classification and regression, at each time step TaDeLL observes a labeled training set

(X(t),y(t)) for task Z(t), whereX(t) ⊆ Rnt×d. For classification tasks, y(t) ∈ {+1,−1}nt , and for

regression tasks, y(t) ∈ Rnt . We then set α(t) to be the parameters of a single-task model trained via

classification or regression (e.g., logistic or linear regression) on that data set. Γ(t) is set to be the

Hessian of the corresponding loss function around the single-task solutionα(t), and the reconstructed

θ(t) is used as the model parameters for the corresponding classification or regression problem.

6.4.3. Zero-Shot Transfer Learning

In a lifelong setting, when faced with a new task, the agent’s goal is to learn an effective policy for

that task as quickly as possible. At this stage, previous multi-task and lifelong learners incurred a

delay before they could produce a decent policy since they needed to acquire data from the new task

in order to identify related knowledge and train the new policy via transfer.

Incorporating task descriptors enables our approach to predict a policy for the new task immediately,
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Algorithm 6 TaDeMTL (k, λ, µ)
1: L← RandomMatrixd,k, D ← RandomMatrixm,k
2: T(t) ← collectallData(Z(1), . . .Z(T ))
3: for itr = {1, . . . , Nitr} do
4: for t = {1, . . . , T} do
5: Compute α(t) and Γ(t) from T(t)

6: s(t) ← arg mins
∥∥β(t)−Ks

∥∥2

A(t) + µ‖s‖1
7: end for
8: L← updateL(L, s(t),α(t),Γ(t), λ) Eq. 6.3–6.5
9: D ← updateD(D, s(t), φ

(
m(t)

)
, ρIdm , λ) Eq. 6.3–6.5

10: end for
11: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

Algorithm 7 Zero-Shot Transfer to a New Task Z(tnew )

1: Inputs: task descriptorm(tnew ), learned bases L andD
2: s̃(tnew ) ← arg mins

∥∥φ(m(tnew )
)
−Ds

∥∥2

2
+ µ ‖s‖1

3: θ̃(tnew ) ← Ls̃(tnew )

4: Return: πθ̃(tnew )

given only the descriptor. This ability to perform zero-shot transfer is enabled by the use of coupled

dictionary learning, which allows us to observe a data instance in one feature space (i.e., the task

descriptor), and then recover its underlying latent signal in the other feature space (i.e., the policy

parameters) using the dictionaries and sparse coding.

Given only the descriptorm(tnew ) for a new task Z(tnew ), we can estimate the embedding of the task

in the latent descriptor space via LASSO on the learned dictionaryD:

s̃(tnew ) ← arg min
s

∥∥∥φ(m(t)
)
−Ds

∥∥∥2

2
+ µ ‖s‖1 . (6.12)

Since the estimate given by s̃(tnew ) also serves as the coefficients over the latent policy space L, we

can immediately predict a policy for the new task as: θ̃(tnew ) = Ls̃(tnew ). This zero-shot transfer

learning procedure is given as Algorithm 7.

131



6.5. Theoretical Analysis

This section examines theoretical issues related to incorporating task descriptors into lifelong learning

via the coupled dictionaries. We start by proving PAC-learnability of our framework, which is

essential for our algorithm to work. We also outline why the inclusion of task features can improve

the performance of the learned policies and enable zero-shot transfer to new tasks safely. We then

prove the convergence of TaDeLL. A full sample complexity analysis is beyond the scope of our

work, and, indeed, remains an open problem for zero-shot learning [18].

6.5.1. Algorithm PAC-learnability

In this section, we establish the PAC-learnability of our algorithm. The goal is to provide bounds

on the generalization error given the number of the previously learned tasks. This can help us to

compute the number of required learned tasks (i.e., past experience) for the ZSL algorithm to learn

future tasks from their descriptors with high probability. We rely on the ZSL framework developed

by Palatucci et al. [52]. The core idea is that if we can recover the sparse vector with high accuracy

through using the task descriptor, then the task parameters can also be recovered with high probability.

Let Pt denote the probability of predicting the task parameters in the ZSL regime. This probability

can be decomposed into two probabilities:

1. Given a certain confidence parameter δ and error parameter ε, a dictionary can be trained by

learning Tε,δ previous tasks such that for future tasks E(‖β−Ks‖22) ≤ ε, where E(·) denotes

statistical expectation. We denote this event by Kε, with P (Kε) = 1− δ. This event denotes

that the learned knowledge has been successfully incorporated into the coupled dictionaries

and we can rely on this dictionary for ZSL to succeed.

2. Given the eventKε (i.e., given the dictionaries learned from previous tasks), the current (future)

task sparse vector can be estimated with high probability using task descriptors, enabling us to

use it to compute the task parameters. We denote this event by Sε|Kε.

Therefore, since the above two events are independent the event Pt can be expressed as the product
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of the above probabilities:

Pt = P (Kε)P (Sε|Kε) . (6.13)

Our goal is as follows: given the desired values for the confidence parameter δ (i.e., P (Kε) = 1− δ)

and the error parameter ε (i.e., E(‖β −Ks‖22) ≤ ε), we compute the minimum number of tasks

Tε,δ that needs to be learned to achieve that level of prediction confidence as well as P (Sε|Kε) to

compute Pt. To establish the error bound, we need to ensure that the coupled dictionaries are learned

to a sufficient quality that achieves this error bound. We can rely on the following theorem on

PAC-learnability of dictionary learning:

Theorem 6.5.1. [79] Consider the dictionary learning problem in Eq. (6.11), and the confidence

parameter δ (P (Kε) = 1− δ) and the error parameter ε in the standard PAC-learning setting. Then,

the number of required tasks to learn the dictionary Tε,δ satisfies the following relation:

ε ≥ 3

√
β log(Tε,δ)

Tε,δ
+

√
β + log(2/δ)/8

Tε,δ

β =
(d+ dm)k

8
max{1, log(6

√
8κ)} ,

(6.14)

where κ is a contestant that depends on the loss function that we use to measure the data fidelity.

Given all parameters, Eq. (6.14) can be solved for Tε,δ. For example, in the asymptotic regime for

learned tasks ε ∝
(

log(Tε,δ)
Tε,δ

)0.5
, and given ε we can easily compute Tε,δ.

So, according to Theorem 6.5.1, if we learn at least Tε,δ tasks to estimate the coupled dictionaries, we

can achieve the required error rate ε. Now we need to determine the probability of recovering the task

parameters in the ZSL regime, given that the learned dictionary satisfies the error bound, or P (Sε|Kε).

For this purpose, the core step in the proposed algorithm is to compute the joint-sparse representation

using m and D. It is also important to note that Eq. (6.11) has a Bayesian interpretation. We

can consider it as a result of a maximum a posteriori (MAP) inference, where the sparse vectors

are drawn from a Laplacian distribution and the coupled dictionaries are Gaussian matrices with

i.i.d elements, i.e., dij ∼ N (0, ε). Hence, Eq. (6.11) is an optimization problem resulted from
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Bayesian inference and hence by solving it, we also learn a MAP estimate of the Gaussian matrix

K = [L,D]>. Consequently, D would be a Gaussian matrix which is used to estimate s in ZSL

regime. To compute the probability of recovering the joint-sparse recovery s, we can rely on the

following theorem for Gaussian matrices [194]:

Theorem 6.5.2. Consider the linear system β = Ks + n with a sparse solution, i.e., ‖s‖0 = k,

whereK ∈ Rd×k is a random Gaussian matrix and ‖n‖2 ≤ ε, i.e., E(‖β −Ks‖22) ≤ ε. Then the

unique solution of this system can be recovered by solving an `1-minimization with probability of

(1− edξ) as far as k ≤ c′d log(kd ), where c′ is a constant that depends on the loss function and noise

statistics, and ξ is a constant parameter [194].

Theorem 6.5.2 suggests that in our framework, given the learned coupled dictionaries, we can recover

the sparse vector with probability P (Sε|Kε) = (1− e(d+dm)ξ) given that k ≤ c′(dm+d) log( k
dm+d)

for a task. This suggests that adding the task descriptors increases the probability of recovering

the task parameters from (1− edξ) to (1− e(d+dm)ξ). Moreover, we can use Eq. (6.12) to recover

the sparse representation in the ZSL regime and subsequently unseen attributes with probability

P (Sε|Kε) = (1 − edmξ) as far as the corresponding sparse vector satisfies k ≤ c′dm log( k
dm

) to

guarantee that the recovered sparse vector is accurate enough to recover the task parameters. This

theorem also suggests that the developed framework can only work if a suitable sparsifying dictionary

can be learned and also we have access to rich task descriptors. Therefore, given desired error p

1− δ and error parameter ε, the probability event of predicting task parameters in ZSL regime can be

computed as:

Pt = (1− δ)
(
1− epξ

)
, (6.15)

which concludes our proof on PAC-learnability of the algorithm �

Given the learnability of our model, the next question is whether the proposed dictionary learning

algorithm computationally converges to a suitable solution.
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6.5.2. Theoretical Convergence of TaDeLL

In this section, we prove the convergence of TaDeLL, showing that the learned dictionaries become

increasingly stable as it learns more tasks. We build upon the theoretical results from Bou Ammar

et al. [39] and Ruvolo & Eaton [1], demonstrating that these results apply to coupled dictionary

learning with task descriptors, and use them to prove convergence.

Let ĝT (L) represent the sparse coded approximation to the MTL objective, which can be defined as:

ĝT (L) =
1

T

T∑
t=1

‖α(t)−Ls(t)‖2
Γ(t) + µ‖s(t)‖1 + λ‖L‖2F .

This equation can be viewed as the cost for L when the sparse coefficients are kept constant. Let

LT be the version of the dictionary L obtained after observing T tasks. Given these definitions, we

consider the following theorem:

Theorem 6.5.3. [1]

1. The trained dictionary L is stabilized over learning with rate: LT −LT−1 = O( 1
T )

2. ĝT (LT ) converges almost surely.

3. ĝT (LT )− ĝT (LT−1) converges almost surely to zero.

This theorem requires two conditions:

1. The tuples Γ(t), α(t) are drawn i.i.d from a distribution with compact support to bound the

norms of L and s(t).

2. For all t, let Lκ be the subset of the dictionary Lt, where only columns corresponding to

non-zero element of s(t) are included. Then, all eigenvalues of the matrix LT
κΓ(t)Lκ need to

be strictly positive.

Bou Ammar et al. [39] show that both of these conditions are met for the lifelong learning framework

given in Eqs. 6.2–6.5. When we incorporate the task descriptors into this framework, we alter
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α(t) → β(t), L→K, and Γ(t) → A(t). Note both β(t) andA(t) are formed by adding deterministic

entries and thus can be considered to be drawn i.i.d (because Γ(t) and α(t) are assumed to be drawn

i.i.d). Therefore, incorporating task descriptors does not violate Condition 1.

To show that Condition 2 holds, if we analogously formKκ, then the eigenvalues ofKκ are strictly

positive because they are either eigenvalues of L (which are strictly positive according to [39]) or

the regularizing parameter ρ by definition. Thus, both conditions are met and convergence follows

directly from Theorem 6.5.3.

6.5.3. Computational Complexity

In this section, we analyze the computational complexity of TaDeLL. Each update begins with one PG

step to update α(t) and Γ(t) at a cost of O(ξ(d, nt)), where ξ() depends on the base PG learner and

nt is the number of trajectories obtained for task Z(t). The cost of updating L ∈ Rd×k and s(t) ∈ Rk

alone is O(k2d3) [1], and so the cost of updating K ∈ R(d+dm)×k through coupled dictionary

learning is O(k2(d+ dm)3). This yields an overall per-update cost of O(k2(d+ dm)3 + ξ(d, nt)),

which is independent of T .

Next, we empirically demonstrate the benefits of TaDeLL on a variety of different learning problems.

6.6. Evaluation on Reinforcement Learning Domains

We apply TaDeLL to a series of RL problems. We consider the problem of learning a collection

of different related systems. For these systems, we use three benchmark control problems and an

application to quadrotor stabilization.

6.6.1. Benchmark Dynamical Systems

Spring Mass Damper (SM) The SM system is described by three parameters: the spring constant,

mass, and damping constant [1]. The system’s state is given by the position and velocity of the mass.

The controller applies a force to the mass, attempting to stabilize it to a given position.

Cart Pole (CP) The CP system involves balancing an inverted pendulum by applying a force to
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Figure 21: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning (dotted)
on benchmark dynamical systems. (Best viewed in color.)

the cart [1]. The system is characterized by the cart and pole masses, pole length, and a damping

parameter. The states are the position and velocity of the cart and the angle and rotational velocity of

the pole.

Bicycle (BK) This system focuses on keeping a bicycle balanced upright as it rolls along a horizontal

plane at a constant velocity (see subsection 6.4.2 in Busoniu et al. [195]). The system is characterized

by the bicycle mass, x- and z-coordinates of the center of mass, and parameters relating to the shape

of the bike (the wheelbase, trail, and head angle). The state is the bike’s tilt and its derivative; the

actions are the torque applied to the handlebar and its derivative.

6.6.2. Methodology

In each domain, we generated 40 tasks, each with different dynamics, by varying the system

parameters. To this end, we set a maximum value and a minimum value for each task parameter and

then generated the systems by uniformly drawing values for the parameters from each parameter

range. The reward for each task was taken to be the distance between the current state and the goal.

For lifelong learning, tasks were encountered consecutively with repetition, and learning proceeded

until each task had been seen at least once. In order to cancel out the effect of the task order, we run

each experiment 100 times and report the average performance and standard deviation error. In each

experiment, we used the same random task order between methods to ensure a fair comparison. The

learners sampled trajectories of 100 steps, and the learning session during each task presentation

was limited to 30 iterations. For MTL, all tasks were presented simultaneously. We used Natural
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each task domain. (Best viewed in color.)
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Figure 23: Learning performance of using the zero-shot policies as warm start initializations for PG.
The performance of the single-task PG learner is included for comparison. (Best viewed in color.)

Actor Critic [188] as the base learner for the benchmark systems and episodic REINFORCE [189]

for quadrotor control. We chose k and the regularization parameters independently for each domain

and GO-MTL, ELLA, and PG-ELLA methods to optimize the combined performance of all methods

on 20 held-out tasks by using a grid search over ranges {10−n|n = 0, . . . , 3} for regularization

parameters and {1, . . . , 10} for k, respectively. We set ρ = mean(diag(ρ(t))) to balance the fit to

the descriptors and the policies. We measured learning curves based on the final policies for each of

the 40 tasks. The system parameters for each task were used as the task descriptor features φ(m);

we also tried several non-linear transformations as φ(·) but found the linear features worked well.

Tasks were presented either consecutively (for lifelong) or in batch (for multi-task), using trajectories

of 100 steps with each learning session limited to 30 iterations.
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6.6.3. Results on Benchmark Systems

Figure 21 compares our TaDeLL approach for lifelong learning with task descriptors to 1.) PG-

ELLA [39], which does not use task features, 2.) GO-MTL [35], the MTL optimization of Eq. 6.1, and

3.) single-task learning using PG. For comparison, we also performed an offline MTL optimization

of Eq. 6.7 via alternating optimization, and plot the results as TaDeMTL. The shaded regions on the

plots denote standard error bars.

We see that task descriptors improve lifelong learning on every system, even driving performance to

a level that is unachievable from training the policies from experience alone via GO-MTL in the SM

and BK domains. The difference between TaDeLL and TaDeMTL is also negligible for all domains

except CP, demonstrating the effectiveness of our online optimization.

To measure zero-shot performance, we generated an additional 40 tasks for each domain, averaging

results over these new tasks. We compared our work mainly against Sinapov et al. [170]’s method

by using task descriptors as “task features" in that work. To make Sinapov et al. [170]’s method

applicable in a lifelong learning setting, we used their method to transfer knowledge from the tasks

that have been learned before time t at each time step using a version of their method that uses

linear regression to select the source task. Figure 22 shows that task descriptors are effective for

zero-shot transfer to new tasks. We see that our approach improves the initial performance (i.e., the

“jumpstart” [13]) on new tasks, outperforming Sinapov et al. [170]’s method and single-task PG,

which was allowed to train on the task. We attribute the especially poor performance of Sinapov et

al. on CP to the fact that the CP policies differ substantially; in domains where the source policies

are vastly different from the target policies, Sinapov et al.’s algorithm does not have an appropriate

source to transfer. Their approach is also much more computationally expensive (quadratic in the

number of tasks) than our approach (linear in the number of tasks), as shown in Figure 30; details of

the runtime experiments are included in Section 6.8.2. Figure 23 shows that the zero-shot policies can

be used effectively as a warm start initialization for a PG learner, which is then allowed to improve

the policy.
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Figure 24: Warm start learning on quadrotor control. (Best viewed in color.)

6.6.4. Application to Quadrotor Control

We also applied our approach to the more challenging domain of quadrotor control, focusing on zero-

shot transfer to new stability tasks. To ensure realistic dynamics, we use the model of Bouabdallah

and Siegwart [196], which has been verified on physical systems. The quadrotors are characterized

by three inertial constants and the arm length, with their state consisting of roll/pitch/yaw and their

derivatives.

Figure 24 shows the results of our application, demonstrating that TaDeLL can predict a controller

for new quadrotors through zero-shot learning that has equivalent accuracy to PG, which had to train

on the system. As with the benchmarks, TaDeLL is effective for warm start learning with PG.

6.7. Evaluation on Supervised Learning Domains

In this section, we evaluate TaDeLL on regression and classification domains, considering the problem

of predicting the real-valued location of a robot’s end effector and two synthetic classification tasks.
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6.7.1. Predicting the Location of a Robot End Effector

We evaluate TaDeLL on a regression domain. We look at the problem of predicting the real-valued

position of the end effector of an 8-DOF robotic arm in 3D space, given the angles of the robot joints.

Different robots have different link lengths, offsets, and twists, and we use these parameters as the

description of the task, and use the joint angles as the feature representation.

We consider 200 different robot arms and use 10 points as training data per robot. The robot arms are

simulated using the Robot Toolbox [197]. The learned dictionaries are then used to predict models

for 200 different unseen robots. We measure performance as the mean square error of the prediction

against the exact location of the end effector.

Table 8 shows that both TaDeLL and ELLA outperform the single-task learner, with TaDeLL slightly

outperforming ELLA. This same improvement holds for zero-shot prediction on new robot arms. To

measure the performance of TaDeLL, we computed the single-task learner performance on the new

robot using the data which turned out to be 0.70± 0.05. Note that we can use STL as a baseline to

measure zero-shot prediction quality using our method. Thus STL performance demonstrates that

TaDell outperforms STL on new tasks even without using data.

To better understand the relationship of dictionary size to performance, we investigated how learning

performance varies with the number of bases k in the dictionary. Figure 26 shows this relationship

for lifelong learning and zero-shot prediction settings. We observe that TaDeLL performs better

with a larger dictionary than ELLA; we hypothesize that difference results from the added difficulty

of encoding the representations with the task descriptions. To test this hypothesis, we reduced the

number of descriptors in an ablative experiment. Recall that the task has 24 descriptors consisting

of a twist, link offset, and link length for each joint. We reduced the number of descriptors by

alternatingly removing the subsets of features corresponding to the twist, offset, and length. Figure 27

shows the performance of this ablative experiment, revealing that the need for the increased number

of bases is particularly related to learning twist.
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Algorithm Lifelong Learning Zero-Shot Prediction
TaDeLL 0.131 ± 0.004 0.159 ± 0.005
ELLA 0.152 ± 0.005 N/A
STL 0.73 ± 0.07 N/A

Table 8: Regression performance on robot end effector prediction in both lifelong learning and
zero-shot settings: performance is measured in mean squared error.
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Figure 25: Example model of an 8-DOF robot arm.
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Figure 26: Performance of TaDeLL and ELLA as the dictionary size k is varied for lifelong learning
and zero-shot learning. Performance of the single task learner is provided for comparison. In the
lifelong learning setting, both TaDeLL and ELLA demonstrate positive transfer that converges to
the performance of the single task learner as k is increased. We see that, for this problem, TaDeLL
prefers a slightly larger value of k.
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Subsets that contain twist descriptors are shown in magenta. Trials that do not include twist descrip-
tors are shown in gray. Performance of ELLA and the single-task learner (STL) are provided for
comparison. (Best viewed in color.)

6.7.2. Experiments on Synthetic Classification Domains

To better understand the connections between TaDeLL’s performance and the structure of the tasks,

we evaluated TaDeLL on two synthetic classification domains. The use of synthetic domains allows

us to tightly control the task generation process and the relationship between the target model and

the descriptor.

The first synthetic domain consists of binary-labeled instances drawn from R8, and each sample x

belongs to the positive class if xTm > 0. Each task has a different parameter vectorm drawn from

the uniform distributionm ∈ [−0.5, 0.5]; these vectorsm are also used as the task descriptors. Note

that by samplingm from the uniform distribution, this domain violates the assumptions of ELLA

that the samples are drawn from a common set of latent features. Each task’s data consists of 10
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Algorithm Lifelong Learning Zero-Shot Prediction
TaDeLL 0.926 ± 0.004 0.930 ± 0.002
ELLA 0.814 ± 0.008 N/A
STL 0.755 ± 0.009 N/A

Table 9: Classification accuracy on Synthetic Domain 1.

training samples, and we generated 100 tasks to evaluate lifelong learning.

Table 9 shows the performance on this Synthetic Domain 1. We see that the inclusion of meaningful

task descriptors enables TaDeLL to learn a better dictionary than ELLA in a lifelong learning setting.

We also generated an additional 100 unseen tasks to evaluate zero-shot prediction, which is similarly

successful.

For the second synthetic domain, we generated L and D matrices, and then generated a random

sparse vector s(t) for each task. The true task model is then given by a logistic regression classifier

with θ(t) = Ls(t). This generation process directly follows the assumptions of ELLA and TaDeLL,

where D is generated independently. We similarly generate 100 tasks for lifelong learning and

another 100 unseen tasks for zero-shot prediction and use the true task models to label ten training

points per task. In this experiment, we empirically demonstrate that TaDeLL works in the case of this

assumption (Table 10) in both lifelong learning and zero-shot prediction settings. For comparison,

the baseline STL performance using data is equal to 0.762± 0.008 and 0.751± 0.009, respectively,

for these two settings.

We also use this domain to investigate performance versus sample complexity, as we generated

varying amounts of training data per task. In Figure 28a, we see that TaDeLL is able to improve

performance given on a small number of samples, and as expected, its benefit becomes less dramatic

as the single-task learner receives sufficient samples. Figure 28b shows similar behavior in the

zero-shot case.
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Algorithm Lifelong Learning Zero-Shot Prediction
TaDeLL 0.889 ± 0.006 0.87 ± 0.01
ELLA 0.821 ± 0.007 N/A
STL 0.752 ± 0.009 N/A

Table 10: Classification accuracy on Synthetic Domain 2.
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Figure 28: Performance versus sample complexity on Synthetic Domain 2.

6.8. Additional Experiments

Having shown how TaDeLL can improve learning in a variety of settings, we now turn our attention

to understanding other aspects of the algorithm. Specifically, we look at the issue of task descriptor

selection and partial information, runtime comparisons, and the effect of varying the number of tasks

used to train the dictionaries.

6.8.1. Choice of Task Descriptor Features

For RL, we used the system parameters as the task description, and for the robot end effector

prediction, we used the dimensions of the robot. While in these cases, the choice of task descriptor

was straightforward, this might not always be the case. It is unclear exactly how the choice of task

descriptor features might affect the resulting performance. In other scenarios, we may have only

partial knowledge of the system parameters.
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Figure 29: Performance using various subsets of the SM system parameters (mass M , damping
constant D, and spring constant K) and Robot system parameters (twist T , link length L, and offset
O) as the task descriptors.

To address these questions, we conducted additional experiments on the Spring-Mass (SM) system

and robot end effector problem, using various subsets of the task descriptor features when learning

the coupled dictionaries. Figure 29a shows how the number and selection of parameters affect

performance on the SM domain. We evaluated jumpstart performance when using all possible subsets

of the system parameters as the task descriptor features. These subsets of the SM system parameters

(mass M , damping constant D, and spring constant K) are shown along the horizontal axis for the

task descriptors. Overall, the results show that the learner performs better when using larger subsets

of the system parameters as the task descriptors.

The robot task has 24 descriptors consisting of a twist, link offset, and link length for each joint.

We group the subset of features describing twist, offset, and length together and examine removing

different subsets. Figure 29b show that twist is more important than the other features, and again, the

inclusion of more features improves performance.

6.8.2. Computational Efficiency

We compared the average per-task runtime of our approach to that of Sinapov et al. [170], the most

closely related method to our approach. Since Sinapov et al.’s method requires training transferability

predictors between all pairs of tasks, its total runtime grows quadratically with the number of tasks.
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In comparison, our online algorithm is highly efficient. As shown in Section 6.5.3, the per-update

cost of TaDeLL is O
(
k2(d+m)3 + ξ(d, nt)

)
. Note that this per-update cost is independent of the

number of tasks T , giving TaDeLL a total runtime that scales linearly in the number of tasks.

Figure 30 shows the per-task runtime for each algorithm based on a set of 40 tasks, as evaluated on

an Intel Core I7-4700HQ CPU. TaDeLL samples tasks randomly with replacement and terminates

once every task has been seen. For Sinapov et al., we used 10 PG iterations for calculating the warm

start, ensuring a fair comparison between the methods. These results show a substantial reduction in

computational time for TaDeLL: two orders of magnitude over the 40 tasks.

6.8.3. Performance for Various Numbers of Tasks

Although we have shown in Section 6.5.2 that the learned dictionaries become more stable as the

system learns more tasks, we cannot currently guarantee that this will improve the performance

of zero-shot transfer. To evaluate the effect of the number of tasks on zero-shot performance, we

conducted an additional set of experiments on both the Simple-Mass domain and the robot end
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effector prediction domain. Our results, shown in Figure 31, reveal that zero-shot performance does

indeed improve as the dictionaries are trained over more tasks. This improvement is most stable

and rapid in an MTL setting since the optimization over all dictionaries and task policies is run

to convergence, but TaDeLL also shows definite improvement in zero-shot performance as Tmax

increases. Since zero-shot transfer involves only the learned coupled dictionaries, we can conclude

that the quality of these dictionaries for zero-shot transfer improves as the system learns more tasks.
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Figure 31: Zero-shot performance as a function of the number of tasks used to train the dictionary.
As more tasks are used, the performance of zero-shot transfer improves.

6.9. Conclusions

We demonstrated that incorporating high-level task descriptors into lifelong learning both improves

learning performance and also enables zero-shot transfer to new tasks. The mechanism of using a

coupled dictionary to connect the task descriptors with the learned models is relatively straightforward,

yet highly effective in practice. Most critically, it provides a fast and simple mechanism to predict the

model or policy for a new task via zero-shot learning, given only its high-level task descriptor. This

approach is general and can handle multiple learning paradigms, including classification, regression,

and RL tasks. Experiments demonstrate that our approach outperforms state of the art and requires

substantially less computational time than competing methods.

This ability to rapidly bootstrap models (or policies) for new tasks is critical to the development of

lifelong learning systems that will be deployed for extended periods in real environments and tasked
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with handling a variety of tasks. High-level descriptions provide an effective way for humans to

communicate and to instruct each other. The description need not come from another agent; humans

often read instructions and then complete a novel task quite effectively. Enabling lifelong learning

systems to take advantage of these high-level descriptions provides an effective step toward their

practical effectiveness. As shown in our experiments with warm-start learning from the zero-shot

predicted policy, these task descriptors can also be combined with training data on the new task in

a hybrid approach. Also, while our framework is designed to work for tasks that are drawn from a

single domain, an exciting potential direction for future is to extend this work for cross-domain tasks,

e.g., balancing tasks of bicycle and spring-mass systems together.

Despite TaDeLL’s strong performance, defining what constitutes an effective task descriptor for

a group of related tasks remains an open question. In our framework, task descriptors are given,

typically as fundamental descriptions of the system. The representation we use for the task descriptors,

a feature vector, is also relatively simple. One interesting direction for future work is to develop

methods for integrating more complex task descriptors into MTL or lifelong learning. These more

sophisticated mechanisms could include natural language descriptions, step-by-step instructions, or

logical relationships. Such an advance would likely involve moving beyond the linear framework

used in TaDeLL but would constitute an important step toward enabling more practical use of

high-level task descriptors in lifelong learning.

In the next chapter, we focus on addressing the challenge of catastrophic forgetting in the continual

learning setting. Catastrophic forgetting is a phenomenon in machine learning when a model forgets

the previously learned tasks when new tasks are learned. In this chapter, tackling catastrophic

forgetting is not challenging. The reason is that as more tasks are learned, a better dictionary is

learned. To avoid catastrophic forgetting, we can store Γ(t) and α(t) and update the estimate for

the sparse vector and subsequently the optimal parameter for each learned task using Eq. (6.2).

This is possible because the optimal parameters are task-specific. When nonlinear models such as

deep neural networks are used as base models, tackling catastrophic forgetting is more challenging

because optimal parameters for all the tasks are captures through the weights of the network. These
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parameters are shared across the tasks, which causes interference. In the next chapter, we will

focus on addressing this challenge by coupling the tasks by mapping the tasks into a task-invariant

embedding space. Our goal will be to train a model such that the distributions of a number of tasks

become similar in a shared embedding space to learn sequential tasks without forgetting.
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Chapter 7 : Complementary Learning Systems

Theory for Tackling Catastrophic

Forgetting

In the previous chapter, we developed a lifelong learning algorithm to benefit from knowledge transfer

to improve learning speed and performance for future tasks. In this chapter, we focus on tackling

another challenge for continual learning. Our goal is to learn future tasks such that performance

of the ML model that is being continually updated does not degrade on the old tasks. In particular,

we consider a deep neural network as the base learner in this chapter. Despite the huge success

of deep learning, deep networks are unable to learn effectively in sequential multi-task learning

settings as they forget the past learned tasks after learning new tasks. This phenomenon is referred as

catastrophic forgetting in the literature [198]. Since training deep nets is computationally expensive,

retraining the network on past tasks is inefficient. Additionally, it will require storing the data for past

tasks which requires a memory buffer. Humans are able to avoid forgetting because various more

efficient memory mechanisms are used to retain knowledge about past tasks. Following the broad

theme of this thesis, we rely on learning a task-invariant embedding space to prevent catastrophic

forgetting in this chapter.

Figure 32 visualizes this idea. We train a shared encoder across the tasks such that the distributions

for sequential tasks are matched in an embedding space. To this end, we learn the current task such

that its distribution matches the shared distribution in the embedding space. As a result, since the

newly learned knowledge about the current task is accumulated consistently to the past learned tasks,

catastrophic forgetting does not occur. This processes is similar to chapter 4 and chapter 5 in that the

distributions of the tasks are matched in the embedding space. However, note that the tasks arrive in

a sequentially in a continual learning setting and as a result learning the tasks jointly is not feasible.

We will develop an algorithm to match the distributions in this setting.
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Figure 32: Overcoming catastrophic forgetting through a task-invariant distribution in an embedding
space: in this figure, the tasks are coupled in the embedding space to share similar distributions. As a
result, when a new task is learned, the newly learned knowledge is accumulated to the past learned
knowledge consistently, which in turn mitigates catastrophic forgetting.

To overcome catastrophic forgetting, we are inspired by complementary learning systems theory

[199; 8]. We address the challenges of our problem using experience replay by equipping the network

with a notion of short and long term memories. We train a generative model that can generate

samples from past tasks without requiring to store past task data points in a buffer. These samples

are replayed to the network, along with the current task sample to prevent catastrophic forgetting. In

order to learn a generative distribution across the tasks, we couple the current task to the past learned

tasks through a discriminative embedding space. By doing so, current learned knowledge is always

added to the past learned knowledge consistently. We learn an abstract generative distribution in
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the embedding that allows the generation of data points to represent past experience. The learned

distribution captures high-level concepts that are shared across the related tasks. We sample from

this distribution and utilize experience replay to avoid forgetting and simultaneously accumulate new

knowledge to the abstract distribution in order to couple the current task with past experience. We

demonstrate theoretically and empirically that our framework learns a distribution in the embedding-

which is shared across all tasks- and as a result, catastrophic forgetting is prevented. Results of this

chapter have been presented in [200; 201].

7.1. Overview

The recent breakthrough of deep learning may seem natural as these networks are designed to mimic

the human nervous system, and to some extent, they do [202]. However, this success is highly limited

to single-task learning, and retaining learned knowledge in a continual learning setting remains a

major challenge. That is, when a deep network is trained on multiple sequential tasks with diverse

data distributions, the newly obtained knowledge usually interferes with past learned knowledge.

As a result, the network is often unable to accumulate the newly learned knowledge in a manner

consistent with the past experience and forgets past learned tasks by the time the new task is learned.

This phenomenon is called catastrophic forgetting in the literature [203]. This phenomenon is in

contrast with the continual learning ability of humans over their lifetime. When humans learn a new

task, not only they benefit from past experiences to learn the new task more efficiently, but they

usually newly learned knowledge does not interfere with pas knowledge.

One of the main approaches to mitigate catastrophic forgetting is to replay data points from past

tasks that are stored selectively in a memory buffer [204]. This is consistent with the Complementary

Learning Systems (CLS) theory [199]. CLS theory hypothesizes that a dual long-term and short-term

memory system, involving the neocortex and the hippocampus, is necessary for the continual, lifelong

learning ability of humans. In particular, the hippocampus rapidly encodes recent experiences as a

short-term memory that is used to consolidate the knowledge in the slower neocortex as long-term

memory through experience replays during sleep [205]. Similarly, if we selectively store samples

from past tasks in a buffer, like in the neocortex, they can be replayed to the deep network in an
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interleaved manner with current task samples from recent-memory hippocampal storage to train the

deep network jointly on past and current experiences. In other words, the online sequential learning

problem is recast as an offline multi-task learning problem that supports performance on all tasks. A

major issue with this approach is that the memory size for storing data points grows as more tasks

are learned. Building upon recent successes of generative models, we can address this challenge

by amending the network structure such that it can generate pseudo-data points for the past learned

tasks without storing data points explicitly [41].

In this chapter, our goal is to address catastrophic forgetting via coupling sequential tasks in a latent

embedding space. We model this space as the output of a deep encoder, which is between the input

and the output layers of a deep classifier. Representations in this embedding space can be thought

of as neocortex representations in the brain, which capture learned knowledge. To consolidate

knowledge, we minimize the discrepancy between the distributions of all tasks in the embedding

space. In order to mimic the offline memory replay process in the sleeping brain [206], we amend

the deep encoder with a decoder network to make the classifier network generative. The resulting

autoencoding pathways can be thought of as neocortical areas, which encode and remembers past

experiences. We fit a parametric distribution to the empirical distribution of data representations in

the embedding space. This distribution can be used to generate pseudo-data points through sampling,

followed by passing the samples into the decoder network. The pseudo-data points can then be used

for experience replay of the previous tasks towards the incorporation of new knowledge. This would

enforce the embedding to be invariant with respect to the tasks as more tasks are learned; i.e., the

network would retain the past learned knowledge as more tasks are learned.

7.2. Related Work

Past works have addressed catastrophic forgetting using two main approaches: model consolida-

tion [207] and experience replay [204]. Both approaches are inspired from the processes that are

used by the nervous system implement a notion of memory to enable a network to remember the

distributions of past learned tasks.
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7.2.1. Model Consolidation

The idea of model consolidation is based upon separating the information pathway for different

tasks in the network such that new experiences do not interfere with past learned knowledge. This

is inspired from the notion of structural plasticity in the nervous system [208]. This means that the

nervous system is able to change the physical structure of connections between the neurons due to

learning new concepts. Similarly, during the learning of a task with a deep neural network, important

weight parameters for that task can be identified. The weights usually are only a small subset of

the total network weights, which suggests that the rest of the weights do not encode important

knowledge about that task. These weights are consolidated when future tasks are learned to mitigate

catastrophic forgetting. As a result, the new tasks are learned through free pathways in the network;

i.e., the weights that are important to retain knowledge about distributions of past tasks mostly remain

unchanged. Several methods exist for identifying important weight parameters. Elastic Weight

Consolidation (EWC) models the posterior distribution of weights of a given network as a Gaussian

distribution that is centered around the weight values from past learned tasks and a precision matrix,

defined as the Fisher information matrix of all network weights. The weights are then consolidated

according to their importance, the value of Fisher coefficient [207].

In contrast to EWC, Zenke et al. [209] consolidate weights in an online scheme during task learning.

If a network weight contributes considerably to changes in the network loss, it is identified as

an important weight. More recently, Aljundi et al. [210] use a semi-Hebbian learning procedure

to compute the importance of the weight parameters in both an unsupervised and online scheme.

The issue with the methods based on structural plasticity is that the network learning capacity

is compromised to avoid catastrophic forgetting. As a result, the learning ability of the network

decreases as more tasks are learned. In the extreme case, when all the weights are consolidated, no

new task can be learned. This may seem natural, but as we will see in our experiments, catastrophic

forgetting can be mitigated without compromising the network learning capacity.
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7.2.2. Experience Replay

Methods that use experience replay retain the past tasks’ distributions via replaying selected repre-

sentative samples of past tasks continuously. These samples need to be stored in a memory buffer

and hence, can grow as most tasks are learned. Prior works have mostly investigated how to identify

and store a subset of past experiences to reduce dependence on a memory buffer and meanwhile

retain the knowledge about these tasks. These samples can be selected in different ways. Schaul et

al. select samples such that the effect of uncommon samples in the experience is maximized [211].

Isele and Cosgun explore four potential strategies to select more helpful samples in a buffer for

replay [212]. The downside is that storing samples requires memory, and selection becomes more

complex as more tasks are learned.

To reduce dependence on a memory buffer, similar to humans [203], Shin et al. [41] developed a more

efficient alternative by considering a generative model that can produce pseudo-data points of past

tasks to avoid storing real data points. They use a generative adversarial structure to learn the tasks’

distributions to allow for generating pseudo-data points without storing data. However, adversarial

learning is known to require deliberate architecture design and selection of hyper-parameters [117],

and can suffer from mode collapse [213]. Alternatively, we demonstrate that a simple autoencoder

structure can be used as the base generative model. Similar to the rest of the contributions in this

thesis, our contribution is to match the distributions of the tasks in the embedding layer of the

autoencoder and learn a shared distribution across the tasks to couple them. The shared distribution

is then used to generate samples for experience replay to avoid forgetting. We demonstrate the

effectiveness of our approach theoretically and empirically validate our method on benchmark tasks

that have been used in the literature.

7.3. Generative Continual Learning

Similar to the previous chapter, we consider a lifelong learning setting [214], where a learning agent

faces multiple, consecutive tasks {Z(t)}TMax
t=1 in a sequence t = 1, . . . , TMax. The agent learns a

new task at each time step and proceeds to learn the next task. Each task is learned based upon the
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experiences gained from learning past tasks. Additionally, the agent may encounter the learned tasks

in future and hence must optimize its performance across all tasks; i.e., not to forget learned tasks

when future tasks are learned. The agent also does not know a priori the total number of tasks, which

potentially might not be finite, the distributions of the tasks, and the order of tasks.

Suppose that at time t, the current task Z(t) with training dataset Z(t) = 〈X(t),Y (t)〉 arrives. In

this chapter, we consider classification tasks where the training data points are drawn i.i.d. in

pairs from the joint probability distribution, i.e., (x
(t)
i ,y

(t)
i ) ∼ p(t)(x,y), which has the marginal

distribution q(t) over x. We assume that the lifelong learning agent trains a deep neural network

fθ : Rd → Rk with learnable weight parameters θ to map the data pointsX(t) = [x
(t)
1 , . . . ,x

(t)
nt ] ∈

Rd×nt to the corresponding one-hot labels Y (t) = [y
(t)
1 , . . . ,y

(t)
n ] ∈ Rk×nt . Learning a single

task in isolation is a standard classical learning problem. The agent can solve for the optimal

network weight parameters using standard empirical risk minimization (ERM), θ̂(t) = arg minθ êθ =

arg minθ
∑

i Ld(fθ(x
(t)
i ),y

(t)
i ), where Ld(·) is a proper loss function, e.g., cross-entropy. Given

large enough number of labeled data points nt, the model trained on a single task Z(t) will generalize

well on the task test samples, as the empirical risk would be a suitable surrogate for the real risk

function (Bayes optimal solution), e = E(x,y)∼p(t)(x,y)(Ld(fθ(t)(x),y)) [14]. The agent then can

advance to learn the next task, but the challenge is that ERM is unable to tackle catastrophic forgetting

as the model parameters are learned using solely the current task data, which can potentially have a

very different distribution.

Catastrophic forgetting can be considered as the result of considerable deviations of θ(T ) from past

optimal values over {θ(t)}T−1
t=1 time as a result of drift in tasks’ distributions p(t)(x,y). As a result,

the updated θ(t) can potentially be highly non-optimal for previous tasks. This means that if the

distribution of the same task changes, the network naturally would forget what has been learned. Our

idea is to prevent catastrophic forgetting by mapping all tasks’ data into an embedding space, where

the tasks share a common distribution. This distribution would model the abstract similarities across

the tasks and would allow for consistent knowledge transfer across the tasks. We represent this space

by the output of a deep network mid-layer, and we condition updating θ(t) to what has been learned
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Figure 33: The architecture of the proposed framework for learning without forgetting: when a task
is learned, pseudo-data points of the past learned tasks are generated and replayed along with the
current task data to mitigate catastrophic forgetting.

before in this discriminative embedding space. In other words, we want to train the deep network

such the tasks are coupled in the embedding space by updating the parameters θ(T ) conditioned on

{θ(t)}T−1
t=1 .

The performance of deep networks stems from learning data-driven and task-dependent high-quality

features that can be learned in an end-to-end blind data-driven scheme [49]. In other words, a

deep network maps data points into a discriminative embedding space, captured by network layers,

where classification can be performed easily, e.g., classes become separable in the embedding.

Following this intuition, we consider the deep network fθ to be composed of an encoder φv(·)

with learnable parameters v, i.e., early layers of the network, and a classifier network hw(·) with

learnable parameters w, i.e., higher layers of the network. The encoder sub-network φv : X → Z

maps the data points into the embedding space Z ⊂ Rf , which describes the input in terms of

abstract discriminative features. Note that after training, as a deterministic function, the encoder

network changes the input task data distribution in the embedding. Figure 33 presents a high-level

block-diagram visualization of our framework.
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If the embedding space is discriminative for classification, this distribution can be modeled as a multi-

modal distribution for a given task, e.g., using a Gaussian mixture model (GMM). This is because

the distribution captures high-level abstract notions of classes in terms of geometric distances in the

embedding space, where data points belonging to the same class form a mode for the distribution.

Catastrophic forgetting occurs because this distribution is not kept stationary with respect to different

tasks. The idea that we want to explore is based on training φv such that all tasks share a similar

high-level distribution in the embedding; i.e., the new tasks are learned such that their distribution in

the embedding matches the past experience. By doing so, the embedding space becomes invariant

with respect to any learned input task, which in turn mitigates catastrophic forgetting.

The key question is how to adapt the standard supervised learning model fθ(·) such that the embed-

ding space, captured in the deep network, becomes task-invariant. Following prior discussion, we use

experience replay as the main strategy by making the model generative. We expand the base network

fθ(·) into a generative model by amending the model with a decoder ψu : Z → X , with learnable

parameters u. The decoder structure can be similar to the decoder, in reverse order. The decoder

maps the data representation back to the input space X and effectively makes the pair (φu, ψu)

an autoencoder. If implemented properly, we would learn a discriminative data distribution in the

embedding space, which can be approximated by a GMM. This distribution captures our knowledge

about past learned tasks. When a new task arrives, pseudo-data points for past tasks can be generated

by sampling from this distribution and feeding the samples to the decoder network. These pseudo-

data points can be used for experience replay in order to tackle catastrophic forgetting. Additionally,

we need to learn the new task such that its distribution matches the past shared distribution. As a

result, future pseudo-data points would represent the current task as well.

7.4. Optimization Method

Following the above framework, learning the first task (t = 1) reduces to minimizing discrimination

loss for classification and reconstruction loss for the autoencoder to solve for optimal weight

parameters v̂(1), ŵ(1), and ˆu(1):

min
v,w,u

n1∑
i=1

Ld
(
hw(φv

(
x

(1)
i )
)
,y

(1)
i

)
+ γLr

(
ψu

(
φv(x

(1)
i )
)
,x

(1)
i

)
, (7.1)
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where Lr is the reconstruction loss, and γ is a trade-off parameter between the two loss terms.

Upon learning the first task and formation of the clusters of classes, we fit a GMM distribution

with k components to the empirical distribution represented by data samples (φv(x
(0)
i ),y

(0)
i )n1

i=1

in the embedding space. The intuition behind this possibility is that as the embedding space is

discriminative due to supervised learning, we expect data points of each class to form a cluster in

the embedding. Let p̂(0)
J (z) denote this parametric distribution when the first task is learned. When

subsequent future tasks are learned, we update this distribution to accumulate what has been learned

from the new task into the distribution using the current task samples (φv(x
(t)
i ),y

(t)
i )nti=1. As a

result, this distribution captures knowledge about past experiences. Upon learning this distribution,

experience replay is also feasible without saving data points. One can generate pseudo-data points

in future through random sampling from p̂
(T−1)
J (z) at t = T and then passing the samples through

the decoder sub-network. These samples are replayed along with the current task samples. It is also

crucial to learn the current task such that its distribution in the embedding matches p̂(T−1)
J (z). Doing

so ensures suitability of GMM with k components to model the empirical distribution.

Let Z(T )
ER = 〈X(T )

ER ,Y
(T )
ER 〉 denote the pseudo-dataset generated at t = T . Following our framework,

learning subsequent tasks reduces to solving the following problem:

min
v,w,u

nt∑
i=1

Ld
(
hw
(
φv(x

(T )
i )

)
,y

(T )
i

)
+ γLr

(
ψu
(
φv(x

(T )
i )

)
,x

(T )
i

)
+

ner∑
i=1

Ld
(
hw
(
φv(x

(T )
er,i)

)
,y

(T )
er,i

)
+ γLr

(
ψu
(
φv(x

(T )
er,i)

)
,x

(T )
er,i

)
+ λ

k∑
j=1

D
(
φv(q(T )(X(T )|Cj)), p̂(T−1)

J (Z
(T )
ER |Cj)

)
,

(7.2)

where D(·, ·) is a discrepancy measure (metric) between two probability distributions, and λ is a

trade-off parameter. The first four terms in Eq. (7.2) are empirical classification risk and autoencoder

reconstruction loss terms for the current task and the generated pseudo-dataset. The third and fourth

terms enforce learning the current task such that the past learned knowledge is not forgotten. The

fifth term is added to enforce the learned embedding distribution for the current task to be similar to
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Algorithm 8 CLEER (L, λ)

1: Input: data D(t) = (X(t),Y (t))TMax
t=1 .

2: Pre-training: learning the first task (t = 1)
3: θ̂(1) = (u(1),v(1),w(1)) =arg minθ

∑
i Ld(fθ(x

(t)
i ),y

(t)
i ) + γLr(ψu(φv(x

(1)
i )),x

(1)
i )

4: Estimate p̂(0)
J (·) using {φv(x

(1)
i ))}nti=1

5: for t = 2, . . . , TMax do
6: Generate pseudo-dataset:
7: DER = {(x(t)

er,i = ψ(z
(t)
er,i),y

(t)
er,i) ∼ p̂

(t−1)
J (·)}neri=1

8: Update learnable parameters using pseudo-dataset: Eq. (7.2)
9: Estimate: p̂(t)

J (·)
10: use {φv(x

(t)
i )), φv(x

(t)
er,i))}nti=1

11: end for

what has been learned in the past, i.e., task-invariant. Note that we have conditioned the distance

between the two distributions on classes to avoid the class matching challenge, i.e., when wrong

classes across two tasks are matched in the embedding, as well as to prevent mode collapse from

happening. Class-conditional matching is considerably easier compared to chapter 4 because we

have labels for both distributions. This term guarantees that we can continually use GMM with k

components to fit the shared distribution in the embedding space.

The main remaining question is selecting the metric D(·, ·) such that it fits our problem. Similar to

chapter 4 and chapter 5 and because the same reasoning is valid here, we rely on Sliced Wasserstein

Distance (SWD) [130], which approximates the optimal transport metric, but can be computed

efficiently. By utilizing the SWD as the discrepancy measure between the distributions in Eq. (7.2),

it can be solved using the first-order optimization techniques that are suitable for deep learning.

We tackle catastrophic forgetting using the proposed procedure. Our algorithm, named Continual

Learning using Encoded Experience Replay (CLEER), is summarized in Algorithm 8.

7.5. Theoretical Justification

We again rely on theoretical results about using optimal transport within domain adaptation [104] to

justify why our algorithm can tackle catastrophic forgetting. Note that the hypothesis class in our

learning problem is the set of all functions represented by the network fθ(·) parameterized by θ. For

a given model in this class, let et denote the observed risk for a particular task Z(t) and eJt denote the
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observed risk for learning the network on samples of the distribution p̂(t−1)
J . For the convenience of

the reader, we list the following theorem again [104].

Theorem 7.5.1. Consider two tasks Z(t) and Z(t′), and a model fθ(t′) trained for Z(t′), then for any

d′ > d and ζ <
√

2, there exists a constant number N0 depending on d′ such that for any ξ > 0 and

min(nt, nt′) ≥ max(ξ−(d′+2),1) with probability at least 1− ξ for all fθ(t′) , the following holds:

et ≤et′ +W (p̂(t), p̂(t′)) + eC(θ
∗)+√(

2 log(
1

ξ
)/ζ
)(√ 1

nt
+

√
1

nt′

)
,

(7.3)

where W (·) denotes the Wasserstein distance between empirical distributions of the two tasks and θ∗

denotes the optimal parameter for training the model on tasks jointly, i.e., θ∗ = arg minθ eC(θ) =

arg minθ{et + et′}.

We observe from Theorem 7.5.1 that performance, i.e., real risk, of a model learned for task Z(t′)

on another task Z(t) is upper-bounded by four terms: i) model performance on task Z(t′), ii) the

distance between the two distributions, iii) performance of the jointly learned model fθ∗ , and iv) a

constant term that depends on the number of data points for each task. Note that we do not have

a notion of time in this Theorem; i.e., the roles of Z(t) and Z(t′) can be shuffled and the theorem

would still hold. In our framework, we consider the task Z(t′) to be the pseudo-task, i.e., the task

derived by drawing samples from p̂t
′
J and then feeding the samples to the decoder sub-network. We

use this result to conclude the following theorem.

Theorem 7.5.2. Consider CLEER algorithm for lifelong learning after Z(T ) is learned at time

t = T . Then all tasks t < T and under the conditions of Theorem 1, we can conclude the following

inequality:

et ≤eJT−1 +W (q̂(t), ψ(p̂
(t)
J )) +

T−2∑
s=t

W (ψ(p̂
(s)
J ), ψ(p̂

(s+1)
J ))

+ eC(θ
∗) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

ner,t−1

)
,

(7.4)
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Proof: We consider Z(t) with empirical distribution q̂(t) and the pseudo-task with the distribution

ψ(p̂
(T−1)
J ) in the network input space, in Theorem 1. Using the triangular inequality on the term

W (q̂(t), ψ(p̂
(T−1)
J )) recursively, i.e.,W (q̂(t), ψ(p̂

(s)
J )) ≤W (p̂(t), ψ(p̂

(s−1)
J ))+W (ψ(p̂

(s)
J ), ψ(p̂

(s−1)
J ))

for all t ≤ s < T , Theorem 7.5.2 can be derived �

Theorem 7.5.2 explains why our algorithm can tackle catastrophic forgetting. When future tasks are

learned, our algorithms updates the model parameters conditioned on minimizing the upper-bound of

et in Eq. 7.4. Given a suitable network structure and in the presence of enough labeled data points,

the terms eJt−1 and eC(θ∗) are minimized using ERM, and the last constant term would be small. The

term W (q̂(t), ψ(p̂
(t)
J )) is minimal because we deliberately fit the distribution p̂(t)

J to the distribution

φ(q̂(t)) in the embedding space and ideally learn φ and ψ such that ψ ≈ φ−1. This term demonstrates

that minimizing the discrimination loss is critical as only then can we fit a GMM distribution on

φ(p̂(t)) with high accuracy. Similarly, the sum terms in Eq. 7.4 are minimized because at t = s, we

draw samples from p̂
(s−1)
J and enforce p̂(s−1)

J ≈ φ(ψ(p̂
(s−1)
J )) indirectly. Since the upper-bound of

et in Eq. 7.4 is minimized and conditioned on its tightness, the task Z(t) will not be forgotten.

7.6. Experimental Validation

We validate our method on learning two sets of sequential tasks: independent permuted MNIST tasks

and related digit classification tasks.

7.6.1. Learning Sequential Independent Tasks

Following the literature, we use permuted MNIST tasks to validate our framework. The sequential

tasks involve classification of handwritten images of MNIST (M) dataset [135], where pixel values

for each data point are shuffled randomly by a fixed permutation order for each task. As a result, the

tasks are independent and quite different from each other. Since knowledge transfer across tasks is

less likely to happen, these tasks are a suitable benchmark to investigate the effect of an algorithm

on mitigating catastrophic forgetting as past learned tasks are not similar to the current task. We

compare our method against: a) normal backpropagation (BP) as a lower bound, b) full experience

replay (FR) of data for all the previous tasks as an upper-bound, and c) EWC as a competing model
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(a) BP vs. EWC (b) CLEER vs. FR

Figure 34: Performance results for permuted MNIST tasks: (a) the dashed curves denote results for
back-propagation (BP) and the solid curves denote the results for EWC; (b) the dashed curves denote
results for full replay (FR) and the solid curves denote the results for our algorithm (CLEER) (Best
viewed in color).

(a) CLEER (b) FR

Figure 35: UMAP visualization of CLEER versus FR for permuted MNIST tasks. (Best viewed in
color.)

consolidation framework.

We learn permuted MNIST tasks using a simple multi-layer perceptron (MLP) network trained via

standard stochastic gradient descent and compute the performance of the network on the testing

split of each task data at each iteration. Figure 34 presents results on five permuted MNIST tasks.

Figure 34a presents learning curves for BP (dotted curves) and EWC (solid curves) 1.
1We have used PyTorch implementation of EWC [215].
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We observe that EWC is able to address catastrophic forgetting quite well. However, a close

inspection reveals that as more tasks are learned, the asymptotic performance on subsequent tasks

is less than the single task learning performance (roughly 4% less for the fifth task). This can

be understood as a side effect of model consolidation, which limits the learning capacity of the

network. This is an inherent limitation for techniques that regularize network parameters to prevent

catastrophic forgetting. Figure 34b presents learning curves for our method (solid curves) versus FR

(dotted curves). As expected, FR can prevent catastrophic forgetting perfectly, but as we discussed

the downside is the memory growth challenge. FR result in Figure 34b demonstrates that the network

learning capacity is sufficient for learning these tasks and that if we have a perfect generative model,

we can prevent catastrophic forgetting without compromising the network learning capacity. Despite

more forgetting in our approach compared to EWC, the asymptotic performance after learning each

task, just before advancing to learn the next task, has been improved. We also observe that our

algorithm suffers an initial drop in performance of previous tasks when we proceed to learn a new

task. Every time that a new task is learned, performance on all the prior learned tasks suffers from

this initial drop. Forgetting beyond this initial forgetting is negligible. This can be understood as

the existing distance between p̂(T−1)
J and φ(q(t)) at t = T . In other words, our method can be

improved, if better autoencoder structures are used. This will require a search on the structure of the

autoencoder, e.g., number of layers, number of filters in the convolutional layer, etc., which we leave

for the future. These results suggest that catastrophic forgetting may be tackled better if both model

consolidation and experience replay are combined.

To provide a better intuitive understating, we have also included the representations of the testing

data for all tasks in the embedding space of the MLP in Figures 35. We have used UMAP [161]

to reduce the dimensions for visualization purpose. In these figures, each color corresponds to a

specific class of digits. We can see that although FR is able to learn all tasks and form distinct

clusters for each digit class for each task, five different clusters are formed for each class in the

embedding space. This suggests that FR is unable to learn the concept of the same class across

different tasks in the embedding space. In comparison, we observe that CLEER is able to match

the same class across different tasks; i.e., we have exactly ten clusters for the ten digits. This
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(a)M→ U (b) U →M

Figure 36: Performance results on MNIST and USPS digit recognition tasks versus learning iterations:
the solid curve denotes performance of the network on the first task and the dashed curve denotes the
performance on the second task (Best viewed in color.)

(a)M→ U (b) U →M

Figure 37: UMAP visualization forM→ U and U →M tasks. (Best viewed in color.)

empirical observation demonstrates that we can model the data distribution in the embedding using a

multi-modal distribution such as a GMM [216].

7.6.2. Learning Sequential Tasks in Related Domains

We performed a second set of experiments on related tasks to investigate the ability of the algorithm

to learn new domains. We consider two digit classification datasets for this purpose: MNIST (M)

and USPS (U) datasets. Despite being similar, USPS dataset is a more challenging task as the size
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of the training set is smaller (20,000 compared to 60,000 images). We consider the two possible

sequential learning scenarios:M→ U and U →M. We resized the USPS images to 28× 28 pixels

to be able to use the same encoder network for both tasks. The experiments can be considered as a

special case of domain adaptation as both tasks are digit recognition tasks but in different domains.

To capture relations between the tasks, we use a CNN for these experiments.

Figure 36 presents learning curves for these two tasks. We observe that the network retains the

knowledge about the first domain, after learning the second domain. We also see that forgetting is

negligible compared to unrelated tasks, and there is a jump-start in performance. These observations

suggest relations between the tasks help to avoid forgetting. As a result of task similarities, the

empirical distribution can capture the task distribution more accurately. As expected from the

theoretical justification, this empirical result suggests the performance of our algorithm depends on

the closeness of the distribution ψ(p̂
(t)
J ) to the distributions of previous tasks. Moreover, improving

probability estimation will increase the performance of our approach. We have also presented UMAP

visualization of all tasks’ data in the embedding space in Figure 37. We can see that as expected, the

distributions are matched in the embedding space. We also see a number of stray dots. These are

data points that the network has not been able to classify well.

7.7. Conclusions

Inspired from CLS theory, we addressed the challenge of catastrophic forgetting for sequential

learning of multiple tasks using experience replay. We amend a base learning model with a generative

pathway that encodes experiences meaningfully as a parametric distribution in an embedding space.

This idea makes experience replay feasible without requiring a memory buffer to store task data. The

algorithm is able to accumulate new knowledge in a manner consistent with past learned knowledge,

as the parametric distribution in the embedding space is enforced to be shared across all tasks.

Compared to model-based approaches that regularize the network to consolidate the important

weights for past tasks, our approach is able to address catastrophic forgetting without limiting the

learning capacity of the network. Future works for our approach may extend to learning new tasks

and/or classes with limited labeled data points and to investigating how to select the suitable network

167



layer and its dimensionality for the embedding. Additionally, in our approach, the GMM only

captures the classes. Using hierarchical GMM models that allow for a hierarchical embedding spaces

that separates the data points not only based on their class but also based on the corresponding tasks,

can help to capture data distributions in a more descriptive way.

One important observation in this chapter is the CLEER algorithm helps to learn a concept across

several related tasks. Building upon this observation, we develop an algorithm for continual concept

learning in the next chapter. The goal would be similar to this chapter in the sense that when a

network learns new forms of a concept, it should remember the old learned forms as well. The

difference would be that the goal is to generalize a concept to the new domains using a minimal

number of labeled data points.
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Chapter 8 : Continual Concept Learning

In this chapter, we study an extension of the learning setting that we studied in the previous chapter.

We assume that upon learning the initial task in a sequential learning setting, only a few labeled data

is accessible for the subsequent tasks. In terms of mathematical formulation, the difference between

this chapter and the previous chapter might seem minor, but the question that we try to answer is

different. In chapter 7, the focus was solely tackling catastrophic forgetting in a sequential learning

setting. In contrast, our goal in this chapter is to generalize a learned concept to new domains using a

few labeled samples. For this reason, the goal is to match the concepts across the tasks, rather merely

remembering the past tasks. Although we formulate the problem in a sequential learning setting

of tasks, this setting can be considered as learning a single task when the underlying distribution

changes over time. In this context, this setting can be considered a concept learning setting, where the

goal is to generalize the concepts that have been learned to new domains using the minimal number

of labeled data. After learning a concept, humans are able to continually generalize their learned

concepts to new domains by observing only a few labeled instances, without any interference with

the past learned knowledge. Note that this is different from ZSL for the unseen classes, where a new

concept is learned using knowledge transfer from another domain. In contrast, learning concepts

efficiently in a continual learning setting remains an open challenge for current ML algorithms, as

persistent model retraining is necessary.

In the previous chapter, we addressed catastrophic forgetting for a deep network that is being trained

in a sequential learning setting. One of the observations was that when we trained a deep network

on a related set of classification tasks, each class was encoded as a cluster in the embedding space

across the tasks. This suggested that the network was able to identify each class as a concept across

the tasks. Inspired by the observations in the previous chapter, we develop a computational model in

this chapter that is able to expand its previously learned concepts efficiently to new domains using a

few labeled samples. We couple the new form of a concept to its past learned forms in an embedding

space for effective continual learning. To this end, we benefit from the idea that we used in chapter 5,
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where we demonstrated that one could learn a domain-invariant and discriminative embedding space

for a source domain with labeled data and a target domain with few labeled data points. In other

words, we address the problem of domain adaption in a continual learning setting, where the goal is

not only to learn the new domain using few-labeled data points but also to remember old domains.

We demonstrate that our idea in the previous chapter can be used to address the challenges of this

learning setting. Results of this chapter have been presented in [217; 218].

8.1. Overview

An important ability of humans is to build and update abstract concepts continually. Humans develop

and learn abstract concepts to characterize and communicate their perception and ideas [219]. These

concepts often are evolved and expanded efficiently as more experience about new domains is gained.

Consider, for example, the concept of the printed character ‘4’. This concept is often taught to

represent the “natural number four” in the mother language of elementary school students. Upon

learning this concept, humans can efficiently expand it by observing only a few samples from other

related domains, e.g., a variety of hand-written digits or different fonts.

Despite remarkable progress in machine learning, learning concepts efficiently in a way similar to

humans, remains an unsolved challenge for AI, including methods based on deep neural networks.

Even simple changes such as minor rotations of input images can degrade the performance of deep

neural networks. Since deep networks are trained in an end-to-end supervised learning setting, access

to labeled data is necessary for learning any new distribution or variations of a learned concept.

For this reason and despite the emergence of behaviors similar to the nervous system in deep nets,

adapting a deep neural network to learn a concept in a new domain usually requires model retraining

from scratch which is conditioned on the availability of a large number of labeled samples in the new

domain. Moreover, as we discussed in the previous chapter, training deep networks in a continual

learning setting, is challenging due to the phenomenon of catastrophic forgetting [203]. When a

network is trained on multiple sequential tasks, the newly learned knowledge can interfere with past

learned knowledge, causing the network to forget what has been learned before.
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In this chapter, we develop a computational model that is able to expand and generalize learned

concepts efficiently to new domains using a few labeled data from the new domains. We rely on

Parallel Distributed Processing (PDP) paradigm [220] for this purpose. Work on semantic cognition

within the parallel distributed processing framework hypothesizes that abstract semantic concepts

are formed in higher-level layers of the nervous system [8; 221]. Hereafter we call this the PDP

hypothesis. We can model this hypothesis by assuming that the data points are mapped into an

embedding space, which captures existing concepts. From the previous chapter, we know that this is

the case with deep networks.

To prevent catastrophic forgetting, we again rely on the Complementary Learning Systems (CLS)

theory [199], discussed in the previous chapter. CLS theory hypothesizes that continual lifelong

learning ability of the nervous system is a result of a dual long- and short-term memory system. The

hippocampus acts as short-term memory and encodes recent experiences that are used to consolidate

the knowledge in the neocortex as long-term memory through offline experience replays during

sleep [205]. This suggests that if we store suitable samples from past domains in a memory buffer,

like in the neocortex, these samples can be replayed along with current task samples from recent-

memory hippocampal storage to train the base model jointly on the past and the current experiences

to tackle catastrophic forgetting.

More specifically, we model the latent embedding space via responses of a hidden layer in a deep

neural network. Our idea is to stabilize and consolidate the data distribution in this space, where

domain-independent abstract concepts are encoded. By doing so, new forms of concepts can be

learned efficiently by coupling them to their past learned forms in the embedding space. Data

representations in this embedding space can be considered as neocortical representations in the brain,

where the learned abstract concepts are captured. We model concept learning in a sequential task

learning framework, where learning concepts in each new domain is considered to be a task.

Similar to the previous chapter, we use an autoencoder as the base network to benefit from the efficient

coding ability of deep autoencoders to generalize the learned concepts without forgetting. We model

the embedding space as the middle layer of the autoencoder. This will also make our model generative,

171



which can be used to implement the offline memory replay process in the sleeping brain [206]. To

this end, we fit a parametric multi-modal distribution to the training data representations in the

embedding space. The drawn points from this distribution can be used to generate pseudo-data points

through the decoder network for experience replay to prevent catastrophic forgetting. While in the

previous chapter, the data points for all the tasks were labeled, we demonstrate that this learning

procedure enables the base model to generalize its learned concepts to new domains using a few

labeled samples.

8.2. Related Work

Lake et al. [219] modeled human concept learning within a Bayesian probabilistic learning (BPL)

paradigm. They present BPL as an alternative for deep learning to mimic the learning ability

of humans. While deep networks require a data greedy learning scheme, BPL models require

considerably less amount of training data. The concepts are represented as probabilistic programs

that can generate additional instances of a concept given a few samples of that concept. However,

the proposed algorithm in Lake et al. [219], requires human supervision and domain knowledge

to tell the algorithm how the real-world concepts are generated. This approach seems feasible for

the recognition task that they have designed to test their idea, but it does not scale to other, more

challenging concept learning problems.

Our framework similarly relies on a generative model that can produce pseudo-samples of the learned

concepts, but we follow an end-to-end deep learning scheme that automatically encodes concepts

in the hidden layer of the network with a minimal human supervision requirement. Our approach

can be applied to a broader range of problems. The price is that we rely on data to train the model,

but only a few data points are labeled. This is similar to humans with respect to how they too

need the practice to generate samples of a concept when they do not have domain knowledge [222].

This generative strategy has been used in the Machine Learning (ML) literature to address few-shot

learning (FSL) [223; 105]. As we saw in chapter 5, the goal of FSL is to adapt a model that is trained

on a source domain with sufficient labeled data to generalize well on a related target domain with a

few labeled data points. In our work, the domains are different but also are related in that similar
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concepts are shared across the domains.

Most FSL algorithms consider only one source and one target domain, which are learned jointly.

Moreover, the main goal is to learn the target task. In contrast, we consider a continual learning

setting in which the domain-specific tasks arrive sequentially. Hence, catastrophic forgetting becomes

a major challenge. An effective approach to tackle catastrophic forgetting is to use experience

replay [198; 204]. Experience replay addresses catastrophic forgetting via storing and replaying data

points of past learned tasks continually. Consequently, the model retains the probability distributions

of the past learned tasks. To avoid requiring a memory buffer to store past task samples, we can use

generative models to produce pseudo-data points for past tasks. To this end, generative adversarial

learning can be used to match the cumulative distribution of the past tasks with the current task

distribution to allow for generating pseudo-data points for experience replay [41]. Similarly, the

autoencoder structure can also be used to generate pseudo-data points [224]. We develop a new

method for generative experience replay to tackle catastrophic forgetting. Although prior works

require access to labeled data for all the sequential tasks for experience replay, we demonstrate that

experience replay is feasible even in the setting where only the initial task has labeled data. Our

contribution is to combine ideas of few-shot learning with generative experience replay to develop

a framework that can continually update and generalize learned concepts when new domains are

encountered in a lifelong learning setting. We couple the distributions of the tasks in the middle layer

of an autoencoder and use the shared distribution to expand concepts using a few labeled data points

without forgetting the past.

8.3. Problem Statement and the Proposed Solution

In our framework, learning concepts in each domain is considered to be a classification task, e.g., a

different type of digit character. We consider a continual learning setting [1], where an agent receives

consecutive tasks {Z(t)}TMax
t=1 in a sequence t = 1, . . . , TMax over its lifetime. The total number of

tasks, distributions of the tasks, and the order of tasks is not known a priori. Each task denotes a

particular domain, e.g., different types of digit characters. Analogously, we may consider the same

task when the task distribution changes over time. Since the agent is a lifelong learner, the current
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Figure 38: The architecture of the proposed framework for continual concept learning: when a task
is learned, pseudo-data points of the past learned tasks are generated and replayed along with the
current task data for both avoiding catastrophic forgetting and generalizing the past concept to the
new related domain.

task is learned at each time step, and the agent then proceeds to learn the next task. The knowledge

that is gained from experiences is used to learn the current task efficiently, using a minimal quantity

of labeled data. The newly learned knowledge from the current task also would be accumulated to the

past experiences to ease learning in future potentially. Additionally, this accumulation must be done

consistently to generalize the learned concepts as the agent must perform well on all learned task

and not to forget the concepts in the previous domains. This ability is necessary because the learned

tasks may be encountered at any time in the future. Figure 38 presents a high-level block-diagram

visualization of this framework.

We model an abstract concept as a class within a domain-dependent classification task. Data points

for each task are drawn i.i.d. from the joint probability distribution, i.e., (x
(t)
i ,y

(t)
i ) ∼ p(t)(x,y)

which has the marginal distribution q(t)(x) over x. We consider a deep neural network fθ : Rd → Rk
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as the base learning model, where θ denote the learnable weight parameters. A deep network

is able to solve classification tasks through extracting task-dependent high-quality features in a

data-driven end-to-end learning setting [49]. Within the PDP paradigm [220; 8; 221], this means

that the data points are mapped into a discriminative embedding space, modeled by the network

hidden layers, where the classes become separable, data points belonging to a class are grouped as

an abstract concept. On this basis, the deep network fθ is a functional composition of an encoder

φv(·) : Rd → Z ⊂ Rf with learnable parameter v, that encode the input data into the embedding

space Z and a classifier sub-network hw(·) : Rf → Rk with learnable parameters w, that maps

encoded information into the label space. In other words, the encoder network changes the input

data distribution as a deterministic function. Because the embedding space is discriminative, the

data distribution in the embedding space would be a multi-modal distribution that can be modeled as

a Gaussian mixture model (GMM). Figure 38 visualizes this intuition based on experimental data,

used in the experimental validation section.

Following the classic ML formalism, the agent can solve the task Z(1) using standard empirical

risk minimization (ERM). Given the labeled training dataset D(1) = 〈X(1),Y (1)〉, whereX(1) =

[x
(1)
1 , . . . ,x

(1)
nt ] ∈ Rd×n1 and Y (1) = [y

(1)
1 , . . . ,y

(1)
n ] ∈ Rk×nt , we can solve for the network

optimal weight parameters: θ̂(t) = arg minθ êθ = arg minθ 1/nt
∑

i Ld(fθ(x
(t)
i ),y

(t)
i ). Here, Ld(·)

is a suitable loss function such as cross-entropy. If a large enough number of labeled data points

n1 is available, the empirical risk would be a suitable function to estimate the real risk function,

e = E(x,y)∼p(t)(x,y)(Ld(fθ(t)(x),y)) [14] as the Bayes optimal objective. Hence, the trained model

will generalize well on test data points for the task Z(1).

Good generalization performance means that each class would be learned as a concept which is

encoded in the hidden layers. Our goal is to consolidate these learned concepts and generalize

them when the next tasks with a minimal number of labeled data points arrive. That is, for tasks

Z(t), t > 1, we have access to the dataset D(t) = 〈{X(′t),Y (t)},X(t)〉, where X(′t) ∈ Rd×nt

denotes the labeled data points and X(t) ∈ Rd×nt denotes unlabeled data points. This learning

setting means that the learned concepts must be generalized in the subsequent domains with minimal
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supervision. Standard ERM can not be used to learn the subsequent tasks because the number of

labeled data points is not sufficient, and as a result, overfitting would occur. Additionally, even in

the presence of enough labeled data, catastrophic forgetting would be a consequence of using ERM.

This consequence is because the model parameters will be updated using solely the current task data,

which can potentially deviate the values of θ(T ) from the previously learned values in the past time

step. Hence, the agent would not retain its learned knowledge when drifts in data distributions occur.

Following the PDP hypothesis and ability of deep networks to implement this hypothesis, our goal

is to use the encoded distribution in the embedding space to expand the concepts that are captured

in the embedding space. Meanwhile, we would like to prevent catastrophic forgetting. The gist of

our idea is to update the encoder sub-network such that each subsequent task is learned such that its

distribution in the embedding space matches the distribution that is shared by {Z(t)}T−1
t=1 at t = T .

Since this distribution is initially learned via Z(1) and subsequent tasks are enforced to share this

distribution in the embedding space with Z(1), we do not need to learn it from scratch as the concepts

are shared across the tasks. As a result, since the embedding space becomes invariant with respect to

any learned input task, catastrophic forgetting would not occur as the newly learned knowledge does

interfere with what has been learned before.

The key challenge is to adapt the standard ERM such that the tasks share the same distribution in the

embedding space that is shared across the tasks. To this end, we modify the base network fθ(·) to

form a generative autoencoder by amending the model with a decoder ψu : Z → X with learnable

parameters u. We train the model such the pair (φu, ψu) to form an autoencoder. Doing so, we

enhance the ability of the model to encode the concepts as separable clusters in the embedding.

We use the knowledge about data distribution form in the embedding to match the distributions

of all tasks in the embedding. This leads to a consistent generalization of the learned concepts.

Additionally, since the model is generative and knowledge about past experiences is encoded in the

network, we can use the CLS process [199] to prevent catastrophic forgetting. In other words, we

extend the CLS process to generative CLS process. When learning a new task, pseudo-data points for

the past learned tasks can be generated by sampling from the shared distribution in the embedding
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and feeding the samples to the decoder sub-network. These pseudo-data points are used along with

new task data to learn each task. Since the new task is learned such that its distribution matches the

past shared distribution, pseudo-data points generated for learning future tasks would also represent

the current task as well upon the time it is learned.

8.4. Proposed Algorithm

Following the above framework, learning the first task (t = 1) reduces to minimizing the discrimina-

tion loss for classification and the autoencoder reconstruction loss to solve for optimal parameters:

min
v,w,u

Lc(X(1),Y (1)) = min
v,w,u

1

n1

n1∑
i=1

Ld
(
hw(φv

(
x

(1)
i )
)
,y

(1)
i

)
+ γLr

(
ψu

(
φv(x

(1)
i )
)
,x

(1)
i

)
, (8.1)

where Lr is the reconstruction point-wise loss, Lc is the combined loss, and γ is a trade-off parameter

between the two loss terms.

If the base learning model is complex enough, the concepts would be formed in the embedding

space as separable clusters upon learning the first task. This means that the data distribution can be

modeled as a GMM distribution in the embedding. We can use standard methods such as expectation

maximization to fit a GMM distribution with k components to the multimodal empirical distribution

formed by the drawn samples {(φv(x
(1)
i ),y

(1)
i )n1

i=1}n1
i=1 ∼ p

(0)
J in the embedding space. Let p̂(0)

J,k(z)

denote the estimated parametric GMM distribution. The goal is to retain this initial estimation that

captures concepts when future domains are encountered. Following the PDP framework, we learn

the subsequent tasks such that the current task shares the same GMM distribution with the previously

learned tasks in the embedding space. We also update the estimate of the shared distribution after

learning each subsequent task. Updating this distribution means generalizing the concepts to the

new domains without forgetting the past domains. As a result, the distribution p̂(t−1)
J,k (z) captures

knowledge about past domains when Z(t) is being learned. Moreover, we can perform experience

replay by generating pseudo-data points by first drawing samples from p̂
(t−1)
J,k (z) and then passing

the samples through the decoder sub-network. The remaining challenge is to update the model

such that each subsequent task is learned such that its corresponding empirical distribution matches

p̂
(t−1)
J,k (z) in the embedding space. Doing so, ensures the suitability of GMM to model the empirical
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distribution and as a result, a learned concept can continually be encoded as one of the modes in this

distribution.

To match the distributions, consider Z(T )
ER = 〈ψ(Z

(T )
ER),Y

(T )
ER 〉 denotes the pseudo-dataset for tasks

{Z(t)}T−1
t=1 , generated for experience replay when Z(T ) is being learned. Following the described

framework, we form the following optimization problem to learn Z(t) and generalized concepts:

min
v,w,u

LSL(X(′t),Y (t)) + LSL(XT
(ER),Y

T
(ER)) + ηD

(
φv(q(t)(X(t))), p̂

(t)
J,k(Z

(T )
ER)

)
λ

k∑
j=1

D
(
φv(q(t)(X(′t))|Cj), p̂(t)

J,k(Z
(T )
ER |Cj)

)
∀t ≥ 2 ,

(8.2)

where D(·, ·) is a suitable metric function to measure the discrepancy between two probability

distributions, and λ and η are trade-off parameters. The first two terms in Eq. (8.2) denote the

combined loss terms for each of the current task few labeled data points and the generated pseudo-

dataset, defined similarly to Eq. (8.1). The third and fourth terms implement our idea and enforce

the distribution for the current task to be close to the distribution shared by the past learned task.

The third term is added to minimize the distance between the distribution of the current tasks and

p̂
(t−1)
J,k (z) in the embedding space. Data labels are not needed to compute this term. The fourth term

may look similar to the third term, but note that we have conditioned the distance between the two

distribution on the concepts to avoid the matching challenge, which occurs when wrong concepts (or

classes) across two tasks are matched in the embedding space [225]. We use the few labeled data

that are accessible for the current task to compute this term. These terms guarantees that we can

continually use GMM to model the shared distribution in the embedding.

The main remaining question is the selection of a suitable probability distance metric D(·, ·). Follow-

ing our discussion in chapter 4 on conditions for selecting the distance metric, we again use Sliced

Wasserstein Distance (SWD) for this purpose. Our concept learning algorithm, Efficient Concept

Learning Algorithm (ECLA), is summarized in Algorithm 9.
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Algorithm 9 ECLA (L, λ, η)

1: Input: data D(1) = (X(1),Y (t)).
2: D(t) = ({X(′t),Y (t)},X(t))TMax

t=2

3: Concept Learning: learn the first task (t = 1) by solving (8.1)
4: Fitting GMM:
5: Estimate p̂(0)

J,k(·) using {φv(x
(1)
i ))}nti=1

6: for t ≥ 2 do
7: Generate the pseudo dataset:
8: Set DER = {(x(t)

er,i = ψ(z
(t)
er,i),y

(t)
er,i)}

9: Draw (z
(t)
er,i,y

(t)
er,i)) ∼ p̂

(t−1)
J,k (·)

10: Update:
11: Solve Eq. (8.2) and update the learnable parameters are updated
12: Concept Generalization:
13: Update p̂(t)

J,k(·) using the combined samples {φv(x
(t)
i )), φv(x

(t)
er,i))}nti=1

14: end for

8.5. Theoretical Analysis

We again use the result from domain adaptation [104] to demonstrate the effectiveness of our

algorithm. We perform the analysis in the embedding space Z , where the hypothesis class is the

set of all the classifiers hw(·) parameterized by w. For any given model h in this class, let et(h)

denotes the observed risk for the domain that contains the task Z(t), et′(h) denotes the observed risk

for the same model on another secondary domain, andw∗ denotes the optimal parameter for training

the model on these two tasks jointly, i.e., w∗ = arg minw eC(w) = arg minw{et(h) + et′(h)}. We

also denote the Wasserstein distance between two given distributions as W (·, ·). We reiterate the

following theorem [104], which relates the performance of a model trained on a particular domain to

another secondary domain.

Theorem 8.5.1. Consider two tasks Z(t) and Z(t′), and a model hw(t′) trained for Z(t′), then for

any d′ > d and ζ <
√

2, there exists a constant number N0 depending on d′ such that for any ξ > 0

and min(nt, nt′) ≥ max(ξ−(d′+2),1) with probability at least 1− ξ for all fθ(t′) , the following holds:

et(h)− et′(h) ≤W (p̂(t), p̂(t′))eC(w
∗) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

nt′

)
, (8.3)

where p̂(t) and p̂(t′) are empirical distributions formed by the drawn samples from p(t) and p(t′).
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Theorem 8.5.1 is a broad result that provides an upper-bound on performance degradation of a trained

model when used in another domain. It suggests that if the model performs well on Z(t′) and if the

upper-bound is small, then the model performs well on Z(t′). The last term is a constant term which

depends on the number of available samples. This term is negligible when nt, nt′ � 1. The two

important terms are the first and second terms. The first term is the Wasserstein distance between

the two distributions. It may seem that according to this term, if we minimize the WD between

two distributions, then the model should perform well on Z(t). But it is crucial to note that the

upper-bound depends on the second term as well. Despite being the third term suggests that the base

model should be able to learn both tasks jointly. However, in the presence of “XOR classification

problem", the tasks cannot be learned by a single model [226]. This means that not only the WD

between two distributions should be small, but the distributions should be aligned class-conditionally.

Building upon Theorem 8.5.1, we provide the following theorem for our framework.

Theorem 8.5.2. Consider ECLA algorithm at learning time step t = T . Then all tasks t < T and

under the conditions of Theorem 8.5.1, we can conclude:

et ≤eJT−1 +W (φ(q̂(t)), p̂
(t)
J,k) +

T−2∑
s=t

W (p̂
(s)
J,k, p̂

(s+1)
J,k )

+ eC(w
∗) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

ner,t−1

)
,

(8.4)

where eJT−1 denotes the risk for the pseudo-task with the distribution ψ(p̂
(T−1)
J,k ).

Proof: In Theorem 8.5.1, consider the task Z(t) with the distribution φ(q(t)) and the pseudo-task with

the distribution p(T−1)
J,k in the embedding space. We can use the triangular inequality recursively on the

term W (φ(q̂(t)), p̂
(T−1)
J,k ) in Eq. (8.3), i.e., W (φ(q̂(t)), p̂

(s)
J,k) ≤W (φ(q̂(t)), p̂

(s−1)
J,k )+W (p̂

(s)
J,k, p̂

(s−1)
J,k )

for all time steps t ≤ s < T . Adding up all the terms, concludes Eq. (8.4) �

Similar to the previous chapter, we can rely on Theorem 8.5.2 to demonstrate why our algorithm

can generalize concepts without forgetting the past learned knowledge. The first term in Eq. (8.4)

is small because experience replay minimizes this term using the labeled pseudo-data set via ERM.

The fourth term is small since we use the few labeled data points to align the distributions class
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conditionally in Eq. (8.2). The last term is a negligible constant for nt, ner,t−1 � 1. The second term

denotes the distance between the task distribution and the fitted GMM. When the PDP hypothesis

holds, and the model learns a task well, this term is small as we can approximate φ(q̂(t)) with p̂(s−1)
J,k )

(see Ashtiani et al. [227] for a rigorous analysis of estimating a distribution with GMM). In other

words, this term is small if the classes are learned as concepts. Finally, the terms in the sum term

in Eq 8.4 are minimized because at t = s we draw samples from p
(s−1)
J,k and by learning ψ−1 = ψ

enforce that p̂(s−1)
J,k ≈ φ(ψ(p̂

(s−1)
J,k )). The sum term in Eq 8.4, models the effect of past experiences.

After learning a task and moving forward, this term potentially grows as more tasks are learned.

This means that forgetting effects would increase as more subsequent tasks are learned, which is

intuitive. To sum up, ECLA minimizes the upper-bound of et in Eq 8.4. This means that the model

can learn and remember Z(t) which in turn means that the concepts have been generalized without

being forgotten on the old domains.

8.6. Experimental Validation

We validate our method on learning two sets of sequential learning tasks that we used in the

previous chapter: permuted MNIST tasks and digit recognition tasks. These are standard benchmark

classification tasks for sequential task learning. We adjust them for our learning setting. Each class in

these tasks is considered to be a concept, and each task of the sequence is considered to be learning

the concepts in a new domain.

8.6.1. Learning Permuted MNIST Tasks

Permuted MNIST tasks is a standard benchmark that is designed for testing the abilities of AI

algorithms to overcome catastrophic forgetting [41; 207]. The sequential tasks are generated using

the MNIST (M) digit recognition dataset [135]. Each task in the sequence is generated by applying

a fixed random shuffling to the pixel values of digit images across the MNIST dataset [207]. As

a result, generated tasks are homogeneous in terms of difficulty for a base model and are suitable

to perform controlled experiments to study the effects of knowledge transfer. Our learning setting

is different compared to prior works as we considered the case where only the data for the initial
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MNIST task is fully labeled. In the subsequent tasks, only a few data points are labeled.

To the best of our knowledge, no precedent method addresses this learning scenario for direct

comparison, so we only compared against: a) classic backpropagation (BP) single task learning, (b)

full experience replay (FR) using full stored data for all the previous tasks, and (c) learning using

fully labeled data which is analogous to using CLEER algorithm from the previous chapter. We use

the same base network structure for all the methods for fair comparison. BP is used to demonstrate

that our method can address catastrophic forgetting. FR is used as a lower-bound to demonstrate

that our method is able to learn cross-task concepts without using fully labeled data. CLEER is an

instance of ECLA where fully labeled data is used to learn the subsequent tasks. We used CLEER to

compare our method against an upper-bound.

We used standard stochastic gradient descent to learn the tasks and created learning curves by

computing the performance of the model on the standard testing split of the current and the past

learned tasks at each learning iteration. Figure 39 presents learning curves for four permuted MNIST

tasks. Figure 39a presents learning curves for BP (dashed curves) and CLEER (solid curves). As

can be seen, CLEER (i.e., ECLA with fully labeled data) is able to address catastrophic forgetting.

This figure demonstrates that our method can be used as a new algorithm on its own to address

catastrophic forgetting using experience replay [41]. Figure 39b presents learning curves for FR

(dashed curves) and ECLA (solid curve) when five labeled data points per class are used respectively.

We observe that FR can tackle catastrophic forgetting perfectly, but the challenge is the memory

buffer requirement, which grows linearly with the number of learned tasks, making this method only

suitable for comparison as an upper-bound. FR result also demonstrates that if we can generate

high-quality pseudo-data points, catastrophic forgetting can be prevented completely. Deviation of

the pseudo-data from the real data is the major reason for the initial performance degradation of

ECLA on all the past learned tasks when a new task arrives, and its learning starts. This degradation

can be ascribed to the existing distance between p̂(T−1)
J,k and φ(q(s)) at t = T for s < T . Note also as

our theoretical analysis predicts, the performance on a past learned task degrades more as more tasks

are learned subsequently. This is compatible with the nervous system as memories fade out as time
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(a) BP vs. CLEER (b) ECLA vs. FR

(c) FR (d) ECLA

Figure 39: Learning curves for four permuted MNIST tasks((a) and (b)), where the blue curve
denotes performance on the first task and the orange curve denotes performance on the second task;
UMAP visualization of ECLA and FR in the embedding ((c) and (d)). (Best viewed in color.)

passes unless enhanced by continually experiencing a task or a concept.

In addition to requiring fully labeled data, we demonstrate that FR does not identify concepts across

the tasks. To this end, we have visualized the testing data for all the tasks in the embedding space Z

in Figures 39 for FR and ECLA after learning the fourth task. For visualization purpose, we have

used UMAP [161], which reduces the dimensionality of the embedding space to two. In Figure 39c
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(a)M→ U (b) U →M

(c)M→ U (d) U →M

Figure 40: Performance results on MNIST and USPS digit recognition tasks ((a) and (b)). UMAP
visualization forM→ U and U →M tasks ((c) and (d)). (Best viewed in color.)

and Figure 39d, each color denotes the data points of one of the digits {0, 1, . . . , 9} (each circular

shape indeed is a cluster of data points). We can see that the digits form separable clusters for

both methods. This result is consistent with the PDP hypothesis and is the reason behind the good

performance of both methods. It also demonstrates why GMM is a suitable selection to model the

data distribution in the embedding space. However, we can see that when FR is used, four distinct

clusters for each digit are formed (i.e., one cluster per domain for each digit class). In other words,

FR is unable to identify and generalize abstract concepts across the domains, and each class is learned
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as an independent concept in each domain. In contrast, we have exactly ten clusters for the ten digits

when ECLA is used, and hence, the concepts are identified across the domains. This is the reason

that we can generalize the learned concepts to new domains, despite using a few labeled data.

8.6.2. Learning Sequential Digit Recognition Tasks

We performed a second set of experiments on a more realistic scenario. We consider two handwritten

digit recognition datasets for this purpose: MNIST (M) and USPS (U) datasets. USPS dataset is

a more challenging classification task as the size of the training set is smaller (20,000 compared

to 60,000 images). We performed experiments on the two possible sequential learning scenarios

M→ U andM→ U . We resized the USPS images to 28× 28 pixels to be able to use the same

encoder network for both tasks. The experiments can be considered as concept learning for numeral

digits as both tasks are digit recognition tasks but in different domains, i.e., written by different

people.

Figure 40a and Figure 40b present learning curves for these two tasks when ten labeled data points

per class are used for the training of the second task. First, note that the network mostly retains

the knowledge about the first task following the learning of the second task. Also note that the

generalization to the second domain, i.e., the second task learning is faster in Figure 40a. Because

MNIST dataset has more training data points, the empirical distribution p̂(1)
J,k can capture the task

distribution more accurately and hence the concepts would be learned better which in turn makes

learning the second task easier. As expected from the theoretical justification, this empirical result

suggests the performance of our algorithm depends on the closeness of the distribution ψ(p̂
(t)
J,k) to

the distributions of previous tasks, and improving probability estimation will boost the performance

of our approach. We have also presented UMAP visualization of the data points for the tasks in the

embedding space in Figures 40c and Figures 40d. We observe that the distributions are matched in the

embedding space, and cross-domain concepts are learned by the network. These results demonstrate

that our algorithm, inspired by PDP and CLS theories, can generalize concepts to new domains using

few labeled data points.
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8.7. Conclusions

Inspired by the CLS theory and the PDP paradigm, we developed an algorithm that enables a deep

network to update and generalize its learned concepts in a continual learning setting by observing

few data points in a new domain. Our generative framework is able to encode abstract concepts in a

hidden layer of the deep network in the form of a parametric GMM distribution which remains stable

when new domains are learned. This distribution can be used to generalize concepts to new domains,

where only a few labeled samples are accessible. The proposed algorithm is able to address the

learning challenges by accumulating the newly learned knowledge consistently to the past learned

knowledge. Additionally, the model is able to generate pseudo-data points for past tasks, which can

be used for experience replay to tackle catastrophic forgetting.

In the next part of this thesis, we consider a multi-agent learning setting, where the goal is to improve

the learning performance of several agents that collaborate by sharing their learned knowledge.

In both Part I and Part II, a major assumption was that centralized access to data across the tasks

and domains is possible. In a multi-agent learning setting, this assumption is not valid anymore,

and transmitting data to a central server can be expensive. As a result, new challenges need to be

addressed. We demonstrate how our ideas from chapter 3 and chapter 6 can be extended to be to

address this learning setting by transferring knowledge across the agents.
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Part III

Cross-Agent Knowledge Transfer
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In the first two parts of this thesis, we considered that we have centralized access to the data for all

problems. This means that only a single learning agent exists that learns all the problems. However,

in a growing class of applications, the data is distributed across different agents, sometimes virtual

agents. For various reasons, including data privacy, distributed computational resources, and limited

communication bandwidth, transmitting all data to a central server may not be a feasible solution. As

a result, the single-agent learning algorithms may underperform because the amount of data for every

single agent may not be sufficient. Cross-agents knowledge transfer can help several collaborating

agents to improve their performance by sharing knowledge and benefiting from the wisdom of the

crowd. In this part, we develop an algorithm that enables a network of lifelong machine learning agent

to collaborate and share their high-level knowledge to improve their learning speed and performance,

without sharing their local data. Similar to previous parts, the core idea is to enable the agents to

share knowledge through an embedding space that captures what has been learned locally by each

agent. This embedding space is shared by the agents indirectly by learning agent-specific mappings

that can be used to map data to this shared embedding space.
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Chapter 9 : Collective Lifelong Learning for

Multi-Agent Networks

In a classic machine learning stetting, usually, a single learning agent has centralized access to

all data. However, centralized access to data can be challenging in a multi-agent learning setting.

In this chapter, we investigate the possibility of cross-agent knowledge transfer, when the data is

distributed across several learning agents. Each agent in our formulation is a lifelong learner that

acquires knowledge over a series of consecutive tasks, continually building upon its experience.

Meanwhile, the agents can communicate and share locally learned knowledge to improve their

collective performance. We extend the idea of lifelong learning from a single agent to a network of

multiple agents. The key goal is to share the knowledge that is learned from local, agent-specific tasks

with other agents that are trying to learn different (but related) tasks. Building upon our prior works,

our idea is to enforce the agents to share their knowledge through an embedding space that captures

similarities across the distributed tasks. Extending the ELLA framework, introduced in chapter 6,

we model the embedding space using a dictionary that sparsifies the optimal task parameters. These

agents learn this dictionary collectively, and as a result, their experiences are shared through the

dictionary. Our Collective Lifelong Learning Algorithm (CoLLA) provides an efficient way for

a network of agents to share their learned knowledge in a distributed and decentralized manner

through the shared dictionary while eliminating the need to share locally observed data. Note

that a decentralized scheme is a subclass of distributed algorithms where a central server does

not exist and in addition to data, computations are also distributed among the agents. We provide

theoretical guarantees for robust performance of the algorithm and empirically demonstrate that

CoLLA outperforms existing approaches for distributed multi-task learning on a variety of standard

datasets. Results of this chapter have been presented in [228; 43; 229; 230].
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9.1. Overview

Collective knowledge acquisition is common throughout different societies, from the collaborative

advancement of human knowledge to the emergent behavior of ant colonies [231]. It is the product

of individual agents, each with their own interests and constraints, sharing and accumulating learned

knowledge over time in uncertain and often dangerous real-world environments. Our work explores

this scenario within machine learning and in particular, considers learning in a network of lifelong

machine learning agents.

Recent work in lifelong machine learning [166; 1; 232] has explored the notion of a single agent

accumulating knowledge over its lifetime. Such an individual lifelong learning agent reuses knowl-

edge from previous tasks to improve its learning on new tasks, accumulating an internal repository of

knowledge over time. This lifelong learning process improves performance over all tasks and permits

the design of adaptive agents that are capable of learning in dynamic environments. Although current

work in lifelong learning focuses on a single learning agent that incrementally perceives all task data,

many real-world applications involve scenarios in which multiple agents must collectively learn a

series of tasks that are distributed among them. Consider the following cases:

•Multi-modal task data could only be partially accessible by each learning agent. For example,

financial decision support agents may have access only to a single data view of tasks or a

portion of the non-stationary data distribution [233].

• Local data processing can be inevitable in some applications, such as when health care regulations

prevent personal medical data from being shared between learning systems [234].

• Data communication may be costly or time-consuming. For instance, home service robots must

process perceptions locally due to the volume of perceptual data, or wearable devices may

have limited communication bandwidth [235].

• As a result of data size or the geographical distribution of data centers, parallel processing can be

essential. Modern big data systems often necessitate parallel processing in the cloud across
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multiple virtual agents, i.e., CPUs or GPUs [236].

Inspired by the above scenarios, we explore the idea of multi-agent lifelong learning. We consider

multiple collaborating lifelong learning agents, each facing their own series of tasks, that transfer

knowledge to collectively improve task performance and increase learning speed. Existing methods in

the literature have mostly investigated special cases of this setting for distributed multi-task learning

(MTL) [237; 238; 235].

To develop multi-agent distributed lifelong learning, we follow a parametric approach and formulate

the learning problem as an online MTL optimization over a network of agents. Each agent seeks

to learn parametric models for its own series of (potentially unique) tasks. The network topology

imposes communication constraints among the agents. For each agent, the corresponding task model

parameters are represented as a task-specific sparse combination of atoms of its local knowledge

base [239; 1; 165]. The local knowledge bases allow for knowledge transfer from learned tasks

to the future tasks for each individual agent. The agents share their knowledge bases with their

neighbors, update them to incorporate the learned knowledge representations of their neighboring

agents, and come to a local consensus to improve learning quality and speed. We use the Alternating

Direction Method of Multipliers (ADMM) algorithm [240; 241] to solve this global optimization

problem in an online distributed setting; our approach decouples this problem into local optimization

problems that are individually solved by the agents. ADMM allows for transferring the learned

local knowledge bases without sharing the specific learned model parameters among neighboring

agents. We propose an algorithm with nested loops to allow for keeping the procedure both online

and distributed. Although our approach eliminates the need for the agents to share local models

and data, note that we do not address the privacy considerations that may arise from transferring

knowledge between agents. Also, despite potential extensions to parallel processing systems, our

focus here is on collaborative agents that receive consecutive tasks.

We call our approach the Collective Lifelong Learning Algorithm (CoLLA). We provide a theoretical

analysis of CoLLA’s convergence and empirically validate the practicality of the proposed algorithm

on a variety of standard MTL benchmark datasets.
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Distributed Machine Learning: There has been a growing interest in developing scalable learning

algorithms using distributed optimization [242], motivated by the emergence of big data, security

and privacy constraints [243], and the notion of cooperative and collaborative learning agents [244].

Distributed machine learning allows multiple agents to collaboratively mine information from large-

scale data. The majority of these settings are graph-based, where each node in the graph represents

a portion of data or an agent. Communication channels between the agents, then, can be modeled

via edges in the graph. Some approaches assume there is a central server (or a group of server

nodes) in the network, and the worker agents transmit locally learned information to the server(s),

which then perform knowledge fusion [245]. Other approaches assume that processing power is

distributed among the agents, which exchange information with their neighbors during the learning

process [237]. We formulate our problem in the latter setting, as it is less restrictive. Following the

dominant paradigm of distributed optimization, we also assume that the agents are synchronized.

These methods formulate learning as an optimization problem over the network and use distributed

optimization techniques to acquire the global solution. Various techniques have been explored,

including stochastic gradient descent [245], proximal gradients [246], and ADMM [245]. Within

the ADMM framework, it is assumed that the objective function over the network can be decoupled

into a sum of independent local functions for each node (usually risk functions) [247], constrained

by the network topology. Through a number of iterations on primal and dual variables of the

Lagrangian function, each node solves a local optimization, and then through information exchange,

constraints imposed by the network are realized by updating the dual variable. In scenarios where

maximizing a cost for some agents translates to minimizing the cost for others (e.g., adversarial

games), game-theoretical notions are used to define a global optimal state for the agents [248].

Distributed Multi-task Learning: Although it seems natural to consider MTL agents that collab-

orate on related tasks, most prior distributed learning work focuses on the setting where all agents

try to learn a single task. Only recently have MTL scenarios been investigated where the tasks

are distributed [235; 249; 250; 251; 252; 253]. In such a setting, data must not be transferred to a

central node because of communication and privacy/security constraints. Only the learned models or
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high-level information can be exchanged by neighboring agents. These distributed MTL methods

are mostly limited to off-line (batch) settings where each agent handles only one task [249; 250].

Jin et al. [235] consider an online setting but require the existence of a central server node, which

is restrictive. In contrast, our work considers decentralized and distributed multi-agent MTL in a

lifelong learning setting, without the need for a central server. Moreover, our approach employs

homogeneous agents that collaborate to improve their collective performance over consecutive

distributed tasks. This can be considered as a special case of concurrent learning, where learning a

task concurrently by multiple agents can accelerate learning [254].

Similar to prior works [249; 250], we use distributed optimization to tackle the collective lifelong

learning problem. These existing approaches can only handle an off-line setting where all the task

data is available in batch for each agent. In contrast, we propose an online learning procedure which

can address consecutive tasks. In each iteration, the agents receive and learn their local task models.

Since the agents are synchronous, once the tasks are learned, a message-passing scheme is then used

to transfer and update knowledge between the neighboring agents in each iteration. In this manner,

knowledge will disseminate among all agents over time, improving collective performance. Similar

to most distributed learning settings, we assume there is a latent knowledge base that underlies all

tasks, and that each agent is trying to learn a local version of that knowledge base based on its own

(local) observations and knowledge exchange with neighboring agents, modeled by edges (links) of

the representing network graph.

9.2. Lifelong Machine Learning

Following chapter 6, we consider a set of T related (but different) supervised regression or clas-

sification tasks, each with labeled training data, i.e.,
{
Z(t) =

(
X(t),y(t)

)}T
t=1

, where X(t) =

[x1, . . . ,xM ] ∈ Rd×M represents M data instances characterized by d features, with corresponding

targets given by y(t) = [y1, . . . , ym]> ∈ YM . Typically, Y = {±1} for binary classification tasks

and Y = R for regression tasks. We assume that for each task t, the mapping f : Rd → Y from each

data point xm to its target ym can be modeled as ym = f(xm;θ(t)), where θ(t) ∈ Rd. In particular,

we consider a linear mapping f(xm;θ(t)) = 〈θ(t),xm〉 where θ(t) ∈ Rd, but our framework is read-
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ily generalizable to nonlinear parametric mappings (e.g., via generalized dictionaries [255]). After

receiving a task Z(t), the agent models the mapping f(xm;θ(t)) by estimating the corresponding

optimal task parameters θ(t) using the training data such that it well-generalizes on testing data

points from that task. An agent can learn the task models by solving for the optimal parameters

Θ∗ = [θ(1), . . . ,θ(T )] in the following empirical risk minimization (ERM) problem:

min
Θ

1

T

T∑
t=1

EX(t)∼D(t)

(
L
(
X(t),y(t);θ(t)

))
+ Ω(Θ) , (9.1)

where L(·) is a loss function for measuring data fidelity, E(·) denotes the expectation on the task’s

data distribution D(t), and Ω(·) is a regularization function that models task relations by coupling

model parameters to transfer knowledge among the tasks. Almost all parametric MTL, online, and

lifelong learning algorithms solve instances of Eq. (9.1) given a particular form of Ω(·) to impose a

specific coupling scheme and an optimization mode, i.e., online or batch offline.

To model task relations, the GO-MTL algorithm [239] uses classic empirical risk minimization (ERM)

to estimate the expected loss and solve the objective (9.1). It assumes that the task parameters can be

decomposed into a shared dictionary knowledge base L ∈ Rd×u to facilitate knowledge transfer and

task-specific sparse coefficients s(t) ∈ Ru, such that θ(t) = Ls(t). In this factorization, the hidden

structure of the tasks is represented in the dictionary knowledge base, and similar tasks are grouped

by imposing sparsity on the s(t)’s. Tasks that use the same columns of the dictionary are clustered

to be similar, while tasks that do not share any column can be considered as belonging to different

groups. In other words, more overlap in the sparsity patterns of two tasks implies more similarity

between those two task models. This factorization has been shown to enable knowledge transfer

when dealing with related tasks by grouping similar tasks [239; 165]. Following this assumption and

employing ERM, the objective (9.1) can be expressed as:

min
L,S

1

T

T∑
t=1

[
L̂
(
X(t),y(t),Ls(t)

)
+ µ‖s(t)‖1

]
+ λ‖L‖2F , (9.2)

where S = [s(1) · · · s(T )] is the matrix of sparse vectors, L̂(·) is the empirical loss function on task
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training data, ‖ · ‖F is the Frobenius norm to regularize complexity and impose uniqueness, ‖ · ‖1
denotes the L1 norm to impose sparsity on each s(t), and µ and λ are regularization parameters.

Eq. (9.2) is not a convex problem in its general form, but with a convex loss function, it is convex in

each individual optimization variable L and S. Given all tasks’ data in batch, Eq. (9.2) can be solved

offline by an alternating optimization scheme [239]. In each alternation step, Eq. (9.2) is solved to

update a single variable by treating the other variable to be constant. This scheme leads to an MTL

algorithm that shares information selectively among the task models.

Solving Eq. (9.2) offline is not suitable for lifelong learning. A lifelong learning agent [166; 1]

faces tasks sequentially, where each task should be learned using knowledge transferred from past

experience. In other words, for each task Z(t), the corresponding parameter θ(t) is learned using

knowledge obtained from tasks {Z(1), . . . ,Z(t−1)}. Upon learning Z(t), the learned or updated

knowledge is stored to benefit future learning. The agent does not know the total number of tasks, nor

the task order a priori. To solve Eq. (9.2) in an online setting, Ruvolo and Eaton [1] first approximate

the loss function L(X(t),y(t),Ls(t)) using a second-order Taylor expansion of the loss function

around the single-task ridge-optimal parameters. This technique reduces the objective (9.2) to the

problem of online dictionary learning [247]:

min
L

1

T

T∑
t=1

F (t)(L) + λ‖L‖2F , (9.3)

F (t)(L) = min
s(t)

[∥∥∥α(t) −Ls(t)
∥∥∥2

Γ(t)
+ µ

∥∥∥s(t)
∥∥∥

1

]
, (9.4)

where ‖x‖2A = x>Ax, α(t) ∈ Rd is the ridge estimator for task Z(t):

α(t) = arg min
θ(t)

[
L̂
(
θ(t)
)

+ γ
∥∥∥θ(t)

∥∥∥2

2

]
(9.5)

with ridge regularization parameter γ ∈ Rd, and Γ(t) is the Hessian of the loss L̂(·) at α(t), which

is assumed to be strictly positive definite. When a new task arrives, only the corresponding sparse

vector s(t) is computed using L to update
∑

t F (L). To solve Eq. (9.3) in an online setting, still,

an alternation scheme is used, but when a new task arrives, only the corresponding sparse vector
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s(t) for that tasks is computed using L to update the sum
∑T

t=1 F (L). In this setting, Eq. (9.3) is

a task-specific online operation that leverages knowledge transfer. Finally, the shared basis L is

updated via Eq. (9.3) to store the learned knowledge from Z(t) for future use. Despite using Eq. (9.3)

as an approximation to solve for s(t), Ruvolo and Eaton[1] proved that the learned knowledge base L

stabilizes as more tasks are learned and would eventually converge to the offline solution of Kumand

and Daume [239]. Moreover, the solution of Eq. (9.1) converges almost surely to the solution of

Eq. (9.2) as T → ∞. While this technique leads to an efficient algorithm for lifelong learning, it

requires centralized access to all tasks’ data by a single agent. The approach we explore, CoLLA,

benefits from the idea of the second-order Taylor approximation and online optimization scheme

proposed by Ruvolo and Eaton [1], but eliminates the need for centralized data access. CoLLA

achieves a distributed and decentralized knowledge update by formulating a multi-agent lifelong

learning optimization problem over a network of collaborating agents. The resulting optimization

can be solved in a distributed setting, enabling collective learning, as we describe next.

9.3. Multi-Agent Lifelong Learning

Consider a network of N collaborating lifelong learning agents. Each agent receives a (potentially

unique) task at each time step. We assume there is some true underlying hidden knowledge base for

all tasks; each agent learns a local view of this knowledge base based on its own task distribution.

To accomplish this, each agent i solves a local version of the objective (9.3) to estimate its own

local knowledge base Li. We also assume that the agents are synchronous (at each time step, they

simultaneously receive and learn one task), and there is an arbitrary order over the agents. We

represent the communication among these agents by an undirected graph G = (V, E), where the set

of static nodes V = {1, . . . , N} denotes the agents and the set of edges E ⊂ V × V , with |E| = e,

specifies the possibility of communication between pairs of agents. For each edge (i, j) ∈ E , the

nodes i and j are connected and so can communicate information, with j > i for uniqueness and

set orderability. The neighborhood N (i) of node i is the set of all nodes that are connected to it. To

allow knowledge to flow between all agents, we further assume that the network graph is connected.

Note that there is no central server to guide collaboration among the agents.
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We use the graph structure to formulate a lifelong machine learning problem on this network. Al-

though each agent learns its own individual dictionary, we encourage local dictionaries of neighboring

nodes (agents) to be similar by adding a set of soft equality constraints on neighboring dictionar-

ies: Li = Lj ,∀(i, j) ∈ E . We can represent all these constraints as a single linear operation on

the local dictionaries. It is easy to show these e equality constraints can be written compactly as

(H ⊗ Id×d)L̃ = 0ed×u, whereH ∈ Re×N is the node arc-incident matrix1 of G, Id×d is the identity

matrix, 0 is the zero matrix, L̃ = [L>1 , . . . ,L
>
N ]>, and ⊗ denotes the Kronecker product. Let

Ei ∈ Red×d be a column partition of E = (H ⊗ Id) = [E1, ...,EN ]. We can compactly write the e

equality constraints as
∑

iEiLi = 0ed×u.

Each of the Ei ∈ Rde×d matrices is a tall block matrix consisting of d× d blocks, {[Ei]j}ej=1, that

are either the zero matrix (∀j /∈ N (i)), Id (∀j ∈ N (i), j > i), or −Id (∀j ∈ N (i), j < i). Note

that E>i Ej = 0d if j /∈ N (i), where 0d is the d × d zero matrix. Following this notation, we

can reformulate the MTL objective (9.3) for multiple agents as the following linearly constrained

optimization problem over the network graph G:

min
L1,...LN

1

T

T∑
t=1

N∑
i=1

F
(t)
i (Li) + λ‖Li‖2F

s.t.
N∑
i=1

EiLi = 0ed×u .

(9.6)

Note that in Eq. (9.6), the optimization variables are not coupled by a global variable and hence in

addition to being a distributed problem, Eq. (9.6) is also a decentralized problem. In order to deal

with the dynamic nature and time-dependency of the objective (9.6), we assume that at each time

step t, each agent receives a task and computes F (t)
i (Li) locally via Eq. (9.3) based on this local task.

Then, through K information exchanges during that time step, the local dictionaries are updated such

that the agents reach a local consensus, sharing knowledge between tasks and hence benefit from all

the tasks that are received by the network in that time step.

To split the constrained objective (9.6) into a sequence of local unconstrained agent-level problems,

1For a given row 1 ≤ l ≤ e, corresponding to the lth edge (i, j), Hlq = 0 except for Hli = 1 and Hlj = −1.
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we use the extended ADMM algorithm [247; 256]. This algorithm generalizes ADMM [240] to

account for linearly constrained convex problems with a sum of N separable objective functions.

Similar to ADMM, we first need to form the augmented Lagrangian JT (L1, . . . ,LN ,Z) for problem

(9.6) at time t in order to replace the constrained problem by an unconstrained objective function

which has an added penalty term:

JT (L1, . . . ,LN ,Z) =
1

T

T∑
t=1

N∑
i=1

F
(t)
i (Li) +

λ‖Li‖2F +
〈
Z,
∑N

i=1EiLi

〉
+
ρ

2

∥∥∥∥∥
N∑
i=1

EiLi

∥∥∥∥∥
2

F

,

(9.7)

where 〈Z,∑N
i=1EiLi〉 = tr

(
Z>

∑N
i=1EiLi

)
denotes the matrix trace inner product, ρ ∈ R+

is a regularization penalty term parameter for violation of the constraint, and the block matrix

Z = [Z>1 , . . . ,Z
>
e ]> ∈ Red×u is the ADMM dual variable. The extended ADMM algorithm

solves Eq. (9.6) by iteratively updating the dual and primal variables using the following local split

iterations:

Lk+1
1 = argminL1

JT
(
L1,L

k
2 . . . ,L

k
N ,Z

k
)
,

Lk+1
2 = argminL2

JT
(
Lk+1

1 ,L2, . . . ,L
k
N ,Z

k
)
,

... (9.8)

Lk+1
N = argminLN JT

(
Lk+1

1 ,Lk+1
2 , . . . ,LN ,Z

k
)
,

Zk+1 = Zk + ρ

(
N∑
i=1

EiL
k+1
i

)
. (9.9)

The first N problems (9.8) are primal agent-specific problems to update each local dictionary, and

the last problem (9.9) updates the dual variable. These iterations split the objective (9.7) into local

primal optimization problems to update each of the Li’s, and then synchronize the agents to share

information through updating the dual variable. Note that the j’th column of Ei is only non-zero

when j ∈ N (i) [Ei]j = 0d,∀j /∈ N (i), hence the update rule for the dual variable is indeed e local
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Algorithm 10 CoLLA (k, d, λ, µ, ρ)

1: T ← 0, A← zeroskd,kd,
2: b← zerosk,1, Li ← zerosd,k
3: while MoreTrainingDataAvailable() do
4: T ← T + 1
5: while i ≤ N do
6:

(
X

(t)
i ,y

(t)
i , t

)
← getTrainingData()

7:
(
α

(t)
i ,Γ

(t)
i

)
← singleTaskLearner(X(t), y(t))

8: s
(t)
i ← Equation 9.3

9: while k ≤ K do
10: Ai ← Ai +

(
s

(t)
i s

(t)>
i

)
⊗ Γ

(t)
i

11: bi ← bi + vec
(
s

(t)>
i ⊗

(
α

(t)>
i Γ

(t)
i

))
12: Li ← reinitializeAllZero(Li)

13: bi ←
1

T
bi + vec

− 1

2

∑
j∈N (i)

E>i Zj −
ρ

2

( ∑
j<i,j∈N (i)

E>i EjL
k+1
j +

∑
j>i,j∈N (i)

E>i EjL
k
j

))
14: Lki ← mat

((
1
TAi +

(ρ
2 |N (i)|+ λ

)
Ikd
)−1

bi

)
15: Zk+1 = Zk + ρ

(∑
iEiL

k+1
i

)
//distributed

16: end while
17: end while
18: end while

block updates by adjacent agents:

Zk+1
l = Zk

l + ρ
(
Lk+1
i −Lk+1

j

)
, (9.10)

for the lth edge (i,j). This means that to update the dual variable, agent i solely needs to keep track

of copies of those blocks Zl that are shared with neighboring agents, reducing (9.9) to a set of

distributed local operations. Note that iterations in (9.8) and (9.10) are performed K times at each

time step t for each agent to allow for agents to converge to a stable solution. At each time step t, the

stable solution from the previous time step t− 1 is used to initialize dictionaries and the dual variable

in (9.8). Due to convergence guarantees of extended ADMM [247], this simply means that at each

iteration all tasks that are received by the agents are considered to update the knowledge bases.
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9.3.1. Dictionary Update Rule

Splitting an optimization using ADMM is particularly helpful if the optimization on primal variables

can be solved efficiently, e.g., it has a closed-form solution. We show that the local primal updates in

Eq. (9.8) can be solved in closed form. We simply compute and then null the gradients of the primal

problems, which leads to systems of linear problems for each local dictionary Li:

0 =
∂JT
∂Li

=
2

T

T∑
t=1

Γ
(t)
i

(
Lis

(t)
i −α

(t)
i

)
s

(t)>
i +

E>i

EiLi +
∑
j,j>i

EjL
k
j +
∑
j,j<i

EjL
k+1
j +

1

ρ
Z

+ 2λLi .

(9.11)

Note that despite our compact representation, primal iterations in (9.8) involve only dictionaries

from neighboring agents (∀j /∈ N (i) because EiEj = 0 and [Ei]j = 0d, ∀j /∈ N (i)). Moreover,

only blocks of the dual variable Z that correspond to neighboring agents are needed to update each

knowledge base. This means that iterations in (9.11) are also fully distributed and decentralized local

operations.

To solve forLi, we vectorize both sides of Eq. (9.11), and then after applying a property of Kronecker

((B> ⊗A)vec(X) = vec(AXB)), Eq. (9.11) simplifies to the following linear update rules for

the local knowledge base dictionaries:

Ai =
(ρ

2
|N (i)|+ λ

)
Idk +

1

T

T∑
t=1

(
s

(t)
i s

(t)>
i

)
⊗ Γ

(t)
i ,

bi = vec

1

T

T∑
t=1

s
(t)>
i ⊗

(
α

(t)>
i Γ

(t)
i

)
− 1

2

∑
j∈N (i)

E>i Zj −
ρ

2

 ∑
j<i,j∈N (i)

E>i EjL
k+1
j +

∑
j>i,j∈N (i)

E>i EjL
k
j

 ,

L← matd,k
(
A−1
i bi

)
, (9.12)

where vec(·) denotes the matrix to vector (via column stacking), and mat(·) denotes the vector to

matrix operations. To avoid the sums over all tasks 1 ≤ t ≤ T and the need to store all previous tasks’

data, we construct both Ai and bi incrementally as tasks are learned. Our method, the Collective
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Lifelong Learning Algorithm (CoLLA), is summarized in Algorithm 10.

9.4. Theoretical Guarantees

An important question about Algorithm 10 is whether it is a converging algorithm. We use techniques

from [1], adapted originally from [247] to demonstrate that Algorithm 10 converges to a stationary

point of the risk function. We make the following assumptions:

i) The data distribution has a compact support. This assumption enforces boundedness on α(t) and

Γ(t), and subsequently on Li and s(t) (see [247] for details).

ii) The LASSO problem in Eq. (9.3) admits a unique solution according to one of the uniqueness

conditions for LASSO [257]. As a result, the functions F (t)
i are well-defined.

iii) The matricesL>i Γ(t)Li are strictly positive definite. As a result, the functions F (t)
i are all strongly

convex.

Our proof involves two steps. First, we show that the inner loop with variable k in Algorithm 10

converges to a consensus solution for all i and all t. Next, we prove that the outer loop on t is also

convergent, showing that the collectively learned dictionary stabilizes as more tasks are learned.

For the first step, we outline the following theorem on the convergence of the extended ADMM

algorithm:

Theorem 9.4.1. (Theorem 4.1 in [258])

Suppose we have an optimization problem in the form of Eq. (9.6), where the functions gi(Li) :=∑
i F

(t)
i (Li) are strongly convex with modulus ηi. Then, for any 0 < ρ < mini

{
2ηi

3(N−1)‖Ei‖2

}
,

iterations in Eq. (9.8) and Eq. (9.9) converge to a solution of Eq. (9.6).

Note that in Algorithm 10, F (t)
i (Li) is a quadratic function of Li with a symmetric positive definite

Hessian and thus gi(Li), as an average of strongly convex functions, is also strongly convex. So

the required condition for Theorem 9.4.1 is satisfied, and at each time step, the inner loop on k

would converge. We represent the consensus dictionary of the agents after ADMM convergence at

time t = T with LT = Li|t=T ,∀i (the solution obtained via Eq. (9.9) and Eq. (9.6) at t = T ) and
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demonstrate that this matrix becomes stable as t grows (the outer loop converges), proving overall

convergence of the algorithm. More precisely, LT is the minimizer of the augmented Lagrangian

JT (L1, . . . ,LN ,Z) at t = T and L1 = . . . = LN . Also note that upon convergence of ADMM,∑
iEiLi = O. Hence, LT is the minimizer of the following risk function, derived from Eq. (9.7):

R̂T (L) =
1

T

T∑
t=1

N∑
i=1

F
(t)
i (L) + λ‖L‖2F . (9.13)

We also use the following lemma in our proof [1]:

Lemma 1. The function Q̂T (L) = R̂T (L)−R̂T+1(L) is a Lipschitz function: ∀L,L′,
∣∣∣Q̂T (L′)− Q̂T (L)

∣∣∣ ≤
O
(

1
T+1

)
‖L′ −L‖.

Proof. After algebraic simplifications, we can conclude that Q̂T (L) =
(

1
T (T+1)

∑T
t=1

∑N
i=1 F

(t)
i (L)

)
−

1
T+1F

(T+1)
i . The functions F (t)

i (L) are quadratic forms with positive definite Hessian matrices and

hence are Lipschitz functions, all with Lipschitz parameters upper-bounded by the largest eigenvalue

of all Hessian matrices. Using the definition for a Lipschitz function, it is easy to demonstrate that

R̂T (·) is also Lipschitz with Lipschitz parameter O
(

1
T+1

)
, because of averaged quadratic terms in

Eq. (9.13).

Now we can prove the convergence of Algorithm 10:

Lemma 2. LT+1 −LT = O
(

1
T+1

)
, showing that Algorithm 1 converges to a stable dictionary as

T grows large.

Proof. First, note that R̂T (·) is a strongly convex function for all T . Let ηT be the strong convexity

modulus. From the definition, for two points LT+1 and LT , we have: R̂T (LT+1) ≥ R̂T (LT ) +

∇R̂>T (LT )(LT −LT+1) + ηT
2 ‖LT+1 −LT ‖2F. Since LT is minimizer of R̂T (·):

R̂T (LT+1)− R̂T (LT ) ≥ ηT
2
‖LT+1 −LT ‖2F . (9.14)
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On the other hand, from Lemma 1:

R̂T (LT+1)− R̂T (LT ) = R̂T (LT+1)− R̂T+1(LT+1) +

R̂T+1(LT+1)− R̂T+1(LT ) + R̂T+1(LT )− R̂T (LT )

≤ Q̂T (LT+1)− Q̂T (LT ) ≤ O
(

1
T+1

)
‖LT+1 −LT ‖ .

(9.15)

Note that the first two terms on the second line in the above as a whole is negative since LT+1 is the

minimizer of R̂T+1. Now combining (9.14) and (9.15), it is easy to show that :

‖LT+1 −LT ‖2F ≤ O
(

1
T+1

)
, (9.16)

thereby proving the lemma �

Thus, Algorithm 10 converges as the number of tasks T increases. We also show that the distance be-

tween LT and the set of stationary points of the agents’ true expected costsRT = EX(t)∼D(t)

(
R̂T
)

converges almost surely to 0 as T →∞. We use two theorems [247] for this purpose:

Theorem 9.4.2. (From [247]) Consider the empirical risk function q̂T (L) = 1
T

∑T
t=1 F

(t)(L) +

λ‖L‖2F with F (t) as defined in Eq. (9.3) and the true risk function qT (L) = EX(t)∼D(t)(ĝ(L)), and

make assumptions (A)–(C). Then both risk functions converge almost surely as limT→∞ q̂T (L)−

qT (L) = 0.

Note that we can apply this theorem on RT and R̂T because the inner sum in Eq. (9.13) does not

violate the assumptions of Theorem 9.4.2. This is because the functions gi(·) are all well-defined and

are strongly convex with strictly positive definite Hessians (the sum of positive definite matrices is

positive definite). Thus, limT→∞ R̂T −RT = 0 almost surely.

Theorem 9.4.3. (From [247]) Under assumptions (A)–(C), the distance between the minimizer of

q̂T (L) and the stationary points of qT (L) converges almost surely to zero.

Again, this theorem is applicable onRT and R̂T , and thus Algorithm 10 converges to a stationary

point of the true risk.
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Figure 41: Performance of distributed (dotted lines), centralized (solid), and single-task learning
(dashed) algorithms on benchmark datasets. The shaded region shows standard error. (Best viewed
in color.)

Computational Complexity At each time-step, each agent computes the optimal ridge parameter

α(t) and the Hessian matrix Γ(t) for the received task. This has a cost of O(ξ(d,M)), where ξ()

depends on the base learner. The cost of updating Li and s(t)
i alone is O(u2d3) [1], and so the cost of

updating all local dictionaries by the agents is O(Nu2d3). Note that this step is performed K times

in each time-step. Finally, updating the dual variable requires a cost of eud. This leads to the overall

cost of O(Nξ(d,M) + K(Nu2d3 + eud)), which is independent of T but accumulates as more

tasks are learned. We can think of the factor K in the second term as communication cost because,

in a centralized scheme, we would not need these repetitions, which requires sharing the local bases

with the neighbors. Also, note that if the number of data points per task is big enough, it certainly is

more costly to send data to a single server and learn the tasks in a centralized optimization scheme.
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Figure 42: Performance of CoLLA given various graph structures (a) for three datasets (b–d).

9.5. Experimental Results

To assess the performance of CoLLA from different perspectives, we compare it against: a) single-

task learning (STL), a lower-bound to measure the effect of positive transfer among the tasks,

b) ELLA [1], to demonstrate that collaboration between the agents improves overall performance in

comparison, c) offline CoLLA, as an upper-bound to our online distributed algorithm, and finally

d) GO-MTL [239], as an absolute upper-bound (since GO-MTL is a batch MTL method). Throughout

all experiments, we present and compare the average performance of all agents.

9.5.1. Datasets

We used four benchmark MTL datasets in our experiments, including two classifications and two

regression datasets: 1) land mine detection in radar images [259], 2) facial expression identification

from photographs of a subject’s face [260], 3) predicting London students’ scores using school-
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specific and student-specific features [261], and 4) predicting ratings of customers for different

computer models [262]. Below we describe each dataset.

Land Mine Detection: This dataset consists of binary classification tasks to detect whether an

area contains land mines from radar images [259]. There are 29 tasks, each corresponding to a

different geographical region, with a total 14,820 data points. Each data point consists of nine

features, including four moment-based features, three correlation-based, one energy-ratio, and one

spatial variance feature, all extracted from radar images. We added a bias term as a 10th feature. The

dataset has a natural dichotomy between foliated and dessert regions. We assumed there are two

collaborating agents, each dealing solely with one region type.

Facial Expression Recognition: This dataset consists of binary facial expression recognition

tasks [260]. We followed Ruvolo and Eaton [1] and chose tasks detecting three facial action units

(upper lid raiser, upper lip raiser, and lip corner pull) for seven different subjects, resulting in 21 total

tasks, each with 450–999 data points. A Gabor pyramid scheme is used to extract a total of 2,880

Gabor features from images of a each subject’s face (see [1] for details). Each data point consists of

the first 100 PCA components of these Gabor features. We used three agents, each of which learns

seven randomly selected tasks. Given that facial expression recognition is a core task for personal

assistant robots, each agent can be considered a personal service robot that interacts with few people

in a specific environment.

London Schools: This dataset [261] was provided by the Inner London Education Authority. It

consists of examination scores of 15,362 students (each assumed to be a data point) in 139 secondary

schools (each assumed to be a single task) during three academic years. The goal is to predict the

score of students of each school using provided features as a regression problem. We used the same

27 categorical features as described by Kumar et al. [239], consisting of eight school-specific features

and 19 student-specific features, all encoded as binary features. We also added a feature to account

for the bias term. For this dataset, we considered six agents and allocated 23 tasks randomly to each

agent.
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Computer Survey: The goal in this dataset [262] is to predict the likelihood of purchasing one of

20 different computers by 190 subjects; each subject is assumed to be a different task. Each data

point consists of 13 binary features, e.g., guarantee, telephone hot line, etc. (see [262] for details).

We added a feature to account for the bias term. The output is a rating on a scale 0–10 collected in a

survey from the subjects. We considered 19 agents and randomly allocated ten tasks to each.

9.5.2. Evaluation Methodology

For each dataset, we assume that the tasks are distributed equally among the agents. We used different

numbers of agents across the datasets, as described in the previous section, to explore various sizes

of the multi-agent system.

For each experiment, we randomly split the data for each task evenly into training and testing sets.

We performed 100 learning trials on the training sets and reported the average performance on the

testing sets for these trials as well as the performance variance. For the online settings (CoLLA and

ELLA), we randomized the task order in each trial. For the offline settings (GO-MTL, Dist. CoLLA,

STL), we reported the average asymptotic performance on all task because all tasks are presented and

learned simultaneously. We used brute force search to cross-validate the parameters u, λ, µ, and ρ

for each dataset; these parameters were selected to maximize the performance on a validation set for

each algorithm independently. Parameters λ, µ, and ρ are selected from the set {10n | −6 ≤ n ≤ 6}

and u from
{

1, . . . ,max
(
10, T4

)}
(note that u� T ).

For the two regression problems, we used root-mean-squared error (RMSE) on the testing set

to measure the performance of the algorithms. For the two classification problems, we used the

area under the ROC curve (AUC) to measure performance, since both datasets have skewed class

distributions, making RMSE and other error measures less informative. Unlike AUC, RMSE is

agnostic to the trade-off between false-positives and false-negatives, which can vary in terms of

importance in different applications.

Quality of Agreement Among the Agents: The inner loop in Algorithm 10 implements information

exchange between the agents. For effective collective learning, agents need to come to an agreement at
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each time step, which is guaranteed by ADMM if K is chosen large enough. During our experiments,

we noticed that initially K needs to be fairly large but as more tasks are learned, it can be decreased

over time K ∝ K1 +K2/t without considerable change in performance (K1 ∈ N is generally small

and K2 ∈ N is large). This is expected because the tasks learned by all agents are related, and hence,

as more tasks are learned, knowledge transfer from previous tasks makes local dictionaries closer.

9.5.3. Results

For the first experiment on CoLLA, we assumed a minimal linearly connected (path graph) tree, which

allows for information flow among the agents E = {(i, i+ 1) | 1 ≤ i ≤ N}. Figure 41 compares

CoLLA against ELLA (which does not use collective learning), GO-MTL, and single-task learning.

The number of learned tasks is equal for both COLLA and ELLA. ELLA can be considered as a

special case of COLLA with an edgeless graph topology (no communication). Moreover, we also

performed an offline distributed batch MTL optimization of Eq. (9.6), i.e., offline CoLLA, and plot

the learning curves for the online settings and the average performance on all tasks for offline settings.

At each time step t, the vertical axis shows the average performance of the online algorithms on all

tasks learned so far (up to that time step). The horizontal axis denotes the number of tasks learned by

each individual agent. The shaded plot regions denote the standard error. This would allow us to

assess whether a positive/ transfer has occurred consistently. A progressive increase in the average

performance on the learned tasks demonstrates that positive transfer has occurred and allows plotting

learning curves. Moreover, we also performed an offline distributed batch MTL optimization of

Eq. (9.6), i.e., offline CoLLA. For comparison, we plot the learning curves for the online settings and

the average asymptotic performance on all tasks for offline settings in the same plot. The shaded

regions on the plots denote the standard error for 100 trials.

Figure 41 shows that collaboration among agents improves lifelong learning, both in terms of learning

speed and asymptotic performance, to a level that is not feasible for a single lifelong learning agent.

The performance of offline CoLLA is comparable with GO-MTL, demonstrating that our algorithm

can also be used effectively as a distributed MTL algorithm. As expected, both CoLLA and ELLA
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aaaaaaaa
Method

Dataset
Land Mine London Schools Computer Survey Facial Expression

CoLLA 6.87 29.62 51.44 40.87
ELLA 6.21 29.30 37.99 38.69

Dist. CoLLA 32.21 37.30 61.71 59.89
GO-MTL 8.63 32.40 61.81 60.17

Table 11: Jumpstart comparison (improvement in percentage) on the Land Mine (LM), London
Schools (LS), Computer Survey (CS), and Facial Expression (FE) datasets.

lead to the same asymptotic performance because they solve the same optimization problem as

the number of tasks grows large. These results demonstrate the effectiveness of our algorithm for

both offline and online optimization settings. We also measured the improvement in the initial

performance on a new task due to transfer (the jumpstart [13]) in Table 11, highlighting COLLA’s

effectiveness in collaboratively learning knowledge bases suitable for transfer.

We conducted a second set of experiments to study the effect of the communication mode (i.e., the

graph structure) on distributed lifelong learning. We performed experiments on four graph structures

visualized in Figure 42a: tree, server (star graph), complete, and random. The server graph structure

connects all client agents through a central server (a master agent, depicted in black in the figure),

and the random graph was formed by randomly selected half of the edges of a complete graph while

still ensuring that the resulting graph was connected. Note that some of these structures coincide

when the network is small (for this reason, results on the land mine dataset, which only uses two

agents, are not presented for this second experiment). Performance results for these structures

on the London schools, computer survey, and facial expression recognition datasets are presented

in Figures 42b–42d. Note that for the facial recognition dataset, results for the only two possible

structures are presented. From these figures, we can roughly conclude that for network structures with

more edges, learning is faster. Intuitively, this empirical result suggests that more communication

and collaboration between the agents can accelerate learning.
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9.6. Conclusions

In this chapter, we proposed a distributed optimization algorithm for enabling collective multi-agent

lifelong learning. Collaboration among the agents not only improves the asymptotic performance

on the learned tasks but allows the agent to learn faster (i.e., using fewer data to reach a specific

performance threshold). Our experiments demonstrated that the proposed algorithm outperforms

other alternatives on a variety of MTL regression and classification problems. Extending the proposed

framework to a network of asynchronous agents with dynamic links is a potential future direction

to improve the applicability of the algorithm on real-world problems. This chapter is our last

contribution in this thesis. In the next chapter, we list potential research directions for the future.
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Chapter 10 : Concluding Remarks and Potential

Future Research Directions

In this concluding chapter of the thesis, we summarize our contributions. We also discuss the

limitations of the developed algorithms and potential improvements that can be pursued. Finally, we

list potential research directions for the future.

10.1. Thesis Summary and Discussions

Data-driven Machine Learning (ML) has led to a dramatic improvement of ML algorithms over

the past decade. This success, however, is still far away from the goal to develop algorithms with

human-level performance in many application areas. There are many areas that further improvement

of current ML methods and techniques is necessary. In particular, the current algorithms usually use

deep networks as the base learning model. Since deep networks require a large labeled training dataset,

data labeling has become a major expensive task for ML. Crowdsourcing data labeling platforms

such as Amazon Mechanical Turk may be sufficient to label datasets for research purpose, but many

practical ML tasks require high-quality annotated data which requires training the annotators.

For this reason, there are companies that are founded solely for the propose of labeling and annotating

data by training and employing a pool of human workers to generate labeled datasets for costumers.

On the other hand, theoretical ML usually considers that the data distribution is stationary, and

upon training a model, it should generalize only on data samples that are drawn from the same

distribution. This assumption is also too restrictive, as data distribution can change dramatically

in many applications. From a practical point of view, these assumptions are too simplistic and

restrictive. As a result, many current ML algorithms underperform in practice. For these reasons,

improving learning speed, learning efficiency, and generalizability of the existing algorithms had been

a significant research focus recently. Transfer learning is a broad area of research that addresses these

challenges by transferring knowledge from related learned problems. In this thesis, we investigated
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the possibility of knowledge transfer in ML to address challenges of labeled data scarcity and drifts

in the data distribution. We studied the possibility of transferring knowledge through an intermediate

embedding space that captures meta-information about a group of ML problems. This idea can

be considered similar to the neurological functioning of the brain, where hierarchical knowledge

sensory system input is encoded according to the abstractness of concepts. More specifically, parallel

distributed processing and complementary learning systems theory are two paradigms within the

connectionist model in neuroscience that hypothesize this learning scheme. Throughout this thesis,

we demonstrated that this broad idea could be used to develop algorithms for various learning settings

that may seem too different at the surface. The main contribution of this thesis is to group and address

the challenges of all these learning setting using a similar strategy.

In the first part of the thesis, we focused on transferring knowledge across different learning domains.

In chapter 3, we demonstrated that transferring knowledge across heterogeneous domains can help to

learn classes with no labeled data in the visual domain, through descriptive information from the

textual domain in a multiclass classification problem, i.e., zero-shot learning. Zero-shot learning

ability seems to be necessary nowadays as many classes emerge each day, and retraining a trained

model does not seem to be a feasible solution. We concluded that using two dictionaries that couple

the visual and the textual domains, can address challenges of domain shift and hubness problem

in zero-shot learning. We also provided theoretical results on PAC-learnability of our algorithm to

justify why our algorithm is effective. We then investigated knowledge transfer across homogeneous

visual domains in chapter 4 and chapter 5, where the goal is to address the challenge of labeled

data scarcity in a domain, by transferring knowledge from a secondary homogeneous domain with

labeled data. We demonstrated that our ideas could address both unsupervised and semi-supervised

domain adaptation scenarios in chapter 4 and chapter 5, respectively. Our method for unsupervised

domain adaptation is developed for similar domains, where domain gap is not significant. For this

reason, the same features can be used for both domains. As a result, a shared deep network model

can be trained to generalize well on both domains by matching the data distribution in mid-layers

of the network as the intermediate embedding space. In contrast, we developed a semi-supervised

domain adaptation algorithm to transfer knowledge across two domains with a considerable gap,
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e.g., EO-to-SAR knowledge transfer, where only a portion of the network higher-level layers are

shared. The early layers were set to be domain-specific to reduce the domain gap in their output

as the embedding space. We also provided theoretical results to demonstrate that our approach is

effective due to minimizing an upper-bound of the target risk.

The algorithms that we developed in the first part have their own limitations. Our ZSL algorithm

is designed for the situation that only unseen classes are observed during testing time. Despite

being the common assumption in ZSL, this assumption is not practical. For this reason, recently,

a new learning setting has been suggested to generalize ZSL, call generalized zero-shot learning

(GZSL) [81; 263]. In this setting, both the seen and unseen classes are observed during testing.

A potential improvement for our algorithm is to address challenges of GZLS, where domain shift

problem is going to be more challenging to overcome. The domain adaptation algorithms that we

developed are designed for quite simple classification tasks, e.g., hand-written digit recognition or

binary ship image classification. Applying these algorithms to more challenging problems such

as face recognition person re-identification as well as problems with many classes is an area that

needs further investigation. Finally, since we aligned marginal distributions of the two domains, we

assumed that both domains share the same classes. However, a more realistic scenario would be

considering that only a subset of classes to be shared across the two domains. Our framework can

potentially be adapted to consider this assumption but it certainly requires further investigation.

In the second part of the thesis, we considered knowledge transfer across different tasks that are

defined in a single domain. In chapter 6, we first extended our idea in chapter 3, to develop a zero-shot

learning algorithm in a lifelong multi-task learning setting, where the goal is to enable learning ML

tasks using their high-level descriptors. Lifelong machine learning is designed to model the learning

mechanisms of humans, where the goal is to make the learning algorithm adaptive concerning

changes in the data distribution. We demonstrated that using our method; we can learn a task using

its high-level descriptors without using any data. Our algorithm is a general algorithm that can be

used in classification, regression, and reinforcement learning tasks. We then developed an algorithm

to mitigate catastrophic forgetting in chapter 7, where multiple tasks are learned sequentially. Most
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of the current ML models face this challenge as the learned knowledge for different tasks usually

interferes with each other, causing performance degradation on previously learned task. For this

reason, overcoming catastrophic forgetting can be considered as addressing a particular case of

negative knowledge transfer [264]. Our idea is to use a generative model that can generate pseudo-

data points for old tasks to tackle catastrophic forgetting using experience replay [41]. To this end, we

couple the tasks in an embedding space that is modeled by middle-layer of an autoencoder. The idea

is to enforce all tasks to share the same distribution in the embedding space such that this distribution

encodes abstract concepts. As a result, this distributing can be used to generate pseudo-data points for

experience replay and learning future tasks such that the newly learned knowledge does not interfere

with past learned knowledge. In chapter 8, we then extended our idea in chapter 7, to develop a

method for generalizing the learned concepts by a deep network to new domains by observing only a

few labeled data points in the new domain. This idea can be considered as domain adaptation in a

lifelong learning setting, where the goal is to continually adapt a model to incorporate newly learned

knowledge without forgetting the past. We also provided theoretical results to demonstrate why our

algorithms are able to mitigate catastrophic forgetting.

Our algorithms in Part II are more limited compared to the algorithms in Part I. In chapter 6, we

assumed that the task descriptors are given but determining meaningful descriptions can be quite

challenging in practice. A practical improvement for our algorithm would be learning meaningful

descriptions from data to broaden the applications that our algorithm can address. In chapter 7 and

chapter 8, we considered quite simple tasks, i.e., digit recognition tasks. Our algorithms in these

chapters require further improvement to be applicable to realistic problems. Another limitation is

that we considered that the tasks share the same classes. In practice, new classes are going to be

learned at different times. Hence, it is more realistic to consider that new classes can be introduced

in future tasks, and only a subset of the classes are shared with the past learned tasks.

Finally, we focused on transferring knowledge across multiple various learning agents in the third

part of the thesis. In many applications, the data is inevitably distributed among multiple agents,

and collaboration among the agents can increase learning performance. In particular, smart-phones
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and available sensors on them are an important application area for distributed learning setting. We

considered lifelong machine learning agents that learn tasks synchronously. Similar to chapter 6,

we assumed that the optimal parameters for the tasks could be represented sparsely in a dictionary

domain in chapter 9. To transfer knowledge across the agents, we assumed that all agents learn

homogeneous tasks, and for this reason, all learn the same underlying dictionary. We demonstrated

that the agents could share their high-level learned knowledge through a global embedding space

that is modeled by this dictionary without sharing private data. We tested our algorithm on four

different datasets and different topological arrangement of the graph that models communication

mode between the agents. We also provided theoretical results for convergence of our iterative

algorithm to a stable solution across the agents.

Synchronicity is a major restriction for our algorithm in chapter 9. In practice, it is unlikely that the

agents learn the tasks at the same time. We can always wait for the agents to become synchronous,

but this will make the slowest agent a bottleneck, which seems undesirable. Extending our algorithm

to asynchronous agents is an important challenge from the practical point of view. Another restriction

is that we assumed that all the agents learn the same shared model. However, the agents may learn

heterogeneous tasks that enforces discrepancy among the agent-specific models. Using the same

global model across the agents may lead to negative transfer among the agents. To tackle this

challenge, we need to extend our algorithm by considering different models among the agents and

meanwhile model the relations among the agents to allow for knowledge transfer.

10.2. Future Research Directions

There are important unexplored ideas that we leave for future investigation. We foresee four major

areas that deserve attention from the ML community.

Throughout the thesis, our selection procedure for the embedding space has been mostly arbitrary.

We have not developed a systematic method to select parameters such as the dimension of the

embedding space or the suitable depth for the embedding space in a deep neural network. Some of

our experiments in chapter 3, chapter 5, and chapter 6 demonstrate that these parameters can have a
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huge effect on learning performance. In order to transfer knowledge through an embedding space, it

is essential to study the effects of these parameters and then provide a systematic method for selecting

the embedding space. Additionally, we simply related two problems through a single embedding

space. In contrast, it seems that the nervous system uses a set of hierarchical embedding spaces

which encode concepts according to different levels of abstractness. Hierarchical representation of

data through deep nets is known in the ML community, but using these representations to transfer

knowledge through different tasks according to their relatedness requires further investigations.

We mainly focused on classification tasks in this thesis (with the exception of chapter 6). Deep

Reinforcement Learning (DRL) has gained considerable attention because through the power of deep

nets; it is possible to learn quite complicated tasks to the human-level performance blindly [265].

However, DRL algorithms are highly time-consuming and require huge training datasets, considerably

more compared to what is necessary for supervised learning algorithms. For this reason, transfer

learning is an important tool that can be used to make DRL more practical. We did not explore

DRL in this thesis, but as evident from chapter 6, our ideas may be applicable to this area. In RL

context, an embedding space may encode skills that can be helpful to perform different sets of tasks.

Recently, latent and embedding spaces have been found helpful in this area [266; 267], where similar

to chapter 8 of this thesis, the goal is to enforce state-space of several RL tasks to share similar

distributions in a latent space.

An important application area that we did not touch is machine translation and natural language

processing. Some of the most popular ML algorithms that benefit from embedding spaces have

been developed in this area, e.g., word2vec. The idea of using an embedding space to relate several

languages and transfer knowledge across different languages seems to be very feasible. In particular,

according to “triangle of reference” linguistic model, there is a hierarchical relationship between

symbols of language and meaning, i.e., meaning transcends linguistic symbols [268; 269]. This

seems to be the reasons behind the ability of humans to learn and communicate through different

languages. Similarly, recent works in this area demonstrate that learning an embedding space that

can capture meanings irrespective of languages can help to improve the current machine translation
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algorithms [270]. We foresee a considerable potential in this area for future research.

Finally, the ultimate goal of AI is to develop machines that behave and learn similar to human. This

goal is far beyond this thesis, but it seems that the integration of the three parts of this thesis is

essential to reach this goal. Transferring knowledge through embedding spaces might not be the best

solution, but we demonstrated that it is a helpful and broad strategy. However, we addressed problems

in each part of this thesis independently, and the integration of the abilities of these algorithms is not

trivial. A long term goal for machine learning is to develop learning agents that are able to benefit

from knowledge transfer across different domains and tasks and are able to collaborate and benefit

from other agents. This challenging goal can serve to fuel research in ML and AI community for at

least another few decades.
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