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ABSTRACT

MEASURING AND SECURING CRYPTOGRAPHIC DEPLOYMENTS

Luke Valenta

Nadia Heninger

This dissertation examines security vulnerabilities that arise due to communication failures

and incentive mismatches along the path from cryptographic algorithm design to eventual

deployment. I present six case studies demonstrating vulnerabilities in real-world crypto-

graphic deployments. I also provide a framework with which to analyze the root cause of

cryptographic vulnerabilities by characterizing them as failures in four key stages of the

deployment process: algorithm design and cryptanalysis, standardization, implementation,

and endpoint deployment. Each stage of this process is error-prone and influenced by vari-

ous external factors, the incentives of which are not always aligned with security. I validate

the framework by applying it to the six presented case studies, tracing each vulnerability

back to communication failures or incentive mismatches in the deployment process.

To curate these case studies, I develop novel techniques to measure both existing and new

cryptographic attacks, and demonstrate the widespread impact of these attacks on real-

world systems through measurement and cryptanalysis. While I do not claim that all

cryptographic vulnerabilities can be described with this framework, I present a non-trivial

(in fact substantial) number of case studies demonstrating that this framework characterizes

the root cause of failures in a diverse set of cryptographic deployments.
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CHAPTER 1 : Introduction

Billions of users every day rely on cryptographic protocols like Transport Layer Security

(TLS), Secure Shell (SSH), and Internet Protocol Security (IPsec) for communication se-

curity. The security of these protocols relies both on their theoretical cryptographic under-

pinnings and their concrete instantiations. Over the years, cryptographic primitives have

evolved to adhere to stronger notions of security as the field advances. However, despite

decades of innovation and constant improvement to the state of the art, the cryptographic

security of real-world systems is not a solved problem. Cryptographic primitives, standards,

and implementations have failed repeatedly over the years, leaving a trail of vulnerable sys-

tems. New attacks are constantly being developed, and old attacks resurface in unexpected

ways, driving the need for continual reevaluation of the security of deployed systems.

In this dissertation, I present six research studies that uncover both new and existing attacks

in deployed cryptographic systems. To understand the provenance of these vulnerabilities, I

introduce a novel framework for characterizing cryptographic vulnerabilities as communica-

tion failures and misaligned incentives in the multi-stage cryptographic deployment process,

and use this framework to trace each of the presented case studies back to their root causes.

1.1. A framework for analyzing failures in cryptographic deployments

In this section, I break down the cryptographic deployment process into four primary stages,

and describe the factors that influence each stage. Understanding each stage is a crucial for

determining the origination of cryptographic failures in real-world deployments.

1.1.1. Algorithm design and cryptanalysis

The first step in the cryptographic deployment process is algorithm design. Cryptographic

algorithm designers are typically cryptography experts that have deep understandings of

the mathematical underpinnings of their constructions. In this stage, the algorithm designer

constructs a cryptographic primitive and (often) proves its security based on mathematical

assumptions in some adversarial model. Low-level details such as encoding formats, random

number generation, and exact parameter instantiations are abstracted in order to focus on
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the mathematical details. However, algorithm designers may provide guidelines for choosing

concrete parameters based on the asymptotic complexity of the best known attacks against

the primitive.

1.1.2. Standardization

The next stage in the cryptographic deployment framework is standardization. Standards

development is driven by trusted standards bodies such as National Institute of Standards

and Technology (NIST), the IEEE Standards Association (IEEE-SA), and the Internet

Engineering Task Force (IETF). These organizations develop standards for government,

industry, and private use. Standards organization are concerned with improving existing

standards as well as developing new standards to adapt to the evolving needs of technology

users. This involves identifying cryptographic algorithms for standardization and providing

detailed guidelines for their use in applications to ensure interoperability. The standardiza-

tion process also allows for scrutiny of cryptographic primitives by the security community

and makes standardized options available for common cryptographic operations to help

prevent non-experts from “rolling their own crypto.”

While algorithm designers and cryptanalysts may have some say in the cryptographic stan-

dardization process, there are many other players involved, each with their own incentives.

These parties include governments, vendors implementing the standards, security profes-

sionals, and the end users of the technology. Thus, the standardization process must cater

to many external requests and demands, and usually results in a final specification for which

security is only one of many priorities such as interoperability, regulatory compliance, and

implementation flexibility.

1.1.3. Implementation

Following standardization, implementation is the next stage of cryptographic deployment.

The outputs of this stage are software or hardware implementations of cryptographic pro-

tocols and primitives ready to be deployed in applications. Implementers of cryptographic

libraries are often individuals or teams of programmers with some specialized knowledge of

the protocols and algorithms to be implemented. Standards often leave many choices to
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implementations regarding programming language, performance optimizations, algorithm

support, and parameter selection. For example, IETF standards designate where imple-

mentation choices are required with key words like “MUST”, “SHOULD”, and “MAY” in

protocol specifications [76]. Implementations may seek accreditation of compliance with

standards requirements such as NIST’s FIPS 140-2 standard [233], or may skip standards-

compliance altogether.

In general, implementations are only as secure as the protocols they implement, and are

susceptible to additional human errors and programming mistakes. Further, cryptographic

implementations must be concerned with attack vectors such as side-channel attacks that

may be out of scope for standards specifications, while providing the performance demanded

by users of the implementation.

Cryptographic libraries expose APIs that are then used by application developers to build

products used in real-world cryptographic deployments. Library developers should not as-

sume that application developers have the same in-depth understanding of the cryptographic

primitives, and should thus expose simple and robust APIs to prevent misuse.

1.1.4. Endpoint deployment

Endpoint deployment is the final step of the deployment process. Application developers

and system administrators are the main parties involved in this stage.

Application developers choose cryptographic implementations to meet some desired func-

tionality within larger applications. For example, an application that requires a secure

communication channel may use a TLS implementation such as OpenSSL to provide this

functionality. Application developers are responsible for correctly using library APIs to

carry out some task, and providing the configurations necessary for a secure deployment.

System administrators determine the exact hardware, software, and configuration of end-

point cryptographic deployments. They are responsible for updating applications to in-

corporate security updates, bug fixes, and new features, and for keeping systems running
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efficiently and effectively. While security is often a requirement, it may not be prioritized

as highly as availability, functionality, compliance, and performance. System administra-

tors may also have time constraints and organizational pressures that prevent them from

properly configuring, updating, and maintaining their systems.

While some system administrators and application developers do have in-depth knowledge of

cryptographic algorithm design, this is often not the case and should not be assumed. Thus,

cryptographic implementations should clearly describe the risk accompanying the available

performance, functionality, and security trade-offs that they provide to their users, and

provide secure-by-default configurations.

1.1.5. Background

I now provide background on recurring themes that appear in the presented case studies.

Diffie-Hellman key exchange. Diffie-Hellman key exchange is a public-key algorithm

used as a fundamental building block for many cryptographic protocols. It allows two parties

to derive a shared secret after seeing each other’s public keys, with no prior communication

necessary. In the basic protocol, Alice and Bob each generate private keys a and b and

transmit their public keys ga and gb, respectively. Upon seeing the other party’s public

key, Alice and Bob can each compute the value gab as a shared secret. If the Diffie-Hellman

parameters and public keys are chosen carefully, the basic protocol is secure against a passive

eavesdropper who can observe the public values.

Small subgroup attacks and public key validation. When this protocol is deployed

in real-world systems, additional care must be taken to ensure security. For instance, the

basic protocol trivially breaks in the presence of an active Monster-in-the-Middle (MitM)

attacker if messages between Alice and Bob are not properly authenticated. Further, if Bob

uses the same secret key b for multiple connections, Mallory may be able to carry out an

attack against connection with other parties.

Several attacks take advantage of the fact that Bob must perform operations that involve
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his secret key using an untrusted input from his peer. A class of attacks known as small

subgroup attacks are possible if Bob uses a maliciously chosen public key from Mallory to

compute the shared secret. The attacks can either force the derived shared secret to be

a predictable value, or leak information about Bob’s secret key through a side channel or

from the key exchange output. Such attacks can be prevented if Bob performs key exchange

validation to detect and reject invalid public keys. The specific checks required for key

exchange validation vary depending on the domain parameters, and may require some level

of computation.

Although the attacks and defenses have been known for decades, there are many reasons

why implementations might omit validation, including for performance, a reduction in code

complexity, or an assumption that the attacks will be prevented by some other protocol

mechanism. However, a break in these assumptions can lead to devastating attacks. The

work presented in this dissertation shows that lack of validation continues to be a source of

attacks against Diffie-Hellman in real-world systems.

Cryptographic agility. Modern protocols are often designed to have cryptographic

agility [170], meaning that it should be possible for the protocol to easily migrate from

older, less secure algorithms to newer, more secure algorithms. Since implementations are

not updated all at once, but gradually over time, up-to-date implementations that support

the latest cryptographic parameters must still support the outdated algorithms if they wish

to communicate with older clients and servers. When standards do not provide sufficient

agility, implementations tend to resort to ad hoc negotiation mechanisms, such as repeatedly

falling back to a previous protocol version until both parties indicate support [225].

Obsolete and intentionally weakened cryptography. Perhaps the most well-known

examples of obsolete cryptography lurking in modern systems are the export-grade ciphers

in the SSL/TLS protocols. Throughout the 1990s, U.S. law severely restricted the export

of cryptographic devices and algorithms from the United States. When the SSL protocol

was initially developed in 1995, International Traffic in Arms Regulations (ITAR) [242] pro-

5



hibited the export of “Information Security Systems and equipment, cryptographic devices,

software, and components”, with an eventual exception made for weak, breakable encryp-

tion. To comply with the regulations, early versions of SSL included cipher suites that

limited the security to 512-bit public keys for RSA and Diffie-Hellman key exchange, and

40-bit keys for symmetric ciphers. The export restrictions were gradually lifted through the

year 2000, and starting with TLSv1.1 export cipher suites were no longer included in TLS

standards. However, implementations often continue to support export-grade cryptography

for backwards compatibility with existing systems.

Downgrade attacks. Maintaining support for obsolete and weakened cryptography in

modern systems can come with adverse side effects. First, backwards compatibility removes

the pressure to update legacy systems that are old and broken, leaving them exposed to at-

tacks. Second, a modern system maintaining support for weakened and vulnerable protocols

or parameters can increase its attack surface, in some cases exposing itself to unexpected

attack vectors. In particular, it invites downgrade attacks, where a MitM attacker can

force two communicating parties to use security parameters weaker than they would have

otherwise negotiated.

1.2. Case studies

This section provides overviews of each of the six cryptographic vulnerability case studies

contributed by this dissertation, and demonstrates how each can be characterized using the

provided cryptographic deployment framework.

Table 1, which is referenced throughout the case study summaries in this section, shows

how each vulnerability can be characterized. The table indicates which stages of the cryp-

tographic deployment process are primarily responsible, and provides explanations for the

origins of each weakness.

The table columns providing explanations for each weakness are as follows: Mistake means

that the weakness is the result of a human error such a programming mistake or miscon-

figuration. Misunderstanding represents a conscious decision (as opposed to a mistake) to
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2 1 Reuse FFDH private key X X X X
2 Fail to validate FFDH subgroup order X X X X X X X
3 Use short subgroup for FFDH (non-safe prime) X X X X
4 Fail to specify FFDH subgroup order X X
5 Use short exponents for FFDH X X X
6 Expose security-critical choices to developers X X X

3 7 Fail to sign ECDH group (allows downgrade) X X
8 Support weak ECDH groups X X X X X
9 Fail to validate ECDH subgroup order X X X X X X X
10 Reuse ECDH private key X X X X

4 11 Non-constant time X25519 implementation X X
12 Fail to validate X25519 subgroup order X X X X X X

5 13 Standardize export (512-bit) RSA X X
14 Continue to support export (512-bit) RSA X X X X

6 15 Advances in discrete log cryptanalysis X X X X X
16 Use only a few, widely shared DH primes X X X X X X X
17 Fail to sign ciphersuite (allows downgrade) X X
18 Standardize export DHE ciphersuites X X
19 Continue to support export DHE ciphersuites X X X X

7 20 Use RSA with PKCS#1 v1.5 padding X X
21 Support SSLv2 X X X X X
22 Share RSA keys across deployments X X
23 Extra clear bug X X X
24 Fail to sign ciphersuite (allows downgrade) X X

Table 1: Characterizing cryptographic attacks—Attacks against cryptographic de-
ployments can be traced back to a mistake, misunderstanding, or incentive mismatch in the
deployment process.
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introduce the weakness without a clear understanding of the security risks. This could be

the result of a failure to communicate security requirements between stages of deployment,

or the result of new advances in cryptanalysis that fundamentally change our understand-

ing of the security of cryptographic primitives. Interoperability means that the decision to

introduce the weakness was made to allow for backwards compatibility with existing deploy-

ments, or to allow deployments flexibility to adapt in the future. Performance means that

a weakness was introduced to improve some aspect of performance. Compliance decisions

are made in order to comply with regulatory requirements; the introduction of export-grade

cryptography into the SSL/TLS standard is a prime example. Simplicity represents a weak-

ness that is introduced because it allows for less complex (and hopefully less error-prone)

deployments, or because it makes deployment easier.

Not all of the weaknesses described in Table 1 constitute exploitable vulnerabilities in

isolation, but they do when combined with other weaknesses. The fact that many of these

attacks presented in the case studies require multiple weaknesses to be exploitable in practice

demonstrates a lack of defense in depth in deployed cryptographic systems.

1.2.1. Finite field Diffie-Hellman attacks and measurements

Chapter 2 presents a measurement survey of small subgroup attacks in finite field Diffie-

Hellman (FFDH) deployments. The case study first explores the impact of these attacks

against the TLS, SSH, and IPsec protocols. We examined over 20 cryptographic libraries

to understand their implementation choices, and found that until January 2016, none per-

formed the requisite validation to prevent small subgroup attacks by default. We found

full key recovery attacks against OpenSSL, the Exim mail server, and the Unbound DNS

resolver. We then used ZMap [114] to perform scans of the IPv4 Internet to measure server

behavior regarding Diffie-Hellman parameter choice, key reuse, and key exchange valida-

tion. We found that many server performed insufficient validation for the Diffie-Hellman

parameters that they supported, potentially leaving them open to attack. Finally, we char-

acterized the complexity of small subgroup attacks against Diffie-Hellman groups found in

the wild to understand the security provided by these groups when used by implementations
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that fail to perform validation.

Vulnerability characterization. I now discuss how small subgroup attacks, which have

been known about for decades, make their way into modern FFDH cryptographic deploy-

ments. Small subgroup key recovery attacks in the FFDH setting require a deployment

to reuse the same private key for multiple connections, use a non-safe prime, and fail to

perform key exchange validation.

Security proofs for protocols using Diffie-Hellman often require that private keys are ephemeral

to ensure forward secrecy and to prevent key leakage through repeated small subgroup at-

tacks. However, generating fresh ephemeral Diffie-Hellman keys for each new connection

can be computationally expensive, especially for servers that handle high workloads. Thus,

system administrators prefer to cache and reuse ephemeral values to improve performance

(No. 1). This study found that this behavior was enabled by default for some library

implementations (e.g., OpenSSL), and was common for servers on the Internet. Some stan-

dards explicitly forbid this practice, while others place no restrictions on ephemeral key

reuse [218].

Diffie-Hellman requires that public keys are non-identity elements of a sufficiently large

subgroup. To ensure this, standards specify one set of validation checks for safe prime

groups, and another set of validation checks for non-safe primes in “DSA-style” groups that

includes an additional exponentiation to check the subgroup order. The validation checks

required for safe prime groups are simpler and less computationally expensive, so several

standards including IPsec and SSH required implementations to use safe prime groups

only, and specified the simpler validation checks (No. 2). When non-safe primes were

later standardized for IETF protocols including TLS, SSH, and IPsec [206] (No. 3), this

required implementations using these parameters to perform additional validation checks to

avoid small subgroup attacks. However, protocols like SSH and TLS that allow servers to

unilaterally specify the group parameters during the key exchange protocol do not provide

a way for the server to specify the group order to allow the client to perform the additional
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checks (No. 4). Thus, deployments of these protocols that were configured to use these non-

safe primes were unable to perform the necessary validation (No. 2) and became vulnerable

to small subgroup attacks if configured to reuse private keys. Full key recovery attacks are

made possible when implementations additionally use short exponents (e.g., 128 bits for a

1024-bit prime group) to match the size of the group’s expected security (No. 5).

I hypothesize that many practical attacks are made possible because tradeoffs between

security and performance are left to the deployment stage, potentially forcing non-experts

to make security-critical decisions that require domain-specific knowledge (No. 6). Without

a proper understanding of the known risks associated with those tradeoffs at endpoint

deployments, it is no surprise that security vulnerabilities arise.

This chapter is based on work [297] published at NDSS 2017 in collaboration with David

Adrian, Antonio Sanso, Shaanan Cohney, Joshua Fried, Marcella Hastings, J. Alex Halder-

man, and Nadia Heninger.

1.2.2. Elliptic curve Diffie-Hellman attacks and measurements

Chapter 3 presents a survey of the protocol-level and implementation-level attack surface

of elliptic curve Diffie-Hellman (ECDH) in TLS, SSH, IPsec, and JSON Web Encryption

(JWE). The study starts by analyzing the feasibility of a theoretical downgrade attack called

CurveSwap that allows a MitM adversary to downgrade the security of a TLS connection to

the weakest Diffie-Hellman group supported by both client and server, as long as the MitM

can forge the TLS Finished MAC before the connection times out. The study also gauges

the feasibility of similar curve downgrade attacks against SSH and IPsec. Contributions

of this work include extensive active and passive measurements of implementation choices

regarding algorithm support, key reuse, and validation to determine if any client and server

deployments were vulnerable to the downgrade attack. Through our scans, we found a

significant population of servers failing to properly validate key exchange parameters, as well

as a large number of servers repeating key exchange values across connections. However, we

did not find any servers exhibiting both behaviors, which would have led to invalid curve
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key recovery attacks. We also examined source code and found several implementations of

the JWE standard vulnerable to classic invalid curve attacks, stemming from the fact that

the standard neglects to mention that curve validity checks are necessary.

Vulnerability characterization. The CurveSwap attack itself is possible due to a flaw in

the TLS standard (No. 7). However, we found widespread support for weak (but not quite

practically exploitable) elliptic curve groups in many client and server deployments that

increase the seriousness of the downgrade attack. This can be explained by the pressure

on standards and implementations to provide cryptographic agility to allow deployments

to adapt to their speed and security needs. However, supporting weak parameters can be a

liability, as the CurveSwap attack demonstrates (No. 8).

Similar to the study in Chapter 2 of FFDH deployments, this study finds that a significant

number of ECDH deployments fail to perform proper key exchange validation for the ne-

gotiated group. The TLS, SSH, and IPsec standards all do properly specify the validation

checks required of implementations. However, we found that a small percentage of deploy-

ments failed to implement the checks (No. 9). While the study did find that a ECDH

ephemeral key reuse is very prevalent in TLS, SSH, and IPsec (No. 10), it did not find any

deployments that both reused ephemeral keys and failed to perform proper key exchange

validation. However, in the case of JWE, where Diffie-Hellman public keys are reused, the

standards fail to mention validation entirely, resulting in full invalid curve key recovery

attacks against several implementations.

This chapter is based on work [298] published at EuroS&P 2018 in collaboration with Nick

Sullivan, Antonio Sanso, and Nadia Heninger.

1.2.3. Side-channel attack on Curve25519 using low-order elements

Curve25519 is an elliptic curve designed to be resistant to many known attacks, while also

allowing for simple, side-channel resistant implementations. Users of Curve25519 are ad-

vised that input validation is unnecessary, since the function is designed to process all inputs

without error and without leaking information about the private key from the output of
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the function. Chapter 4 presents a cache side-channel attack against Libgcrypt’s imple-

mentation of Curve25519 that is made possible though a combination of non-constant time

arithmetic and lack of input validation. The attack uses an “order-4” element on Curve25519

to trigger side-channel leakage when passed in to Libgcrypt’s ECDH decryption operation.

Had the implementation performed input validation, these malicious inputs would have

been rejected. We demonstrate full key recovery attacks against three applications that use

the vulnerable library: encrypted git, email, and messaging.

Vulnerability characterization. Despite using the side-channel resistant Montgomery

ladder algorithm with the Curve25519 function that is designed to resist key recovery at-

tacks, this study demonstrates full key recovery attacks against Libgcrypt’s Curve25519

implementation.

The attack works as follows: when a low-order element is passed into the Montgomery

ladder scalar-by-point multiplication routine, it introduces a key-dependent mathematical

structure in the computation; with the ability to measure this structure through a side-

channel attack, one can extract the bits of the private key. Thus, the root cause of the

vulnerability in Libgcrypt’s implementation is the non-constant time arithmetic that ex-

poses a mathematical structure through side-channel leakage (No. 11). The leakage can

then be measured using a cache-based side-channel to complete the attack. However, prac-

tical exploitation of the vulnerability was possible because the implementation failed to

perform input validation to reject low-order elements, following the recommendation of the

Curve25519 designer [56] (No. 12).

This chapter is based on joint work with Daniel Genkin and Yuval Yarom, and was published

at CCS 2017 [145].

1.2.4. 512-bit RSA in the wild

Chapter 5 examines the security impact and prevalence of weak RSA public keys in the wild.

We focus on 512-bit RSA keys, which were exploited in the FREAK attack to MitM TLS

connections [61]. To demonstrate the ease with which 512-bit RSA keys can be factored
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with modern computing capabilities, we optimized and parallelized the Cado-NFS imple-

mentation of the number field sieve (NFS) algorithm and performed fine-grained benchmark

tests using rented cloud computing resources from Amazon EC2. We were able to reliably

factor 512-bit RSA keys in under 4 hours for a cost of $75. We then performed a survey of

RSA key sizes across several protocols, and found that 512-bit RSA keys are surprisingly

persistent in deployed systems, with hundreds of keys found in deployments of DNSSEC,

HTTPS, IMAP, POP3, SMTP, DKIM, SSH, and PGP.

Vulnerability characterization. This study finds that 512-bit RSA keys are surprisingly

persistent in cryptographic deployments. RSA keys of this size were known to be insecure

even before their standardization in SSL for compliance with export regulations (No. 13),

but decades later, a long tail of deployments still have not removed these weak keys from

their configurations (No. 14). I hypothesize that the root cause is that the knowledge of

decades-old advances in cryptanalysis have not been properly propagated all the way to the

system administrators responsible for these deployments.

This chapter is based on work [296] published at Financial Cryptography 2016 in collabora-

tion with Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri, and Nadia Heninger.

1.2.5. Logjam attack and measurements

Chapter 6 investigates Diffie-Hellman key exchange and finds it to be less secure in practice

than was previously believed. We present the Logjam attack, which allows a MitM attacker

to downgrade a connection to use a weak, export-grade 512-bit Diffie-Hellman group even

when both peers prefer secure parameters. The attack is a protocol flaw in TLS that affects

any server that accepts obsolete export-grade DHE cipher suites and any client willing to

negotiate weak FFDH groups. The paper demonstrates that computing 512-bit discrete

logarithms online for the MitM attack is much easier than was previously thought due to

the fact that a large portion of the computation can be precomputed. We then measure

the impact of the Logjam attack by performing extensive Internet scans. In particular, we

find that 8.4% of the Alexa top 1M websites were vulnerable to the attack. Further, 82%
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of the vulnerable servers used the same three 512-bit export DH groups, so performing the

precomputation for only these three groups would allow us to compromise 7% of Alexa top

1M sites.

Vulnerability characterization. Arguably the most interesting discovery of this work

is that Diffie-Hellman is much less secure in practice than previously thought for all FFDH

deployments. Advances in discrete log cryptanalysis using the NFS algorithm showed that

a large precomputation given only the prime is possible, which subsequently allows for

very fast individual discrete logarithm computations for groups using that prime (No. 15).

While the overall asymptotic running time of the algorithm remains the same, the cost of

a single precomputation in the group can be amortized over many individual discrete log

computations. Despite the possibility for this precomputation, a select few Diffie-Hellman

groups were standardized and shared by the majority of hosts on the Internet, suggesting

that standards developers were not aware of these cryptanalytic advances (No. 16).

The Logjam downgrade attack is possible due to a flaw in the TLS protocol (No. 17), along

with support in cryptographic deployments for legacy export-grade DHE ciphersuites. Sim-

ilar to the downgrade attack of Chapter 3, Logjam is a parameter downgrade attack that

takes advantage of the fact that TLS parameter negotiation messages can be tampered with

by a MitM attacker as long as they are able to forge the TLS Finished MAC. Implemen-

tation and deployment support for export-grade DHE ciphersuites makes the attack much

more devastating with the majority of hosts using the same three Diffie-Hellman groups

(No. 16). Thus, a single 512-bit discrete log computation can be performed once for a

given prime, and then used to break TLS connections online via the Logjam downgrade

attack. Government export regulations on cryptography from the 1990s are the root cause

of known-weak cryptography being forced into use in old versions of SSL/TLS (No. 18),

and backwards compatibility is to blame for the prevalence of these known-weak parameters

in modern systems (No. 19).

This chapter is based on joint work [29] with David Adrian, Karthikeyan Bhargavan, Za-
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kir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger,

Drew Springall, Emmanuel Thomé, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-

Béguelin, and Paul Zimmermann. The paper won the Best Paper Award at ACM CCS 2015,

as well as the Pwnie Award for Most Innovative Research at Black Hat 2015.

1.2.6. DROWN attack and measurements

Chapter 7 discusses the DROWN attack and provides measurements that show its widespread

impact due to cryptographic parameter reuse. The DROWN attack is a complex cross-

protocol attack that is made possible through a combination of weaknesses, and allows an

attacker to break modern TLSv1.2 connections provided that the server shares a public key

or certificate with an SSLv2 deployment. There are two main versions of the attack.

The general DROWN attack targets previously unnoticed protocol flaws in SSLv2 to develop

a Bleichenbacher padding oracle attack. The SSLv2 oracle is then used to decrypt modern

TLSv1.2 RSA ciphertexts when the SSLv2 and TLSv1.2 servers share a certificate or public

key. The attacker must passively capture 1,000 TLS sessions that use RSA key exchange,

make about 40,000 connections to the SSLv2 server, and perform 250 symmetric encryption

operations offline. We were able to perform the computation in under 8 hours at a cost

of $440 using specialized GPU servers on Amazon EC2 [43]. The general DROWN attack

does not rely on any implementation flaws, and takes advantage of commonly supported

export-grade symmetric ciphers in SSLv2 implementations. Measurements from 2016 show

that 33% of all HTTPS servers were vulnerable to the attack.

The special DROWN attack relies on a bug in older versions of OpenSSL that brings the

attack complexity down sufficiently far that it can be completed in under a minute on a

single CPU—fast enough to allow a successful MitM attack against modern browsers. 26%

of HTTPS servers were vulnerable to the special DROWN attack at the time of the attack

discovery. The DROWN attack demonstrates the risk of supporting old broken protocols

for backwards compatibility. It shows that SSLv2 is not only weak, but actively harmful to

the security ecosystem.
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Vulnerability characterization. RSA with the PKCS#1 v1.5 padding scheme has been

known to be weak for decades since Bleichenbacher’s original padding oracle attack in

1998 [73], and suitable replacements with provable security such as RSA-OAEP were pro-

posed. However, instead of updating TLS standards to replace PKCS#1 v1.5 padding

with more secure variants, the standards developers instead required library developers to

add implementation-level countermeasures (No. 20). Possible explanations are that up-

dating the standard would break compatibility with existing implementations, and since

Bleichenbacher’s original attack was considered impractical (it required one million chosen

ciphertexts to carry out), the added security did not justify the expense. Regardless of the

reasoning, this demonstrates incentives not aligned with security.

The SSLv2 protocol was shown to be irredeemably flawed soon after its standardization,

and quickly replaced by SSLv3. However, implementations maintained support for this

broken scheme for backwards compatibility with older clients, favoring interoperability over

security (No. 21).

The DROWN attack is able to decrypt modern TLS RSA ciphertexts due to the sharing of

cryptographic parameters with insecure deployments (No. 22). There is no security benefit

for such parameter sharing, but it can be explained by convenience and cost reduction for

system administrators, as acquiring separate certificates for each offered service could be ex-

pensive and inconvenient. The risk of this cryptographic parameter sharing in deployments

was not fully understood until demonstrated by this attack.

The special DROWN variant of the attack uses the “extra clear” bug in OpenSSL’s SSLv2

implementation to drastically reduce the complexity of the attack (No. 23) so that it can

be used in an online attack. Using the same ciphersuite downgrade weakness exploited in

Chapter 6, a MitM attacker can force a connection to use an RSA key exchange when that

is not the preferred key exchange mechanism (No. 24), and even substitute the server’s

certificate with another certificate sharing a common name whose key is exposed via a

special DROWN oracle.
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This chapter is based on joint work [43] with Nimrod Aviram, Sebastian Schinzel, Juraj

Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, David Adrian, J. Alex Halderman,

Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and

Yuval Shavitt. The paper was a finalist for the Facebook Internet Defense Prize at USENIX

Security 2016, and won the Pwnie Award for Best Cryptographic Attack at Black Hat 2016.
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CHAPTER 2 : Measuring finite field Diffie-Hellman

2.1. Introduction

Diffie-Hellman key exchange is one of the most common public-key cryptographic methods

in use in the Internet. It is a fundamental building block for IPsec, SSH, and TLS. In the

textbook presentation of finite field Diffie-Hellman, Alice and Bob agree on a large prime p

and an integer g modulo p. Alice chooses a secret integer xa and transmits a public value

gxa mod p; Bob chooses a secret integer xb and transmits his public value gxb mod p. Both

Alice and Bob can reconstruct a shared secret gxaxb mod p, but the best known way for a

passive eavesdropper to reconstruct this secret is to compute the discrete log of either Alice

or Bob’s public value. Specifically, given g, p, and gx mod p, an attacker must calculate x.

In order for the discrete log problem to be hard, Diffie-Hellman parameters must be chosen

carefully. A typical recommendation is that p should be a “safe” prime, that is, that

p = 2q+ 1 for some prime q, and that g should generate the group of order q modulo p. For

p that are not safe, the group order q can be much smaller than p. For security, q must still

be large enough to thwart known attacks, which for prime q run in time O(
√
q). A common

parameter choice is to use a 160-bit q with a 1024-bit p or a 224-bit q with a 2048-bit p, to

match the security level under different cryptanalytic attacks. Diffie-Hellman parameters

with p and q of these sizes were suggested for use and standardized in DSA signatures [239].

For brevity, we will refer to these non-safe primes as DSA primes, and to groups using DSA

primes with smaller values of q as DSA groups.

A downside of using DSA primes instead of safe primes for Diffie-Hellman is that imple-

mentations must perform additional validation checks to ensure the key exchange values

they receive from the other party are contained in the correct subgroup modulo p. The

validation consists of performing an extra exponentiation step. If implementations fail to

validate, a 1997 attack of Lim and Lee [207] can allow an attacker to recover a static ex-

ponent by repeatedly sending key exchange values that are in very small subgroups. We

18



describe several variants of small subgroup confinement attacks that allow an attacker with

access to authentication secrets to mount a much more efficient man-in-the-middle attack

against clients and servers that do not validate group orders. Despite the risks posed by

these well-known attacks on DSA groups, NIST SP 800-56A, “Recommendations for Pair-

Wise Key Establishment Schemes Using Discrete Logarithm Cryptography” [49] specifically

recommends DSA group parameters for Diffie-Hellman, rather than recommending using

safe primes. RFC 5114 [206] includes several DSA groups for use in IETF standards.

We observe that few Diffie-Hellman implementations actually validate subgroup orders,

in spite of the fact that small subgroup attacks and countermeasures are well-known and

specified in every standard suggesting the use of DSA groups for Diffie-Hellman, and DSA

groups are commonly implemented and supported in popular protocols. For some protocols,

including TLS and SSH, that enable the server to unilaterally specify the group used for key

exchange, this validation step is not possible for clients to perform with DSA primes—there

is no way for the server to communicate to the client the intended order of the group. Many

standards involving DSA groups further suggest that the order of the subgroup should be

matched to the length of the private exponent. Using shorter private exponents yields

faster exponentiation times, and is a commonly implemented optimization. However, these

standards provide no security justification for decreasing the size of the subgroup to match

the size of the exponents, rather than using as large a subgroup as possible. We discuss

possible motivations for these recommendations later in the paper.

We conclude that adopting the Diffie-Hellman group recommendations from RFC 5114 and

NIST SP 800-56A may create vulnerabilities for organizations using existing cryptographic

implementations, as many libraries allow user-configurable groups but have unsafe default

behaviors. This highlights the need to consider developer usability and implementation

fragility when designing or updating cryptographic standards.

Our Contributions. We study the implementation landscape of Diffie-Hellman from

several perspectives and measure the security impact of the widespread failure of imple-
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mentations to follow best security practices:

• We summarize the concrete impact of small-subgroup confinement attacks and small

subgroup key recovery attacks on TLS, IKE, and SSH handshakes.

• We examined the code of a wide variety of cryptographic libraries to understand their

implementation choices. We find feasible full private exponent recovery vulnerabilities

in OpenSSL and the Unbound DNS resolver, and a partial private exponent recovery

vulnerability for the parameters used by the Amazon Elastic Load Balancer. We

observe that no implementation that we examined validated group order for subgroups

of order larger than two by default prior to January 2016, leaving users potentially

vulnerable to small subgroup confinement attacks.

• We performed Internet-wide scans of HTTPS, POP3S, SMTP with STARTTLS, SSH,

IKEv1, and IKEv2, to provide a snapshot of the deployment of DSA groups and

other non-“safe” primes for Diffie-Hellman, quantify the incidence of repeated public

exponents in the wild, and quantify the lack of validation checks even for safe primes.

• We performed a best-effort attempt to factor p−1 for all non-safe primes that we found

in the wild, using ˜100,000 core-hours of computation. Group 23 from RFC 5114, a

2048-bit prime, is particularly vulnerable to small subgroup key recovery attacks; for

TLS a full key recovery requires 233 online work and 247 offline work to recover a

224-bit exponent.

Disclosure and Mitigations. We reported the small subgroup key recovery vulnerability

to OpenSSL in January 2016 [273]. OpenSSL issued a patch to add additional validation

checks and generate single-use private exponents by default [27]. We reported the Amazon

load balancer vulnerability in November 2015. Amazon responded to our report informing

us that they have removed Diffie-Hellman from their recommmended ELB security policy,

and have reached out to their customers to recommend that they use these latest policies.

Based on scans performed in February and May 2016, 88% of the affected hosts appear
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to have corrected their exponent generation behavior. We found several libraries that had

vulnerable combinations of behaviours, including Unbound DNS, GnuTLS, LibTomCrypt,

and Exim. We disclosed to the developers of these libraries. Unbound issued a patch,

GnuTLS acknowledged the report but did not patch, and LibTomCrypt did not respond.

Exim responded to our bug report stating that they would use their own generated Diffie-

Hellman groups by default, without specifying subgroup order for validation [253, 295]. We

found products from Cisco, Microsoft, and VMWare lacking validation that key exchange

values were in the range (1, p−1). We informed these companies, and discuss their responses

in Section 2.3.4.

2.2. Background

2.2.1. Groups, orders, and generators

The two types of groups used for Diffie-Hellman key exchange in practice are multiplicative

groups over finite fields (“mod p”) and elliptic curve groups. We focus on the “mod p”

case, so a group is typically specified by a prime p and a generator g, which generates a

multiplicative subgroup modulo p. Optionally, the group order q can be specified; this is

the smallest positive integer q satisfying gq ≡ 1 mod p. Equivalently, it is the number of

distinct elements of the subgroup {g, g2, g3, . . . mod p}.

By Lagrange’s theorem, the order q of the subgroup generated by g modulo p must be a

divisor of p− 1. Since p is prime, p− 1 will be even, and there will always be a subgroup of

order 2 generated by the element −1. For the other factors qi of p− 1, there are subgroups

of order qi mod p. One can find a generator gi of a subgroup of order qi using a randomized

algorithm: try random integers h until h(p−1)/qi 6= 1 mod p; gi = h(p−1)/qi mod p is a

generator of the subgroup. A random h will satisfy this property with probability 1− 1/qi.

In theory, neither p nor q is required to be prime. Diffie-Hellman key exchange is possible

with a composite modulus and with a composite group order. In such cases, the order of the

full multiplicative group modulo p is φ(p) where φ is Euler’s totient function, and the order

of the subgroup generated by g must divide φ(p). Outside of implementation mistakes,
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Diffie-Hellman in practice is done modulo prime p.

2.2.2. Diffie-Hellman Key Exchange

Diffie-Hellman key exchange allows two parties to agree on a shared secret in the presence

of an eavesdropper [108]. Alice and Bob begin by agreeing on shared parameters (prime

p, generator g, and optionally group order q) for an algebraic group. Depending on the

protocol, the group may be requested by the initiator (as in IKE), unilaterally chosen by

the responder (as in TLS), or fixed by the protocol itself (SSH originally built in support

for a single group).

Having agreed on a group, Alice chooses a secret xa < q and sends Bob ya = gxa mod p.

Likewise, Bob chooses a secret xb < q and sends Alice yb = gxb mod p. Each participant

then computes the shared secret key gxaxb mod p.

Depending on the implementation, the public values ya and yb might be ephemeral—freshly

generated for each connection—or static and reused for many connections.

2.2.3. Discrete log algorithms

The best known attack against Diffie-Hellman is for the eavesdropper to compute the the

private exponent x by calculating the discrete log of one of Alice or Bob’s public value y.

With knowledge of the exponent, the attacker can trivially compute the shared secret. It is

not known in general whether the hardness of computing the shared secret from the public

values is equivalent to the hardness of discrete log.

The computational Diffie-Hellman assumption states that computing the shared secret gxaxb

from gxa and gxb is hard for some choice of groups. A stronger assumption, the decisional

Diffie-Hellman problem, states that given gxa and gxb , the shared secret gxaxb is computa-

tionally indistinguishable from random for some groups. This assumption is often not true

for groups used in practice; even with safe primes as defined below, many implementations

use a generator that generates the full group of order p − 1, rather than the subgroup of

order (p− 1)/2. This means that a passive attacker can always learn the value of the secret

exponent modulo 2. To avoid leaking this bit of information about the exponent, both sides
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could agree to compute the shared secret as y2x mod p. We have not seen implementations

with this behavior.

There are several families of discrete log algorithms, each of which apply to special types of

groups and parameter choices. Implementations must take care to avoid choices vulnerable

to any particular algorithm. These include:

Small-order groups. The Pollard rho [261] and Shanks’ baby step-giant step algo-

rithms [279] each can be used to compute discrete logs in groups of order q in time O(
√
q).

To avoid being vulnerable, implementations must choose a group order with bit length at

least twice the desired bit security of the key exchange. In practice, this means that group

orders q should be at least 160 bits for an 80-bit security level.

Composite-order groups. If the group order q is a composite with prime factorization

q =
∏

i q
ei
i , then the attacker can use the Pohlig-Hellman algorithm [259] to compute a

discrete log in time O(
∑

i ei
√
qi). The Pohlig-Hellman algorithm computes the discrete log

in each subgroup of order qeii and then uses the Chinese remainder theorem to reconstruct

the log modulo q. Adrian et al. [29] found several thousand TLS hosts using primes with

composite-order groups, and were able to compute discrete logs for several hundred Diffie-

Hellman key exchanges using this algorithm. To avoid being vulnerable, implementations

should choose g so that it generates a subgroup of large prime order modulo p.

Short exponents. If the secret exponent xa is relatively small or lies within a known range

of values of a relatively small size, m, then the Pollard lambda “kangaroo” algorithm [262]

can be used to find xa in time O(
√
m). To avoid this attack, implementations should choose

secret exponents to have bit length at least twice the desired security level. For example,

using a 256-bit exponent for for a 128-bit security level.

Small prime moduli. When the subgroup order is not small or composite, and the prime

modulus p is relatively large, the fastest known algorithm is the number field sieve [154],

which runs in subexponential time in the bit length of p, exp
(
(1.923 + o(1))(log p)1/3(log log p)2/3

)
.
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Adrian et al. recently applied the number field sieve to attack 512-bit primes in about 90,000

core-hours [29], and they argue that attacking 1024-bit primes—which are widely used in

practice—is within the resources of large governments. To avoid this attack, current recom-

mendations call for p to be at least 2048 bits [50]. When selecting parameters, implementers

should ensure all attacks take at least as long as the number field sieve for their parameter

set.

2.2.4. Diffie-Hellman group characteristics

“Safe” primes. In order to maximize the size of the subgroup used for Diffie-Hellman,

one can choose a p such that p = 2q+ 1 for some prime q. Such a p is called a “safe” prime,

and q is a Sophie Germain prime. For sufficiently large safe primes, the best attack will be

solving the discrete log using the number field sieve. Many standards explicitly specify the

use of safe primes for Diffie-Hellman in practice. The Oakley protocol [249] specified five

“well-known” groups for Diffie-Hellman in 1998. These included three safe primes of size

768, 1024, and 1536 bits, and was later expanded to include six more groups in 2003 [193].

The Oakley groups have been built into numerous other standards, including IKE [164] and

SSH [311].

DSA groups. The DSA signature algorithm [239] is also based on the hardness of discrete

log. DSA parameters have a subgroup order q of much smaller size than p. In this case

p− 1 = qr where q is prime and r is a large composite, and g generates a group of order q.

FIPS 186-4 [239] specifies 160-bit q for 1024-bit p and 224- or 256-bit q for 2048-bit p. The

small size of the subgroup allows the signature to be much shorter than the size of p.

2.2.5. DSA Group Standardization

DSA-style parameters have also been recommended for use for Diffie-Hellman key exchange.

NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography” [49], first published in 2007, specifies

that finite field Diffie-Hellman should be done over a prime-order subgroup q of size 160 bits

for a 1024-bit prime p, and a 224- or 256-bit subgroup for a 2048-bit prime. While the order

of the multiplicative subgroups is in line with the hardness of computing discrete logs in
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these subgroups, no explanation is given for recommending a subgroup of precisely this size

rather than setting a minimum subgroup size or using a safe prime. Using a shorter exponent

will make modular exponentiation more efficient, but the order of the subgroup q does

not increase efficiency—on the contrary, the additional modular exponentiation required

to validate that a received key exchange message is contained in the correct subgroup

will render key exchange with DSA primes less efficient than using a “safe” prime for

the same exponent length. Choosing a small subgroup order is not known to have much

impact on other cryptanalytic attacks, although the number field sieve is somewhat (not

asymptotically) easier as the linear algebra step is performed modulo the subgroup order

q. [29]

RFC 5114, “Additional Diffie-Hellman Groups for Use with IETF Standards” [206], specifies

three DSA groups with the above orders “for use in IKE, TLS, SSH, etc.” These groups

were taken from test data published by NIST [238]. They have been widely implemented

in IPsec and TLS, as we will show below. We refer to these groups as Group 22 (1024-

bit group with 160-bit subgroup), Group 23 (2048-bit group with 224-bit subgroup), and

Group 24 (2048-bit group with 256-bit subgroup) throughout the remainder of the paper

to be consistent with the group numbers assigned for IKE.

RFC 6989, “Additional Diffie-Hellman Tests for the Internet Key Exchange Protocol Version

2 (IKEv2)” [280], notes that “mod p” groups with small subgroups can be vulnerable to

small subgroup attacks, and mandates that IKE implementations should validate that the

received value is in the correct subgroup or never repeat exponents.

2.2.6. Small subgroup attacks

Since the security of Diffie-Hellman relies crucially on the group parameters, implemen-

tations can be vulnerable to an attacker who provides maliciously generated parameters

that change the properties of the group. With the right parameters and implementation

decisions, an attaker may be able to efficiently determine the Diffie-Hellman shared secret.

In some cases, a passive attacker may be able to break a transcript offline.
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Small subgroup confinement attacks. In a small subgroup confinement attack, an

attacker (either a man-in-the-middle or a malicious client or server) provides a key-exchange

value y that lies in a subgroup of small order. This forces the other party’s view of the

shared secret, yx, to lie in the subgroup generated by the attacker. This type of attack was

described by van Oorschot and Wiener [300] and ascribed to Vanstone and Anderson and

Vaudenay [38]. Small subgroup confinement attacks are possible even when the server does

not repeat exponents—the only requirement is that an implementation does not validate

that received Diffie-Hellman key exchange values are in the correct subgroup.

When working mod p, there is always a subgroup of order 2, since p−1 is even. A malicious

client Mallory could initiate a Diffie-Hellman key exchange value with Alice and send her

the value yM = p − 1 ≡ −1 mod p, which is is a generator of the group of order 2 mod p.

When Alice attempts to compute her view of the shared secret as ka = yaM mod p, there

are only two possible values, 1 and −1 mod p.

The same type of attack works if p − 1 has other small factors qi. Mallory can send a

generator gi of a group of order qi as her Diffie-Hellman key exchange value. Alice’s view

of the shared secret will be an element of the subgroup of order qi. Mallory then has a

1/qi chance of blindly guessing Alice’s shared secret in this invalid group. Given a message

from Alice encrypted using Alice’s view of the shared secret, Mallory can brute force Alice’s

shared secret in qi guesses.

More recently, Bhargavan and Delignat-Lavaud [67] describe “key synchronization” attacks

against IKEv2 where a man-in-the-middle connects to both the initiator and responder in

different connections, uses a small subgroup confinement attack against both, and observes

that there is a 1/qi probability of the shared secrets being the same in both connections.

Bhargavan and Leurent [63] describe several attacks that use subgroup confinement attacks

to obtain a transcript collision and break protocol authentication.

To protect against subgroup confinement attacks, implementations should use prime-order
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subgroups with known subgroup order. Both parties must validate that the key exchange

values they receive are in the proper subgroup. That is, for a known subgroup order q, a

received Diffie-Hellman key exchange value y should satisfy yq ≡ 1 mod p. For a safe prime,

it suffices to check that y is strictly between 1 and p− 1.

Small subgroup key recovery attacks. Lim and Lee [207] discovered a further attack

that arises when an implementation fails to validate subgroup order and resues a static

secret exponent for multiple key exchanges. A malicious party may be able to perform

multiple subgroup confinement attacks for different prime factors qi of p − 1 and then use

the Chinese remainder theorem to reconstruct the static secret exponent.

The attack works as follows. Let p− 1 have many small factors p− 1 = q1q2 . . . qn. Mallory,

a malicious client, uses the procedure described in Section 2.2.1 to find a generator of the

subgroup gi of order qi mod p. Then Mallory transmits gi as her Diffie-Hellman key exchange

value, and receives a message encrypted with Alice’s view of the shared secret gxa
i , which

Mallory can brute force to learn the value of xa mod qi. Once Mallory has repeated this

process several times, she can use the Chinese remainder theorem to reconstruct xa mod∏
i qi. The running time of this attack is

∑
i qi, assuming that Mallory performs an offline

brute-force search for each subgroup.

A randomly chosen prime p is likely to have subgroups of large enough order that this attack

is infeasible to carry out for all subgroups. However, if in addition Alice’s secret exponent

xa is small, then Mallory only needs to carry out this attack for a subset of subgroups of

orders q1, . . . , qk satisfying
∏k

i=0 qi > xa, since the Chinese remainder theorem ensures that

xa will be uniquely defined. Mallory can also improve on the running time of the attack by

taking advantage of the Pollard lambda algorithm. That is, she could use a small subgroup

attack to learn the value of xa mod
∏k

i=1 qi for a subset of subgroups
∏k

i=1 qi < xa, and

then use the Pollard lambda algorithm to reconstruct the full value of a, as it has now been

confined to a smaller interval.
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Application Crypto Short Exponent
Library Exponent Reuse

OpenSSH OpenSSL No No
Cerberus OpenSSL No Yes
GNU lsh GnuTLS No No
Dropbear LibTomCrypt No No
Lighttpd OpenSSL Yes No
Unbound OpenSSL Yes Yes
Exim OpenSSL Library Yes

dependent
Postfix OpenSSL No No

Table 2: Common application behavior—Applications make a diverse set of decisions on
how to handle Diffie-Hellman exponents, likely due to the plethora of conflicting, confusing,
and incorrect recommendations available.

In summary, an implementation is vulnerable to small subgroup key recovery attacks if it

does not verify that received Diffie-Hellman key exchange values are in the correct subgroup;

uses a prime p such that p− 1 has small factors; and reuses Diffie-Hellman secret exponent

values. The attack is made even more practical if the implementation uses small exponents.

A related attack exists for elliptic curve groups: an invalid curve attack. Similarly to the

case we describe above, the attacker generates a series of elliptic curve points of small

order and sends these points as key exchange messages to the victim. If the victim does not

validate that the received point is on the intended curve, they return a response that reveals

information about the secret key modulo different group orders. After enough queries,

the attacker can learn the victim’s entire secret. Jager, Schwenk, and Somorovsky [179]

examined eight elliptic curve implementations and discovered two that failed to validate the

received curve point. For elliptic curve groups, this attack can be much more devastating

because the attacker has much more freedom in generating different curves, and can thus

find many different small prime order subgroups. For the finite field Diffie-Hellman attack,

the attacker is limited only to those subgroups whose orders are factors of p− 1.

2.3. TLS

TLS (Transport Layer Security) is a transport layer protocol designed to provide confiden-

tiality, integrity and (most commonly) one-side authentication for application sessions. It
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is widely used to protect HTTP and mail protocols.

A TLS client initiates a TLS handshake with the ClientHello message. This message in-

cludes a list of supported cipher suites, and a client random nonce rc. The server responds

with a ServerHello message containing the chosen cipher suite and server random nonce

rs, and a Certificate message that includes the server’s X.509 certificate. If the server

selects a cipher suite using ephemeral Diffie-Hellman key exchange, the server additionally

sends a ServerKeyExchange message containing the server’s choice of Diffie-Hellman pa-

rameters p and g, the server’s Diffie-Hellman public value ys = gxs mod p, a signature by

the server’s private key over both the client and server nonces (rc and rs), and the server’s

Diffie-Hellman parameters (p, g, and ys). The client then verifies the signature using the

public key from the server’s certificate, and responds with a ClientKeyExchange message

containing the client’s Diffie-Hellman public value yc = gxc mod p. The Diffie-Hellman

shared secret Y = gxsxc mod p is used to derive encryption and MAC keys. The client then

sends ChangeCipherSpec and Finished messages. The Finished message contains a hash

of the handshake transcript, and is encrypted and authenticated using the derived encryp-

tion and MAC keys. Upon decrypting and authenticating this message, the server verifies

that the hash of the transcript matches the expected hash. Provided the hash matches,

the server then sends its own ChangeCipherSpec and Finished messages, which the client

then verifies. If either side fails to decrypt or authenticate the Finished messages, or if the

transcript hashes do not match, the connection fails immediately [106].

TLS also specifies a mode of using Diffie-Hellman with fixed parameters from the server’s

certificate [260]. This mode is not forward secret, was never widely adopted, and has been

removed from all modern browsers due to dangerous protocol flaws [168]. The only widely

used form of Diffie-Hellman in TLS today is ephemeral Diffie-Hellman, described above.

2.3.1. Small Subgroup Attacks in TLS

Small subgroup confinement attacks. A malicious TLS server can perform a variant

of the small subgroup attack against a client by selecting group parameters g and p such
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that g generates an insecure group order. TLS versions prior to 1.3 give the server complete

liberty to choose the group, and they do not include any method for the server to specify

the desired group order q to the client. This means a client has no feasible way to validate

that the group sent by the server has the desired level of security or that a server’s key

exchange value is in the correct group for a non-safe prime.

Similarly, a man in the middle with knowledge of the server’s long-term private signing key

can use a small subgroup confinement attack to more easily compromise perfect forward

secrecy, without having to rewrite an entire connection. The attack is similar to the those

described by Bhargavan and Delignat-Lavaud [67]. The attacker modifies the server key

exchange message, leaving the prime unchanged, but substituting a generator gi of a sub-

group of small order qi for the group generator and gi for the server’s key exchange value ys.

The attacker then forges a correct signature for the modified server key exchange message

and passes it to the client. The client then responds with a client key exchange message

yc = gxc
i mod p, which the man-in-the-middle leaves unchanged. The server’s view of the

shared secret is then gxcxs
i mod p, and the client’s view of the shared secret is gxc

i mod p.

These views are identical when xs ≡ 1 mod qi, so this connection will succeed with probabil-

ity 1/qi. For small enough qi, this enables a man in the middle to use a compromised server

signing key to decrypt traffic from forward-secret ciphersuites with a reasonable probability

of success, while only requiring tampering with a single handshake message, rather than

having to actively rewrite the entire connection for the duration of the session.

Furthermore, if the server uses a static Diffie-Hellman key exchange value, then the attacker

can perform a small subgroup key-recovery attack as the client in order to learn the server’s

static exponent xs mod qi for the small subgroup. This enables the attacker to calculate

a custom generator such that the client and server views of the shared secret are always

identical, raising the above attack to a 100% probability of success.

Small subgroup key recovery attacks. In TLS, the client must authenticate the hand-

shake before the server, by providing a valid Finished message. This forces a small sub-
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Implementation
RFC 5114
Support

Allows Short
Exponents

Reuses
Exponents

Validates
Subgroup

Mozilla NSS No Yes, hardcoded No g ≤ 2
OpenJDK No Yes, uses max of p size / 2 and 384 No g ≤ 2
OpenSSL 1.0.2 Yes Yes, if q set or if user sets a shorter length Default until Jan ’16 Yes, as of Jan ’16
BouncyCastle Yes No Application dependent g ≤ 2
Cryptlib No Yes, uses quadratic curve calculation Application dependent g ≤ 2
libTomCrypt No Yes, hardcoded Application dependent No
CryptoPP No Yes, uses work factor calculation Application dependent No
Botan Yes Yes, uses work factor calculation No No

GnuTLS
Application
dependent

Yes, restricts to q size (max 256) Application dependent g ≤ 2

Table 3: TLS library behavior—We examined popular TLS libraries to determine which
weaknesses from Section 2.2.6 were present. Reuse of exponents often depends on the
use of the library; the burden is on the application developer to appropriately regenerate
exponents. Botan and libTomCrypt both hardcode their own custom groups, while GnuTLS
allows users to specify their own parameters.

group key recovery attack against TLS to be primarily online. To perform a Lim-Lee small

subgroup key recovery attack against a server static exponent, a malicious client initiates

a TLS handshake and sends a generator gi of a small subgroup of order qi as its client key

exchange message yc. The server will calculate Ys = gxs
i mod p as the shared secret. The

server’s view of the shared secret is confined to the subgroup of order qi. However, since

gi and g generate separate subgroups, the server’s public value ys = gxs gives the attacker

no information about the value of the shared secret Ys. Instead, the attacker must guess

a value for xs mod qi, and send the corresponding client Finished message. If the server

continues the handshake, the attacker learns that the guess is correct. Therefore, assuming

the server is reusing a static value for xs, the attacker needs to perform at most qi queries

to learn the server’s secret xs mod qi [207]. This attack is feasible if qi is small enough and

the server reuses Diffie-Hellman exponents for sufficiently many requests.

The attacker repeats this process for many different primes qi, and uses the Chinese remain-

der theorem to combine them modulo the product of the primes qi. The attacker can also

use the Pollard lambda algorithm to reconstruct any remaining bits of the exponent [207].

We note that the TLS False Start extension allows the server to send application data before

receiving the client’s authentication [201]. The specification only allows this behavior for

abbreviated handshakes, which do not include a full key exchange. If a full key exchange
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were allowed, the fact that the server authenticates first would allow a malicious client to

mount a mostly offline key recovery attack.

2.3.2. OpenSSL

Prior to early 2015, OpenSSL defaulted to using static-ephemeral Diffie-Hellman values.

Server applications generate a fresh Diffie-Hellman secret exponent on startup, and reuse

this exponent until they are restarted. A server would be vulnerable to small subgroup

attacks if it chose a DSA prime, explicitly configured the dh->length parameter to gen-

erate a short exponent, and failed to set SSL OP SINGLE DH USE to prevent repeated ex-

ponents. OpenSSL provides some test code for key generation which configures DSA

group parameters, sets an exponent length to the group order, and correctly sets the

SSL OP SINGLE DH USE to generate new exponents on every connection. We found this

test code widely used across many applications. We discovered that Unbound, a DNS re-

solver, used the same parameters as the tests, but without setting SSL OP SINGLE DH USE,

rendering them vulnerable to a key recovery attack. A number of other applications in-

cluding Lighttpd used the same or similar code with non-safe primes, but correctly set

SSL OP SINGLE DH USE.

In spring 2015, OpenSSL added explicit support for RFC 5114 groups [246], including the

ability for servers to specify a subgroup order in a set of Diffie-Hellman group parame-

ters. When the subgroup order is specified, the exponent length is automatically adjusted

to match the subgroup size. However, the update did not contain code to validate sub-

group order for key exchange values, leaving OpenSSL users vulnerable to precisely the key

recovery attack outlined in Section 2.3.1.

We disclosed this vulnerability to OpenSSL in January 2016. The vulnerability was patched

by including code to validate subgroup order when a subgroup was specified in a set of Diffie-

Hellman parameters and setting SSL OP SINGLE DH USE by default [247]. Prior to this patch,

any code using OpenSSL for DSA-style Diffie-Hellman parameters was vulnerable to small

subgroup attacks by default.
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Number of hosts that use. . .

Protocol Scan Date Total Hosts Diffie-Hellman
Non-Safe
Primes

Static
Exponents

Static Exponents and
Non-Safe Primes

HTTPS 2/2016 40,578,754 10,827,565 1,661,856 964,356 309,891
POP3S 10/2015 4,368,656 3,371,616 26,285 32,215 25
STARTTLS 10/2015 3,426,360 3,036,408 1,186,322 30,017 932
SSH 10/2015 15,226,362 10,730,527 281 1,147 0
IKEv1 2/2016 2,571,900 2,571,900 340,300 109 0
IKEv2 2/2016 1,265,800 1,265,800 177,000 52 0

Table 4: IPv4 non-safe prime and static exponent usage—Although non-safe primes
see widespread use across most protocols, only a small number of hosts reuse exponents and
use non-safe primes; these hosts are prime candidates for a small subgroup key recovery
attack.

Exim [122], a popular mail server that uses OpenSSL, provides a clear example of the fragile

situation created by this update. By default, Exim uses the RFC 5114 Group 23 parameters

with OpenSSL, does not set an exponent length, and does not set SSL OP SINGLE DH USE.

In a blog post, an Exim developer explains that because of “numerous issues with automatic

generation of DH parameters”, they added support for fixed groups specified in RFCs and

picked Group 23 as the default [253]. Exim narrowly avoided being fully vulnerable to a

key recovery attack by not including the size of the subgroup generated by q in the Diffie-

Hellman parameters that it passes to OpenSSL. Had this been included, OpenSSL would

have automatically shortened the exponent length, leaving the server fully vulnerable to

a key recovery attack. For this group, an attacker can recover 130 bits of information

about the secret exponent using 233 online queries, but this does not allow the attacker to

recover the server’s 2048-bit exponent modulo the correct 224-bit group order q as the small

subgroup orders qi are all relatively prime to q.

We looked at several other applications as well, but did not find them to be vulnerable to

key recovery attacks (Table 2).

2.3.3. Other Implementations

We examined the source code of multiple TLS implementations (Table 3). Prior to January

2016, no TLS implementations that we examined validated group order, even for the well-

known DSA primes from RFC 5114, leaving them vulnerable to small subgroup confinement

attacks.
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Most of the implementations we examined attempt to match exponent length to the per-

ceived strength of the prime. For example, Mozilla Network Security Services (NSS), the

TLS library used in the Firefox browser and some versions of Chrome [135, 231], uses NIST’s

“comparable key strength” recommendations on key management [50] to determine secret

exponent lengths from the length of the prime. [229] Thus NSS uses 160-bit exponents with

a 1024-bit prime, and 224-bit exponents with a 2048-bit prime. In fall 2015, NSS added an

additional check to ensure that the shared secret gxaxb 6≡ 1 mod p [230].

Several implementations go to elaborate lengths to match exponent length to perceived

prime strength. The Cryptlib library fits a quadratic curve to the small exponent attack

cost table in the original van Oorschot paper [300] and uses the fitted curve to determine

safe key lengths [159]. The Crypto++ library uses an explicit “work factor” calculation,

evaluating the function 2.4n1/3(log n)2/3 [181]. Subgroup order and exponent lengths are set

to twice the calculated work factor. The work factor calculation is taken from a 1995 paper

by Odlyzko on integer factorization [241]. Botan, a C++ cryptography and TLS library,

uses a similar work factor calculation, derived from RFC 3766 [160], which describes best

practices as of 2004 for selecting public key strengths when exchanging symmetric keys.

RFC 3766 uses a similar work factor algorithm to Odlyzko, intended to model the running

time of the number-field sieve. Botan then doubles the length of the work factor to obtain

subgroup and exponent lengths [210].

2.3.4. Measurements

We used ZMap [114] to probe the public IPv4 address space for hosts serving three TLS-

based protocols: HTTPS, SMTP+STARTTLS, and POP3S. To determine which primes

servers were using, we sent a ClientHello message containing only ephemeral Diffie-

Hellman cipher suites. We combined this data with scans from Censys [2] to determine

the overall population. The results are summarized in Table 4.

In August 2016, we conducted additional scans of a random 1% sample of HTTPS hosts

on the Internet. First, we checked for nontrivial small subgroup attack vulnerability. For
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servers that sent us a prime p such that p−1 was divisible by 7, we attempted a handshake

using a client key exchange value of g7 mod p, where g7 is a generator of a subgroup of

order 7. (7 is the smallest prime factor of p− 1 for Group 22.) When we send g7, we expect

to correctly guess the PreMasterSecret and complete the handshake with one seventh

of hosts that do not validate subgroup order. In our scan, we were able to successfully

complete a handshake with 1477 of 10714 hosts that offered a prime such that p − 1 was

divisible by 7, implying that approximately 96% of these hosts fail to validate subgroup

order six months after OpenSSL pushed a patch adding group order validation for correctly

configured groups.

Second, we measured how many hosts performed even the most basic validation of key

exchange values. We attempted to connect to HTTPS hosts with the client key exchange

values of yc = 0 mod p, 1 mod p,−1 mod p. As Table 5 shows, we found that over 5% of

hosts that accepted DHE ciphersuites accepted the key exchange value of −1 mod p and

derived the PreMasterSecret from it. These implementations are vulnerable to a trivial

version of the small subgroup confinement attacks described in Section 2.3.1, for any prime

modulus p. By examining the default web pages of many of these hosts, we identified

products from several notable companies including Microsoft, Cisco, and VMWare. When

we disclosed these findings, VMWare notified us that they had already applied the fix in the

latest version of their products; Microsoft acknowledged the missing checks but chose not to

Key Exchange Value Support DHE Accepted

0 mod p 143.5 K 87
1 mod p 142.2 K 4.9 K
−1 mod p 143.5 K 7.6 K
g7 mod p 10.7 K 1.5 K

Table 5: TLS key exchange validation—We performed a 1% HTTPS scan in August
2016 to check if servers validated received client key exchange values, offering generators of
subgroups of order 1, 2 and 7. Our baseline DHE support number counts hosts willing to
negotiate a DHE key exchange, and in the case of g7, if p − 1 is divisible by 7. We count
hosts as “Accepted” if they reply to the ClientKeyExchange message with a Finished

message. For g7, we expect this to happen with probability 1/7, suggesting that nearly all
of the hosts in our scan did not validate subgroup order.
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Group Host Counts

Source Prime Size Subgroup Size HTTPS SMTP POP3S SSH

RFC 5114 Group 22 1024 160 1,173,147 145 86 0
Amazon Load Balancer 1024 160 277,858 0 1 0
JDK 768 160 146,491 671 16,515 0
JDK 1024 160 52,726 2,445 9,510 0
RFC 5114 Group 24 2048 256 3,543 5 0 6
JDK 2048 224 982 12 20 0
Epson Device 1024 < 948 372 0 0 0
RFC 5114 Group 23 2048 224 371 1,140,363 2 0
Mistyped OpenSSL 512 512 497 0 717 0 0

Other Non-Safe Primes — — 6,366 41,964 151 275
Safe Primes — — 9,165,709 1,850,086 3,345,331 10,730,246

Total 10,827,565 3,036,408 3,371,616 10,730,527

Table 6: IPv4 top non-safe primes—Nine non-safe primes account for the majority of
hosts using non-safe primes.

include them since they only use safe primes, and adding the checks may break functionality

for some clients that were sending unusual key exchange values; and Cisco informed us that

they would investigate the issue.

Of 40.6 M total HTTPS hosts found in our scans, 10.8 M (27%) supported ephemeral Diffie-

Hellman, of which 1.6 M (4%) used a non-safe prime, and 309 K (0.8%) used a non-safe

prime and reused exponents across multiple connections, making them likely candidates

for a small subgroup key recovery attack. We note that the numbers for hosts reusing

exponents are an underestimate, since we only mark hosts as such if we found them using

the same public Diffie-Hellman value across multiple connections, and some load balancers

that cycle among multiple values might have evaded detection.

While 77% of POP3S hosts and 39% of SMTP servers used a non-safe prime, a much smaller

number used a non-safe prime and reused exponents (¡0.01% in both protocols), suggesting

that the popular implementations (Postfix and Dovecot [119]) that use these primes follow

recommendations to use ephemeral Diffie-Hellman values with DSA primes.

Table 6 shows nine groups that accounted for the majority of non-safe primes used by hosts

in the wild. Over 1.17 M hosts across all of our HTTPS scans negotiated Group 22 in a key

exchange. To get a better picture of which implementations provide support for this group,

we examined the default web pages of these hosts to identify companies and products, which
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we show in Table 7.

Of the the 307 K HTTPS hosts that both use non-safe primes and reuse exponents, 277 K (90%)

belong to hosts behind Amazon’s Elastic Load Balancer [36]. These hosts use a 1024-bit

prime with a 160-bit subgroup. We set up our own load balancer instance and found that the

implementation failed to validate subgroup order. We were able to use a small-subgroup key

recovery attack to compute 17 bits of our load balancer’s private Diffie-Hellman exponent

xs in only 3813 queries. We responsibly disclosed this vulnerability to Amazon. Amazon

informed us that they have removed Diffie-Hellman from their recommended ELB security

policy, and are encouraging customers to use the latest policy. In May 2016, we performed

additional scans and found that 88% of hosts using this prime no longer repeated exponents.

We give a partial factorization for p−1 in Table 13; the next largest subgroups have 61 and

89 bits and an offline attack against the remaining bits of a 160-bit exponent would take

271 time. For more details on the computation, see Section 2.6.

SSLeay [121], a predecessor for OpenSSL, includes several default Diffie-Hellman primes,

including a 512-bit prime. We found that 717 SMTP servers used a version of the OpenSSL

512-bit prime with a single character difference in the hexadecimal representation. The

resulting modulus that these servers use for their Diffie-Hellman key exchange is no longer

prime. We include the factorization of this modulus along with the factors of the resulting

Company Product(s) Count

Ubiquiti Networks airOS/EdgeOS 272,690
Cisco DPC3848VM Gateway 65,026
WatchGuard Fireware XTM 62,682
Supermicro IPMI 42,973
ASUS AiCloud 39,749
Electric Sheep Fencing pfSense 14,218
Bouygues Telecom Bbox 13,387
Other — 135,432

Table 7: HTTPS support for RFC5114 Group 22—In a 100% HTTPS scan performed
in October 2016, we found that of the 12,835,911 hosts that accepted Diffie-Hellman key
exchange, 901,656 used Group 22. We were able to download default web pages for 646,157
of these hosts, which we examined to identify companies and products.
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group order in Table 13. The use of a composite modulus further decreases the work required

to perform a small subgroup attack.

Although TLS also includes static Diffie-Hellman cipher suites that require a DSS certificate,

we did not include them in our study; no browser supports static Diffie-Hellman [168], and

Censys shows no hosts with DSS certificates, with only 652 total hosts with non-RSA or

ECDSA certificates.

2.4. IPsec

IPsec is a set of Layer-3 protocols which add confidentiality, data protection, sender au-

thentication, and access control to IP traffic. IPsec is commonly used to implement VPNs.

IPsec uses the Internet Key Exchange (IKE) protocol to determine the keys used to secure

a session. IPsec may use IKEv1 [164] or IKEv2 [188]. While IKEv2 is not backwards-

compatible with IKEv1, the two protocols are similar in message structure and purpose.

Both versions use Diffie-Hellman to negotiate shared secrets. The groups used are limited

to a fixed set of pre-determined choices, which include the DSA groups from RFC 5114,

each assigned a number by IANA [188, 193, 206].

IKEv1. IKEv1 [164, 212, 258] has two basic methods for authenticated key exchange: Main

Mode and Aggressive Mode. Main Mode requires six messages to establish the requisite

state. The initiator sends a Security Association (SA) payload, containing a selection of

cipher suites and Diffie-Hellman groups they are willing to negotiate. The responder selects

a cipher and responds with its own SA payload. After the cipher suite is selected, the initiator

and responder both transmit Key Exchange (KE) payloads containing public Diffie-Hellman

values for the chosen group. At this point, both parties compute shared key materials,

denoted SKEYID. When using signatures for authentication, SKEYID is computed SKEYID =

prf(Ni|Nr, g
xixr). For the other two authentication modes, pre-shared key and public-key

encryption, SKEYID is derived from the pre-shared key and session cookies, respectively, and

does not depend on the negotiated Diffie-Hellman shared secret.

Each party then in turn sends an authentication message (AUTH) derived from a hash over
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SKEYID and the handshake. The authentication messages are encrypted and authenticated

using keys derived from the Diffie-Hellman secret gxixr . The responder only sends her AUTH

message after receiving and validating the initiator’s AUTH message.

Aggressive Mode operates identically to Main Mode, but in order to reduce latency, the

initiator sends SA and KE messages together, and the responder replies with its SA, KE, and

AUTH messages together. In aggressive mode, the responder sends an authentication message

first, and the authentication messages are not encrypted.

IKEv2. IKEv2 [188, 189] combines the SA and KE messages into a single message. The

initiator provides a best guess ciphersuite for the KE message. If the responder accepts

that proposal and chooses not to renegotiate, the responder replies with a single message

containing both SA and KE payloads. Both parties then send and verify AUTH messages,

starting with the initiator. The authentication messages are encrypted using session keys

derived from the SKEYSEED value which is derived from the negotiated Diffie-Hellman shared

secret. The standard authentication modes use public-key signatures over the handshake

values.

2.4.1. Small Subgroup Attacks in IPsec

There are several variants of small subgroup attacks against IKEv1 and IKEv2. We describe

the attacks against these protocols together in this section.

Small subgroup confinement attacks. First, consider attacks that can be carried

out by an attacking initiator or responder. In IKEv1 Main Mode and in IKEv2, either

peer can carry out a small subgroup confinement attack against the other by sending a

generator of a small subgroup as its key exchange value. The attacking peer must then

guess the other peer’s view of the Diffie-Hellman shared secret to compute the session keys

to encrypt its authentication message, leading to a mostly online attack. However, in IKEv1

Aggressive Mode, the responder sends its AUTH message before the initiator, and this value

is not encrypted with a session key. If signature authentication is being used, the SKEYID

and resulting hashes are derived from the Diffie-Hellman shared secret, so the initiator can
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perform an offline brute-force attack against the responder’s authentication message to learn

their exponent in the small subgroup.

Now, consider a man-in-the-middle attacker. Bhargavan, Delignat-Lavaud, and Pironti [67]

describe a transcript synchronization attack against IKEv2 that relies on a small subgroup

confinement attack. A man-in-the-middle attacker initiates simultaneous connections with

an initiator and a responder using identical nonces, and sends a generator gi for a subgroup

of small order qi to each as its KE message. The two sides have a 1/qi chance of negotiating

an identical shared secret, so an authentication method depending only on nonces and

shared secrets could be forwarded, and the session keys would be identical.

If the attacker also has knowledge of the secrets used for authentication, more attacks are

possible. Similar to the attack described for TLS, such an attacker can use a small subgroup

confinement attack to force a connection to use weak encryption. The attacker only needs to

rewrite a small number of handshake messages; any further encrypted communications can

then be decrypted at leisure without requiring the man-in-the-middle attacker to continu-

ously rewrite the connection. We consider a man-in-the-middle attacker who modifies the

key exchange message from both the initiator and the responder to substitute a generator

gi of a subgroup of small order qi. The attacker must then replace the handshake authenti-

cation messages, which would require knowledge of the long-term authentication secret. We

describe this attack for each of pre-shared key, signatures, and public-key authentication.

For pre-shared key authentication in IKEv1 Main Mode, IKEv1 Aggressive Mode, and

IKEv2, the man-in-the-middle attacker must only know the pre-shared key to construct

the authentication hash; the authentication message does not depend on the negotiated

Diffie-Hellman shared secret. With probability 1/qi, the two parties will agree on the Diffie-

Hellman shared secret. The attacker can then brute force this value after viewing messages

encrypted with keys derived from it.

For signature authentication in IKEv1 Main Mode and in IKEv2, the signed hash trans-
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mitted from each side is derived from the nonces and the negotiated shared secret, which is

confined to one of qi possible values. The attacker must know the private signing keys for

both initiator and responder and brute force SKEYID from the received signature in order

to forge the modified authentication signatures on each side. The communicating parties

will have a qi chance of agreeing on the same value for the shared secret to allow the attack

to succeed. For IKEv1 Aggressive Mode, the attack can be made to succeed every time.

The responder’s key exchange message is sent together with their signature which depends

on the negotiated shared secret, so the man-in-the-middle attacker can brute force the qi

possible values of the responders private key xr and replace the responder’s key exchange

message with qxr
i , forging an appropriate signature with their knowledge of the signing key.

For public key authentication in IKEv1 Main Mode, IKEv1 Aggressive Mode, and IKEv2,

the attacker must know the private keys corresponding to the public keys used to encrypt

the ID and nonce values on both sides in order to forge a valid authentication hash. Since

the authentication does not depend on the shared Diffie-Hellman negotiated value, a man-

in-the-middle attacker must then brute force the negotiated shared key once they receives

a message encrypted with the derived key. The two parties will agree on their view of the

shared key with probability 1/qi, allowing the attack to succeed.

Small subgroup key recovery attacks. Similar to TLS, an IKE responder that reuses

private exponents and does not verify that the initiator key exchange values are in the correct

subgroup is vulnerable to a small subgroup key recovery attack. The most recent version

of the IKEv2 specification has a section discussing reuse of Diffie-Hellman exponents, and

states that “because computing Diffie-Hellman exponentials is computationally expensive,

an endpoint may find it advantageous to reuse those exponentials for multiple connection

setups” [188]. Following this recommendation could leave a host open to a key recovery

attack, depending on how exponent reuse is implemented. A small subgroup key recovery

attack on IKE would be primarily offline for IKEv1 with signature authentication and for

IKEv2 against the initiator.
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For each subgroup of order qi, the attacker’s goal is to obtain a responder AUTH message,

which depends on the secret chosen by the responder. If an AUTH message can be obtained,

the attacker can brute-force the responder’s secret within the subgroup offline. This is

possible if the server supports IKEv1 Aggressive Mode, since the server authenticates before

the client, and signature authentication produces a value dependent on the negotiated secret.

In all other IKE modes, the client authenticates first, leading to an online attack. The flow

of the attack is identical to TLS; for more details see Section 2.3.

Ferguson and Schneier [126] describe a hypothetical small-subgroup attack against the ini-

tiator where a man-in-the-middle attacker abuses undefined behavior with respect to UDP

packet retransmissions. A malicious party could “retransmit” many key exchange messages

to an initiator and potentially receive a different authentication message in response to each,

allowing a mostly offline key recovery attack.

2.4.2. Implementations

We examined several open-source IKE implementations to understand server behavior. In

particular, we looked for implementations that generate small Diffie-Hellman exponents,

repeat exponents across multiple connections, or do not correctly validate subgroup order.

Despite the suggestion in IKEv2 RFC 7296 to reuse exponents [188], none of the implemen-

tations that we examined reused secret exponents.

All implementations we reviewed are based on FreeS/WAN [3], a reference implementation

of IPSec. The final release of FreeS/Wan, version 2.06, was released in 2004. Version

2.04 was forked into Openswan [17] and strongSwan[285], with a further fork of Openswan

into Libreswan [5] in 2012. The final release of FreeS/WAN used constant length 256-bit

exponents but did not support RFC 5114 DSA groups, offering only the Oakley 1024-bit

and 1536-bit groups that use safe primes.

Openswan does not generate keys with short exponents. By default, RFC 5114 groups are

not supported, although there is a compile-time option that can be explicitly set to enable

support for DSA groups. strongSwan both supports RFC 5114 groups and has explicit
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Client key exchange public values offered. . .

Protocol Groups Offered Support 1 mod p −1 mod p gs mod p

IKEv1 Group 22 332.4K 82.6K 78.5K 332.4K
Group 23 333.4K 82.5K 82.5K 333.4K
Group 24 379.8K 93.9K 95.2K 379.8K
Baseline (Groups 2, 14, 22, 23, 24) 1139.3K – – –

IKEv2 Group 22 182.1K 553 553 181.9K
Group 23 181.9K 542 550 180.1K
Group 24 213.0K 2245 2173 200.0K
Baseline (Groups 2, 14, 19, 20, 22, 23, 24) 1203.7K – – –

Table 8: IKE group support and validation—We measured support for RFC5114 DSA
groups in IKEv1 and IKEv2 and test for key exchange validation by performing a series of
100% IPv4 scans in October 2016. For Group 23, gs is a generator of a subgroup with order
3, and for Groups 22 and 24, gs is a generator of a subgroup of order 7.

hard-coded exponent sizes for each group. The exponent size for each of the RFC 5114

DSA groups matches the subgroup size. However, these exponent sizes are only used if

the dh exponent ansi x9 42 configuration option is set. It also includes a routine inside

an #ifdef that validates subgroup order by checking that gq ≡ 1 mod p, but validation is

not enabled by default. Libreswan uses Mozilla Network Security Services (NSS) [231] to

generate Diffie-Hellman keys. As discussed in Section 2.3.3, NSS generates short exponents

for Diffie-Hellman groups. Libreswan was forked from Openswan after support for RFC 5114

was added, and retains support for those groups if it is configured to use them.

Although none of the implementations we examined were configured to reuse Diffie-Hellman

exponents across connections, the failure to validate subgroup orders even for the pre-

specified groups renders these implementations fragile to future changes and vulnerable to

subgroup confinement attacks.

Several closed source implementations also provide support for RFC 5114 Group 24. These

include Cisco’s IOS [95], Juniper’s Junos [185], and Windows Server 2012 R2 [223]. We

were unable to examine the source code for these implementations to determine whether or

not they validate subgroup order.

2.4.3. Measurements

We performed a series of Internet scans using ZMap to identify IKE responders. In our

analysis, we only consider hosts that respond to our ZMap scan probes. Many IKE hosts
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that filter their connections based on IP are excluded from our results. We further note that,

depending on VPN server configurations, some responders may continue with a negotiation

that uses weak parameters until they are able to identify a configuration for the connecting

initiator. At that point, they might reject the connection. As an unauthenticated initiator,

we have no way of distinguishing this behavior from the behaviour of a VPN server that

legitimately accepts weak parameters. For a more detailed explanation of possible IKE

responder behaviors in response to scanning probes, see Wouters [305].

In October 2016, we performed a series of scans offering the most common cipher suites and

group parameters we found in implementations to establish a baseline population for IKEv1

and IKEv2 responses. For IKEv1, the baseline scan offered Oakley groups 2 and 14 and

RFC 5114 groups 22, 23, and 24 for the group parameters; SHA1 or SHA256 for the hash

function; pre-shared key or RSA signatures for the authentication method; and AES-CBC,

3DES, and DES for the encryption algorithm. Our IKEv2 baseline scan was similar, but also

offered the 256-bit and 384-bit ECP groups and AES-GCM for authenticated encryption.

On top of the baseline scans, we performed additional scans to measure support for the non-

safe RFC 5114 groups and for key exchange parameter validation. Table 8 shows the results

of the October IKE scans. For each RFC 5114 DSA group, we performed four handshakes

with each host; the first tested for support by sending a valid client key exchange value, and

the three others tested values that should be rejected by a properly-validating host. We did

not scan using the key exchange value 0 because of a vulnerability present in unpatched

Libreswan and Openswan implementations that causes the IKE daemon to restart when it

receives such a value [26].

We considered a host to accept our key exchange value if after receiving the value, it

continued the handshake without any indication of an error. We found that 33.2% of IKEv1

hosts and 17.7% of IKEv2 hosts that responded to our baseline scans supported using one of

the RFC 5114 groups, and that a surprising number of hosts failed to validate key exchange

values. 24.8% of IKEv1 hosts that accepted Group 23 with a valid key exchange value

44



also accepted 1 mod p or −1 mod p as a key exchange value, even though this is explicitly

warned against in the RFC [249]. This behavior leaves these hosts open to a small subgroup

confinement attack even for safe primes, as described in Section 2.2.6.

For safe groups, a check that the key exchange value is strictly between 1 and p − 1 is

sufficient validation. However, when using non-safe DSA primes, it is also necessary to

verify that the key exchange value lies within the correct subgroup (i.e., yq ≡ 1 mod p). To

test this case, we constructed a generator of a subgroup that was not the intended DSA

subgroup, and offered that as our key exchange value. We did not find any IKEv1 hosts

that rejected this key exchange value after previously accepting a valid key exchange value

for the given group. For IKEv2, the results were similar with the exception of Group 24,

where still over 93% of hosts accepted this key exchange value. This suggests that almost

no hosts supporting DSA groups are correctly validating subgroup order.

We observed that across all of the IKE scans, 109 IKEv1 hosts and 52 IKEv2 hosts repeated

a key exchange value. This may be due to entropy issues in key generation rather than

static Diffie-Hellman exponents; we also found 15,891 repeated key exchange values across

different IP addresses. We found no hosts that used both repeated key exchange values and

non-safe groups. We summarize these results in Table 4.

2.5. SSH

SSH contains three key agreement methods that make use of Diffie-Hellman. The “Group 1”

and “Group 14” methods denote Oakley Group 2 and Oakley Group 14, respectively [311].

Both of these groups use safe primes. The third method, “Group Exchange”, allows server

to select a custom group [131]. The group exchange RFC specifies that all custom groups

should use safe primes. Despite this, RFC 5114 notes that group exchange method allows

for its DSA groups in SSH, and advocates for their immediate inclusion [206].

In all Diffie-Hellman key agreement methods, after negotiating cipher selection and group

parameters, the SSH client generates a public key exchange value yc = gxc mod p and sends

it to the server. The server computes its own Diffie-Hellman public value ys = gxs mod p
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and sends it to the client, along with a signature from its host key over the resulting shared

secret Y = gxsxc mod p and the hash of the handshake so far. The client verifies the

signature before continuing.

2.5.1. Small Subgroup Attacks in SSH

Small subgroup confinement attacks. An SSH client could execute a small subgroup

confinement attack against an SSH server by sending a generator gi for a subgroup of

small order qi as its client key exchange, and immediately receive the server’s key exchange

gxs mod p together with a signature that depends on the server’s view of the shared secret

Ys = gxs
i mod p. For small qi, this allows the client to brute force the value of xs mod qi

offline and compare to the server’s signed handshake to learn the correct value of xs mod qi.

To avoid this, the SSH RFC specifically recommends using safe primes, and to use exponents

at least twice the length of key material derived from the shared secret [131].

If client and server support Diffie-Hellman group exchange and the server uses a non-safe

prime, a man in the middle with knowledge of the server’s long-term private signing key

can use a small subgroup confinement attack to man-in-the-middle the connection without

having to rewrite every message. The attack is similar to the case of TLS: the man in the

middle modifies the server group and key exchange messages, leaving the prime unchanged,

but substituting a generator gi of a subgroup of small order qi for the group generator and gi

for the server’s key exchange value ys. The client then responds with a client key exchange

message yc = gxc
i mod p, which the man in the middle leaves unchanged. The attacker

then forges a correct signature for the modified server group and key exchange messages

and passes it to the client. The server’s view of the shared secret is gxcxs
i mod p, and the

client’s view of the shared secret is gxc
i mod p. As in the attack described for TLS, these

views are identical when xs ≡ 1 mod qi, so this connection will succeed with probability

1/qi. For a small enough qi, this enables a man in the middle to use a compromised server

signing key to decrypt traffic with a reasonable probability of success, while only requiring

tampering with the initial handshake messages, rather than having to actively rewrite the

entire connection for the duration of the session.
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Small subgroup key recovery attacks. Since the server immediately sends a signature

over the public values and the Diffie-Hellman shared secret, an implementation using static

exponents and non-safe primes that is vulnerable to a small subgroup confinement attack

would also be vulnerable to a mostly offline key recovery attack, as a malicious client would

only need to send a single key exchange message per subgroup.

2.5.2. Implementations

Censys [2] SSH banner scans show that the two most common SSH server implementations

are Dropbear and OpenSSH. Dropbear group exchange uses hard-coded safe prime param-

eters from the Oakley groups and validates that client key exchange values are greater than

1 and less than p− 1. While OpenSSH only includes safe primes by default, it does provide

the ability to add additional primes and does not provide the ability to specify subgroup

orders. Both OpenSSH and Dropbear generate fresh exponents per connection.

We find one SSH implementation, Cerberus SFTP server (FTP over SSH), repeating server

exponents across connections. Cerberus uses OpenSSL, but fails to set SSL OP SINGLE-

DH USE, which was required to avoid exponent reuse prior to OpenSSL 1.0.2f.

2.5.3. Measurements

Of the 15.2 M SSH servers on Censys, of which 10.7 M support Diffie-Hellman group ex-

change, we found that 281 used a non-safe prime, and that 1.1 K reused Diffie-Hellman

exponents. All but 26 of the hosts that reused exponents had banners identifying the

Cerberus SFTP server. We encountered no servers that both reused exponents and used

non-safe primes.

Key Exchange Value Handshake Initiated Accepted

0 mod p 175.6 K 5.7 K
1 mod p 175.0 K 43.9 K
−1 mod p 176.0 K 59.0 K

Table 9: SSH validation—In a 1% SSH scan performed in February 2016, we sent the key
exchange values yc = 0, 1 and p− 1. We count hosts as having initiated a handshake if they
send a SSH MSG KEX DH GEX GROUP, and we count hosts as “Accepted” if they reply to the
client key exchange message with a SSH MSG KEX DH GEX REPLY.

47



Prime Exact Order Known Exact Order Unknown

lg(p) 160 bits 224 bits 256 bits 300 bits lg(p) − 8 lg(p) − 32 lg(p) − 64 Unlikely DSA Likely DSA

512 3 0 0 0 5 0 0 760 43
768 4 0 0 4 2,685 0 0 220 1,402
1024 29 0 0 0 323 944 176 1,559 26,881
2048 0 1 1 0 0 0 0 1,128 4,890
3072 0 0 0 0 0 5 0 9 152
4096 4 0 0 0 0 0 0 20 183
8192 0 0 0 0 0 0 0 0 1
Other 0 0 0 0 0 0 0 400 15

Table 10: Distribution of orders for groups with non-safe primes—For groups for
which we were able to determine the subgroup order exactly, 160-bits subgroup orders are
common. We classify other groups to be likely DSA groups if we know that the subgroup
order is at least 8 bits smaller than the prime.

We performed a scan of 1% of SSH hosts in February 2016 offering the key exchange values

of yc = 0 mod p, 1 mod p and p − 1 mod p. As Table 9 shows, 33% of SSH hosts failed to

validate group order when we sent the key exchange value p − 1 mod p. Even when safe

groups are used, this behaviour allows an attacker to learn a single bit of the private ex-

ponent, violating the decisional Diffie-Hellman assumption and leaving the implementation

open to a small subgroup confinement attack (Section 2.3.1).

2.6. Factoring Group Orders of Non-Safe Primes

Across all scans, we collected 41,847 unique groups with non-safe primes. To measure the

extent to which each group would facilitate a small subgroup attack in a vulnerable imple-

mentation, we attempted to factor (p−1)/2. We used the GMP-ECM [150] implementation

of the elliptic curve method for integer factorization on a local cluster with 288 cores over

a several-week period to opportunistically find small factors of the group order for each of

the primes.

Given a group with prime p and a generator g, we can check whether the generator generates

the entire group or generates a subgroup by testing whether gqi ≡ 1 mod p for each factor

qi of (p− 1)/2. When gqi ≡ 1 mod p, then if qi is prime, we know that qi is the exact order

of the subgroup generated by g; otherwise qi is a multiple of the order of the subgroup.

We show the distribution of group order for groups using non-safe primes in Table 10. We

were able to completely factor p− 1 for 4,701 primes. For the remaining primes, we did not

obtain enough factors of (p− 1)/2 to determine the group order.
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Of the groups where we were able to deduce the exact subgroup orders, several thousand

had a generator for a subgroup that was either 8, 32, or 64 bits shorter than the prime

itself. Most of these were generated by the Xlight FTP server, a closed-source implemen-

tation supporting SFTP. It is not clear whether this behavior is intentional or a bug in an

implementation intending to generate safe primes. Primes of this form would lead to a more

limited subgroup confinement or key recovery attack.

Given the factorization of (p− 1)/2, and a limit for the amount of online and offline work

an attacker is willing to invest, we can estimate the vulnerability of a given group to a

hypothetical small subgroup key recovery attack. For each subgroup of order qi, where qi is

less than the online work limit, we can learn qi bits of the secret key via an online brute-force

attack over all elements of the subgroup. To recover the remaining bits of the secret key,

an attacker could use the Pollard lambda algorithm, which runs in time proportional to the

square root of the remaining search space. If this runtime is less than the offline work limit,

we can recover the entire secret key. We give work estimates for the primes we were able

to factor and the number of hosts that would be affected by such a hypothetical attack in

Table 11.

The DSA groups introduced in RFC 5114 [206] are of particular interest. We were able

to completely factor (p− 1)/2 for both Group 22 and Group 24, and found several factors

for Group 23. We give these factorizations in Table 13. In Table 12, we show the amount

of online and offline work required to recover a secret exponent for each of the RFC 5114

groups. In particular, an exponent of the recommended size used with Group 23 is fully

recoverable via a small subgroup attack with 33 bits of online work and 47 bits of offline

work.

2.7. Discussion

Small subgroup attacks require a number of special conditions to go wrong in order to be

feasible. For the case of small subgroup confinement attacks, a server must both use a non-

safe group and fail to validate subgroup order; the widespread failure of implementations
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Work (bits) HTTPS MAIL SSH

Exponent Online Offline Groups Hosts Groups Hosts Groups Hosts

160 20 30 3 2 3 7 0 0
160 30 45 517 1,996 1963 1,143,524 11 10
160 40 60 3,701 8,495 13,547 1,159,853 109 68
224 20 30 0 0 0 0 0 0
224 30 45 2 2 14 16 0 0
224 40 60 307 691 1039 1,141,840 3 1
256 20 30 0 0 0 0 0 0
256 30 45 0 0 1 1 0 0
256 40 60 42 478 180 1,140,668 0 0

Table 11: Full key recovery attack complexity—We estimate the amount of work
required to carry out a small subgroup key recovery attack, and show the prevalence of
those groups in the wild. Hosts are vulnerable if they reuse exponents and fail to check
subgroup order.

to implement or enable group order validation means that large numbers of hosts using

non-“safe” primes are vulnerable to this type of attack.

For a full key recovery attack to be possible the server must additionally reuse a small

static exponent. In one sense, it is surprising that any implementations might satisfy all of

the requirements for a full key recovery attack at once. However, when considering all of

the choices that cryptographic libraries leave to application developers when using Diffie-

Hellman, it is surprising that any protocol implementations manage to use Diffie-Hellman

securely at all.

We now use our results to draw lessons for the security and cryptographic communities,

provide recommendations for future cryptographic protocols, and suggest further research.

Group Exponent Size Online Work Offline Work

Group 22 160 8 72
Group 23 224 33 47
Group 24 256 32 94

Table 12: Attacking RFC 5114 groups—We show the log of the amount of work in bits
required to perform a small subgroup key recovery attack against a server that both uses
a static Diffie-Hellman exponent of the same size as the subgroup order and fails to check
group order.
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Factored
Source Completely? Order Factorization

RFC 5114 Group 22 Yes 2^3 * 7 * df * 183a872bdc5f7a7e88170937189 * 228c5a311384c02e1f287c6b7b2d * 5a85

7d66c65a60728c353e32ece8be1 * f518aa8781a8df278aba4e7d64b7cb9d49462353 * 1a3adf8

d6a69682661ca6e590b447e66ebd1bbdeab5e6f3744f06f46cf2a8300622ed50011479f18143d471

a53d30113995663a447dcb8e81bc24d988edc41f21

RFC 5114 Group 23 No 3^2 * 5 * 2b * 49 * 9d * 5e9a5 * 93ee1 * 2c3f0539 * 136c58359 * 1a30b7358d * 335

a378eb0d * 801c0d34c58d93fe997177101f80535a4738cebcbf389a99b36371eb * 22bbe4b573

f6fc6dc24fef3f56e1c216523b3210d27b6c078b32b842aa48d35f230324e48f6dc2a10dd23d28d3

82843a78f264495542be4a95cb05e41f80b013f8b0e3ea26b84cd497b43cc932638530a068ecc44a

f8ea3cc84139f0667100d426b60b9ab82b8de865b0cbd633f41366622011006632e0832e827febb7

066efe4ab4f1b2e99d96adfaf1721447b167cb49c372efcb82923b3731433cecb7ec3ebbc8d67ef4

41b5d11fb3328851084f74de823b5402f6b038172348a147b1ceac47722e31a72fe68b44ef4b

RFC 5114 Group 24 Yes 7 * d * 9f5 * 22acf * bd9f34b1 * 8cf83642a709a097b447997640129da299b1a47d1eb3750

ba308b0fe64f5fbd3 * 15adfe949ebb242e5cd0978fac1b43fdbd2e5b0c5f48924fbbd370195c0e

b20596d98ad0a9e3fd98876413d926f41a8b918d2ec4b018a30efe5e336bf3c7ce60d515cf46af5f

acf3bb389f68ad0c4ed2f0b1dbb970293741eb6509c64e731802259a639a7f57d4a9c0d9445241f5

bcdbdc50555b76d9c335c1fa4e11a8351f1bf4730dd67ffed877cc13e8ea40c7d51441c1f4e59155

ef1159eca75a2359f5e0284cd7f3b982c32e5c51dbf51b45f4603ef46bae528739315ca679703c1f

fcf3b44fe3da5999daadf5606eb828fc57e46561be8c6a866361

Amazon Load No 2 * 3 * 5 * edb * 181ac5dbfe5ce13b * 18aa349859e9e9de09b7d65 * 9414a18a7b575e8f4

Balancer 2f6cb2dbc22eb1fc21d4929 * 2de9f1171a2493d46a31d508b63532cdf86d21db6f50f717736fc4

b0b722856a504ed4916e0484fe4ba5f5f4a9fff28a1233b728b3d043aec37c4f138ffd58fe7a8c3c

1e93cb52be527395e45db487b61daadded9c8ec35

Mistyped OpenSSL Yes 5 * b * a9b461e1636f4b51ef * 1851583cf5f9f731364e4aa6cdc2cac4f01* 3f0b39cacfc086

512 “Prime” Factors df4baf46c7fa7d1f4dfe184f9d22848325a91c519f79023a4526d8369e86b

Mistyped OpenSSL Yes 2^13 * 3^3 * 5^2 * 11^2 * 269 * 295 * 4d5 * 97c3 * 9acfe7 * 8cdd0e128f * 385

512 Order Factors b564eecd613536818f949 * 146d410923e999f8c291048dc6feffcebf8b9e99eec9a4d585f87422

e49b393256c23c9

Table 13: Group order factorization for common non-safe primes—We used the
elliptic curve method to factor (p − 1)/2 for each of the non-safe primes we found while
scanning, as well as the mistyped OpenSSL “prime”.

RFC 5114 design rationale. Neither NIST SP 800-56A nor RFC 5114 give a technical

justification for fixing a much smaller subgroup order than the prime size. Using a shorter

private exponent comes with performance benefits. However, there are no known attacks

that would render a short exponent used with a safe prime less secure than an equivalently-

sized exponent used with in a subgroup with order matched to the exponent length. The

cryptanalysis of both short exponents and small subgroups are decades old.

If anything, the need to perform an additional modular exponentiation to validate subgroup

order makes Diffie-Hellman over DSA groups more expensive than the safe prime case, for

identical exponent lengths. As a more minor effect, a number field sieve-based cryptanalytic

attack against a DSA prime is computationally slightly easier than against a safe prime.

The design rationale may have its roots in preferring to implicitly use the assumption that

Diffie-Hellman is secure for a small prime-order subgroup without conditions on exponent

length, rather than assuming Diffie-Hellman with short exponents is secure inside a group

of much larger order. Alternatively, this insistence may stem from the fact that the security

of DSA digital signatures requires the secret exponent to be uniformly random, although
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no such analogous attacks are known for Diffie-Hellman key exchange [234]. Unfortunately,

our empirical results show that the necessity to specify and validate subgroup order for

Diffie-Hellman key exchange makes implementations more fragile in practice.

Cryptographic API design. Most cryptographic libraries are designed with a large num-

ber of potential options and knobs to be tuned, leaving too many security-critical choices

to the developers, who may struggle to remain current with the diverse and ever-increasing

array of cryptographic attacks. These exposed knobs are likely due to a prioritization of

performance over security. These confusing options in cryptographic implementations are

not confined to primitive design: Georgiev et al. [146] discovered that SSL certificate val-

idation was broken in a large number of non-browser TLS applications due to developers

misunderstanding and misusing library calls. In the case of the small subgroup attacks,

activating most of the conditions required for the attack will provide slight performance

gains for an application: using a small exponent decreases the work required for expo-

nentiation, reusing Diffie-Hellman exponents saves time in key generation, and failing to

validate subgroup order saves another exponentiation. It is not reasonable to assume that

applications developers have enough understanding of algebraic groups to be able to make

the appropriate choices to optimize performance while still providing sufficient security for

their implementation.

Cryptographic standards. Cryptographic recommendations from standards committees

are often too weak or vague, and, if strayed from, provide little recourse. The purpose of

standardized groups and standardized validation procedures is to help remove the onus from

application developers to know and understand the details of the cryptographic attacks. A

developer should not have to understand the inner workings of Pollard lambda and the

number field sieve in order to size an exponent; this should be clearly and unambiguously

defined in a standard. However, the tangle of RFCs and standards attempting to define

current best practices in key generation and parameter sizing do not paint a clear picture,

and instead describe complex combinations of approaches and parameters, exposing the
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fragility of the cryptographic ecosystem. As a result, developers often forget or ignore edge

cases, leaving many implementations of Diffie-Hellman too close to vulnerable for comfort.

Rather than provide the bare minimums for security, the cryptographic recommendations

from standards bodies should be designed for defense-in-depth such that a single mistake

on the part of a developer does not have disastrous consequences for security. The principle

of defense-in-depth has been a staple of the systems security community; cryptographic

standards should similarly be designed to avoid fragility.

Protocol design. The interactions between cryptographic primitives and the needs of

protocol designs can be complex. The after-the-fact introduction of RFC 5114 primes

illustrates some of the unexpected difficulties: both IKE and SSH specified group validation

only for safe primes, and a further RFC specifying extra group validation checks needed to be

defined for IKE. Designing protocols to encompass many unnecessary functions, options, and

extensions leaves room for implementation errors and makes security analysis burdensome.

IKE is a notorious example of a difficult-to-implement protocol with many edge cases.

Just Fast Keying (JFK), a protocol created as a successor to IKEv1, was designed to

be an exceedingly simple key exchange protocol without the unnecessarily complicated

negotiations present in IKE [30]. However, the IETF instead standardized IKEv2, which

is nearly as complicated as IKEv1. Protocols and cryptosystems should be designed with

the developer in mind—easy to implement and verify, with limited edge cases. The worst

possible outcome is a system that appears to work, but provides less security than expected.

To construct such cryptosystems, secure-by-default primitives are key. As we show in

this paper, finite-field based Diffie-Hellman has many edge cases that make its correct use

difficult, and which occasionally arise as bugs at the protocol level. For example, SSH and

TLS allow the server to generate arbitrary group parameters and send them to the client,

but provide no mechanism for the server to specify the group order so that the client can

validate the parameters. Diffie-Hellman key exchange over groups with different properties

cannot be treated as a black-box primitive at the protocol level.
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Recommendations. As a concrete recommendation, modern Diffie-Hellman implemen-

tations should prefer elliptic curve groups over safe curves with proper point validation [58].

These groups are much more efficient and have shorter key sizes than finite-field Diffie-

Hellman at equivalent security levels. The TLSv1.3 standard includes a list of named curves

designed to modern security standards [107]. If elliptic curve Diffie-Hellman is not an op-

tion, then implementations should follow the guidelines outlined in RFC 7919 for selecting

finite field Diffie-Hellman primes [148]. Specifically, implementations should prefer “safe”

primes of documented provenance of at least 2048 bits, validate that key exchange values

are strictly between 1 and p − 1, use ephemeral key exchange values for every connection,

and use exponents of at least 224 bits.
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CHAPTER 3 : Measuring elliptic curve Diffie-Hellman

3.1. Introduction

In 2015, Nick Sullivan outlined a theoretical parameter downgrade attack against TLS

versions 1.0–1.2 which he named CurveSwap [289]. The main observation behind CurveSwap

is that in the TLS handshake, the client’s list of supported elliptic curves is not authenticated

until the client finished message, and is authenticated only by the negotiated Diffie-Hellman

secret. Thus if a man-in-the-middle attacker were able to precompute or solve an elliptic

curve discrete log online for some curve, they could downgrade the connection to use that

weak curve, allowing them to decrypt or modify the encrypted communications. The attack

was inspired by the FREAK [61] and Logjam [29] cipher suite downgrade attacks against

TLS.

In his 31C3 presentation, Sullivan concluded that the weakest commonly supported curve

was sect163k, supported by 4.3% of sampled clients and 0.13% of the Alexa top 100,000 web

sites. Since a 160-bit elliptic curve discrete log has yet to be publicly demonstrated, let alone

computed within a TLS handshake timeout, the attack appeared to remain theoretical.

In this paper, we evaluate the feasibility of a practical CurveSwap attack by exploring the

protocol-level and implementation-level attack surface of elliptic curve usage in TLS, IPsec,

SSH, and JSON Web Encryption (JWE). There are a number of potential vulnerabilities

in elliptic curve implementations that taken in combination could enable a CurveSwap

attack, including support for curves of small order, point validation failures, and twist

insecurity. We performed extensive passive and active measurements of these behaviors and

implementation choices among clients and servers. Among our scans, we found populations

of servers that accept invalid curve points years after flaws have been publicly disclosed and

patched in common libraries, little vulnerability to twist attacks, and significant populations

of hosts that repeat public key exchange values both across IP addresses and across multiple

scans. However, these behaviors were not present in combinations that would lead to an
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effective attack for vulnerable curves. Ultimately we conclude that TLS, IPsec, and SSH do

not appear to be vulnerable on any significant scale to a feasible CurveSwap attack based

on the vectors we evaluated.

Some protocol designs are much more resistant to CurveSwap-style downgrade attacks than

others. We observe that the design of SSH and TLSv1.3, where the server uses their long-

term authentication key to sign the entire handshake, are much more resistant to parameter

downgrade attacks like CurveSwap than earlier versions of TLS.

Our survey of elliptic curve support for TLS, IPsec, and SSH gives a snapshot of elliptic

curve deployments in 2017. The NIST-standardized curve secp256r1 is the most widely

supported curve in our measurements, while support for other curves in our data was in

general lower, with a long tail of more unusual standardized curves. Curve support varied

wildly by protocol. We found small but nontrivial support for a number of 160-bit curves

that only offer 80 bits of security, although only a negligible number of clients or servers

preferred these curves over stronger curves. We were surprised to discover that very few

hosts supported secp224r1 on any protocol, many hosts failed to respect a client’s selection

of elliptic curves, and that essentially no TLS hosts servers supported custom curves.

We also extensively examined source code, and discovered several vulnerabilities. The JWE

protocol standard fails to mention that implementations need to perform curve validity

checks, and we discovered a number of JWE libraries that were vulnerable to a classic

invalid curve attack allowing an attacker to recover the private key, including Cisco’s node-

jose, jose2go, Nimbus JOSE+JWT and jose4j. We also discovered flaws in NSS and Java’s

scalar point multiplication routines that could cause them to output incorrect results given

certain inputs, although these flaws do not appear to be exploitable.

3.1.1. Our Contributions

In this paper, we perform a broad survey of elliptic curve cryptography on the public

Internet. The maze of different standards, curves, and implementation choices for elliptic

curve cryptography makes a holistic evaluation of our cryptographic infrastructure quite
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challenging. We measure the landscape of elliptic curve implementations on the Internet

with passive and active measurements, describe known and new attack vectors against ECC,

and examine source code to find implementation vulnerabilities.

• Active Measurements We perform Internet-wide scans of TLS, SSH, and IPsec

servers to measure elliptic curve support and implementation behaviors.

• Passive Measurements We measure TLS client support and preferences for elliptic

curves.

• Protocol Analysis We explore analogues of CurveSwap for IPsec and SSH. We also

survey attacks against elliptic curves and evaluate their impact on the CurveSwap

attack for TLS.

• Source Code Analysis We extensively examined source code and found widespread

invalid curve vulnerabilities in JWE libraries, as well as flawed scalar multiplication

routines in Java and NSS.

Although some elliptic curve implementations have fallen victim to known implementation

pitfalls, for TLS, SSH, and IPsec, most hosts appear to resist known attacks. We conclude

that protocol designers should continue to build in defense in depth.

3.1.2. Disclosure and Mitigations

In February 2017 we submitted bug reports to the developers of several libraries imple-

menting JSON Web Encryption (JWE, RFC 7516) that were vulnerable to invalid curve

attacks, including Cisco’s node-jose, jose2go, Nimbus JOSE+JWT and jose4j. They have

all acknowledged the issue and released a patch. We also described the nature of the invalid

curve attack applied to JWE in a blog post [274]. We reported the NSS vulnerability to

Mozilla in March 2017. NSS fixed the issue in the 3.31 release. We reported the Java

vulnerability to Oracle in March 2017. Oracle issued a patch that fixes the issue on July

18, 2017. We also disclosed these vulnerabilities to the public in a blog post [275].
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3.2. Preliminaries

Elliptic curve cryptography can be used for key exchange, asymmetric encryption, or for

signatures. Among widely implemented public key primitives, elliptic curves offer the best

resistance to cryptanalytic attacks on classical computers, and as a result can be used with

smaller key sizes than RSA or finite field based discrete logarithm schemes. In this paper,

we focus on elliptic curve Diffie-Hellman key exchange.

3.2.1. Elliptic Curve Cryptography

A number of standards exist defining elliptic curves for use in cryptography. In 2000, the

Certicom SECG published the SEC 2 specification [80] giving parameters for 33 elliptic

curves of varying sizes and properties. Several of these curves were later standardized by

NIST, ISO, and ANSI under different names. Other proposals for curves include the Oakley

elliptic curve groups [249], the Brainpool curves [219], and more recent constructions such

as Curve25519 [55], Curve41417 [60], and Curve448 [161].

Prime curves. An elliptic curve E(Fp) over a prime finite field Fp with p 6= 2 is the set

of points P = (x, y) ∈ F2
p that are solutions to some equation E over Fp, together with an

extra point O, the point at infinity. It is possible to define an addition law, so that these

points form a group.

Such curves are often specified in Weierstrass form E : y2 = x3 + ax + b (mod p) where

a, b ∈ Fp are domain parameters that define the curve. Every elliptic curve over a finite field

Fp of a prime order can be converted to this form. Some widely-used examples of prime

curves are the NIST curves from FIPS 186-4 [239] and the Brainpool curves [219].

Cryptographic applications typically work within a cyclic subgroup of prime order n. This

group will be generated by a base point G ∈ E(Fp).

One can compute an element kG of this group using a scalar-by-point multiplication al-

gorithm. The underlying hardness assumption in most elliptic curve cryptography is the

elliptic curve discrete logarithm problem: given an elliptic curve E(Fp), a generator G, and
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a point P it is hard to find a k satisfying P = kG. The best known algorithms for solving

the elliptic curve discrete logarithm problem run in square root time in the order of the

subgroup generated by the elliptic curve’s generator.

Binary curves. Elliptic curves over characteristic 2 finite fields F2m are specified as the

set of points P = (x, y) ∈ F2
2m that are solutions to the equation E : y2 + xy = x3 + ax2 + b

in F2m .

Recent progress on the elliptic curve discrete logarithm problem for small-characteristic

fields has raised concern about the security of binary curves, although there are not yet any

subexponential time attacks against curves standardized for use in the network protocols

we study in this paper [134, 278].

The SEC 2 standard [80] includes parameters for a number of binary curves. The Oakley

elliptic curve groups [249] are also binary curves.

Domain parameters. An elliptic curve group is defined by a set of domain parameters

which consist of the following values: q, an integer that defines the order of the finite field

Fq of the curve; a and b, the coefficients of the curve equation; G, a generator of a subgroup

of prime order on the curve; n, the order of the subgroup that G generates; and h, the

cofactor, which is equal to the number of curve points w divided by n.

3.2.2. ECDH Key Exchange

In this paper, we are primarily interested in elliptic curve Diffie-Hellman key exchange. To

negotiate a shared secret using ECDH, Alice generates a random private key ka, generates

her public value Qa = kaG, and sends Qa to Bob. Bob generates a random private key kb,

generates his public value Qb = kbG, and sends Qb to Alice. Alice can then compute the

shared secret as P = kaQb and Bob can compute it as P = kbQa. Real-world protocols

then use P to derive symmetric keys that Alice and Bob use to establish an authenticated

and encrypted communication channel.
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3.2.3. Scalar-by-point multiplication algorithms

The most important operation on elliptic curves for the cryptographic algorithms we study

in this paper is scalar-by-point multiplication. That is, given a point P on an elliptic curve

and an integer k, compute the curve point kP .

Point representation. Elliptic curve points can be represented in many different forms.

The canonical representation uses affine coordinates, where a point on the curve is repre-

sented by a pair of integers (x, y) that satisfy the curve equation. This is called uncompressed

point format. However, this representation requires an expensive field inversion operation

to add two elliptic curve points.

Most applications of elliptic curves use only the x-coordinate of a point. A valid x-coordinate

could correspond to two possible y coordinates of points on the curve, the point (x, y) or

the point (x,−y); these can be recovered from x using the curve equation. Thus a point can

be uniquely represented by sending only the x-coordinate and the sign of the y-coordinate;

this is called compressed format.

Double and add. The simplest algorithm to compute scalar-by-point multiplication is

double-and-add. This algorithm iteratively applies the group addition law and a doubling

procedure. There are a number of variants of this algorithm, such as sliding windows.

However, this algorithm has the drawback that it is not secure against side channel attacks.

It also requires both the x and y coordinates of the input points.

Montgomery ladder. Some elliptic curves can also be specified in Montgomery form [227]:

E : By2 = x3 + Ax2 + x. An advantage of this form is that it allows a very fast algorithm

for scalar-by-point multiplication using only the x coordinate, the Montgomery ladder.

The single-coordinate version of the Montgomery ladder algorithm for scalar-by-point mul-

tiplication requires fewer arithmetic operations than standard Weierstrass scalar-by-point

multiplication methods and offers better side channel resistance [184, 243]. Curve25519, in-
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troduced by [55], is specified in Montgomery form, as are Curve41417 [60] and Curve448 [161]

(the Goldilocks curve).

Brier-Joye. It is possible to compute an x-coordinate only scalar multiplication for

Weierstrass-form elliptic curves using the Brier-Joye ladder [78]. This algorithm is con-

stant time and has good side channel resistance. Unfortunately, it is slow.

3.2.4. Invalid Point Attacks

For most curves, ECDH implementations must validate that the public key exchange mes-

sages they receive are valid points on the correct elliptic curve, otherwise they may be

vulnerable to a variety of attacks.

Small subgroup attacks. Small subgroup attacks against prime-field Diffie-Hellman

were described by Lim and Lee [207]. In this type of attack, the cryptographic domain

parameters specify a subgroup within a larger group. If the cofactor of the order of the

correct subgroup has small prime factors pi, an adversary could send a key exchange that

lies in a subgroup of order pi instead of the correct subgroup and use the victim’s response to

deduce the victim’s secret modulo pi. The attacker can then repeat this attack for different

primes and use the Chinese remainder theorem to reconstruct the victim’s secret modulo

the product of these primes.

Elliptic curves that are standardized for cryptographic use are typically chosen to have

small cofactors to limit the number of elements of small order on the curve and to limit the

checks required to protect against these small subgroup attacks [55]. NIST recommends a

maximum cofactor for various curve sizes [239]. The NIST curves specified in FIPS 186-4

have cofactor 1, 2, or 4. Curves in Montgomery form always have a cofactor that is a

multiple of 4 [227].

One can also protect against this type of attack by checking that a received point P has

the correct group order by checking that nP = O. Alternatively, one can use ECDH with

cofactor multiplication, in which both parties multiply their Diffie-Hellman shared secret
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by h [79].

Invalid curve attacks. A double-and-add-based implementation of scalar multiplication

that does not validate key exchange values is vulnerable to a much more severe invalid curve

attack. In an invalid curve attack, the attacker sends an elliptic curve point of small order

that lies on a different curve. This attack is due to Antipa et al. [39].

In a Weierstrass-form curve, textbook double-and-add algorithms are independent of the

curve parameter b, so an attacker can search for values b′ such that a curve E′ : y2 =

x3 + ax + b′ has points Pi = (xi, yi) of small order qi and send them to the victim. If the

victim does not verify that the received key exchange value and computed shared secret are

on the correct curve and has the correct order, the victim’s response may allow the attacker

to compute the victim’s secret key modulo qi.

In contrast to the Lim-Lee attack for prime-field Diffie-Hellman where an attacker is limited

to the prime factors of the cofactor of the correct subgroup, the attacker in this elliptic curve

scenario has much more leeway in choosing curves that have points of suitably small coprime

order.

This attack can be prevented if an implementation validates that the points it receives lie

on the correct curve. This attack is also somewhat mitigated by scalar-by-point multiplica-

tion algorithms that use only the x-coordinate, although these may be vulnerable to twist

attacks, described below.

Curve twist attacks. A Weierstrass curve of the form E : y2 = x3 + ax + b mod p is

related to a twisted curve, E′ : dy2 = x3 + ax+ b.

Any x-coordinate has an associated pair of y coordinates that are either on the original curve

or some twisted curve. If d is a quadratic residue, i.e., if there is a w with w2 = d mod p,

then E and E′ are isomorphic mod p and thus have equivalent security. If d is a quadratic

non-residue, E′ is not isomorphic to E and the curve orders satisfy |E|+ |E′| = p+ 2. This
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is called a nontrivial quadratic twist.

An implementation that uses a single-coordinate ladder such as the Montgomery ladder

might be vulnerable to a form of invalid curve attacks in which the attacker sends an x-

coordinate that lies on a weak twist of the correct curve. This type of attack is due to

Foque, Lercier, Réal, and Valette [128].

The NIST-standardized curves secp192r1 and secp224r1 have weak twists that reduce the

cost of such an attack to 248 and 259, respectively[58, 128]. The binary curves ec2n 155 and

ec2n 185 also have weak twists which reduce the attack cost to 233 and 247, respectively.

secp256r1 and secp384r1 have secure twists. Recent curve constructions such as Curve25519

were explicitly designed to have strong twists and not require an additional validation step.

Otherwise, implementations must verify that the received coordinate lies on the correct

curve.

Curve downgrade attacks. In a curve downgrade attack, a man-in-the-middle adversary

interferes with a connection to cause the communicating parties to choose a weaker curve

than they would otherwise negotiate. In Section 3.5, we present the CurveSwap attack

against TLS, and study the feasibility of similar curve downgrade attacks against SSH and

IPsec.

3.2.5. ECC in TLS

Elliptic curve use in TLS versions 1.2 and earlier is specified by RFC 4492 [72]. Elliptic

curves can be used in static elliptic curve Diffie-Hellman (ECDH) and ephemeral ECDH

(ECDHE) key exchange, and ECDSA signatures. In this paper, we focus on ECDHE key

exchange.

Clients declare support for elliptic curves by including ECHD(E) cipher suites in their list

of supported cipher suites and via the supported elliptic curves and the supported points

format extensions in the client hello message. This message consists of a list of supported

elliptic curves sorted by client preference, and a list of the point formats that the client can
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parse. The list of supported elliptic curves can include 25 of the named curves specified in

SEC 2 [80], and can also indicate support for arbitrary explicit prime or binary curves.

If the server chooses an ECDHE cipher suite, the server key exchange message includes an

indication of the server’s chosen curve (either named or a set of parameters for an explicit

curve), the server’s public key exchange value given as the encoding type and a byte string

representing an elliptic curve point, and a digital signature on these two values using the

server’s certificate key. Servers typically select the most secure elliptic curve supported by

the client, but may be configured to respect client preference. If the server has a preferred

list of curves and the client supports an overlapping set of curves, any connection between

the two will use the preferred curve of the server.

The client key exchange message includes the client’s public key exchange value on the

negotiated curve, which specifies the encoding type and a byte string representing an elliptic

curve point.

The premaster secret is computed as the x-coordinate of the ECDH shared secret elliptic

curve point. The premaster secret is then used to derive a set of encryption and authenti-

cation keys. The client uses the derived keys to authenticate the entire handshake in the

client finished message, and the server does the same in the server finished message.

In TLSv1.3, only (EC)DHE key exchange methods are allowed, the keying material is

derived from the hash of the entire transcript of the handshake as described in RFC 7627 [68],

and the server signs the hash of the transcript with its certificate key, which prevents any

type of downgrade attack other than a full man-in-the-middle attack by an attacker who

has compromised the server’s private certificate key.

3.2.6. ECC in SSH

Elliptic curve use in SSH is specified by RFC 5656 [284]. Elliptic curves can be used in

ECDH or ECMQV key exchange and ECDSA for digital signatures. In the SSH handshake,

both client and server send a list of supported encryption algorithms in their KEXINIT
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Number of hosts that support. . .

Proto Port Date BASE ECDHE secp224r1 secp256r1 secp384r1 secp521r1 x25519 bp256r1

TLS 443 11/2016 38.6M 24.8M 643.4K (2.6%) 24.1M (97.0%) 5.7M (22.9%) 2.5M (10.2%) 0 (0.0%) 980.1K (3.9%)
443 08/2017 41.0M 28.8M 811.6K (2.8%) 25.0M (86.9%) 9.1M (31.6%) 2.2M (7.7%) 740.7K (2.6%) 2.4M (8.4%)

SSH 22 11/2016 14.5M 7.9M 0 (0.0%) 7.7M (97.8%) 7.5M (95.6%) 7.5M (95.4%) 6.1M (77.2%) 0 (0.0%)

IKEv1500 11/2016 1.1M 215.4K 143.8K (66.8%) 211.8K (98.3%) 206.8K (96.0%) 152.8K (71.0%) 0 (0.0%) 0 (0.0%)

IKEv2500 11/2016 1.2M 101.1K 4.1K (4.1%) 98.2K (97.1%) 98.0K (96.9%) 240 (0.2%) 0 (0.0%) 0 (0.0%)

Table 14: Server supported curves—BASE gives the number of hosts that we were able
to negotiate any key exchange with and ECDHE gives the number that support ECDHE
key exchange. Percentage support for each curve is with respect to ECDHE.

message, and negotiate an algorithm from among the algorithms both support. Supported

curves are listed as separate cipher choices for key exchange and signature algorithms. RFC

5656 specifies that SSH implementations must support secp256r1 (nistp256), secp384r1

(nistp384), and secp521r1 (nistp521), and lists 9 additional curves from NIST and SEC2

standards as recommended. Point compression is optional.

If client and server negotiate an ECDH key exchange with a specific curve, the client sends

its public key exchange value first. The server then responds with its long-term public host

key, its public ECDH key exchange value, and a digital signature using the server’s host

key over the client and server KEXINIT messages, the server’s public host key, the client

and server key exchange messages, and the negotiated shared secret. SSH uses ECDH with

cofactor multiplication to derive the shared secret.

3.2.7. ECC in IPsec

IPsec uses the Internet Key Exchange (IKE) protocol to negotiate an encrypted and au-

thenticated session. There are two versions of the IKE protocol, IKEv1 and IKEv2. Both

rely on Diffie-Hellman key exchange over a set of fixed, standardized groups to negotiate

a shared secret. Cremers [102] carried out an automated analysis of the key agreement

protocols in IKEv1 and IKEv2 and found a number of vulnerabilities.

The original IKEv1 protocol specified two optional binary curves, ec2n 155 (Oakley Group

3), a 155-bit binary curve, and ec2n 185 (Oakley Group 4), a 185-bit binary curve, among

the four groups for Diffie-Hellman key exchange. (The other two were 768-bit and 1024-
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bit primes for prime field Diffie-Hellman.) Additional optional binary and prime curves,

including the curves from SEC 2, NIST, and Brainpool, have been registered with IANA

for IKEv1 and IKEv2 over the course of several RFCs, including RFC 5903 [132], RFC

5114 [206], and RFC 6932 [163].

RFC 2409 specifies that the key exchange value for Oakley groups 3 and 4 consists of the

x-coordinate, and the y-coordinate is derived as necessary and not used to derive the shared

key. However, RFC 4753 specifies that implementations should send both x and y as the

Diffie-Hellman public value and use both in the shared secret.

IKEv1. IKEv1 is specified in RFC 2409. There are two types of handshakes, Main Mode,

which requires six messages to establish the connection, and Aggressive mode, which requires

three. In main mode, the initiator sends a Security Association (SA) payload, which specifies

a collection of cipher suites and Diffie-Hellman groups they support. The responder sends its

own SA payload containing its selected cipher suite. The initiator and responder then send

key exchange messages for the chosen group. Both parties are then able to compute shared

key material, called SKEYID. The computation of SKEYID depends on the authentication

method. When signatures are used for authentication, SKEYID = prf(Ni|Nr, kikrP ) where

kikrP is the negotiated Diffie-Hellman secret. For the other two authentication methods,

public-key encryption and pre-shared key, SKEYID does not depend on the negotiated

Diffie-Hellman shared secret, and instead is derived from the cookie or the pre-shared key

respectively. Each party authenticates itself by sending an authentication message (AUTH)

derived from a hash of SKEYID, the public Diffie-Hellman key exchange messages, the

cookies, the initiator’s security association, and initiator and responder IDs. In main mode,

these authentication messages are encrypted and authenticated using keys derived from the

negotiated Diffie-Hellman secret.

In aggressive mode, it is not possible to negotiate the group for Diffie-Hellman. The initiator

sends SA and KE messages together, and the responder sends its SA, KE, and AUTH mes-

sages together. The initiator finally responds with its AUTH message. The authentication
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messages are not encrypted.

IKEv2. IKEv2 combines the SA and KE messages into a single message. The initiator

provides a best guess ciphersuite for the KE message. If the responder accepts that proposal

and chooses not to renegotiate, the responder replies with a single message containing both

SA and KE payloads. Both parties then send and verify AUTH messages, starting with the

initiator. The authentication messages are encrypted using session keys derived from the

SKEYSEED value which is derived from the negotiated Diffie-Hellman shared secret. The

standard authentication modes use public-key signatures over the handshake values.

3.3. Related Work

Bos et al. [74] surveyed elliptic curve adoption rates in 2014, and found that approximately

10% of TLS and SSH hosts supported elliptic curve cipher suites. The ICSI Certificate

Notary [175] publishes ongoing statistics on observed SSL/TLS ciphersuites in connections

originating from ten research institutes, and reports that at least 88% of connections used

ECDHE key exchange in July/August 2017.

Jager, Schwenk, and Somorovsky [179] manually examined ECDH implementations in eight

popular TLS libraries in 2015, and found that three of them failed to validate elliptic curve

points, leading to full private key recovery for Oracle’s default Java JSSE TLS implementa-

tion and BouncyCastle. Their analysis was only performed in local test environments. We

are unaware of prior work measuring elliptic curve point validation.

Valenta et al. [297] studied prime-field Diffie-Hellman implementations in TLS, SSH, and

IPsec in 2016 using both internet-wide scans and source code examination, and found that

most examined implementations did not validate subgroup order. Springall, Durumeric,

and Halderman [283] measured DHE and ECDHE key exchange reuse among Alexa Top 1

Million domains and found that 1.5% of HTTPS domains supporting ECDHE repeated the

same key exchange value in multiple scans, and noted one service that repeated the same

key exchange value for 61 days.
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Supported Curves User Agents Operating Systems Count

23,24,25
FireFox/46.0-49.0, FitbitMobile/2.28, IE/11.0,
uservoice-android-1.2.4, Safari/9.0, Tinder/63105

Win7, Win8,
Win10, iOS

1.5M (35.9%)

29,23,24 Chrome/50.0-54.0
Win7, Win8, Win10,
Mac OSX, Chrome OS

909.0K (21.7%)

23,24 IE/11, Edge/13.0, Chrome/47.0-51.0
WinVista, Win7,
Win8, Win10

661.7K (15.8%)

14,13,25,11,12,24,9,10,22,23,8,6,
7,20,21,4,5,18,19,1,2,3,15,16,17

uservoice-android-1.2.4, Picsart/3.0, okhttp/3.2.0,
Playstation/4, Netscape/4.0, Python-urllib/2.7

Win7, Win10, Other 621.3K (14.8%)

25,24,23 SamsungBrowser/2.0-2.1, Wget/1.12 Android, Other 184.4K (4.4%)

23,25,28,27,24,26,
22,14,13,11,12,9,10

Chrome/47.0-53.0, Deluge/1.3.12, Plex Music
Agent/1.0, qBittorrent/3.3.7, Transmission/2.84

Win7, Win8,
Win10, Other

40.1K (1.0%)

empty libhttp/3.50, libhttp/4.01, Chrome/25.0 Linux, PlayStation/4 24.9K (0.6%)

Table 15: Client supported curves extensions with user agents—We show the ranked
list of the most common supported curves lists along with the user agents and operating
systems of the clients for a sample of 4,187,201 client hellos collected from Cloudflare.
The mapping of curve IDs in the supported curves list to curve names is maintained by
IANA [172].

3.4. Elliptic Curve Measurements

In this section, we present our measurements of elliptic curve implementations for TLS,

SSH, and IPsec.

3.4.1. Server Curve Support and Preferences

The popularity of different curves varies depending on the protocol. In this section, we de-

scribe measurements we performed to understand server curve support for various common

ports and protocols, to give a snapshot of elliptic curve deployments.

Server scanning methodology. We performed our scans between November 2016 and

August 2017 from the University of Pennsylvania. We used the ZMap [114] Internet-wide

scanning tool to perform 10% scans of the IPv4 address space. We extended the Zgrab

protocol parser for TLS and SSH to include support for the numerous curves we tested, and

used our own Zgrab module for IKEv1 and IKEv2.

For most of our measurements, we scanned a random 10% sample of the public IPv4 Internet

on a selection of common ports for TLS, SSH, and IPsec. Unless otherwise specified, the

results we present in this paper are extrapolations of our 10% scans to the full IPv4 space,

to simplify comparison with other measurements.
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For each scan, we first perform a ZMap scan of a randomly selected set of hosts to detect

whether a particular port was live. Then, we perform repeated scans of the set of responding

hosts using the Zgrab protocol module to detect fine-grained behaviors and support for

various cryptographic parameters.

In a TLS and IKE ECDH key exchange, a curve can only be negotiated if it is supported

by both the client and the server. To measure support for the elliptic curves shown in

Table 14 for TLS, we use Zgrab to perform multiple TLS handshakes, each only offering

a single curve at a time in the supported curves extension. For IKE, we offer a security

association that includes a curve together with a variety of popular cipher proposal options.

In SSH, both the client and server send the list of curves they support, so we can gather

curve support from a single scan.

In order to get a baseline measure of support for each protocol, we used scans offering a

variety of parameters. The Censys project [2] performs regular 100% TLS and SSH scans

using ZMap, so we used their scans from November 2016 and August 2017 as a baseline for

support for those protocols. We performed our own 100% IKEv1 and IKEv2 baseline scans.

Server measurement limitations. The survey of Durumeric et al. [115] provides a

view of Internet-wide scanning, documenting both the advantages and limitations of the

approach. In short, scanning does not allow us to measure hosts that are behind firewalls

or are otherwise configured to reject scanning attempts, or hosts whose network operators

have requested to be excluded from our scans. Our scans are further restricted to IPv4 hosts,

as scanning the IPv6 space efficiently remains an open problem. Despite these limitations,

Internet scanning remains an invaluable tool for network operators and defensive security

research.

Due to the large number of scans required to measure the selected combinations of server

behaviors for our study, we chose to limit each scan to only 10% of the public IPv4 space

instead of performing full IPv4 scans. However, we do not expect this to limit the statistical
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accuracy of our measurements, although we may occasionally miss rare server behaviors.

Server curve support. ECDH is widely supported by TLS and SSH hosts. We find that

64% of HTTPS hosts and 54% of SSH hosts support ECDH key exchange. As a comparison,

Bos et al. [74] report that 7.2% of 30 million HTTPS hosts and 13.8% of 12 million SSH

hosts that responded to a ZMap scan in October 2013 supported some form of ECDH key

exchange. Adoption of ECDH using common curves for IKE appears to be significantly

slower.

Table 14 shows the result of 10% scans extrapolated to full IPv4 scans. We omitted

Curve25519 from the November 2016 TLS and IPsec scans since support for this curve

was not standardized at the time of the scans. However, we performed additional TLS

scans in August 2017 to provide up-to-date numbers on Curve25519 deployment.

The NIST curves secp256r1, secp384r1, and secp521r1 were the most commonly supported

curves among servers, but support for each curve varies widely by protocol. secp256r1 was

the most popular curve among TLS on port 443, SSH, and IPsec. Support for secp224r1

was surprisingly rare, except for IKEv1. There is a long tail of curve support for other

curves in the IANA registries for each protocol; in Section 3.6.1 we give measurements for

a number of weak curves.

We performed 10% IKEv1 and IKEv2 scans offering the binary curves ec2n 155 and ec2n 185,

but did not detect any hosts that were willing to negotiate these curves. We found two

IKE implementations that documented support for these Oakley groups for backwards-

compatibility: MikroTik [224] and OpenBSD’s iked [244]. We verified that OpenBSD’s

implementation does indeed support these binary curves by running our scans against an

OpenBSD 6.12 instance running in a VM.

TLS also allows servers to specify a custom curve using arbitrary explicit prime curves and

arbitrary explicit char2 curves. We also performed 10% TLS scans requesting these custom

curves, and received no responses on any of the tested ports.
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We give full scan data in Appendix 3.B for additional TLS ports.

3.4.2. Client Curve Support and Preferences

Client data methodology. We study client preferences using a sample of client hellos

provided by Cloudflare, a popular web performance and security service.

Cloudflare acts as a reverse proxy for web services: when a client connects to a site that uses

Cloudflare, a TLS connection is established with a geographically proximal server operated

by Cloudflare. This server handles incoming HTTP requests from the client. If a request

is for a resource that is cached by Cloudflare, that resource is returned to the client in the

response; if the resource is not cached, the Cloudflare server forwards the request to the

origin server to obtain a response, which is then returned to the client.

We examined the contents of the TLS client hello together with the client’s HTTP user

agent string from a uniform sample of incoming HTTPS connections to Cloudflare servers

around the world over an approximately 5 minute period on October 17, 2016. 99.4% of

the 4.2M client hellos in the sampled traffic included the supported curves extension. At

the time of the measurement, Cloudflare was used as an HTTP/HTTPS reverse proxy for

over six million domains.

Client measurement limitations. The client dataset that we gathered, while insightful,

has multiple limitations. First, the request samples are skewed toward users who were

awake and active during the collection period. Collection over a longer period of time

might produce a distribution that is more representative of all users. Second, since our data

is a raw sample of Cloudflare requests, popular Cloudflare customers are overrepresented

in our dataset. Thus, the composition of the data is likely not representative of the web as

a whole. We were unable to obtain captured requests from other data sources at the same

scale for comparison. Finally, a nontrivial number of requests are from non-browser traffic,

including requests from API clients, automated scripts, mobile applications, crawlers, and

other bots. This adds depth to the dataset, but means that the dataset does not necessarily

reflect the stereotypical view of web traffic as coming exclusively from human-controlled
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Repeats. . .

Proto Port secp256r1 Across Hosts By Host

TLS 443 24.0M 638.7K (2.7%) 5.5M (22.9%)

SSH 22 7.5M 0 (0.0%) 0 (0.0%)

IKEv1 500 168.5K 210 (0.1%) 540 (0.3%)

IKEv2 500 95.1K 800 (0.8%) 1.9K (1.9%)

Table 16: Repeated key exchanges—In November 2016, we scanned a randomly selected
10% of IPv4 addresses twice in rapid succession, offering curve secp256r1. Across Hosts gives
the number of hosts that sent the same key exchange value as another host within a single
scan, and By Host shows the number of hosts that sent the same key exchange value in
both scans.

web browsers.

Client curve support. Table 15 summarizes several of the most common orderings of

the supported curves list among sampled clients, using the IANA IDs for each curve. We

used Browscap [265] to map software versions to the provided user agent strings. The

most common curve preference ordering requests the NIST curves secp256r1, secp384r1,

secp521r1 in increasing order of strength, which was provided by a variety of clients. The

second most common curve preference ordering in our sample preferred Curve25519, from

recent versions of Chrome. The next most common client curve preference ordering in our

sample, apparently requested by various APIs, requests most of the curves from SEC 2 in

decreasing order of strength.

3.4.3. Repeated Key Exchange Values

For performance reasons, a common behavior among servers is to reuse the same key ex-

change value for multiple connections, to avoid the need to recompute this value for each

client. To detect this behavior, we scan each server twice in rapid succession and check if

the key exchange value changes. In Table 16, we offer secp256r1 as the key exchange value,

and collect the key exchange values in the server responses.

22% of hosts on TLS port 443 (primarily HTTPS) repeated the same key exchange value in

successive scans. 2.6% of TLS port 443 hosts served a non-unique key exchange value that
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Client Supported Curve Server Key Exchange Hosts

brainpoolp256r1 secp256r1 849.4K
brainpoolp256r1 secp384r1 428
brainpoolp256r1 secp521r1 47
secp224r1 secp256r1 850.0K
secp224r1 secp384r1 474
secp224r1 secp521r1 46
secp256r1 secp384r1 506
secp256r1 secp521r1 49
secp384r1 secp256r1 849.9K
secp384r1 secp521r1 45
secp521r1 secp256r1 849.7K
secp521r1 secp384r1 429

Table 17: Servers ignoring client supported curves—In our scans, we found that
some servers responded with the same curve regardless of client’s list of supported curves.
RFC 4492 states that a server must not negotiate the use of an ECC cipher suite if it is not
able to complete an ECC handshake with the parameters offered by the client [72].

was shared by at least one other host in the same scan. This could be due to shared hosting

providers configured with ephemeral-static key exchange, or random number generation

issues.

3.4.4. Other Observations

Our scans uncovered some other interesting server behaviors.

TLS servers ignoring client supported curves. We found that some TLS servers

appear to ignore the curves sent in the client supported curves extension, and instead reply

with the same curve regardless of whether or not the client indicated support. Across all

of the TLS scans we performed in November 2016, we found that 25%, or 8.5M distinct

hosts out of 34.6M total hosts returned a server key exchange value specifying a curve that

was not present in the client supported curves extension. In Table 17, we show the number

of hosts that responded to our scans with an unsupported curve. It appears that these

hosts always attempt to negotiate either secp256r1, secp384r1, or secp521r1 rather than

terminate the connection when the client offers a curve that they do not support.

In order to understand whether this might be a vulnerability, we experimentally compared

responses when our scanner client offered a point on secp256r1 versus the curve that was
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originally specified by the client. No servers who sent a point on an incorrect curve accepted

a point on the curve that the client originally requested.

Scalar multiplication algorithms. We also performed scans offering points on the

twist of the curve. As discussed in Section 3.2.3, TLS implementations do not appear to

use single-coordinate ladders for point multiplication, and thus reject points on the twist of

the curve. We suspect that hosts that accept invalid curve points but do not accept points

on the twist as the client key exchange value are using a mixed-Jacobian scalar-by-point

multiplication algorithm, which would cause points on the twist to fail with an arithmetic

error but would succeed for points on an invalid curve. However, as shown in Table 20,

small numbers of SSH and IKE hosts accepted key exchange values on the twist, suggesting

that they may use single-coordinate ladders.

Echo servers. In our IPsec scans, we found that some of the repeated server key exchange

values that we observed could be attributed to servers that simply echoed back the same

static key exchange value and nonce that we offered in the scan. There were 30 IKEv1

hosts and 25 IKEv2 hosts that exhibited this behavior. These hosts appear to simply echo

back an identical copy of any data that they receive. We omit these hosts from the results

presented in Table 16.

3.5. CurveSwap Attack

The CurveSwap attack was introduced by Nick Sullivan in 2015 [289]. It is a theoretical

attack targeting the curve negotiation to be performed against TLS deployments. Similar in

spirit to the FREAK [61] and Logjam [29] attacks, CurveSwap allows a man-in-the-middle

to trigger a downgrade attack to force a connection to use the weakest elliptic curve that

both parties support. The CurveSwap attack is a parameter negotiation downgrade attack,

and can be performed if both client and server support an elliptic curve for which an attacker

can break ECDH, either by solving the discrete log or other means. The existence of this

attack reduces the overall security of a connection to the security of the weakest elliptic

curve supported by both parties.
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Client C MitM Server S

cr, [CIPHERS, . . .], [CURVES, . . .] cr, [ECDHE], [WEAK]

sr, [ECDHE], certS , sign(skS , [cr|sr|kbG]), with kbG on WEAK

kaG

(ms, kc, ks) = kdf(kakbG, cr|sr) (ms, kc, ks) = kdf(kakbG, cr|sr)b = dlog(kbG)
(ms, kc, ks) = kdf(kakbG, cr|sr)

finished(ms, [logC ]) finished(ms, [log′C ])

finished(ms, [logS ])finished(ms, [log′S ])

MitM knows kc, ks used for authenticated encryption

Figure 1: The CurveSwap attack.—A man-in-the-middle can force TLS clients to use
the weakest curve that both the client and server support. Then, by computing the discrete
log on the weak curve, the attacker can learn the session key and arbitrarily read or modify
message contents.

3.5.1. CurveSwap for TLS

As explained in Section 3.2.5, a TLS client and server use the supported curves extension [72]

to specify which curves each party supports in order to negotiate an elliptic curve group for

use in key establishment. The CurveSwap attack demonstrates that in TLSv1.2 and earlier,

a man-in-the-middle that can break ECDH for the weakest curve supported by both parties

can compromise a connection.

In Figure 1, we depict the CurveSwap attack in a TLS handshake. To mount a CurveSwap

attack, the attacker needs to be in a position to man in the middle a connection. When

the client sends its client hello message to the server, the attacker replaces it with a client

hello message where the client cipher suite list contains only ECDHE cipher suites, and the

supported curves extension only contains weak curves.

The server will then reply with its ECDHE public key exchange value on the attacker’s cho-

sen weak curve. The attacker passes this message back to the client without modification.

The client then replies with its key exchange value on the weak curve. The attacker then

computes the elliptic curve discrete log of either the client or server’s key exchange message
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to compute the client or server’s ephemeral private key. At this point, all parties, including

the attacker, can then compute the master secret and the session keys. The attacker then

intercepts the client and server finished messages and replaces them with finished messages

corresponding to the other party’s view of the handshake. After the compromised hand-

shake, the client and server have a set of shared session keys that are known to the attacker,

allowing the attacker to arbitrarily read and modify messages.

CurveSwap is a vulnerability in the TLS protocol itself, and affects TLS 1.0, 1.1 and 1.2.

For these TLS versions, this vulnerability is mitigated somewhat by the TLS Session Hash

and Extended Master Secret Extension, described in RFC 7627 [68]. RFC 7267 specifies

that the premaster secret is computed from the entire transcript of the handshake, so in

the case of an attempted parameter downgrade attack of this form, the attacker would be

forced to man in the middle the entire connection instead of merely downgrading it. The

CurveSwap attack is mitigated entirely in TLSv1.3, because the server sends a certificate

verify message that includes a signature of the entire handshake transcript hash. In order

to downgrade the connection, the attacker would need to forge this signature.

3.5.2. CurveSwap for SSH

In SSH, the server uses its long-term host key to sign the entire handshake, including both

client and server lists of cipher suites and the negotiated Diffie-Hellman shared secret. Thus

a CurveSwap-style attack would require the attacker to compromise the server’s host key

and learn the Diffie-Hellman shared secret. Such a powerful attack does not seem to have

any advantage over a complete man-in-the-middle attack.

3.5.3. CurveSwap for IKE

In IKEv1 aggressive mode, it is not possible for the parties to negotiate the Diffie-Hellman

group, so a group downgrade attack using aggressive mode is not possible. We note that for

the pre-shared key and public-key encryption authentication methods, however, the AUTH

messages in aggressive mode do not depend on the negotiated Diffie-Hellman shared secret.

In IKEv1 main mode, both the initiator and responder include the initiator’s security as-
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sociation (but not the responder’s security association) in their AUTH messages, which

are encrypted using the negotiated Diffie-Hellman shared secret. An attacker would thus

need to learn the Diffie-Hellman shared secret online in addition to compromising the au-

thentication methods used by both parties. There are offline brute-force attacks against

pre-shared keys in aggressive mode; documents leaked by Edward Snowden also reference

attacks allowing the NSA to learn pre-shared keys in some situations [11, 16, 23].

In IKEv2, authentication is done by having each party sign or MAC their own security

association and key exchange messages together with each party’s nonces. The initiator

and responder’s authentication messages are both encrypted and authenticated using the

Diffie-Hellman shared secret. Thus a CurveSwap-style downgrade attack would require the

attacker to learn the initiator’s authentication secret and to learn the Diffie-Hellman shared

secret in order to forge the initiator’s authentication message online.

3.6. Vulnerability Measurements

We performed a number of large-scale measurements of elliptic curve deployments with a

focus on insecure implementation choices that might leave clients or servers vulnerable to

CurveSwap.

3.6.1. Brute-forcing Small Curves

The Internet Assigned Numbers Authority (IANA) maintains a registry of valid curves for

TLS, which includes several curves at the 80-bit security level [172].

CurveSwap via small curves. The CurveSwap attack allows a man in the middle

to downgrade a TLS handshake to use the weakest curve that both the client and the

server support. 280 computational work is likely within range for advanced government-

level adversaries. However, this amount of computation is quite significant, and is unlikely

to be feasible within the timeout of a live TLS handshake in the near future.

However, the widespread use of static-ephemeral key exchange by servers means that a

server might reuse its key exchange value for a long enough period to allow an attacker to

pre-compute the server’s secret exponent for a weak curve. The attacker could then use its
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Repeats. . .

CurveID Support Across Hosts By Host

ECDHE Hosts 41.0M – –
sect163k1 271.7K 2.1K (0.8%) 9.7K (3.6%)
sect163r1 267.8K 230 (0.1%) 7.1K (2.6%)
sect163r2 271.8K 2.1K (0.8%) 10.1K (3.7%)
secp160k1 274.9K 250 (0.1%) 7.7K (2.8%)
secp160r1 276.2K 290 (0.1%) 8.1K (2.9%)
secp160r2 266.9K 360 (0.1%) 7.2K (2.7%)

Table 18: TLS server support for weak curves—In August 2017, we scanned a ran-
domly selected 10% of TLS hosts to measure support for weak curves. We scanned each
host twice for each curve to detect servers using ephemeral-static keys. The baseline scan
shows the number of hosts with which we were able to negotiate any curve. The repeat
percentages are with respect to the support scans for each curve.

knowledge of the server’s secret exponent for this particular curve to downgrade any clients

who support this curve, even if they would normally not prefer it, to this weak curve, and

thus be able to decrypt or modify messages during the session.

Weak curve and ephemeral-static measurements. Table 18 shows support statistics

for several weak curves, with the number of servers that repeat key exchange values when

scanned twice in rapid succession.

We performed additional scans of hosts that initially repeated key exchange values to test the

lifespan of ephemeral-static keys. Scanning with curve secp160k1, only 5 hosts responded

with the same key exchange value as they did initially after five hours, and only 2 hosts

returned the same key exchange value after 25 hours.

We also measure client implementations, and find that a significant number of clients offer

weak curves in the supported curves extension. In Table 19, we show that in a sample of

over 4 million client hellos collected from Cloudflare, over 16% indicate support for a curve

with 80-bit security, opening up these clients to potential CurveSwap attacks. The user

agents of these clients indicate that they are mostly API clients rather than browsers.
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CurveID Support

sect163k1 685.6K (16.4%)
sect163r1 682.1K (16.3%)
sect163r2 682.1K (16.3%)
secp160k1 682.6K (16.3%)
secp160r1 682.6K (16.3%)
secp160r2 682.6K (16.3%)

Table 19: TLS client support for weak curves—From a sample of 4,187,201 client
hellos collected from Cloudflare in October 2016, over 16% offer weak curves in the client
hello supported curves extension.

3.6.2. Invalid Curve Attacks

CurveSwap via an invalid curve attack. We now consider the scenario in which a

man-in-the-middle attempts to learn the server secret through an invalid curve attack before

initiating a CurveSwap attack. In this case, a CurveSwap attack would allow the attacker

to force a connection to use a curve for which it already knows the server’s ephemeral-static

key. Servers are vulnerable to invalid curve attacks when they both fail to validate key

exchange parameters and reuse the same ephemeral-static key for multiple connections. If

a victim supports a variety of curves, some which are vulnerable to invalid curve attacks,

and some which are not, this attack would allow the attacker to downgrade the victim to a

vulnerable curve for which they can learn the server’s secret.

Measuring invalid curve attacks. We performed extensive measurements to measure

the prevalence of implementations vulnerable to invalid curve attacks, and present the

results in Table 20. In the end, our scans found evidence of key exchange validation failure

and of key reuse, but no hosts that both failed to validate and repeated keys either across

hosts or across scans. Thus we do not find evidence of servers vulnerable to invalid curve

key recovery attacks.

To test if servers properly validate received client key exchange values, we performed a

key exchange using an element of order 5 on an invalid curve for secp256r1. We give the

coordinates of this point and the equation of the generator in Appendix 3.A. Table 20 shows
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the number of hosts that appeared to accept invalid curve points for the protocols that we

scanned.

Since we send an invalid curve point of order 5, the shared secret for the session will be

limited to one of five curve elements: (x1, y1), (x1,−y1), (x2, y2), (x2,−y2), and infinity.

For TLS, SSH, and IKE, only the x-coordinate of the curve element is used as the shared

secret for computing the session MAC, so a client sending an invalid point on this curve

would have a 2/5 chance of guessing the value correctly by choosing x1 or x2 as the shared

secret.

In TLS, a client can reach the end of the handshake without authenticating, so in our scans

we counted the number of hosts that accepted our client finished message and responded

with a server finished message. Thus, we expect the number of hosts that are not properly

validating to be 5/2 times as large as the number of hosts that respond with a server finished

message. Since Table 20 indicates that 0.31% of HTTPS hosts on port 443 accepted our

guessed client finished with our invalid curve point, we estimate that 0.77% of HTTPS hosts

fail to perform proper validation.

For SSH and IKE, our scanning methodology does not allow us to reach the end of the

handshake without authenticating as a valid client, so we count the number of servers that

fail to immediately indicate an error upon receipt of an invalid key exchange value. This

does not require us to correctly guess the shared secret, so there is no need to scale the results

as for TLS. This also does not account for hosts that perform validation checks later in the

handshake, so the numbers presented are an overestimate. In the case of the SSH scans, we

show the number of hosts that respond with an ssh key exchange ecdh reply message after

receiving the invalid client public value. All of the SSH hosts that responded to these scans

had a protocol banner indicating either “Cerberus”, “VShell”, or “SshServer”. Manually

installing CerberusFTPServer 8.0, we were able to replicate this behavior, and found that

the server correctly logged an invalid key exchange value in its server logs. This appears to

be in violation to RFC 5656, which specifies that the server should validate the client key
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Proto Port Twist Invalid InvalidRepeat

TLS 25 0 (0.0%) 40 (0.0%) 0 (0.0%)
110 0 (0.0%) 20 (0.0%) 0 (0.0%)
143 0 (0.0%) 0 (0.0%) 0 (0.0%)
443 0 (0.0%) 75.5K (0.3%) 0 (0.0%)
465 0 (0.0%) 260 (0.0%) 0 (0.0%)
563 0 (0.0%) 10 (0.0%) 0 (0.0%)
587 0 (0.0%) 0 (0.0%) 0 (0.0%)
636 0 (0.0%) 150 (0.1%) 0 (0.0%)
853 0 (0.0%) 20 (1.1%) 0 (0.0%)
989 0 (0.0%) 0 (0.0%) 0 (0.0%)
990 0 (0.0%) 230 (0.1%) 0 (0.0%)
992 0 (0.0%) 10 (0.0%) 0 (0.0%)
993 0 (0.0%) 8.1K (0.3%) 0 (0.0%)
994 0 (0.0%) 10 (0.4%) 0 (0.0%)
995 0 (0.0%) 6.7K (0.2%) 0 (0.0%)

8443 0 (0.0%) 19.2K (1.5%) 0 (0.0%)

SSH 22 4.1K (0.1%) 3.3K (0.0%) 0 (0.0%)

IKEv1 500 530 (0.2%) 500 (0.2%) 0 (0.0%)

IKEv2 500 4.1K (4.0%) 4.1K (4.0%) 0 (0.0%)

Table 20: Invalid key exchanges—In November 2016, we scanned a randomly selected
10% of IPv4 addresses offering order 5 points on an invalid curve and on the twist of curve
secp256r1. We show the number of hosts for which handshake negotiation is successful.
As described in Section 3.6.2, we estimate that the number of vulnerable TLS hosts is 5/2
times larger than the numbers reported in the table. For SSH and IKE, these numbers are
an upper bound on the number of vulnerable hosts.

exchange before sending its own key exchange value.

3.6.3. Twist Attacks

CurveSwap via twist attacks. We now investigate an attack vector that exploits the

fact that there are several standardized curves with weak twist security. For example, an

invalid curve attack using the twist for secp224r1 can be used to recover the secret key in

only 258.4 work, compared to its expected 112-bit security level [58].

Consider a server that uses a single-coordinate ladder for scalar-by-point multiplication,

such as the Montgomery or Brier-Joye ladders. Single-coordinate ladders operate on only

the x-coordinate of the key exchange value, making it impossible to specify a point on

an invalid curve [78, 227]. However, an attacker can send an x-coordinate that does not
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correspond to a point on the negotiated curve, but does lie on the twist of the curve. If

the server employs a single-coordinate ladder for scalar-by-point multiplication, then the

server will compute the shared secret as a point on the twist of the curve. For curves with

a weak twist, the attacker can send low-order points on the twist, and carry out a small

subgroup attack to reconstruct the server’s ephemeral-static key. To prevent this attack,

an additional check is required to ensure that the specified x-coordinate lies on the curve,

and not the twist of the curve.

There are a number of curves with weak twists that bring twist attacks into feasible

range [58, 128]. Notably, in addition to the NIST-standardized secp224r1, brainpoolp256t1

also has a weak twist, with an attack cost of 244. secp256r1 is secure against twist attacks

with an attack cost of 2120.

Measuring twist attacks. To test for this behavior, we perform scans sending a point in

the subgroup of order 5 on the twist of secp256r1 as the client key exchange value. We chose

secp256r1 because it has the highest support among the protocols we studied. We give the

point coordinates and the twist equation in Appendix 3.A. The scan results, presented in

Table 20, indicate that no hosts accepted points on the twist of the curve. To test if point

compression influenced server behavior, we performed an additional 10% scan of TLS on

port 443 sending a compressed point of order 5 on the twist of secp256r1, and found that

no hosts accepted this key exchange value.

We suspect that hosts accepting invalid curve points but not accepting points on the twist

as the client key exchange value are using a mixed-Jacobian scalar-by-point multiplication

algorithm, which would cause points on the twist to fail with an arithmetic error but would

succeed for points on an invalid curve.

3.7. Source Code Analysis

We examined a number of libraries to understand their elliptic curve implementations, and

found multiple vulnerabilities. We also described our findings in a blog post [274].
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Library Language ECDH Support Status

cjose C/C++ No –
jose-jwt Haskell No –
jose4j Java Yes fixed v0.5.5
Nimbus JOSE+JWT Java Yes fixed v4.34.2
Apache CXF Java Yes not vuln.
json-jwt Ruby No –
phpOIDC PHP No –
jose-php PHP No –
js-jose Javascript No –
go-jose Go Yes fixed v1.0.4
jose2go Go Yes fixed v1.3
node-jose node.js Yes fixed v0.9.3

Table 21: JWE libraries—We manually inspected the source code of several libraries
implementing JSON Web Encryption, and found that many were vulnerable to a classic
invalid curve attack.

3.7.1. Failure to Validate in JSON Web Encryption Standards and Implementation

We examined the source code of many libraries implementing RFC 7516, JSON Web Encryp-

tion (JWE), focusing on the Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral

Static (ECDH-ES) algorithms. The complete list of libraries that we examined is available

in Table 21. We found that many of these libraries were vulnerable to a classic invalid curve

attack as described in Section 3.2.4. This would allow an attacker in the role of a sender to

completely recover the secret key of the receiver. Almost all the implementations we exam-

ined failed to validate that the received public key, contained in the JWE Protected Header,

is on the curve. Although they did not validate the recieved public key before performing

the scalar multiplication, some of the libraries that we examined (Nimbus JOSE+JWT,

jose4j) were protected from the invalid curve attack by Java’s BouncyCastle or up-to-date

Java Sun JCA elliptic curve library, which includes a check that the result of the scalar

multiplication is on the curve. However, libraries implemented in languages without this

additional check, such as Cisco’s node-jose and jose2go, were completely vulnerable. As

shown in Table 21, we reported the vulnerabilities to library maintainers to ensure that im-

plementations included the check that incoming public keys are on the agreed-upon curve.

The go-jose vulnerability was found and reported by Nguyen [236].
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3.7.2. Bug in NSS/Java in Elliptic Curve Addition

Both NSS and Java use the 5-bit window NAF method for scalar-by-point multiplication

from [81]. Both implementations missed a critical if/else statement that lead the calcu-

lations to produce incorrect results on some inputs. In particular, there exist values of the

scalar for which the algorithm would yield the point at infinity as a result while the actual

correct result should be a finite value. We were unable to figure out a way to exploit this

flaw.

We disclosed these flaws to Mozilla and Oracle in March 2017. The flaw was patched by

including the missing if/else statement [232, 248].

3.8. Discussion

Although we found some vulnerable, buggy, and non-compliant elliptic curve behavior in

most of the protocols we measured, the fact that these behaviors do not appear to lead

to a full CurveSwap attack is good news. (The exception is JWE, where the invalid curve

attacks are devastating and do not require a parameter downgrade.)

3.8.1. Complexity of Curve Support

We observe that there are a large number of curves that are supported in the protocols

we studied, some of them dating from much earlier in the study of elliptic curves before

different varieties of implementation attacks were as well understood. While having many

curve sizes or parameter types would seem to give protocols and implementations room to

adapt their speed and security needs, support for many of these curves risks becoming a

liability if attacks on some classes improve enough to allow a feasible CurveSwap attack in

TLS or other protocols. In addition, enumerating the current state of different attacks on

each curve is quite complex [58].

While recent curve constructions such as Curve25519 are designed to be as resistant to im-

plementation mistakes as possible, the move to “new” algorithms such as single-coordinate

ladders, which appear from our data not to be widely implemented for most curves, will

likely result in the discovery of new bugs of the type we discovered in NSS/Java.
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3.8.2. Protocol Security

The recent spate of cipher downgrade, transcript mismatch, and message forwarding attacks

against TLS has highlighted the need for protocol-level protections against these types of

man-in-the-middle attacks. Fortunately, TLSv1.3 includes multiple layers of handshake

downgrade protection, including client and server authentication of the entire transcript

hash using long-term secrets when possible, and computing session keys from the entire

transcript. We note that the SSH protocol builds in such protection by having the server

sign the entire transcript, as does IKE when using signature authentication. We hope

that the community’s improved understanding of protocol security means that downgrade

attacks are a thing of the past.

3.A. Invalid Curve and Twist Points

We tested for curve validation in secp256r1 by using a generator of a subgroup of order 5

on the curve y2 = x3 + ax + (b − 1) with a and b as specified in [80] for secp256r1. The

coordinates of our generator were

x = BFD3 5739 ED4B 4D93 8C91 E835 7C7E C4C4 1DE9 FDFC

1669 88EB D1DF A09C 7959 6661

y = 8949 2141 E9E8 1674 9798 62D9 FC62 21C4 A672 B890

33E0 7B86 DA40 D67D 5C0F 53E3

We tested for twist validation in secp256r1 by sending a point of order 5 on the twist

y2 = x3 + a′x+ b′ with

a′ = 8EB0 E29E C8A5 CCCB 65B9 936F B5B2 67E6 57D4 83DB

CDC0 2A88 8A7F 72E8 935B B316

b′ = 2F9B 5262 887E 1766 8BBA F58E 54B8 2E42 C72E D167

21BD 3325 DEB7 9B62 ADE7 4BD6
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The coordinates of our generator were

x = 8FB5 0654 3387 E96C D244 8468 9BF6 CC0C F383 4F33

D8CD 6442 4B11 7D3B ECA1 E0B5

y = E042 260E 3A00 30A5 5B46 8D2A DEBA D3D4 B613 373C

0C38 FCD8 5434 C2B8 B7F7 C1EA

3.B. Extended Scans on Multiple Ports

We extended our scans to a variety of ports where TLS is used to secure services such as

IMAP, POP3, SMTP, LDAP, and more.

Repeats. . .

Proto Port secp256r1 Across Hosts By Host

TLS 25 375.8K 590 (0.2%) 21.9K (5.8%)
110 126.3K 190 (0.2%) 290 (0.2%)
143 120 0 (0.0%) 0 (0.0%)
443 24.0M 638.7K (2.7%) 5.5M (22.9%)
465 2.6M 156.1K (6.1%) 60.3K (2.3%)
563 45.5K 36.4K (79.8%) 37.7K (82.7%)
587 310.4K 160 (0.1%) 160 (0.1%)
636 119.5K 39.1K (32.7%) 77.7K (65.0%)
853 1.7K 40 (2.4%) 840 (50.6%)
989 1.8K 80 (4.4%) 1.1K (61.3%)
990 245.6K 24.1K (9.8%) 39.3K (16.0%)
992 28.4K 40 (0.1%) 980 (3.5%)
993 771.3K 55.0K (7.1%) 83.2K (10.8%)
994 2.2K 100 (4.5%) 1.0K (45.9%)
995 717.1K 57.4K (8.0%) 79.6K (11.1%)

8443 1.3M 49.3K (3.9%) 274.6K (21.7%)

SSH 22 7.5M 0 (0.0%) 0 (0.0%)

IKEv1 500 168.5K 210 (0.1%) 540 (0.3%)

IKEv2 500 95.1K 800 (0.8%) 1.9K (1.9%)

Table 22: Repeated key exchanges—Extended version of Table 16.
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Proto Port Twist Invalid InvalidRepeat

TLS 25 0 (0.0%) 40 (0.0%) 0 (0.0%)
110 0 (0.0%) 20 (0.0%) 0 (0.0%)
143 0 (0.0%) 0 (0.0%) 0 (0.0%)
443 0 (0.0%) 75.5K (0.3%) 0 (0.0%)
465 0 (0.0%) 260 (0.0%) 0 (0.0%)
563 0 (0.0%) 10 (0.0%) 0 (0.0%)
587 0 (0.0%) 0 (0.0%) 0 (0.0%)
636 0 (0.0%) 150 (0.1%) 0 (0.0%)
853 0 (0.0%) 20 (1.1%) 0 (0.0%)
989 0 (0.0%) 0 (0.0%) 0 (0.0%)
990 0 (0.0%) 230 (0.1%) 0 (0.0%)
992 0 (0.0%) 10 (0.0%) 0 (0.0%)
993 0 (0.0%) 8.1K (0.3%) 0 (0.0%)
994 0 (0.0%) 10 (0.4%) 0 (0.0%)
995 0 (0.0%) 6.7K (0.2%) 0 (0.0%)

8443 0 (0.0%) 19.2K (1.5%) 0 (0.0%)

SSH 22 4.1K (0.1%) 3.3K (0.0%) 0 (0.0%)

IKEv1 500 530 (0.2%) 500 (0.2%) 0 (0.0%)

IKEv2 500 4.1K (4.0%) 4.1K (4.0%) 0 (0.0%)

Table 23: Invalid key exchanges—Extended version of Table 20.

Number of hosts that support. . .

Proto Port Date BASE ECDHE secp224r1 secp256r1 secp384r1 secp521r1 x25519 bp256r1

TLS 25 11/2016 – 1.0M 420 (0.0%) 1.0M (99.7%) 3.1K (0.3%) 220 (0.0%) 0 (0.0%) 0 (0.0%)
110 11/2016 – 182.7K 270 (0.1%) 176.7K (96.7%) 125.3K (68.6%) 113.6K (62.2%) 0 (0.0%) 580 (0.3%)
143 11/2016 – 130 0 (0.0%) 130 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
443 11/2016 38.6M 24.8M 643.4K (2.6%) 24.1M (97.0%) 5.7M (22.9%) 2.5M (10.2%) 0 (0.0%) 980.1K (3.9%)
443 08/2017 41.0M 28.8M 811.6K (2.8%) 25.0M (86.9%) 9.1M (31.6%) 2.2M (7.7%) 740.7K (2.6%) 2.4M (8.4%)
465 11/2016 – 2.7M 21.6K (0.8%) 2.7M (99.9%) 230.4K (8.4%) 213.2K (7.8%) 0 (0.0%) 2.0K (0.1%)
563 11/2016 – 45.7K 60 (0.1%) 45.7K (99.9%) 2.9K (6.3%) 1.6K (3.6%) 0 (0.0%) 280 (0.6%)
587 11/2016 – 836.9K 20 (0.0%) 836.6K (100.0%) 330 (0.0%) 40 (0.0%) 0 (0.0%) 0 (0.0%)
636 11/2016 – 121.0K 2.8K (2.3%) 120.8K (99.8%) 43.5K (36.0%) 10.7K (8.8%) 0 (0.0%) 1.1K (0.9%)
853 11/2016 – 1.8K 60 (3.4%) 1.7K (97.2%) 1.2K (66.5%) 400 (22.7%) 0 (0.0%) 240 (13.6%)
989 11/2016 – 1.9K 30 (1.6%) 1.8K (98.9%) 1.3K (69.9%) 280 (15.1%) 0 (0.0%) 140 (7.5%)
990 11/2016 – 246.4K 1.3K (0.5%) 243.7K (98.9%) 202.1K (82.0%) 184.1K (74.7%) 0 (0.0%) 690 (0.3%)
992 11/2016 – 28.5K 300 (1.1%) 28.5K (99.8%) 27.7K (97.1%) 26.8K (93.9%) 0 (0.0%) 300 (1.1%)
993 11/2016 – 2.9M 31.8K (1.1%) 772.8K (26.5%) 2.6M (89.0%) 380.2K (13.0%) 0 (0.0%) 97.9K (3.4%)
994 11/2016 – 2.5K 100 (4.0%) 2.3K (94.3%) 1.6K (63.2%) 510 (20.6%) 0 (0.0%) 260 (10.5%)
995 11/2016 – 2.8M 24.5K (0.9%) 717.9K (25.9%) 2.5M (89.0%) 359.5K (13.0%) 0 (0.0%) 88.6K (3.2%)
8443 11/2016 – 1.3M 102.4K (7.9%) 1.3M (98.9%) 406.9K (31.5%) 159.5K (12.4%) 0 (0.0%) 22.1K (1.7%)

SSH 22 11/2016 14.5M 7.9M 0 (0.0%) 7.7M (97.8%) 7.5M (95.6%) 7.5M (95.4%) 6.1M (77.2%) 0 (0.0%)

IKEv1500 11/2016 1.1M 215.4K 143.8K (66.8%) 211.8K (98.3%) 206.8K (96.0%) 152.8K (71.0%) 0 (0.0%) 0 (0.0%)

IKEv2500 11/2016 1.2M 101.1K 4.1K (4.1%) 98.2K (97.1%) 98.0K (96.9%) 240 (0.2%) 0 (0.0%) 0 (0.0%)

Table 24: Server supported curves—Extended version of Table 14.
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CHAPTER 4 : Side-channel attack against Curve25519

4.1. Introduction

Since their introduction over a decade ago [54, 250, 254], microarchitectural attacks [136]

have become a serious threat to cryptographic implementations. A particular threat arises

from asynchronous attacks, where the attacker only has to execute a program concurrently

with the victim’s program (on the same physical CPU) in order to collect temporal infor-

mation about the victim’s behavior. With this temporal information at hand, the attacker

can recover the internal workings of the victim.

Because microarchitectural attacks execute on the same processor as the victim, the attacker

can only achieve limited temporal resolution. Typically, the attacker can only distinguish

between event timings if the events are several hundreds or thousands of execution cycles

apart. Consequently, past asynchronous attacks often target key-dependent variations in

either the order of high-level operations or in their arguments. More specifically, such

attacks usually target the square-and-multiply sequence of the modular exponentiation in

RSA [254, 308], ElGamal [209, 316] and DSA [256], or the equivalent double and add

sequence of scalar-by-point multiplication in ECDSA [34, 52, 263, 307]. A notable exception

is the attack of Pereida Garćıa and Brumley [255], which targets the modular inversion used

in ECDSA.

With the increased sophistication of microarchitectural attacks, many implementations of

cryptographic algorithms have had their side channel robustness investigated, analyzed, and

improved. Dealing away with obvious side channel vulnerabilities such as multiplication

operations on every set key bit and key-dependent table access, existing implementations

have been replaced with more regular algorithms, while newer schemes are designed with

side channel resistance in mind from the start.

For elliptic curve cryptography, one approach for reducing the leakage from the scalar-by-

point multiplication is to use the Montgomery powering ladder [227]. Performing one point
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addition operation and one point doubling operation per key bit, regardless of the value of

the bit, makes the Montgomery ladder much more resilient to side channel attacks compared

to other scalar-by-point multiplication algorithms [184, 243]. Side channel resistance can be

further improved by using unified addition formulas, which eliminate operand-dependent

branches [71] from point addition and point multiplication routines.

Since modern cryptographic algorithms and implementations have almost completely elim-

inated high-level key-dependent branches and memory accesses, our work studies the side

channel implications of low-level branches typically performed deep inside basic integer

arithmetic operations, such as modular reductions.

4.1.1. Our Contribution

In this paper, we present a new microarchitectural key extraction attack on a highly-regular

real-world implementation of Curve25519 [55]. We show that the specific mathematical

structure and recommendations of use for many recently suggested elliptic curves (including

Curve25519) actually allow for an easier exploitation of low-level side channel weaknesses.

We empirically demonstrate our attack using three real-world applications of Curve25519:

git-crypt [44], a git plugin for encrypting git repositories; Pidgin-OpenPGP [149], a plugin

for the Pidgin chat client for encrypting chat messages; and Enigmail [266], a popular Thun-

derbird plugin for email encryption. All of these applications use Libgcrypt [152] as their

underlying cryptographic library. Since Libgcrypt’s implementation of Curve25519 uses

the Montgomery ladder for scalar-by-point multiplication, branchless formulas for point

doubling and addition, and built-in countermeasures specially designed to resist cache at-

tacks, our attack cannot observe high-level key dependent behavior, such as key-dependent

branches or memory accesses. Instead, we achieve key extraction by combining the spe-

cific mathematical structure of Curve25519 with low-level side channel vulnerabilities deep

inside Libgcrypt’s basic finite field arithmetic operations. By observing the cache access

patterns during at most 11 scalar-by-point multiplications, our attack recovers the entire se-

cret scalar within a few seconds. We note that the mathematical structure that enables our
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attacks in also present in other popular curves such as Curve41417 [60] and Curve448 [161]

(Goldilocks curve) when represented in Montgomery form [227].

The Dangers of Order-4 Elements. To extract the secret key, our attack uses side

channel leakage produced during decryption with low-order elements, which are present

in many recently designed curves. While the side channel risks of order-2 elements are

known [139, 309], attacking Montgomery ladder implementations using an order-2 element

fails to produce key extraction (see Section 4.1.2). Instead, our attack takes advantage

of the side channel leakage produced by decrypting with an order-4 element. The risks

of such elements have been suggested in the past [125], however we are not aware of any

demonstration of a practical attack on elliptic curve cryptography that exploits elements of

order 4.

The Shortcomings of Existing Countermeasures. Many recently designed elliptic

curves support scalar-by-point multiplication using single-coordinate ladders, which forces

all received inputs x to be either on the curve or on the “twist” of the curve. Moreover,

these curves are also twist-secure, meaning that the twist is also resistant to small subgroup

attacks. While these properties mitigate many invalid-curve attacks [55], they also lead

implementations to omit all input validation, causing them to perform secret-key operations

on potentially adversarial inputs. Indeed, while the recommendation to avoid performing

validation [56] makes sense in the original context of a carefully designed, constant-time

implementation that does not contain side channel weaknesses and is not vulnerable to

small subgroup attacks, we argue that this validation improves side-channel resistance for

implementations that might not be as carefully designed and implemented for constant-

time side-channel resistant execution. This is because the absence of input validation leaves

the door open for exploiting other potential side-channel vulnerabilities, as we show in this

paper.

Even when countermeasures against low order elements and small subgroup attacks exist,

they often do not prevent all side-channel attacks. For example, RFC 7748 [200] recom-
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mends “ORing all the bytes (of the output) together and checking whether the result is

zero, as this eliminates standard side-channels in software implementations.” One reason

that this countermeasure does not work against side-channel attacks that exploit low-order

elements is that it is enacted after the scalar-by-point multiplication has been performed,

when the leakage is already obtained by the adversary.

Thus, we suggest that implementations reject low-order elements before performing sensitive

secret key operations, in addition to deploying other side channel countermeasures such as

point blinding and exponent randomization. See Section 4.6 for details.

4.1.2. Attack Description

We target the ECDH public-key encryption algorithm, as specified in RFC 6638 [182] and

NIST SP800-56A [49] and implemented in OpenPGP [86]. We demonstrate our attack on

applications that use Libgcrypt, the underlying cryptographic library of GnuPG [152]. The

ECDH decryption operation primarily consists of multiplying the secret key (a scalar) by

a curve point. For the case of ECDH encryption using Curve25519, Libgcrypt performs

the scalar-by-point multiplication using a Montgomery ladder implementation with a single

branchless formula for simultaneously computing point addition and doubling. As a protec-

tion from cache attacks, Libgcrypt also contains carefully designed routines for performing

the swap operations needed to implement the Montgomery ladder. Thus, for every bit of

the secret scalar, Libgcrypt performs the same fixed sequence of operations that do not

contain any high-level operand-dependent branches or memory accesses.

Unlike traditional Weierstrass and Koblitz curves (such as P192, P224, P256, P384, P521

and Secp256k1) many newly designed curves (such as Curve25519, Curve41417 and Curve448)

can be represented in Montgomery form [227] to obtain additional performance speedups.

We observe that for a curve to be representable in Montgomery form, it must have an order

that is a multiple of four, implying that it contains low-order elements such as an order-2

element G2 and in many cases an order-4 element G4. While the existence of order-2 elements

is a known side channel risk [125, 139, 309], this risk is slightly mitigated for Montgomery
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curves using a Montgomery ladder based implementation since the order-2 element is the

point of origin (x = 0, y = 0). When this point is passed into many implementations of the

Montgomery ladder, it causes the result and all computed intermediate values to be zero,

irrespective of the secret key [125, 267].

Instead, we perform the ECDH decryption operation using an order-4 element G4, and take

advantage of its representation in projective coordinates. As our analysis in Section 4.3

shows, using a Montgomery ladder for decrypting G4 results in curve points of particular

mathematical structure appearing as intermediate values during the decryption process.

Thus, while the operations performed by the Montgomery ladder scalar-by-point multipli-

cation routine are fixed, our attack links the operands of these operations to the secret

scalar. Exploiting a side channel weakness in Libgcrypt’s modular reduction operation via

a cache side channel, we can observe this link and recover the secret scalar.

4.1.3. Targeted Software and Current Status

In this paper, we focus on the ECDH decryption operation and the Montgomery ladder

scalar-by-point multiplication routine as implemented in Libgcrypt. We used Libgcrypt

version 1.7.6 (which is the latest version of Libgcrypt at the time of writing) as supplied as

part of the latest Ubuntu 17.04.

We have disclosed our findings to the GnuPG team and are working with them to implement

countermeasures against our attack. The vulnerability has been assigned CVE-2017-0379.

4.1.4. Attack Scenarios

Libgcrypt is part of the GnuPG code base [152], and is used in particular by GnuPG 2.x,

a popular implementation of the OpenPGP standard [86] for encrypting files and emails.

While our attack requires the decryption of a specific adversarial input (an order-4 element),

Libgcrypt is used as the cryptographic back-end for many applications, and as such is often

supplied with externally controlled inputs. See [151] for a list of supported Libgcrypt

front ends. In Section 4.4.3, we detail our attacks against the following three front-end

applications:
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Enigmail. For an attack on encrypted email we use the Thunderbird plugin Enigmail. As

Genkin et al. [140] observe, Enigmail automatically decrypts incoming emails by passing

them to GnuPG, which uses Libgcrypt as its cryptographic engine. To attack Enigmail,

we inject an element of order 4 into Libgcrypt we send the victim a PGP/MIME-encoded

e-mail [120], with the element of order-4 as the ciphertext.

Git-crypt. Git-crypt is a git plugin for encrypting files uploaded to git repositories. The

aim is to allow for uploading content to a public repository and only authorize a select group

of users to access the uploaded content. The user specifies the files to be encrypted, with

encryption taking place automatically when pushing changes to the repository. The files

are automatically decrypted when changes are pulled from the repository. Git-crypt uses a

hybrid encryption scheme. Repository files are encrypted with a randomly-generated AES

key. For each authorized user, git-crypt encrypts the AES key with the user’s public key

and stores the encrypted AES key in the repository. An attacker can thus create a malicious

key file with an order-4 element as the ECDH public value in the ciphertext. Uploading

this file as the victim’s encrypted key file. When the victim pulls the repository, git-crypt

automatically tries to decrypt the repository, resulting in an order-4 element being injected

into Libgcrypt’s scalar-by-point multiplication routine.

Pidgin-OpenPGP. Pidgin is a popular open-source chat application that supports com-

munication across a variety of chat networks [18]. The Pidgin-OpenPGP plugin allows users

to encrypt and sign their chat messages using GnuPG [149]. For the attack on Pidgin-

OpenPGP, we generate an encrypted chat message and replace the ciphertext with the

element of order 4. When the victim receives the message, Pidgin-OpenPGP automatically

tries to decrypt it, triggering the attack.

4.1.5. Attack Feasibility and Limitations

The specific attack that we describe in this paper is realistic in settings where the attacker

can share memory with the victim. In particular, we have tested the attack when the at-

tacker process is running as a separate user within the same operating system as the victim
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process. The Flush+Reload technique we use has also been shown to be effective in PaaS

cloud environments, where the attacker and the victim execute within two different con-

tainers [317] and in virtualized environments that use memory de-duplication [176, 308]. In

these settings, monitoring cache activity during the decryption of only a few chat messages,

emails, or git pulls will be sufficient to extract the victim’s secret key.

When the attacker and the victim do not share memory, our specific attack does not work.

However, we note that use the LLC Prime+Probe attack [209] does not require memory

sharing and has been shown effective in cloud environments [174]. Hence, avoiding memory

sharing does not guarantee protection.

4.1.6. Related Work

In this section, we review classes of side-channel attacks that built the foundations for our

work.

Physical Side Channel Attacks on ECC Running on Small Devices. Since the

first (simulated) attacks of Coron [99], there have been numerous physical side channel

key extraction attacks on implementations of elliptic curve cryptography running on small

devices. See the surveys [123, 124] and the references therein. However, most of these

results either attack naive implementations which contain key-dependent branches (such as

the double-and-add algorithm) or take advantage of subtle effects which are only visible

at bandwidths exceeding the device’s clock rate and are thus impossible to observe using

low-bandwidth channels such as the cache side channel.

Two exceptions to the above approach are the Refined Power Analysis attack of Goubin [155]

and the Zero-Value Point Attacks of Akishita and Takagi [31] which do seem to use low-

bandwidth-observable effects. However both of these attacks require obtaining measure-

ments during the decryption of hundreds of adaptively chosen ciphertexts in order to per-

form key extraction, making them easily detectable.

Physical Side Channel Attacks on ECC Running on Complex Devices. Key
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extraction attacks against elliptic curve cryptography implementations running on complex

devices have also been demonstrated using both cache and physical side channels. More

specifically, electromagnetic key extraction attacks were demonstrated by Genkin et al. [143]

on GnuPG’s ECDH encryption using a double-and-add 1NAF implementation running on

PCs and by Genkin et al. [144] and Belgarric et al. [51] for ECDSA signing routine executed

on smartphones.

Attacks on Curve25519. Kaufmann et al. [190] describe an attack on an implementation

of Curve25519, which shows timing variations when compiled with the Microsoft Visual C

compiler. The attack requires 25000 chosen ciphertexts per each key bit and takes about a

month to recover the key.

Duong [111] describes a theoretical attack against Diffie-Hellman with Curve25519 which

exploits the lack of public key validation. The attack assumes an adversary that can replace

public keys with the element at infinity, in which case the shared secret will be known.

Software-based Side Channel Attacks on Cryptography Running on PCs. At-

tacks on PC implementations of cryptography have also been demonstrated using software

channels such as the timing channel [83, 84]. Starting with [54, 250, 254, 292, 293] cache

attacks have been extensively used to break implementations of cryptographic primitives

running on PCs. See Ge et al. [136] for a survey. Brumley and Hakala [82] perform a cache

attack on an implementation of ECDSA. The Flush+Reload technique we use has been

used for attacks on RSA [308], AES [158, 176], ECDSA [34, 52, 263, 307] and BLISS [156].

The attacks of [28, 307] are of special relevance as they are the only prior works to use

microarchitectural attacks to break an implementation that uses the Montgomery ladder.

Their attacks, however, exploited a high-level conditional statement that does not exist in

the Libgcrypt implementation of the ladder.

Side Channel Attacks on GnuPG. Starting with [140, 235, 308], GnuPG has been

targeted by various key extraction attacks. These include attacks on GnuPG’s RSA and
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ElGamal implementations [139, 140, 141, 142, 209, 308] as well as attacks on GnuPG’s

ECDH encryption [143] and ECDSA signatures implementations [52, 263]. We note that

the attacks of [52, 143, 263] are not applicable to the implementation of Montgomery ladder

based ECDH encryption that we attack in this paper; after version Libgcrypt 1.6.5, GnuPG

no longer uses the Double-and-Add 1NAF implementation attacked by [143], and the attacks

of [52, 263] that mount a lattice attack on ECDSA using partially known nonces are not

applicable for ECDH.

Attacks Using Low-Order Elements. The risk of performing public key cryptographic

operations on elements of low order has been previously demonstrated on various types of

public key encryption methods. Yen et al. [309] and Genkin et al. [139] achieve key ex-

traction by using an order-2 element as a chosen ciphertext with implementations of RSA

and ElGamal that are based on the square-and-always-multiply exponentiation algorithm.

For Elliptic Curve Cryptography, low-order elements have been used for mounting invalid

point attacks [70, 207] as well as for fault injection attacks [125]. More specifically, Fan

et al. [125] present a theoretical fault injection attack against elliptic-curve Diffie-Hellman

key exchange operating over NIST curves, which do not have low-order elements. The at-

tack starts by performing a Diffie-Hellman key exchange using a valid curve point with a

short Hamming distance to a point of low order on a twist of the curve. Next, the attacker

can (theoretically) inject a carefully-timed fault in the hope of flipping bits in the point’s

coordinates thus causing the implementation to perform a scalar-by-point multiplication

operation with a low-order element on the twist. While Fan et al. [125] do not empirically

demonstrate their attack, they do argue, similar to our analysis in Section 4.3, that the

leakage (via physical side channels) resulting from performing the scalar-by-point multipli-

cation with a low order point (order-4 or order-2) should contain enough information to

reveal the secret key.

96



4.2. Preliminaries

4.2.1. Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach to public-key cryptography using elliptic

curves over finite fields. The underlying hardness assumption in ECC schemes is the Elliptic

Curve Discrete Logarithm Problem (ECDLP): given an elliptic curve group G, a generator

G, and a point P it is assumed to be hard to find a scalar k satisfying P = [k]G. (Here and

onward, we use additive group notation, and [k]G denotes scalar-by-point multiplication

further described in Section 4.2.2 below.) The running time of the best known algorithm

for solving ECDLP (without the presence of side channel leakage) is linear with the square

root of the order of the subgroup generated by the elliptic curve’s generator.

Curve Formulas. Elliptic curves can be expressed with several different representations.

The traditional model for elliptic curves is the Weierstrass equation y2 = x3 +ax+b. Every

elliptic curve over a finite field Fp of a prime order can be converted to this form. Some

widely-used examples of curves expressed in this form are the NIST curves from FIPS 186-

4 [239] and the Brainpool curves [219].

Alternative elliptic curve representations are often used for speed. Montgomery [227] intro-

duced the eponymous Montgomery form elliptic curves, which are specified using the curve

shape By2 = x3 +Ax2 + x. A main advantage of curves of this form is that scalar-by-point

multiplication can be implemented using only the x coordinate. The single-coordinate ver-

sion of the Montgomery ladder algorithm for scalar-by-point multiplication requires fewer

arithmetic operations than standard Weierstrass scalar-by-point multiplication methods

while offering better side channel resistance [184, 243]. The most widely used curve of this

form is Curve25519, which was introduced by Bernstein [55]. Other curves that can be

specified in this form include Curve41417 [60] and Curve448 [161] (the Goldilocks curve).

Domain Parameters and Cofactors. An elliptic curve group is defined by a set of

domain parameters which consists of the following values: p, a prime which defines the
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prime-order finite field Fp in which the curve operates; A and B, the coefficients of the

curve equation; G, a generator of a subgroup of a prime order on the curve; n, the order of

the subgroup that G generates; and h, the cofactor, which is equal to the number of curve

points w divided by n. Elliptic curve groups are typically chosen to have small cofactors to

limit the number of elements of small order on the curve and to limit the checks required

to protect against small subgroup attacks [55]. NIST recommends a maximum cofactor for

various curve sizes [239]. The NIST curves over prime order fields specified in FIPS 186-4

are in the Weierstrass form and have a cofactor 1, but curves in the Montgomery form

always have a cofactor that is a multiple of 4 [227].

ECDH Encryption. We target the OpenPGP ECDH public-key encryption scheme,

ECDH encryption, as specified in RFC 6637 [182] and defined as method C(1e,1s,ECC

CDH) in NIST SP800-56A [49]. ECDH encryption is a hybrid scheme that combines elliptic

curve Diffie-Hellman key exchange with a symmetric-key cipher such as AES. To generate a

key pair given an elliptic curve group generator G, Alice first generates a random scalar k as

her private key, and computes [k]G as her public key. To encrypt a message m to Alice, Bob

chooses a random scalar k′ and computes [k′]([k]G), where [k]G is Alice’s public key. Bob uses

the result to derive a symmetric encryption key x. The message m is then symmetrically

encrypted using x to obtain Encx(m), and the ciphertext is set to c = (Encx(m), P), where

P = [k′]G is the ephemeral public key, which also plays the role of a ciphertext in our chosen

ciphertext attack. To decrypt c, Alice computes [k](P) = [k]([k′]G). She then derives from

it a symmetric key x′. This key can then be used to symmetrically decrypt Encx(m) to get

message m′. By the commutative property of elliptic curve scalar-by-point multiplication

[k]([k′]G) = [k′]([k]G). Hence we have x′ = x and m′ = m.

Point Representation. Elliptic curve points can be represented in many different forms.

The canonical representation uses the affine coordinates, where a point on the curve is

represented by a pair of integers (x, y) that satisfy the curve equation. However, this rep-

resentation requires an expensive field inversion operation to add two elliptic curve points.
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Using projective coordinates, where a point (x, y) is represented by the triplet (X,Y, Z),

where (x, y) = (X/Z, Y/Z) for Z 6= 0, obviates the field inversion [93]. A special “point at

infinity” is represented by Z = 0. Points can have many different representations depending

on the value of Z, and this equivalence class is denoted (X : Y : Z).

Optimization for Montgomery Coordinates. Elliptic curve points support arithmetic

operations based on the elliptic curve’s group addition law. For Montgomery curves, the

group addition law which adds two projective points (X0, Y0, Z0) and (X1, Y1, Z1) to produce

the sum (Xs, Ys, Zs) computes Xs and Zs without using the y-coordinates at all. This allows

us to represent a point P = (x, y) without the y-coordinate using the projective Montgomery

coordinates P = (X,Z), where x = X/Z for Z 6= 0. This form loses some information: there

is no way to distinguish between the points (x, y) and (x,−y) since they both have the

representation (X,Z), but this is not an issue for the application of ECDH key exchange.

These x-coordinate point operations on Montgomery curves are extremely fast, and they

also allow points to be represented with only half as many bits, so that a public key can be

represented with only x = X/Z instead of (x, y).

Low-Order Elements. Every elliptic curve group has an order-1 element called the

identity element, which we will denote G1. G1 is often called the “point at infinity”. For

every prime divisor pi of the group order w, there exists an element on the curve with order

pi. Because Montgomery curves must have a cofactor that is a multiple of 4, such curves

must contain an element G2 of order 2. (That is because 2 is a prime that divides the

group order). Next, since 4 divides the group order for Montgomery curves, there is also a

subgroup of order 4. This does not imply that the curve has an order-4 element, but this

is often the case. We denote order-4 elements as G4 when they exist. In the Montgomery

projective coordinates, the point at infinity is represented by (X 6= 0 : Z = 0), the element

of order 2 by (X = 0 : Z 6= 0). The coordinates of the elements of order 4, when they exist,

depend on the specific curve.

Curve25519. Introduced by Bernstein [55], Curve25519 is specified in the Montgomery
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form as y2 = x3+486662x2+x over the field with prime modulus p = 2255−19. Curve25519

has a cofactor 8, meaning that the order of the curve is 8 · n, for a prime n. Curve25519

also has two order-4 elements with affine coordinates (x = 1, y = ±
√

486664). Both these

elements are represented in the Montgomery projective coordinates by (X = λ : Z = λ),

where λ 6= 0. The curve has no element with affine x-coordinate x = −1, however such

elements, represented by (X = λ : Z = −λ) exist on the twist of the curve, where they have

an order 4. For the purposes of this work, the elements of order 4 on the curve and on the

curve’s twist behave in a similar manner and we refer to all of them as G4.

When introduced, Curve25519 timings were more than twice as fast as previously reported

times for elliptic curves of an equivalent security level, while also including “free key com-

pression, free key validation, and state-of-the-art timing-attack protection” [55]. Implemen-

tations are not required to perform key validation, since by definition secret keys have the

low-order bits set to zero, so there is no risk of leaking these bits in a small subgroup at-

tack [55]. Moreover, the use of the Montgomery ladder scalar multiplication algorithm pro-

vides side-channel resistance [184, 243]. Curve25519 was standardized by RFC 7748 [200],

and is implemented in a wide variety of protocols and software [173].

Public Key Validation for Curve25519. Part of the appeal of using Diffie-Hellman with

Curve25519 is that implementations are not required to validate public keys, including the

ephemeral public key in ECDH. Not only is validation not required, but the recommendation

is to not validate public keys because “The Curve25519 function was carefully designed to

allow all 32-byte strings as Diffie-Hellman public keys” [56]. This recommendation is the

subject of debate, where proponents claim that key validation is not required [257] whereas

critics maintain that the recommendation is risky [42, 111].

In this work we identify another risk associated with this recommendation. The recom-

mendation implicitly assumes that the implementations of the curve functions and of the

underlying field arithmetic are constant-time. Our attack exploits the failure to reject low-

order elements, combined with a non-constant-time implementation of the underlying field
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arithmetic.

4.2.2. Scalar-by-Point Multiplication

Scalar-by-point multiplication is one of the core operations in elliptic curve cryptography.

Given a positive scalar k and an elliptic-curve point P, the scalar-by-point multiplication

operation adds P to itself k times to produce the point [k]P. There are several popular

methods for implementing scalar-by-point multiplication in the literature.

Double-And-Add. The simplest method is the double-and-add method, which is similar

to the square-and-multiply algorithm in modular exponentiation. For each bit of the scalar

k, the algorithm performs one doubling operation. Additionally, in case the bit is set, the

algorithm also performs an addition operation. However, the fact that the sequence of

doubles and adds performed by this algorithm leaks the bits of k is a major side channel

weakness [99].

Montgomery Ladder. Implementations that wish to protect against side channel attacks

can use the Montgomery ladder algorithm [227] for scalar-by-point multiplication. This

algorithm performs the same number of addition and double operations regardless of the

value of the scalar k. As such, the algorithm can be implemented without any key-dependent

branches, making it more side channel resistant [184, 243].

The Montgomery ladder is based on the observation that given [bn/2c]P and [bn/2c+ 1]P,

we can easily calculate [n]P and [n + 1]P. More specifically, if we have R0 = [bn/2c]P] and

R1 = [bn/2c + 1]P, for even n we calculate R1 ← R0 + R1, R0 ← [2]R0, and for odd n we use

R0 ← R0 + R1, R1 ← [2]R1. We note that in both cases we perform one addition and one

doubling operation and the only difference between the cases is the roles that the variables

play.

Naive implementations of the Montgomery ladder scan the scalar from the most significant

bit to the least significant. For each bit, they conditionally execute one of the computations

specified above, based on the value of the bit. However, such implementations are known
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Algorithm 1 Montgomery ladder scalar-by-point multiplication operation.

Input: A positive scalar k and an elliptic-curve point P, where k =
∑n−1

i=0 2i · ki and
ki ∈ {0, 1} for all i = 0, · · · , n− 1.

Output: [k]P.
1: procedure montgomery ladder(k, P)
2: R0 ← G1 . G1 represents the order-1 identity element
3: R1 ← P

4: dif x← P.x
5: for i← n− 1 to 0 do
6: b← ki
7: Q0, Q1 ← conditional swap(R0, R1, b) . Constant time swap when b = 1
8: S0, S1 ← montgomery step(Q0, Q1, dif x) . S0 = [2]Q0, S1 = Q0 + Q1
9: R0, R1 ← conditional swap(S0, S1, b) . Constant time swap when b = 1

10: return R0

to be vulnerable to side channel attacks [28, 307]. A common mitigation, which Libgcrypt

uses, is to conditionally swap the values of R0 and R1 before and after the computation.

Algorithm 1 shows the pseudocode of such an implementation. The conditional swaps can

be implemented using bit manipulations to avoid any branches or memory access operations

that depend on secret-key bits. Such implementations are protected against timing and

cache-based side channel attacks.

As mentioned earlier, one of the advantages of Montgomery curves is that the Montgomery

step, which sums its two arguments and doubles one of them (Line 8 of Algorithm 1), can

be calculated efficiently using only the x-coordinates in the projective Montgomery form.

Algorithm 2 shows a pseudo code of an implementation of the Montgomery step. We note

that the implementation does not contain any branches or memory accesses that depend

on secret values.

4.2.3. Libgcrypt’s Implementation

We now describe Libgcrypt’s implementation of Montgomery curves and point operations.

Libgcrypt stores points using projective Montgomery coordinates. Each point is represented

as a pair (X,Z), where each element is a large integer stored using Libgcrypt’s arithmetic

library, MPI. MPI stores large integers as arrays of limbs, which are 64-bit words on the

x86-64 architecture used in our tests. For Curve25519, field elements are calculated modulo
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Algorithm 2 Libgcrypt’s Montgomery step operation (simplified).

Input: Two points Q0 = (X0, Z0) and Q1 = (X1, Z1) in projective coordinates on an elliptic-
curve based group of order p, and dif x which should be equal to the difference in
x-coordinates of the input points.

Output: Two points Dbl = (Xd, Zd) and Sum = (Xs, Zs) in projective coordinates such
that Dbl = [2]Q0 and Sum = Q0 + Q1.

1: procedure montgomery step(Q0, Q1, dif x)
2: l1 ← X1 + Z1 mod p
3: l2 ← X1 − Z1 mod p
4: l3 ← X0 + Z0 mod p
5: l4 ← X0 − Z0 mod p
6: l5 ← l4l1 mod p
7: l6 ← l3l2 mod p
8: l7 ← l23 mod p
9: l8 ← l24 mod p

10: l9 ← l5 + l6 mod p
11: l10 ← l5 − l6 mod p
12: Xd ← l7l8 mod p
13: l11 ← l7 − l8 mod p . l11 = 4X0Z0 (see Equation 4.5)
14: Xs ← l29 mod p
15: l12 ← l210 mod p
16: l13 ← l11 · (A− 2)/4 mod p . A = 486662 for Curve25519
17: Zs ← l12 · dif x mod p
18: l14 ← l7 + l13 mod p
19: Zd ← l14l11 mod p
20: return ((Xd, Zd), (Xs, Zs))

2255 − 19 hence integers can have up to four limbs. Multiplication and squaring operations

on field elements can be up to 510 bits long before modular reduction and may require 8

limbs for storage.

Libgcrypt’s Scalar-by-Point Multiplication. Libgcrypt uses the Montgomery ladder

(Algorithm 1) for scalar-by-point multiplication. In order to protect from side channel

attacks, Libgcrypt’s implementation uses a side-channel-resistant constant-time point swap

function to set the inputs and outputs of the montgomery step function based on the

value of the secret key bit in each loop iteration.

Libgcrypt’s Montgomery Step Implementation. The montgomery step function

receives inputs Q0, Q1, and dif x which is the affine x-coordinates of the input point P. It
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returns ([2]Q0, Q0+Q1). Doubling of Q0, represented in the projected Montgomery coordinates

as (X0, Z0), is computed by

Xd = (X0 + Z0)
2(X0 − Z0)

2 (4.1)

Zd = (4X0Z0)((X0 + Z0)
2 + ((A− 2)/4) ∗ (4X0Z0)), (4.2)

and the Montgomery addition operation for computing Q0 + Q1 performs

Xs = ((X0 − Z0)(X1 + Z1) + (X0 + Z0)(X1 − Z1))
2 (4.3)

Zs = dif x((X0 − Z0)(X1 + Z1)− (X0 + Z0)(X1 − Z1))
2, (4.4)

where A is a curve parameter.

Algorithm 2 shows a simplified version of Libgcrypt’s implementation of the montgomery step

algorithm for projective Montgomery coordinates. The actual Libgcrypt implementation re-

uses the coordinates of the input variables for temporary storage during the computation

and precomputes (A − 2)/4. For clarity, we replace these with local variables and explicit

formulas.

We pay special attention to the multiplication on Line 19, which we target in Section 4.3.

In particular we note that the value l11 computed in Line 13 of Algorithm 2 is

l11 = l7 − l8 = l23 − l24

= (X0 + Z0)
2 − (X0 − Z0)

2

= (X2
0 + 2X0Z0 + Z2

0 )− (X2
0 − 2X0Z0 + Z2

0 )

= 4X0Z0.

(4.5)

Libgcrypt’s Modular Reduction Routine. After each arithmetic operation in mont-

gomery step (Algorithm 2), the result is reduced modulo p using Libgcrypt’s modular

reduction function. Algorithm 3 shows a simplified version of this function, which uses the
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Algorithm 3 Libgcrypt’s modular reduction operation (simplified).

Input: Two integers x and m, represented as a sequence of limbs x0 . . . xl−1 and
m0 . . .mk−1.

Output: x mod m.
1: procedure modular reduction(x,m)
2: l← size in limbs(x)
3: k ← size in limbs(m)
4: if l < k then
5: return x . Early exit if x is smaller than m

6: for i← l − 1 downto k − 1 do
7: q ← (xi · 264 + xi−1)/mk−1 . Estimate quotient q
8: if q(mk−1 · 2128 +mk−2) > xi · 2128 + xi−1 · 264 + xi−2 then
9: q ← q − 1 . If q is too large, adjust estimate

10: x← x− q ·m · 264(i−k) . Subtract from x

11: return x . x holds the remainder

classical long division algorithm formalized by Knuth [198]. The quotient q is estimated

in each iteration of the loop and adjusted if the initial estimate was off by 1. Then, the

appropriate multiple of q is subtracted from the input before execution returns to the top of

the loop. Notice that code execution only reaches the body of the main for loop at Line 6

when the number of limbs of the number being reduced, is equal to or greater than the

number of limbs of m, the modulus. Otherwise, when the input is shorter, and therefore

guaranteed to be smaller, than m, the algorithm exits early without performing a modular

reduction.

As we show in Section 4.3, detecting the early exit in Line 5 shows that the value l14 · l11,

as computed in Line 19 of Algorithm 2, is smaller than the order of the group, p, allowing

the attacker to determine the order of the group elements being multiplied. Using this

information, the attacker can then extract the bits of the secret scalar k, resulting in a

complete key extraction.

4.3. Cryptanalysis

In this section we present our non-adaptive chosen ciphertext side-channel attack against

Libgcrypt’s ECDH implementation. Since the sequence of arithmetic field operations per-

formed by the Montgomery ladder is not key-dependent, we wish to find some elliptic curve
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point P that, when multiplied by the secret key k, will cause an observable correlation

between the intermediate values used as operands of these arithmetic operations and the

bits of k. We then use a side-channel attack to obtain information about the values of the

operands of these operations, achieving complete key recovery.

Chosen Ciphertext as Order-2 Element. Previous work [139, 309] used an order-2

element as a chosen ciphertext for attacks on RSA and ElGamal in order to create an

observable correlation between the operands of the arithmetic operations performed by the

exponentiation routine and the secret key. Unfortunately, this approach does not work in our

case. The order 2 element is G2 = (X = 0, Z 6= 0). If we use P = G2, we have dif x = G2.x =

0 in Line 4 of Algorithm 1. As Ransom [267] observes, this is an exceptional case that causes

incorrect results for the Montgomery addition computed by montgomery step. More

specifically, because Zs is set to 0 on Line 17 of Algorithm 2, the sum (Xs, Zs) = G1 + G2 is

computed as (X = 0, Z = 0), which is illegal in the Montgomery projective representation.

Subsequent iterations of the loop in Algorithm 1 treat this undefined point as G1 instead of

G2. The consequence of this irregularity is that when we use P = G2, all of the intermediate

values in Algorithm 1 are the invalid point irrespective of the secret key bits. We stress that

the irregularity in the implementation only happens when P = G2. For every other value of

P, the point addition will involve at least one value that is neither G1 nor G2 and the results

of the algorithm are correct.

4.3.1. Long and Short Modular Reductions and Order-2 Elements

Our attack exploits the early exit in Line 5 of Algorithm 3. We say that the modular

reduction in l14 · l11 mod p (Line 19 of Algorithm 2) is short when the number of limbs in

l14 · l11 is smaller than the number of limbs in p, causing an early exit. Otherwise, we say

that modular reduction in l14 · l11 mod p is long. We later show that by monitoring the

cache, we can detect the early exit. We now proceed to describe when early exits occur and

how we can recover the key based on them.

Order-1 and Order-2 Arguments Imply Short Modular Reductions. Consider
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the case where the first argument Q0 to montgomery step (Algorithm 2) is either the

order-1 element G1 or the order-2 element G2. As mentioned in Section 4.2.1, for G1 we have

(X0 6= 0, Z0 = 0) and for G2 we have (X0 = 0, Z0 6= 0). In both cases the value l11 = 4X0Z0

(see Equation 4.5) computed in Line 13 is equal to 0. Next, since l11 is zero we obtain that

the value l14 · l11 computed in Line 19 is also equal to 0. Finally, since the representation

of 0 consists of only one limb, the condition in line Line 4 of Algorithm 3 is true, causing

an early exit on Line 5, and the modular reduction in Zd ← l14 · l11 mod p is short.

Order-4 Arguments Typically Imply Long Modular Reductions. As we discuss in

Section 4.2.1, an order-4 element G4 has the form (X = λ, Z = ±λ), with λ ∈ [1, . . . , p− 1].

The fact that the affine point x = 1 can be expressed in this way with projective coordinates

actually helps our attack. As above, consider passing the order-4 element (X0 = λ, Z0 = ±λ)

as the Q0 argument of montgomery step. We now look at the values of l11 and l14 used

in Line 19. From Equation 4.5 we have l11 = 4X0Z0 = ±4λ2.

For l14 we have:

l14 = l7 + l13 mod p = l23 + l11 · (A− 2)/4 mod p

= (X0 + Z0)
2 + 4λ2 · (A− 2)/4 mod p

= λ2 · (A± 2) mod p

where the ±2 depends on whether G4 is on the curve or on its twist, i.e. whether Z0 = λ or

Z0 = −λ. Consequently, if λ < (2192/(A+ 2))1/4 or p−λ < (2192/(A+ 2))1/4, we have that

l14l11 < 2192 and the reduction in Line 19 is short. Otherwise, we have that l14l11 > 2192

and the reduction is long, except with a negligible probability of 2192−510.

4.3.2. Order-4 Element as a Chosen Ciphertext

We now consider decryption when the adversary sends an element of order 4 G4 as chosen

ciphertext. Recall that there are two elements of order 4, an element on the curve, with

affine x-coordinate of 1 and an element on the twist with x-coordinate of −1. However, for

our purposes these elements behave the same so we refer to both as G4. The relevant rules
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of point addition for order-4 elements are as follows:

[2]G4 = G2

G1 + G4 = G4

G2 + G4 = G4

Montgomery Ladder Invariant Revisited. Next, we recall that in the Montgomery

ladder, the difference in affine coordinates of the tracked values R0 and R1 is P, the input

point. Based on the addition rules above, when the input point is G4, as is the case in our

attack, one of R0 and R1 must be G4 and the other must be either G1 or G2.

Determining Key Bits. We now show how, an attacker that knows the value of the i-th

key bit, ki can leverage the side channel leakage to learn the value of bit ki−1. Repeating

this argument for all of the bits of k results in a complete key extraction. Indeed, note that

based on the invariant and the rules above, every time the montgomery step function

is executed in Algorithm 1, the output value S1 = Q0 + Q1 must be an order 4 element G4.

Next, since S1 = G4 the Montgomery ladder invariant implies that S0 is either G1 or G2. The

values held by S0 and S1 after processing bit ki will propagate to the Montgomery step of

bit ki−1 as the values held by Q0 and Q1, possibly getting swapped at two locations: Line 9

if bit ki is set, and Line 7 in the next loop iteration in case bit ki−1 is set.

Thus, we consider the following two cases based on the values of the key bits ki and ki−1:

1. ki−1 = ki. When propagating from S0 and S1 to Q0 and Q1, the values will either be

swapped twice if ki = ki−1 = 1, or not swapped at all, when ki = ki−1 = 0. In both

cases, Q0 ∈ {G1, G2} and Q1 = G4. As stated in Section 4.3.1, having Q0 ∈ {G1, G2} implies

that the modular reduction in Line 19 of Algorithm 2 performed during the processing

of ki−1 will be short.

2. ki−1 6= ki. When propagating from S0 and S1 to Q0 and Q1, the values will be swapped
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Figure 2: Trace (excluding four first bits) of scalar-by-point multiplication of a
secret key with an element of order 4—We can learn the bits of the scalar (shown on the
x-axis) from the sequence of long and short modular reduction operations: a short reduction
implies that the current bit is the same as the previous bit, whereas a long reduction means
that the current bit is the complement of the previous bit.

exactly once, since only one of ki and ki−1 is set. In either case, Q0 = G4 and Q1 ∈ {G1, G2}.

As stated in Section 4.3.1, having Q0 = G4 implies that the modular reduction in Line 19

of Algorithm 2 performed during the processing of ki−1 will be long.

Hence, when the attacker knows ki, observing the length of the modular reduction will

allow the attacker to determine the value of ki−1. This culminates in an easy procedure

for recovering bits directly from a sequence of short and long reductions: a short reduction

means that the current bit is the same as the previous bit, and a long reduction means that

the current bit is the complement of the previous bit.

Key Extraction. Confirming the above, in Figure 2 we show a sequence of modular

reductions performed in Line 19 during 39 loop iterations of Montgomery ladder (Algo-

rithm 1). As can be seen, some modular reductions are long while others are short, which

clearly indicates the leakage of secret key material.

Assuming that the bit preceding the captured sequence was 0, we apply our easy rule: a

long reduction implies that the value of the next bit (the first captured) is 1. The next

modular reduction is long again, and we can conclude that the bit is 0. The third reduction

is short, indicating that the value of the bit remains 0 and so forth.
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Figure 3: Memory access times of the Flush+Reload attack–The lengths of the hor-
izontal bars corresponding to the lengths of modular reductions. The results were obtained
by flushing and reloading four memory locations, two within the constant-time swap code
and two within the multiplication code. In each sample, we perform a flush followed by a
reload for each of these four memory locations, measuring access times. We show the min-
imum of the access times for the two memory locations in the constant-time swap code in
red, and the minimum of the access times for the two memory locations in the multiplication
code in blue.

Small values of λ. A minor limitation of the above approach is that, as discussed above,

when doubling G4 with a small λ, the modular reduction will be short. Experimentally,

we find that during most of the algorithm the probability of this happening is negligible.

However, when Libgcrypt initializes R1, it sets λ = 1. Nevertheless, the length of λ increases

rapidly, reaching the full size of four limbs (255 bits) within four loop iterations. However,

during these first four iterations the value of λ is small, hence our attack is unable to

determine the first four key bits used during these iterations.

4.4. Experimental Results

4.4.1. Attack Technique

For the side channel, we use the Flush+Reload attack [308] in conjunction with the ampli-

fication attack of Allan et al. [34]. Microarchitectural attacks such as Flush+Reload leak

information on programs by monitoring the effects that executing a program has on the

state of the components of the processor. See Ge et al. [136] for a survey of published

microarchitectural attacks. In particular, the Flush+Reload attack leaks information by

monitoring the presence of memory locations in the cache.
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The Flush+Reload Attack. The Flush+Reload attack consists of two phases. In the

flush phase, the attacker evicts the contents of one or more monitored memory addresses

from the cache. This is typically achieved by using a dedicated instruction, such as the x86

clflush, but in the absence of such an instruction, the attacker can use other mechanisms

to achieve eviction [157, 315]. After the flush phase is completed the attacker waits for a

short while to allow the victim time to execute. Then, during the reload phase, the attacker

reads the contents of the memory addresses, measuring the time it takes to perform the

read.

In case the victim accesses one or more of the monitored memory addresses between the

flush and the reload phases, the contents of these addresses will be cached again causing

the attacker’s reads to be fast. Conversely, in case the victim does not access a monitored

memory address, the contents will not be cached, causing the attacker’s read to take longer.

Performing the attack repeatedly, the attacker can trace the victim’s memory accesses to

specific addresses over time. In case the monitored memory addresses are part of the victim’s

code, the attacker learns some information about the victim’s execution patterns.

The Amplification Attack. Because the Flush+Reload attack executes concurrently

with the victim, the Flush+Reload attack has a limited temporal resolution. To improve

the attack resolution, Allan et al. [34] suggest slowing the victim down. At high level,

this is done by identifying frequently accessed, or “hot”, sections of the victim code and

then repeatedly evicting these sections from the cache. Next, in order to execute code that

has been evicted, the victim has to wait until the processor loads the code from the main

memory. This, in turn, increases the time it takes the victim to execute each operation and

provides a larger time window for the attacker to make accurate side-channel measurements.

To evict the code from the cache, Allan et al. [34] use the clflush instruction, hence like

the Flush+Reload attack, amplification only works when the victim and the attacker share

memory.
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4.4.2. Attacking the Scalar-by-Point Multiplication

Experimental Setup. We target Libgcrypt’s implementation of the Montgomery lad-

der scalar-by-point multiplication routine. We first demonstrate the attack’s feasibility by

directly invoking Libgcrypt’s scalar multiplication on an order-4 element. As described in

Section 4.1.3, we target Libgcrypt 1.7.6, which is the latest version of Libgcrypt at the time

of writing this paper, as supplied in the latest Ubuntu 17.04. Below, all experiments and

cache attacks were performed on a Dell Optiplex 9010 desktop, equipped with an i7-3770

3.4 GHz processor and 8GB of memory, running unmodified Ubuntu 17.04. To mount the

Flush+Reload attack, we used the FR-trace utility of the Mastik toolkit [306]. FR-trace

provides a command-line interface for performing the Flush+Reload attacks as well as sup-

port for the amplification attack of Allan et al. [34].

Applying the Flush+Reload Attack. To extract information about whether the mod-

ular reduction in Line 19 of Algorithm 2 was long or short during each iteration of the

main loop of Algorithm 1, we set FR-trace to monitor four memory locations within the

Libgcrypt library. Two of these locations are within the field multiplication code (which

executes before the modular reduction operation) and the other two are within the condi-

tional swap function (which executes after the modular reduction operation). As Allan

et al. [34] observe, monitoring two memory locations with the same functionality reduces

the probability that the attack will miss a memory access due to overlap between the vic-

tim’s memory accesses during the attacker’s reload phase. To improve our ability to detect

the length of the modular reduction operation, we use the amplification attack of [34] to

repeatedly evict the code of the operation. This increases the time to perform modular

reduction by a multiplicative factor of 11.1.

Recall that our attack correlates the bits of the secret key and the time it takes to perform

the modular reduction in Line 19 of Algorithm 2. Since this modular reduction operation

is executed between our two measurement points, we expect that the temporal separation

between the two measurements will reveal the length of the modular reduction, i.e. whether
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it is long or short.

Trace Analysis. Figure 3 shows a sample of a trace of a scalar multiplication. For each

measured functionality (field multiplication code and the conditional swap function) we

plot the shorter of reload times of the two measurement locations. Recall that the reload

time of a monitored location is shorter following a victim’s access to that location. In our

test environment, we find that loads from memory take over 150 cycles, whereas loads from

the cache take less than 100 cycles. Thus, whenever the reload takes below 100 cycles we

can assume that the victim has accessed the monitored location.

Observing Swap Operations. Looking at Figure 3, we see a sequence of “dips” which

indicate various victim accesses. Dips in the swap line (solid red) indicate that the victim

performed the constant time swap operation. Due to the low temporal resolution of the

Flush+Reload attack, we are unable to distinguish between the swap that occurs at the end

of one loop iteration of Algorithm 1 and the swap at the start of the next one. Hence, the

four dips visible in the solid red line show the times where processing of one scalar bit ends

and processing of the following bit starts during the main loop of Algorithm 1.

Observing Multiplication Operations. Dips in the multiply line (dashed blue) indi-

cate times when the victim performed the multiplication operations in Algorithm 2. Gaps

between the dips correspond to all of the other operations that the algorithm performs.

Due to the amplification attacks, the dominant component in the gaps is the time it takes

to compute the modular reduction.

The amplification attack only amplifies the main loop of the modular reduction. Hence,

when Algorithm 3 exits early, its timing is not affected by the attack. Due to the limited

temporal resolution of the Flush+Reload attack, in the case of a short reduction, the attack

is unable to distinguish between the timing of the multiplication in Line 19 of Algorithm 2

and the following swap operation.

Observing Long and Short Modular Reductions. We now turn our attention to the
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Figure 4: Five processed traces—Dark spots indicate an observed long reduction and
light spots indicate an observed short reduction. Three errors in the observation are marked
with X marks. Two of them observe the wrong reduction length and the third is a super-
fluous bit.

gap between the last observed multiplication operation and the following swap. These are

marked with black horizontal bars. We note that in the case of a long reduction this gap is

due to the modular reduction in Line 19 of Algorithm 2. However, as discussed above, in

the case of a short reduction, Flush+Reload samples this multiplication in the same time

as the swap operation. Hence, the gap is due to the preceding multiplication, in Line 16.

Because one of the multiplicands in Line 16 is short, the multiplication result is short and

the modular reduction in this case is faster than that of a long reduction.

As we can see, Figure 3 shows one short gap, followed by two long and another short gap.

These correspond to long and short modular reductions. Hence, by measuring the length

of the gap, the attacker can recover the information on the length of the last modular

reduction, and from it recover the bits of the key.

Handling Measurement Errors. Side-channel attacks rarely produce error-free results.

To measure the number of errors in our attack, we captured 1000 traces and compared

with the ground truth. On average, there are 3.8 errors in a trace. See Figure 5 for the

distribution of the number of errors in traces.

Overall Attack Performance. To correct the errors, we selected five arbitrary traces (see

Figure 4), aligned them manually (about 10 minutes of wall-clock time) and used a simple

majority rule to decide the length of each modular reduction operation. From this we were

able to deduce for all but the leading four key bits whether the modular reduction in Line 19

of Algorithm 2 was long or short. Finally, applying the cryptanalysis from Section 4.3, we
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Figure 5: Distribution of the number of errors (excluding four first bits) in traces
of the scalar multiplication—Out of 1000 captured traces, there are an average of 3.8
errors per trace.

successfully recovered all but the first four bits of a randomly generated Curve25519 scalar.

The leading bits can then easily be found using exhaustive search.

4.4.3. Attacking Applications

We now turn our attention to attacking applications that use Libgcrypt. We attack three

applications: git-crypt [44], Pidgin’s OpenPGP plugin [18, 149], and Enigmail [266]. We

first describe these applications with a focus on how they use encryption and the attack

vector. We then describe the attack results.

Git-crypt. Git-crypt is a plugin for the git revision control system, used to selectively

encrypt files in a repository. When initialized, git-crypt selects a random AES key, which

is used for encrypting the files stored in the git repository. To publish the repository’s AES

key, git-crypt creates encrypted key files using the Gnu Privacy Guard (GnuPG) software.

Each of the key files is encrypted with the public key of an authorized user and is stored

in the repository. When git processes modifications to an encrypted file, it invokes git-

crypt, which calls GnuPG to retrieve the repository’s AES key. Git-crypt then encrypts or

decrypts the modified file.

115



We use the default install of git-crypt on Ubuntu 17.04. To attack, we modify the victim’s

encrypted key file by replacing the ECDH ephemeral public key with the element of order 4

and commit the change into the repository. Once the victim pulls the modified key file,

any attempt to encrypt or decrypt files in the repository will send an element of order 4

into Libgcrypt’s scalar multiplication routine, allowing the attacker to collect side channel

information.

Running the attack on real-world software rather than on the scalar multiplication code only,

presents two problems. The first is that GnuPG performs several public key operations when

trying to match the public key used for encrypting the key file with the victim’s key storage

(called keyring in the GnuPG nomenclature). These operations access both the constant-

time swap code and the multiplication code which our attack monitors. Consequently, the

side channel attack collects much more information and we need to distinguish between the

ECDH scalar multiplication operation and the other operations. To achieve that, we also

use FR-trace to monitor the entry to the ECDH decryption code and ignore all accesses to

monitored code that precede the entry.

The second problem we witness is that when running more software the system is more

noisy, increasing the error rate. On average, we find that we have 14.9 errors in a trace and

therefore we require 11 traces to recover the secret key.

Pidgin. Pidgin is a popular open-source chat application that supports communication

across a variety of chat networks [18]. We target Pidgin’s OpenPGP plugin [149], which

allows a sender to encrypt messages with the recipient’s public GnuPG key. When the

recipient has the plugin enabled and receives a PGP-encrypted message, the message is

automatically decrypted using GnuPG with no action required by the recipient.

We use the default APT distribution of Pidgin and the OpenPGP plugin for Ubuntu 17.04.

To carry out the attack, we first enable PGP for the chat session and then send a chat

message, replacing the ECDH ephemeral public key with an element of order 4. When the
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victim receives the message, Pidgin uses GnuPG to decrypt the ciphertext, calling the scalar

multiplication function in Libgcrypt with the order-4 element and enabling the side-channel

attack.

We sent 100 malicious Pidgin messages containing an order-4 element to the target machine,

while monitoring its cache activity. This resulted in 100 traces containing an average of 7.6

errors with 3 of the traces containing unusable data. Overall we recovered the victim key

using information from 7 traces.

Enigmail. Enigmail is an add-on for the Mozilla Thunderbird email client that enables the

sender to encrypt emails using the recipient’s public GnuPG key. When the recipient views

a GnuPG-encrypted email, Enigmail passes the ciphertext to GnuPG to be decrypted.

For our attack, we assume that the victim is running Mozilla Thunderbird in Ubuntu 17.04

with the default version of Enigmail installed. The attacker sends a GnuPG-encrypted

email with the ECDH public key replaced with an order-4 element. When the victim clicks

on the encrypted email, Enigmail passes the ciphertext to GnuPG for decryption, enabling

a side-channel attack similar to the above.

Similar to the Pidgin attack above, we used Enigmail to decrypt 100 encrypted email

messages containing order-4 elements on the target machine while monitoring its cache

activity. This resulted in 100 traces containing an average of 9.1 errors with 9 of the traces

containing unusable data. Overall we recovered the victim key using information from 7

traces.

4.5. Software Countermeasures

Our attack works by passing specially chosen ciphertexts (order-4 curve points) to the

ECDH decryption routine to be multiplied by the secret scalar. Due to the mathematical

structure of these inputs and the Montgomery ladder algorithm, they trigger key-dependent

leakage patterns deep inside Libgcrypt’s basic finite field arithmetic operations. Observing

these patterns using the cache side channel, we are able to recover the secret key. We now
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briefly review common countermeasures for preventing such chosen ciphertext attacks. See

Fan et al. [124] and Fan and Verbauwhede [123] for more extended discussions.

Constant Time Arithmetic. Both the original publication of Curve25519 [55] and the

NaCl library [59] use constant-time field arithmetic. Replacing Libgcrypt’s code with any

of these implementations would prevent our attack as well as any known microarchitectural

side-channel attack. We repeat here the recommendation stated in RFC 7748 [200] as our

attack uses a similar type of leakage from Libgcrypt’s arithmetic library in order to achieve

key extraction: “it is important that the arithmetic used not leak information about the

integers modulo p, for example by having b · c be distinguishable from c · c.”

Rejecting Known Bad Points. To protect against small subgroup attacks against Curve-

25519 and related curves that have a small set of low-order elements, an implementation

can simply check if the received public key is in the set. Bernstein [56] provides a full list of

these points for Curve25519, but suggests that rejecting these points is only necessary for

protocols that wish to ensure “contributory” behavior. Langley and Hamburg [200] have a

similar suggestion. We argue that rejecting these points would also give better side-channel

protection. While this protection may seem unnecessary when used with constant-time

code, as Kaufmann et al. [190] demonstrate, constant-time code is fragile and may fail to

provide adequate protection.

Point Blinding. To protect the scalar k that is multiplied by a potentially-malicious

ciphertext P, one can generate a random point R, compute [k](P + R), and then subtract

[k](R) from the result [99]. This countermeasure completely protects against the chosen

ciphertext attack we describe in this paper, since the attacker can no longer choose the point

P to be multiplied with k. However, this countermeasure introduces an extra scalar-by-point

multiplication for each decryption, so the negative performance effect of this countermeasure

is significant.

Scalar Randomization. Many side-channel attacks rely on combining the leakage over
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several decryption operations in order to extract the key. A possible countermeasure to

prevent such averaging is scalar randomization [99], which adds a random multiple of the

group order to the scalar k before performing the scalar-by-point multiplication operation.

This changes the sequence of elliptic curve operations performed for every decryption op-

eration, hindering the averaging operation. A similar countermeasure splits the scalar k

into n parts k1, ...kn such that k =
∑n

i=1 ki, performs the scalar-by-point multiplication

operation separately on each ki, and then combines the result [94]. This countermeasure is

cheaper than point blinding, but not as effective.

According to Bernstein [55], the order of the base point of Curve25519 is

2252 + 27742317777372353535851937790883648493.

We note that this number has a sequence of 128 consecutive zero bits. Ciet and Joye [94]

note that scalar randomization with multipliers of this form still reveals a large number of

bits. Thus, we do not recommend using this countermeasure.

Defense in Depth. The cache attack described in this paper will not work against an

implementation that has truly constant-time code, since the attack relies on subtle timing

differences deep within arithmetic functions. However, writing constant-time code is a

non-trivial task; even the side-channel resistant Montgomery ladder algorithm still leaves

room for error, as this paper demonstrates. Rather than providing the bare minimums for

security, we argue that systems should be designed to have defense in depth, so that a single

mistake on the part of the developer does not have disastrous consequences for security.

With regard to the attack described in this paper, the lack of input validation caused

sensitive secret-key operations to be performed on adversarial inputs, which allowed us to

transform an existing side-channel weakness into a full key-recovery attack. Thus, we recom-

mend that in addition to writing side-channel resistant code, developers should also deploy

the aforementioned countermeasures. This would have the effect of reducing the capability
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of an attacker to mount key-extraction attacks by exploiting side-channel weaknesses.

4.6. Conclusion

In this work, we demonstrate a side-channel attack against Libgcrypt’s implementation of

ECDH encryption with Curve25519, which uses the Montgomery ladder and branchless

formulas for point addition and doubling. Instead of relying on easily observable behav-

ior such as high-level key-dependent branches or memory accesses, our attack exploits a

low-level side channel vulnerability deep inside Libgcrypt’s basic finite field arithmetic op-

erations. We find that by passing order-4 elements into the decryption routine, we can

trigger specific key-dependent code execution paths that a cache side channel attack is able

to detect. From these key-dependencies, we are able to recover the key within about a

second of measurements.

Chosen Ciphertext as Order-8 Element. While we did not investigate passing in

order-8 elements as inputs to the decryption routine, these points would also introduce

mathematical structure into the operands of the elliptic curve operations in the scalar-by-

point multiplication. We expect that a similar attack would at least achieve partial key

recovery.

Future Work. Our attack uses multiple decryption traces and averages the results to

reduce the error rate. Overcoming side-channel noise to enable an attack with only a sin-

gle trace is an open problem. Our attack relies on the special mathematical properties of

the representation of the elements of order 4. Rejecting these points is an effective coun-

termeasure to our attack; however, it does not address the underlying problem of having

vulnerable arithmetic operations. It may be possible to extend our work to attack the arith-

metic operations without using a low-order group element. Finally, our techniques should

also be applicable for mounting low-bandwidth key extraction attacks against Libgcrypt’s

implementation of Curve25519 using physical side channels. Mounting such attacks remains

an open problem.
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CHAPTER 5 : 512-bit RSA in the wild

5.1. Introduction

A 512-bit RSA modulus was first factored by Cavallar et al. in 1999, which took about seven

calendar months in a distributed computation using hundreds of computers and at least one

supercomputer [88]. The current public factorization record, a 768-bit RSA modulus, was

reported in 2009 by Kleinjung et al. [195]and took about 2.5 calendar years and a large

academic effort.

Despite these successes, 512-bit RSA keys are still regularly found in use. Several im-

plementations of the number field sieve have been published, including CADO-NFS [290],

Msieve [251], and ggnfs [226], allowing even enthusiastic amateurs to factor 512-bit or larger

RSA moduli. In 2009, Benjamin Moody factored a 512-bit RSA code signing key used on

the TI-83+ graphing calculator using 2.5 calendar months of time on a single computer,

and a distributed effort then factored several more 512-bit TI-68k and TI-Z80 calculator

signing keys [281]. The NFS@Home project has organized several large distributed factor-

izations since 2009. [92] In 2012, Zachary Harris factored the 512-bit DKIM RSA keys used

by Google and several other major companies in 72 hours per key using CADO-NFS and

Amazon’s Elastic Compute Cloud (EC2) service [314].

The persistence of 512-bit RSA is likely due in part to the legacy of United States poli-

cies regarding cryptography. In the 1990s, international versions of cryptographic software

designed to comply with United States export control regulations shipped with 40-bit sym-

metric keys and 512-bit asymmetric keys, and export-grade cipher suites with these key sizes

were built into protocols like SSL. Restrictions were later raised or lifted on open-source

and mass-market software with cryptographic capabilities, but as of 2015, the United States

Commerce Control List still includes systems “designed or modified to use ‘cryptography’

employing digital techniques performing any cryptographic function other than authentica-

tion, digital signature, or execution of copy-protected ‘software’ and having . . . an ‘asym-
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metric algorithm’ where the security of the algorithm is based on . . . factorization of integers

in excess of 512 bits (e.g., RSA)”. [85]

Factoring a 512-bit RSA key using the number field sieve is still perceived by many as a

significant undertaking. In 2015, Beurdouche et al. [61] discovered the FREAK attack, a

flaw in many TLS implementations that allows man-in-the-middle attacks to downgrade

connections to 512-bit export-grade RSA cipher suites. In evaluating the prospect of a fully

exploitable vulnerability, the paper states “we observe that 512-bit factorization is currently

solvable at most in weeks.” Subsequently, Bhargavan, Green, and Heninger developed a

FREAK attack proof-of-concept in part by configuring CADO-NFS to run more efficiently

on Amazon EC2. This setup was reported to factor a 512-bit key in approximately 7 hours

on EC2, with a few additional hours for startup and shutdown [62].

In this paper, we present an improved implementation which is able to factor a 512-bit

RSA key on Amazon EC2 in as little as four hours for $75. Our code is available at

https://github.com/eniac/faas.

We gain these improvements by optimizing existing implementations for the case of fac-

toring in the cloud. In particular, we rewrote the distributed portion of the number field

sieve to use the Slurm job scheduler [312], allowing us to more effectively scale to greater

amounts of computational resources. We describe our implementation and parallelizations

in Section 5.3. We then performed extensive experiments on both CADO-NFS and Msieve

to determine optimal parameter settings for the network interconnect speeds and resource

limits achievable on Amazon EC2. Our experiments are detailed in Section 5.4.

Figure 6 summarizes the time and cost to factor a 512-bit RSA key using current optimal

parameters with varying amounts of resources, and the average cost we paid between May

and September 2015 for EC2 resources. By tuning the parameters for factoring, one can

achieve different points in the trade-off between overall clock time and overall cost. Using

more machines gives a faster overall factoring time, but has diminishing returns because
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Figure 6: A time/cost curve for 512-bit factorization—Each point above is annotated
with the instances used for sieving and linear algebra, respectively, and represents an ex-
perimental estimate. There are diminishing returns from imperfect parallelization in linear
algebra. The dotted line shows the fastest time we were able to achieve; larger experiments
usually encountered node instability.

of imperfect parallelism. Linear algebra time was measured empirically and sieving was

measured once for each parameter set and extrapolated to different numbers of instances.

The order of magnitude of the costs we give lines up with previous reports and estimates of

factoring on EC2, and we achieve a significant speedup in overall running time. Performing

a computation of this magnitude reliably remains a challenging endeavor. Our paper can

also be viewed as a case study on the successes and challenges in trying to replicate a

high-performance computing environment in the Amazon EC2 cloud.

In order to measure the impact of fast 512-bit factorization, in Section 5.5 we analyze

existing datasets and perform our own surveys to quantify 512-bit RSA key usage in modern

cryptographic public key infrastructures. We find thousands of DNSSEC records signed

with 512-bit keys, millions of HTTPS, SMTP, IMAPS, and POP3S servers still supporting

RSA EXPORT cipher suites for TLS, and a long tail of 768-bit, 512-bit, and shorter RSA keys

in use across DKIM, SSH, IPsec VPNs, and PGP.

5.2. Background

In this paper, we focus on the impact of factoring on the security of RSA public keys [270],

though integer factorization has many applications across mathematics. Factoring the mod-

ulus of an RSA public key allows an attacker to compute the corresponding private key,

and thus to decrypt any messages encrypted to that key, or forge cryptographic signatures
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Figure 7: The number field sieve—The number field sieve factoring algorithm consists
of several main stages. Sieving and linear algebra are the most computationally intensive
stages. Sieving is embarrassingly parallel, while parallelizing linear algebra can encounter
communication bottlenecks.

using the private key.

5.2.1. Number Field Sieve

The general number field sieve is the fastest known algorithm for factoring generic integers

larger than a few hundred bits [204]. Its running time is described using L-notation as

LN [1/3, 1.923] = exp
(

1.923(logN)1/3(log logN)2/3
)
,

which is sub-exponential, but super-polynomial [171] in the size of N , the integer to be

factored. A gentle introduction to the big ideas behind sieving algorithms for integer factor-

ization and can be found in Pomerance’s 1996 survey [264], and more in-depth information

on the number field sieve can be found in the books by Lenstra, Lenstra, Manasse, and

Pollard [204] and Crandall and Pomerance [101].

In this section, we give a brief overview of the structure of the algorithm, in order to identify

potential implementation optimizations and barriers to parallelization. The number field

sieve has four main computational stages: polynomial selection, sieving, linear algebra, and

square root.

The first stage of the algorithm, polynomial selection, searches for a polynomial f(x) and

integer m satisfying f(m) ≡ 0 mod N , where N is the integer to factor. f(x) defines the

number field Q(x)/f(x) to be used in the rest of the algorithm. A good choice of polynomial
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in this stage can significantly speed up the rest of the computation, by generating smaller

elements in the sieving phase. Several techniques exist for choosing the polynomial, but in

general many different polynomials are tested and the best one is passed on to the next

stage. The polynomial selection stage is embarrassingly parallel.

The next stage of the algorithm, sieving, factors ranges of integers and number field elements

to find many relations of elements and saves those whose prime factors have size less than

some size bound B, called the smoothness bound. CADO-NFS uses the large prime variant

of sieving, and the large prime bound parameters lbp control the log of the smoothness

bounds. Decreasing these bounds increases the difficulty of sieving, since relations are less

likely to factor completely into smaller factors. The sieving stage is also embarrassingly

parallel, since candidate relations can be evaluated independently in small batches.

In the third stage, linear algebra, the coefficient vectors of the relations are used to construct

a large sparse matrix with entries over F2. Before beginning this stage, some preprocessing

on the relations is used to decrease the dimension of the resulting matrix. In general, more

relations collected during sieving will produce a smaller matrix and reduce the runtime

for linear algebra. The goal of the linear algebra stage is to discover a linear dependency

among the rows. This is accomplished via the Block Wiedemann [98] or Block Lanczos [228]

algorithms, which are specialized for sparse linear algebra. This step can be parallelized,

but the parallelization requires much more communication and synchronization.

The final stage involves computing the square root of a number field element corresponding

to a dependency in the matrix. In practice, many dependencies will be tested since not all

of them will lead to a nontrivial factor; the square roots can be computed and tested in

parallel. This step takes only a few minutes.

Discrete log. There is also a number field sieve algorithm for discrete logarithms with

a nearly identical structure. Many of the implementation improvements that we describe

here also apply to discrete log. However a 512-bit prime-field discrete log is significantly
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more burdensome than a 512-bit factorization, in large part because the linear algebra

stage involves arithmetic over a large-characteristic finite field. Adrian et al. [29] describe

512-bit discrete log computations in practice; we estimate that a single equivalent discrete

log computation performed on Amazon EC2 would cost approximately $1400 and take 132

hours.
5.2.2. Amazon EC2

Amazon Elastic Compute Cloud (EC2) is a service that provides virtualized computing

resources that can be rented by the hour. Several competitors exist, including Google

Compute Engine. We specialize our results to Amazon largely out of convenience and

because when we began this project some tools were specialized to Amazon’s infrastructure.

Amazon EC2 bills for computing resources by the instance-hour. An instance is a single

virtualized machine associated with resources including processing cores, memory, and disk

storage. Amazon offers many different instance types. We chose the largest type of compute-

optimized instance available as of August 2015, the c4.8xlarge instance. This instance type

has two Intel Xeon E5-2666 v3 processor chips, with 36 vCPUs in a NUMA configuration

with 60 GB of RAM.

There are multiple pricing structures available to purchase instance-hours. For our purposes,

one can purchase fixed-rate on-demand instances, or bid a variable rate for spot instances

which may be terminated depending on demand. The difference can be significant: for

a c4.8xlarge instance, the on-demand price as of September 2015 is $1.763, while the

average spot price we paid between May and September 2015 was $0.52. We used spot

instances for our experiments. Amazon raised our account limit to allow us to launch up

to 200 instances.

The c4.8xlarge instance type supports Enhanced Networking with 10 GbE interconnect

between instances. Machines can be rented in different availability zones located around

the world, and within an availability zone one can request machines to be co-located in a

single placement group to minimize latency. We measured the interconnect bandwidth of
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instances in the same availability zone and placement group at 9.46 Gbit/s, and between

instances not in the same placement group at 4–5 Gbit/s. We enabled enhanced networking

and launched instances used for linear algebra in one placement group.

The networking environment of Amazon EC2 is distinct from a traditional HPC cluster.

The connection was not saturated during our linear algebra optimization tests in Section 5.4

below. However, our measured interconnect latency, at 151µs, is significantly greater than

most HPC standards. For reference, InfiniBand FDR has latency requirements of 7µs at

10 Gbit speeds.

Kleinjung, Lenstra, Page, and Smart [196] estimated in 2012 that factoring 512-bit RSA

on Amazon EC2 would cost $107 for sieving and $30 for linear algebra. Their estimates

were obtained from experiments on truncated sieving jobs and simplified linear algebra. In

comparison, we focused on building a system to reliably perform full 512-bit factorizations

as quickly as possible given the current state of the EC2 platform. Paterson, Poettering,

and Schuldt [252] used EC2 to perform large-scale cryptanalytic experiments for the RC4

stream cipher.

5.3. Implementation

In order to speed up factoring, we wanted to maximize parallelism. In the polynomial

selection and sieving stages, parallelization is straightforward, because the tasks can be

split into arbitrarily small pieces to be executed independently, with only a relatively small

amount of sequential work to process the results together at the end. Our improvements

in these stages come from reliably distributing these tasks across cluster resources in a

scalable way. Scaling the linear algebra stage is more complex, because the communication

overhead results in diminishing returns from additional resources. We performed extensive

experiments to characterize the trade-offs and guide parameter selection.

5.3.1. Managing Amazon EC2 resources with Ansible

We used Ansible [104], a cluster management tool, to set up and configure an EC2 cluster

and to scale the cluster appropriately at each stage of factorization. After the sieving
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stage, we terminate nodes not required for linear algebra. Ansible can launch and configure

a cluster of 50 on-demand instances in under 5 minutes, and 50 spot instances in 10–15

minutes.

5.3.2. Parallelizing polynomial selection and sieving with Slurm

The polynomial selection and sieving stages generate thousands of individual tasks to be

distributed to cluster compute nodes. This requires a job distribution framework that

is fast and scalable to many machines. The CADO-NFS implementation is distributed

with a Python script to coordinate each stage, including a job distribution system over

HTTP designed to require minimal setup from participating computers. Unfortunately

this implementation did not scale well to simultaneously tracking thousands of tasks. We

experimented with Apache Spark [313] to manage data flow, but Spark was not flexible

enough for our needs, and our initial tests suggested that a Spark-based job distribution

system was more than twice as slow as the system we were aiming to replace.

Ultimately we chose Slurm (Simple Linux Utility for Resource Management) [312] for job

distribution and management during polynomial selection and sieving. Slurm can resubmit

failed or timed-out tasks, monitors for and deals with failed nodes, has low startup overhead,

and scales well to large clusters.

Our implementation uses a management thread to submit polynomial selection and sieving

tasks asynchronously in batches to the Slurm controller, which then handles distribution

and execution. This thread rate limits batch sizes in order to get around Slurm’s job

submission rate of a thousand jobs per second. [41] We found that scheduling two jobs per

vCPU yielded faster sieving times than one job per vCPU, since the latter did not always

fully saturate CPU usage.

5.3.3. Parallelizing linear algebra with MPI

After sieving has completed, the relations that have been produced are processed to generate

a large, sparse matrix. The runtime of this linear algebra phase depends on the dimension

of the matrix and the number of nonzero entries per matrix row, called the density, so the
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preprocessing stage attempts to produce a matrix that is as small as possible by filtering

and combining relations. The parameters that control the effectiveness of the dimension

reduction are the number of relations collected and the allowed density of the matrix.

The parallelization of the linear algebra stage is more complex than sieving or polynomial

selection. In general, the matrix is divided up into an n × n grid. In each iteration, each

worker operates on its own grid element, gathers results from each of the other workers using

the Message Passing Interface (MPI), and combines the results into its own grid element.

We used OpenMPI 1.8.6. [133]

Comparing CADO-NFS and Msieve linear algebra. We compared the linear algebra

implementations of CADO-NFS, which implements the Block Wiedemann algorithm, and

Msieve, which implements the Block Lanczos algorithm for linear algebra. Although Block

Wiedemann is designed to parallelize well on independent resources, Msieve was significantly

faster on our EC2 configuration. Both implementations support MPI out of the box. For a

512-bit factorization with an identical set of 53 million relations, we found that CADO-NFS

without MPI completed the linear algebra stage in 350 minutes, while Msieve without MPI

completed linear algebra in 140 minutes. When parallelized across multiple EC2 instances,

CADO-NFS’s runtime did not decrease significantly, whereas Msieve’s did. We decided to

use Msieve’s implementation for linear algebra.

Unfortunately, the input and output formats used by CADO-NFS and Msieve are not

compatible, so using Msieve’s linear algebra meant we also needed to use Msieve’s matrix

preprocessing and final square root phases or rewrite these stages ourselves. We compro-

mised by parallelizing Msieve’s square root implementation to test multiple dependencies

simultaneously, so that the square root phase finishes in approximately 10 minutes.

5.4. Experiments

We performed several experiments to explore the effects of different parameter settings on

running time. All of the experiments in this section were carried out on the same arbitrarily

chosen 512-bit RSA modulus. There will be some variation in running time across different
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lbp relations matrix rows matrix size sieve CPU-hours linalg instance-hours

28 28.2M 4.96M 1.48 GB 3271.1 5.4
29 44.8M 5.68M 1.71 GB 2369.2 8.5

Table 25: Large prime bounds—Decreasing the large prime bound parameter increases
the amount of work required for sieving, but decreases the work required for linear algebra.
This is an advantageous choice when large amounts of resources can be devoted to sieving.

moduli. In order to understand this variation, we measured the CPU time required to sieve

54.5 million relations for five different randomly generated RSA moduli with the parameters

lbp 29 and target density 70 on a cluster with 432 CPUs. We observed a median of 2770

CPU hours with a standard deviation of 227 CPU hours in the sample set.

5.4.1. Large prime bounds

The large prime bounds lbp specify the log of the smoothness bound for relations collected

in the sieving stage. Decreasing the large prime bound will decrease the dimension of the

matrix and therefore decrease the linear algebra running time, but will increase sieving time

because relations with smaller prime factors are less common. The lbp parameter provides

the first step for tuning the trade-off between sieving and linear algebra time to optimize

for different-sized clusters.

We experimented with lbp values 28 and 29. At lbp 27, CADO-NFS was unable to gather

enough relations even after increasing the sieving area. At lbp 30, linear algebra will

dominate the computation time even for small clusters.

Table 25 shows the effect of the changing the large prime bound for one experimental setup.

Both of the runs used the minimum number of relations required to build a full matrix with

target density 70 (see Section 5.4.2), and linear algebra was completed on a single machine

with 36 vCPUs. Decreasing lbp from 29 to 28 causes the sieving CPU time to increase

by 38% even though fewer relations are collected, but the linear algebra time decreases by

36%.
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Figure 8: Target density and oversieving—Increasing the target density parameter
decreases linear algebra time, but requires more relations to construct the matrix. Collecting
additional relations beyond the minimum also produces a better matrix and decreases linear
algebra time. This trade-off can be advantageous if more resources can be devoted to sieving,
as sieving parallelizes well.

5.4.2. Target density

The target density parameter specifies the average number of sparse nonzero entries per

matrix row that Msieve will aim for in matrix construction. Linear algebra time is dependent

on the product of the density and dimension, and can be decreased by raising the target

density to lower the dimension. Figure 8a shows how increasing the target density decreases

linear algebra time for a fixed set of input relations on a cluster of 16 instances.

For a 512 bit number with 53 million relations (more than 20 million relations over the

minimum), a matrix with target density 70 took 15 minutes to construct and 68 minutes

for the linear algebra computation. For the same set of relations, a matrix with target

density of 120 took 17 minutes to construct and 55 minutes for linear algebra, a 19%

reduction in linear algebra time. However, there were diminishing returns to increases in

target density: increasing the target density from 120 to 170 reduced the overall time by

only 4%.

The drawback to increasing target density is that more relations are needed from the sieving

stage to construct the matrix. Figure 8b shows how the minimum number of relations

required increases sharply as target density is increased beyond a particular threshold.

When large amounts of resources are available for sieving, the increased work required to
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collect additional relations can be compensated for by a larger decrease in linear algebra

time. For a given cluster size, there is an optimal target density that takes into account

these trade-offs.

5.4.3. Oversieving

Oversieving means generating excess relations during the sieving phase. This can help to

produce an easier matrix for the linear algebra phase, reducing linear algebra runtime. We

ran experiments varying cluster configurations, target densities, and large prime bounds to

determine an oversieving curve for each. Figure 8c shows two representative oversieving

curves for a 16-node linear algebra cluster with lbp 28 and target densities 70 and 120, re-

spectively. For the target density 70 curve, the linear algebra time for the minimum number

of relations required to construct the matrix, 30 million, was 112 minutes. At 32 million re-

lations, the linear algebra time was reduced to 101 minutes, an 11% improvement. However,

as Figure 8c shows, there are diminishing returns to oversieving, while the work required

to produce additional relations scales close to linearly. Optimal oversieving amounts are

dependent on the cluster configuration.

5.4.4. MPI grid size

The grid size parameter directly controls the number of work units that MPI can assign to

cluster resources. We experimented with both fine-grained grids matching the number of

work units to the total number of vCPUs, and coarse-grained grids matching work units to

instances. The optimum turned out to be somewhere in the middle: a single multithreaded

work unit was not able to occupy all of the 36 vCPUs on a single instance, while the other

extreme is likely to become limited by communication overhead since the Block Lanczos

algorithm requires each node to gather results from every other node at each iteration.

In order to determine the optimal grid size, we tested a range of grid sizes for cluster sizes

of 1, 4, 16, and 64 instances. The best performance for clusters with 1 and 4 instances was

4x4 and 8x8, respectively, where each cluster had 16 work units in total. For the clusters

with 16 and 64 instances, the optimal grid size was 8x8 and 16x16, where each cluster had

4 work units in total. The differences as cluster size grows are likely due to communication
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bottlenecks.

5.4.5. Processor affinity

The default parameters of OpenMPI dictate that each of the work units is bound to a specific

machine, but when multiple work units are assigned to the same instance they compete

for the same processor and memory resources, creating processor scheduling overhead and

increased variance in the work unit iteration times. Each work unit must iterate together,

so the time per iteration is dictated by the slowest work unit. Since the c4.8xlarge EC2

instances have two processor sockets and a NUMA memory layout, the distribution of the

threads of a work unit across two processors means longer intra-process communication

times and slower memory access times. We used the rankfile/process affinity parameter in

OpenMPI to bind each of the work units on a single instance to its own subset of processor

cores and saw an improvement of 1-2% in linear algebra time.

We also tested binding each thread of each of the work units to individual cores, but this

did not improve running times.

5.4.6. Block size

The default block size in Msieve is 8192 bytes. Theoretically, matching the block size used

in Msieve with the size of the L1 cache of the processor should yield better performance by

decreasing cache and memory access times. However, for the parameters lbp 28 and target

density 70, increasing the block size from 8K to 16K increased computation time from 67

minutes to 69 minutes, and increasing the block size from 8K to 32K increased computation

time from 67 minutes to 73 minutes. We decided to leave the block size unchanged.

5.4.7. Putting it all together

To generate the data points in Figure 6, we individually timed each sieving job together

with system overhead. For each set of parameters, we combined the linear algebra running

time from the experiments in this section with the total measured running time to complete

enough sieving jobs to generate the required number of relations. We then added a measured

estimate of costs for the remaining steps of factoring to get our total running time estimates.

We were able to reliably achieve running times under four hours for factoring, but in several
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attempts to verify lower overall times, we encountered issues where some EC2 instances in

our cluster ran more slowly than others or became unresponsive. These issues become more

pronounced with larger cluster sizes. Our sieving setup can deal gracefully with slow nodes,

but linear algebra is more fragile and is currently limited by the slowest node.

5.5. 512-bit keys still in use

In this section, we survey RSA key lengths across public key infrastructures for a variety of

protocols, finding that 512-bit RSA keys are surprisingly persistent.

5.5.1. DNSSEC

DNSSEC [40] is a DNS protocol extension that allows clients to cryptographically authenti-

cate DNS records. DNS records protected by DNSSEC include a public key record (usually

RSA) and a signature that can be chained up to a trusted root key. DNSKEY records

can contain either a zone-signing key (ZSK), used to sign DNS records, or a key-signing

key (KSK), used to sign DNSKEY records. RFC 4033 [40] specifies that zone-signing keys

may have shorter validity periods, and key-signing keys should have longer validity periods.

RFC 6781 [199], published by the IETF in 2012 on DNSSEC Operational Practices, states

that “it is estimated that most zones can safely use 1024-bit keys for at least the next ten

years.”
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Figure 9: DNSSEC key sizes and duration—The ratios of RSA key lengths has remained
relatively stable over time, although the total number of DNSSEC keys collected fluctuated
across scans. The number of 512-bit keys remained around 10,000, or 0.35% of the total.
Many DNSSEC keys are rotated infrequently, and 512-bit keys are rotated less frequently
than longer keys.
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An attacker who knows the private key to a zone-signing key or key-signing key could

mount an active attack to forge DNS responses for any descendants below that location in

the chain.

We analyzed several DNSSEC datasets. The most comprehensive is a collection of DNS

records collected by Rapid7 which we downloaded from Scans.io. They performed biweekly

DNS lookups on approximately 529 million domains starting in June 2014 and continuing

to present. The number of lookups varies by as much as 61 million domains across scans,

and the number of domains with valid DNSSEC records fluctuated between 3.7 million and

1.1 million and decreased over time compared to total domains. The relative fraction of

DNSSEC key sizes did not change much over time. The distribution is shown in Figure 9a.

In order to measure the completeness of the Rapid7 dataset, we compared to a second

dataset of anonymized 512-bit DNSSEC keys for all .com, .net, and .org domains between

February 22, 2015 and September 3, 2015 from the SURFnet DNS measurement infrastruc-

ture of van Rijswijk-Deij, Jonker, Sperotto, and Pras [301] which was provided to us by the

researchers. The SURFnet data contained 2,116 distinct public keys of which 1,839 (86%)

were present in the Rapid7 scans from the same time period. To measure how many 512-bit

keys are in active use, SURFnet provided a set of all 512-bit DNSkey records collected using

their passive DNS monitoring system for a one-month period between September 12, 2015

and October 13, 2015. The set included 1,239 records covering 613 distinct domains and

contained 705 distinct keys.

Finally, we performed DNS lookups on eleven thousand zones not contained in the Rapid7

dataset that were required for signature validation. 56% of domains with 512-bit keys failed

signature verification, most commonly because the TLD signature was not present in the

chain of trust.

Many keys were never rotated at all over the 431-day period spanned by the Rapid7 dataset,

and signatures were renewed more frequently than keys were updated. Figure 9b illustrates
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Length All Certificates Distinct Keys Trusted Certificates Trusted and Valid

512 303,199 (0.9%) 32,870 0 (0.0%) 0 (0.0%)
768 26,582 (0.1%) 14,581 0 (0.0%) 0 (0.0%)
1024 12,541,661 (36.8%) 3,196,169 4,016 (0.0%) 4,012 (0.0%)
1536 2,537 (0.0%) 2,108 0 (0.0%) 0 (0.0%)
2048 20,782,686 (60.9%) 6,891,678 14,413,589 (42.2%) 14,411,618 (42.2%)
2432 2,685 (0.0%) 1,191 128 (0.0%) 128 (0.0%)
3072 65,765 (0.2%) 58,432 1,787 (0.0%) 1,787 (0.0%)
4096 391,123 (1.1%) 218,334 259,898 (0.8%) 259,830 (0.8%)
8192 2,172 (0.0%) 971 481 (0.0%) 481 (0.0%)

RSA Export 2,630,789 (7.7%)

Total 34,121,474 (100.0%) 14,680,782 (43.0%) 14,678,739 (43.0%)

Table 26: HTTPS RSA common key lengths and export RSA support—HTTPS
scans downloaded from scans.io were performed using ZMap on port 443 on August 23
and September 1, 2015.

signature validity periods and key lifetimes. Signature validity periods are clustered around

a few common ranges: 33% of keys were signed for six months, 34% percent for one month,

25% for three weeks, and 6% for 14 days. 512-bit zone-signing keys and key-signing keys

were less frequently rotated than other key sizes.

5.5.2. HTTPS

RSA public keys are used for both encryption and authentication in the TLS protocol.

If the client and server negotiate an RSA cipher suite, the client encrypts the premaster

secret used to derive the session keys to the RSA public key in the server’s certificate.

An adversary who compromises the private key can passively decrypt session traffic from

the past or future. However, since no 512-bit certificates have currently valid signatures

from certificate authorities, these servers are also vulnerable to an active man-in-the-middle

attack from an adversary who simply replaces the certificate.

If the client and server negotiate a Diffie-Hellman or elliptic curve Diffie-Hellman cipher

suite, the server uses the public key in its certificate to sign its key exchange parameters.

An adversary who knows the private key could carry out a man-in-the-middle attack by

forging a correct signature on their desired parameters. Since again no 512-bit certificates

are currently signed or trusted, such an active adversary could also merely replace the server

136

scans.io


Port Handshake RSA EXPORT 512-bit Certificate Key

SMTP 25 4,821,615 1,483,955 (30.8%) 64 (0%)
IMAPS 993 4,468,577 561,201 (12.6%) 102 (0%)
POP3S 995 4,281,494 558,012 (13.0%) 115 (0%)

Table 27: Mail protocol key lengths—An Internet-wide scan of TLS usage in three
common mail protocols shows higher levels of support for RSA EXPORT cipher suites
than in HTTPS.

certificate in the exchange along with the chosen Diffie-Hellman parameters.

Finally, connections to servers supporting RSA EXPORT cipher suites may be vulnerable to an

active downgrade attack if the clients have not been patched against the FREAK attack. [61]

Successfully carrying out this attack requires the attacker to factor the server’s ephemeral

RSA key, which is typically generated when the server application launches and is reused

as long as the server is up. “Ephemeral” RSA keys can persist for weeks and are almost

always 512 bits.

We examined IPv4 scan results for HTTPS on port 443 performed using ZMap [114] by

the University of Michigan which we accessed via Scans.io and the Censys scan data search

interface developed by Durumeric et al. [117]. Table 26 summarizes scans from August 23

and September 1, 2015.

Durumeric, Kasten, Bailey, and Halderman [113] examined the HTTPS certificate infras-

tructure in 2013 using full IPv4 surveys and found 2,631 browser-trusted certificates with

key lengths of 512 bits or smaller, of which 16 were valid. Heninger, Durumeric, Wustrow,

and Halderman [166] performed a full IPv4 scan of HTTPS in October 2011 with responses

from 12.8 million hosts, and found 123,038 certificates (trusted and non-trusted) containing

512-bit RSA keys. Similar to [166], we observe many repeated public keys.

5.5.3. Mail

Table 27 summarizes several Internet-wide scans targeting SMTP, IMAPS, and POP3S.

The scans were performed by the University of Michigan using ZMap between August 23,

2015, and September 3, 2015.
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Length Keys

4096 5 (0.0%)
2048 64 (0.5%)
1028 1 (0.0%)
1024 10,726 (92.2%)
768 126 (1.1%)
512 103 (0.9%)
384 20 (0.2%)
128 1 (0.0%)

Parse error 591 (5.1%)

Total 11,637

Table 28: DKIM key sizes—DKIM public keys were collected from a Rapid7 DNS dataset,
and manual DNS lookups of 11,600 domains containing DKIM records that we performed
on September 4, 2015.

We used the Censys scan database interface provided by [117] to analyze the data. While

only a few hundred few mail servers served TLS certificates containing 512-bit RSA public

keys, 13% of IMAPS and POP3S servers and 30% of SMTP servers supported RSA EXPORT

cipher suites with 512-bit ephemeral RSA, meaning that unpatched clients are vulnerable to

the FREAK downgrade attack by an adversary with the ability to quickly factor a 512-bit

RSA key.

We also examined DKIM public keys. DomainKeys Identified Mail [35] is a public key

infrastructure intended to prevent email spoofing. Mail providers attach digital signatures

to outgoing mail, which recipients can verify using public keys published in a DNS text

record.

We gathered DKIM public keys from the Rapid7 DNS dataset. However, the published

dataset had lowercased the base64-encoded key entries, so we performed DNS lookups on

the 11,600 domains containing DKIM records ourselves on September 4, 2015. We made

a best-effort attempt to parse the records, but 5% of the responses contained a key that

was malformed or truncated and could not be parsed. Of the remainder, 124 domains used

512-bit keys or smaller, including one that used a 128-bit RSA public key. We were able to
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Length Keys

4096 37 (0.8%)
3072 1 (0.0%)
2048 2,257 (51.3%)
1024 1,804 (41.0%)
768 1 (0.0%)
512 69 (1.6%)

Parse error 234 (5.3%)

Total 4,403 (100%)

Table 29: IPsec VPN certificate keys—We performed Internet-wide scans on port 500
of IKEv1 in aggressive mode. Of the servers that responded with certificates, 1.6% had a
512-bit public key.

factor this key in less than a second on a laptop and verify that it is, in fact, a very short

RSA public key. Table 28 summarizes the distribution.

Durumeric et al. [118] surveyed cryptographic failures in email protocols using Internet-

wide scans and data from Google. They examine DKIM use in April 2015 and discovered

that 83% of mail received by Gmail contained a DKIM signature, but of these, 6% failed

to validate. Of these failures, 15% were due to a key size of less than 1024 bits, and 63%

were due to other errors.

5.5.4. IPsec

We conducted two ZMap scans of the full IPv4 space to survey key sizes in use by IPsec

VPN implementations that use RSA signatures for identity validation during server-client

handshakes. An adversary who compromised the private keys for one of these certificates

could mount a man-in-the-middle attack.

Our ZMap scans targeted IKEv1 aggressive mode [164], which allows the server to send

a certificate after a only a single message is received. The messages we sent contained

proposals for DES, 3DES, AES-128, and AES-256 each with both SHA1 and MD5. Our

first scan offered a key exchange using Oakley group 2 (a 1024-bit Diffie-Hellman group)

and elicited certificates from 4% of the servers that accepted our message. Our second scan
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RSA Size Hosts Distinct

512 508 (0.0%) 316
768 2,972 (0.0%) 2,419
784 3,119 (0.0%) 223
1020 774 (0.0%) 572
1024 296,229 (4.4%) 91,788
1040 2,786,574 (41.3%) 1,407,922
1536 639 (0.0%) 536
2048 3,632,865 (53.9%) 1,752,406
2064 1,612 (0.0%) 957
4096 15,235 (0.2%) 1,269

RSA Total 6,741,352 3,258,742

DSA 692,011 421,944

ECDSA 2,192 2,192

Table 30: SSH host key lengths—Host keys were collected in April 2015 in a ZMap scan
of SSH hosts on port 22 mimicking OpenSSH 6.6.1p1.

offered Oakley group 1 (a 768-bit Diffie-Hellman group) and received responses from 0.2%

of hosts. Of the non-responses from both scans, 71% of the servers responded indicating

that they did not support our combination of aggressive mode with our chosen parameters,

16% rejected our connection for being unauthorized (not on a whitelist), and the remaining

11% returned other errors. As shown in Table 29, 1.6% of certificates collected had a 512-bit

public key.

5.5.5. SSH

SSH hosts authenticate themselves to the client by signing the protocol handshake with

their public host key. Clients match the host key to a stored trusted fingerprint. An

adversary who is able to compromise the private key for an SSH host key can perform an

active man-in-the-middle attack.

Table 30 summarizes host key sizes collected by a ZMap scan of SSH hosts on port 22

mimicking OpenSSH 6.6.1p1. The data was collected in April 2015 by Adrian et al. [29], who

provided it to us. A very large number of hosts used 1040-bit keys; these hosts had banners

identifying them as using Dropbear, a lightweight SSH implementation aimed at embedded
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Figure 10: PGP RSA public key lengths by reported creation date—RSA public
keys were downloaded from keyserver.borgnet.us, a PGP keyserver bootstrap dataset,
on October 4, 2015.

devices. Heninger et al. [166] performed a full IPv4 scan of SSH public keys in February

2012 offering only Diffie-Hellman Group 1 key exchange. Of 10 million responses, they

reported that 8,459 used 512-bit RSA host keys and observed many repeated host keys.

Clients can also use public keys to authenticate themselves to a server. An adversary who is

able to compromise the private key for a client SSH authentication key can access the server

by logging in as the client. Cox [100] collected 1,376,262 SSH public keys that had been

uploaded to GitHub by users to authenticate themselves to the service between December

2014 and January 2015 by using GitHub’s public API. He collected 1,205,330 RSA public

keys, 27,683 DSA public keys, and 1,060 ECDSA public keys. Of the RSA public keys, 2

had 256-bit length, 3 had 512-bit length, and 28 had 768-bit length.

5.5.6. PGP

PGP implements encryption and digital signatures on email or files. RSA public keys can

be used for both encryption and signatures. PGP uses a public “web of trust” model: users

can distribute their public keys along with signatures attesting trust relationships via a

public network of keyservers. An adversary who compromises a PGP public key could use

it to impersonate a user with a digital signature or decrypt content encrypted to that user.

We downloaded a PGP keyserver bootstrap dataset from keyserver.borgnet.us on Octo-

ber 4, 2015. It contained 4.9 million public keys from 3 million users. Of these, 1.6 million

were RSA, 1.7 million were DSA, 1.7 million were ElGamal, 398 were ECDH, 158 were
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EdDSA, and 513 were ECDSA. 4,688 512-bit RSA keys were present in the dataset; 123 of

them listed a creation date in 2015. Figure 10 shows the shift to longer RSA key lengths

over time.

5.6. Conclusions

512-bit RSA has been known to be insecure for at least fifteen years, but common knowledge

of precisely how insecure has perhaps not kept pace with modern technology. We build a

system capable of factoring a 512-bit RSA key in under four hours. We then measure the

impact of such a system by surveying the incidence of 512-bit RSA in modern cryptographic

infrastructure, and find a long tail of too-short public keys and export-grade cipher suites

still in use in the wild. These numbers illustrate the challenges of keeping an aging Internet

infrastructure up to date with even decades-old advances in cryptanalysis.
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CHAPTER 6 : Logjam attack and measurements

6.1. Introduction

Diffie-Hellman key exchange is widely used to establish session keys in Internet protocols.

It is the main key exchange mechanism in SSH and IPsec and a popular option in TLS. We

examine how Diffie-Hellman is commonly implemented and deployed with these protocols

and find that, in practice, it frequently offers less security than widely believed.

There are two reasons for this. First, a surprising number of servers use weak Diffie-Hellman

parameters or maintain support for obsolete 1990s-era export-grade crypto. More critically,

the common practice of using standardized, hard-coded, or widely shared Diffie-Hellman

parameters has the effect of dramatically reducing the cost of large-scale attacks, bringing

some within range of feasibility today.

The current best technique for attacking Diffie-Hellman relies on compromising one of the

private exponents (a, b) by computing the discrete log of the corresponding public value

(ga mod p, gb mod p). With state-of-the-art number field sieve algorithms, computing a sin-

gle discrete log is more difficult than factoring an RSA modulus of the same size. However,

an adversary who performs a large precomputation for a prime p can then quickly calculate

arbitrary discrete logs in that group, amortizing the cost over all targets that share this

parameter. Although this fact is well known among mathematical cryptographers, it seems

to have been lost among practitioners deploying cryptosystems. We exploit it to obtain the

following results:

Active attacks on export ciphers in TLS. We introduce Logjam, a new attack on TLS by

which a man-in-the-middle attacker can downgrade a connection to export-grade cryptog-

raphy. This attack is reminiscent of the FREAK attack [61] but applies to the ephemeral

Diffie-Hellman ciphersuites and is a TLS protocol flaw rather than an implementation vul-

nerability. We present measurements that show that this attack applies to 8.4% of Alexa

Top Million HTTPS sites and 3.4% of all HTTPS servers that have browser-trusted certifi-
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cates.

To exploit this attack, we implemented the number field sieve discrete log algorithm and

carried out precomputation for two 512-bit Diffie-Hellman groups used by more than 92%

of the vulnerable servers. This allows us to compute individual discrete logs in about a

minute. Using our discrete log oracle, we can compromise connections to over 7% of Top

Million HTTPS sites. Discrete logs over larger groups have been computed before [75], but,

as far as we are aware, this is the first time they have been exploited to expose concrete

vulnerabilities in real-world systems.

We were also able to compromise Diffie-Hellman for many other servers because of design

and implementation flaws and configuration mistakes. These include use of composite-order

subgroups in combination with short exponents, which is vulnerable to a known attack of

van Oorschot and Wiener [300], and the inability of clients to properly validate Diffie-

Hellman parameters without knowing the subgroup order, which TLS has no provision to

communicate. We implement these attacks too and discover several vulnerable implemen-

tations.

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y, g descent

x

individual log

Figure 11: The number field sieve algorithm for discrete log—The algorithm consists
of a precomputation stage that depends only on the prime p and a descent stage that
computes individual logs. With sufficient precomputation, an attacker can quickly break
any Diffie-Hellman instances that use a particular p.

Risks from common 1024-bit groups. We explore the implications of precomputation

attacks for 768- and 1024-bit groups, which are widely used in practice and still considered

secure. We provide new estimates for the computational resources necessary to compute

discrete logs in groups of these sizes, concluding that 768-bit groups are within range of
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academic teams, and 1024-bit groups may plausibly be within range of state-level attackers.

In both cases, individual logs can be quickly computed after the initial precomputation.

We then examine evidence from published Snowden documents that suggests NSA may

already be exploiting 1024-bit Diffie-Hellman to decrypt VPN traffic. We perform measure-

ments to understand the implications of such an attack for popular protocols, finding that

an attacker who could perform precomputations for ten 1024-bit groups could passively

decrypt traffic to about 66% of IKE VPNs, 26% of SSH servers, 16% of SMTP servers, and

24% of popular HTTPS sites.

Mitigations and lessons. As a short-term countermeasure in response to the Logjam attack,

all mainstream browsers are implementing a more restrictive policy on the size of Diffie-

Hellman groups they accept. We further recommend that TLS servers disable export-grade

cryptography and carefully vet the Diffie-Hellman groups they use. In the longer term, we

advocate that protocols migrate to stronger Diffie-Hellman groups, such as those based on

elliptic curves.

6.2. Diffie-Hellman Cryptanalysis

Diffie-Hellman key exchange was the first published public-key algorithm [108]. In the

simple case of prime groups, Alice and Bob agree on a prime p and a generator g of a

multiplicative subgroup modulo p. Alice sends ga mod p, Bob sends gb mod p, and each

computes a shared secret gab mod p. While there is also a Diffie-Hellman exchange over

elliptic curve groups, we address only the “mod p” case.

The security of Diffie-Hellman is not known to be equivalent to the discrete log problem (ex-

cept in certain groups[105, 213, 214]), but computing discrete logs remains the best known

cryptanalytic attack. An attacker who can find the discrete log x from y = gx mod p can

easily find the shared secret.

Textbook descriptions of discrete log can be misleading about the computational tradeoffs,

for example by balancing parameters to minimize overall time to compute a single discrete
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log. In fact, as illustrated in Figure 11, a single large precomputation on p can be used to

efficiently break all Diffie-Hellman exchanges made with that prime.

The typical case. Diffie-Hellman is typically implemented with prime fields and large

group orders. In this case, the most efficient discrete log algorithm is the number field

sieve (NFS) [154, 183, 276].1 There is a closely related number field sieve algorithm for

factoring [101, 202], and in fact many parts of the implementations can be shared. The

general technique is called index calculus and has four stages with different computational

properties. The first three steps are only dependent on the prime p and comprise most of

the computation.

First is polynomial selection, in which one finds a polynomial f(z) defining a number field

Q(z)/f(z) for the computation. (For our cases, f(z) typically has degree 5 or 6.) This

parallelizes well and is only a small portion of the runtime.

In the second stage, sieving, one factors ranges of integers and number field elements in

batches to find many relations of elements, all of whose prime factors are less than some

bound B (called B-smooth). Modern implementations use special-q lattice sieving, which

for each special q explores a sieving region of 22I candidates, where I is a parameter. Sieving

parallelizes well since each special q is handled independently of the others, but is computa-

tionally expensive, because we must search through and attempt to factor many elements.

The time for this step depends on heuristic estimates of the probability of encountering

B-smooth numbers in this search; it also depends on I and on the number of special q to

consider before having enough relations.

In the third stage, linear algebra, we construct a large, sparse matrix consisting of the

coefficient vectors of prime factorizations we have found. A nonzero kernel vector of the

matrix modulo the order q of the group will give us logs of many small elements. This

1Recent spectacular advances in discrete log algorithms have resulted in a quasi-polynomial algorithm
for small-characteristic fields [47], but these advances are not known to apply to the prime fields used in
practice.
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database of logs serves as input to the final stage. The difficulty depends on q and the

matrix size and can be parallelized in a limited fashion.

The final stage, descent, actually deduces the discrete log of the target y. We re-sieve until

we can find a set of relations that allow us to write the log of y in terms of the logs in the

precomputed database. This step is accomplished in three phases: an initialization phase,

which tries to write the target in terms of medium-sized primes, a middle phase, in which

these medium-sized primes are further sieved until they can be represented by elements in

the database of known logs, and a final phase that actually reconstructs the target using the

log database. Crucially, descent is the only NFS stage that involves y (or g), so polynomial

selection, sieving, and linear algebra can be done once for a prime p and reused to compute

the discrete logs of many targets.

The running time of this algorithm is

Lp(1/3, (64/9)1/3) = exp
(

(1.923 + o(1))(log p)1/3(log log p)2/3
)
.

This is obtained by tuning many parameters, including the degree of f , the sieving region

parameter I, and, most importantly, the smoothness bound B. Early articles (e.g. [154])

encountered technical difficulties with descent and reported that the complexity of this

step would equal that of the precomputation; this may have contributed to misconceptions

about the performance of the NFS for discrete logs. More recent analyses have improved

the complexity of descent to Lp(1/3, 1.442) [96], and later to Lp(1/3, 1.232) [46], which is

much cheaper than the precomputation in practice.

The numerous parameters of the algorithm allow some flexibility to reduce time on some

computational steps at the expense of others. For example, sieving more will result in a

smaller matrix, making linear algebra cheaper, and doing more work in the precomputation

makes the final descent step easier. In Section 6.3.3, we show how exploiting these tradeoffs

allows us to quickly compute 512-bit discrete logs in order to perform an effective man-in-
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the-middle attack on TLS.

Improperly generated groups. A different family of algorithms runs in time exponential

in group order, and they are practical even for large primes when the group order is small or

has many small prime factors. To avoid this, most implementations use “safe” primes, which

have the property that p − 1 = 2q for some prime q, so that the only possible subgroups

have order 2, q, or 2q. However, as we show in Section 6.3.5, improperly generated groups

are sometimes used in practice and susceptible to attack.

The baby-step giant-step [279] and Pollard rho [261] algorithms both take
√
q time to

compute a discrete log in any (sub)group of order q, while Pollard lambda [261] can find

x < t in time
√
t. These parallelize well [299], and precomputation can speed up individual

log calculations. If the factorization of the subgroup order q is known, one can use any of

the above algorithms to compute the discrete log in each subgroup of order qeii dividing

q, and then recover x using the Chinese remainder theorem. This is the Pohlig-Hellman

algorithm [259], which costs
∑

i ei
√
qi using baby-step giant-step or Pollard rho.

Standard primes. Generating primes with special properties can be computationally

burdensome, so many implementations use fixed or standardized Diffie-Hellman parameters.

A prominent example is the Oakley groups [249], which give “safe” primes of length 768

(Oakley Group 1), 1024 (Oakley Group 2), and 1536 (Oakley Group 5). These groups were

published in 1998 and have been used for many applications since, including IKE, SSH,

Tor, and OTR.

When primes are of sufficient strength, there seems to be no disadvantage to reusing them.

However, widespread reuse of Diffie-Hellman groups can convert attacks that are at the

limits of an adversary’s capabilities into devastating breaks, since it allows the attacker to

amortize the cost of discrete log precomputation among vast numbers of potential targets.
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Source Popularity Prime

Apache 82% 9fdb8b8a004544f0045f1737d0ba2e0b

274cdf1a9f588218fb435316a16e3741

71fd19d8d8f37c39bf863fd60e3e3006

80a3030c6e4c3757d08f70e6aa871033

mod ssl 10% d4bcd52406f69b35994b88de5db89682

c8157f62d8f33633ee5772f11f05ab22

d6b5145b9f241e5acc31ff090a4bc711

48976f76795094e71e7903529f5a824b

(others) 8% (463 distinct primes)

Table 31: Top 512-bit DH primes for TLS—8.4% of Alexa Top 1M HTTPS domains
allow DHE EXPORT, of which 92.3% use one of the two most popular primes, shown here.

6.3. Attacking TLS

TLS supports Diffie-Hellman as one of several possible key exchange methods, and about

two-thirds of popular HTTPS sites allow it, most commonly using 1024-bit primes. However,

a smaller number of servers also support legacy “export-grade” Diffie-Hellman using 512-bit

primes that are well within reach of NFS-based cryptanalysis. Furthermore, for both normal

and export-grade Diffie-Hellman, the vast majority of servers use a handful of common

groups.

In this section, we exploit these facts to construct a novel attack against TLS, which we call

the Logjam attack. First, we perform NFS precomputations for the two most popular 512-

bit primes on the web, so that we can quickly compute the discrete log for any key-exchange

message that uses one of them. Next, we show how a man-in-the-middle, so armed, can

attack connections between popular browsers and any server that allows export-grade Diffie-

Hellman, by using a TLS protocol flaw to downgrade the connection to export-strength and

then recovering the session key. We find that this attack with our precomputations can

compromise about 7.8% of HTTPS servers among Alexa Top Million domains.

6.3.1. TLS and Diffie-Hellman

The TLS handshake begins with a negotiation to determine the crypto algorithms used

for the session. The client sends a list of supported ciphersuites (and a random nonce cr)

within the ClientHello message, where each ciphersuite specifies a key exchange algorithm
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and other primitives. The server selects a ciphersuite from the client’s list and signals its

selection in a ServerHello message (containing a random nonce sr).

TLS specifies ciphersuites supporting multiple varieties of Diffie-Hellman. Textbook Diffie-

Hellman with unrestricted strength is called “ephemeral” Diffie-Hellman, or DHE, and is

identified by ciphersuites that begin with TLS DHE *.2 In DHE, the server is responsible for

selecting the Diffie-Hellman parameters. It chooses a group (p, g), computes gb, and sends a

ServerKeyExchange message containing a signature over the tuple (cr, sr, p, g, gb) using the

long-term signing key from its certificate. The client verifies the signature and responds

with a ClientKeyExchange message containing ga.

To ensure agreement on the negotiation messages, and to prevent downgrade attacks [302],

each party computes the TLS master secret from gab and calculates a MAC of its view of

the handshake transcript. These MACs are exchanged in a pair of Finished messages and

verified by the recipients. Thereafter, client and server start exchanging application data,

protected by an authenticated encryption scheme with keys also derived from gab.

To comply with 1990s-era U.S. export restrictions on cryptography, SSLv3 and TLSv1.0

supported reduced-strength DHE EXPORT ciphersuites that were restricted to primes no

longer than 512 bits. In all other respects, DHE EXPORT protocol messages are identical to

DHE. The relevant export restrictions are no longer in effect, but many libraries and servers

maintain support for backwards compatibility. Many TLS servers are still configured with

two groups: a strong 1024-bit group for regular DHE key exchanges and a 512-bit group for

legacy DHE EXPORT. This has been considered safe because most modern TLS clients do

not offer or accept DHE EXPORT ciphersuites.

To understand how HTTPS servers in the wild use Diffie-Hellman, we modified the ZMap [114]

toolchain to offer DHE and DHE EXPORT ciphersuites and scanned TCP/443 on both the

full public IPv4 address space and the Alexa Top 1M domains. The scans took place in

2TLS also supports a rarely used “static” Diffie-Hellman format, where the server’s key exchange value
is fixed and contained in its certificate. New ciphersuites that use elliptic curve Diffie-Hellman (ECDHE)
are gaining in popularity, but we focus exclusively on the traditional prime field variety.
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March 2015. Of 539,000 HTTPS sites among Top 1M domains, we found that 68.3% sup-

ported DHE and 8.4% supported DHE EXPORT. Of 14.3 million IPv4 HTTPS servers with

browser-trusted certificates, 23.9% supported DHE and 4.9% DHE EXPORT.

While the TLS protocol allows servers to generate their own Diffie-Hellman parameters,

the overwhelming majority use one of a handful of primes. As shown in Table 31, just two

512-bit primes account for 92.3% of Alexa Top 1M domains that support DHE EXPORT,

and 92.5% of all servers with browser-trusted certificates that support DHE EXPORT. (Non-

export DHE follows a similar distribution with longer primes.) The most popular 512-bit

prime was hard-coded into many versions of Apache. Introduced in 2005 with Apache 2.1.5,

it was used until 2.4.7, which disabled export ciphersuites. We found it in use by about

564,000 servers with browser-trusted certificates. The second most popular 512-bit prime

is the default used for DHE EXPORT when using mod ssl. It was introduced in version 2.3.0

in 1999. We found it in use by about 89,000 servers with browser-trusted certificates.

6.3.2. Active Downgrade to Export-Grade DHE

Given the widespread use of these primes, an attacker with the ability to compute discrete

logs in 512-bit groups could efficiently break DHE EXPORT handshakes for about 8% of Alexa

Top 1M HTTPS sites, but modern browsers never negotiate export-grade ciphersuites. To

circumvent this, we show how an attacker who can compute 512-bit discrete logs in real

time can downgrade a regular DHE connection to use a DHE EXPORT group, and thereby

break both the confidentiality and integrity of application data.

The attack, which we call Logjam, is depicted in Figure 12 and relies on a flaw in the way

TLS composes DHE and DHE EXPORT. When a server selects DHE EXPORT for a handshake,

it proceeds by issuing a signed ServerKeyExchange message containing a 512-bit p512, but the

structure of this message is identical to the message sent during standard DHE ciphersuites.

Critically, the signed portion of the server’s message fails to include any indication of the

specific ciphersuite that the server has chosen. Provided that a client offers DHE, an active

attacker can rewrite the client’s ClientHello to offer a corresponding DHE EXPORT ciphersuite
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Figure 12: The Logjam attack—A man-in-the-middle can force TLS clients to use export-
strength DH with any server that allows DHE EXPORT. Then, by finding the 512-bit dis-
crete log, the attacker can learn the session key and arbitrarily read or modify the contents.
Datafs refers to False Start [201] application data that some TLS clients send before receiv-
ing the server’s Finished message.

accepted by the server and remove other ciphersuites that could be chosen instead. The

attacker rewrites the ServerHello response to replace the chosen DHE EXPORT ciphersuite

with a matching non-export ciphersuite and forwards the ServerKeyExchange message to

the client as is. The client will interpret the export-grade tuple (p512, g, g
b) as valid DHE

parameters chosen by the server and proceed with the handshake. The client and server

have different handshake transcripts at this stage, but an attacker who can compute b in

close to real time can then derive the master secret and connection keys to complete the

handshake with the client, and then freely read and write application data pretending to

be the server.

There are two remaining challenges in implementing this active downgrade attack. The

first is to compute individual discrete logs in close to real time, and the second is to delay
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handshake completion until the discrete log computation has had time to finish. We address

these in the next subsections.

Comparison with previous attacks. Logjam is reminiscent of the recent FREAK [61]

attack, in which an attacker downgrades a regular RSA key exchange to one that uses export-

grade 512-bit ephemeral RSA keys, relying on a bug in several TLS client implementations.

The attacker then factors the ephemeral key to hijack future connections that use the same

key. The cryptanalysis takes several hours on commodity hardware and is usable until the

server generates a fresh ephemeral RSA key (typically when it restarts).

In contrast, Logjam is due to a protocol flaw in TLS, not an implementation bug. From

a client perspective, the only defense is to reject small primes in DHE handshakes. (Prior

to this work, most popular browsers accepted p of size ≥ 512 bits.) Logjam affects fewer

servers than FREAK, but, as we shall see, the cost per compromised connection is far lower,

since the precomputation for each 512-bit group can be used indefinitely against all servers

that use that group, and since each individual discrete log only takes about a minute.

Logjam and FREAK both follow the same pattern as other cross-protocol attacks discovered

in TLS. As early as SSL 3.0, Schneier and Wagner noted a related vulnerability that they

called key exchange rollback [302]. Mavrogiannopoulos et al. showed how explicit-curve

ECDHE handshakes could be confused with DHE handshakes [215]. All these attacks could

be prevented by additionally signing the ciphersuite in the ServerKeyExchange message.

We expect that TLSv1.3 will fix this protocol flaw. More generally, Logjam can also be

interpreted as a backwards compatibility attack [178] where one party uses only strong

cryptography but the other supports both strong and weak ciphersuites.

6.3.3. 512-bit Discrete Log Computations

We modified CADO-NFS [45] to implement the number field sieve discrete log algorithm

from Section 6.2 and applied it to three 512-bit primes, including the top two DHE EXPORT

primes shown in Table 31. Precomputation took 7 days for each prime, after which com-

puting individual logs took a median of 70 seconds. We list the runtime for each stage of
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the computation below. The times were about the same for each prime.

Precomputation. As illustrated in Figure 11, the precomputation phase includes the

polynomial selection, sieving, and linear algebra steps. For this precomputation, we delib-

erately sieved more than strictly necessary. This enabled two optimizations: first, with more

relations obtained from sieving, we eventually obtain a larger database of known logs, which

makes the descent faster. Second, more sieving relations also yield a smaller linear algebra

step, which is desirable because sieving is much easier to parallelize than linear algebra.

For the polynomial selection and sieving steps, we used idle time on 2000–3000 CPU cores

in parallel, of which most CPUs were Intel Sandy Bridge. Polynomial selection ran for

about 3 hours, which in total corresponds to 7,600 core-hours. Sieving ran for 15 hours,

corresponding to 21,400 core-hours. This sufficed to collect 40,003,519 relations of which

28,372,442 were unique, involving 15,207,865 primes of at most 27 bits (hence bound B

from Section 6.2 is 227).

From this data set, we obtained a square matrix with 2,157,378 rows and columns, with 113

nonzero coefficients per row on average. We solved the corresponding linear system on a 36-

node cluster with two 8-core Intel Xeon E5-2650 CPUs per node, connected with Infiniband

FDR. We used the block Wiedemann algorithm [97, 291] with parameters m = 18 and

n = 6. Using the unoptimized implementation from CADO-NFS [45] for linear algebra

over GF(p), the computation finished in 120 hours, corresponding to 60,000 core-hours. We

expect that optimizations could bring this cost down by at least a factor of three.

In total, the wall-clock time for each precomputation was slightly over one week. Each

resulting database of known logs for the descent occupies about 2.5 GB in ASCII format.

Descent. Once this precomputation was finished, we were able to run the final descent

step to compute individual discrete logs in about a minute for targets in each of these

groups. In order to save time on individual computations, we implemented a client-server

architecture using the ZeroMQ messaging library. The server maintains the precomputed
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Figure 13: Individual discrete log time for 512-bit DH—After a week-long precom-
putation for each of the two top export-grade primes (see Table 31), we can quickly break
any key exchange that uses them. Here we show times for computing 3,500 individual logs;
the median is 70 seconds.

data in RAM and returns logs for values passed to it by clients.

We implemented the descent calculation in a mix of Python and C. The first and second

stages are parallelized and run sieving in C, and the final discrete log is deduced in Python.

We ran the server on a machine with two 18-core Intel Xeon E5-2699 CPUs and 128 GB of

RAM. On average, computing individual logs took about 70 seconds, but the time varied

from 34 to 206 seconds (see Fig. 13). This is divided between about 20 seconds for descent

initialization and the remainder on the middle phase. Further optimizations—such as more

effective parallelization on the middle phase or additional sieving—should bring the median

time well below a minute.

For purposes of comparison, a single 512-bit RSA factorization using the CADO-NFS imple-

mentation takes about eight days of wall-clock time on the computer used for the descent,

and about three hours parallelized across 1,800 cores of Amazon EC2 c4.8xlarge instances.

6.3.4. Active Attack Implementation

We implemented a man-in-the-middle network attacker that sits between a TLS client

(web browser) and any server that supports DHE EXPORT and uses the most common 512-
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bit Apache group. Our implementation follows the message sequence in Figure 12: it

downgrades the connection towards the server, computes the session keys, and takes over

the connection towards the client by impersonating the server.

The main challenge is to compute the shared secret gab before the handshake completes in

order to forge a Finished message from the server. With our descent implementation, the

computation takes an average of 70 seconds, but there are several ways an attacker can

work around this delay:

Non-browser clients. Different TLS clients impose different time limits for the handshake,

after which they kill the connection. Command-line clients such as curl and git often run

unattended, so they have long or no timeouts, and we can hijack their connections without

difficulty.

TLS warning alerts. Web browsers tend to have shorter timeouts, but we can keep their

connections alive by sending TLS warning alerts, which are ignored by the browser but

reset the handshake timer. For example, this allows us to keep Firefox’s TLS connections

alive indefinitely. (Other browsers we tested close the connection after a minute.) Although

the victim connection still takes much longer than usual, the attacker might choose to

compromise a request for a background resource that does not delay rendering the page.

Ephemeral key caching. Many TLS servers do not use a fresh value b for each connection,

but instead compute gb once and reuse it for multiple negotiations. Without enabling the

SSL OP SINGLE DH USE option, OpenSSL will reuse gb for the lifetime of a TLS context.

While both Apache and Nginx internally apply this option, certain load balancers, such as

stud [24], do not. The F5 BIG-IP load balancers and hardware TLS frontends will reuse

gb unless the “Single DH” option is checked [303]. Microsoft Schannel caches gb for two

hours—this setting is hard-coded. For these servers, an attacker can compute the discrete

log of gb from one connection and use it to attack later handshakes, avoiding the need

to do the computation online. By randomly sampling IPv4 hosts serving browser-trusted
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certificates that support DHE, we found that 17% reused gb at least once over the course of

20 handshakes, and that 15% only used one value. However, for DHE EXPORT, only 0.1%

reused gb, likely because Microsoft IIS does not support 512-bit export ciphersuites.

TLS False Start. Even when clients enforce shorter timeouts and servers do not reuse

values for b, the attacker can still break the confidentiality of user requests if the client

supports the TLS False Start extension [201]. This extension reduces connection latency by

having the client send early application data (such as an HTTP request) without waiting

for the server’s Finished message to arrive. Recent versions of Chrome, Internet Explorer,

and Firefox implement False Start, but their policies on when to enable it vary between

versions. Firefox 35, Chrome 41, and Internet Explorer (Windows 10) send False Start

data with DHE. In these cases, a man-in-the-middle can record the handshake and decrypt

the False Start payload at leisure. We note that this initial data sent by a browser often

contains sensitive user authentication information, such as passwords and cookies.

6.3.5. Other Weak and Misconfigured Groups

In our scans, we found several other exploitable security issues in the DHE configurations

used by TLS servers.

512-bit primes in non-export DHE. We found 2,631 servers with browser-trusted

certificates (and 118 in the Top 1M domains) that used 512-bit or weaker primes for non-

export DHE. In these instances, active attacks may be unnecessary. If a browser negotiates

a DHE ciphersuite with one of these servers, a passive eavesdropper can later compute the

discrete log and obtain the TLS session keys for the connection. An active attack may

still be necessary when the client’s ordering of ciphersuites would result in the server not

selecting DHE. In this case, as in the DHE EXPORT downgrade attack, an active attacker

can force the server to choose a vulnerable DHE ciphersuite.

As a proof-of-concept, we implemented a passive eavesdropper for regular DHE connections

and used it to decrypt test connections to www.fbi.gov. Until April 2015, this server

used the default 512-bit DH group from OpenSSL, which was the third group for which we
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performed the NFS precomputation. The website no longer supports DHE.

Attacks on composite-order subgroups. Failure to generate Diffie-Hellman primes

according to best practices can result in devastating attacks. Not every TLS server uses

“safe” primes. Out of approximately 70,000 distinct primes seen across both export and non-

export TLS scans, 4,800 were not safe, meaning that (p−1)/2 was composite. (Incidentally,

we also found 9 composite p.) These groups are not necessarily vulnerable, as long as g

generates a group with at least one sufficiently large subgroup order to rule out the Pohlig-

Hellman algorithm as an attack.

In some real-life configurations, however, choosing such primes can lead to an attack. For

efficiency reasons, some implementations use ephemeral keys gx with a short exponent x;

commonly suggested sizes for x are as small as 160 or 224 bits, intended to match the

estimated strength of a 1024- or 2048-bit group. For safe p, such exponent lengths are

not known to decrease security, as the most efficient attack will be the Pollard lambda

algorithm. But if the order of the subgroup generated by g has small factors, they can be

used to recover information about exponents. From a subset of factors {qe11 . . . qekk } with∏
i q

ei
i = z, Pohlig-Hellman can recover x mod z in time

∑
i ei
√
qi. If x ≤ z, this suffices

to recover x. If not, Pollard lambda can use this information to recover x in time
√
x/z.

This attack was first described as hypothetical by van Oorschot and Wiener [300].

To see if TLS servers in the wild were vulnerable to this attack, we tested various non-safe

primes found in our scans. For each non-safe prime p, we opportunistically factored p − 1

using Bernstein’s batch method [53]. We then ran the GMP-ECM implementations of the

Pollard p− 1 algorithm and the ECM factoring methods [318] for 5 days parallelized across

28 cores and discovered 36,447 prime factors.

We then examined the generators g used with each prime p. We classified a tuple (p, g, y)

sent by a server as interesting if the prime factorization of p− 1 had revealed prime factors

of the order of g, and ordered them by the estimated work required using Pohlig-Hellman

158



and Pollard lambda to recover a target private exponent x of length ranging from 64 to 256

bits. There were 753 (p, g) pairs where we knew factors of the subgroup generated by g;

these had been used for 40,903 connections across all of our scans.

We implemented the van Oorschot and Wiener algorithm in Sage [286] using a parallel

Pollard rho implementation that we wrote in C using the GMP library. We used the

distinguished points method for collision detection; for a prime known in advance, this

implementation can be arbitrarily sped up by precomputing a table of distinguished points.

We computed partial information about the server secret exponent used in 460 exchanges

and were able to recover the whole exponent used by 159 different hosts, 53 of which

authenticated with valid browser-trusted certificates. In all cases, the vulnerable hosts used

512-bit prime moduli; three of them used 160-bit exponents and the rest used 128 bits. The

order of the largest-order subgroup ranged from 46 bits (which finishes in seconds) to 81 bits

(which took between 50 and 176 hours) implementation. The Pollard lambda calculations

used interval width varying from 40 to 70 bits.

Our computations would have allowed us to hijack connections to a variety of vulnerable

TLS servers, including web interfaces for VPN devices (48 hosts), communications software

(21 hosts), web conferencing servers (27 hosts), and FTP servers (6 hosts). As a proof-

of-concept, we modified our man-in-the-middle attacker of Section 6.3.3 to impersonate a

vulnerable server and capture user credentials. Compared to an attack using NFS, we could

compute the discrete log with a delay hardly noticeable for browser users.

Misconfigured groups. The Digital Signature Algorithm (DSA) [239] uses primes p such

that p − 1 has a large prime factor q and g generates only a subgroup of order q. When

using properly generated DSA parameters, these groups are secure for use in Diffie-Hellman

key exchanges. Notably, DSA groups are hard-coded in Java’s sun.security.provider

package and are used by default in many Java-based TLS servers. However, some servers

in our scans used Java’s DSA primes as p but mistakenly used the DSA group order q in
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Sieving Linear Algebra Descent

I log2 B core-yrs rows core-yrs core-time

RSA-512 14 29 0.5 4.3M 0.33 Timings with default CADO-NFS parameters.
DH-512 15 27 2.5 2.1M 7.7 10mins For the computations in this paper; may be suboptimal.

RSA-768 16 37 800 250M 100 Est. based on [195] with less sieving.
DH-768 17 35 8K 150M 28.5K 2 days Est. based on [75, 195] and our own experiments.

RSA-1024 18 42 1M 8.7B 120K Est. based on complexity formula.
DH-1024 19 40 10M 5.2B 35M 30 days Est. based on complexity formula and our experiments.

Table 32: Estimating costs for factoring and discrete log—For sieving, we give two
important parameters: the number of bits of the smoothness bound B and the sieving region
parameter I. For linear algebra, all costs for DH are for safe primes; for DSA primes with
q of 160 bits, this should be divided by 6.4 for 1024 bits, 4.8 for 768 bits, and 3.2 for 512
bits.

the place of the generator g. We found 5,741 hosts misconfigured this way.

This substitution of q for g is likely due to a usability problem: the canonical ASN.1

representation of Diffie-Hellman key exchange parameters (coming from PKCS#3) is a

sequence (p, g), while that of DSA parameters (coming from PKIX) is (p, q, g); we conjecture

that the confusion between these formats led to a simple programming error.

In a DSA group, the subgroup generated by q is likely to have many small prime factors

in its order, since for p generated according to [239], (p − 1)/q is a random integer. For

Java’s sun.security.provider 512-bit prime, using q as a generator leaks 290 bits of

information about exponents at a cost of roughly 240 operations. Luckily, since the provider

generates exponents of length max(n/2, 384) for n-bit p, this does not suffice to recover a

full exponent. Still, this misconfiguration bug results in a significant loss of security and

serves as a cautionary tale for programmers.

6.4. State-Level Threats to DH

The previous sections demonstrate the existence of practical attacks against Diffie-Hellman

key exchange as currently used by TLS. However, these attacks rely on the ability to

downgrade connections to export-grade crypto or on the use of unsafe parameters. In this

section we address the following question: how secure is Diffie-Hellman in broader practice,

as used in other protocols that do not suffer from downgrade, and when applied with

stronger groups?
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To answer this question we must first examine how the number field sieve for discrete log

scales to 768- and 1024-bit groups. As we argue below, 768-bit groups, which are still in

relatively widespread use, are now within reach for academic computational resources, and

performing precomputations for a small number of 1024-bit groups is plausibly within the

resources of state-level attackers. The precomputation would likely require special-purpose

hardware, but would not require any major algorithmic improvements beyond what is known

in the academic literature. We further show that even in the 1024-bit case, the descent

time—necessary to solve any specific discrete log instance within a common group—would

be fast enough to break individual key exchanges in close to real time.

In light of these results, we examine several standard Internet security protocols—IKE, SSH,

and TLS—to determine the vulnerability of their key exchanges to attacks by resourceful

attackers. Although the cost of the precomputation for a 1024-bit group is several times

higher than for an RSA key of equal size, we observe that a one-time investment could be

used to attack millions of hosts, due to widespread reuse of the most common Diffie-Hellman

parameters. Unfortunately, our measurements also indicate that it may be very difficult

to sunset the use of fixed 1024-bit Diffie-Hellman groups that have long been embedded in

standards and implementations.

Finally, we apply this new understanding to a set of recently published documents leaked

by Edward Snowden [282] to evaluate the hypothesis that the National Security Agency

has already implemented such a capability. We show that this hypothesis is consistent with

the published details of the intelligence community’s cryptanalytic capabilities, and, indeed,

matches the known capabilities more closely than other proposed explanations, such as novel

breaks on RC4 or AES. We believe that this analysis may help shed light on unanswered

questions about how NSA may be gaining access to VPN, SSH, and TLS traffic.

6.4.1. Scaling NFS to 768- and 1024-bit DH

Estimating the cost for discrete log cryptanalysis at longer key sizes is far from straight-

forward, due in part to the complexity of parameter tuning and to tradeoffs between the
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sieving and linear algebra steps, which have very different computational characteristics.

(Much more attention has gone to understanding 1024-bit factorization, but, even there,

many published estimates are crude extrapolations of the asymptotic complexity.) We at-

tempt estimates for 768- and 1024-bit discrete log based on the existing literature and our

own experiments, but further work is needed for greater confidence, particularly for the

1024-bit case. We summarize all the costs, measured or estimated, in Table 32.

DH-768: Feasible with academic power. For the 768-bit case, we base our estimates

on the recent discrete log record at 596 bits [75] and the integer factorization record of 768

bits from 2009 [195]. While the algorithms for factorization and discrete log are similar,

the discrete log linear algebra stage is many times more difficult, as the matrix entries are

no longer Boolean. We can reduce overall time by sieving more, thus generating a smaller

input matrix to the linear algebra step. Since sieving parallelizes better than linear algebra,

this tradeoff is desirable for large inputs.

A 596-bit factorization takes about 5 core-years, most of it spent on sieving. In comparison,

the record 596-bit discrete log effort tuned parameters such that they spent 50 core-years

on sieving. This reduced their linear algebra calculation to 80 core-years. We used this

same strategy in our 512-bit experiments in Section 6.3.3.

Similarly, the 768-bit RSA factoring record spent more time on sieving in order to save time

on the linear algebra step. The cost of sieving was around 1500 core-years, and the matrix

that was produced had 200M rows and columns. As a result, the linear algebra took 150

core-years, but taking algorithmic improvements since 2009 into account and optimizing for

the total time,3 we estimate that factoring an RSA-768 integer would take 900 core-years

in total.

For a 768-bit discrete log, we can expect that ten times as much sieving as the RSA case

would reduce the matrix to around 150M rows. We extrapolate from experiments with

3We would lower the smoothness bounds compared to the parameters in [195].
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existing software that this linear algebra would take 28,500 core-years, for a total of 36,500

core-years. This is within reach by computing power available to academics.

The descent step takes relatively little time. We experimented with both CADO-NFS

and a new implementation with GMP-ECM based on the early-abort strategy described

in [57]. Using these techniques, the initial descent phase took an average of around 1 core-

day. The remaining phase uses sieving much as in the precomputation; extrapolating from

experiments, the rest of the descent should take at most 1 core-day. In total, after precom-

putation, the cost of a single 768-bit discrete log computation is around 2 core-days and is

easily parallelizable.

DH-1024: Plausible with state-level resources. Experimentally extrapolating sieving

parameters to the 1024-bit case is difficult due to the tradeoffs between the steps of the

algorithm and their relative parallelism. The prior work proposing parameters for factoring

a 1024-bit RSA key is thin: [194] proposes smoothness bounds of 42 bits, but the proposed

value of the sieving region parameter I is clearly too small, giving too few smooth results

per sieving subtask. Since no publicly available software can currently deal with values of I

larger than those proposed, we could not experimentally update the estimates of this paper

with more relevant parameter choices.

Without better parameter choices, we resort to extrapolating from asymptotic complexity.

For the number field sieve, the complexity is exp
(
(k+ o(1))(logN)1/3(log logN)2/3

)
, where

N is the integer to factor or the prime modulus for discrete log, and k is an algorithm-

specific constant. This formula is inherently imprecise, since the o(1) in the exponent

can hide polynomial factors. This complexity formula, with k = 1.923, describes the overall

time for both discrete log and factorization, which are both dominated by sieving and linear

algebra in the precomputation. The space complexity (the size of the matrix in memory)

is the square root of this function, i.e., the same function, taking k = 0.9615. Discrete log

descent has a complexity of the same form as well; [46, Chapter 4] gives k = 1.232, using

an early-abort strategy similar to the one in [57] mentioned above.
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Evaluating the formula for 768- and 1024-bit N gives us estimated multiplicative factors by

which time and space will increase from the 768- to the 1024-bit case. For precomputation,

the total time complexity will increase by a factor of 1220, while space complexity will

increase by a factor of 35. These are valid for both factorization and discrete log, since

they have the same asymptotic behavior. Hence, for DH-1024, we get a total cost for the

precomputation of about 45M core-years. The time complexity for each individual log after

the precomputation should be multiplied by 95. This last number does not correspond to

what we observed in practice; we attribute that to the fact that the descent step has been

far less studied both in theory and in practice compared to the other steps.

For 1024-bit descent, we experimented with our early-abort implementation to inform our

estimates for descent initialization, which should dominate the individual discrete log com-

putation. For a random target in Oakley Group 2, initialization took 22 core-days, yielding

a few primes of at most 130 bits to be descended further. In twice this time, we reached

primes of about 110 bits. At this point, we were certain to have bootstrapped the descent,

and could continue down to the smoothness bound in a few more core-days if proper siev-

ing software were available. Thus we estimate that a 1024-bit descent would take about

30 core-days, once again easily parallelizable.

Costs in hardware. Although 45M core-years is a huge computational effort, it is not

necessarily out of reach for a nation state. Moreover, at this scale, significant cost savings

could be realized by developing application-specific hardware.

Sieving is a natural target for hardware implementation. To our knowledge, the best prior

description of an ASIC implementation of 1024-bit sieving is the 2007 work of Geiselmann

and Steinwandt [137]. In the following, we update their estimates for modern techniques

and adjust parameters for discrete log. We increase their chip count by a factor of ten to

sieve more and save on linear algebra as above, giving an estimate of 3M chips to complete

sieving in one year. Shrinking the dies from the 130 nm technology node used in the paper

to a more modern size reduces costs, as transistors are cheaper at newer technologies. With
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standard transistor costs and utilization, this would cost about $2 per chip to manufacture,

after fixed design and tape-out costs of roughly $2M [208]. This suggests that an $8M

investment would buy enough ASICs to complete the DH-1024 sieving precomputation in

one year. Since a step of descent uses sieving, the same hardware could likely be reused to

speed calculations of individual logs.

Estimating the financial cost for the linear algebra is more difficult, since there has been

little work on designing chips that are suitable for the larger fields involved in discrete log.

To derive a rough estimate, we can begin with general purpose hardware and the core-year

estimate from Table 32. The Titan supercomputer [240]—at 300,000 CPU cores, currently

the most powerful supercomputer in the U.S.—would take 117 years to complete the 1024-

bit linear algebra stage. Titan was constructed in 2012 for $94M, suggesting a cost of $11B

in supercomputers to finish this step in a year. In the context of factorization, moving

linear algebra from general purpose CPUs to ASICs has been estimated to reduce costs by

a factor of 80 [138]. If we optimistically assume that a similar reduction can be achieved

for discrete log, the hardware cost to perform the linear algebra for DH-1024 in one year is

plausibly on the order of hundreds of millions of dollars.

To put this dollar figure in context, the FY 2012 budget for the U.S. Consolidated Cryp-

tologic Program (which includes the NSA) was $10.5 billion4 [1]. The agency’s classified

2013 budget request, which prioritized investment in “groundbreaking cryptanalytic capa-

bilities to defeat adversarial cryptography and exploit internet traffic,” included notable

$100M increases in two programs [1]: “cryptanalytic IT services” (to $247M), and a crypti-

cally named “cryptanalysis and exploitation services program C” (to $360M). NSA’s leaked

strategic plan for the period called for it to “continue to invest in the industrial base and

drive the state of the art for high performance computing to maintain pre-eminent crypt-

analytic capability for the nation” [19].

4The National Science Foundation’s budget was $7 billion.
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6.4.2. Is NSA Breaking 1024-bit DH?

Our calculations suggest that it is plausibly within NSA’s resources to have performed

number field sieve precomputations for at least a small number of 1024-bit Diffie-Hellman

groups. This would allow them to break any key exchanges made with those groups in close

to real time. If true, this would answer one of the major cryptographic questions raised

by the Edward Snowden leaks: How is NSA defeating the encryption for widely used VPN

protocols?

Classified documents published by Der Spiegel [282] indicate that NSA is passively decrypt-

ing IPsec connections at significant scale. The documents do not describe the cryptanalytic

techniques used, but they do provide an overview of the attack system architecture. After

reviewing how IPsec key establishment works, we will use the published information to

evaluate the hypothesis that the NSA is leveraging precomputation to calculate discrete

logs at scale.

IKE. Internet Key Exchange (IKE) is the main key establishment protocol used for IPsec

VPNs. There are two versions, IKEv1 [164] and IKEv2 [188], which differ in message struc-

ture but are conceptually similar. For the sake of brevity, we will use IKEv1 terminology.

Each IKE session begins with a Phase 1 handshake, in which the client and server select

a Diffie-Hellman group from a small set of standardized parameters and perform a key

exchange to establish a shared secret. The shared secret is combined with other cleart-

ext values transmitted by each side, such as nonces and cookies, to derive a value called

SKEYID. IKE provides several authentication mechanisms, including symmetric pre-shared

keys (PSK); when IKEv1 is authenticated with a PSK, this value is incorporated into the

derivation of SKEYID.

The resulting SKEYID is used to encrypt and authenticate a Phase 2 handshake. Phase 2 es-

tablishes the parameters and key material, KEYMAT, for a cryptographic transport protocol

used to protect subsequent traffic, such as Encapsulating Security Payload (ESP) [192] or
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Authenticated Header (AH) [191]. In some circumstances, this phase includes an additional

round of Diffie-Hellman. Ultimately, KEYMAT is derived from SKEYID, additional nonces,

and the result of the optional Phase 2 Diffie-Hellman exchange.

NSA’s VPN exploitation process. The documents published by Der Spiegel describe

a system named TURMOIL that is used to collect and decrypt VPN traffic. The evidence

indicates that this decryption is performed using passive eavesdropping and does not require

message injection or man-in-the-middle attacks on IPsec or IKE. Figure 14, an excerpt from

one of the documents [20], illustrates the flow of information through the TURMOIL system

The initial phases of the attack involve collecting IKE and ESP payloads and determining

whether the traffic matches any tasked selector [7]. If so, TURMOIL transmits the complete

IKE handshake and may transmit a small amount of ESP ciphertext to NSA’s Cryptanalysis

and Exploitation Services (CES) [7, 14] via a secure tunnel. Within CES, a specialized VPN

Attack Orchestrator (VAO) system manages a collection of high-performance grid comput-

ing resources located at NSA Headquarters and in a data center at Oak Ridge National Labo-

ratory, which perform the computation required to generate the ESP session key [10, 15, 20].

VAO also maintains a database, CORALREEF, that stores cryptographic values, including

a set of known PSKs and the resulting “recovered” ESP session keys [15, 20, 23].

The ESP traffic itself is buffered for up to 15 minutes [12], until CES can respond with the

recovered ESP keys if they were generated correctly. Once keys have been returned, the

ESP traffic is decrypted via hardware accelerators [6] or in software [9, 13]. From this point,

decrypted VPN traffic is reinjected into TURMOIL processing infrastructure and passed to

other systems for storage and analysis [13]. The documents indicate that NSA is recovering

ESP keys at large scale, with a target of 100,000 per hour [12].

Evidence for a discrete log attack. While the ability to decrypt VPN traffic does not

by itself indicate a defeat of Diffie-Hellman, there are several features of IKE and the VAO’s

operation that support this hypothesis.
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The IKE protocol has been extensively analyzed [87, 217], and is not believed to be ex-

ploitable in standard configurations under passive eavesdropping attacks. In order to re-

cover the session keys for the ESP or AH protocols, the attacker must at minimum recover

the SKEYID generated by the Phase 1 exchange. Absent a vulnerability in the key deriva-

tion function or transport encryption, this requires the attacker to recover a Diffie-Hellman

shared secret after passively observing an IKE handshake.

While IKE is designed to support a range of Diffie-Hellman groups, our Internet-wide scans

(Section 6.4.3) show that the vast majority of IKE systems select one particular 1024-bit

DH group, Oakley Group 2, even when offered stronger groups.

Given an efficient oracle for solving the discrete logarithm problem, attacks on IKE are

possible provided that the attacker can obtain the following: (1) a complete two-sided IKE

transcript, including the Diffie-Hellman ephemeral keys ga and gb as well as the nonces and

cookies transmitted by both sides of the connection, and (2) in IKEv1 only, the PSK used

in deriving SKEYID.

Both of the above requirements are also present in the NSA’s VPN attack system. As

Figure 14 illustrates, a hard requirement of the VAO is the need to obtain the complete

two-sided IKE transcript [23]. The published documents indicate that this requirement

substantially increases the complexity of the attack execution, since IKE transcripts must

be reassembled (“paired”) whenever the interaction traverses multiple network paths [8, 14,

21, 22].

The attack system also seems to require knowledge of the PSK. Several documents describe

techniques for analysts to locate a PSK, including using a database of router configura-

tions [11, 16], the CORALREEF database of known PSKs [23], previously decrypted SSH

traffic [23], or system administrator “chatter” [11]. Additionally, NSA is willing to “[r]un

attacks to recover PSK” [23].

Of course, this explanation is not dispositive. The possibility remains that NSA could de-
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Figure 14: NSA’s VPN decryption infrastructure—This classified illustration pub-
lished by Der Spiegel [20] shows captured IKE handshake messages being passed to a high-
performance computing system, which returns the symmetric keys for ESP session traffic.
The details of this attack are consistent with an efficient break for 1024-bit Diffie-Hellman.

feat IPsec using alternative means. Certain published NSA documents refer to software

“implants” on VPN devices, indicating that the use of targeted malware is a piece of the

collection strategy [23]; however, the same documents also note that decryption of the

resulting traffic does not require IKE handshakes, and thus appears to be an alternative

mechanism to the VAO attack described above. The most compelling argument for a pure

cryptographic attack is the generality of the VAO approach, which appears to succeed across

a broad swath of non-compromised devices.

6.4.3. Effects of a 1024-bit Break

In this section, we use Internet-wide scanning to assess the impact of a hypothetical DH-1024

break on three popular protocols: IKE, SSH, and HTTPS. Our measurements indicate that

these protocols, as they are commonly used, would be subject to widespread compromise by

a state-level attacker who had the resources to invest in precomputation for a small number

of common 1024-bit groups.

IKE. We measured how IPsec VPNs use Diffie-Hellman in practice by scanning a 1%
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Vulnerable servers, if the attacker can precompute for . . .

all 512-bit groups all 768-bit groups one 1024-bit group ten 1024-bit groups

HTTPS Top 1M w/ active downgrade 45,100 (8.4%) 45,100 (8.4%) 205,000 (37.1%) 309,000 (56.1%)
HTTPS Top 1M 118 (0.0%) 407 (0.1%) 98,500 (17.9%) 132,000 (24.0%)
HTTPS Trusted w/ active downgrade 489,000 (3.4%) 556,000 (3.9%) 1,840,000 (12.8%) 3,410,000 (23.8%)
HTTPS Trusted 1,000 (0.0%) 46,700 (0.3%) 939,000 (6.56%) 1,430,000 (10.0%)

IKEv1 IPv4 – 64,700 (2.6%) 1,690,000 (66.1%) 1,690,000 (66.1%)
IKEv2 IPv4 – 66,000 (5.8%) 726,000 (63.9%) 726,000 (63.9%)

SSH IPv4 – – 3,600,000 (25.7%) 3,600,000 (25.7%)

Table 33: Estimated impact of Diffie-Hellman attacks—We use Internet-wide scan-
ning to estimate the number of real-world servers for which typical connections could be
compromised by attackers with various levels of computational resources. For HTTPS, we
provide figures with and without downgrade attacks on the chosen ciphersuite. All others
are passive attacks.

random sample of the public IPv4 address space for IKEv1 and IKEv2 (the protocols

used to initiate an IPsec VPN connection) in May 2015. We used the ZMap UDP probe

module to measure support for Oakley Groups 1 and 2 (two popular 768- and 1024-bit,

built-in groups) and which group servers prefer. To test support for individual groups, we

offered only the single group in question. To detect default behavior, we offered servers

a variety of DH groups, with the lowest priority groups being Oakley Groups 1 and 2.

When measuring server preference, we scanned with the 3DES symmetric cipher—the most

commonly supported symmetric cipher in our single group scans. Because of this, the

percentages we present for IKEv1 and IKEv2 are a lower bound for the number of servers

that prefer Oakley Groups 1 and 2.

Of the 80K hosts that responded with a valid IKE packet, 44.2% were willing to accept

an offered proposal from at least one scan. The majority of the remaining hosts responded

with a NO-PROPOSAL-CHOSEN message regardless of our proposal. Many of these may be

site-to-site VPNs that reject our source address. We consider these hosts “unprofiled” and

omit them from the results here.

We found that 31.8% of IKEv1 and 19.7% of IKEv2 servers support Oakley Group 1 (768-

bit) while 86.1% and 91.0% respectively supported Oakley Group 2 (1024-bit). In our

sample of IKEv1 servers, 2.6% of profiled servers preferred the 768-bit Oakley Group 1—

which is within cryptanalytic reach today for moderately resourced attackers—and 66.1%
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preferred the 1024-bit Oakley Group 2. For IKEv2, 5.8% of profiled servers chose Oakley

Group 1, and 63.9% chose Oakley Group 2. This coincides with our anecdotal findings that

most VPN clients only offer Oakley Group 2 by default.

SSH. All SSH handshakes complete either a finite field Diffie-Hellman or elliptic curve

Diffie-Hellman exchange as part of the SSH key exchange. The SSH protocol explicitly

defines support for Oakley Group 2 (1024-bit) and Oakley Group 14 (2048-bit) but also

allows a server-defined group, which can be negotiated through an auxiliary Diffie-Hellman

Group Exchange (DH-GEX) handshake [131].

In order to measure how SSH uses DH in practice, we implemented the SSH protocol in

the ZMap toolchain and scanned 1% random samples of the public IPv4 address space in

April 2015. We find that 98.9% of SSH servers support the 1024-bit Oakley Group 2, 77.6%

support the 2048-bit Oakley Group 14, and 68.7% support DH-GEX.

During the SSH handshake, the client and server select the client’s highest priority mutually

supported key exchange algorithm. Therefore, we cannot directly measure what algorithm

servers will prefer in practice. In order to estimate this, we performed a scan in which we

mimicked the algorithms offered by OpenSSH 6.6.1p1, the latest version of OpenSSH. In

this scan, 21.8% of servers preferred the 1024-bit Oakley Group 2, and 37.4% preferred a

server-defined group. 10% of the server-defined groups were 1024-bit, but, of those, near

all provided Oakley Group 2 rather than a custom group.

Combining these equivalent choices, we find that a state-level attacker who performed NFS

precomputations for the 1024-bit Oakley Group 2 (which has been in standards for almost

two decades) could passively eavesdrop on connections to 3.6M (25.7%) publicly accessible

SSH servers.

HTTPS. DHE is commonly deployed on web servers. 68.3% of Alexa Top 1M sites support

DHE, as do 23.9% of sites with browser-trusted certificates. Of the Top 1M sites that support

DHE, 84% use a 1024-bit or smaller group, with 94% of these using one of five groups.
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Despite widespread support for DHE, a passive eavesdropper can only decrypt connections

that organically agree to use Diffie-Hellman. We can estimate the number of sites for

which this will occur by offering the same sets of ciphersuites as Chrome, Firefox, and

Safari. While the offered ciphers differ slightly between browsers, this turns out to result

in negligible differences in whether DHE is chosen.

Approximately 24.0% of browser connections with HTTPS-enabled Top 1M sites (and 10%

with browser-trusted sites) will negotiate DHE with one of the ten most popular 1024-bit

primes; 17.9% of connections with Top 1M sites could be passively eavesdropped given the

precomputation for a single 1024-bit prime. The most popular site that negotiates a DHE

ciphersuite using one of the two most common 1024-bit primes is sohu.com (ranked 31st

globally).

Mail. TLS is also used to secure email transport. SMTP, the protocol used to relay

messages between mail servers, allows a connection to be upgraded to TLS by issuing the

STARTTLS command. POP3S and IMAPS, used by end users to fetch received mail, wrap

the entire connection in TLS.

We studied 1% samples of the public IPv4 address space for IMAPS, POP3S, and SMTP-

+StartTLS. We found that 50.7% of SMTP servers supported STARTTLS, 41.4% supported

DHE, and 14.8% supported DHE EXPORT ciphers. 15.5% of SMTP servers used one of the

ten most common 1024-bit groups.

For IMAPS, 8.4% of servers supported DHE EXPORT and 75% supported DHE. However, the

ten most common 1024-bit primes account for only 5.4% of servers. POP3S deployment is

similar, with 8.9% of servers supporting DHE EXPORT and 74.9% supporting DHE, but with

the ten most common 1024-bit primes accounting for only 4.8% of servers.

If each of the top ten 1024-bit primes used by each protocol were compromised, this would

affect approximately 1.7M SMTP, 276K IMAPS, and 245K POP3S servers. Using our

downgrade attack of Section 6.3.3, an attacker with modest resources can hijack connections
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to approximately 1.6M SMTP, 429K IMAPS, and 454K POP3S servers.

6.5. Recommendations

Our findings indicate that one of the key recommendations from security experts in response

to the threat of mass surveillance—promotion of DHE-based TLS ciphersuites offering “per-

fect forward secrecy” over RSA-based ciphersuites—may have actually reduced security for

many hosts. In this section, we present concrete recommendations to recover the expected

security of Diffie-Hellman as it is used in mainstream Internet protocols.

Transition to elliptic curves. Transitioning to elliptic curve Diffie-Hellman (ECDH)

key exchange with appropriate parameters avoids all known feasible cryptanalytic attacks.

Current elliptic curve discrete log algorithms for strong curves do not gain as much of an

advantage from precomputation. In addition, ECDH keys are shorter than in “mod p”

Diffie-Hellman, and shared-secret computations are faster. Unfortunately, the most widely

supported ECDH parameters, those specified by NIST, are now viewed with suspicion due

to NSA influence on their design, despite no known or suspected weaknesses. These curves

are undergoing scrutiny, and new curves, such as Curve25519, are being standardized by the

IRTF for use in Internet protocols. We recommend transitioning to elliptic curves where

possible; this is the most effective long-term solution to the vulnerabilities described in this

paper.

Increase minimum key strengths. Server operators should disable DHE EXPORT and

configure DHE ciphersuites to use primes of 2048 bits or larger. Browsers and clients should

raise the minimum accepted size for Diffie-Hellman groups to at least 1024 bits in order to

avoid downgrade attacks when communicating with servers that still use smaller groups.

Primes of less than 1024 bits should not be considered secure, even against an attacker with

moderate resources.

Our analysis suggests that 1024-bit discrete log may be within reach for state-level actors.

As such, 1024-bit DHE (and 1024-bit RSA) must be phased out in the near term. NIST has

recommended such a transition since 2010 [50]. We recommend that clients raise the mini-
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mum DHE group size to 2048 bits as soon as server configurations allow. Server operators

should move to 2048-bit or larger groups to facilitate this transition. Precomputation for

a 2048-bit non-trapdoored group is around 109 times harder than for a 1024-bit group, so

2048-bit Diffie-Hellman will remain secure barring a major algorithmic improvement.

Avoid fixed-prime 1024-bit groups. For implementations that must continue to use

or support 1024-bit groups for compatibility reasons, generating fresh groups may help

mitigate some of the damage caused by NFS-style precomputation for very common fixed

groups. However, we note that it is possible to create trapdoored primes [153, 277] that

are computationally difficult to detect. At minimum, clients should check that servers’

parameters use safe primes or a verifiable generation process, such as that proposed in FIPS

186 [239]. Ideally, the process for generating and validating parameters in TLS should be

standardized so as to thwart the risk of trapdoors.

Don’t deliberately weaken crypto. Our downgrade attack on export-grade 512-bit

Diffie-Hellman groups in TLS illustrates the fragility of cryptographic “front doors”. Al-

though the key sizes originally used in DHE EXPORT were intended to be tractable only to

NSA, two decades of algorithmic and computational improvements have significantly low-

ered the bar to attacks on such key sizes. Despite the eventual relaxation of crypto export

restrictions and subsequent attempts to remove support for DHE EXPORT, the technical

debt induced by the additional complexity has left implementations vulnerable for decades.

Like FREAK [61], our attacks warn of the long-term debilitating effects of deliberately

weakening cryptography.

6.6. Disclosure and Response

We notified major client and server developers about the vulnerabilities discussed in this

paper before we made our findings public. Prior to our work, Internet Explorer, Chrome,

Firefox, and Opera all accepted 512-bit primes, whereas Safari allowed groups as small as

16 bits. As a result of our disclosures, Internet Explorer [222], Firefox, and Chrome are

transitioning the minimum size of the DHE groups they accept to 1024 bits, and OpenSSL

174



and Safari are expected to follow suit. On the server side, we notified Apache, Oracle,

IBM, Cisco, and various hosting providers. Akamai has removed all support for export

ciphersuites. Many TLS developers plan to support a new extension that allows clients and

servers to negotiate a few well-known groups of 2048-bits and higher and to gracefully reject

weak ones [147].

6.7. Conclusion

Diffie-Hellman key exchange is a cornerstone of applied cryptography, but we find that,

as used in practice, it is often less secure than widely believed. The problems stem from

the fact that the number field sieve for discrete log allows an attacker to perform a single

precomputation that depends only on the group, after which computing individual logs in

that group has a far lower cost. Although this fact is well known to cryptographers, it

apparently has not been widely understood by system builders. Likewise, many cryptog-

raphers did not appreciate that the security of a large fraction of Internet communication

depends on Diffie-Hellman key exchanges that use a few small, widely shared groups.

A key lesson from this state of affairs is that cryptographers and creators of practical

systems need to work together more effectively. System builders should take responsibility

for being aware of applicable cryptanalytic attacks. Cryptographers, for their part, should

involve themselves in how crypto is actually being applied, such as through engagement

with standards efforts and software review. Bridging the perilous gap that separates these

communities will be essential for keeping future systems secure.
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CHAPTER 7 : DROWN attack and measurements

Abstract

We present DROWN, a novel cross-protocol attack that can decrypt passively collected TLS

sessions from up-to-date clients by using a server supporting SSLv2 as a Bleichenbacher RSA

padding oracle. We present two versions of the attack. The more general form exploits a

combination of thus-far unnoticed protocol flaws in SSLv2 to develop a new and stronger

variant of the Bleichenbacher attack. A typical scenario requires the attacker to observe

1,000 TLS handshakes, then initiate 40,000 SSLv2 connections and perform 250 offline

work to decrypt a 2048-bit RSA TLS ciphertext. (The victim client never initiates SSLv2

connections.) We implemented the attack and can decrypt a TLSv1.2 handshake using

2048-bit RSA in under 8 hours using Amazon EC2, at a cost of $440. Using Internet-

wide scans, we find that 33% of all HTTPS servers and 22% of those with browser-trusted

certificates are vulnerable to this protocol-level attack, due to widespread key and certificate

reuse.

For an even cheaper attack, we apply our new techniques together with a newly discovered

vulnerability in OpenSSL that was present in releases from 1998 to early 2015. Given

an unpatched SSLv2 server to use as an oracle, we can decrypt a TLS ciphertext in one

minute on a single CPU—fast enough to enable man-in-the-middle attacks against modern

browsers. 26% of HTTPS servers are vulnerable to this attack.

We further observe that the QUIC protocol is vulnerable to a variant of our attack that

allows an attacker to impersonate a server indefinitely after performing as few as 225 SSLv2

connections and 265 offline work.

We conclude that SSLv2 is not only weak, but actively harmful to the TLS ecosystem.

7.1. Introduction

TLS [106] is one of the main protocols responsible for transport security on the modern

Internet. TLS and its precursor SSLv3 have been the target of a large number of cryp-
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tographic attacks in the research community, both on popular implementations and the

protocol itself [220]. Prominent recent examples include attacks on outdated or deliber-

ately weakened encryption in RC4 [33], RSA [61], and Diffie-Hellman [29], different side

channels including Lucky13 [32], BEAST [112], and POODLE [225], and several attacks on

invalid TLS protocol flows [61, 65, 103].

Comparatively little attention has been paid to the SSLv2 protocol, likely because the known

attacks are so devastating and the protocol has long been considered obsolete. Wagner and

Schneier wrote in 1996 that their attacks on SSLv2 “will be irrelevant in the long term when

servers stop accepting SSLv2 connections” [302]. Most modern TLS clients do not support

SSLv2 at all. However, in Internet-wide scans we found that out of 36 million HTTPS

servers, 6 million (17%) support SSLv2.

Bleichenbacher’s padding oracle attack [73] is an adaptive chosen ciphertext attack against

RSA PKCS#1 v1.5, the RSA padding standard used in TLS. This attack enables decryp-

tion of RSA-encrypted ciphertexts if a server distinguishes between correctly and incorrectly

padded RSA plaintexts, and was termed the “million-message attack” upon its introduc-

tion in 1998 after the number of RSA decryption queries needed to deduce a plaintext.

All widely-used modern SSL/TLS server implementations include countermeasures against

Bleichenbacher attacks.

A Bleichenbacher attack on SSLv2. Our first result shows that the SSLv2 protocol

is fatally vulnerable to a form of Bleichenbacher attack that enables decryption of RSA

ciphertexts. We develop a novel application of the attack that allows us to use a server

that supports SSLv2 as an efficient padding oracle. This attack is a protocol-level flaw in

SSLv2 that results in a feasible attack for 40-bit export cipher strengths, and in fact abuses

the universally implemented countermeasures against Bleichenbacher attacks to obtain a

decryption oracle.

We also discovered multiple implementation flaws in commonly deployed OpenSSL versions
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that allow an extremely efficient and much more dangerous instantiation of this attack.

Using SSLv2 to break TLS. Second, we present a novel cross-protocol attack that

allows an attacker to break a passively collected RSA key exchange for any TLS server if

the RSA keys are also used for SSLv2, possibly on a different server. We named our attack

DROWN (Decrypting RSA using Obsolete and Weakened eNcryption).

In its general version, the attack exploits the protocol flaws in SSLv2, does not rely on

any particular library implementation, and is feasible to carry out in practice for commonly

supported export-grade ciphers. In order to decrypt one TLS session, the attacker must

passively capture about 1,000 TLS sessions using RSA key exchange, make 40,000 SSLv2

connections to the victim server and perform 250 symmetric encryption operations. We

successfully carried out this attack using a heavily optimized GPU implementation and

were able to decrypt a 2048-bit RSA ciphertext in less than 18 hours on a GPU cluster and

less than 8 hours using the Amazon EC2 service.

We found that 11.5 million (33%) HTTPS servers are vulnerable to our attacks, because

many HTTPS servers that do not directly offer SSLv2 share RSA keys with other services

that do. Of servers offering HTTPS with browser-trusted certificates, 22% are vulnerable.

Our special version of the DROWN attack, which exploits a flaw in OpenSSL for a more

efficient oracle, requires roughly the same number of captured TLS sessions, half as many

connections to the victim server, and no large computations. The resulting attack can be

completed on a single core on commodity hardware in less than a minute, without GPUs

or distributed computing, and is limited primarily by how fast the server can complete

handshakes. It is fast enough to perform man-in-the-middle attacks on live TLS sessions

before the handshake times out, even allowing the attacker to target connections to servers

that prefer non-RSA cipher suites and downgrade a modern TLS client to RSA key exchange.

Our Internet-wide scans suggest that 79% of HTTPS servers that are vulnerable to the

general attack, namely 26% of all HTTPS servers, are also vulnerable to real-time attacks
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exploiting this dangerous implementation flaw.

Our results highlight the risk that continued support for SSLv2 imposes on the security

of much more recent TLS versions. This is an instance of a more general phenomenon

of insufficient domain separation, where older, vulnerable security standards can open the

door to attacks on newer versions. We conclude that phasing out outdated and insecure

standards should become a priority for standards designers and practitioners.

Responsible disclosure. The DROWN attack was assigned CVE-2016-0800. We dis-

closed our attacks to OpenSSL and worked with them to coordinate disclosure. The specific

OpenSSL vulnerabilities we discovered have been assigned CVE-2015-3197 and CVE-2016-

0703. In response to our disclosure, OpenSSL has made it impossible to configure a TLS

server in such a way that it is vulnerable to DROWN. Microsoft had already disabled SSLv2

for all supported versions of IIS. We also disclosed the attack to the NSS developers, who

have disabled SSLv2 on the last NSS tool that supported it, and have hastened their efforts

to entirely remove support for the protocol from the NSS codebase. In response to our

disclosure, Google will disable QUIC support for non-whitelisted servers, and make changes

to the QUIC standard, as detailed in Section 7.7. We also notified IBM, Cisco, Amazon,

the German CERT-Bund, and the Israeli CERT.

7.2. Background

In the following, a||b denotes concatenation of strings a and b. a[i] references the i-th byte

in a. (N, e) denotes an RSA public key, where N has byte-length ` (|N | = `) and e is the

public exponent. The corresponding secret exponent is d = 1/e mod φ(N).

7.2.1. PKCS#1 v1.5 encryption padding

Our attacks rely on the structure of RSA PKCS#1 v1.5 padding. Although there are newer

versions of the PKCS standard, for example RSA PKCS#1 v2.0 which implements OAEP,

SSL/TLS uses PKCS#1 v1.5. The basic task of the PKCS#1 v1.5 encryption padding

scheme [186] is to randomize encryptions by prepending a random padding string PS to a

message k (typically a symmetric session key) before applying RSA encryption:
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1. The plaintext message is k. The encrypter generates a random byte string PS, where

|PS| ≥ 8, |PS| = `− 3− |k|, and 0x00 6∈ {PS[1], . . . , PS[|PS|]}.

2. The encryption block is m = 00||02||PS||00||k.

3. The ciphertext is computed as c = me mod N .

To decrypt such a ciphertext, the decrypter first computes m = cd mod N . Then it checks

whether the decrypted message m is correctly formatted as a PKCS#1 v1.5-encoded mes-

sage. We say that the ciphertext c and the decrypted message bytes m[1]||m[2]||...||m[`] are

PKCS#1 v1.5 conformant if:

m[1]||m[2] = 0x00||0x02

0x00 6∈ {m[3], . . . ,m[10]}

If this condition holds, the decrypter searches for the first value i > 10 such thatm[i] = 0x00.

Then, it extracts k = m[i+ 1]|| . . . ||m[`]. Otherwise, the ciphertext is rejected.

In SSLv3 and TLS, RSA PKCS#1 v1.5 is used to encapsulate the premaster secret ex-

changed during the handshake [106]. Thus, k is interpreted as the premaster secret. In

SSLv2, RSA PKCS#1 v1.5 is used for encapsulation of an equivalent key denoted the

master key.

7.2.2. SSL and TLS

The first incarnation of the TLS protocol was the SSL (Secure Socket Layer) protocol, which

was designed by Netscape in the 90s. The first two versions of SSL were immediately found

to be vulnerable to trivial attacks [294, 302] which were fixed in SSLv3 [129]. Later versions

of the standard were renamed TLS, and share a similar structure to SSLv3. The current

version of the protocol is TLSv1.2; TLSv1.3 is currently under development.

An SSL/TLS protocol flow consists of two phases: handshake and application data ex-

change. In the first phase, the communicating parties agree on cryptographic algorithms

and establish shared keys. In the second phase, these keys are used to protect the confiden-

180



SSLv2 
Client

SSLv2 
Client

SSLv2
Server
SSLv2
Server

ClientHello: 
cs

C
, r

C

ClientMasterKey: cs,
mk

clear 
, enc

pk
(mk

secret 
)

(Client-) Finished

ServerVerify

(Server-) Finished

master_key = mk
clear

 || mk
secret 

ServerHello: 
cert, cs

S
, r

S
 

Figure 15: SSLv2 handshake—The server responds with a ServerVerify message
directly after receiving an RSA-PKCS#1 v1.5 ciphertext contained in ClientMasterKey.
This protocol feature enables our attack.

tiality and authenticity of the transmitted application data.

The handshake protocol was fundamentally redesigned in the SSLv3 version. This new

handshake protocol was then used in later TLS versions up to TLSv1.2. In the following,

we describe the RSA-based handshake protocols used in TLS and SSLv2, and highlight

their differences.

The SSLv2 handshake protocol. The SSLv2 protocol description [167] is much less

formally specified than modern RFCs. Figure 15 depicts an SSLv2 handshake. A client

initiates an SSLv2 handshake by sending a ClientHello message, which includes a list of

cipher suites csc supported by the client and a client nonce rc, termed challenge. The server
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responds with a ServerHello message, which contains a list of cipher suites css supported

by the server, the server certificate, and a server nonce rs, termed connection ID.

The client responds with a ClientMasterKey message, which specifies a cipher suite sup-

ported by both peers and key data used for constructing a master key. In order to support

export cipher suites with 40-bit security (e.g., SSL RC2 128 CBC EXPORT40 WITH MD5), the

key data is divided into two parts:

• mkclear: A portion of the master key sent in the ClientMasterKey message as plain-

text (termed clear key data in the SSLv2 standard).

• mksecret: A secret portion of the master key, encrypted with RSA PKCS#1 v1.5

(termed secret key data).

The resulting master key mk is constructed by concatenating these two keys: mk =

mkclear||mksecret. For 40-bit export cipher suites, mksecret is five bytes in length. For

non-export cipher suites, the whole master key is encrypted, and the length of mkclear is

zero.

The client and server can then compute session keys from the reconstructed master key

mk:

server write key = MD5(mk||“0”||rc||rs)

client write key = MD5(mk||“1”||rc||rs)

The server responds with a ServerVerify message consisting of the challenge rc encrypted

with the server write key. Both peers then exchange Finished messages in order to

authenticate to each other.

Our attack exploits the fact the server always decrypts an RSA-PKCS#1 v1.5 ciphertext,

computes the server write key, and immediately responds with a ServerVerify message.

The SSLv2 standard implies this message ordering, but does not make it explicit. However,

we observed this behavior in every implementation we examined. Our attack also takes
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advantage of the fact that the encrypted mksecret portion of the master key can vary in

length, and is only five bytes for export ciphers.

The TLS handshake protocol. In TLS [106] or SSLv3, the client initiates the handshake

with a ClientHello, which contains a client random rc and a list of supported cipher

suites. The server chooses one of the cipher suites and responds with three messages,

ServerHello, Certificate, and ServerHelloDone. These messages include the server’s

choice of cipher suite, server nonce rs, and a server certificate with an RSA public key. The

client then uses the public key to encrypt a newly generated 48-byte premaster secret pms

and sends it to the server in a ClientKeyExchange message. The client and server then

derive encryption and MAC keys from the premaster secret and the client and server random

nonces. The details of this derivation are not important to our attack. The client then

sends ChangeCipherSpec and Finished messages. The Finished message authenticates

all previous handshake messages using the derived keys. The server responds with its own

ChangeCipherSpec and Finished messages.

The two main details relevant to our attacks are:

• The premaster secret is always 48 bytes long, independent of the chosen cipher suite.

This is also true for export cipher suites.

• After receiving the ClientKeyExchange message, the server waits for the ClientFinished

message, in order to authenticate the client.

7.2.3. OpenSSL SSLv2 cipher suite selection bug

The SSLv2 protocol is supported in OpenSSL by default in all versions under 1.1.0. OpenSSL

removed SSLv2 cipher suites from the default cipher string in 2010 between versions 0.9.8n

and 1.0.0; the changelog discusses this as being equivalent to disabling support for SSLv2 by

default [245]. Unfortunately, during our experiments we discovered that OpenSSL servers

do not respect the cipher suites advertised in the ServerHello message. That is, the client

can select an arbitrary cipher suite in the ClientMasterKey message and force the use of
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export cipher suites even if they are explicitly disabled in the server configuration. The

SSLv2 protocol itself was still enabled by default in the OpenSSL standalone server for the

most recent OpenSSL versions prior to our disclosure.

We notified the OpenSSL team of this vulnerability, which was assigned CVE ID CVE-

2015-3197. We have cooperated to develop a fix, which was included in OpenSSL releases

1.0.2f and 1.0.1r [245].

7.2.4. Bleichenbacher’s attack

Bleichenbacher’s attack is a padding oracle attack—it exploits the fact that RSA ciphertexts

should decrypt to plaintexts compliant with the PKCS#1 v1.5 padding format. If an imple-

mentation receives an RSA ciphertext that decrypts to an invalid PKCS#1 v1.5 plaintext,

it might naturally leak this information via an error message, by closing the connection, or

by taking longer to process the error condition. This behavior can leak information about

the plaintext that can be modeled as a cryptographic oracle for the decryption process.

Bleichenbacher [73] demonstrated how such an oracle could be exploited to decrypt RSA

ciphertexts.

Algorithm. In the simplest attack scenario, the attacker has a valid PKCS#1 v1.5 ci-

phertext c0 that he wishes to decrypt to discover the message m0. He has no access to the

private RSA key, but instead has access to an oracle O that will decrypt a ciphertext c and

inform the attacker whether the most significant two bytes match the required value for a

correct PKCS#1 v1.5 padding:

O(c) =


1 if m = cd mod N starts with 0x0002

0 otherwise.

If the oracle answers with 1, the attacker knows that 2B ≤ m ≤ 3B− 1, where B = 28(`−2).

The attacker can take advantage of RSA malleability to generate new candidate ciphertexts
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for any s:

c = (c0 · se) mod N = (m0 · s)e mod N

The attacker queries the oracle with c. If the oracle responds with 0, the attacker increments

s and repeats the previous step. Otherwise, the attacker learns that for some r, 2B ≤

m0s− rN < 3B. This allows the attacker to reduce the range of possible solutions to

2B + rN

s
≤ m0 <

3B + rN

s

The attacker proceeds by refining guesses for s and r values and successively decreasing the

size of the interval containing m0. At some point the interval will contain a single valid

value, m0. Bleichenbacher’s original paper describes this process in further detail [73].

Countermeasures. In order to protect against this attack, the decrypter must not leak

any information about the PKCS#1 v1.5 validity of the ciphertext. Since the ciphertext

itself does not decrypt to a valid message, the decrypter needs to generate a fake plain-

text and continue with the protocol using this decoy. The attacker should not be able to

distinguish the resulting computation from a correctly decrypted ciphertext.

In the case of SSL/TLS, the server generates a random premaster secret and finishes the

handshake with this random premaster secret if the decrypted ciphertext is invalid. The

client will not possess the session key to send a valid ClientFinished message and the

connection will terminate.

7.3. Breaking TLS with SSLv2

In this section, we describe our cross-protocol DROWN attack that uses an SSLv2 server

as an oracle to efficiently decrypt TLS connections. We first describe our techniques using

a generic SSLv2 oracle. In Section 7.4, we show how a protocol flaw in SSLv2 can be used

to construct such an oracle, and describe our general DROWN attack. In Section 7.5, we

show how an implementation flaw in common versions of OpenSSL leads to a very powerful

oracle, and describe our efficient special DROWN attack.

185



7.3.1. Attack scenario

We consider a server that accepts TLS connections from clients. The connections are

established using a secure, state-of-the-art TLS version (1.0–1.2) and a TLS RSA cipher

suite where the private key is not known to the attacker.

Server RSA key exposed via SSLv2. The same RSA public key as the TLS connections

is also used for SSLv2. For simplicity, our presentation will refer to the servers accepting

TLS and SSLv2 connections as the same entity.

The attacker’s position in the network. Our attacker is able to passively eavesdrop

on traffic between the client and server and record RSA-based TLS traffic, but does not

perform any active man-in-the-middle interference.

The attacker can expect to decrypt one out of 1,000 intercepted TLS connections in our

attack for typical parameters. This is a devastating threat in many scenarios. For example,

a decrypted TLS connection might reveal a client’s HTTP cookie or plaintext password,

and an attacker would only need to successfully decrypt a single ciphertext to compromise

the client’s account.

In order to collect 1,000 TLS connections, the attacker might simply wait patiently until

sufficiently many connections are recorded. If the attacker’s intended victim is the server,

rather than a specific client, observing this many connections from many clients might take

only a short time for an attacker who is located at a company firewall or who could perform a

DNS spoofing or BGP hijacking attack to redirect traffic transparently through themselves.

If the attacker’s intended victim is a particular client, this is still feasible in many cases.

As an example, the Mozilla Thunderbird email client will check for new email messages

every ten minutes by default. A targeted user will make 1,000 connections after leaving

the application running for a week. A less patient attacker could embed or inject malicious

JavaScript on an otherwise innocuous web site to cause the client to connect repeatedly

to the victim server in a short time frame, as in the BEAST attack [112]. Normally such
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connections would use TLS session resumption instead of completing a fresh handshake on

each time, but if an attacker can trigger an error, the next connection will be negotiated

with a fresh handshake.

7.3.2. A generic SSLv2 oracle

Our attacks make use of a padding oracle that can be queried on a ciphertext and leaks

information about decrypted plaintext; this abstractly models the information gained from

an SSLv2 server’s behavior. Our SSLv2 oracles reveal many bytes of plaintext, resulting in

an efficient attack.

Our cryptographic oracle O has the following functionality: O decrypts an RSA ciphertext

c and responds with ciphertext validity based on the structure of the decrypted message m.

The ciphertext is valid only if m starts with 0x0002 followed by non-null padding bytes, a

delimiter byte 0x00, and a master key mksecret of correct byte length k. In the following,

we denote such a ciphertext to be SSLv2 conformant.

All of the SSLv2 padding oracles we instantiate give the attacker similar information about

a PKCS#1 v1.5 conformant SSLv2 ciphertext:

O(c) =


mksecret if cd mod N = 00||02||PS||00||mksecret

0 otherwise.

That is, the oracle O(c) will return the decrypted message mksecret if it is queried on a

PKCS#1 v1.5 conformant SSLv2 ciphertext c corresponding to a correctly PKCS#1 v1.5

padded encryption of mksecret. The attacker then learns k + 3 bytes of information about

m = cd mod N : the first two bytes are 00||02, and the last k+ 1 bytes are 00||mksecret. The

length k of mksecret varies based on the cipher suite used in the instantiation of the oracle.

For export-grade cipher suites such as SSL RSA EXPORT WITH RC2 CBC 40 MD5, k will be 5

bytes, so the attacker learns 8 bytes of information aboutm. For SSL DES 192 EDE3 CBC WITH MD5,

k is 24 bytes and the attacker learns 27 bytes of plaintext.
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7.3.3. DROWN attack template

Our attacker will use an SSLv2 oracle O to decrypt a TLS ClientKeyExchange. The

behavior of O poses two problems for the attacker. First, a TLS ciphertext transmitted in

a TLS key exchange decrypts to a 48-byte premaster secret. But since no SSLv2 cipher

suites have 48-byte key strengths, this means that a valid TLS ciphertext is invalid to our

oracle O. In order to apply Bleichenbacher’s attack, the attacker needs to transform the

TLS ciphertext into a valid SSLv2 key exchange message. Second, O is very restrictive,

since it strictly checks the length of the unpadded message. According to Bardou et al. [48],

using such an oracle for Bleichenbacher’s attack would require 12 million oracle queries.1

Our attacker overcomes these problems by following this generic attack flow:

0. The attacker collects many encrypted TLS RSA key exchange messages.

1. He then attempts to convert the intercepted TLS ciphertexts containing a 48-byte

premaster secret to valid RSA PKCS#1 v1.5 encoded ciphertexts containing messages

of length appropriate to the SSLv2 oracle O. We accomplish this by taking advantage

of RSA ciphertext malleability and a technique of Bardou et al. [48].

2. Once the attacker has obtained a valid SSLv2 RSA ciphertext, he can continue with

a modified version of Bleichenbacher’s attack, and decrypt the message after many

more oracle queries.

3. The attacker can then transform the decrypted plaintext back into the original plain-

text, which is one of the collected TLS handshakes.

We describe the algorithmic improvements we use to make each of these steps efficient

below.

Finding an SSLv2 conformant ciphertext. The first step for the attacker is to trans-

form the original TLS ClientKeyExchange message c0 from a TLS conformant ciphertext

1See Table 1 in [48]. The oracle is denoted with the term FFF.
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into an SSLv2 conformant ciphertext. A trivial approach would be to generate multipliers

si ∈ {s1, s2, . . .}, and compute ciphertexts ci = (c0si
e) mod N , until one gets accepted by O.

However, the number of generated ciphertexts would be high, because O is very restrictive;

for 2048-bit RSA keys and an oracle returning a 5-byte k the probability that a random

ciphertext becomes SSLv2 conformant is Prnd ≈ (1/256)3 ∗ (255/256)249 ≈ 2−25.

Instead, we rely on the concept of trimmers, which were introduced by Bardou et al. [48].

Assume that the message m0 = c0
d mod N is divisible by a small number t. In that case,

m0 · t−1 mod N simply equals the natural number m0/t. If we choose u ≈ t, and multiply

the original message with a fraction u/t, the resulting number will lie near the original

message: m0 ≈ m0/t · u. We shall refer to such fractions as “small” fractions.

This method allows us to generate new SSLv2 conformant messages with a much higher

probability. Let c0 be an intercepted TLS conformant RSA ciphertext, and let m0 = cd0 mod

N be its corresponding plaintext. We select a multiplier s = u/t mod N = ut−1 mod N

where u and t are coprime, compute the value c1 = c0s
e mod N , and query O(c1). We will

receive a response if m1 = m0 · u/t is SSLv2 conformant.

As an example, let us assume a 2048-bit RSA ciphertext with k = 5, and consider the

fraction u = 7, t = 8. The probability that a random ciphertext c0 will be SSLv2 conformant

is 1/7,774, so we expect to make 7,774 oracle queries before discovering a ciphertext c0

for which c0u/t is SSLv2 conformant, much better than a randomly selected multiplier.

Appendix 7.B.1 gives more details on computing these probabilities.

Shifting known plaintext bytes. Once we have obtained an SSLv2 conformant ci-

phertext c1, we have also learned from our oracle information about the k + 1 least sig-

nificant bytes (mksecret together with the delimiter byte 0x00) and two most significant

0x0002 bytes of the SSLv2 conformant message m1. We would like to rotate these known

bits around to the right, so that we have a large block of contiguous known most sig-

nificant bytes of plaintext. In this section, we show that this can be accomplished by
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multiplying by some shift 2−r mod N . In other words, given an SSLv2 conformant ci-

phertext c1 = me
1 mod N , we can efficiently generate an SSLv2 conformant ciphertext

c2 = me
2 mod N where m2 = s ·m1 · 2−r mod N and we know several most significant bytes

of m2.

Let R = 28(k+1) and B = 28(`−2). Abusing notation slightly, let the integer m1 = 2 · B +

PS · R + mksecret be the plaintext satisfying me
1 = c1 mod N . At this stage, the k-byte

integer mksecret is known and the `− k − 3-byte integer PS is not.

Let m̃1 = 2 · B + mksecret be the known components of m1, so m1 = m̃1 + PS · R. We

can use this to compute a new plaintext for which we know many most significant bytes.

Consider the value

m1 ·R−1 mod N = m̃1 ·R−1 + PS mod N.

The value of PS is unknown, but we know that it consists of `− k − 3 bytes. This means

that the known value m̃1 ·R−1 shares most of its k+ 3 most significant bytes with m1 ·R−1.

Furthermore, we can iterate this process by finding a new multiplier s such that m2 =

s ·m1 · R−1 mod N is also SSLv2 conformant. A randomly chosen s < 230 will work with

probability 2−25.4. We can take advantage of the bytes we have already learned about m1

to efficiently compute such an s with only 678 oracle queries in expectation for a 2048-bit

RSA modulus. Appendix 7.B.3 gives more details.

Adapted Bleichenbacher iteration. It is feasible for all of our oracles to use the previous

technique to entirely recover a plaintext message. However, for our SSLv2 protocol oracle

it is cheaper to continue using Bleichenbacher’s original attack, once we have used the

above techniques to obtain a SSLv2 conformant message m3 and an integer s3 such that

m3 · s3 is SSLv2 conformant. At this point, we can apply the original algorithm proposed

by Bleichenbacher as described in Section 7.2.4, with minimal modifications.

Each step obtains a message that starts with the required 0x0002 bytes after two queries in
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expectation. Since we know the value of the k + 1 least significant bytes after multiplying

by any integer, we can query the oracle only on multipliers that cause the (k + 1)st least

significant byte to be zero. However, we cannot ensure that the padding string is entirely

nonzero; for a 2048-bit modulus this will hold with probability 0.37.

For a 2048-bit modulus, the total expected number of queries when using this technique to

fully decrypt the plaintext is 2048 ∗ 2/0.37 ≈ 11, 000.

7.4. General DROWN

In this section, we describe how any correct SSLv2 implementation that accepts export-

grade cipher suites can be used as a padding oracle. We then show how to adapt the

techniques described in Section 7.3.3 to decrypt TLS RSA ciphertexts.

7.4.1. The SSLv2 export padding oracle

SSLv2 is vulnerable to a direct message side channel vulnerability exposing a Bleichen-

bacher oracle to the attacker. The vulnerability follows from three properties of SSLv2.

First, the server immediately responds with a ServerVerify message after receiving the

ClientMasterKey message, which includes the RSA ciphertext, without waiting for the

ClientFinished message that proves the client knows the RSA plaintext. Second, when

choosing 40-bit export RC2 or RC4 as the symmetric cipher, only 5 bytes of the master key

(mksecret) are sent encrypted using RSA, and the remaining 11 bytes are sent in cleartext.

Third, a server implementation that correctly implements the anti-Bleichenbacher counter-

measure and receives an RSA key exchange message with invalid padding will generate a

random premaster secret and carry out the rest of the TLS handshake using this randomly

generated key material.

This allows an attacker to deduce the validity of RSA ciphertexts in the following manner:

1. The attacker sends a ClientMasterKey message, which contains an RSA ciphertext

c0 and any sequence of 11 bytes as the clear portion of the master key, mkclear.

The server responds with a ServerVerify message, which contains the challenge

encrypted using the server write key.
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2. The attacker performs an exhaustive search over the possible values of the 5 bytes

of the master key mksecret. He then computes the corresponding server write key

and checks whether the ServerVerify message decrypts to the challenge. One value

should pass this check; let this value be termed mk0. Recall that if the RSA plaintext

was valid, mk0 is the unpadded data in the RSA plaintext. Otherwise, mk0 is a

randomly generated sequence of 5 bytes.

3. The attacker re-connects to the server with the same RSA ciphertext c0. The server

responds with another ServerVerify message that contains the current challenge

encrypted using the current server write key. If the decrypted RSA ciphertext

was valid, the attacker can directly decrypt a correct challenge value from the

ServerVerify message by using the master keymk0. Otherwise, if the ServerVerify

message does not correctly decrypt to the challenge, the RSA ciphertext was invalid,

and the attacker knows the mk0 value was generated at random.

Thus we can instantiate an oracle OSSLv2-export using the procedure above; each oracle query

requires two server connections and 240 decryption attempts in the simplest case. For each

oracle call OSSLv2-export(c), the attacker learns whether c is valid, and if so, learns the two

most significant bytes 0x0002, the sixth least significant 0x00 delimiter byte, and the value

of the 5 least significant bytes of the plaintext m.

If the server does not support 40-bit export ciphers, the attack can also be mounted in

feasible computation time by choosing DES as the symmetric cipher. Choosing DES means

the exhaustive search is now done over a key space of 56 bits, thus increasing the cost of the

attack by a factor of 216, but does not fundamentally change anything except the increased

cost.

7.4.2. TLS decryption attack

In this section, we describe how the oracle described in Section 7.4.1 can be used to carry

out a feasible attack to decrypt passively collected TLS ciphertexts.
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Attack scenario. As described in Section 7.3.1, we consider a server that accepts TLS

connections from clients using an RSA public key that is exposed via SSLv2, and an attacker

who is able to passively observe these connections.

We also assume the server supports export cipher suites for SSLv2. This can happen for two

reasons. First, the same servers that fail to follow best practices in disabling SSLv2 [294]

may also fail to follow best practices by supporting export cipher suites. Alternatively, the

servers might be running a version of OpenSSL prior to January 2016, in which case they

are vulnerable to the OpenSSL cipher suite selection bug described in Section 7.2.3, and an

attacker may negotiate a cipher suite of his choice independent of the server configuration.

We assume the server implements the recommended countermeasure against Bleichen-

bacher’s attack in all protocol versions, including SSLv2. If the decrypted RSA cipher-

text has invalid padding, the server generates a random premaster secret or master key

and continues the handshake with this random string. We assume this countermeasure is

implemented correctly and the server is neither vulnerable to timing nor flush-and-reload

side-channel attacks [221, 317].

The attacker needs access to computing power sufficient to perform a 250 time attack, mostly

brute forcing symmetric key encryption. After our optimizations, this can be done with a

one-time investment of a few thousand dollars of GPUs, or in a few hours for a few hundred

dollars in the cloud. Our cost estimates are described in Section 7.4.3.

Constructing the attack. The attacker can exploit the SSLv2 vulnerability as illustrated

in Figure 16, following the generic attack outline described in Section 7.3.3 and has several

distinct phases:

0. He passively collects 1,000 TLS handshakes from connections using RSA key exchange.

1. The attacker then attempts to convert the intercepted TLS ciphertexts containing a

48-byte premaster secret to valid RSA PKCS#1 v1.5 encoded ciphertexts containing
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five-byte messages using the fractional trimmers described in Section 7.3.3, and query-

ing OSSLv2-export. The attacker sends the modified ciphertexts to the server using fresh

SSLv2 connections with weak symmetric ciphers and uses the ServerVerify messages

to deduce ciphertext validity as described in the previous section. For each queried

RSA ciphertext, the attacker must perform a brute force attack on the weak sym-

metric cipher. The attacker expects to obtain a valid SSLv2 ciphertext after roughly

10,000 oracle queries, or 20,000 connections to the server.

2. Once the attacker has obtained a valid SSLv2 RSA ciphertext m1, he uses the shifting

technique explained in Section 7.3.3 to find an integer s1 such that m2 = m1 ·2−40 · s1
is also SSLv2 conformant. Appendix 7.B.4 contains more details on this step.

3. The attacker then applies the shifting technique again to find another integer s2 such

that m3 = m2 · 2−40 · s2 is also SSLv2 conformant.

4. He then searches for yet another integer s3 such that m3 ·s3 is also SSLv2 conformant.

5. Finally, the attacker can continue with our adapted Bleichenbacher iteration tech-

nique described in Section 7.3.3, and decrypts the message after an expected 10,000

additional oracle queries, or 20,000 connections to the server.

6. The attacker can then transform the decrypted plaintext back into the original plain-

text, which is one of the 1,000 intercepted TLS handshakes.

Bleichenbacher’s original algorithm requires a conformant message m0, and a multiplier s1

such that m1 = m0 · s1 is also conformant. Näıvely, it would appear we can apply the

same algorithm here, after completing Phase 1. However, the original algorithm expects s1

to be of size about 224. This is not the case when we use fractions for s1, as the integer

s1 = ut−1 mod N will be the same size as N .

Therefore, our approach is to find a conformant message for which we know the 5 most

significant bytes; this will happen after multiple rotations and this message will be m3.
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Optimizing
for

Ciphertexts |F | SSLv2
connections

Offline
work

offline work 12,743 1 50,421 249.64

offline work 1,055 10 46,042 250.63

compromise 4,036 2 41,081 249.98

online work 2,321 3 38,866 251.99

online work 906 8 39,437 252.25

Table 34: 2048-bit Bleichenbacher attack complexity—The cost to decrypt one ci-
phertext can be adjusted by choosing the set of fractions F the attacker applies to each
of the passively collected ciphertexts in the first step of the attack. This choice affects
several parameters: the number of these collected ciphertexts, the number of connections
the attacker makes to the SSLv2 server, and the number of offline decryption operations.

Key size Phase 1 Phases 2–5
Total
queries

Offline
work

1024 4,129 4,132 8,261 250.01

2048 6,919 12,468 19,387 250.76

4096 18,286 62,185 80,471 252.16

Table 35: Oracle queries required by our attack—In Phase 1, the attacker queries the
oracle until an SSLv2 conformant ciphertext is found. In Phases 2–5, the attacker decrypts
this ciphertext using leaked plaintext. These numbers minimize total queries. In our attack,
an oracle query represents two server connections.

After finding such a message, finding s3 such that m4 = m3 · s3 is also conformant becomes

trivial. From there, we can finally apply the adapted Bleichenbacher iteration technique as

described in Appendix 7.B.5.

Attack performance. The attacker wishes to minimize three major costs in the attack:

the number of recorded ciphertexts from the victim client, the number of connections to

the victim server, and the number of symmetric keys to be brute forced. The requirements

for each of these elements are governed by the set of fractions to be multiplied with each

RSA ciphertext in the first phase, as described in Section 7.3.3.

Table 34 highlights a few choices for F and the resutling performance metrics for 2048-bit

RSA keys. Appendix 7.B.6 provides more details on the derivation of these numbers and

other possible optimization choices. Table 35 gives the expected number of Bleichenbacher
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queries for different RSA key sizes, when minimizing total oracle queries.

7.4.3. Implementing general DROWN with GPUs

The most computationally expensive part of our general DROWN attack is breaking the

40-bit symmetric key, so we developed a highly optimized GPU implementation of this

brute force attack. Our first näıve GPU implementation performed around 26MH/s, where

MH measures the calculation of an MD5 hash and the RC2 decryption. Our optimized

implementation gave a final speed of 515MH/s, a speedup factor of 19.8.

We obtained our improvements through a number of optimizations. Our original imple-

mentation ran into a communication bottleneck in the PCI-E bus in transmitting candidate

keys from CPU to GPU, so we removed this bottleneck by generating key candidates on the

GPU itself. We optimized memory management, including storing candidate keys and the

RC2 permutation table in constant memory, which is almost as fast as a register, instead

of slow global memory. We optimized the cryptographic checks themselves by rewriting the

RC2 implementation to use 32-bit instructions, removing unnecessary RC2 keysize checks,

dropping unused ADD instructions during MD5, and manually shifting input bytes into the

MD5 input registers to avoid loop branches. We describe these optimizations in further

detail in Appendix 7.C.

We experimentally evaluated our optimized implementation on a local cluster and in the

cloud. We used it to execute a full attack of 249.6 tested keys on each platform. The required

number of keys to test during the attack is a random variable, distributed geometrically, with

an expectation that ranges between 249.6 and 252.5 depending on the choice of optimization

parameters. We treat a full attack as requiring 249.6 tested keys overall.

Hashcat. Hashcat[4] is an open source optimized password-recovery tool. The Hashcat

developers allowed us to use their GPU servers for our attack evaluation. The servers

contain a total of 40 GPUs: 32 Nvidia GTX 980 cards, and 8 AMD R9 290X cards. The

value of this equipment is roughly $18,040. Our full attack took less than 18 hours to

complete on the Hashcat servers, with the longest single instance taking 17h9m.
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Amazon EC2. We also ran our optimized GPU code on the Amazon Elastic Compute

Cloud (EC2) [37] service. We used a cluster composed of 200 variable-price “spot” instances:

150 g2.2xlarge instances, each of which contains one high-performance NVIDIA GPU with

1,536 CUDA cores and 50 g2.8xlarge instances, each containing four of these GPUs. When

we ran our experiments in January 2016, the average spot rates we paid were $0.09/hr and

$0.83/hr respectively. Our full attack finished in under 8 hours including startup and

shutdown for a cost of $440. See Appendix 7.D for more details.

7.5. Special DROWN

We discovered a vulnerability in recent (but not current) versions of the OpenSSL SSLv2

handshake code that creates a powerful Bleichenbacher oracle, and drastically reduces the

amount of computation required to implement our attack. The vulnerability, which has

been designated CVE-2016-0703, was present in the OpenSSL codebase from at least the

start of the repository, in 1998, until it was unknowingly fixed on March 4, 2015 by a

patch [187] designed to correct an unrelated problem [25]. By adapting DROWN to exploit

this special case, we can cut the number of connections required by more than 50% and

reduce the computational work to a negligible amount.

7.5.1. The OpenSSL “extra clear” oracle

Prior to the fix, OpenSSL servers improperly allowed the ClientMasterKey message to con-

tain clear key data bytes for non-export ciphers. When such bytes are present, the server

substitutes them for bytes from the encrypted key. For example, consider the case that the

client chooses a 128-bit cipher and sends a 16-byte encrypted key k[1], k[2], . . . , k[16] but,

contrary to the protocol specification, includes 4 null bytes of clear key data. Vulnerable

OpenSSL versions will construct the following master key:

[00 00 00 00 k[1] k[2] k[3] k[4] . . . k[9] k[10] k[11] k[12]]

This enables a straightforward key-recovery attack against such versions. An attacker that

has intercepted an SSLv2 connection takes the RSA ciphertext of the encrypted key and

replays it in non-export handshakes to the server with varying lengths of clear key data.

For a 16-byte encrypted key, the attacker starts with 15 bytes of clear key, causing the
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server to use the master key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1]]

The attacker can brute force the first byte of the encrypted key by finding the matching

ServerVerify message among 256 possibilities. Knowing the first byte, the attacker makes

another connection with the same RSA ciphertext but 14 bytes of clear key, resulting in the

master key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1] k[2]]

Since the attacker already knows k[1], he can easily brute force the second byte. With only

15 probe connections and an expected 15 ·128 = 1, 920 trial encryptions, the attacker learns

the entire master key for the recorded session.

This session key-recovery attack can be directly converted to a Bleichenbacher oracle. Given

a candidate ciphertext and symmetric key length k, the attacker sends the ciphertext with

k known bytes of clear key data. The oracle decision is simple:

• If the ciphertext is valid, the ServerVerify message will reflect a master key con-

sisting of those k known bytes.

• If the ciphertext is invalid, the master key will be replaced with k random bytes

(by following the countermeasure against the Bleichenbacher attack), resulting in a

different ServerVerify message.

This oracle decision requires one connection to the server and one ServerVerify computa-

tion. After the attacker has found a valid ciphertext corresponding to a k-byte encrypted

key, they can recover the k plaintext bytes by repeating the key recovery attack from above.

Thus our oracle OSSLv2-extra-clear(c) requires one connection to determine whether c is valid,

and thus the two most significant bytes 0x0002 of the plaintext m. After k connections, the

attacker can additionally learn the k least significant bytes of m. We model this as a single

oracle call, but the number of server connections will vary depending on the response.
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All Certificates Trusted certificates

Protocol Port SSL/TLS
SSLv2
support

Vulnerable
key

SSL/TLS
SSLv2
support

Vulnerable
key

SMTP 25 3,357K 936K (28%) 1,666K (50%) 1,083K 190K (18%) 686K (63%)
POP3 110 4,193K 404K (10%) 1,764K (42%) 1,787K 230K (13%) 1,031K (58%)
IMAP 143 4,202K 473K (11%) 1,759K (42%) 1,781K 223K (13%) 1,022K (57%)
HTTPS 443 34,727K 5,975K (17%) 11,444K (33%) 17,490K 1,749K (10%) 3,931K (22%)
SMTPS 465 3,596K 291K (8%) 1,439K (40%) 1,641K 40K (2%) 949K (58%)
SMTP 587 3,507K 423K (12%) 1,464K (42%) 1,657K 133K (8%) 986K (59%)
IMAPS 993 4,315K 853K (20%) 1,835K (43%) 1,909K 260K (14%) 1,119K (59%)
POP3S 995 4,322K 884K (20%) 1,919K (44%) 1,974K 304K (15%) 1,191K (60%)

(Alexa 1M) 443 611K 82K (13%) 152K (25%) 456K 38K (8%) 109K (24%)

Table 36: Hosts vulnerable to general DROWN—We performed Internet-wide scans
to measure the number of hosts supporting SSLv2 on several different protocols. A host is
vulnerable to DROWN if its public key is exposed anywhere via SSLv2. Overall vulnerability
to DROWN is much larger than support for SSLv2 due to widespread reuse of keys.

7.5.2. TLS decryption with special DROWN

Using our oracle OSSLv2-extra-clear, we can construct an extremely efficient version of our TLS

decryption attack. The OpenSSL extra clear oracle provides three significant advantages

over our export oracle OSSLv2-export: (1) It no longer requires an export cipher suite, and, in

fact, we gain efficiency by exploiting regular SSLv2 ciphers; (2) It requires only one hand-

shake per oracle query; and (3) Computation is reduced to one ServerVerify decryption

per oracle query, versus 240.

Attack scenario. As before, we consider a server that accepts TLS connections, and a

client that negotiates a secure, state-of-the-art TLS version with a TLS RSA cipher suite.

The same RSA key pair used for TLS is also used on a server that is running a vulnerable

version of OpenSSL.

Constructing the attack. The attacker can exploit the OpenSSL extra clear vulner-

ability to efficiently decrypt a TLS ciphertext as follows. We will use the cipher suite

SSL DES 192 EDE3 CBC WITH MD5 as the cipher suite, allowing the attacker to recover 24

bytes of key at a time from the oracle. We first present a straightforward adaptation of

the general DROWN attack to the extra clear oracle, before later applying a few additional

optimizations made possible by this new oracle.

0. The attacker intercepts several hundred TLS handshakes using RSA key exchange.
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1. The attacker uses the fractional trimmers as described in Section 7.3.3 to convert the

TLS ciphertexts into an SSLv2 conformant ciphertext c0.

2. Once the attacker has obtained a valid SSLv2 ciphertext c1, he repeatedly uses the

shifting technique described in Section 7.3.3 to rotate the message by 25 bytes each

iteration, learning 27 bytes with each shift. After several iterations, he has learned

the entire plaintext.

3. The attacker then transforms the decrypted SSLv2 plaintext into the decrypted TLS

plaintext.

Attack costs. Using 40 fractional trimmers, this more efficient oracle attack allows the

attacker to recover one in 260 TLS session keys using only about 17,000 connections to the

server. The computation cost is so low that we can complete the full attack on a single

workstation in under one minute. Appendix 7.B.7 gives more details.

Mounting the attack using the optimized version of Special DROWN described in Ap-

pendix 7.B.7 allows the attacker to target one of 100 connections, at the expense of increas-

ing the number of queries to 27,000.

7.5.3. MITM attack against TLS

Special DROWN is fast enough that it can decrypt a TLS premaster secret online, during a

connection handshake. A man-in-the-middle attacker can use it to compromise connections

between modern browsers and TLS servers—even those configured to prefer non-RSA cipher

suites.

Attack scenario. The MITM attacker impersonates the server and sends a ServerHello

message that selects a cipher suite with RSA as the key-exchange method. Then, the

attacker uses special DROWN to decrypt the premaster secret. The main difficulty is com-

pleting the decryption and producing a valid ServerFinished message before the client’s

connection times out. Most browsers will allow the handshake to last up to one minute [29].
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Any certificate Trusted certificates

Protocol Port SSL/TLS
Special DROWN
oracles

Vulnerable
key

SSL/TLS
Vulnerable
key

Vulnerable
name

SMTP 25 3,357K 855K (25%) 896K (27%) 1,083K 305K (28%) 398K (37%)
POP3 110 4,193K 397K (9%) 946K (23%) 1,787K 485K (27%) 674K (38%)
IMAP 143 4,202K 457K (11%) 969K (23%) 1,781K 498K (30%) 690K (39%)
HTTPS 443 34,727K 4,029K (12%) 9,089K (26%) 17,490K 2,523K (14%) 3,793K (22%)
SMTPS 465 3,596K 334K (9%) 765K (21%) 1,641K 430K (26%) 630K (38%)
SMTP 587 3,507K 345K (10%) 792K (23%) 1,657K 482K (29%) 667K (40%)
IMAPS 993 4,315K 892K (21%) 1,073K (25%) 1,909K 602K (32%) 792K (42%)
POP3S 995 4,322K 897K (21%) 1,108K (26%) 1,974K 641K (32%) 835K (42%)

(Alexa 1M) 443 611K 22K (4%) 52K (9%) 456K (100%) 33K (7%) 85K (19%)

Table 37: Hosts vulnerable to special DROWN—A server is vulnerable to special
DROWN if its key is exposed by a host with the CVE-2016-0703 bug. Since the attack is fast
enough to enable man-in-the-middle attacks, a server is also vulnerable (to impersonation)
if any name in its certificate is found in any trusted certificate with an exposed key.

Using the fully optimized version of special DROWN, the attack still requires intercepting

an average of 100 ciphertexts, only one of which will be decrypted, probabilistically. The

simplest way for the attacker to facilitate this is to use JavaScript to cause the client to

connect repeatedly to the victim server, as described in Section 7.3.1. Each connection is

tested against the oracle with only small number of fractions, and the attacker can discern

immediately when he receives a positive response from the oracle.

Once the attacker has obtained a positive response, he can proceed to the final phase of the

special DROWN attack described above, which employs 200-bit rotation 10 times to fully

decrypt the plaintext. Our current implementation requires under 30 seconds for this phase

on a single PC.

The ability of the victim server to perform 17,000 handshakes in less than a minute is

not an impediment for modern hardware. An RSA private key operation with a 2048-bit

modulus requires on the order of 1 ms using OpenSSL on a recent-generation CPU, so the

cryptographic portion of the attacker’s queries induces additional server load of roughly

14 core-seconds. In tests with a nearby server running Apache 2.4, we could easily complete

10,000 HTTPS requests in under 10 seconds.

7.6. Measurements

We performed Internet-wide scans to analyze the number of systems vulnerable to DROWN.

A host is directly vulnerable to general DROWN if it supports SSLv2. Similarly, a host is
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directly vulnerable to special DROWN if it supports SSLv2 and has the extra clear bug.

These directly vulnerable hosts can be used as oracles to attack any other host with the same

key. Hosts that do not support SSLv2 are still vulnerable to general or special DROWN

if their RSA key pair is exposed by any general or special DROWN oracle, respectively.

The oracles may be on an entirely different host or port. Additionally, any host serving

a browser-trusted certificate is vulnerable to a special DROWN man-in-the-middle if any

name on the certificate appears on any other certificate containing a key that is exposed by

a special DROWN oracle.

We used ZMap [114] to perform full IPv4 scans on eight different ports during late Jan-

uary and February 2016. We examined port 443 (HTTPS), and common email ports 25

(SMTP with STARTTLS), 110 (POP3 with STARTTLS), 143 (IMAP with STARTTLS),

465 (SMTPS), 587 (SMTP with STARTTLS), 993 (IMAPS), and 995 (POP3S). For each

open port, we attempted three complete handshakes: one normal handshake with the high-

est available SSL/TLS version; one SSLv2 handshake requesting an export RC2 cipher

suite; and one SSLv2 handshake with a non-export cipher and sixteen bytes of plaintext

key material sent during key exchange, which we used to detect if a host has the extra clear

bug.

We summarize our general DROWN results in Table 36. The fraction of SSL/TLS hosts

that directly supported SSLv2 varied substantially across ports. 28% of SMTP servers on

port 25 supported SSLv2, likely due to the opportunistic encryption model for email transit.

Since SMTP fails-open to plaintext, many servers are configured with support for the largest

possible set of protocol versions and cipher suites, under the assumption that even bad or

obsolete encryption is better than plaintext [77]. The other email ports ranged from 8% for

SMTPS to 20% for POP3S and IMAPS. We found 17% of all HTTPS servers, and 10% of

those with a browser-trusted certificate, are directly vulnerable to General DROWN.

Widespread public key reuse. Reuse of RSA key material across hosts and certificates

is widespread, as has been documented in [169, 216]. In many cases this is benign: many
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organizations issue multiple TLS certificates for distinct domains (e.g. one for each TLD)

with the same public key; reusing the same key simplifies the use of SSL acceleration

hardware and load balancing. However, there is also evidence that system administrators

may not entirely understand the role of the public key in certificates. For example, in the

wake of the Heartbleed vulnerability, a substantial fraction of compromised certificates were

reissued with the same public key [116].

There are many reasons why the same public key or certificate would be reused across differ-

ent ports and services within an organization. For example a mail server that serves SMTP,

POP3, and IMAP from the same daemon would likely share the same TLS configuration.

Additionally, an organization might choose to purchase a single wildcard TLS certificate,

and use it on both web servers and mail servers. Public keys have also been observed to

be widely shared across independent organizations due to default certificates and public

keys that are shipped with networked devices and software, improperly configured virtual

machine images, and random number generation flaws.

The number of hosts vulnerable to DROWN rises significantly when we take RSA key reuse

into account. For HTTPS, 17% of hosts are vulnerable to general DROWN because they

support both TLS and SSLv2 on the HTTPS port, but the number of vulnerable hosts rises

to 33% when considering RSA keys used by another service that is vulnerable to DROWN.

Appendix 7.A gives more detailed statistics on the reuse of RSA key material across hosts

and ports.

Special DROWN. As shown in Table 37, 9.1 M HTTPS servers (26%) are vulnerable to

special DROWN, as are 2.5 M HTTPS servers with browser-trusted certificates (14%). 66%

as many HTTPS hosts are vulnerable to special DROWN as to general DROWN (70% for

browser-trusted servers). While there are 2.7 M public keys that are vulnerable to general

DROWN, we find 1.1 M vulnerable to special DROWN (41% as many). Vulnerability among

Alexa Top Million domains is lower, with only 9% of Alexa domains vulnerable (7% for

browser-trusted domains).
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Since special DROWN enables active man-in-the-middle attacks, any host serving a browser-

trusted certificate with at least one name that appears on any certificate with a key exposed

by a special DROWN oracle is vulnerable to a impersonation attacks. Extending our search

to account for shared names, we find 3.8 M (22%) of hosts with browser-trusted certificates

are vulnerable to man-in-the-middle, as well as 19% of the browser-trusted Alexa Top

Million.

7.7. Signature forgery attacks and QUIC

An attacker can also use a Bleichenbacher-type attack to compute valid RSA signatures

on arbitrary messages. Mathematically, RSA signing and decryption are identical. Such

an attack could theoretically be used to forge a signed Server Key Exchange message for

Diffie-Hellman cipher suites, thus allowing an attacker to perform a man-in-the-middle

attack against all TLS versions up to TLSv1.3. [180] Since the server key exchange message

includes the client and server randoms, the attacker must forge the signature online before

the handshake times out. We are not able to use all of our optimizations for signature

forgery, so such an attack does not seem feasible without additional improvements, even for

special DROWN.

7.7.1. Extending the attack to QUIC

However, our attack can be extended to a feasible-time man-in-the-middle attack against

QUIC [180]. QUIC [89, 272] is a recent cryptographic protocol designed and implemented

by Google that is intended to reduce the setup time to establish a secure connection while

providing security guarantees analogous to TLS. QUIC’s security relies on a static “server

config” message signed by the server’s public key. Jager et al. [180] observe that an at-

tacker who can forge a signature on a malicious QUIC server config once would be able to

impersonate the server indefinitely. In this section, we show an attacker with significant

resources would be able to successfully mount such an attack against a server who exposed

their RSA public keys via SSLv2.

A QUIC client receives a “server config” message enumerating connection parameters, a

static elliptic curve Diffie-Hellman public value, and a validity period that is signed by the
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server’s public key. An attacker could generate a Diffie-Hellman public value for which he

knows the private key, and set the expiration date far in the future in order to mount a

man-in-the-middle attack against any client.

Unauthenticated QUIC discovery. In order to mount the attack, the attacker needs to

present a forged QUIC config to the client. This is straightforward, since QUIC discovery

may happen over non-encrypted HTTP [162]. The server does not even need to support

QUIC at all: an attacker could impersonate the attacked server over an unencrypted connec-

tion and falsely indicate that the server supports QUIC. The next time the client connects

to the server, it will attempt to connect using QUIC, allowing the attacker to present the

forged “server config” message and execute the attack. [180]

Signature forgery details. The attack proceeds much as in Section 7.3.3, except that

we are not able to use some of the optimizations so it is more expensive.

The first step is to discover a valid, PKCS conformant SSLv2 ciphertext. In the case of TLS

decryption, our input ciphertext was PKCS conformant to begin with; this is not the case

for our QUIC message c0. Thus for the first phase, we iterate through possible multiplier

values s until the attacker randomly encounters a valid SSLv2 message in c0 ·s. For 2048-bit

RSA keys, the probability of this random event is Prnd ≈ 2−25; see Section 7.3.3 for the

computation.

Once the first SSLv2 conformant message is found, the attacker proceeds with the signature

forgery as he would in Step 2 of the attack against TLS. The required number of oracle

queries for this step is roughly 12,468 for 2048-bit RSA keys.

Attack cost. The overall oracle query cost is dominated by the 225 = 34 million expected

queries in the first phase, above. At a rate of 388 queries/second, an attacker would finish

in one day; at a rate of 12 queries/second an attacker would finish in one month.

For the SSLv2 export padding oracle, the offline computation to break a 40-bit symmetric
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key for each query requires iterating over 265 keys. At our optimized GPU implementation

rate of 515 million keys per second, this would require 829,142 GPU days. Our experimental

GPU hardware retails for $400. An investment of $10 million to purchase 25,000 GPUs

would reduce the wall clock time for the attack to 33 days. Our implementation run on

Amazon EC2 processed about 174 billion keys per g2.2xlarge instance-hour, so at a cost of

$0.09/instance-hour the full attack would cost $9.5 million dollars and could be parallelized

to Amazon’s capacity.

For the extra clear oracle, there is only negligible computation per oracle query, so the

computational cost for the first phase is 225.

Future changes to QUIC. In addition to disabling QUIC support for non-whitelisted

servers, Google have informed us that they plan to change the QUIC standard, so that the

“server config” message will include a client nonce to prove freshness. They also plan to

limit QUIC discovery to HTTPS.

7.7.2. SSLv2 servers with CA certificates

Some web servers support SSLv2 while presenting a CA certificate, which can be used to

issue further leaf certificates. In that case, an attacker could create his own certificate and

use the vulnerable server to forge a CA signature over his certificate by executing an attack

similar to the above. The number of queries is identical to the number of queries required for

the attack against QUIC. This attack would allow the attacker to impersonate any website

against any client trusting the CA certificate.

We did not observe any trusted CA certificates used on vulnerable servers. We did, however,

observe a number of routers that supported SSLv2 while presenting CA certificates that are

untrusted by modern browsers.

7.8. Related work

Bleichenbacher’s attack. Bleichenbacher’s adaptive chosen ciphertext attack against

SSL was first published in 1998 [73]. Since then, several works have adapted his attack to

different scenarios [48, 177, 197].

206



Despite the fact that the TLS standard [106] explicitly introduces countermeasures against

Bleichenbacher’s attack, several modern implementations have been discovered to be vulner-

able to it in recent years. Meyer et al. [221] inspected various software and hardware imple-

mentations and discovered timing side-channels that enabled the attack. Zhang et al. ap-

plied Bleichenbacher’s attack to develop a cache flush-and-reload timing attack against

OpenSSL in cross-tenant environments [317]. These side-channel attacks, however, are ap-

plicable only in scenarios where the attacker is physically close to or co-located with the

victim and are based on implementation failures.

Jager et al. described a similar Bleichenbacher oracle, as we use in our paper, to at-

tack XML Encryption in Web Services [177]. To this end, they exploited the fact that

RSA PKCS#1 v1.5 was used in combination with symmetric algorithms in CBC mode of

operation.

Cross-protocol attacks. Jager et al. [180] observed that a cross-protocol Bleichenbacher

RSA padding oracle attack is possible against the proposed TLSv1.3 standard, in spite of

the fact that TLSv1.3 does not include RSA key exchange, if server implementations use the

same certificate for previous versions of TLS and TLSv1.3. Wagner and Schneier [302] devel-

oped a cross-cipher suite attack for SSLv3, in which an attacker could reuse a signed server

key exchange message in a later exchange with a different cipher suite. Mavrogiannopoulos

et al [215] developed a cross-cipher suite attack allowing an attacker to use elliptic curve

Diffie-Hellman as plain Diffie-Hellman.

Attacks on export-grade cryptography. Recently, the FREAK [61] and Logjam [29] at-

tacks allowed an active attacker to downgrade a connection to export-grade RSA and Diffie-

Hellman, respectively. Export-grade cryptography plays an important role in DROWN as

well, as it exploits export-grade symmetric ciphers.

Further attacks on SSL/TLS. Other attacks on SSL and TLS include: POODLE [225],

which exploits SSLv3’s lack of a requirement for the contents of padding bytes, and its
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MAC-then-encrypt construction; CRIME [271], which exploits support for compression and

observes ciphertexts’ lengths in order to decrypt traffic; The RC4 Biases attack [33], which

utilizes biases in the the RC4 keystream; Lucky13 [32], which exploits small timing differ-

ences and MAC-then-encrypt; and BEAST [112], which exploits predictable IVs in TLS.

Bhargavan and Leurent presented SLOTH attacks and broke TLS and other protocols using

MD5 for computing transcript hashes [63].

7.9. Discussion

7.9.1. Lessons for protocol design

A natural question is to ask whether SSLv3 or later versions of TLS could also be vulnerable.

Our attack exploits two properties of the SSLv2 protocol:

Server authenticates first. First, the fact that in SSLv2 the server responds to the

ClientMasterKey message before the client proves it has knowledge of the RSA plaintext,

provides a direct message side channel. In SSLv3 and later, the client must demonstrate

knowledge of the RSA plaintext first via a valid ClientFinished message before the server

sends a message derived from the RSA plaintext. In order to perform a similar attack in

this case, the client would need to perform an online brute-force attack.

Short secrets. Second, SSLv2 allows RSA plaintexts that are short enough to be vulner-

able to a feasible-time brute force search. For export ciphers, the unpadded RSA plaintext

is five bytes long. In SSLv3 and later versions of TLS, the RSA plaintexts and premaster

secret length is 48 bytes, even for export ciphers with 40-bit strength. For later protocol

versions, an attacker can perform a brute-force search over the derived 40-bit key if a client

negotiates an export cipher suite, but the 48-byte premaster secret length appears to pre-

vent an attacker from escalating the weakness of the export cipher strength into a similar

protocol vulnerability.

7.9.2. Implications for modern protocols

Modern TLS versions are not vulnerable to the precise attack given in this paper, but they

have similar properties that might allow a related attack.
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Although we do not present concrete attacks on modern protocols, we argue that modern

practices of cryptographic protocol design do not include a systematic analysis to prevent

direct message side channel Bleichenbacher attacks. A hypothesized protocol with modern

parameters would be vulnerable to such an attack if it has the following properties:

1. RSA key exchange. TLSv1.2 [106] allows this.

2. It allows re-use of server-side nonce by the client. QUIC [272] allows this.

3. The server sends the first message encrypted using a key derived from the asymmetric

key exchange. QUIC, TLSv1.3 [107], and TLS False Start [201] exhibit this property.

When all three properties are combined, a natural adaptation of our attack presents itself.

The attacker obtains a Bleichenbacher oracle by connecting to the server twice with the

same RSA ciphertext and the same server-side nonce, and comparing the messages sent by

the server. If the RSA ciphertext is PKCS conformant, the two messages will be identical.

Otherwise, they will differ. Note that we also assumed that all symmetric cipher param-

eters, including IVs for block ciphers, are deterministically generated from the premaster

secret and nonces; this is the case for TLSv1.0. If that is not the case, in most realistic

configurations, the attacker can choose a stream cipher.

An attacker can use False Start to cause a victim client to perform TLS handshakes using

RSA for key exchange, even if the server supports other key exchange methods which provide

Perfect Forward Secrecy. The attacker masquerades as the server and indicates support for

RSA key exchange only. The client will then handshake using RSA, and send application

layer data, before the server authenticates by sending the Finished message. The False

Start standard indeed discourages the use of RSA as the key exchange method, but does

not explicitly forbid it, leaving the security of the protocol dependent on correct choices in

the client configuration. Our attacks show that relying on such assumptions is extremely

brittle protocol design.
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7.9.3. Lessons for key reuse

Our attacks also illustrate another important cryptographic principle: that keys should be

single use. For public keys we think of this principle as applying primarily to keys that are

used to both sign and decrypt, but our attacks illustrate that using keys for different protocol

versions can also be a serious security risk. Unfortunately, the TLS certificate authority

funding model produces a financial incentive for users to purchase as few certificates as

necessary to protect their infrastructure. However, even without this financial incentive in

place, the sheer number of SSL/TLS protocol versions in use would make key management

difficult.

7.9.4. Harms from obsolete cryptography

Recent years have seen a significant number of serious attacks exploiting outdated and ob-

solete cryptography. Many of these protocols and cryptographic primitives are surprisingly

common in deployed systems even decades after they were demonstrated to be weak.

The attack described in this paper exploits a modification of an 18-year-old attack against a

combination of protocols and ciphers that have long been superseded by better options: the

SSLv2 protocol, export cipher suites, and PKCS #1 v1.5 RSA padding. In fact, support

for RSA as a key exchange method, including the use of PKCS #1 v1.5, is mandatory even

for TLSv1.2. The attack is made more severe by implementation flaws in rarely-used code.

Our work serves as yet another reminder of the importance of removing deprecated tech-

nologies before they become exploitable vulnerabilities. In response to many of the vulner-

abilities listed above, browser vendors have been aggressively warning end users when TLS

connections are negotiated with unsafe cryptographic parameters, including SHA-1 certifi-

cates, small RSA and Diffie-Hellman parameters, and SSLv3 connections. This process is

currently happening in a piecemeal fashion, primitive by primitive. Vendors and developers

rightly prioritize usability and backward compatibility, and are willing to sacrifice these

only for practical attacks. This standard works less well for cryptographic vulnerabilities,

where the first sign of a weakness, while far from being practically exploitable, can signal
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trouble in the future. Communication issues between academic researchers and vendors and

developers have been voiced by many in the community, including Green [211] and Jager

et al. [178].

The long-term solution is to proactively remove these obsolete technologies. There has

been a movement towards this already: TLSv1.3 has removed RSA key exchange entirely

and has restricted Diffie-Hellman key exchange to a few groups large enough to withstand

cryptanalytic attacks long in the future. The CA/Browser forum will remove support for

SHA-1 certificates this year. And resources such as the SSL Labs SSL Reports have gathered

information about best practices and vulnerabilities in one place, in order to encourage

administrators to make the best choices.

7.9.5. Harms from deliberately weakening cryptography

Export-grade cipher suites for TLS deliberately weakened three primitives to the point

that they are broken even to enthusiastic amateurs today: 512-bit RSA key exchange, 512-

bit Diffie-Hellman key exchange, and 40-bit symmetric encryption. All three deliberately-

weakened primitives have been cornerstones of high-profile attacks: FREAK attack against

export RSA, Logjam against Diffie-Hellman, and our DROWN attack against export-grade

symmetric cryptography.

Our results illustrate, like FREAK and Logjam, the continued harm that a legacy of de-

liberately weakened export-grade cryptography inflicts on the security of modern systems,

even decades after the regulations influencing the original design were lifted. The attacks

described in this paper are fully feasible against export cipher suites today; against even

DES they would be at the limits of the computational power available to an attacker. The

technical debt induced by cryptographic “front doors” has left implementations vulnerable

for decades. Together with the slow rate at which obsolete protocols and primitives entirely

disappear, we can expect some fraction of hosts to continue to be vulnerable for years to

come.
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7.A. Public key reuse

Reuse of RSA keys among different services was identified as a huge amplification to the

number of services vulnerable to DROWN. Table 38 describes the number of reused RSA

keys among different protocols. The two clusters 110-143 and 993-995 stick out as they

share the majority of public keys. This is expected, as most of these ports are served by

the same IMAP/POP3 daemon. The rest of the ports also share a substantial fraction of

public keys, usually between 21% and 87%. The numbers for HTTPS (port 443) differ as

there are four times as many public keys in HTTPS as in the second largest protocol.

Port
25
(SMTP)

110
(POP3)

143
(IMAP)

443
(HTTPS)

465
(SMTPS)

587
(SMTP)

993
(IMAPS)

995
(POP3S)

25 1,115 (100%) 331 (32%) 318 (32%) 196 (4%) 403 (47%) 307 (48%) 369 (33%) 321 (32%)
110 331 (30%) 1,044 (100%) 795 (79%) 152 (3%) 337 (39%) 222 (35%) 819 (72%) 877 (87%)
143 318 (29%) 795 (76%) 1,003 (100%) 149 (3%) 321 (38%) 220 (35%) 878 (78%) 755 (75%)
443 196 (18%) 152 (15%) 149 (15%) 4,579 (100%) 129 (15%) 94 (15%) 175 (16%) 151 (15%)
465 403 (36%) 337 (32%) 321 (32%) 129 (3%) 857 (100%) 463 (73%) 396 (35%) 364 (36%)
587 307 (28%) 222 (21%) 220 (22%) 94 (2%) 463 (54%) 637 (100%) 259 (23%) 229 (23%)
993 369 (33%) 819 (78%) 878 (88%) 175 (4%) 396 (46%) 259 (41%) 1,131 (100%) 859 (85%)
995 321 (29%) 877 (84%) 755 (75%) 151 (3%) 364 (42%) 229 (36%) 859 (76%) 1,010 (100%)

Table 38: Impact of key reuse across ports—Number of shared public keys among two
ports, in thousands. Each column states what number and percentage of keys from the port
in the header row are used on other ports. For example, 18% of keys used on port 25 are
also used on port 443, but only 4% of keys used on port 443 are also used on port 25.

7.B. Adaptations to Bleichenbacher’s attack

7.B.1. Calculating the success probability of a fraction

For a given fraction u/t, we can compute the probability of success with a randomly chosen

TLS conformant ciphertext. Let m1 = m0 ·u/t = m1[1]||...||m1[`] - i.e. m1[i] is the ith byte

of m1. Let k be the fixed byte length of the oracle response. For s = u/t mod N where u

and t are coprime, m1 will be SSLv2 conformant if the following conditions all hold:

1. m0 is divisible by t. For randomly generated m0, this condition holds with probability

1/t.

2. m1[1] = 0 and m1[2] = 2, or the integer m · u/t ∈ [2B, 3B − 1). For a randomly

generated m0 divisible by t and for a given fraction u/t, this condition holds with
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probability

P =


3− 2 · t/u for 2/3 < u/t < 1

3 · t/u− 2 for 1 < u/t < 3/2

0 otherwise

3. ∀i ∈ [3, ` − (k + 1)],m1[i] 6= 0, or all bytes between the first two bytes and the

(k + 1) least significant bytes are non-zero. This condition holds with probability

(1− 1/256)`−(k+3).

4. m1[` − k] = 0, or the (k + 1)st least significant byte is 0. This condition holds with

probability 1/256.

As an example, let us assume a 2048-bit RSA ciphertext with k = 5, and consider the

fraction u = 7, t = 8. We have

P (t|m0) = 1/t = 1/8

P (m1[1, 2] = 00||02
∣∣ t|m0) = 0.71

P (∀i ∈ [3, `− 6]m1[i] 6= 0) = (1− 1/256)248 = 0.37

P (m1[`− 5] = 0) = 1/256

The overall probability of success is P = 1/8 · 0.71 · 0.37 · 1/256 = 1/7, 774; thus we

expect to find an SSLv2 conformant ciphertext after testing 7,774 randomly chosen TLS

conformant ciphertexts. We can decrease the number of TLS conformant ciphertexts needed

by multiplying each candidate ciphertext by several fractions.

7.B.2. Optimizing the chosen set of fractions

In order to deduce the validity of a single ciphertext, the attacker would have to perform

a non-trivial brute-force search over all 5 byte master key values. This translates into 240

encryption operations.

The search space can be reduced by an additional optimization, which relies on the fractional

213



multipliers used in the first step. Suppose the attacker uses a fraction u/t = 8/7 to compute

a new SSLv2 conformant candidate, and suppose that m0 is indeed divisible by t = 7. This

implies that the new candidate message m1 = m0/t · u is divisible by u = 8, and the last

three bits of m1 (and thus mksecret) are zero. This allows the attacker to reduce the searched

master key space by selecting specific fractions.

More generally, for an integer u, the largest power of 2 by which u is divisible, is denoted by

v2(u), and multiplying by a fraction u/t saves us a factor of v2(u) in the required encryption

attempts. With this observation, the trade-off between the 3 metrics: the required number

of intercepted ciphertexts, the required number of queries, and the required number of

encryption attempts, becomes non-trivial to analyze.

Therefore, we have resorted to using simulations when evaluating the performance metrics

for sets of fractions. The probability that multiplying a ciphertext by any fraction out of a

given set of fractions results in an SSLv2 conformant message is difficult to compute, since

the events are in fact inter-dependent: If m · 16/15 is conforming, then m is divisible by

5, greatly increasing the probability that m · 4/5 is also conforming. However, it is easy to

perform a Monte Carlo simulation, where we randomly generate ciphertexts, and measure

the probability that any fraction out of a given set produces a conforming message. The

expected required number of intercepted ciphertexts is the inverse of that probability.

Formally, if we denote the set of fractions as F , and the event that a messagem is conforming

as C(m), we perform a Monte Carlo estimation of the probability PF = P (∃f ∈ F :

C(m · f)), and the expected number of required intercepted ciphertexts equals 1/PF .

The required number of oracle queries is simply 1/PF · |F |: For each ciphertext, we need to

query the oracle with each fraction. Accordingly, the required number connections to the

server is 2·1/PF ·|F |, since as explained earlier each logical query consists of two connections

to the server.

And as for the required number of encryption attempts, if we denote this number when
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querying with a given fraction f = u/t as Ef , then Ef = Eu/t = 240−v2(u). If we further

define the required encryption attempts when testing a single ciphertext with each fraction

from a given set of fraction F as EF =
∑

f∈F Ef then the required number of encryption

attempts throughout the attack for a given set of fractions is (1/PF ) · EF .

Using this approach, we can now give precise figures for the expected number of required

intercepted ciphertexts, connections to the targeted server, and encryption attempts. The

results presented in Table 34 were obtained by using the monte-carlo estimation technique

described above, with one billion random ciphertexts per tested fraction set F .

7.B.3. Efficiently computing rotations and multipliers

For a randomly chosen s, the probability that the two most significant bytes are 0x0002

is 2−16; for a 2028-bit modulus N the probability that the next ` − k − 3 bytes of m2 are

all nonzero is about 0.37 as in the previous section, and the probability that the k + 1

least significant delimiter byte is 0x00 is 1/256. Thus a randomly chosen s will work with

probability 2−25.4 and we expect to need to try 225.4 values of s before succeeding.

However, since we have already learned k+ 3 most significant bytes of m1 ·R−1 mod N , for

k ≥ 4 and s < 230 we do not need to query the oracle to learn if the two most significant

bytes are SSLv2 conformant; we can compute this ourselves from our knowledge of m̃1 ·R−1.

We could simply iterate through values of s, test that the top two bytes of m̃1 ·R−1 mod N

are SSLv2 conformant, and only query the oracle O for values of s that satisfy this test; this

means that for our 2048-bit modulus we expect to test 216 values offline per oracle query.

The probability that our query is conformant is then P = (1/256)∗(255/256)249 ≈ 1/678 so

we expect to perform 678 oracle queries before finding a fully SSLv2 conformant ciphertext

c2 = (s ·R−1)ec1 mod N .

We can speed up the brute force testing of 216 values of s using algebraic lattices. We are

searching for values of s satisfying m̃1R
−1s < 3B mod N , or given an offset s0 we would like

to find solutions x and z to the equation m̃1R
−1(s0 + x) = 2B + z mod N where |x| < 216
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and |z| < B. Let X = 215. We can construct the lattice basis

L =


−B Xm̃1R

−1 m̃1R
−1s0 +B

0 XN 0

0 0 N


We then run the LLL algorithm [203] on L to obtain a reduced lattice basis V containing

vectors v1, v2, v3. We then construct the linear equations f1(x, z) = v1,1/B · z+ v1,2/X ·x+

v1,3 = 0 and f2(x, z) = v2,1/B · z+ v2,2/X ·x+ v2,3 = 0 and solve the system of equations to

find a candidate integer solution x = s̃. We then test s = s̃+ s0 as our candidate solution

in this range.

detL = XZN2 and dimL = 3, thus we expect the vectors vi in V to have length ap-

proximately |vi| ≈ (XZN2)1/3. We will succeed if |vi| < N , or in other words XZ < N .

N ≈ 28`, so we expect to find short enough vectors. This approach works well in practice

and is significantly faster than iterating through 216 possible values of s̃ for each query.

In summary, given an SSLv2 conformant ciphertext c1 = me
1 mod N , we can efficiently

generate an SSLv2 conformant ciphertext c2 = me
2 mod N where m2 = s ·m1 ·R−1 mod N

and we know several most significant bytes of m2, using only a few hundred oracle queries

in expectation. We can iterate this process as many times as we like to continue generating

SSLv2 conformant ciphertexts ci for which we know increasing numbers of most significant

bytes, and which have a known multiplicative relationship to our original message c0.

7.B.4. Rotations in the general DROWN attack

After the first phase, we have learned an SSLv2 conformant ciphertext c1, and we wish to

shift known plaintext bytes from least to most significant bits. Since we learn the least

significant 6 bytes of plaintext of m1 from a successful oracle OSSLv2-export query, we could

use a shift of 2−48 to transfer 48 bits of known plaintext to the most significant bits of

a new ciphertext. However, we perform a slight optimization here, to reduce the number

of encryption attempts. We instead use a shift of 2−40, so that the least significant byte
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of m1 · 2−40 and m̃1 · 2−40 will be known. This means that we can compute the least

significant byte of m1 · 2−40 · s mod N , so oracle queries now only require 232 encryption

attempts each. This brings the total expected number of encryption attempts for this phase

to 232 ∗ 678 ≈ 241.

We perform two such plaintext shifts in order to obtain an SSLv2 conformant message,

m3 that resides in a narrow interval of length at most 28`−66. Then we can then obtain

a multiplier s3 such that m3 · s3 is also SSLv2 conformant. Since m3 lies in an interval

of length is at most 28`−66, with high probability for any s3 < 230, m3 · s3 lies in an

interval whose length is at most 28`−36 < B, so we know the two most significant bytes of

m3 · s3. Furthermore, we know the exact value of the 6 least significant bytes even after

multiplication. So we test possible values of s3, and for values such that m3 · s3 starts with

the required 00 02 bytes, and the 6th least significant byte is zero, we query the oracle as to

the validity of c3 · se3 mod N . The only condition for PKCS conformance which we haven’t

verified before querying the oracle is

∀i ∈ [3, `− 6], (m3 · s3)[i] 6= 0

which holds with probability 0.37. So after roughly 1/0.37 = 2.72 queries, we expect to get

a positive answer from the oracle.

Since we know the value of the 6 least significant bytes after multiplication, there’s no

component of breaking a symmetric cipher here - if the message is SSLv2 conformant af-

ter multiplication, we know the symmetric key, and can test whether it fits the received

ServerVerify message.

7.B.5. General DROWN Bleichenbacher iterations

After we have bootstrapped the attack using rotations,, the original algorithm proposed by

Bleichenbacher can be applied with minimal modifications.

The original step obtains a message that starts with the required 00 02 bytes once in roughly
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every two queries on average, and requires the number of queries to be roughly double the

number of bits in the RSA modulus. Since we know the value of the 6 least significant bytes

after multiplying by any integer, we can only query the oracle for multipliers that cause the

6th least significant byte to be zero, and we don’t need to break a symmetric key since we

know the value of the 5 least significant bytes. However, we cannot ensure that the padding

is non-zero when querying—we simply hope that is the case, which as usual happens with

probability 0.37.

Therefore, for a 2048-bit modulus, the overall expected number of queries for this phase is

roughly 2048 ∗ 2/0.37 = 11, 000. This is indeed the average number of queries we require in

practice when running our implementation of the attack.

7.B.6. General DROWN attack performance

For a given set of fractions, F , the required number of recorded client connections A is a

random variable distributed geometrically with a success probability P = PF . For typical

fraction sets, 1/13, 000 < PF < 1/600. The required number of Bleichenbacher queries

against the target server during the first step of the attack is a random variable, B, such

that B = |F | · A. As each query consists of two separate connections to the target server,

the required number of connections is always twice the number of queries. And last, the

required keys to be tested overall is another random variable C = kF ·B; kF ≈ 240.

Summing the figures from the different phases for a 2048-bit RSA modulus, the attack

requires in expectation 13, 838 + 1, 393 + 1, 393 + 6 + 22, 140 = 38, 770 connections to the

target server, when optimizing for the number of queries in phase 1. Each oracle query

requires two connections to the server.

Re-calculating the numbers for a 1024 bit modulus, the primary element that needs to

change is P1 = P (∀i ∈ [3, `− 6] : mi 6= 0) = (1− 1/256)120 = 0.62, which appears in phases

1, 2, 3 and 5. For phase 5, the number of queries is now in expectation 1024∗2/0.62 = 3, 303.

The total expected number of server connections is therefore 8, 258+826+826+6+6, 606 =

16, 522, again when optimizing for the number of queries in phase 1.
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Similarly, re-calculating the numbers for a 4096 bit modulus, P1 = (1−1/256)504 = 0.14, and

the number of queries in phase 5 is now roughly 4096 ∗ 2/0.14 = 58, 514. The algorithm for

phase 5 can be further optimized if that is the case of interest; we omit these optimizations

for space reasons. Again, summing up yields 36, 571+3, 657+3, 657+29+117, 028 = 160, 942

required connections to the server.

7.B.7. Special DROWN attack performance

In the first step, we can use the same fraction analysis as before. The probability that the

three padding bytes are correct remains unchanged. The probability that all the intermedi-

ate padding bytes are non-zero is now slightly higher, P1 = (1− 1/256)229 = 0.41, yielding

an overall maximal success probability P = 0.1 ·0.41 · 1
256 = 1/6, 244 per oracle query. Since

we now only need to connect to the server once per oracle query, the expected number of

connections in this step is the same, 6, 243. Phase 1 now yields a message with 3 known

padding bytes and 24 known plaintext bytes.

For the remaining rotation steps, each rotation requires an expected 630 oracle queries.

The attacker at this point could directly complete the original Bleichenbacher attack by

performing 11,000 sequential queries in the final phase. However, with this more powerful

oracle it is more efficient for the attacker to apply a rotation 10 more times to recover

the remaining bits of the plaintext. The number of queries required in this phase is now

10 · 256/0.41 ≈ 6, 300, and the queries for each of the 10 steps can be executed in parallel.

Using multiple queries per fraction. For the OSSLv2-extra-clear oracle, the attacker can

increase his chances of success by querying the server multiple times per ciphertext and

fraction, using different cipher suites with different key lengths. He can query DES and

hope the 9th least significant byte is zero, then negotiate 128-bit RC4 and hope the 17th

least significant byte is zero, then negotiate 3DES and hope the 25th least significant is

zero. All three queries also require the intermediate padding bytes to be non-zero. This

technique triples the success probability for a given pair of (ciphertext, fraction), at a cost

of triple the queries. Its primary benefit is that fractions with smaller denominators (and
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Platform Hardware Cost Full attack
Cost to perform
attack in 1 day

Näıve CPU 4 Intel Xeon E7-4820 $21, 400 114 days $2, 440, 000
Näıve GPU ZOTAC GeForce GTX TITAN $2, 400 189 days $450, 000
Näıve FPGA 64 Spartan-6 LX150 $60, 000 51.5 days $3, 090, 000

Optimized Hashcat NVIDIA GTX / AMD R9 $18,040 0.75 days $13,500
Optimized EC2 NVIDIA $440 0.33 days $147

Table 39: Time and cost efficiency of our attack on different hardware platforms—
The brute force attacks against symmetric export keys are the most expensive part of our
attack. We compared the performance of a näıve implementation of our attack on different
platforms, and decided that a GPU implementation held the most promise. We then heavily
optimized our GPU implementation, obtaining several orders of magnitude in speedup.

thus higher probabilities of success) are now even more likely to succeed.

For a random ciphertext, when choosing 70 fractions, the probability of the first zero de-

limiter byte being in one of these three positions is 0.01. Hence, the attacker can use only

100 recorded ciphertexts, and expect to use 100 ∗ 70 ∗ 3 = 21, 000 oracle queries. For the

extra clear oracle, each query requires one SSLv2 connection to the server. After obtaining

the first positive response from the oracle, the attacker proceeds to phase 2 using 3DES.

7.C. Highly optimized GPU implementation

The most computationally expensive part of our general DROWN attack is breaking the

40-bit symmetric key. We wanted to find the platform that would have the best tradeoff of

cost and speed for the attack, so we performed some preliminary experiments comparing

performance of symmetric key breaking on CPUs, GPUs, and FPGAs. These experiments

used a näıve version of the attack using the OpenSSL implementation of MD5 and RC2.

The CPU machine contained four Intel Xeon E7-4820 CPUs with a total of 32 cores (64

concurrent threads). The GPU system was equipped with a ZOTAC GeForce GTX TITAN

and an Intel Xeon E5-1620 host CPU. The FPGA setup consisted of 64 Spartan-6 LX150

FPGAs.

We benchmarked the performance of the CPU and GPU implementations over a large corpus

of randomly generated keys, and then extrapolated to the full attack. For the FPGAs, we
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tested the functionality in simulation and estimated the actual runtime by theoretically

filling the FPGA up to 90% with the design, including communication. Table 39 compares

the three platforms.

While the FPGA implementation was the fastest in our test setup, the speed-to-cost ratio

of GPUs was the most promising. Therefore, we decided to focus on optimizing the attack

on the GPU platform. We developed several optimizations:

Generating key candidates on GPUs. Our näıve implementation generated key can-

didates on the CPUs. For each hash computation, a key candidate was transmitted to the

GPU, and the GPU responded with the key validity. The bottleneck in this approach was

the PCI-E Bus. Even newer boards with PCI-E 3.0 or even PCI-E 4.0 are too slow to

handle the large amount of data required to keep the GPUs busy. We solved this problem

by generating the key candidates directly on the GPUs.

Generating memory blocks of keys. Our hash computation kernel had to access

different candidate keys from the GPU memory. Accessing global memory is typically a

slow operation and we needed to keep memory access as minimal as possible. Ideally we

would be able to access the candidate keys on a register level or from a constant memory

block, which is almost as fast as a register. However, there are not enough registers or

constant memory available to store all the key values.

We decided to divide each key value into two parts kH and kL, where |kH | = 1 byte and

|kL| = 4 bytes. We stored all possible 28 kH values in the constant read-only memory, and

all possible 232 kL values in the global memory. Next we used an in-kernel loop. We loaded

the latter 4 bytes from the slow global memory and stored it in registers. Inside the inner

loop we iterated through our first byte kH by accessing the fast constant memory. The

resulting key candidate was computed as k = kH ||kL.

Using 32-bit data types. Although modern GPUs support several data types ranging

in size from 8 to 64 bits, many instructions are designed for 32-bit data types. This fits the
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design of MD5 perfectly, because it uses 32-bit data types. RC2, however, uses both 8-bit

and 16-bit data types, which are not suitable for 32-bit instruction sets. This forced us to

rewrite the original RC2 algorithm to use 32-bit instructions.

Avoiding loop branches. Our kernel has to concatenate several inputs to generate the

server write key needed for the encryption as described in Section 7.2.2. Using loops

to move this data generates branches because there is always an if() inside a for() loop.

To avoid these branches, which always slow down a GPU implementation, we manually

shifted the input bytes into the 32-bit registers for MD5. This was possible since the hash

computation inputs, (mkclear||mksecret||“0”||rc||rs), have constant length.

Optimizing MD5 computation. Our MD5 inputs have known input length and block

structure, allowing us to use the so-called zero-based optimizations. Given the known input

length (49 bytes) and the fact that MD5 uses zero padding, in our case the MD5 input

block included four 0x00 bytes. These 0x00 bytes are read four times per MD5 computation

which allowed us to drop in total 16 ADD operations per MD5 computation. In addition,

we applied the Initial-step optimizations used in the Hashcat implementation [287].

Skipping the second encryption block. The input of the brute-force computation is

a 16-byte client challenge rc and the resulting ciphertext from the ServerVerify message

which is computed with an RC2 cipher. As RC2 is an 8-byte block cipher the RC2 input is

split into two blocks and two RC2 encryptions are performed. In our verification algorithm,

we skipped the second decryption step as soon as we saw the key candidate does not decrypt

the first plaintext block correctly. This resulted in a speedup of about a factor of 1.5.

RC2 permutation table in constant memory. The RC2 algorithm uses a 256-byte

permutation table which is constant for all RC2 computations. Hence, this table is a good

candidate to be put into the constant memory, which is nearly as fast as registers and makes

it easy to address the table elements. When finally using the values, we copied them into

the even faster shared memory. Although this copy operation has to be repeated, it still
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led to a speed up of approximately a factor of 2.

RC2 key setup without keysize checks. The key used for RC2 encryption is generated

using MD5, thus the key size is always 128 bits. Therefore, we do not have to check for the

input key size, and can simply skip the size verification branch completely.

7.D. Amazon EC2 evaluation

Amazon EC2 billing is based on the instance-hour. An instance represents a single virtual-

ized machine and its associated cores, memory, and storage. For our experiments we used

g2 instances, which are equipped with high-performance NVIDIA GPUs, each with 1,536

CUDA cores. The two available models for this instance type are the g2.2xlarge and the

g2.8xlarge, containing one and four GPUs, respectively.

It is possible to request instances at a fixed on-demand rate, or bid on instances at the

discounted spot instance rate. Spot instances may be terminated depending on demand,

but the savings in cost are significant compared to the on-demand rate. When we ran our

experiments in January 2016, the on-demand rate for the g2.2xlarge model was $0.65/hr

and the rate for the g2.8xlarge model was $2.65/hr, while the average spot rates we paid

were $0.09/hr and $0.83/hr respectively.

We used a cluster composed of 200 spot instances: 150 g2.2xlarge which contain one GPU

and 50 g2.8xlarge, each containing four GPUs, spread across multiple availability zones

within the US-East region. This distribution was determined by price: we were not able

to launch more than 50 g2.8xlarge instances without a sharp spike in spot prices. We

used the optimized Hashcat implementation on the same workload of key requests as the

experiments run on the Hashcat servers. We used Slurm [312] to distribute jobs across

compute nodes.

The GPU breaking experiment completed successfully, with two minor caveats. First, the

150 g2.2xlarge nodes completed their workloads at the 6h26m mark, while the other

50 g2.8xlarge nodes did not finish until the 7h41m mark. More careful job distribution
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would ensure that all nodes completed at approximately the same time, reducing the overall

runtime. Second, in this particular run, 7.2% of the jobs that we expected to complete were

terminated early due to overheating GPUs. The attack was successful despite the failed jobs,

so we did not rerun them. In a more carefully engineered implementation, the unfinished

jobs could have been reallocated to the unused GPU capacity without increasing the overall

runtime.

The total cost of the experiment was $440, and terminated in under 8 hours including

startup and shutdown.

7.E. A brief history of obsolete cryptography

A flaw was first observed in the MD5 hash function in 1996; the first collision was discov-

ered in 2004 [304], but MD5 was still in use by certificate authorities in 2009 when Stevens

et al. [288] used a chosen-prefix MD5 attack to construct a malicious TLS certificate with

a valid CA signature. The RC4 stream cipher was observed to be biased as early as 1995

and shown to be catastrophically broken in the context of WEP in 2001 [127]; it was used

by about 50% of TLS connections in 2013 when AlFardan et al. [33] demonstrated near-

practical attacks against RC4 in TLS. TLSv1.0 was standardized in 1998 to replace SSLv3;

before the POODLE attack [225] was shown to render all SSLv3 block cipher suites insecure

in 2014, support for SSLv3 was near 100% for popular HTTPS sites, and most clients were

vulnerable to a downgrade attack from TLS to SSLv3 [269]. Export-grade cipher suites for

TLS have been obsolete since 2000, when the United States relaxed restrictions on com-

mercial and open source software; before the FREAK attack [61] demonstrated widespread

implementation flaws allowing a catastrophic downgrade attack exploiting export RSA,

37% of HTTPS sites with browser-trusted certificates supported export-grade RSA. Three

months later the Logjam attack [29] demonstrated a TLS protocol flaw downgrade attack

exploiting export Diffie-Hellman; 8.4% of the Alexa top million sites were vulnerable at the

time.
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CHAPTER 8 : Conclusion

In this dissertation, I present six case studies in which I demonstrate vulnerabilities in

cryptographic deployments. I also present a framework within which I characterize the root

cause of each of these vulnerabilities as a failure in communication from one stage of the

cryptographic deployment process to the next, or as stemming from incentives at odds with

security.

8.1. Takeaways

I now present several key takeaways from this dissertation.

Securing systems through improved cryptographic knowledge transfer. Mini-

mizing the attack surface of a system is a standard security engineering practice to improve

the security of a system. The framework presented in this dissertation demonstrates that

cryptographic vulnerabilities can be characterized as a failure of knowledge transfer from

one stage of the cryptographic deployment process to the next. This suggests that methods

for preserving information from one stage in the process to the next can reduce the risk of

future vulnerabilities.

The first approach that one could take in this direction is to minimize the security-critical

decisions that need to be made by non-experts in cryptographic deployments. Many of

the vulnerabilities discussed in this thesis are the result of configuration errors or per-

formance tradeoffs made on the part of application developers or system administrators.

Cryptographic library developers can help with this by simplifying APIs and providing

secure-by-default configurations.

A second approach for reducing information loss is to have a single well-qualified entity

simultaneously execute multiple stages of the cryptographic deployment process. For in-

stance, Bernstein [55] presents the X25519 algorithm along with detailed guidelines for its

use, an optimized and deployment-ready reference implementation, and practical perfor-

mance statistics. However, this approach likely does not scale.
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Other promising steps in this direction are formal verification of cryptographic standards [66,

67, 69, 109] and implementations [64], though gaps in proofs can still result in vulnerabili-

ties [110].

Solving versus eradicating a problem. Known weaknesses in cryptographic algorithms

repeatedly arise as security vulnerabilities in modern systems, despite solutions for these

problems being known about (in some cases) for decades. While completely eradicating

classes problems in newly-designed systems is possible (as demonstrated by the complete

removal of RSA key exchange and all of its associated weaknesses in TLSv1.3), systems that

need to maintain support for legacy protocols cannot use this approach. This observation

leads to the conclusion that vulnerability mitigation should not stop at merely identifying

classes of problems and developing countermeasures, but requires continual reevaluation

of systems with respect to known weaknesses. The tools and methods presented in this

dissertation provide ways to detect and measure classes of vulnerabilities at scale.

Internet scanning for vulnerability discovery. Fast internet-wide scanning of end

hosts has become an important tool for security researchers over the past several years. A

global view of servers has enabled measurement studies of protocol adoption and imple-

mentation choices, and allowed researchers to measure the impact of vulnerabilities like the

Debian OpenSSL disaster [310], Heartbleed [116], and the Dual EC backdoor [90, 91] and

study patching rates [165]. This global view has also enabled a deeper and more precise

understanding of recent cryptographic vulnerabilities such as Logjam [29] and DROWN [43]

whose real-world impact is increased by widespread reuse of cryptographic parameters. This

global view has actually enabled the discovery of new vulnerabilities like widespread random

number generation failures that resulted in weak RSA and DSA keys [166, 205]. This disser-

tation presents new techniques for Internet scanning which further demonstrate the value

of this approach as a means to improve the security of deployed cryptographic systems.
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8.2. Summary of Impact

In this section, I attempt to summarize some of the measurable impact of this work. While

certainly not a complete tabulation, the examples listed demonstrate the significant contri-

butions this dissertation has made in securing cryptographic deployments.

8.2.1. Tools

Internet scanning. Throughout the course of my research, I developed several extensions

to ZGrab, the application-layer scanner of the open source ZMap project [114]. These exten-

sions allow for measuring invalid curve, twist, and small subgroup attacks against TLS, SSH,

and IKE implementations, and for fine-grained testing of server supported cryptographic

parameters. The IKE module for ZMap was built from scratch. All code is available at

github.com/eniac/zgrab.

Factoring as a service. To demonstrate the insecurity of 512-bit RSA keys, my colleagues

and I developed a tool to run a modified version of the CadoNFS [290] factoring software

on a cloud computing platform. Our results showed that a 512-bit RSA key can be factored

in as few as 4 hours at a cost of $75. Since releasing this tool, we have received reports that

our tool has even been used to combat ransomware attacks! 1

8.2.2. Protocols and standards

Recommendations against use of RFC 5114 DSA groups. RFC 5114 [206] pub-

lished three finite field groups (Groups 22, 23, and 24) based on non-safe primes for use

in Diffie-Hellman for IETF protocols. As described in Chapter 2, securely using non-safe

primes requires implementations to include additional expensive validation checks; further,

some protocols were designed to support only safe primes and did not build in mechanisms

for implementations to properly validate Diffie-Hellman parameters when using non-safe

primes. As a result of my work, as well as the work of Fried et al. [130] in pointing out

that the provenance of the groups is not publicly verifiable, these groups have been rec-

ommended against by modern standards, including RFC 8247, which gives guidelines for

1from private communication
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IKEv2 deployments [237]. 2

TLSv1.3. My work has demonstrated several flaws in TLSv1.2 that have been subsequently

addressed in the newest version of the protocol, TLSv1.3 [268]. Over the years, TLS has

been shown to be vulnerable to a host of downgrade attacks such as Logjam (see Chapter 6)

and CurveSwap (see Chapter 3). These attacks demonstrated the need for robust downgrade

protection mechanisms in TLS, which were delivered for TLSv1.3 by Bhargavan et al. [69].

To further mitigate the threat of downgrade attacks, TLSv1.3 also removed support for

legacy parameters that were included in TLSv1.2 for backwards-compatibility.

The attacks against TLS described in Chapter 2 and Chapter 6 partially exploit the ability

of servers to choose their own custom Diffie-Hellman groups. TLSv1.3 removes this ability,

and instead restricts Diffie-Hellman key exchange to a set of standarized groups that are

believed to be secure.

In response to the myriad attacks against RSA key transport, including the DROWN attack

described in Chapter 7, the TLS working group decided to remove support for RSA key

exchange entirely in TLSv1.3.

8.2.3. Software changes

Diffie-Hellman validation and key reuse. The studies presented in this dissertation

have revealed numerous weaknesses surrounding Diffie-Hellman validation and key reuse.

Server-side finite field Diffie-Hellman (FFDH) implementations that were patched as a re-

sult of the study in Chapter 2 include OpenSSL, Amazon ELB, Unbound DNS, GnuTLS,

LibTomCrypt, Exim mail server, and products from Cisco, VMWare, and Microsoft. JSON

Web Encryption (JWE) implementations that were patches a result of the case study in

Chapter 3 include Cisco node-jose, jose2go, Nimbus JOSE+JWT, and jose4j. This study

also resulted in bug fixes for a multiplication error in NSS and Java cryptographic libraries.

SSLv2 support removed from libraries. Although SSLv2 had been deprecated for

2https://mailarchive.ietf.org/arch/msg/saag/is67FiG6h1ApM6niKU6o-p8gkCo
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decades, support for the protocol was still present in several major cryptographic libraries

at the time of discovery of the DROWN attack, including OpenSSL. Measurements from

March 2016 showed that 33% of HTTPS servers were vulnerable at the time of the attack

disclosure; however, SSL Labs estimates that only 1.2% of HTTPS servers are vulnerable

as of 2019. 3

Libgcrypt validation for X25519. After the disclosure of the side-channel attack dis-

cussed in Chapter 4, Libgcrypt implemented the countermeasure of rejecting low-order

inputs. This countermeasure does not address the underlying issue that Libgcrypt uses

non-constant time arithmetic operations, but it does mitigate the discovered attacks.

Browsers. Major browsers raised the minimum acceptable ephemeral Diffie-Hellman key

size to 1024 bits in the immediate aftermath of the Logjam attack (see Chapter 6). 4

5 6 While computing a 1024-bit discrete log is still expected to be within the reach

of nation-state adversaries, this change helps to mitigate the immediate risk from more

resource-constrained adversaries.

3https://dev.ssllabs.com/ssl-pulse
4https://groups.google.com/a/chromium.org/forum/%23!topic/security-dev/WyGIpevBV1s
5https://blog.mozilla.org/security/2015/07/02/mitigating-logjam-enforcing-stronger-

diffie-hellman-key-exchange/
6https://support.apple.com/en-us/HT205020
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