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ABSTRACT

RANGE-ONLY NODE LOCALIZATION: THE ARBITRARY ANCHOR CASE IN

D-DIMENSIONS

Pedro Paulo Ventura Tecchio

George J. Pappas

This work is situated at the intersection of two large fields of research the Localization

problem and applications in Wireless Networks. We are interested in providing good es-

timations for network node locations in a defined space based on sensor measurements.

Many methods have being created for the localization problem, in special we have the

classical Triangulation and Trilateration procedures and MultiDimensional Scaling. A more

recent method, DILOC, utilizes barycentric coordinates in order to simplify part of the non-

linearities inherent to this problem. Except for Triangulation in which we require angle

measurements between nodes, the other cited methodologies require, typically only, range

measurements. Off course, there exists variants which allow the use of range and angle

measurements. We specialize our interest in range only methods utilizing barycentric co-

ordinates by first providing a novel way to compute barycentric coordinates for any possible

node-neighbor spatial configuration in any given dimension. Which, we use as basis for

our experiments with averaging processes and the development of our centralized and

distributed gradient descent algorithms. Our distributed algorithm is able to receive range

measurements with noise of uncharacterized distributions as it inputs. Using simulations

in Matlab, we provide comparisons of our algorithms with Matlab’s MDS function. Lastly,

we show our efforts on providing a physical network implementation utilizing existing small

form factor computers, wireless communication modules and range sensors.
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CHAPTER 1 : INTRODUCTION

There exists great public interest in large heterogeneous wireless networks. By heteroge-

neous wireless networks, we mean a wireless network of diverse distinct devices, which

may run any kind of software over different hardware platforms. The most common topics

involving these networks are IoT - Internet of Things [1,2], VANETs - Vehicular ad-hoc net-

works [3,4], home automation networks [5–7], mobile robots and robotic sensors [8–10].

One simple example of an IoT is a modern technological driven home, where multiple dif-

ferent appliances and electrical equipment of distinct brands communicate among them-

selves and/or with user interfaces, usually built as apps in mobile smart-phones, to provide

greater comfort and capabilities for homeowners [5–7]. An early implementation of such

technology is the popular Nest thermostat witch was first created as a home temperature

control center with the ability to learn and to integrate via WiFi to other devices. Later, other

products from the same company were marketed such as smoke and CO2 detector and a

complement of interconnected cameras. Nowadays, the brand and technology is owned

by the Google group under their holding company Alphabet Inc and these devices are mar-

keted to work in an environment of up to 3000 different products including Google’s own

voice interface ”Hello Google” which enables them to use voice control. Another leader in

this segment is Amazon.com Inc. which similarly works in partnership with other compa-

nies to enable its own ”Alexa” voice interface to control different devices around the same

WiFi or Bluetooth networks.

Also in the segment of home automation, we can attach personal health care devices and

products for personal everyday use such as electric toothbrushes and Bipap machines

which interconnect with smartphones in order to provide historical data and a user friendly

control interface. In a more extreme case, we can include future deployment of mobile au-

tonomous robots for the health care of its residents [11–13]. We believe that such robots

will be extensively used in everyday homes were the care of seniors and infants are re-
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(a) Smart-home conceptions [14]. (b) Smart-home existing devices [15].

Figure 1: Fig. 1a shows the general areas in which home automation is sought using wire-
less node networks such as security, devices, temperature, illumination and cloud services
control. Meanwhile, Fig. 1b shows devices already in large scale production which seek to
provide home automation features at least in determined areas, for example we mention
Google Nest and Amazon.com Echo.

quired, specially for tasks which are considered a chore by their families or in which the

family members are not trained to perform or are not able to, as examples we cite cleaning

of human waste, application of intravenous medicines or physically lifting impaired people.

Meanwhile, vehicle-to-vehicle and vehicle-to-roadside communication architectures are the

fundamental blocks of VANETs. These communication protocols are being built in order

to enable new vehicle features and road services, such as vehicle security through shared

information about threats, traffic management and better performance and reliability of

self-driven cars [3,4,16–20]. Up to the publication of this dissertation, there is no common

communication and sensing network protocols and standards, as such technologies are

being extensively researched and implemented by numerous vehicles manufactures, tech-

nological companies and academy. The autonomous car may not be the hot topic of the

moment in the academic world, but it is still in the process of being studied and readied

for mass production and everyday utilization. It is a common goal that autonomous cars
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(a) 5G enabled communication infrastructure [21]. (b) Self driven car [22].

Figure 2: The future communication infrastructure based on 5G devices will allow for het-
erogeneous devices to intercommunicate, Fig. 2a, while a conceptual example of a self
driven car is shown in Fig. 2b.

will be able to self coordinate and also plan their operation in a cooperative way with other

cars and with the road infrastructure enabling for example local and global traffic manage-

ment and control; road alerts propagated throughout the network so that cars can plan

their actions in advance, and vehicle platooning in small (road-wide) to large (city-wide)

formations. Moreover, in the near future, maybe a few decades or so, vehicle accidents

with injured or dead passengers or pedestrians will be seldom seen, as there will exist less

and less human interference in the system with increasing redundancy of sensors, network

communication and system intelligence.

Even if one may not consider future vehicles as mobile robots and we may also disregard

home automation robots, one may not forget about the large insurgency of drones that is

happening now. Major and minor companies are studying ways to apply drone technology

to either its operations or products. A famous example is again Amazon.com Inc. which

seeks to utilize drones as a mean of package delivery in highly populated cities. Another

major segment in which drones are being researched for and applied are law enforce-

ment, rescue and military. In these, drones may be used for exploration, infiltration, target

search and track, target pacification, packages, objects and ordnance delivery among oth-

ers. Meanwhile, their utilization has been a topic of concern among some legislators and

the public in general as they can infringe on civil rights when coupled with cameras and

3



(a) Mobile robots used in undersea explo-
ration [23].

(b) Mobile robost used for site security [24].

Figure 3: Examples of wireless networked mobile robots used for exploration Fig. 3a and
for security Fig. 3b.

other recording devices; cause accidents and property damage and also be used for ne-

farious and unlawful activities.

While many devices and applications are already being marketed and used in somewhat

niche markets, most of them are still being researched and developed. Among the different

lines of research and development, our interest lies in the exploration of a topic that they

usually have in common, the need to known where they are being used. This need may be

a focus of interest among device users and maintainers or among the devices themselves.

The ability of localize oneself in the environment is an important feature to many systems,

as it may influence its behavior and functionality. A human placed in an unknown envi-

ronment will have difficulties to live in it effectively, the same can be said to a sensor or

robot, as they will possibly not be able to effectively perform their tasks. Besides the ear-

lier examples, we can mention a simple one: a network of atmospheric sensors used to

obtain climate data for general use. If one does not known the position of these sensors,

their gathered information becomes almost meaningless. It is a major problem to know a

hurricane is coming but not knowing where it is and to where it is going. One may mention

that in such an example, all sensors will be placed in fixed and GPS enabled locations, so

one can measure once and use the data forever. But what about networks in which such a
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case does not happen, for example inside a building or with moving nodes?

As can be inferred, our interest lies in localizing nodes of a network, more specifically static

ones which are able to range themselves in relation to their neighbors. We focus on static

networks as they provide an entry point for the localization problem and are also largely

used in homes, business and industrial applications. On another hand, we were able to

supplement the existing theory of static network localization in a meaningful way, by pro-

viding a formulation that works in any possible spatial dimension and with fewer constraints

on the network. Regarding the utilization of range measurements alone, one point of view

it that having both range and bearing measurements among nodes may provide a larger

amount of information, another is that the restriction to range only measurements should

be seen as a feature as we only require partial information about inter node positioning

and therefore less sensors. Having said so, we do not mean to imply we are not inter-

ested in studying the possibility of integrating bearing measurements to our methodology

in the near future, as it is possible that having both will enable us to create a more efficient

method.

For now, our proposed method is able to localize nodes in a static network provided that

we give the actual and noiseless location of d + 1 nodes of the network in d-dimensional

Euclidean space (which are called anchor nodes), the range measurements between all

neighboring nodes and that each node must have at least d + 1 neighbors. It may be the

case, that some nodes satisfy these constraints, but are not localizable, which will happen

if their neighbors are not localizable themselves. So an unlocalizable node may affect an

entire segment of a network. Therefore, localizable nodes form a network with anchor

nodes, in which, nodes have at least d + 1 neighbors. In spite of those requirements,

there is no restriction on the position of nodes in relation to anchors as exists among

other methods which we will specify in the next section. This is an important feature, as

it enables the utilization of our algorithm to localize more diverse networks regardless of

the chosen location for anchors, an easy example is given in 3-dimensional space (3-D),

5



where other methods would require two sets of 4 anchors, in which case at most 3 may be

used in both sets, and two runs of the algorithm to localize nodes in a rectangular prism

shaped environment (a common room rectangular floored room), ours would only require

the application of the algorithm once with 4 anchors.

We formalize our localization problem in Chapter 2, then we explain our theoretical reason-

ing in Chapters 3 and 4. In these chapters, we develop our method based on Barycentric

Coordinates, which may be easily understood as computing proportional volumes of re-

gion segments in space defined by the location of their vertices. In other words, given a

d-dimensional space, one region in it is defined using d+1 points as vertices of this region,

which actually is a simplex. Then by choosing a different point in the same space and

computing the volume of each possible simplices formed by substituting one point of the

previous set with this new point, we can compare the volumes of the new regions with the

old one by division, which is exactly how barycentric coordinates are calculated. Therefore,

in the case of a network, each node is treated as a point in space with a Cartesian coordi-

nate, then we choose d+ 1 neighbors of this node which form a simplex and compute the

barycentric coordinates for each node in relation to each chosen subset of its neighbors.

These coordinates form a linear system of equations where the node Cartesian coordi-

nates are the unknown variables. Therefore, by isolating the anchor coordinates which are

known from the rest of unknown variables, one may solve this linear system and compute

all unknown node coordinates.

One may ask, how do we compute the simplices volumes if we are only measuring inter-

node ranges? If one consult the existing literature, one will probably find the concept

of Cayley-Menger determinant. This determinant relates the Eucldiean Distance Matrix,

matrix formed by squared Euclidean distances between each pair of points in a given

set of d + 1 elements in d-dimensional Euclidean space, with the simplex volume formed

by such points squared. As the Euclidean distance is the same as the range between

the nodes, one has a functional relation between range measurements and barycentric

6



coordinates. But there is a catch is this relation. As mentioned, the value obtained from

computing Cayley-Menger determinant is proportional to the square value of the simplex

volume, so one does not know which sign, positive or negative, to use in order to compute

barycentric coordinates.

If one restrict its nodes to always be inside the convex hull of their neighbors, and by

extension, the entire network should be inside the convex hull of the anchors, one is able

to ignore this sign problem, as the correct sign should always be positive in this case by

construction. This fact is explored by the vast majority of network localization works that

exist nowadays. Other works are either restricted in the space dimension or use mixed

approaches to solve the localization problem. We on the other hand, developed a method

to compute barycentric coordinates with their correct signs by applying a more general

form of the previous determinant called Cayley-Menger bi-determinant, which is not so

commonly found in the related literature. This bi-determinant takes to distinct sets of points

and compute a value proportional to the multiplication of their simplices volumes, which we

can use to compute barycentric coordinates and proceed as previously explained in other

to compute the unknown node coordinates.

So far, we talked about computing the Cartesian coordinates without mentioning anything

about noise or how does our algorithm operates. It is because this theory enables us to

solve the problem in centralized form with noiseless range measurements, but what hap-

pens when that is not the case? Adding noise to our measurements becomes a mess,

even using simple zero mean additive Gaussian noise to each measurement makes the

output of the Cayley-Menger bi-determinant have an unknown probability distribution with

complex terms formed by sums of products and divisions of Chi-Squared random vari-

ables. So the standard approach to solve this problem in closed form becomes unfeasible.

Following, some related works we decided to apply an averaging process in all range

measurements individually, as we consider that they will have at most zero mean ran-

dom additive noise applied to them. Note that we are not assuming any specific kind of
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distribution here. Then, by the Law of Large Numbers the average should converge to

an approximate noiseless range value when one approaches a sufficiently high number

of noisy measurements. Therefore, in theory in order to easily solve this problem, one

should acquire a large number of measurements, compute the Cayley-Menger determi-

nants, compute barycentric coordinates and solve the linear system of equations arriving

to a probably good enough location estimates for each unknown node. As always, in prac-

tice it does not always work. Numerical errors from all non linearly computation may lead

to high discrepancies in the actual computed values for the barycentric coordinates from

one set of measurements to another. The easiest solution was to average the barycentric

coordinates again in order to suppress such problems. As we did so, we arrive to our first

centralized method able to provide somewhat good estimates over time.

In order to arrive to a distributed solution, we first experimented with a centralized gradient

descent algorithm that worked as intended with both fixed and dynamic step sizes. Then,

we modified our mathematical formulation to apply an existing theoretical algorithm to solve

optimization problems in distributed systems over a given time horizon. This choice proved

fruitful as we were able to finally solve our localization problem with noisy range measure-

ments in a distributed form. Simulated experiments where we applied our algorithms to

randomly generated networks will be shown in Chapter 5 with the respective discussions.

Lastly, during our theory development, we also sought to provide a physical platform in or-

der to demonstrate our work, but we were not completely successful in this front. As will be

discussed in Chapter 6, we provide in Appendix A.2.1 a recipe of sorts on how to compile,

configure and apply a Linux distribution with the correct drivers in order to use our chosen

platform and sensor suite with the necessary network configuration and data extraction

software. Our platform was constructed around a Beagle Bone Green Wireless board with

integrated WiFi module capable of operating in mesh networks. We notice that this was

the first board in the market able to do so, while nowadays there may be other possibilities

to choose from. At first, we used a range sensor called Polypoint, but it operated in star
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topology which disallowed us to use it in real time operations as one had to keep switching

it on and off to change its configuration from anchor to unknown node, i.e. in the entire

sensor network only one device ranged itself at a given time in relation to all others, so

it was required to reset it every time one wanted obtain range measurements from other

devices. Because of this constraint, we sought other sensors without much success. At

one point, we finally decided to use RSS - Received Signal Strength measurements from

the WiFi module as a means of estimating range measurements. We did some experi-

ments at first in open space without occlusions and the results were satisfactory, but later

on when working inside of a building with walls and other objects cluttering the space in

which the sensors were positioned, our first measurement model became irrelevant. Even

a change in the sensor height in relation to the ground would change the RSS measure-

ments received. Therefore, lacking an appropriate range sensor, we decided to focus on

the theoretical aspect of the problem.

In the next section we will introduce the relevant existing works and start introducing the

range only localization problem with arbitrary anchor placement in a more formal setting.

1.1. Related work

An heterogeneous wireless network must satisfy a series of constraints in order to work

correctly as intended by its stakeholders, be its developers, maintainers and users. One

main aspect of such networks is that it may contain both static and or mobile nodes which

are loaded with sensors necessary for their independent or communal operations. In either

case, it is most likely that their location will influence their operation and vice versa. There-

fore, it is important for each node in a network to know its current location over time with

respect to some local or global frame of reference. Relative localization is especially chal-

lenging but also most important to solve robustly in harsh operational conditions, where

GPS access is denied, the surroundings are featureless, and the sensed information is

lower-dimensional than the sensor states of interest (e.g. bearing-only or range-only mea-

surements used for 3-dimensional (3-D) position and orientation estimation) and perturbed
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by significant measurement noise. To correctly determine a frame of reference, it is usually

required that locations of a small subset of its nodes, called anchor nodes, are known.

Throughout this paper we call all other nodes unknowns as they are not localized.

The localization problem of wireless networks has been considered in 2 and 3 dimensions,

with some working in higher generic dimensions, using different measurement types and

noise distributions. Range and bearing measurements are utilized in some methodologies

[25–27], while others rely only on one of them such as bearing-only [28–31] and range-

only measurements [32–38]. Typically most algorithms start in a centralized fashion [39–

42], i.e. all network information is sent to a ”central” node responsible for more intense

computational needs to localize all network nodes; else, if each node remains responsible

for its own localization based on shared local information, the algorithm is called distributed

[27,30,32–35,38,43–58].

Multiple different methodologies have been developed over years of research in localiza-

tion. One of the most fundamental methods is based on Triangulation [40–42] or more

commonly Trilateration [8, 59]. The later can be summarized as the iterative resolution

of a non-linear system of equations relating the range measurement between nodes and

the Euclidean distance between the location estimates for each unknown node. The 2-D

example below demonstrate the set of equations needed to localize node l in relation to

nodes i, j, k: 
||xl − xi||2 = zli

||xl − xj ||2 = zlj

||xl − xk||2 = zlk

(1.1)

As mentioned, Trilateration methods work by localizing one unknown node at each iteration

based on existing anchor nodes or already localized unknown nodes, which is an iterative

process. Different from this, there are methodologies in which all necessary information is

gathered and the localization of all nodes is done simultaneously either in a centralized or

distributed form. We cite Kalman based algorithms [27,31,60], Multilateration [61,62], MDS
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- MultiDimensional Scaling [35, 39, 63, 64] and barycentric coordinates based methods

[32–35, 48, 50–52, 54]. From these, we emphasize both MultiDimensional Scaling and

barycentric methods. We utilize MDS as a benchmark tool for our proposed algorithm

which is based on barycentric coordinates. The classical MDS approach is to solve an

optimization problem minimizing the following function:

Stress(x1, · · · ,xn) =


∑
i,j

(Zij − ||xi − xj ||2)2∑
i,j

Z2
ij


1/2

(1.2)

In spite of not having a convex nor linear function to be optimized, MDS methods have

an advantage: they can be solved through the manipulation of its algebraic equations in

matrix form, so that solving the minimization problem becomes equivalent to eigenvalue

and eigenvector decomposition of a matrix, for which exists optimized algorithms. Their

disadvantage is that their solution is dependent of initial estimates. Therefore, using ran-

dom initialization may incur on solutions with stress varying from small to large values, so

one needs to run the algorithm multiple times in order to get a good solution.

The barycentric coordinates approach seeks to hide all non-linearities of this problem in

the computation of barycentric coordinates. So, after one finds all barycentric coordinates

for all nodes in the network, the solution of the noiseless system becomes as easy as

solving a linear system. This method was first proposed by Khan et al. in [32]. It is

interesting to notice that the system becomes automatically distributed along the many

nodes of the network, i.e. each node is able to compute its barycentric coordinates with

local information.

This method becomes harder to solve whenever there is noise added to the range mea-

surements, as one need to pay attention to the errors inserted on the computation of the

heavily non-linear set of equations involved on the computation of all barycentric coordi-

nates. Moreover, because of the same non-linearities, there is no closed form solution
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for barycentric coordinates given even simple additive Gaussian noise to range measure-

ments. In order to solve this last problem, Khan et al. proposed an algorithm based on

averaging processes [34].

Multiple variations of the first barycentric algorithm [32] were proposed such as [33–35,

48–52, 54]. Khan et al. in special provide us with a diverse collection of works extending

this framework in static and mobile networks and in different applications where unknown

nodes are strictly inside the convex-hull of anchors [32–34,48,49,52]. In another direction,

Diao et al. proposed in [33] an algorithm for the 2-D case, that allow an arbitrary position-

ing of anchors among unknown nodes. Unfortunately, their line of reasoning to solve the

localization problem was based on the geometrical identification of all conditions neces-

sary to correctly compute barycentric coordinate’s signs in more than 2-D. In [35], Han et

al. proposed a hybrid approach of mixing barycentric coordinates with MDS to solve the

same problem in 3-dimensions.

In this work, we leverage the definition of Cayley-Menger bi-determinants found in [8] to

deduce a new formulation of barycentric coordinates which allow us to extend the previous

results of Diao et al. to the generic d-dimensional space. As will be shown, we provide

a distributed algorithm able to localize nodes in d-dimensional Euclidean space with only

inter-node noisy measurements and a small subset of d + 1 anchors. In our algorithm,

there is no assumption about the position of any node in the network; i. e. anchors can be

anywhere in relation to unknowns. Moreover, we do not assume any previous knowledge

about noise characteristics of any range measurement. Locations of anchors which should

be noiseless are an exception, though.

Excluding [35], which utilizes a hybrid approach of using barycentric coordinates and MDS

- MultiDimensional Scaling; previous works known to use barycentric coordinates, either

restrict the dimension of the problem to two [33] or assume some specific arrangement for

anchor and unknown nodes [32,34,48,49,52]. While our approach may still present some

inconveniences, such as longer run time than MDS, in a stricter point of view, we provide a
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pure way to solve the localization problem of any d-dimensional static node network using

barycentric coordinates with range measurements and d+ 1 node locations.

Even though, by our knowledge, no practical application for localization problems in greater

than 3-dimensional Euclidean spaces exists nowadays; we still believe it is necessary to

provide the related theory for such a case, as it may occur in the future.

Succinctly, our main contributions are:

• Provide a way to compute barycentric coordinates for any node arrangement in d-

dimensional Euclidean space.

• Provide a centralized algorithm able to solve the localization problem of d-dimensional

static networks based on noiseless range measurements and d+ 1 node locations.

• Provide a distributed algorithm able to solve the previous localization algorithm under

noisy range measurements.
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CHAPTER 2 : PROBLEM DEFINITION

A static sensor network in d-dimension Euclidean space can be modeled as a weighted

directed graph G = {V, E ,Z}, with vertex set V := {1, 2, . . . , n}. From this set, we define the

subset A of anchor nodes with known locations and the subset U of nodes with unknown

locations, such that V = A
⋃
U and A

⋂
U = ∅. We refer to the Cartesian coordinates

xi ∈ Rd of node i ∈ V as its location. Therefore, the set of all node locations is X , of

anchor nodes is XA and of unknowns is XU .

An edge (i, j) ∈ E , where E ⊆ V × V, exists whenever nodes i and j are able to commu-

nicate and measure their relative distances, d(xi,xj) = ||xi − xj||2. Supposing that each

node i ∈ V has a maximum sensing range ri ∈ R>0, an edge between node pair (i, j)

exists if d(xi,xj) ≤ min{ri, rj}.

An example of such a network in 3-D is shown in Fig. 4. In this example, all 64 nodes

are arranged in a cubic lattice with a lattice constant of 1 unit. Inter-node measuring and

communication ranges are 2 units, r i = 2, 1 ≤ i ≤ m. Fig. 4 also shows the node degree1

of each vertex in this network example.

We suppose that each pair of nodes (i, j) ∈ E obtains range measurements over time t =

1, . . . , T , which can be arranged in a set of square matrices such as Z := {Z1, Z2, . . . , ZT }

with Zt ∈ Rn×n ∀t. Moreover, [Zt]ij = d(xi,xj)+ δij(t) where δij(t), for all pairs (i, j) ∈ E in

time, are independent identically distributed (iid) random variables with unknown probability

distribution. Assuming δij(t) and δji(t) are independent, the measured quantities [Zt]ij and

[Zt]ji are distinct random variables and thus the generated graph is directed. Conversely,

the noiseless case leads to an undirected graph formulation.

Therefore, based on the previous concepts, we can formulate the general form of the

localization problem as the following:
1In graph theory, node degree refers to the number of edges a node has to other nodes in the network,

which are its direct neighbors.
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Figure 4: Wireless node network example. Nodes are arranged in a cubic lattice with
lattice constant of 1 unit. We chose an inter-node measuring and communication range of
2 units for all nodes. The different vertex colors indicate nodes with different node degrees
as specified in its legends.

Problem. Given the anchor node locations XA ⊂ X of a static sensor network and noisy

range measurements Z, estimate the locations of all unknown nodes XU ⊂ X .

In the next section, we define Cayley-Menger bi-determinants and barycentric coordinates.

Then, we show how to use the first to compute the second for any possible node arrange-

ment. Next, based on barycentric coordinates, we show how to solve the centralized noise-

less case of the generic localization problem and later the distributed noisy case. But first,

let us summarize in Table 1 our most used symbols with their meaning for future reference.

,n
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Table 1: Symbol notation

Symbol Meaning
i, j, k Generic indices
l Index referencing the lth node
t Index referencing time iteration
d Number of dimensions
n Number of nodes n := |V|
a Number of anchor nodes a := |A|
u Number of unknown nodes u := |U|
rl Maximum sense range of node l

δij(t) Random noise at edge (i, j) at time t
Kn Group of complete graphs with n vertices
P, Q Generic sets
V Set of vertices or nodes
E Set of edges
Z Set of range measurement matrices
A Subset of anchor nodes
U Subset of unknown nodes
N (l) Set of neighbors of node l
I(l) Family of sets of d+ 1 indexes given by all possible combinations of

d+ 1 neighbors of node l which form a subgraph in Kd+1

X (l) Family of sets of Cartesian coordinates of neighbors of l given by I(l)

X (l)
i ith set of family X (l)

X̂ (l)
ij

ith set of family X (l) with jth element modified
p,q Generic real column vectors with some specified dimension
1 Vector of ones with correct dimension

xl, x(l) Location of node l in Rd

[xl]i, x
(l)
i Element at ith-row of vector x(l)

P,Q Generic matrices with some specified dimension
X Location matrix in Rd×n

Zt Range measurement matrix at time t
Ll, L(l) Matrix of barycentric coordinates of node l

[Ll]ij , L
(l)
ij Element at ith-row and jth-column of matrix L(l)

L(l) Generalized barycentric matrix (GBC) of node l
L
(l)
:A The columns of GBC of l that are indexed by A
L
(l)
:U The columns of GBC of l that are indexed by U
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CHAPTER 3 : A NOISELESS CENTRALIZED SOLUTION

We start our endeavor to solve the localization problem proposed in Chapter 2 in a cen-

tralized form under noiseless range measurements by defining the theoretical background

on Cayley-Menger determinants, bi-determinants and barycentric coordinates. These con-

cepts will prove to be fundamental to our proposed centralized algorithm, as one can utilize

Cayley-Menger determinants and bi-determinants to compute barycentric coordinates and

with them one is able to solve the localization problem by simply computing the solution of

a linear system.

Cayley-Menger determinants were extensively used by Blumenthal in his book about Dis-

tance Geometry [65], were he defined and proved this determinants property of relating Eu-

clidean Distance Matrices proportionally to the square of the signed volume of the simplex

formed by the set of d+ 1 points utilized in the Euclidean Distance Matrix in d-dimensions.

Then, we summarize how these concepts were applied under different assumptions by

Khan et al. in [32] and by Diao et al. in [33], which we consider to be the precursors of

our solution. The former is the first work to utilize barycentric coordinates to solve range-

only localization in wireless networks, while the later is an extension or modification of the

former seeking to allow arbitrary placement of anchors among unknown nodes in the two

dimensional case. By arbitrary placement of anchor nodes, we mean that anchor and un-

known nodes may be placed randomly, but they must satisfy the criterion of having at least

d + 1 distinct neighbors that form a simplex of non-zero volume. This is an extension on

Khan’s work which required all nodes to be place inside the convex-hull of a subset of their

neighbors and consequently, to have all unknown nodes inside the convex-hull of the d+1

anchor nodes.

In [8], we discovered the concept of Cayley-Menger bi-determinants without any formal

proof, which we later constructed based on Blumenthal’s proof of the determinant, and

explored its utilization to compute barycentric coordinates instead of using the simpler
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determinant. This choice proved extremely successful, as it allowed us to develop a com-

putationally efficient way to calculate correctly signed barycentric coordinates for any set

of d+1 point in d-dimensional Euclidean space based on their Cartesian coordinates. The

ability to compute all signs is fundamental to our work as it enables us to provide an al-

ternative solution for Diao’s work in the 2-D case, moreover it also allowed us to extend

their idea to any possible dimension. It is not as fundamental to works which follow Khan’s

assumption of having nodes inside the convex-hull of their neighbors, as in this case all

signs are strictly positive.

Later on we provide the best possible least squares estimate for our proposed localization

problem via the solution of a over-determined solution, moreover if the inverse of a sub-

matrix of this system exists, then we are able to compute the correct and full solution for

each unknown node Cartesian coordinate.

3.1. Fundamental theory

3.1.1. Cayley-Menger determinant

Cayley-Menger determinants, [32–34,65], provide a relation between Euclidean distances

of points in space and the signed volume of the simplex formed by such points as seen

below in Definition 1 and Theorem 1.

Definition 1. Let the tuple of d + 1 points, P = (p0, . . . ,pd), be defined by its Cartesian

coordinates, such that pi ∈ Rd for 0 ≤ i ≤ d. Then, the Cayley-Menger determinant of P is

defined as follows:

D(P) = D(p0, . . . ,pd) =

2
(
−1

2

)d+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1

1 0 d(p0,p1)
2 . . . d(p0,pd)

2

1 d(p1,p0)
2 0 . . . d(p1,pd)

2

...
...

...
. . .

...

1 d(pd,p0)
2 d(pd,p1)

2 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.1)
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Theorem 1. The Cayley-Menger determinant of a tuple of d+1 points in Rd, P = (p0, . . . ,pd),

is related to the square of its signed volume as in

D(P) = (d!)2Vol(P)2. (3.2)

Proof. See Appendix A.1 by taking Q = P.

But, why is this Cayley-Menger determinant so important for our problem solution? One

may reply, that by actually changing the computed Euclidean distances of points in P to

actual range measurements [Zt]ij ∀(i, j) ∈ E , one may actually compute the experimental

signed volume squared, which will be used to compute barycentric coordinates in the next

section.

3.1.2. Applying barycentric coordinates

Barycentric coordinates are usually defined using concepts of points, affine spaces and

affine frames. An affine space P is defined by a collection of points, a vector space

and a function. An affine frame is a set of points in an affine space with origin p0,

{p0,p1, · · · ,pd}, such that vectors {−−−→p0p1,
−−−→p0p2, · · · ,−−−→p0pd} are linearly independent, i.e.

they form a base for the embedded vector space
−→
P . By taking a field K such as R, one

can define barycentric coordinates as follows:

Definition 2 ([66, Prop.3.6.2 Modified]). Let {pi}i=0,1,...,d be a frame for an affine space P.

For any (point) p ∈ P there exist λi ∈ K, 0 ≤ i ≤ d, such that
∑

i λi = 1 and p =
∑

i λipi.

The scalars λi are uniquely defined by this property and are called barycentric coordinates

of p in the frame {pi}i=0,1,...,d.

From Definition 2, one can infer that in order to localize an unknown node in the network,

one needs to know the locations of d + 1 nodes in an d-dimensional space which form an

affine frame. Therefore, for each network one needs at least d + 1 anchor nodes which
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form an affine frame for the inherent affine space. Also, from Definition 2 and Theorem 1

one may compute the absolute value of any barycentric coordinate from a tuple of points

in space as given next:

Definition 3. Let the tuple P = (p0, · · · ,pd) be a frame for an affine space P. Then, given

a point p ∈ P, the absolute value of its barycentric coordinates in relation to the tuple P

is:

|λi| =

√
D(p0, . . . ,pi−1,p,pi+1, . . . ,pd)

D(p0, . . . ,pd)
(3.3)

Later, in Section 3.3.2 we will provide a formal and novel way to compute the true signed

barycentric coordinates for any point p ∈ P in relation to the tuple P. So far, in order to

present the aforementioned summary of Khan et al.’s DILOC, [32], and Diao et al.’s ECHO,

[33], the existing definitions will suffice.

3.2. Existing methods

3.2.1. DILOC

In [32], Khan et al. proposed the DILOC algorithm utilizing barycentric coordinates to solve

localization problems in wireless networks. We will summarize this algorithm through an

example in 2-D space. So, let points {pi,pj,pk,pl} ∈ P be the locations of some nodes in

a network. Then, we can calculate the magnitude of barycentric coordinates of point l as:

|λ(l)
i | =

√
D(pl,pj,pk)
D(pi,pj,pk)

|λ(l)
j | =

√
D(pi,pl,pk)
D(pi,pj,pk)

|λ(l)
k | =

√
D(pi,pj,pl)
D(pi,pj,pk)

(3.4)

Now, by definition of barycentric networks in Definition 2, their sum must be equal to one.

Therefore, if we suppose that node l is inside the convex-hull of the other nodes, then the

sum of its barycentric coordinates magnitudes should also sum to one. This acts as a

inclusion test to verify if nodes are inside or outside the convex-hull of its neighbors.

Definition 4. Let the tuple P = (p0, · · · ,pd) be a frame for an affine space P. Then, given
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a point p ∈ P, p is inside the convex-hull of P if and only if

n∑
i=1

|λ(l)
i | = 1. (3.5)

Where, |λ(l)
i | = 0 if i /∈ P. We call this the inclusion test.

Therefore, if a node passes the inclusion test for a subset of its neighbors, it can be cor-

rectly localize according to the following set of equations which define DILOC:

 p(l, t+1) =
∑n

i=1 λ
(l)
i p(i, t) if l is unknown,

p(l, t+1) = p(l, t) if l is anchor.
(3.6)

The main advantage of DILOC’s algorithm is that it can be written as an Absorbing Markov

process, which allows one to use its theory to prove the method’s convergence and facili-

tates its usability in many other setups such as [48,49]. Next, we define ECHO which was

proposed by Diao et al. in [33] as an extension of DILOC.

3.2.2. ECHO

This algorithm differentiates itself from DILOC in two major ways. First, it proposes a way to

compute the correct barycentric coordinate signs in the two dimensional case. This allows

one to utilize any possible subset of neighbors of a node to compute its barycentric coor-

dinates. Second, it defines the generalized barycentric coordinates which are then used

to form a linear system able to solve the localization problem under some assumptions.

Diao et al. in [33], proposes Algorithm 1 to compute the correct signs for barycentric coor-

dinates in the two dimensional case. The algorithm is composed of a series of if and else

statements, which dissects all possible node arrangements. Moreover, all of these checks

must be done for each possible neighboring node combination of d + 1 nodes for each

node in the network. This is done in order to compute, what they called the Generalized

Barycentric Coordinates, which we present in Definition 5.

Definition 5 (Generalized Barycentric Coordinate [33].). For each node l, its generalized
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Algorithm 1 Signs of barycentric coordinates in 2D.

Input: |λ(l)
i |, |λ

(l)
j |, |λ

(l)
k |, Zli, Zlj , Zlk, Zij , Zik, Zjk

Output: σ(l)i , σ
(l)
j , σ

(l)
k

if σ
(l)
i |λ

(l)
i |+ σ

(l)
j |λ

(l)
j |+ σ

(l)
k |λ

(l)
k | = 1 has unique solution then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k )

else if |λ(l)
i | == 0or |λ(l)

j | == 0or |λ(l)
k | == 0 then

if |λ(l)
j | ≤ 1and |λ(l)

k | ≤ 1 then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k ) = (1, 1, 1)

else if |λ(l)
j | > 1and |λ(l)

j | > |λ
(l)
k | then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k ) = (1, 1,−1)

else if |λ(l)
k | > 1and |λ(l)

k | > |λ
(l)
l | then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k ) = (1,−1, 1)

end if
else if Zlj == Zik andZlk == Zij andZ2

li == 2Z2
ij + 2Z2

ik − Z2
jk then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k ) = (−1, 1, 1)

else if Zlj < Z2
ij + Z2

li then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k ) = (1, 1,−1)

else if Zlj > Z2
ij + Z2

li then

return (σ
(l)
i , σ

(l)
j , σ

(l)
k ) = (1,−1, 1)

end if

barycentric coordinate, λl ∈ Rm, can be computed as follows

λT
l =

1

|I(l)|

|I(l)|∑
i=1

L
(l)
ij , (3.7)

where L(l) is the matrix formed by concatenating all possible barycentric coordinates λT

which are computed using both Definition 3 and Algorithm 1.

As the generalized barycentric coordinates in equation (3.7) are computed through aver-

aging, the property of summing to one is preserved. These new set of coordinates are then

used to compose a linear system of equations that relates each generalized barycentric

coordinate to the set of Cartesian coordinates which represent the node locations. This

results in a system with n equations in u < n variables, which can be solved under the

assumption, that each node has at least d + 1 distinct paths to the anchor nodes on the
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network, by isolating a subset of equations as described in [33]. We proceed in a similar

form in Section 3.3.4, but with a different set of equations.

3.3. Our approach

Our approach distinguishes itself from the other existing literature as we first provide a

novel and formal way to compute barycentric coordinates for any and every point p ∈ P

in closed form; second, utilizing our formulation of barycentric coordinates, we extend the

case where one allows arbitrary placement of anchors among unknowns to d-dimensions,

and finally; third, we provide a noiseless centralized algorithm as well as a noisy distributed

algorithm able to solve our proposed localization problem in Chapter 2. Let’s start by

defining Cayley-Menger bi-determinants in the next section.

3.3.1. Cayley-Menger bi-determinants

While Cayley-Menger determinants work on a single set of points in a d-dimensional space;

we introduce the concept of Cayley-Menger bi-determinants, also defined in [8] without any

formal proof. Cayley-Menger bi-determinants operate on two sets of points; providing a

relation between the product of volumes of each set and the Euclidean distances between

points of different sets.

Definition 6. Let two tuples of d + 1 points, P = (p0, . . . ,pd) and Q = (q0, . . . ,qd), be

defined by their Cartesian coordinates, such that pi and qi ∈ Rd for 0 ≤ i ≤ d. Then, the

Cayley-Menger bi-determinant of P and Q is defined as follows:

D(P;Q) = D(p0, . . . ,pd;q0, . . . ,qd) =

2
(
−1

2

)d+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1

1 d(p0,q0)
2 d(p0,q1)

2 . . . d(p0,qd)
2

1 d(p1,q0)
2 d(p1,q1)

2 . . . d(p1,qd)
2

...
...

...
. . .

...

1 d(pd,q0)
2 d(pd,q1)

2 . . . d(pd,qd)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.8)
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In Theorem 2, we formally specify the relationship between signed volumes of tuples, P

and Q, in d-dimensional Euclidean space and their Cayley-Menger bi-determinant.

Theorem 2. The Cayley-Menger bi-determinant of two tuples of d + 1 points in Rd, P =

(p0, . . . ,pd) and Q = (q0, . . . ,qd), is related to the products of the signed volumes of each

independent tuple, by

D(P;Q) = (d!)Vol(P) · (d!)Vol(Q). (3.9)

Proof. See Appendix A.1.

Corollary 1. The Cayley-Menger determinant of the tuple of d+1 points P can be defined

from the bi-determinant as follows:

D(P) = D(p0, . . . ,pd) = D(p0, . . . ,pd;p0, . . . ,pd). (3.10)

Proof. See Appendix A.1 by taking Q = P.

It is very important to notice that determinants in general are alternating forms, so the

order in which its elements are arranged is essential to its correct computation. This be-

comes specially important to bi-determinants as changing the order of points may incur in

a change of signal. Meanwhile, it is not as important to preserve order for Cayley-Menger

determinants as we are only interested in the magnitude of barycentric coordinates in this

case.

The following sections will show how we leverage Theorem 2 in order to compute barycen-

tric coordinates of points inside and outside the convex-hull of its d + 1 neighbors, which

allow us to obtain similar, but more concise results than [33].

3.3.2. Computing barycentric coordinates

Theorem 3. Let the tuple P = (p0, · · · ,pd) be a frame for an affine space P. Then, any

point p ∈ P can be localized in relation to the tuple P by its barycentric coordinates λ as
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follows:

λi =
D(p0, . . . ,pd;p0, . . . ,pi−1,p,pi+1, . . . ,pd)

D(p0, . . . ,pd)
(3.11)

Proof. From Definition 2, the following relations hold:

p =
∑

i λipi,
∑

i λi = 1 ⇔

 P
1T

λ =

p
1

 . (3.12)

Where P = [p0,p1, · · · ,pd]. Now, suppose our set of nodes form a frame in an affine

space, then the solution is unique by Definition 2. The latter implies that V T
P = [P T 1] has

non-zero determinant, which allows us to use Cramer’s Rule to solve the linear system

(3.12). Therefore, by defining P̂i as the matrix obtained from P by replacing its ith col-

umn with p, i. e. P̂i = [p0, · · · ,pi−1,p,pi+1, · · · ,pd], we can compute each barycentric

coordinate, λi, as follows

λi =

∣∣∣∣∣∣∣
P̂i

1T

∣∣∣∣∣∣∣ /
∣∣∣∣∣∣∣
P

1T

∣∣∣∣∣∣∣ . (3.13)

Meanwhile, the volume of the sets of points P and P̂i are given by

Vol(P) = 1
d!

∣∣∣∣∣∣∣
P

1T

∣∣∣∣∣∣∣ , Vol(P̂i) = 1
d!

∣∣∣∣∣∣∣
P̂i

1T

∣∣∣∣∣∣∣ . (3.14)

Then, each barycentric coordinates, λi, can be computed in terms of these volumes by

λi =

∣∣∣∣∣∣∣
P̂i

1T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
P

1T

∣∣∣∣∣∣∣
=

(d!)Vol(P̂i)
(d!)Vol(P)

. (3.15)

Now, one may see that the following multiplication by ”one” becomes a neat mathematical
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trick.

λi =
(d!)Vol(P)
(d!)Vol(P)

(d!)Vol(P̂i)
(d!)Vol(P)

(3.16)

Substituting numerator by its equivalent to Theorem 1 and denominator by Corollary 1,

we arrive to our proposed solution. Therefore, we conclude that the barycentric coordi-

nates, λi for all 0 ≤ i ≤ d, can be computed using Cayley-Menger bi-determinants and

determinants.

Instead of using equation (3.16), previous works [32–34] would use the following relation

(3.17), which is based on (3.15), to compute absolute values of barycentric coordinates.

λi
2 =

(d!)2Vol(P̂i)2

(d!)2Vol(P)2
=
D(P̂i)
D(P)

. (3.17)

While (3.17) can provide magnitudes of barycentric coordinates of a point in relation to an

affine frame, it can not provide the correct sign. This restriction did not impede the de-

velopment of DILOC’s theory, as it is restricted to points inside the convex-hull of anchors

(strictly positive) as we saw before in Section 3.2.1. Contrarily, it became a restriction for

the full development of ECHO, as they had to come up with many geometric rules to de-

termine correct signs even in 2D, not providing the same for 3D nor any larger dimensional

case, as seen in Section 3.2.2. On the other hand, we emphasize that our method, given

by Theorem 3, is able to compute the full barycentric coordinates, magnitude and signs,

given the same conditions.

Notice that each point’s barycentric coordinate sign is associated to the overall position

of this point in relation to the ones forming the affine frame used in its computation. Any

point strictly inside the convex-hull of the affine frame will have strictly positive coordinates,

otherwise it will have at least one zero or negative coordinate. It is impossible to have all

non-zero barycentric coordinates with negative signs. Moreover, the order in which the

different signs are given depends on the partial ordering of d + 1 hyper-planes in d − 1

dimensions generated on d-dimensional space.
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Figure 5: Regions of different Barycentric Coordinate signs with non-zero elements. Here,
we consider only regions were coordinates are either strictly positive or strictly negative.
The black line segments define the boundaries of the chosen points convex-hull.

It is important to understand that if we consider each node as a point in an affine space,

then allowing nodes to be outside of the convex-hull of its neighbors, is equivalent of having

zero or negative barycentric coordinates. This constitutes the main difference between

DILOC’s and ECHO’s algorithm, [32] and [33] respectively.

Fig. 5 shows an example in three-dimensional space of the 2d+1 − 1 possible regions

where the barycentric coordinate signs are strictly positive or negative. The convex-hull of

the set of d + 1 points forming the affine frame is depicted by having all its edges blacked

in the figure. Meanwhile, Fig. 6 shows some of the possible regions when we consider

coordinates which are striclty zero. Notice, that we can not show all possible regions in this
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Figure 6: Regions of different Barycentric Coordinate signs with zero elements. In this fig-
ure, we specify some, but not all, possible regions in space diving them by strictly positive,
strictly negative or strictly zero coordinates.

case, as some are hidden beneath others and some are plane segments or even points.

3.3.3. Computing barycentric coordinates for every node l

In the previous two sections, we defined Cayley-Menger bi-determinants and barycentric

coordinates which we will apply in order to solve our localization problem. First, we define

that each network node can have its location modelled as a point in an Euclidean and
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Affine Space. Therefore, it can have Cartesian and barycentric coordinates.

The easiest localization problem occurs when all unknown nodes are directly connected

to all anchors and the anchors form an affine frame. In this case, each node barycen-

tric coordinate can be computed from measuring their relative distance with the anchors.

Therefore, by using the previous results we arrive at each node Cartesian coordinates.

In the case where one unknown node is not directly connected to all anchors, then we

must seek a combination of its neighbors that form an affine frame and are themselves

localizable based on their neighbors. This principle is applied on the standard Trilateration

method in reverse. From anchors, localize first degree neighbors, then second degree and

so on and so forth.

As we wish to arrive to a solution similar to the ones presented in [32,33], we need to find

all necessary barycentric coordinates for each unknown node in a way that our system of

equations has a unique solution, i.e. all nodes become localizable at the same time. This is

not a trivial problem as the total amount of possible barycentric coordinates for each node

is a combination of its number of neighbors and d+1. Thus, for large and dense networks,

the number of possible choices can explode.

In [33], Diao et al. proposed a solution for this problem by computing a generalized

barycentric coordinate which they defined from the average of all possible barycentric co-

ordinates of a node in a network. Next, we will propose a different formulation also using

all possible barycentric coordinates.

Let N (l) be the index set of neighbors of node l, defined as follows

N (l) = {j ∈ V \ {l} | (l, j) ∈ E} . (3.18)

Let I(l) be a family of sets of d + 1 indexes given by the combination without repetition of
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members of N (l), which are also neighbors from one another.

I(l) = {Vj ⊂ N (l)×d+1 |Jj = {Vj , Ej} ∈ Kd+1, Ej ⊂ E} (3.19)

Where, Jj is a subgraph of our network graph G and Kd+1 is the set of complete graphs

with d+ 1 vertices. Therefore, the cardinality of I(l) is |I(l)| ≤

|N (l)|

d+ 1

.

For each node l, we define tuples of d+ 1 points in Rd, X (l)
i , 1 ≤ i ≤ |I(l)|, such that

X (l)
i = {xI(l)i1

,xI(l)i2

, · · · ,xI(l)id+1

}, (3.20)

and sets of d+ 1 points in the same space, X̂ (l)
i , 1 ≤ j ≤ d+ 1, such that

X̂ (l)
ij

= {xI(l)i1

, · · · ,xI(l)ij−1

,xl,xI(l)ij+1

, · · · ,xI(l)id+1

}. (3.21)

Using the previously defined sets with the correct indexes applied to equation (3.16), one

can compute all possible barycentric coordinates for each node l.

Theorem 4. For each node l and each set I(l)i , ifD(X (l)
i ) 6= 0, ∀i, then all possible barycen-

tric coordinates of node l, with respect to its neighbors identified by the set I(l)i , can be

arranged in matrix form L(l) ∈ R|I(l)|×n

L
(l)
ik =


D
(
X (l)
i ; X̂ (l)

ij

)
D
(
X (l)
i

) , if k = I(l)ij

0, otherwise

. (3.22)

Proof. Follows from equation (3.16), by taking the appropriate nodes and their indexes

(3.20) and (3.21).

In the next section, we utilized Theorem 4 to solve our proposed problem in a noiseless

environment using a centralized algorithm.
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3.3.4. Generalizing barycentric coordinates: The centralized solution

By defining the matrix X ∈ Rn×d, such that XT = [x1, . . . ,xn], the previous Theorem 4

thus states that

L(l)X = 1 · xl
T . (3.23)

One possible way to utilize the previous result in Theorem 4 and equation (3.23) is to

compute the Generalized Barycentric Coordinates proposed by Diao et. al. in [33]. These

generalized coordinates are computed by averaging all possible barycentric coordinates for

each node l as stated in Definition 5. One can use all n generalized barycentric coordinates

in order to compute the unknown nodes coordinates by simply solving a centralized linear

system as proposed in [33].

As a curiosity, we show here how to obtain the generalized barycentric coordinates, λl,

from matrix L(l). Starting from equation (3.23), we compute the averaging process as

follows, where 1 ∈ R|Il|,

1TL(l)X = 1T1 · xl
T (3.24)

1

|I(l)|
1TL(l)X = xl

T (3.25)

λT
l X = xl

T (3.26)

λl =
1

|I(l)|
1TL(l) (3.27)

Despite the apparent simplicity of the previous solution, it does not conform with the generic

optimization problem given in [47], which we wish to utilize in order to solve our problem

with noisy measurements in a distributed manner. Therefore, we seek an alternative ma-

nipulation of equation (3.23).

Proposition 1 (Generalized Barycentric Matrix). For each node l, its generalized barycen-
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tric matrix, L(l) ∈ R|I(l)|×n, is given by:

L(l) = L(l) − 1elT . (3.28)

Proof. From the manipulation of equation (3.23) we have, where 1 ∈ R|I(l)|,

L(l)X = 1 · xl
T (3.29)

(
L(l) − 1elT

)
X = 0 (3.30)

L(l)X = 0. (3.31)

In order to use Proposition 1 to solve our localization problem, one may concatenate ma-

trices L(l) and solve the following set of equations



L(1)

L(2)

...

L(n)


X = 0 (3.32)

which relates to computing the kernel of the rectangular matrix that defines our over-

determined linear system.

Theorem 5. The localization problem proposed can be solved through the solution of the

linear system given by (3.32). Its centralized solution for the unknown nodes is:

XU = −

(
n∑

l=1

L
(l)T

:U L
(l)
:U

)−1( n∑
l=1

L
(l)T

:U L
(l)
:A

)
XA, (3.33)

where L(l)
:A and L(l)

:U are the sub-matrices obtained by selecting columns indexed by anchor

and unknown nodes respectively and if there exist the inverse of matrix
∑n

l=1 L
(l)T

:U L
(l)
:U .
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If this inverse does not exits, one may compute a least squares estimate by solving the

following equation:

XU = −


∑n

l=1

L(l)T

:A L
(l)
:U

L
(l)T

:U L
(l)
:U




T ∑n
l=1

L(l)T

:A L
(l)
:U

L
(l)T

:U L
(l)
:U




−1

·

·

∑n
l=1

L(l)T

:A L
(l)
:U

L
(l)T

:U L
(l)
:U




T ∑n
l=1

L(l)T

:A L
(l)
:A

L
(l)T

:U L
(l)
:A


XA,

(3.34)

Proof. We approach this problem, by transforming using the least squares approach to the

system of equations in (3.32):



L(1)

L(2)

...

L(n)



T 

L(1)

L(2)

...

L(n)


X = 0 (3.35)

n∑
l=1

(
L(l)TL(l)

)
X = 0 (3.36)

Now, because some elements of matrix X are previously known, the anchor coordinates

XA, then we will re-arrange our previous matrices L by applying row and column permu-

tations so that we have:

n∑
l=1


L(l)T

:A

L
(l)T

:U

[L(l)
:A L

(l)
:U

]
XA
XU

 = 0 (3.37)

∑n
l=1

(
L
(l)T

:A L
(l)
:A

)
XA +

∑n
l=1

(
L
(l)T

:A L
(l)
:U

)
XU = 0∑n

l=1

(
L
(l)T

:U L
(l)
:A

)
XA +

∑n
l=1

(
L
(l)T

:U L
(l)
:U

)
XU = 0

(3.38)

Finally, similarly to the previous methods, DILOC and ECHO, we choose to solve the sec-

ond part of the previous equation which results in our solution provided in (3.33) if the
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inverse of
∑n

l=1 L
(l)T

:U L
(l)
:U exists, otherwise we proceed as in equation (3.34).

3.4. Algorithm complexity

The number of barycentric coordinates needed to be computed is given by the cardinality

of the family sets, I(l), from equation (3.19). Because of that, an implementation of our

algorithm will have worst case scenario for its computational complexity whenever its net-

work graph G is complete, i.e. all nodes are inter-connected. In which case, the cardinality

for all nodes is equal to

 n

d+ 1

. Therefore, in order to compute matrix L, the complexity

of our algorithm becomes O

d4n
 n

d+ 1


, where n is the number of nodes and d is the

dimension of each node. Therefore, the centralized case in which we find the final solution

by inverting a block matrix derived from L, operation which has O(n3), has final complexity

of O

d4n
 n

d+ 1

+ n3

.
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CHAPTER 4 : A NOISY DISTRIBUTED SOLUTION

In this chapter we deal with two main extensions of our centralized noiseless algorithm

which was proposed before in Chapter 3, which are first to enable our algorithm to accept

zero mean additive random noise to each range measurement and second to transform

its computation from centralized to distributed. We tackle the former by leveraging the

idea of averaging twice, one over the range measurements inputs and the other over the

already computed barycentric coordinates. It is easy to understand why we apply averages

to noisy range measurements with zero mean additive random noise as by the Law of

Large Numbers, the average will converge to the noiseless value given a sufficiently high

amount of samples. But, one may not say the same for the barycentric coordinates as

they are computed via determinants of squared averaged noisy range values, which is a

non linear operation, so one can not apply standard probability distributions to barycentric

coordinates.

We apply the second averaging process with the intention of mitigating values discrepan-

cies between barycentric coordinates computed from one iteration to another. Such dis-

crepancies may occur because of the non linearity of the Cayley-Menger computation or

even because of numerical error from values near zero on the denominator of the barycen-

tric coordinates computation. Moreover, it is important that one checks for these simplices

with near zero volume and restrict their usability. We checked the efficacy of this double

averaging process utilizing simulations in Matlab considering both the solution of the cen-

tralized case with averaged values at each time or a derived gradient descent algorithm,

formally shown in Section 4.2. The simulated results may be seen at Section 5.3.

For the second extension, which is making our algorithm distributed, we have leveraged an

existing result by Shahrampour and Jadbabaie [47] on an optimization algorithm for net-

works with cost functions varying over a time horizon. From our point of view, this algorithm

was developed using as basis the Bregman Divergence and a Distributed Consensus Algo-
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rithm. It enables us to obtain iteratively better location estimates over time as our algorithm

becomes a modified gradient descent algorithm with convex cost functions. This happens

because we utilize the Euclidean distance in order to calculate the Bregman Divergence.

In the following sections, we will formally introduce the steps taken to arrive to our dis-

tributed noisy algorithm for the d-dimensional localization problem in wireless networks

with arbitrary anchor placement.

4.1. Averaging processes

Sec. 3.3.3 and 3.3.4 showed that the entries of the matrix L in (3.32), which specifies

the linear system of equations for all nodes, have a nonlinear dependence on the range

measurements due to the Cayley-Menger bi-determinant computations. In this section, we

consider the relative localization problem in the presence of noisy measurements. The

main challenge is that the distribution of the measurement noise δij(t) is, in general, un-

known and even if we were to make an assumption on its class (e.g., common choices

include Gaussian, Laplace, Rayleigh, or Rice), when it is propagated through the nonlin-

ear barycentric coordinate function in Theorem 4, the posterior would not be a standard or

stable distribution. We begin by introducing two averaging schemes to mitigate the noise

effects and allow Theorem 5 to be applied in the noisy case.

We follow the approach of Khan et al. [34] to deal with this challenge. Their idea is to

leverage the Law of Large Numbers, which ensures that the iid measurements [Zt]ij , when

averaged over time, almost surely converge to the noiseless range measurement d(xi,xj),

and compute the matrix L(l) using averaged measurements. In detail, instead of computing

L(l, t) at each time step t using the raw measurements {[Zt]ij | (i, j) ∈ E}, we compute

L(l, t) using the following averaged range measurements:

[Zt]ij =
t− 1

t
[Zt−1]ij +

1

t
[Zt]ij , with [Z0]ij = 0. (4.1)

This process, guarantees that after sufficient time passes, L(l, t) will be close to the matrix
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resulting from the true node barycentric coordinates, and the noisy relative localization

problem can again be solved via Theorem 5. Despite averaging measurement, there may

be instances in which large instantaneous noise at time t or numerical errors from near

zero volumes would lead to an inaccurate L(l, t). To mitigate the noise introduced by the

most recent measurement, we introduce a second averaging process over the elements of

matrix L(l, t). In detail, we propose the following steps for computing time-averaged blocks

of L(l, t):
L
(l, t)
:A =

t− 1

t
L
(l, t−1)
:A +

1

t
L
(l, t)
:A

L
(l, t)
:U =

t− 1

t
L
(l, t−1)
:U +

1

t
L
(l, t)
:U

(4.2)

where L(l, 0)
:A = 0 ∈ R|I(l)|×a and L(l, 0)

:U = 0 ∈ R|I(l)|×u. Given these definitions, we can

return to the approach in Proposition 5 but this time using the time-averaged matrices.

Leading to the following least-squares estimate of the unknown node locations:

X̃
(t)
U = −

(
n∑

l=1

L
(l, t)T

:U L
(l, t)
:U

)−1( n∑
l=1

L
(l, t)T

:U L
(l, t)
:A

)
XA, (4.3)

While this process mitigates the effect of measurement noise on the computation of blocks

of L(l, t) for large enough t, this computation requires centralized information. As a central-

ized solution to the relative localization problem is not suitable for large networks, we will

in Sec. 4.3 develop a distributed gradient descent algorithm. To motivate the distributed

algorithm, we first derive a gradient descent approach for the centralized case with noisy

measurements.

4.2. Centralized gradient descent

Besides the proposed solution in Theorem 5, one may also apply optimization theory over

the second equation in (3.38) to obtain the same solution. We are emphasizing this point

as it serves as the starting point for our distributed algorithm. Therefore,

Lemma 1. The localization problem proposed can also be solved through the following
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optimization process:

X̃
(t)
U := argmin

X∈Ru×d

n∑
l=1

∥∥∥∥∥∥∥
[
L
(l, t)
:A L

(l, t)
:U

]XA
X


∥∥∥∥∥∥∥
2

fro

(4.4)

where L(l)
:A and L(l)

:U are the sub-matrices obtained by selecting columns indexed by anchor

and unknown nodes respectively.

The aforementioned minimization can be solved using the iterative centralized gradient

descent algorithm for computing X̃U as follows:

X̃
(t+1)
U = X̃

(t)
U − η

(t)G(t), (4.5)

Where the gradient G(t) of the objective function in (4.4) defined in Lemma 1 is:

G(t) := 2
n∑

l=1

L
(l, t)T

:U

(
L
(l, t)
:U XU + L

(l, t)
A XA

)
. (4.6)

The gradient G(t) is evaluated at X̃(t)
U and the step size η(t) determines the stability and

convergence speed of the algorithm. One choice for η(t) that we found to work particularly

well is based on the Barzilai-Borwein method [67]:

η(t) :=

tr

((
X̃

(t)
U − X̃

(t−1)
U

)T (
G(t) −G(t−1)))

tr
((
G(t) −G(t−1)

)T (
G(t) −G(t−1)

)) .

This algorithm is initialized by computing X̃
(1)
U from the first set of range measurements

via (3.33), this operation may lead to gross estimates that a far from the true node loca-

tions. In an attempt to improve this first estimate, we chose to utilize the centroid of a box

containing the entire network as initial guess for estimates that are outside of such box.
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4.3. Distributed Online Gradient Descent

In the presence of noisy measurements, the constraints in equation (3.32) can only be sat-

isfied approximately. Hence, we use the same two-phase averaging process as in equa-

tion (4.2) in Section 4.1 to define L(l, t)
:U and L(l, t)

:A and aim to compute a least-squares

estimation for Xu based on Lemma 1.

Notice that each matrix L(l, t)
:U and L(l, t)

:A can be computed locally in each node i with 2-hop

information. But each neighbor already stores information about its neighbors. Therefore,

all necessary computation can be done with only 1-hop communication. The structure of

this interaction is defined with respect to a communication matrix W , selected based on

Xiao et al. [46] to be

W = I − LG/max{eig(LG)} (4.7)

where LG is the Laplacian matrix of graph G and eig(·) computes the eigenvalues of the

respective matrix. With these results one may directly utilize [47] algorithm with the Eu-

clidean Distance as the Bregman Divergence function to arrive at the following theorem.

Theorem 6. Given anchor node locations XA ⊂ X of a static sensor network and noisy

range measurements [Zt]ij = d(xi,xj) + δ
(t)
ij ∈ R, ∀(i, j) ∈ E and t = 0, . . . , T . We can

estimate the locations of all unknown nodes XU ⊂ X at each node l with step sizes η(t) by

performing local state updates

X
(l, t+1)
U =

n∑
k=1

[W ]lkX
(k, t)
U − η(t)G(l, t), (4.8)

where the gradient evaluated at X(l, t)
U is

G(l, t) = 2L
(l, t)T

:U

(
L
(l, t)
:U X

(l, t)
U + L

(l, t)
:A XA

)
(4.9)

and W is defined in (4.7).
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Proof. The online mirror descent technique in [47] is developed to track the minimizer of a

global objective function (at each time t), where the global function can be written as a sum

of m local functions. It is evident that the problem formulation given in Lemma 1 conforms

to the setup proposed in [47]. Moreover, all the necessary assumptions of the method are

satisfied when using the Euclidean norm as the Bregman Divergence.

Consequently, according to this method, the online distributed algorithm becomes

xul
(t+ 1) = argmin

{
ηt〈x,∇fl,t(xul

(t))〉+ 1

2
||x− yl(t)||22

}
yl(t) =

m∑
k=1

[W ]lkxuk
(t+ 1),

(4.10)

where xul
and ∇fl,t are derived by vectorizing X l

u and Gl in (4.8) and (4.9), respectively.

Solving the above leads to (4.8), thereby concluding the proof.

Theorem 6 states that our localization problem may be solved by computing equation (4.8)

in each network node. Notice that so far we defined every element of equation (4.8) except

for the step size value η(t). Unfortunately, we can not apply the Barzilai-Borwein method

in [67] because there is no distributed form for it. We looked for other possibilities unsuc-

cessfully and are currently using fixed step sizes in the order of 10−3 or less. This affects

the convergence rate of our algorithm and may be a point of further research.

4.4. Algorithm complexity

In order to compute the algorithm complexity of the noisy distributed case, as we assume

O(1) for each basic arithmetic operation, the gross computational complexity becomes the

construction of matrix L(l, t) at each time iteration. Therefore, we can assume the total

complexity as O

d4n
 n

d+ 1

T

, where T is the total number of iterations. Notice that

we utilized the previous results of the centralized case, Section 3.4, in order to estimate

this algorithm complexity.
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Regarding the data exchanging complexity of the distributed case, we reiterate that each

matrix L(l, t) can be written with only one hop communication, i.e. each node only needs

information that it can gather by itself and information that its neighbors have accumulated.

Therefore, by only exchanging information among direct neighbors, each node is able to

collect information of its neighbor’s neighbors.
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CHAPTER 5 : SIMULATIONS

In order to provide examples, visualize and compare solutions we sought the utilization of

simulations, which we present and discuss in this chapter. All simulations were coded using

Mathworks’ Matlab environment. The main focus here is to compare our proposed algo-

rithms, centralized GBC - Generalized Barycentric Coordinate and centralized/distributed

GBM - Generalized Barycentric Matrix algorithms, with an existing MDS - MultiDimensional

Scaling algorithm. As was explained in Chapter 3, our implementation of the centralized

GBC follows the approach proposed by Diao et al. in [33], except we utilize Cayley-Menger

bi-determinants to compute barycentric coordinates.

While we coded our own algorithms using basic Matlab functions resulting in a possible

sub-optimal implementation, we utilized Matlab’s MDS implementation, which should be

more optimized. We also implemented the standard version of DILOC [32], which may

also be sub-optimal in terms of run time and algorithm complexity as well.

The following sections will first provide simulation results for centralized GBC and GBM

algorithms, comparing the first with DILOC and Matlab’s MDS; and the second with Mat-

lab’s MDS. Then, later we provide simualtions for our distributed GBM algorithm showing

RMSE values over time for multiple localized networks. We discontinued our comparison

with DILOC as its location estimates are proven to converge to the ground truth in [32]

for nodes inside the convex-hull of the d + 1 anchors. Therefore, for most completely ran-

dom networks simulated by us, the number of nodes which satisfy this restriction is too

little. Meanwhile, the MDS algorithm is able to localize nodes independently of their posi-

tions in relation to anchors, which is similar to our proposed algorithms, making it a better

candidate for comparisons.
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5.1. Noiseless centralized algorithms

As mentioned, all centralized algorithms are compared with Matlab’s MDS function called

mdscale(.). We set its parameters as follows: its start condition is random, maximum

iterations is set to one thousand and the stress criterion is squared and normalized with the

sum of 4th powers of dissimilarities. It is also possible to choose the number of replications,

i.e. the number of random re-initializations it is allowed to do in order to obtain solutions

with least stress. As will be shown by selecting the number of replications to one, each

random initialization of MDS may provide a distinct localization estimate. These distinct

solutions will have different stress values. Zero stress means perfect solution, with higher

stresses meaning worse estimates. So, one usually runs MDS multiple times in order to

choose the least stress estimate as the final solution.

In contrast, our centralized algorithms will either provide a completely correct solution or

they won’t. It will depend on the network structure. We emphasize again that each un-

localized node must have at least d + 1 neighbors which form a complete subgraph by

themselves.

5.1.1. Generalized barycentric coordinates

For the following comparisons, we chose to construct a random network formed from a

6× 6× 6 unit-spaced regular lattice in which independent Gaussian noise with zero mean

and unit variance was added to each node coordinate. The maximum range threshold for

each node i was set up to ri = 3 units. Instead of a network graph for this example, we

provide a histogram of node degrees in Fig. 7. Lastly, anchor nodes were manually chosen

such that there were some nodes inside and outside their convex-hull.

From the 216 nodes in our example, 215 were correctly localized by our GBC algorithm,

as shown in Fig. 7. Black circles and squares represent their true node coordinates for

unlocalized nodes and anchors respectively; while red dots represent computed estimates.

The unlocalized node has its true coordinates represented by the sole black star.
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Figure 7: GBC algorithm’s network example: node degree histogram.

As one can expect, DILOC’s standard algorithm is able to localize all nodes inside the

convex-hull of the anchor nodes as shown in Fig. 8b. Though, in order to accomplish

that, 6 of the 15 unknown nodes inside the convex-hull had to use measurements greater

than our proposed maximum range of 3 units. If one limits DILOC’s range to 3 units, some

nodes would not be localized, as these nodes would not have the necessary number of

neighbors to compute their barycentric coordinates. This result completely satisfies the

specifications and assumptions of DILOC’s proposed utilization and theory.

On the other hand, we simulated Matlab’s MDS’s algorithm 1000 times with one replication

each time. A histogram of MDS’s stress values is shown in Fig. 9a. This histogram

was automatically generated using the square root binning method. It demonstrates the

probability distribution of MDS stress value for this network, one can also skip to Figs.

13a and 13b and analyze the differences between this histogram and those of different

networks.

Fig. 8c shows all MDS computed coordinates which have a stress value inside the lowest
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(a) Our generalized barycentric coordinate algo-
rithm’s location estimates .
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(b) DILOC’s location estimates.
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(c) Matlab’s MDS’s location estimates with least
stress.
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(d) Matlab’s MDS’s location estimates with most
common stress interval.

Figure 8: Location estimates comparison: GBC, DILOC and Matlab’s MDS. Black empty
circles, squares and star are ground truth locations for each node. Black lines define the
convex-hull of anchors. Red filled circles and stars are location estimates. Circles used for
localized nodes; stars for unlocalized nodes.
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(a) Matlab’s MDS stress value histogram for 1000
simulations with one replication each.

(b) Smallest and largest covariance matrices er-
ror ellipsoids for Matlab’s MDS’s estimates.

Figure 9: Some characteristics of Matlab’s MDS algorithm.

valued bin interval from the histogram shown in Fig. 9a. In this case, except for one node

with computed coordinates marked by red stars, all others were correctly localized. Notice

that, each red star represent one possible solution in which the MDS stress criterion was

less than 0.01, which shows that MDS solutions are not necessarily unique. Moreover,

according to the stress value histogram, this best case scenario happened in less than

10% of all simulations. Lastly, the computed node coordinates for the most frequent stress

value interval are shown in Fig. 8d.

A visual representation of the best and worst computed node coordinates throughout all

1000 simulations of Matlab’s MDS can be seen in Fig. 9b. We used [68] to obtain error

ellipsoids which are centered at the average node location estimations. These ellipsoids

have axes and orientation proportional to the covariance matrix eigenvalues magnitude

and eigenvectors orientation. Their volumes are computed so that the confidence interval

is 90%. Such results demonstrate that this algorithm may provide less than desirable

results, moreover there is a large difference between optimal and sub-optimal estimations.

Therefore, it is important to utilize a considerable amount of replications.

In order to provide an idea of our algorithm’s run time and compare it to Matlab’s MDS
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implementation, we executed 100 simulations of the former and 1000 for the later. Each

MDS simulation was done with one replication only. The average run time for the first

part of our GBC algorithm which constructs possible families of neighbor sets is 140.13

seconds with a standard deviation of 2.71 seconds. The second part which constructs and

solves the linear system takes in average 49.15 seconds with a standard deviation of 1.32

seconds. The average execution time for one run of Matlab’s MDS implementation with

only one replication was 2.80 seconds with standard deviation of 0.71 seconds. Although

our run times are 68 times larger than MDS’ single replication rounds, one will usually need

to compute a few rounds of MDS in order to obtain sufficiently small stresses, as can be

inferred from Fig. 9a. This behavior states that our algorithm run times are not as bad as

mentioned, which is the worst case scenario for our comparison one in which MDS solves

the system in one iteration.

It is interesting to notice that one node, represented by a black star in Fig. 8, was not

localized by any method. Besides being outside the anchor’s convex-hull, it has less than

d + 1 neighbors given the defined maximum measurement range. Therefore, it does not

satisfies either DILOC’s or our algorithms assumptions and restrictions. According to our

beliefs, it is better to provide a negative answer, i.e. it can not be localized, than to provide

a wrong location.

Next, we compare our proposed GBM centralized algorithm w and Matlab’s MDS.

5.1.2. Generalized barycentric matrix

Now, for the following simulations, we chose a different method to create random networks.

First, we chose 175 random points in three dimensions. Then, after selecting the mea-

surement and communication range radius, ri ∀i, of 3 and 4 units respectively, we test the

constructed networks for constraints like node degree and iteratively exclude nodes that

are not localizable. The resulting networks are shown respectively in Figs 10a and 10b,

the former with 115 nodes and the later with 174 nodes. We emphasize that by construc-
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tion the second network contains the first. Therefore, we chose to use the same randomly

picked anchor nodes for both.

(a) Radius of 3 units. (b) Radius of 4 units.

Figure 10: Centralized GBM algorithm’s network examples: network graphs. Anchor lo-
cations and convex-hull marked by black filled circles and black continuous lines. Black
empty circles mark ground truth locations. Dashed lines represent network range sensing
and communication connections.

In Figs. 11 and 12, we provide simulations of our proposed GBM algorithm and Matlab’s

MDS implementation, mdscale(.), respectively for the networks in Fig. 10. It can be seen

in Figs 11a and 11b that our noiseless centralized algorithm is able to localize all nodes of

both networks correctly. On the other hand, Matlab’s MDS estimation for the first network

with range radius of 3 units is sub-optimal, as seen in Fig. 12a. While, its solution for the

second network is optimal, Fig. 12b. In these figures, each large empty circle of some

color is the ground truth location of the respective node, while the small filled circle of the

same color is the estimated solution provided by the respective algorithm.

Different from the simulations presented before in section 5.1.1 which uses 1000 replica-

tions, here we run only 100 resulting in the stress histograms shown in Fig. 13. Similar

from the previous simulated network, they show that a majority of solutions provided by the

MDS algorithm have non-zero stress, i.e. solutions have significant deviation from ground

truth. But, differently from before, the actual number of estimated solutions with zero stress
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(a) Radius of 3 units. (b) Radius of 4 units.

Figure 11: Centralized GBM algorithm’s solution estimates. Anchor locations and convex-
hull marked by black filled circles and black continuous lines. Colored empty and filled
circles mark ground truth locations and location estimates; where each node has its own
distinct color.

(a) Radius of 3 units. (b) Radius of 4 units.

Figure 12: Matlab MDS’s solution estimates. Anchor locations and convex-hull marked by
black filled circles and black continuous lines. Colored empty and filled circles mark ground
truth locations and location estimates; where each node has its own distinct color.
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is either zero, for the first network or less than 5% for the second, while the previous case

had around 10% of correct solutions.

(a) Radius of 3 units. (b) Radius of 4 units.

Figure 13: Matlab’s MDS stress value histogram for 100 simulations with one replication
each.

(a) Radius of 3 units. (b) Radius of 4 units.

Figure 14: Smallest and largest covariance matrices error ellipsoids for Matlab’s MDS’s
estimates.

Again, in order to provide a visual representation of the best and worst computed node

coordinates throughout all 100 simulations of Matlab’s MDS, Figs. 14a and 14b, we use

again [68] to obtain error ellipsoids. As can be seen, we obtain similar results as the
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previous case.

During our tests, each iteration of the MDS algorithm run in average for 2.53s with standard

deviation of 0.89s for the smaller network and an average of 3.15s with standard deviation

of 0.85s for the larger one. In comparison, our algorithm took 1.4s and 43.96s for each

network respectively. As we utilize all possible combinations of node neighbors, the run

time of our algorithm will increase with the number of nodes and the number of neighbors

of each node. Our GBM algorithm runs faster than our GBC algorithm as we utilize Mat-

lab’s implementation of n choose k combination function for GBM and not for GBC. This

happened because we tried to create a function which selected a determined number of

nodes based on depth or breadth first algorithms, which we manually implemented using

for loops. Therefore, our GBC implementation is less optimized than our GBM one.

(a) Radius of 3 units. (b) Radius of 4 units.

Figure 15: Non-zero elements of matrix W, communication weight matrix. Blue dots are
elements which it has in common with the respective

∑n
l=1 L

(l)TL(l) matrix, while red as-
terisks are distinct.

Finally, Figs. 15a and 15b show the non-zero elements of weighted communication matri-

ces W, equation (4.7), for their respective networks. The blue dots are elements it has in
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common with its
∑n

l=1 L
(l)TL(l) matrix, while red asterisks are distinct. The first network

has matrix W with 1727 non-zero elements of 13,225 total elements, from which 14 are

not part of its
∑n

l=1 L
(l)TL(l) matrix. For the second network, we have respectively 5318

non-zero elements of 30,276 total elements, with 4 distinct ones. These different elements

are related to barycentric coordinates with zero value.

5.2. Noisy distributed algorithm

In this section, we present simulated results for our proposed distributed GBM algorithm.

In order to do so, we generate 32 random networks with 14 nodes, i.e. 4 randomly chosen

anchors and 10 unknown nodes, similarly to what was done in Section 5.1.1. All these

nodes are distributed in a cube with side equal to 10 units. As we wanted to ensure that

every unknown node would be localized, we chose a range radius of 9 units for all networks.

All simulations were made with constant step size η(t) = 1.0×10−3, as there is no apparent

way to use dynamic step sizes with our distributed algorithms.

The added noise to each range measurement has Gaussian distribution with zero mean

and a tenth of the true distance between respective nodes for its standard deviation. This

approach means that farther nodes will have worse range measurements, which is a logical

assumption. We show in Section 5.3 via simulation and RMSE - Root Mean Square Error

values that choosing constant or proportional variance will not influence the behavior of

our distributed GBM algorithm.

Fig. 16 shows the RMSE for each network node location estimates. From those 32 net-

works, we selected networks 1, 20 and 21 to show different possible behaviors in Fig. 16b.

In this figure, the red continuous curve represents the RMSE values over iterations for a

network which converged to the desired solution (network 1), while the black continuous

curve represents one that did not converge within the number of simulated iterations (net-

work 21). This does not mean that our algorithm solution estimates for this network will

never converge, it will probably just take more iterations. Meanwhile, the blue dashed curve
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shows what happens when oscillation occurs (network 20).

In order to better illustrate our solutions for these 3 selected networks, we show in Figs.

17 the solution over time, which we call trajectories, for each one of these networks. The

network which arrived to its correct solution (network 1), the one that did not (network

21) and the one with oscillatory behavior (network 20) are drawn in Figs. 17a, 17b, 17c

and 17d. We specially draw two Figs. 17c and 17d in order to show that oscillations will

generate different trajectories for each node with large oscillation amplitudes near the node

which is the source of this behavior.

All simulated results for our proposed algorithms, be it centralized or distributed, are within

expected. We emphasize that the distributed GBM algorithm will iterate towards the de-

sired solution for as long as we allow it, despite possible oscillations that may occur. In

order to speed up our distributed algorithm, one may try to apply some modifications to

it like a variable optimal step size η(t) and reduction on the number of neighbor groups

chosen for each node.

(a) RMSE values for 29 of 32 networks. Different
colors indicate different networks.

(b) RMSE values for networks 1 (red continuous
line), 20 (blue dashed line) and 21 (black continu-
ous line).

Figure 16: Distributed GBM algorithm’s RMSE estimates values over iterations.
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(a) Network 1 at node 1. (b) Network 21 at node 1.

(c) Network 20 at node 10. (d) Network 20 at node 14.

Figure 17: Distributed GBM algorithm’s solution trajectories over iterations. Colored empty
circles mark ground truth locations for each node. Colored lines represent node estimates
over iterations. Each node is represented by a different color.

5.3. Centralized versus distributed algorithms

We carried out simulations comparing the performance of the centralized two-phase av-

eraging algorithm and the centralized gradient descent algorithm both explained in Sec.

4.2 respectively by equations (4.3) and (4.5) and the distributed online gradient descent in

Sec. 4.3. Fig. 18 shows again a randomly generated static network with 4 anchors and 10

unknown nodes, whose ground truth position lie on a cube with side length of 10 units. The

maximum measurement range of each node was ri = 8 units and random Gaussian noise
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with variance equal to either a tenth of the actual distance between nodes or the averaged

valued of these proportional variances were applied to the range measurements. Propor-

tional variances characterize that larger distances have larger noise, while a constant one

says that the sensors maintain the same amount of noise throughout its range. In this sim-

ulated case, our results had no significant discrepancies depending on these choices. The

node coordinate estimates computed by the first two algorithms over time are also shown,

as well as the estimates locally computed by the third algorithm in a randomly selected

node.

There are two fundamental differences between the centralized and distributed algorithms.

First, while the centralized algorithm has a single set of estimates for the unknown node

locations, the distributed algorithm maintains a different set of locations estimates for each

node in the network. Second, the amount of information available to each node in the

distributed algorithm is different compared to the centralized case and depends on the

network communication structure. These facts are clearly seen in the results. For example,

note that the two-phase averaging and the centralized gradient descent algorithms provide

estimate trajectories that remain close to each other, while some estimates obtained by

the distributed gradient descent algorithm follow very different trajectories. Moreover, it

is important to note that while the first two algorithms have the same initial estimate, the

same does not occur for the distributed algorithm, despite computing initial estimates in

similar ways. This behavior is due to the fact that the distributed algorithm uses only

the available neighboring first noisy range measurements to initialize its estimates. Both

centralized algorithms are able to provide better initial guesses for all node locations, while

the distributed algorithm provides poorer results for nodes with fewer neighbors or at a

further distance from the anchors.

Fig. 19 shows the Root Mean Square Error (RMSE) of the node coordinate estimates over

time for the three algorithms. Both centralized algorithms arrive at satisfactory location

estimates with less than 5000 iterations, while the same can not be said for the distributed
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Figure 18: Randomly generated sensor network with 10 unknown nodes and 4 anchors
and trajectories of the node coordinate estimates over time. Each color represents a dif-
ferent unknown node. The dotted, dot dashed and full lines beginning with {2,D,4} and
ending with {�,×,A} show the estimates over time obtained by the two-phase averaging
Sec. 4.1 in equation (4.3), centralized gradient descent Sec. 4.2 in equation (4.5) and dis-
tributed online gradient descent Sec. 4.3 algorithms, respectively. The ground truth node
locations are marked by circles, while the black tetrahedron shows the convex hull of the
anchor nodes. As each node in the distributed algorithm computes its own unknown node
location estimates, it is not possible to show the trajectories of the estimates of all nodes.
Instead, we show the trajectories of the estimated node locations computed by one ran-
domly chosen node.

gradient descent algorithm. It is clear that the initial estimates in the distributed case are

worse than the ones in the centralized algorithms, which contributes to its slower conver-

gence. Another important factor that impacts our distributed gradient descent method is the

choice of the learning rate, η(t). A small learning rate will provide a more stable but slower

convergence. So far, while we used an η(t) based on the Barzilai-Borwein method [67] for
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(a) Averaging process. (b) Centralized gradient descent.

(c) Centralized gradient descent with fixed step
size.

(d) Distributed gradient descent with proportional
noise variance.

(e) Distributed gradient descent with constant
noise variance.

Figure 19: Root Mean Square Error (RMSE) of the node coordinate estimates over time
for the two-phase averaging Sec. 4.1 in equation (4.3), the centralized gradient descent
with Barzilai-Borwein and fixed step sizes Sec. 4.2 in equation (4.5) and distributed online
gradient descent with proportional and constant variances Sec. 4.3 algorithms. As each
node in the distributed algorithm computes its own unknown node location estimates, we
present RMSE values for the estimates of each node on the same plot.

the centralized gradient descent algorithm with good results, we were not able to compute

η(t) online in a way that provides faster convergence rates while guaranteeing stability of

the process for different networks. Therefore, we used a small fixed η only for simulations

involving our distributed online gradient descent algorithm.
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CHAPTER 6 : EXPERIMENTS

We started our experiments in order to get a physical network of devices able to localize

themselves by acting either as anchors or unknown nodes. The idea was to have a com-

munication network mimicking our network model, where nodes directly share information

with its neighbors. Moreover, devices’ sensors should ideally be able to correctly and pre-

cisely range other devices, or at least, we should be able to create a model from which we

could estimate correct range measurements as independently as possible from external

influences, such as interference from other sensors and equipment, environment structure

and materials and even weather variations. Finally, we desire to form a localization system

which can be applied to other systems and devices, such as mobile robots. Off course,

this last point would require our localization theory to enable mobile nodes, which is one of

our possible research directions.

Despite not having complete experimental results because of sensor problems, we provide

in this chapter the fundamental knowledge we obtained and developed. We start by speci-

fying our requirements for both hardware and software in order for our localization problem

to work. Then, we provide all chosen tools specifying some of their characteristics and

how we applied them. Later, we provide our implemented algorithms in Appendix A.2.1.

Our main requirements for both software and hardware are:

• Communication network using mesh topology;

• Fast and simple communication setup and utilization;

• Range sensors should be able to measure its distance to other sensors, while being

measured by another sensor, or have a fast sensing time and ability to switch roles

online;

• Hardware able to run ROS - Robotic Operating System for better integration with

other robotic environments.
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There are three main hardware devices required for our purposes: small computer board

with wireless network, range sensor and power supply. For the power supply we chose a

generic rechargeable battery with standard USB connections, which allowed our system

to be mobile for the required period of time. Next, we discuss board and sensor options.

6.1. Base board options and operational system

In order to use ROS - Robotic Operating System, one requires our choice of board to run

newer versions of Ubuntu [69]. In our case we chose 14.04 LTS, as it was the newest

compatible version for ROS at the time. For the newest compatibility specification one

should consult ROS web page and its forums [70].

Nowadays, there are multiple possible small computer board systems, each with its own

variations, capabilities and peripherals. But, at the time when we searched for an embed-

ded development system with wireless communication, three systems were more common

and had possibilities to satisfy parts of our requirements: BeagleBoards [71], ODROID [72]

and RaspberryPi [73]. From these, we chose the Beagle Bone Green Wireless - BBGW

[74], Fig. 20, as it sported the newest version of Texas Instruments WiFi module, which

was theoretically able to connect to mesh networks. It seems to be one of the first entry

level development boards to come with a WiFi module integrated in it. Its main specifica-

tions are CPU AM3358 1GHz ARM Cortex-A8, WiFi + Bluetooth module WLinkTM8 both

from Texas Instruments, 512 MB of DDR3 RAM and 4GB of eMMC flash storage. It also

has the most common connection interfaces such as I2C, SPI, USART and USB.

This board already comes with a pre-installed Linux, but in our case, we found out when

we first booted the board that its available WiFi driver was old and did not have mesh

network capabilities. This fact made us search for ways to install a new driver which we

tought would be simple enough, but it wasn’t. In order to install the newest version of

Texas Instruments driver at the time, we were required to download, compile and install

the Linux kernel following instructions partially available at Texas Instruments website. We
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Figure 20: Beagle Bone Green Wireless compute board. It sports a mesh enabled WiFi
module.

say partially available because they only explain how to set up the driver package while one

is configuring the new version of Linux to be compiled and after compilation. So we had to

search for instructions on how to compile a Linux distribution for our ARM based hardware

platform. Mind you that it is required to have files specific for the board being utilized. All

these procedures are specified in Appendix A.2.1. As mentioned, they were developed

based on Robert Nelson wiki [75] which explains how to compile Linux for various different

development boards and Texas Instruments reference materials [76–79] which show us

how to modify pre and pos compilation parameters so that their WiFi module will work with

the newest driver.

We emphasize that once this procedure is done, on may simply re-install the compiled

version of Linux to as many Beagle Bone Green Wireless boards as required. In order

to do so, one must load the compiled kernel in a micro SD card and follow the different

boot procedures specified at BBGW manuals [71], so that the new kernel will be copied

to the board internal eMMC flash memory. Following which, one may either connect the

board via USB to a computer and access its kernel terminal via SSH, or one can use an

external monitor, keyboard and mouse directly connected to the board to proceed with the

installation of ROS and any other necessary software via the standard apt-get functionality
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of Linux.

Lastly, one needs to configure all boards to work and communicate to one another using

WiFi 802.11s the mesh standard for WiFi networks as see Appendix A.2.2. This configura-

tion entails setting up each individual board with its hostname, its collection of ip addresses

(USB virtual Ethernet port and WiFi), its mac addresses, a file with all of this information

from the entire network (acts as a lookup routing table) and a initialization script to carry

over all necessary procedures during booting process. This initialization entails bringing

up all network ports and attributing the designated ip addresses to each board, so these

files as individually created up to a certain point.

Next, we show our work around the two different sensors that we used unsuccessfully and

explain what were the problems we had while utilizing them.

6.2. Range sensors

We started our sensor development and tests using Kempke et al. Polypoint range sensor

[80] shown in Fig. 21. It is based on DecaWave radio that provides accurate time stamps

for TOA - Time of Arrival and TDOA - Time Difference of Arrival based algorithms. In a high

level view of the technology, one may explain TOA algorithms as based on the time of flight

necessary for the electromagnetic wave to propagate from one sensor to another, which

is later converted to distance by utilization of the waves velocity in a specific medium.

TDOA works differently and requires one sensor to capture the time difference between

two or more waves arriving at its sensing element, then with the previous knowledge of

the locations of the origin points of all received waves, it is able to compute its distance in

relation to them. Both technologies are affected by the existence or not of direct line of sight

and wave reflections which may lead to incorrect measurements. In order to compensate

for this, Kempke et al. compute an average of multiple measurements in the Polypoint

before providing a range measure. While this procedure allows them to provide better

estimates, it makes their overal system slower. Which may not be a problem for other
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Figure 21: Polypoint Tritag range sensor board. It may act as an anchor or an unknown by
switching its start-up sequence. In any case, the resulting ranging topology is a star with
the ranging node in the center and the anchor in the extremities.

platforms, but is a nuissance for our algorithm as we also average all range measurements

received.

We tested it inside a small enclosed lab space, with and without line of sight, Fig. 22 and

23 respectively, as can be seen in 23 the sensors may or may not communicate among

themselves when there are objects or structures occluding their line of sight. Moreover,

while such a problem did not occur in all of our line of sight experiments, we notice that

sensors may provide wrong measurements once in a while as seen in the histograms in

Fig. 22b where the red data is the ground truth range distance obtained from the installed

Vicon system and the blue data is obtained from the Polypoints. Notice that for this network

configuration, one may approximate the obtained distribution using four distinct Gaussian

distributions. This result makes us believe that there is either interference from wave re-

flections or from other sensors in the network.

While the previous problem is a nuisance, it can be dealt with by computing these Gaussian

distributions anch choosing the center of the one with highest peak value. On the other

hand, these sensors worked in a star topology, i.e. one sensor would range itself in relation

to all others, so while one sensor was ranging itself the others acted as anchors only
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providing reference points. In order to circumvent that, we tried to switch which sensor

would range at a given time, but the procedure required a hardware reset and different

start-up sequences each time we needed to switch from ranging to being ranged. This

behavior was extremely detrimental for our work as we require a mesh topology where

sensor should range themselves in brief periods of time so that one has the complete set

of range measurements to run our algorithm.

(a) Image showing anchors and
ranging device.

(b) Histogram plots showing the range measurements obtained
from each anchor. Blue stacks show the quantities of range
measurements per distance sets, while red lines indicate the
ground truth.

Figure 22: Polypoint experiment arrangement were one Polypoint ranges itself in relation
to all others which are acting as anchors.

(a) Image showing both anchors. (b) Image showing device wich is ranging itself in
relation to the anchors.

Figure 23: Polypoint experiment arrangement were only one anchor was recognized, while
the other wasn’t.
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(a) Environment view of experiment. (b) Detail of mounting for moving boards.

Figure 24: Capturing RSSI values every 1m from 1m to 39m in an open space with ap-
proximately 6m of width and 40m of length.

These problems motivated us to seek another sensor. After searching and studying exist-

ing sensors, we decided to start experimenting using the RSSI - Received Signal Strength

Indicator obtained from Beagle Bone Green Wireless board WiFi module. We knew from

literature that RSSI values also suffered from wave reflections and non line of sight prob-

lems, but there should be ways to circumvent those problems using sensor modeling in

different environments. Therefore, in order to capture enough data to construct our models

we searched for ways to constantly capture RSSI from each node of the network during a

long period of time. From our analysis of the IEEE 802.11 protocol standard, we notice that

each node of the wireless network would send beacon frames every 100 ms in order to in-

form other nodes of its presence in the network. Moreover, each of these frames is imbued

with the RSSI values specific for each pair of transmitter and receiver, which is exactly what

we were looking for. So instead of flooding our communication network with unnecessary

data packets, we could use the already periodic beacon frame for our purposes.

At first, we utilized the software package Wireshark in order to capture and analyze all

received packets in a given WiFi module. This showed us that not all data packets carry

RSSI values which reinforced our decision of utilizing only beacon frames in order to get

these values. Moreover, we started using Wireshark to parse and store the relevant infor-
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mation which consisted of the transmitter and receiver pair ip and mac addresses and the

respective RSSI value. But, Wireshark was too heavy of an application for our needs, so

we explored their software libraries and found the freely distributed Radiotap library [81].

This library in written in standard C computer language and enabled us to create our own

Ethernet packet capture and parsing software inside of the ROS environment, which was

exactly what we needed.
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Figure 25: Experimental results from measuring RSSI values over distance. We show the
inverse, Distance over RSSI, as this better represent our application, where we obtain an
RSSI value and estimate a distance. Notice that in general the curve is well defined, but
for each element there is large variation.

Using our developed data capture and the rosbag packages, we tested this setup under
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two main conditions: one was an approximately rectangular open space with 6 m of width

and 40 m of length, the other was inside the previously used laboratory. In the former, we

used four Beagle Bone Green Wireless boards, two fixed at a static base and connected

to a computer via USB and two connected to mobile base. By moving the mobile base

one meter at each iteration, we were able to gather the data shown in Fig. 25. If one

looks at the plotted data with x-axis and y-axis respectively equal to inter-node distance

and RSSI values, one may believe that the gathered data is actually quite good, as one can

approximately fit it to create a model easily. But, one must pay attention that we actually

want the inverse function, from RSSI values to range measurements, which is actually

shown in Fig. 25.

At first and based on the results shown in Fig. 25, we decided to further develop our

application towards this type of sensor. We had already tought about fitting RSSI to some

model, which would possibly even required one fitting for each pair of devices, something

not optimal, but not so different from the previous Polypoint which needed to be calibrated

individually. But further tests in enclosed space, the same lab were we experimented on

Polypoint, showed that RSSI values largely vary because of, for example, line of sight

obstruction by different materials, board reset, board altitude (its distance in relation to the

floor and the ceiling) and radio interference. These behaviors showed us that RSSI values

may be better applied for open environments with few obstructions, which was not our main

target as we wanted to develop a physical experimental set up for indoor localization.

After these experiments, we sought a new sensor but at the time, most ranging sensors had

either the same problems as our tested devices, or worked under more severe limitations

such as small distances and only point-to-point ranging capability. Further investigation on

newer sensors or different technologies is needed for future research.
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CHAPTER 7 : CONCLUSION

We started this work with the intention to provide a complete methodology and physi-

cal experimental setup to solve the problem of range-only localization in wireless sensor

networks. We were able to realize a considerable portion of our intentions, which we pre-

sented in this dissertation. From a theoretical perspective, we presented a closed-form

expression for computing barycentric coordinates in arbitrary d-dimensional node configu-

rations, for which we utilized Cayley-Menger bi-determinants. These bi-determinants are a

more uncommon form of Cayley-Menger determinants which is more widely used to solve

localization problems via barycentric networks as previously explained. Our novel applica-

tion of bi-determinants largely simplified the existing theory for computation of barycentric

coordinates on arbitrary node arrangements, moreover we were also able to extend these

results to the unconstrained d-dimensional case.

The previous proposed solution for barycentric coordinate computation allowed we to de-

velop a centralized algorithm capable of handling noiseless range-measurements to solve

our problem in, what can be called, a single step. From gathering noiseless range mea-

surements, one compute all possible barycentric coordinates for each node, aggregate

them in a over-determined linear system which we finally solve using a least-squares ap-

proach. In accordance to network topology, this method either provides the correct solu-

tion, or it is not able to do so. We view this strict binary behavior as a good approach, as

one may not be misled by bad estimates; and in the case of a lack of solution, one may

investigate its network to exclude unknown nodes that are unlocalizable by our theory, the

ones that do not have sufficient amount of neighbors or are in a sub-graph of the network

which may be segregated by cutting at most d+ 1 edges.

From the existing theory, we identified possible methods to handle noisy range-measurements.

Our first approach was to use averaging methods following the Law of Large Numbers from

probability theory to obtain range averages over time, or iterations, that have less or even
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almost no noise after a certain amount of iterations occur. With these new averaged mea-

surements, we could apply our centralized method at each iteration looking for its output

which unfortunately presented with oscillating amount of noise, at one iteration it would

have less noise then more noise and vice versa. We again applied an average process to

subside this behavior resulting in better solutions over time for the centralized algorithm.

Our last theoretical and simulated result is related to the application of a distributed opti-

mization algorithm to our proposed centralized method. Through its application, we devel-

oped a distributed gradient descent algorithm able to handle noisy range measurements

and localize all unknown nodes in all nodes of the network with only local, 1-hop, commu-

nication and 2-hop information. A node compute its estimate and archive it and its ranging

data, which it exchanges with its neighbors, so one node also has some information about

a node 2-hops away.

We provided numerical results from simulated networks in both environments for both cen-

tralized and distributed algorithms. We also utilize this results to compare with other algo-

rithms. Finally, we move on to our construction of the building blocks for future physical ex-

periments. Unfortunately, given some sensor constraints such as large measurement vari-

ation over environmental changes, problems with non-line of sight, wrong ranging topology;

we were not able to conclude our experiments. Despite these problems, we still provide

solutions for a future attempt with new sensors which are the initial setup and configuration

of chosen base boards from kernel download and compilation to wireless communication

model driver configuration and IEEE 802.11 packets sniffing using ROS.

7.1. Future work directions

Future work should at first be focused on trade-offs between computational efficiency and

localization accuracy by analyzing the effect of the number of neighbor subsets of size

d+ 1 used for barycentric coordinate computations. As these susbsets are composed via

combination algorithms, larger networks and networks with high average node degree may
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not be localized by our algorithm in a timely manner. On the other hand, larger number of

subsets will increase the probability of the correct localization of the network. Therefore,

researching an algorithm capable of ensuring localizability while using the least amount of

subsets is essential for the deployment of this algorithm for large networks.

As previously mentioned, mobile and static heterogeneous networks are becoming in-

creasingly common. Meanwhile, our algorithm only provides a solution for static networks.

While there are other solutions utilizing the constraint of nodes must be inside the convex-

hull of the anchors, there are no current barycentric coordinate based algorithm for mobile

networks with arbitrary anchor placement. This may be due to complications that arise

from allowing the presence of values outside the range [0, 1] in the barycentric coordinates

(outside the convex-hull) which disallow the use of Markov Processes for its investigations.

Lastly, one may also investigate the possibility of utilizing mixed bearing and range mea-

surements with barycentric coordinates. This approach may provide novel methods and

theories as well as allow the utilization of mixed sensor types, enabling more measure-

ments in the same amount of time, diminishing the noise present in the system.
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APPENDIX

A.1. Cayley-Menger Bi-determinant proof

Following the approach given by [65], we begin by defining matrices P = [p0,p1, · · · ,pd]

and Q = [q0,q1, · · ·qd] ∈ Rd×d+1, as

VP =

 P
1T

 , and VQ =

Q
1T

,

where 1 is the column vector of all ones with the appropriate dimension.

The signed volume of the sets of points P and Q, specified by their coordinates given by

the columns of matrices P and Q, can be found through the determinant of VP and VQ

respectively: ∣∣∣∣VP ∣∣∣∣ = (d!)Vol(P) (A.1)

∣∣∣∣VQ∣∣∣∣ = (d!)Vol(Q) (A.2)

Next, we can apply a sequence of operations without modifying the value of the determi-

nants of VP and VQ.

∣∣∣∣VP ∣∣∣∣ =
∣∣∣∣∣∣∣
P

1T

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣
P 0

1T 0

0T 1

∣∣∣∣∣∣∣∣∣∣
(A.3)

∣∣∣∣VQ∣∣∣∣ =
∣∣∣∣∣∣∣
Q

1T

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣
Q 0

1T 0

0T 1

∣∣∣∣∣∣∣∣∣∣
(A.4)

For the determinant of VP , we take its transpose and interchange its last two columns and

70



last two rows, obtaining:

∣∣∣∣V T
P

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[p0]1 [p0]2 . . . [p0]d 0 1

[p1]1 [p1]2 . . . [p1]d 0 1

...
...

. . .
...

...
...

[pd−1]1 [pd−1]2 . . . [pd−1]d 0 1

0 0 . . . 0 1 0

[pd]1 [pd]2 . . . [pd]d 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.5)

Multiplying the previous to the determinant of VQ gives

∣∣∣∣V T
P VQ

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pT
0 q0 pT

0 q1 . . . pT
0 qd 1

pT
1 q0 pT

1 q1 . . . pT
1 qd 1

...
...

. . .
...

...

pT
d−1q0 pT

d−1q1 . . . pT
d−1qd 1

1 1 . . . 1 0

pT
d q0 pT

d q1 . . . pT
d qd 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.6)

Interchanging the last two rows returns:

∣∣∣∣V T
P VQ

∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pT
0 q0 pT

0 q1 . . . pT
0 qd 1

pT
1 q0 pT

1 q1 . . . pT
1 qd 1

...
...

. . .
...

...

pT
d q0 pT

d q1 . . . pT
d qd 1

1 1 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣
P TQ 1

1T 0

∣∣∣∣∣∣∣
= −

∣∣∣∣M ∣∣∣∣

(A.7)
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Let C be the matrix inside the Cayley-Menger bi-determinant. Using the fact that d(pi,qj)
2 =

||pi − qj ||2 = (pi − qj)
T (pi − qj), we write

∣∣∣∣C∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 . . . 1

1 pT
0 p0 + qT

0 q0 − 2pT
0 q0 . . . pT

0 p0 + qT
d qd − 2pT

0 qd

1 pT
1 p1 + qT

0 q0 − 2pT
1 q0 . . . pT

1 p1 + qT
d qd − 2pT

1 qd

...
...

. . .
...

1 pT
d pd + qT

0 q0 − 2pT
d q0 . . . pT

d pd + qT
d qd − 2pT

d qd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.8)

Applying row and column operations

Rowi ← Rowi − pT
i−2pi−2Row1

Colj ← Colj − qT
j−2qj−2Col1

for 2 ≤ i, j ≤ d+ 2, result in:

∣∣∣∣C∣∣∣∣ = −1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 . . . −2

1 −2pT
0 q0 . . . −2pT

0 qd

1 −2pT
1 q0 . . . −2pT

1 qd

...
...

. . .
...

1 −2pT
d q0 . . . −2pT

d qd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.9)

Extracting the repeated scalars and noticing that an even number of permutations is re-

quired, one can use equation (A.7), so that

∣∣∣∣C∣∣∣∣ = − (−2)d+1

2

∣∣∣∣M ∣∣∣∣
= (−1)d+12d

∣∣∣∣V T
P VQ

∣∣∣∣ (A.10)

72



Or, as we defined before, ∣∣∣∣V T
P VQ

∣∣∣∣ = 2
(
−1

2

)d+1
∣∣∣∣C∣∣∣∣

= D(p0, . . . ,pd;q0, . . . ,qd)

(A.11)

Now, using (A.1) and (A.2), we can see that

D(P;Q) = (d!)Vol(P) · (d!)Vol(Q). (A.12)

By taking the sets Q = P one finds that

D(P) = D(P;P)

= (d!)2Vol(P)2.
(A.13)

Therefore, the Cayley-Menger Bi-determinant is proportional to the product of the signed

volumes of the sets of points as previously defined.

A.2. BeagleBoneGreen-Wireless setup documentation

A.2.1. Initialization script and basic Linux configuration

So far, we could not configure a persistent rule to bring our mesh network interface up au-

tomatically at boot. We also found that disabling the wlan0 pre-configured while compiling

Linux, would disable the wireless card and further iw commands would not work.

We want to find how and where the initialization of the wireless wlan0 interface is brought

up and make it similar for our mesh0 interface, but due to time constraints we decided to

postpone this task.

At this point, the system is working quite reliably with the following configurations and

initialization script.
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/etc/hostname

BBGWyyyyyyxx

This file only has the defined hostname for each of the boards. We choose to call each

board by the BBGW string followed by its serial number yyyyyyxx, which should be a

unique name for networks formed only by BeagleBoneGreen-Wireless boards.

/etc/hosts

127.0.0.1 localhost

127.0.1.1 BBGW160537ZZ bbgwZZ

192.168.100.XX BBGW160508XX bbgwXX

192.168.100.YY BBGW160519YY bbgwYY

192.168.100.WW BBGW160516WW bbgwWW

192.168.100.WW BBGW160537ZZ bbgwZZ

192.168.XX.2 BBGW160508XX bbgwXX

192.168.YY.2 BBGW160519YY bbgwYY

192.168.WW.2 BBGW160516WW bbgwWW

192.168.ZZ.2 BBGW160537ZZ bbgwZZ

192.168.XX.1 tecchio\* tecchio

192.168.YY.1 tecchio\* tecchio

192.168.WW.1 tecchio\* tecchio

192.168.ZZ.1 tecchio\* tecchio

# The following lines are desirable for IPv6 capable hosts
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::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Here, we define the hosts table for our entire usb0 and mesh0 networks. First column is

the IP addresses, second is the device name, and further columns are all possible aliases

for each device.

BBG-W’s names were defined as BBGWyyyyyyxx where yyyyyyxx is the serial number of

each board.

Aliases were created to shorten names, and simplify their use. They consist of bbgw string

plus xx, the last two digits of the serial number.

This way to define aliases and networks were possible due to all used boards having

different last two digits for their serial numbers. It is an easy way for human operators to

identify and connect to the correct board, as their serial numbers are on the boards.

A more general static network can be enabled by using sequential numbers from 1 to 254,

which does not create any problems or disadvantages given that all boards have all correct

addresses, names and aliases.

/etc/network/interfaces

# interfaces(5) file used by ifup(8) and ifdown(8)

# Include files from /etc/network/interfaces.d:

source-directory /etc/network/interfaces.d

auto lo

iface lo inet loopback
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#auto eth0

#iface eth0 inet dhcp

# Ethernet/RNDIS gadget (g_ether)

# ... or on host side, usbnet and random hwaddr

iface usb0 inet static

address 192.168.XX.2

netmask 255.255.255.252

network 192.168.XX.0

gateway 192.168.XX.1

auto wlan0

iface wlan0 inet dhcp

pre-up wpa_supplicant -B -Dnl80211 -iwlan0 \

-c/home/ubuntu/wpa_supplicant.conf

post-down killall -q wpa_supplicant

File explanation:

loopback Standard loopback initialization.

eth0 There is no cable Ethernet interface in this board, but it can be added as an external

Capeboard module. That is why it is only commented out.

usb0 USB virtual Ethernet port is created at boot, similar to other BeagleBone boards.

We modified the standard addresses here so that we can connect multiple boards

to the same computer. Each board creates a subnet 192.168.XX.0, where XX is the

last two numbers of its serial number. This subnet has only two possible addresses

192.168.XX.1, computer host and gateway, and 192.168.XX.2, the board itself.

wlan0 We use a pretty standard configuration here with wpa supplicant. For more infor-
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mation consult our wpa supplicant.conf file. Ubuntu usually use a network manager,

which we don’t need.

We want to use a similar configuration for our mesh0 interface using a specific file for it

mesh wpa supplicant.conf. However, so far, we were not able to set it in a correct way. We

did find some new resources from Texas Instruments with script examples to configure it,

after we tried to do this. As it is working for now, we will try this later on.

˜/wpa supplicant.conf

Our basic wpa supplicant.conf file used while testing.

network={

ssid="#####"

scan_ssid=1

proto=WPA

key_mgmt=WPA-PSK

psk="**********"

}

/etc/init.d/iw mesh init.sh

The following file works, but performs no tests before issuing commands nor check if such

commands were correctly executed with desired outcomes. It is positioned with other root

initialization scripts. Maybe, it should run on user local init scripts instead.

Ubuntu recommends the use of Upstart [82] . We briefly tried to use it unsuccessfully.

This file adds an interface called mesh0 of type mesh with mesh id localizationmesh to the

physical device phy0, TI’s WL1835 wireless module. It sets mesh0 interface channel to 10.

Which is a standard 2.4 GHz 20 MHz channel (Non HT). According to TI’s documentation
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for this wireless module, all wireless interfaces should run on the same channel to minimize

latency, as the module does not need to switch frequencies each time a new packet from

a different channel is queued or it opens for packet reception.

Later, it configures IP address, netmask and broadcast address for mesh0 interface. Again,

the subnet is configured as 192.168.100.0, while each board uses its configured IP address

listed on /etc/hosts for this subnet.

Finally, it adds a monitor interface, mon0, to mesh0 interface and brings it up.

#!/bin/bash

sudo iw phy0 interface add mesh0 type mp mesh_id localizationmesh

sudo iw mesh0 set channel 10

sudo ifconfig mesh0 192.168.100.XX netmask 255.255.255.0 \

broadcast 192.168.100.255

sudo iw mesh0 interface add mon0 type monitor

sudo ifconfig mon0 up

Current drawbacks and future work

The major drawback of our current configuration is security. We do not have an authentica-

tion method nor do we have any mac address filter. Therefore, our mesh network is open,

any device that knows the subnet configuration and SSID can enter this network.

We also did not define a default gateway for our mesh network, so devices that are not

simultaneously connected to another access point (AP), do not have an Internet connec-

tion. One way to correct these is to configure one node as a gateway and dhcp server

for other devices connected on our mesh. We intend to follow some example scripts from

Texas Instruments in order to set a dhcp server using isc-dhcp-server, wpa supplicant,

SAE authentication and bridge.
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Another point we would like to correct is related to MAC addresses. Each board has a

MAC address and serial number printed on it, but they seem to not be available in any

physical memory onboard. Meanwhile, Texas Instruments hard codes a MAC address in

its modules. The interest thing is that neither are used by the compiled Linux kernel for all

available interfaces.

We investigated a little about setting a mac address in Linux and it is possible. Though we

did not try to do it, as we have two wireless interfaces and one board manufacturer given

mac address per board. Another point to define is related to make such mac addresses

automatically configured in each board at OS install or boot.

Finally, we desire to build a script that automatically identifies each board and sets all

configuration files and initialization scripts defined on this section.

A.2.2. Building Linux kernel and TI’s driver from repo

We follow Robert Nelson’s eewiki.net [75] closely for building our BBGW Linux kernel.

After installing the compiled kernel and Root File System on a micro SD card, we follow

TI’s wikis WiLink8 Linux Getting Started Guide [76] , WL18xx WiFi Build Process [78] ,

WL18xx System Build Scripts [79] and WL18xx Platform Integration Guide [77] to compile

and install the drivers on the micro SD card.

We use the path ~/code/bbgw as the root path for all operations in our host computer used

to build these files. The host computer uses Ubuntu 14.04 LTS.

Linux kernel and Root File System

First go to our root path:

mkdir ~/code/bbgw

cd ~/code/bbgw

79



ARM Cross Compiler: GCC

Pre-built x64 version of Linaro GCC for generic Linux:

wget -c https://releases.linaro.org/components/toolchain/binaries/\

5.3-2016.02/arm-linux-gnueabihf/gcc-linaro-5.3-2016.02-x86_64_arm-\

linux-gnueabihf.tar.xz

tar xf gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf.tar.xz

export CC=‘pwd‘/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/\

bin/arm-linux-gnueabihf-

Test:

${CC}gcc --version

arm-linux-gnueabihf-gcc (Linaro GCC 5.3-2016.02) 5.3.1 20160113

Copyright (C) 2015 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS \

FOR A PARTICULAR PURPOSE.

Bootloader: U-Boot

Das U-Boot - the Universal Boot Loader [83]:

git clone https://github.com/u-boot/u-boot

cd u-boot/

git checkout v2016.03 -b tmp

eewiki.net patches [84]:

cd u-boot
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wget -c https://rcn-ee.com/repos/git/u-boot-patches/v2016.03/0001\

-am335x_evm-uEnv.txt-bootz-n-fixes.patch

patch -p1 < 0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch

Still at /u-boot configure and compile:

make ARCH=arm CROSS_COMPILE=${CC} distclean

make ARCH=arm CROSS_COMPILE=${CC} am335x_evm_defconfig

make ARCH=arm CROSS_COMPILE=${CC}

Linux kernel

The given script will build the kernel, modules, device trees binaries and copy them to the

deploy directory. Downloading source files for am33x-v4.6, current stable release:

cd ~/code/bbgw

git clone https://github.com/RobertCNelson/bb-kernel

cd bb-kernel/

git checkout origin/am33x-v4.6 -b tmp

Build:

./build_kernel.sh

At this point, we will be directed to a configuration set up in order to choose which modules

will be built. We need to check WL18xx Platform Integration Guide [77].

First make sure that CFG80211 and MAC80211 are not built at all.:

CONFIG_CFG80211=N

CONFIG_MAC80211=N
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We also need to verify that all of the following options are enabled in the .config file.:

#

# Network testing

#

# MAC 80211

CONFIG_WLAN=y

CONFIG_WIRELESS=y

CONFIG_WIRELESS_EXT=y

CONFIG_WL12XX_PLATFORM_DATA=y

CONFIG_KEYS=y

CONFIG_SECURITY=y

CONFIG_CRYPTO=y

CONFIG_CRYPTO_ARC4=y

CONFIG_CRYPTO_ECB=y

CONFIG_CRYPTO_AES=y

CONFIG_CRYPTO_MICHAEL_MIC=y

CONFIG_CRYPTO_RNG=y

CONFIG_CRYPTO_AEAD=y

CONFIG_CRYPTO_CCM=y

CONFIG_CRYPTO_GCM=y

CONFIG_RFKILL=y

CONFIG_REGULATOR_FIXED_VOLTAGE=y

CONFIG_CRC7=y
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# The following are needed for soft AP

CONFIG_NETFILTER=y

CONFIG_NETFILTER_ADVANCED=y

CONFIG_NF_CONNTRACK=y

CONFIG_NETFILTER_XTABLES=y

CONFIG_NF_DEFRAG_IPV4=y

CONFIG_NF_CONNTRACK_IPV4=y

CONFIG_NF_CONNTRACK_PROC_COMPAT=y

CONFIG_IP_NF_IPTABLES=y

CONFIG_IP_NF_FILTER=y

CONFIG_IP_NF_TARGET_LOG=y

CONFIG_NF_NAT=y

CONFIG_NF_NAT_NEEDED=y

CONFIG_IP_NF_TARGET_MASQUERADE=y

CONFIG_INPUT_UINPUT=y

# Enable Ethernet-WLAN Bridge

CONFIG_NETFILTER=y

CONFIG_NETFILTER_ADVANCED=y

CONFIG_BRIDGE_NETFILTER=y

CONFIG_STP=y

CONFIG_BRIDGE=y

CONFIG_BRIDGE_IGMP_SNOOPING=y

CONFIG_LLC=y

CONFIG_INPUT_UINPUT=y

CONFIG_HAS_IOMEM=y
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CONFIG_HAS_IOPORT=y

CONFIG_HAS_DMA=y

CONFIG_NLATTR=y

CONFIG_AVERAGE=y

While choosing modules to build, we tried to select all these options as needed. We

also enable options related to Bluetooth. Texas Intruments provide a script named ver-

ify kernel config.sh at their System Build Scripts [79] which is also found at their repo [78].

Verify if all settings are correct:

verify_kernel_config.sh ~/code/bbgw/bb-kernel

Not sure if we used any of the specific options for it, like BT HCI. We actually did not follow

any of the other configurations at WL18xx Platform Integration Guide [77].

As we are using a script to build the kernel, we actually built an entire kernel by choosing

manually the options and had to rebuilt it again after running the verify kernel config.sh.

Root File System

As we are going to run ROS, we chose to built Ubuntu 16.04 LTS Root File System. Its

standard login:password is ubuntu:temppwd.

Downloading:

cd ~/code/bbgw

wget -c https://rcn-ee.com/rootfs/eewiki/minfs/ubuntu-16.04-minimal-armhf

-2016-06-06.tar.xz

Verifying:

sha256sum ubuntu-16.04-minimal-armhf-2016-06-06.tar.xz
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7fa17e1ceaf3778080f834d51dba5bfd1b0cfb6ccb2f979782dedfd8379db4b3

ubuntu-16.04-minimal-armhf-2016-06-06.tar.xz

Extracting:

tar xf ubuntu-16.04-minimal-armhf-2016-06-06.tar.xz

Setup micro SD card

With micro SD card inserted, use lsblk to determine its id, it should be something similar

to /dev/mmcblk0. Then:

export DISK=/dev/mmcblk0

Erase partition table/labels on microSD card:

sudo dd if=/dev/zero of=${DISK} bs=1M count=10

Install Bootloader:

sudo dd if=./u-boot/MLO of=${DISK} count=1 seek=1 bs=128k

sudo dd if=./u-boot/u-boot.img of=${DISK} count=2 seek=1 bs=384k

Create new partition, checking sfdisk version:

sudo sfdisk --version

If version >= 2.26.x:

sudo sfdisk ${DISK} <<-__EOF__

1M,,L,*

__EOF__

Else:
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sudo sfdisk --unit M ${DISK} <<-__EOF__

1,,L,*

__EOF__

Format new partition, checking mkfs.ext4 version:

sudo mkfs.ext4 -V

If version >= 1.43:

for: DISK=/dev/mmcblk0

sudo mkfs.ext4 -L rootfs -O ^metadata_csum,^64bit ${DISK}p1

for: DISK=/dev/sdX

sudo mkfs.ext4 -L rootfs -O ^metadata_csum,^64bit ${DISK}1

Else:

for: DISK=/dev/mmcblk0

sudo mkfs.ext4 -L rootfs ${DISK}p1

for: DISK=/dev/sdX

sudo mkfs.ext4 -L rootfs ${DISK}1

Mounting partition:

sudo mkdir -p /media/rootfs/

for: DISK=/dev/mmcblk0

sudo mount ${DISK}p1 /media/rootfs/

for: DISK=/dev/sdX
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sudo mount ${DISK}1 /media/rootfs/

Backing up the Bootloader:

sudo mkdir -p /media/rootfs/opt/backup/uboot/

sudo cp -v ./u-boot/MLO /media/rootfs/opt/backup/uboot/

sudo cp -v ./u-boot/u-boot.img /media/rootfs/opt/backup/uboot/

Fix for possible older bootloader in the eMMC:

sudo nano /media/rootfs/uEnv.text

and copy the following inside it:

##This will work with: Angstrom’s 2013.06.20 u-boot.

loadaddr=0x82000000

fdtaddr=0x88000000

rdaddr=0x88080000

initrd_high=0xffffffff

fdt_high=0xffffffff

#for single partitions:

mmcroot=/dev/mmcblk0p1

loadximage=load mmc 0:1 ${loadaddr} /boot/vmlinuz-${uname_r}

loadxfdt=load mmc 0:1 ${fdtaddr} /boot/dtbs/${uname_r}/${fdtfile}

loadxrd=load mmc 0:1 ${rdaddr} /boot/initrd.img-${uname_r}; setenv\

rdsize ${filesize}

loaduEnvtxt=load mmc 0:1 ${loadaddr} /boot/uEnv.txt ; env import -t\

87



${loadaddr} ${filesize};

loadall=run loaduEnvtxt; run loadximage; run loadxfdt;

mmcargs=setenv bootargs console=tty0 console=${console} ${optargs}\

${cape_disable} ${cape_enable} root=${mmcroot} rootfstype=\

${mmcrootfstype}${cmdline}

uenvcmd=run loadall; run mmcargs; bootz ${loadaddr} - ${fdtaddr};

Installing Kernel and Root File System

The build scripts will output the kernel version=4.X.Y-Z which we need to export as a vari-

able. The output is like:

-----------------------------

Script Complete

eewiki.net: [user@localhost:~$ export kernel_version=4.X.Y-Z]

-----------------------------

It should be kernel version=4.6.3-bone3. So:

export kernel_version=4.X.Y-Z

Copy the Root File System:

sudo tar xfvp ./*-*-*-armhf-*/armhf-rootfs-*.tar -C /media/rootfs/

Set uname r in /boot/uEnv.txt:

sudo sh -c "echo ’uname_r=${kernel_version}’ >> /media/rootfs/\

boot/uEnv.txt"

Copy kernel image:

88



sudo cp -v ./bb-kernel/deploy/${kernel_version}.zImage \

/media/rootfs/boot/vmlinuz-${kernel_version}

Copy kernel device tree binaries:

sudo mkdir -p /media/rootfs/boot/dtbs/${kernel_version}/

sudo tar xfv ./bb-kernel/deploy/${kernel_version}-dtbs.tar.gz -C \

/media/rootfs/boot/dtbs/${kernel_version}/

Copy kernel modules:

sudo tar xfv ./bb-kernel/deploy/${kernel_version}-modules.tar.gz -C\

/media/rootfs/

File Systems Table:

sudo sh -c "echo ’/dev/mmcblk0p1 / auto errors=remount-ro 0 1’

>> /media/rootfs/etc/fstab"

Network configuration

To run the Ethernet over USB:

mkdir ~/code/bbgw/usb_ethernet

cd ~/code/bbgw/usb_ethernet

wget -c https://raw.github.com/RobertCNelson/tools/master/scripts/\

beaglebone-black-g-ether-load.sh

chmod +x beaglebone-black-g-ether-load.sh

Copy the file to the micro SD:

mkdir /media/rootfs/home/ubuntu/usb_ethernet

cp beaglebone-black-g-ether-load.sh /media/rootfs/home/ubuntu/usb_ethernet/.
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While running the built Linux:

sudo apt-get install udhcpd

cd ~/usb_ethernet

sudo ./beaglebone-black-g-ether-load.sh

Copying micro SD files to eMMC

Downloading the script:

cd ~/code/bbgw

mkdir uSD_eMMC

cd uSD_eMMC

wget https://raw.githubusercontent.com/RobertCNelson/boot-scripts/\

master/tools/eMMC/bbb-eMMC-flasher-eewiki-ext4.sh

chmod +x bbb-eMMC-flasher-eewiki-ext4.sh

Then, copy it to the micro SD:

mkdir /media/rootfs/home/ubuntu/eMMC

cp bbb-eMMC-flasher-eewiki-ext4.sh /media/rootfs/home/ubuntu/eMMC/.

Later, when we need to copy the contents, run:

cd ~/eMMC

sudo /bin/bash ./bbb-eMMC-flasher-eewiki-ext4.sh

TI’s wireless WL18xx module driver

Remove the micro SD card

sync
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sudo umount /media/rootfs

A.2.3. Capturing RSSI values

We investigate possible ways for capturing RSSI values:

1. Obtaining it directly from TI’s driver

2. Using iw

3. Using a low level capture library for C or Python like PCAP

4. Using an Ethernet packet capture tool like Wireshark, Tshark or TCPDump with con-

sole or file output

We could not find how to extract this data directly from wireless card driver. This should be

possible, but maybe not advisable. iw, Ubuntu’s wireless control software, is not built for

this purpose. It has the capability to output RSSI average values, but it is not fast enough

nor reliable for logging purposes.

We believe that the best long-term approach is to use a low level library like libpcap in

order to capture RSSI values directly from each packet in our future ROS package. C/C++

code should be faster for this purpose.

However, due to implementation time constraints to obtain experimental data for our first

test, we decided to use TCPDump. Wireshark requires a graphical interface which is not

available. Tshark, Wireshark’s console version, should work as well, but was not tested.

Installing TCPDump

To install it run:

sudo apt-get install tcpdump
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Configuring TCPDump

In order to capture an interface with TCPDump, we either use sudo or do the following

steps, based on Peter Nixon’s post at [85]: Creating a specific group for Net administration:

sudo groupadd pcap

sudo usermod -a -G pcap ubuntu

Changing tcpdump group and its permissions:

sudo chgrp pcap /usr/sbin/tcpdump

sudo chmod 750 /usr/sbin/tcpdump

Giving tcpdump net administration rights:

sudo setcap cap\_net\_raw,cap\_net\_admin=eip /usr/sbin/tcpdump

Rebooting the system:

sudo reboot now

Checking if the configuration is up:

getcap /usr/sbin/tcpdump

If the output is equal to:

/usr/sbin/tcpdump = cap_net_admin,cap_net_raw+eip

Then, it is OK and tcpdump should work without sudo. In one of the boards it did not keep

the setcap setting, so we repeated the previous steps and it worked at some point. We

are not sure why it would not work.

At this point, if we try running ROS’ roscore, we get a library linking error. To solve it, do

the following:
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sudo ldconfig /opt/ros/indigo/lib

Creating a monitor interface

Using iw, we can create a monitor interface which will copy all traffic from its source inter-

face, so that a capture program can be applied to it without major interference:

sudo iw dev mesh0 interface add mon0 type monitor

sudo ifconfig mon0 up

Where mesh0 is the name of the source interface, in our case it refers to our Wireless

802.11s interface, and mon0 is the name of our new monitor interface. For more informa-

tion, consult iw’s man []. page We do this step automatically during Linux initialization as

explained in A.2.1.

Using TCPDump

Our idea is to constantly capture packets with RSSI values. After some experimentation,

we observed that management beacon packets were broadcasted from each board at

regular intervals, around 100 ms, and had RSSI values attached.

Therefore, we created a sequence of filters to capture beacon packets and save the con-

sole output to a .txt file:

tcpdump -imon0 -#en -tttt -Zubuntu type mgt subtype beacon and ether host\

"00:00:00:00:00:00 or 00:00:00:00:00:00 or 00:00:00:00:00:00 or \

00:00:00:00:00:00" -Qin -c150 > ~/tests/rssi/\

tcpdump_beacon_192.168.100.IP_test_XX.txt

Used filters:

-imon0 Selects the monitor interface mon0
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-# Prints captured packet numbers

-e Prints lower level information

-n Supress search for hostnames and ip’s

-tttt Prints date and time

-Zubuntu After capturing the interface, releases admin rights and switch to user ubuntu

-Qin Selects inbound packets only

-c150 Captures 150 packets, around 50 packets from each other board in the experiment

type mgt Selects management packets

subtype beacon Selects beacon packets

ether host Specifies mac addresses from host boards

For more information regarding TCPDump options and pcap filters consult tcpdump man

pages [86] and pcap filters man pages [87].
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