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ABSTRACT 

 

POLYMER INFILTRATION UNDER EXTREME CONFINEMENT 

David J. Ring 

Daeyeon Lee and Robert A. Riggleman 

Polymer nanocomposites with high nanoparticle loadings are ubiquitous in nature but 

difficult to replicate synthetically. A simple technique to create such polymer 

nanocomposites is to form a bi-layer of a nanoparticle thin film atop a polymer thin film 

and anneal above the polymer glass transition temperature to induce wicking. This 

Capillary Rise Infiltration (CaRI) of polymers into nanoparticle thin films is a promising 

method to create interesting biomimetic composites with enhanced material properties, 

but also raises important theoretical questions about confinement, capillarity, and 

polymer dynamics. Therefore, I use molecular dynamics simulations (MD) and 

continuum theory to understand the impact of confinement on infiltrating polymers. In 

Chapter 2, I observe that polymers will form porous nanocomposites when there is not 

enough polymer to fill the voids in the nanoparticle packings. These undersaturated CaRI 

systems (UCaRI) can be used to form graded or uniform porous composites if the bi-layer 

is annealed for short or long times, respectively. Due to polymer bridges formed during 

annealing, these porous nanocomposites have markedly enhanced mechanical properties 

even when the fraction of polymer is very low. Chapter 3 investigates the effect of 

confinement on critical contact angle above which infiltration halts. It is determined that 

the confinement of polymers in the melt does not significantly affect the critical contact 

angle, which remains independent of the chain length for sufficiently long chains, but 

depends strongly on the chain stiffness. Finally, Chapter 4 investigates the effect of 
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varying cross-section on the free energy landscape of infiltrating polymers. I discover 

that barriers can be introduced into the infiltration free energy as a result of the large 

change in free surface area between constrictions and expansions along the length of the 

capillary. This leads to polymer infiltration that occurs stepwise from minimum to 

minimum, like an activated process. Thus, free energy due to wetting and confinement in 

nanopores has a significant impact on the infiltration behavior of polymers and the 

formation polymer nanocomposites. 
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CHAPTER 1: Introduction 

1.1 Nanocomposites with high filler fractions and their fabrication 

techniques 

Nanocomposites are a class of materials that rely on microscopic mixing of polymers and 

nanofillers to impart increased strength, permeability, conductivity and other desirable 

features[1]–[3]. Although they were first understood using the rule of mixtures – which 

for example expresses the composite elastic modulus as a weighted average of the 

components by volume fraction – many studies show that nanocomposites exhibit 

properties that bely the strength of their components and the rule of mixtures[4], [5]. 

Many such nanocomposites can be found in nature, such as abalone nacre, bone, and the 

dactyl club of the mantis shrimp[6]–[9]. In each of these natural composites, their 

specific close-packed morphology and high proportion of inorganic nano-inclusions 

contribute to the uniquely enhanced properties of the composite. Nacre benefits from the 

interlocking of nanoplatelets and asperities on the surface to reduce pull out[10], [11], 

with polymers providing nano-bridging that prevents crack propagation[6]. 

                          

c 
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Figure 1.1: (a) – (b) Abalone nacre has a brick-and-mortar microstructure composed of brittle calcium 

carbonate glued together with small amounts of chitin. This structure has enhanced hardness and fracture 

toughness, two properties which are hard to achieve concurrently. (c) – (e) The dactyl club of the mantis 

shrimp has a helicoidal closed packed group of chitin fibers reinforced by mineralization as shown in the 

diagram and SEM micrograph. This structure provides excellent energy dissipation upon impact[9].  

The addition of nanoparticles to polymer-based filtration membranes has also been 

shown to improve the trade-off between permeability and selectivity in gas separations[3], 

[12]. It is believed that this enhancement is caused by the disruption of chain packing in 

the polymer matrix which introduces free volume around the nanoparticles, improving the 

diffusion of the molecules through the membrane[3], [13]. It has been demonstrated using 

molecular dynamics that stiff polymers are more likely to pack loosely near particles, 

leading to an increase in the free volume. Prior studies on these membranes used small 

fractions of nanoparticles but indicated that ever increasing fractions of particles could 

provide even greater improvement to the membrane properties. Figure 1.2 shows the effect 

of adding fumed silica to a PMP film on the permeability of (a) the permeability of methane 

and (b) the permeability and selectivity of n-butane over methane; both plots show a 

marked increase in permeability. 

b d e 
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Figure 1.2: (a) The ratio of penetrant permeability in the nanocomposite to that in the pure polymer as a 

function of filler volume fraction. Filler volume fraction is estimated from ϕf = mf /(mf + mpρf /ρp), where m 

and ρ refer to the mass and density, respectively, of filler (f) and polymer (p) used in the nanocomposite. The 

dashed line represents the Maxwell model prediction[3]. Our data (open circles) are for methane permeation 

at 25°C in PMP containing nanoscale fumed silica (TS-530 from Cabot). Included for comparison are the 

data of Barrer et al. [14] for propane permeation at 40°C in natural rubber containing ZnO filler (solid circles). 

(b) The effect of fumed silica (TS-530) content on n-butane permeability and n-butane/methane selectivity 

of glassy PMP. These data were acquired at 25°C from mixtures composed of 98 mole % methane and 2 

mole % n-butane at a feed pressure of 11.2 atm and a permeate pressure of 1 atm. [3] 

Traditionally, nanocomposites are formed using several different techniques. One of 

the most widely used methods is polymer melt processing, which mixes nano-fillers into a 

polymer matrix using a blender. The downside to this method is that even small amounts 

of fillers cause the viscosity to sky-rocket, drastically increasing energy costs[4]. The fillers 

also have the unfortunate tendency to clump together rather than dispersing evenly[15], 

further complicating processing and compromising the nanocomposite’s properties. 

Alternatively, layer-by-layer assembly (LbL) can be used to craft robust nanocomposites. 



4 

 

Although it is an industrially viable process, it can be time-consuming and tedious and is 

limited primarily to oppositely charged species and aqueous solvents[16], [17]. Another 

method to make nanocomposites is to infiltrate monomers or oligomers into a pre-

assembled film and then polymerize the monomers to form a network[18]. Unfortunately, 

unlike in bulk polymerization, there is very little control over the reaction rate, 

polydispersity and local extent of the reaction under very high-confinement[4]. This leads 

to sub-optimal results such as low mechanical strength and loss of unpolymerized 

monomers/oligomers from the composite. Clearly, a better method is needed. 

 

1.2 Capillary Rise Infiltration (CaRI) 

A recently developed technique to produce nanocomposites with extremely high fractions 

of nano-inclusions uses capillary forces to infiltrate polymer into dense packings of 

nanomaterials. As previously shown, capillary rise infiltration (CaRI) is a highly effective 

technique for creating composites with extremely high filler fractions (>50 vol%) by 

inducing capillary infiltration of polymer into the interstices of nanoparticle packing above 

the glass transition temperature of the polymer [4], [19], [20]. This is typically 

implemented by first producing a bilayer of polymer and nanoparticles, which is subjected 

to heating to induce CaRI as shown in Figure 1.2. The method has proven to be remarkably 

robust as even polymers with extremely high molecular weight can be induced to undergo 

CaRI and several pairs of polymer and nanoparticles have been shown to be compatible 

with the process to produce nanocomposite films with an extremely high volume fraction 

of fillers (> 50%)[4], [21]. The method is especially attractive when nanocomposite films 

with anisotropic nanoparticles are desired.  
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Since CaRI uses capillary forces to induce mixing, mechanical energy is not required to 

create the nanocomposite. In fact, the energy necessary to induce CaRI is only used for 

heating. Additionally, by coating a polymer sheet with nanoparticles using die-slot coating 

in a roll-to-roll system, CaRI nanocomposites can be made highly scalable with very few 

steps compared to traditional LbL processing. CaRI nanocomposites also do not suffer 

from incomplete polymerization since the polymers are already fully formed before 

infiltration. Finally, CaRI is one of the few techniques that can produce polymer 

nanocomposites with filler fractions approaching those of natural nanocomposites. 

 

Figure 1.3: (a & b) Schematic and SEM micrographs of Capillary Rise Infiltration (CaRI) of polymers into 

nanoparticle packings. The process starts with a bi-layer thin film of nanoparticles and polymers that is then 

annealed above Tg of the polymers to induce wicking and form a composite layer (c) Infiltration dynamics 

of the polymers rising through the nanoparticle packing exhibit height vs time scaling consistent with the 

Lucas-Wasburn Equation[4]. 

 

1.3 Capillarity-induced Polymer Infiltration in Nanoscale Pores (< 100 nm)  

In addition to the formation of nanocomposites, capillarity has been used to induce 

imbibition of polymers into small cylindrical pores in anodized aluminum oxide (AAO) 

membranes[22]–[24]. Different morphologies can be created by changing the wetting 
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conditions so that a pre-wetting film forms on the capillary surface [25]. The presence of a 

pre-wetting film makes it possible to produce hollow nanotubes, whereas the lack of a pre-

wetting film results in a solid nanorod. These structures can then be freed from the 

membranes by dissolving the membrane in a mild acid or base solution. 

Capillary driven infiltration of polymers in cylinders has also been studied using 

molecular simulations. These simulations not only displayed scaling consistent with the 

Lucas-Washburn equation, but also showed agreement between the independently 

calculated imbibition coefficient and the slopes of height versus time[26], [27].  They also 

note the presence of a slip length in the capillary that vanishes as fluid-wall 

interaction/wetting is increased. 

The capillary rise of polymers in nanoscale pores has been shown to follow the scaling 

of the Lucas-Washburn equation – as shown in Figure 1.3[4]. The Lucas-Washburn 

equation describes the capillary driven infiltration of fluids into small pores and is derived 

by balancing the Laplace pressure with viscous dissipation[28]–[30]. Neglecting inertia 

and assuming fully developed laminar flow, Pouseuille’s law can be used to describe the 

rate of fluid imbibition 

 
𝜋𝑟2

𝑑ℎ

𝑑𝑡
= 𝜋ΔP

𝑟4

8𝜂ℎ
 

1.1 

where 𝑟 is the capillary radius, ℎ is the height of the meniscus, Δ𝑃 is the pressure drop 

along the capillary length, and 𝜂 is the viscosity. For pores of sufficiently small diameter, 

gravity can be neglected so that the pressure drop is determined only by the Laplace 

pressure across the interface 
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2ℎ𝑑ℎ =

2𝛾 cos 𝜃

𝑟
(

𝑅2

4𝜂
) 𝑑𝑡 

1.2 

where 𝛾 is the surface tension and 𝜃 is the contact angle. Integrating from ℎ = 0 @ 𝑡 = 0 

gives the Lucas-Washburn equation 

 
ℎ2 =

𝑟𝛾𝑃 cos 𝜃

2𝜂
𝑡 

1.3 

A more general expression can be derived by including the effect of inertia, which can 

be important for infiltration at early times[31], [32]. This ensures that the initial fluid 

velocity and acceleration are not infinite near 𝑡 = 0 as is the case for the Lucas-Washburn 

equation. The governing equation and boundary conditions for this problem, which was 

solved by Ichikawa and Satoda[32], balance inertia, capillary forces, and viscous forces 

 
{

𝜌[ℎℎ′′ + ℎ′ℎ′] =
2𝛾 cos 𝜃

𝑟
−

8𝜂

𝑟2
ℎℎ′

ℎ′(0) = 0
ℎ(0) = 0

 
1.4 

where h is the penetration height, and 𝜌 is the density. The solution to this initial value 

problem  

 ℎ2(𝑡) =
𝜌𝑟3𝛾 cos 𝜃

16𝜂2
[𝑒

− 
8𝜂

𝜌𝑟2𝑡
− 1] +

𝑟𝛾 cos 𝜃

2𝜂
𝑡 1.5 

contains two terms, one of which is the Lucas-Washburn equation at long times, and the 

second of which provides a decay time scale for the inertial regime. For early times, this 

exponential term reduces to 
2𝛾 cos 𝜃

𝜌𝑟
𝑡2, which indicates height is linear in time until the 
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infiltration kinetics  cross over into a roughly Lucas-Washburn-like regime with ℎ2 

proportional to 𝑡. 

When applied to packings, the Lucas-Washburn equation is often modified with a 

tortuosity factor to account for the meandering path of the pores. Some studies have also 

suggested that under confinement, it is necessary to use a slip length to describe the 

infiltration front[26], [33]. Taking into account these modifications, the Lucas-Washburn 

equation becomes ℎ2 =
(𝑟+𝑏)2𝛾 cos 𝜃

4𝑟𝜏2𝜂
𝑡 where 𝜏 is the tortuosity factor and b is the slip 

length. 

Finally, the Lucas-Washburn equation can be modified to account for pores with 

varying cross-section, such as sinusoidal capillaries[34]–[37]. Starting with the Navier-

Stokes equations, assuming a parabolic velocity profile, and neglecting inertia gives 

 8𝜇𝑁𝑐(1 + 𝑉𝑐)
𝑑ℎ

𝑑𝑡
= 2𝛾 cos 𝜃 − 𝜌𝑔ℎ𝑟(ℎ) 1.6 

where 𝜃 = 𝜃𝑒 + atan (
𝑑𝑟

𝑑𝑧
) with 𝜃𝑒 as the equilibrium contact angle. The groups 𝑉𝑐 and 𝑁𝑐 

represent the viscous term contributions from nonuniformity in the axial direction and the 

cross-sectional plane and are calculated using Eq 1.7 and 1.8 

 𝑉𝑐 = ∫ (
𝑑𝑟

𝑑𝑧
)

2 𝑑𝑧

𝑟2(𝑧)

ℎ

0

∫
𝑑𝑧

𝑟2(𝑧)

ℎ

0

⁄  1.7 

 

𝑁𝑐 = 𝑟3(ℎ) ∫
𝑑𝑧

𝑟4(𝑧)

ℎ

0

 1.8 
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Eq 1.6 – 1.8 do not explicitly rely on the functional form of 𝑟(𝑧) and can be used for any 

capillary with a non-constant cross-section. Since Eq 1.6 has no explicit analytical solution, 

it is typically integrated numerically. 

 

1.4 Free Energy in confinement 

The free energy of a confined flexible polymer is predicated on the random walk statistics 

of the polymer being preserved below the confining length scale. Thus, the chain forms 

blobs with dimension 𝐷 ≈ 𝑏𝑔1 2⁄  where D is the capillary diameter, b is the kuhn length, 

and g is the average number of kuhn segments in a blob. Above the confining length scale, 

the polymer appears as a chain of blobs, with each blob contributing kT of energy to the 

chain. Thus, the confinement free energy 𝐹 ~ 𝑘𝐵𝑇 (
𝑁

𝑔
) ~ 𝑘𝐵𝑇𝑁 (

𝑏

𝐷
)

2

 is proportional to the 

number of blobs, 
𝑁

𝑔
, where N is the Kuhn length[38], [39]. This suggests that longer chains 

should experience confinement more acutely. Figure 1.4 shows the difference between 

applying this formulation of polymer confinement to real and ideal chains. In the ideal case, 

the polymer end-to-end distance along the capillary axis doesn’t change, but for a real 

chain, it becomes extended. For a melt, the chain can be treated as ideal due to screening, 

but a solution would require that I consider a different scaling. 
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Figure 1.4: Real and Ideal chains under cylindrical confinement[38]. 

 

1.5 Unresolved topics in capillary rise of polymer in nanoscale pores 

As summarized above, capillary rise of polymers into nanoscale pores is a versatile 

technique to produce nanocomposites with high filler fractions as well as nanoscale rods 

and tubes. Moreover, this approach provides a unique method to investigate the effect of 

extreme nanoconfinement on the dynamics and thermodynamics of polymers[40]. There 

are several unresolved fundamental aspects that require further investigation, some of 

which this thesis will address. 

For example, it is not understood what happens to polymers in a CaRI nanocomposite when 

there is not enough polymer to fill the voids between particles. Recent experimental studies 

indicate that even very small quantities of polymer lead to significant reinforcement of 

spherical packings[20]. They also show that polymers tend to evenly disperse throughout 
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the entire nanoparticle packings to form three-phase composites, rather than stopping their 

infiltration once the polymer layer is depleted. Given the difficulties associated with 

directly observing the infiltration dynamics and resulting morphology in the CaRI 

composites, molecular dynamics simulations provides a powerful method to study CaRI 

under varying physicochemical conditions.  

Another unresolved problem that has not been addressed is the effect of confinement 

on the ability of polymers to infiltrate the nanoparticle packing. The Lucas-Washburn 

equation predicts that infiltration is ultimately halted when the contact angle is 90. This is 

because there is no driving force for infiltration from the Laplace pressure across the 

interface. However, polymers under extreme confinement also lose conformational entropy 

due to the perturbation of the equilibrium conformation. In an infiltration system with 

extreme confinement and contact angles approaching 90°, the infiltration response is 

unknown. Given that confinement results in entropic loss of individual chains which also 

depends on the molecular weight of the polymer, the effect of significant confinement on 

CaRI is not fully understood.  

Most treatments of both free energy and infiltration focus on pores with constant cross-

section or treat large sets of random pores as if they can be described with an average pore 

size. Few papers investigate the effects of a varying cross-section on infiltration dynamics, 

although a few have derived new forms for the Lucas-Washburn equation in capillaries 

with sinusoidally varying radii[34]–[37], [41]. None so far, have attempted to describe how 

free energy of an infiltrating polymer changes in pores with varying cross-section. This 

could be useful in determining where bottlenecks in infiltration occur and may lead to new 

pathways for engineering packings that allow for better polymer infiltration. 
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1.6 Outline of this thesis 

Understanding the capillary infiltration of polymer melts under extreme confinement is an 

invaluable asset to exploring the limits of the CaRI process. Fundamentally, it can also 

shed light onto more general problems of equilibrium and the connection between free 

energy and dynamics. In Chapter 2, I discuss the mechanism behind polymer reinforcement 

of nanoparticle packings using simulations of small fractions of polymers infiltrating and 

spreading into a packing of ellipsoids. In Chapter 3, I show how the critical contact angle 

above which infiltration is not possible depends primarily on the stiffness of a polymer 

chain rather than its length. In this chapter, I will also flesh out some free energy arguments 

which lead to a theoretical prediction for this critical contact angle. In Chapter 4, I extend 

my work with cylinders to wavy capillaries, and show that as a direct result of the 

sinusoidally varying cross-section that free energy barriers along their axis can be present. 

When those barriers are big enough, I observe different modes of infiltration. Finally, in 

Chapter 5, I discuss the outlook of my current work, and what still needs to be investigated 

afterwards. 
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CHAPTER 2: Molecular Dynamics Simulations of 

Undersaturated Capillary Rise Infiltration in Nanoparticle 

Packings 

 

Reprinted in part with permission from J.L. Hor, Y. Jiang, D.J. Ring, R.A. Riggleman, K.T. Turner, and D. 

Lee, ACS Nano 2017, 11, 3229-3236. Copyright 2017 American Chemical Society. 

2.1 Introduction 

The CaRI process is useful for generating dense nanocomposites with exceptional strength 

and toughness. It can also be used to create porous 3-phase nanocomposites. This can be 

done simply by changing the relative thicknesses of the polymer and nanoparticle films in 

the initial bilayer such that there is not enough polymer to entirely fill the interstices 

between the nanoparticles. This process is called Undersaturated CaRI or UCaRI. 

Annealing for short times results in a gradient of polymer density along the height of the 

composite, and annealing for long enough can result in three phase composites with a 

uniform density of polymer throughout.  
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Figure 2.1: Refractive index of the film as a function of distance from the substrate at various annealing 

intervals, with the schematic illustration representing the film morphology at each stage. The bilayer film 

composed of a 190 nm TiO2 NP layer (nNP = 1.67) on a 45 nm PS layer (nPS = 1.58) is annealed at 

150°C[20]. 

Experimental work with bi-layer films of Titania nanoparticles and polystyrene has 

been conducted and indicates that either a graded or uniform porous composite film can be 

produced by varying the time of thermal annealing. The height and refractive index of the 

bi-layers were monitored in situ for different polymer fractions using ellipsometry as 

shown in Figure 2.1. The height of the polymer film decreases over time while a composite 

layer forms; the sum of the heights of the composite and nanoparticle films is constant over 

time. After the polymer film is completely depleted, the pure nanoparticle fraction 

continues to decrease while the thickness of the composite layer increases over time, 
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indicating the polymer continues to spread further into the nanoparticle packing. This is 

further confirmed by a change in contact angle of a water droplet placed on top of the film 

before and after annealing. An analysis of the refractive index indicates that a gradient 

develops after the polymer layer is initially depleted and that it gradually disappears after 

further annealing. These composites could be extremely useful for creating membranes for 

separation processes, ion conduction, or as strong lightweight materials.  

 

Figure 2.2: Mechanical properties of the nanoporous PINFs measured using nanoindentation tests. (a) The 

normalized hardness and (b) the normalized modulus of the composite increase with the PS volume fraction 

(ϕPS). Every data point is expressed as a statistical average of nine partial loading cycles with loads 40−500 

μN at 49 random spots on the sample, with indent depths of 100−200 nm. The error bar represents the 

standard deviation of the mean. The TiO2 NP film’s hardness and reduced modulus are 271.6 ± 21.4 MPa 

and 12.9 ± 0.5 GPa, respectively, whereas the PS film’s hardness and modulus are 292.2 ± 28.9 MPa and 

6.9 ± 0.3 GPa, respectively[20]. 

Mechanical testing of these porous and gradient films in Figure 2.2 indicates that the 

neat nano-particle films are reinforced by even very small fractions of polymer (< 5 vol%). 

This seems to indicate that the polymers act to glue the nanoparticles together. However, 

it is not understood how the polymer acts to hold the nanoparticles together, especially at 
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such low volume fractions. Additionally, while the infiltration process seems to follow 

Lucas-Washburn like dynamics at first, after the polymer layer is depleted it continues to 

spread by a different mechanism. In order to find the answer to these two problems, I use 

molecular dynamics (MD) to simulate the undersaturated infiltration process and to 

investigate how polymers glue together nanoparticles in the final composite. 

2.2 Model Parameters and Methods 

The MD simulations are performed using the molecular dynamics simulation package 

LAMMPS with a similar approach as previously described.[19] All quantities are 

calculated in reduced units specified by the Lennard-Jones (LJ) parameters 𝜀 and 𝜎 which 

denote the interaction strength and size, respectively, of a LJ unit. The interactions between 

all non-bonded units are described by the 12-6 LJ potential with cut-off radius 1.75𝜎 

𝑈𝐿𝐽(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] − 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑐𝑢𝑡
)

12

− (
𝜎𝑖𝑗

𝑟𝑐𝑢𝑡
)

6

] 

All 𝜀𝑖𝑗 and 𝜎𝑖𝑗 values are unity to reflect neutral interactions between the NP, substrate, 

and the polymer monomers. The substrate is a flat surface of randomly packed LJ sites. 

Each polymer chain consists of 10 bonded Lennard-Jones (LJ) sites, where adjacent 

monomers interact through a harmonic bond potential 𝑈𝑏(𝑟) =
𝑘

2
(𝑟 − 𝜎)2 with spring 

constant 𝑘 = 2000
𝜖

𝜎2
. Each ellipsoidal nanoparticle is treated as one rigid molecule 

composed of 4684 LJ sites arranged in a shell with dimensions 25σ by 50σ. 

Polymer films are created following a procedure described by Kremer and Grest[42], [43]. 

First, polymers are generated in a box with the same dimensions as the final film by 
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assuming a density of approximately 0.85. They are generated by using a random walk, 

where each step corresponds to one bond of length 𝑙 = 0.97𝜎 and the bond angle is chosen 

at random between the angles 27° − 333°. This condition ensures that bonds cannot fold 

back on each other and that the polymers are close to their equilibrium dimension. 

Additionally, the polymers are also constrained to reflect off the boundaries in the z-

direction. This keeps them inside the box in that direction so that reflective boundary 

conditions can be applied to the top and bottom to form a film. The other 2 dimensions use 

periodic boundaries to simulate a pseudo-infinite film. These random films contain many 

overlaps which must be removed before equilibrating, otherwise the simulation will crash. 

Overlaps are removed by using a sinusoidal pair potential 𝑢(𝑟𝑖𝑗) = 𝐴 [1 + cos (
𝜋𝑟

𝑟𝑐
)] and 

ramping the value of A gradually. After running for 100 time steps, it is safe to switch to 

the LJ pair potential. The films are then equilibrated for multiple diffusion times using a 

bond-swapping algorithm to increase the speed of equilibration. 

The nanoparticle packing is formed by annealing an array of 54 nanoparticles at 𝑇 =  25
𝜀

𝑘𝐵
 

and then compressing it to an xy cross-section of 100σ by 100σ to produce a dense packing 

of nanoparticles with packing fraction ≈ 0.6. Periodic boundaries are used in the xy-plane 

to simulate an infinitely extended packing. The packing is then placed on top of a film of 

the equilibrated polymers with half the number of LJ units necessary to fill the packing 

voids. The whole system is then annealed at 𝑇 = 0.7
𝜖

𝑘𝐵
 to induce infiltration into the 

packing. 
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2.3 Infiltrating Films and Analyzing Polymer Distribution 

Images from before and after the infiltration process as shown in Figure 2.3a indicate 

visually that polymer has infiltrated all the way to the top of the nanoparticle packing. The 

monomer density profile 𝜙𝑝𝑜𝑙𝑦(𝑧) at different times during the infiltration is shown in 

Figure 2.3b, demonstrating the depletion of the polymer film and near homogenization of 

the NP film; residual variations in the density along the z-axis are due to variations in the 

porosity of the packing due to the finite size of the simulation box. 
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Figure 2.3: (a) Polymer/NP bilayer film prior to annealing (left) and the PINF after annealing (right). (b) The 

local polymer density profile along the z-axis with annealing time shows that the polymer infiltrates and 

gradually distributes throughout the NP packing to form a uniform PINF. (c) Probability that a bead on the 

surface of the NPs is not in contact with a polymer monomer as a function of time. The bottom 30σ is closest 

(a) 

(b) 

(c) 
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to the polymer film, and the rapid decrease in the probability indicates that this layer of NPs quickly becomes 

covered with polymer, and the UCaRI film gradually homogenizes with equilibration. Homogenization is 

accelerated by increasing the temperature from 0.7 to 1.0 around 4 × 105 t/τLJ. 

 

To demonstrate that UCaRI occurs in two stages, I calculate the probability that one of the 

NP surface sites is bare (i.e., not in contact with a polymer monomer) as a function of time, 

1 − Pcontact. From the results in Figure 2.3c, I observe that when I average over the entire 

packing, 1 – Pcontact monotonically approaches its equilibrium value. However, the top and 

the bottom of the packing exhibit distinct behaviors from each other. The top of the packing 

also monotonically approaches its equilibrium value, while the NPs near the bottom are 

quickly covered with polymer (1 − Pcontact tends to 0). As the polymer homogenizes through 

the film, 1 – Pcontact calculated in the bottom portion of the film then increases and 

approaches the value averaged over the whole film. 

In order to further characterize the morphology of the UCaRI films, I calculate the 

probability of observing a single polymer chain in contact with more than one nanoparticle 

at a time, Pbridging, for different fill fractions as shown in Figure 2.4. The value of Pbridging 

for each fill fraction is nearly constant with time since the simulations start from a fully 

infiltrated system with different fill fractions generated by removing polymer chains at 

random. Thus, they equilibrate rapidly to form the configurations shown on the right. It is 

clear from the plot that larger fill fractions have lower values of Pbridging, indicating that 

polymers move to points of contact between nanoparticles first before filling in the larger 

voids around the nanoparticles. This is visually evident in the images as well, especially 

for the lowest fill fraction which has a green border. Polymers prefer to bridge particles 
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because the regions near particle-particle contacts allow them the most polymer-particle 

contacts, effectively, increasing the fraction of their surface area in contact with another 

species. 

 

Figure 2.4: The probability that a polymer chain is in contact with two nanoparticles (Pbridging) for three 

different polymer fractions (ϕpoly = 0.013, 0.03 and 0.13). Pbridging increases drastically with lower ϕpoly, 

suggesting the accumulation of polymer chains near particle contacts. Visualizations of each trajectory show 

that in lower fraction PINFs, the polymers form rings around nanoparticle-nanoparticle contacts. 

 

2.4 Infiltration dynamics and surface spreading 

To quantify the height of the nanocomposite (height of polymer-infiltrated front), I 

integrate the local polymer density 𝜌(𝑧) along the 𝑧 axis up to a threshold value 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 

of total integrated density 𝜌𝑇, and calculate the infiltrated height ℎ such that: 
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𝑓𝑐𝑢𝑡−𝑜𝑓𝑓𝜌𝑇 = ∫ 𝜌(𝑧)𝑑𝑧
ℎ

0

 

I track the infiltrating front using threshold values of 85% and 99%, which reflect the bulk 

and surface front of infiltrated polymer layer thickness in the NP packing, respectively. 

The slopes of ℎ2 vs 𝑡 in Figure 2.5 suggest that infiltration is initially consistent with 

Lucas-Washburn like dynamics before the polymer can feel the top surface of the packing. 

From the 99% cut-off trajectory, I observe two linear regions where the transition from 

region I to region II corresponds to the depletion of the polymer layer. Two regions are 

also observed in the 85% cut-off trajectory. The change in slope from region II to region 

III, as determined from pictures of the trajectory, coincides with the dewetting of the 

bottom substrate. After these regions, the slopes continue to decrease due to the gradual 

homogenization of the nanocomposite.  

 

Figure 2.5: The height squared of the composite layer for the 85% and 99%  cut-offs showing various linear 

regions with changing slopes, indicative of a transition in infiltration mechanism  as (1) polymer infiltrates 

via capillary rise consistent with the Lucas-Washburn model, (2) polymer layer is depleted and polymer 

spreads via a slower surface diffusion behavior, (3) polymer has distributed throughout the packing and the 

III IV I II 
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trajectory stops evolving. (4) end of trajectory showing that infiltration has stopped (annealed at T = 1). The 

inset shows ρ(z) at the end of the trajectory to demonstrate that the polymer has spread throughout the entire 

nanoparticle packing uniformly. 

Due to the slow evolution of the height profiles and incomplete homogenization, the 

temperature is ramped to 𝑇 = 1.0
𝜖

𝑘𝐵
 in region IV and annealed until the height stops 

evolving. From the inset of the local density, the polymer appears to be homogeneously 

distributed throughout the packing. 

 

Figure 2.6: Mean squared displacement of polymers with 10 chain repeat units. 

To determine the infiltration mechanisms present during UCaRI, the imbibition 

coefficient 𝐶 =
ℎ2

𝑡
=

𝑅𝛾 cos 𝜃

4𝜏2𝜂
 from the Lucas-Washburn equation is independently 

estimated using the values shown in Table 2.1 and then compared to the slope observed in 

the simulations. The diffusion of polymers in the bulk is also calculated from the MSD as 



24 

 

a measure of the random motion of the polymers due to thermal fluctuations. Although this 

is not a directly applicable measure of thermal motion since the polymers are infiltrating 

along the surfaces of nanoparticles, it is not clear that planar diffusion would be directly 

applicable either due to the complex 3d structure of the composite. Additionally, the 

polymers have the same interaction strength with the nanoparticles as with each other and 

studies of planar diffusivities in supported thin films have shown that there can be good 

agreement between bulk and 2d planar diffusivities[19]. 

From this calculation, the imbibition coefficient varies between 0.007 − 0.245
𝜎2

𝜏𝐿𝐽
 and 

the slopes calculated at 𝑡/𝜏𝐿𝐽 = 0 and 𝑡/𝜏𝐿𝐽 = 4 × 105 from Figure 2.5 are 0.113 and 

0.008, respectively. The diffusion coefficient, D of this polymer is calculated from the 

MSD shown in Figure 2.6 to be 0.0025
𝜎2

𝜏𝐿𝐽
, which is comparable to the slope at 𝑡/𝜏𝐿𝐽 =

4 × 105. It is tempting to assume that since the slope at 𝑡/𝜏𝐿𝐽 = 4 × 105 falls within the 

range of imbibition coefficients calculated that it must be due to capillarity. However, the 

range of imbibition coefficients does not indicate which values are likely to be most 

representative of the actual imbibition. For example, the tortuosity range varies between 1 

and 3 since we have no good way to extract the exact tortuosity from the packing. It is most 

likely that the tortuosity is closer to 3 than 1, however, since the polymers can follow many 

different non-straight paths through the packing. Additionally, if we attempt to better 

estimate the viscosity by interpolating between the viscosity values used, we would expect 

a viscosity on the lower range, since N=10 is closer to 5 than 50. Therefore, the lower 

bound could be too low by almost an order of magnitude.  

Table 2.1: Quantities used in the calculation of the imbibition coefficient 
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𝑅/𝜎 5 

𝛾

𝜖 𝜎2⁄
 0.39 − 0.49† 

cos 𝜃 1 

2𝜏2 1 − 3† 

𝜂

𝜖𝜎2 𝜏𝐿𝐽⁄
 5 − 50† 

†values from Shavit et al. 

 

2.5 Summary 

Undersaturated infiltration follows the Lucas-Wasburn equation until the entire polymer 

film is depleted, at which point it begins to spread throughout the packing along the 

surfaces of the nanoparticles via surface diffusion. Furthermore, I determined that the 

polymers tend to create bridges between particles near their point of contact. I hypothesize 

that this is to minimize their exposed surface area and increase their total contacts with 

nanoparticles and other polymers. This phenomenon is analogous to the formation of 

capillary bridges in sandcastles. These bridges have been shown to dramatically enhance 

the mechanical properties of nanoparticle packings even at low fill fractions. 
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CHAPTER 3: Critical Contact Angle to Induce Capillary Rise of 

Polymers in Nanopores Does Not Depend on Chain Length 

 

Reprinted with permission from D.J. Ring, R.A. Riggleman, and D. Lee, ACS Macro Lett. 2019, 8, 31-35. 

Copyright 2019 American Chemical Society. 

3.1 Introduction 
 

Capillarity-driven flow of polymers in cylindrical tubes with nanoscale pores enables 

fabrication of novel nanostructures such as nanotubes and nanorods and at the same time 

provides a versatile method of confining polymer chains under physical confinement.[25], 

[44] Prior work has reported changes in the translational and segmental dynamics of 

polymers in cylindrical nanopores[45] as well as changes in glass transition temperature of 

semicrystalline polymers.[23] Cylindrical confinement also has a significant impact on the 

phase behavior of block copolymers[46] and semicrystalline polymers.[29] Many of these 

observed changes in the morphology and dynamic behavior of polymers under nanoscale 

confinement is attributed to the changes in polymer configurations.[38], [47] That is, when 

the characteristic dimension of unperturbed polymer chains such as their end-to-end 

distance (𝑅𝑒) is comparable to or greater than the diameter of the pores, chains lose 

significant entropy, affecting their behavior.[48]  

Experimental results as well as molecular dynamics (MD) simulation of capillary 

imbibition of polymers into nanoscale pores have shown that infiltration dynamics can be 

described using the Lucas-Washburn theory, ℎ = √
𝐷𝛾 cos 𝜃

4𝜂
𝑡, which describes the capillary 

infiltration dynamics of liquids with viscosity 𝜂 and surface tension 𝛾 wicking into pores 
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of diameter D.[26], [28], [30] The critical parameter that determines whether a liquid would 

undergo capillarity-driven imbibition into a pore is the contact angle 𝜃 of the liquid on the 

pore surface. The model indicates that as long as 𝜃 is less than 90°, the liquid will undergo 

capillarity-driven flow into a pore. For polymers where the pore diameter is smaller than 

𝑅𝑒, there is an intriguing possibility that the critical angle for infiltration to occur could be 

less than 90° since the polymer chains would require additional thermodynamic driving 

force (i.e., more favorable wetting) to overcome loss of conformational entropy. Studies of 

infiltration have used polymers and series of alkanes of different lengths to probe the 

influence of pore geometry, wetting, and boundary effects on infiltration behavior, but have 

not closely examined the effects of chain entropy on infiltration.[26], [30] 

In this study, I use molecular dynamics (MD) simulations to investigate how physical 

confinement of polymers in nanoscale cylindrical pores impacts the capillarity-driven 

infiltration of polymers into the nanopores. In particular, I study the impact of chain 

confinement on the critical contact angle (𝜃𝑐) above which infiltration of polymers into 

nanopores ceases to occur. To enable this study, I find the relationship between the contact 

angle of polymer on the solid surface and polymer-surface interactions for a range of 

polymer chain lengths. By varying the pore diameters, polymer chain length and statistical 

segment sizes, I systematically probe the effect of confinement on infiltration of polymers 

into cylindrical nanopores. Somewhat unexpectedly, the critical contact angle does not 

strongly depend on the confinement ratio (𝑅𝑒 𝐷⁄ )2 as the size of the chains becomes 

comparable to or larger than the pore size. A simple free energy argument shows that the 

critical angle for infiltration depends strongly on the size of statistical segments rather than 

the total chain length, consistent with my simulation results.  
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3.2 Model details and system setup 

I use a bead-spring model with Lennard-Jones particles, harmonic bonds, and harmonic 

bending potentials to model my coarse-grained polymers.[19], [49], [50] By adding the 

angle potential 𝑢(𝜃) =
𝑘𝜃

2
(𝜃 − 𝜃0)2 I can model both fully flexible chains (𝑘𝜃 = 0) and 

semi-flexible chains (𝑘𝜃 = 10) having a bond angle of  𝜃0 = 2𝜋/3. This allows us to 

simulate polymers with different statistical segment sizes to investigate the effect of 

backbone rigidity on the critical contact angle of capillary rise.  

In order to compute the persistence length for polymers with different statistical 

segment sizes, I computed the bond autocorrelation function for each polymer. The bond 

autocorrelation 〈𝑟𝑖 ⋅ 𝑟𝑗〉 = exp (−
|𝑖−𝑗|𝜎

𝑙𝑝
)  is calculated in Figure 3.1 by averaging over all 

chains and the projections of some bond vector, 𝑟𝑖, onto all other bond vectors, 𝑟𝑗, along 

the chain backbone. Since the autocorrelation decays exponentially along the backbone, I 

can extract the characteristic decay length as the persistence length, 𝑙𝑝. 
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Figure 3.1: The bond autocorrelation function decays exponentially with characteristic length lp; the points 

are the calculated correlation function and the lines are fits to an exponential. 

Table 3.1: Measures of chain stiffness for fully flexible and semi-flexible chains 

𝑘𝜃 2𝑙𝑝/𝜎 

0 1.24 

10 2.62 

 

All polymer melts are formed from collections of overlapping chains with 

approximately Gaussian statistics.[49] Overlaps are removed by ramping a soft cosine 

interaction potential in place of the standard LJ potential before equilibrating the polymer 

melts with their actual interaction potentials.[42] All melts are equilibrated such that they 
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diffuse on average by their chain dimension, 𝑅𝑒, which can be calculated from a 

comparatively short simulation. All surfaces are composed of LJ sites arranged in a 2d 

triangular lattice with lattice spacing l = 0.91. Non-bonded interactions are controlled with 

the cut and shifted LJ potential 𝑢𝑖𝑗(𝑟) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟
)

12

− (
𝜎𝑖𝑗

𝑟
)

6

] − 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑐
)

12

−

(
𝜎𝑖𝑗

𝑟𝑐
)

6

] where 𝑟𝑐 = 1.75 is the cut-off distance and 𝜀𝑖𝑗 represents the interaction strength 

between atoms i and j. All simulations are performed at 𝑇 𝑇𝐿𝐽⁄ = 0.7 unless otherwise 

specified. 

 

P 

C 

S 
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Figure 3.2: Sample infiltration system showing all three species used in simulations. 

A sample infiltration system in Figure 3.2 shows the 3 main species, polymer (Blue), 

capillary (Green), and substrate (Red). Their non-bonded interactions are shown in the 

table with samples values corresponding to an infiltrating system. While 𝜎 is kept the same 

for all 3 species, 𝜀 is adjusted for the interactions between polymer and capillary (P-C) in 

order to adjust the polymer contact angle and start or halt infiltration. The capillary (green) 

and top surface (red) are allowed to move vertically to maintain contact with the surface of 

the melt. 

Table 3.2: LJ Parameters for infiltration 

Species 𝜀 𝜎 

Red-blue (S-P) 1.00 1.00 

Blue-green (P-C) 0.611 1.00 

Blue-Blue (P-P) 1.00 1.00 

 

Prior to performing the infiltration simulations, I reduce 𝜀𝑃𝐶 between the LJ particles 

that comprise the polymer (P) monomers and the capillary (C) sites to a non-wetting value 

so that the polymer-vapor interface can relax near the opening of the capillary. 

Subsequently, I increase 𝜀𝑃𝐶 and test whether I observe spontaneous infiltration as shown 

in Figure 3.3a.  
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Figure 3.3: (a) A cylindrical capillary with diameter D = 9, height H = 100, and polymer chains of length N 

= 10 are used to simulate the process of polymer wicking. At 10-3  t⁄τLJ = 1, the polymers are held outside 

the capillary by unfavorable interactions but can still fluctuate as a free surface at the mouth of the 

capillary. For t > 0, the interactions between capillary and polymers are turned up to induce wicking into 

the capillary. (b) the height of the polymer interface can be tracked by fitting a sigmoidal function to ρ(z). 

The full system showing the polymer film beneath the pore is shown in Supplemental Information. 

The height of the melt in the capillary is calculated by fitting 𝜌(𝑧) =
𝜌𝑙+𝜌𝑣

2
−

𝜌𝑙−𝜌𝑣

2
tanh [

2(𝑧−𝑧0)

𝑙
]  to the density profile, as shown in Figure 3.3b, where 𝜌𝑙 is the density 

of the polymer melt in the capillary, 𝜌𝑣 is the density of vapor in the capillary, 𝑧0 is the 

height of the interface, and 𝑙 is the thickness of the interface. The polymer-vapor interface 

has a thickness of 1 − 2𝜎. Due to low polymer vapor pressure, 𝜌𝑣 = 0 for all but the 

shortest chains. The polymer height (h) is roughly proportional to time (t) as shown in 

Figure 3.4, which is consistent with the inertial regime of capillary imbibition.[31]  

(a) 

  10−3   

  𝑡 𝜏𝐿𝐽⁄ :   1       5      10     15     20             

10−3 𝑡

𝜏𝐿𝐽
= 1 5 10 15 20 

(b) 
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Figure 3.4: Infiltration height as a function of time. The scaling at early times is consistent with the inertial 

regime, while the scaling at later times appears to approach the Lucas-Washburn (LW) scaling. 

My focus is to identify the critical angle above which infiltration of polymers into 

nanopores ceases to occur. Thus, I run each simulation for at least a diffusion time, 𝑡/𝜏𝐿𝐽 =

𝑅𝑒
2/𝒟 where 𝒟 is the bulk diffusivity of a polymer of length N and 𝜏𝐿𝐽 = 𝜎√𝑚/𝜀 where 

𝜏𝐿𝐽 is the LJ timescale calculated from LJ parameters 𝜀 and 𝜎, and the mass, m. On these 

timescales, the polymers in the film below the capillary are able to relax sufficiently that I 

expect my simulations to not be limited by kinetic traps. As discussed below, conclusions 

based on this protocol agree with conclusions drawn from the free energy change during 

infiltration. 

 

ℎ~𝑡0.7
 

ℎ~𝑡 

𝜃 = 71.4° 
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3.3 Correlating contact angle with interatomic interactions 

The strength of interactions between a solid surface and a liquid at the macroscopic scale 

is often expressed in terms of contact angle, 𝜃, which in my model is primarily controlled 

through the LJ parameter 𝜀𝑃𝐶 . To correlate these two parameters, I determine the contact 

angle of a polymer droplet with a pseudo-infinite cylindrical geometry[51] on the solid 

surface with the same lattice structure as the cylindrical pores as shown in the inset of 

Figure 3.5a. The use of cylindrical geometry removes the curvature of the contact line so 

that the contact angle determination is not affected by line tension and in turn remains 

independent of the size of the sessile drop. All simulations start with a melt droplet contact 

angle close to 90° and are annealed until the contact angle reaches a constant value.  

I observe two prominent trends in the contact angle shown in Figure 3.5a. First, cos 𝜃 is 

proportional to 𝜀𝑃𝐶 for all chain lengths, N, which is expected as stronger enthalpic 

interactions between polymer chains and the solid surface will induce stronger wetting (i.e., 

smaller 𝜃). Interestingly, for a given value of 𝜀𝑃𝐶, 𝜃 increases (cos 𝜃 decreases) for 

increasing N.  

As the physical reason behind the observed dependence of polymer contact angle on N 

for a given 𝜀𝑃𝐶 is not obvious, I further investigate the role of the interfacial tension of the 

free polymer surface in dictating the contact angle. I calculate the surface tension from the 

asymmetry of the pressure tensor in a free-standing, planar thin film simulation.[19], [52] 

It is known from previous work on the concentration of chain ends at free interfaces that 

the surface tension can depend on chain length and saturates for long chains.[53], [54] It 

was previously reported that the segregation of the chain ends to interfaces leads to this 
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entropic contribution to the surface tension, and the dependence of the interfacial tension 

on N has a form that does not depend on the details of the molecular model.[55]  

    

Figure 3.5: (a) Contact angle simulations are used to parameterize the relationship between the interaction 

energy (εpc) and contact angle (𝜃). εpc varies approximately linearly with cos 𝜃 for all values of 𝑁. (b) The 

dependence on chain length 𝑁 is explained by the molecular weight dependence of the surface tension (𝛾) 

from Ref [55] and the work of adhesion from the Young-Dupré equation for εpc = 0.5. The work of 

adhesion measured is Wad = 0.155 ε/σ2. Literature[56] reports similar values for LJ polymers. 

This entropic component of surface tension, 𝛾𝑒𝑛, when added to the simple fluid surface 

tension, 𝛾1, yields the total surface tension, 𝛾. Thus, I plot surface tensions in Figure 3.5b 

from simulation by first computing 𝛾 − 𝛾1 with the simulated values, where 𝛾1 was 

calculated for a film of a simple LJ fluid. I expect this quantity to be comparable to the 

theoretical 𝛾𝑒𝑛 presented in Ref. [55] and is given as 

𝛾 − 𝛾1

𝑏𝜌0𝑘𝐵𝑇
≈

𝛾𝑒𝑛

𝑏𝜌0𝑘𝐵𝑇
= Γ∞ −

2𝐴

𝑁
, 

3.1 

where Γ∞ and A are constants previously computed from self-consistent field theory[55] 

for polymers with Hookean spring bonds; they can be interpreted as the surface tension of 

infinitely long polymers and the contribution from a single chain end, respectively. The 

other constants 𝑏, 𝜌0, and 𝑘𝐵𝑇 are the Kuhn length, monomer density, and temperature, 

(a) (b) 
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respectively, which are each measured for my system. I observe in Figure 3.5b that the 

entropic component of my surface tension is in good agreement with Eq 3.1, even though 

I use the parameters Γ∞ and 𝐴 taken from the calculations in Ref [55].  

Rearranging and inserting Eq 3.1 into the Young-Dupré equation provides an expression 

for the N dependence of the contact angle,  

1 + cos 𝜃 ≈
𝑊𝑎𝑑

𝛾1 + 𝛾𝑒𝑛
=

𝑊𝑎𝑑

𝛾1 + 𝑏𝜌0𝑘𝐵𝑇 (Γ∞ −
2𝐴
𝑁 )

 3.2 

where 𝑊𝑎𝑑 is the work of adhesion between the polymer and surface[57] as defined by 

𝑊𝑎𝑑 = 𝛾𝐶 + 𝛾 − 𝛾𝑃𝐶. Fitting Eq 3.2 to the contact angle data in Figure 3.5 by varying 𝑊𝑎𝑑 

at 𝜀𝑃𝐶 = 0.5 gives 𝑊𝑎𝑑 = 0.155, which is in good agreement with previous simulation 

studies[56] of similar polymer models. This consistency suggests that chain ends influence 

the contact angle and that the saturation of the contact angle results from a reduction in the 

number of chains at the solid-polymer interface and free surface. However, the work of 

adhesion remains nearly constant due to a balance between 𝛾 and 𝛾𝑃𝐶, as can be seen in the 

definition of 𝑊𝑎𝑑. 

 

3.4 Computing Critical Contact Angle from Dynamics 

I probe the effect of confinement on infiltration of polymer chains into nanopores by 

varying both the chain length and capillary diameter and determining the critical contact 

angle for infiltration to occur by varying the interactions of the polymer with the capillary 

walls, 𝜀𝑃𝐶. The extent of confinement is quantified with a confinement ratio δ =
𝑅𝑒

2

𝐷2 where 

D is capillary diameter. To distinguish whether a particular set of conditions leads to 

spontaneous infiltration of the polymers, I expect that the melt should infiltrate to a height 
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larger than the polymer’s end-to-end distance within a diffusion time, 𝜏𝑒~𝑅𝑒
2/𝐷. When the 

height inside the capillary increases at such a rate, I interpret the results as implying that 

any observed infiltration is driven by polymer-surface interactions and not governed by a 

diffusion process. For example, in Figure 3.6 I plot the infiltrated height of N = 50 polymer 

infiltrating a pore of D = 5 as a function of time; I observe that only for a contact angle 

𝜃 ≤ 82o, infiltration is observed. 

  

Figure 3.6: Height trajectories of flexible polymer chains of length N = 50 show that the polymers only 

infiltrate past their mean squared end-to-end distance (black line) if θ < 84°. The pore diameter D is 5σ. 

In Figure 3.7a, I show the calculated critical contact angles by identifying chains that 

undergo infiltration under varying pore and chain sizes. For flexible chains, I observe a 

suppression of the critical contact angle from the simple fluid to small N. However, θc 

reaches a plateau at approximately 83° and does not show an observable dependence on 𝑁 

for 𝑁 ≥ 25. Given that the entropy of an ideal chain scales with chain length, Δ𝑆 ~ 𝑅𝑒
2 ∼

𝑁, and that confinement causes a loss of entropy proportional to 𝑁,[38] it is initially 

surprising that θc does not depend on N for large N or strong confinement as shown in 

Figure 3.7b. To verify my empirical definition of 𝜃𝑐, I have calculated the free energy of 

infiltration using umbrella sampling for select values of 𝑁. The umbrellas are implemented 
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by biasing the separation between centers of mass between the surface containing the 

capillary and the polymer melt with a harmonic potential. The critical contact angle 

determined based on free energy calculations for three values of 𝑁 (Figure 3.7a and b) 

show little dependence on N and are slightly larger than plateau I obtained based on the 

diffusion length criteria. The small difference in 𝜃𝑐 obtained using the two approaches I 

believe may be due to an entrance effect near the base of the capillary. 

  

Figure 3.7: (a) Critical contact angle versus chain length, N, and (b) degree of confinement, δ. The critical 

angle for infiltration of flexible chains plateaus around a value of 83° whereas the critical value for stiff 

chains plateaus around 77°. The dashed lines indicate theoretical predictions from the energy balance. (c) 

Diagram showing how change in height, dh, relates to pore geometry and free energy. 

 

3.5 Computing Critical Contact Angle using Umbrella Sampling 

Umbrella sampling is often used in free energy calculations to facilitate the calculation 

of the free energy along a reaction coordinate in a system. In my system, the desired free 

energy is the free energy change as the height of the polymer in the capillary increases; 

since I only am interested in the sign of the derivative as the polymer height increases, I do 

not need to know the absolute free energies. I employ an umbrella potential 𝑈𝑢𝑚𝑏(𝑧) =

 

(a) 
(b) 

(c) 
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𝐾

2
(𝑧 − 𝑧0)2 where K is the potential strength and z is the center of mass separation of the 

polymer melt and the rigid body containing the capillary. This potential holds the 

infiltrating fluid at a height inside the capillary by constraining the center of mass 

separation to 𝑧0. By varying 𝑧0, I can reconstruct the free energy gradient experienced by 

the polymer fluid for different contact angles as it infiltrates and observe when the gradient 

changes sign (i.e., from negative (infiltrating) to positive (non-infiltrating)). 

I compute the biased potential of mean force from −𝑘𝑇 ln 𝑃(𝑧) where 𝑃(𝑧) is the 

probability distribution of center of mass separations. The bias is then removed to give the 

actual relative free energy 𝑤(𝑧) = −𝑘𝑇 ln 𝑃(𝑧) − 𝑈𝑢𝑚𝑏(𝑧). Sample plots of 𝑧(𝑡) −

𝑧0, −𝑘𝑇 ln 𝑃(𝑧 − 𝑧0), and 𝑤(𝑧) are shown in Figure 3.8. Addition of a constant to free 

energy curves calculated at different values of 𝑧0 (infiltration heights) can be used to 

reconstruct the full free energy curve as shown in Figure 3.8a. I calculate the slope of the 

free energy curves for several values of 𝑧0 and use the variation in the slope as an estimate 

for the error. Plotting slope versus 𝜃 in Figure 3.9b allows us to graphically show the 

location of the critical value from the free energy gradient. 

 (a) (b) 
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Figure 3.8: (a) The biased potential of mean force is computed from the probability distribution of z – z0 

produced by the umbrella sampling simulations. (b) Subtracting the biasing potential from the PMF 

provides free energy curves with unknown additive constant. 

 

Figure 3.9: (a) Specifying the offsets for free energy curves manually allows us to roughly reconstruct the 

full free energy curves. I observe that for the 6 different contact angles the slope of the free energy switches 

signs. (b) Fitting a line to the slopes of the free energy curves vs contact angle allows us compute the 

critical contact angle ( ≈ 82°). Error bars are computed from replicates and multiple sampling windows. 

(a) 

(b) 
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The center of mass coordinate, z, was converted into a height coordinate, h, using the 

expression 

 

ℎ =
𝐴𝛿0

𝐴𝑐 − 𝐴
(1 − √1 −

𝐴𝑐 − 𝐴

𝐴𝑐
[1 −

2𝑧

𝛿0
+

𝐴𝑠

𝐴 − 𝐴𝑐 + 𝐴𝑠

𝐻

𝛿0
]) 3.3 

where A is the area of the polymer film, 𝐴𝑐 is the cross-sectional area of the capillary, 

𝐴𝑠 is the surface area of the capillary, 𝛿0 is the initial thickness of the polymer film, and H 

is the full height of the capillary. 

 

3.6 Deriving the Free Energy Model 

To understand this trend, I develop a free energy model accounting for contributions from 

surface free energy and the confinement free energy[38] similar to the model presented 

recently.[48] As shown schematically in Figure 3.7c, the change in surface area with a 

change in height 𝑑ℎ is 𝑑𝐴 = 𝜋𝐷𝑑ℎ and thus the gain in surface energy can be expressed 

as (𝛾𝐶 − 𝛾𝑃𝐶)𝑑𝐴 where 𝛾𝐶 is the capillary surface energy and 𝛾𝑃𝐶 is the polymer-capillary 

interfacial energy. The differential change in the confinement free energy as the fluid 

height increases can be expressed by taking into account the loss of conformational entropy 

𝑘𝐵𝑇 (
𝑁𝑏2

𝐷2 ) 𝜌𝑑𝑉, where 𝜌 = 𝜌0/𝑁 is the density of polymer chains, and 𝑑𝑉 =
𝜋𝐷2

4
𝑑ℎ is the 

increase in volume of the polymer in the cylindrical tube. Combining the entropic penalty 

with the contributions from the interfacial tension, the total change in the free energy upon 

a change in height dh is the sum of these two contributions, which gives 

𝑑𝐹 = (𝛾𝐶 − 𝛾𝑃𝐶)𝜋𝐷𝑑ℎ + 𝑘𝑇 (
𝑁𝑏2

𝐷2
) 𝜌

𝜋𝐷2

4
𝑑ℎ. 3.4 
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By substituting in Young’s equation[57], cos 𝜃 = (𝛾𝑃𝐶 − 𝛾𝐶)/𝛾, converting the chain 

density, 𝜌, to the monomer density, 𝜌0 = 𝜌𝑁, and setting the free energy change 𝑑𝐹/𝑑ℎ =

0, an analytical solution for the critical contact angle can be obtained as 

cos 𝜃𝑐 =
𝜌0𝑘𝑇𝑏2

4𝛾𝐷
. 3.5 

Remarkably, Eq. 3.5 suggests that the critical contact angle does not depend on N, 

consistent with my simulations results for 𝑁 >  25.  This result can be rationalized by 

considering the competing effects of chain entropy and the number of chains in the 

cylindrical pore. Although increasing the confinement of a single chain results in a loss of 

entropy, this change is compensated by the number of chains confined in the cylindrical 

pore such that the total melt entropy remains constant. Eq. 3.5 also predicts that critical 

contact angle should depend on Kuhn length, b, such that a polymer with a larger Kuhn 

length would result in smaller 𝜃𝑐.  

To test this prediction, I perform infiltration simulations with a semi-flexible model 

polymer that has a larger Kuhn length, which are produced by adding the angle potential 

𝑢(𝜃) =
𝑘

2
(𝜃 −

2𝜋

3
)

2

 along the backbone of the polymer chain.[50] Calculating the 

persistence length from the decay of the bond-autocorrelation function, I show that these 

semi-flexible chains with 𝑏 ≈ 2𝑙𝑝 ≈ 2.62𝜎 are stiffer than the flexible chains where 𝑏 ≈

1.24𝜎.  

The critical contact angles calculated for these semi-flexible chains using the kinetic and 

the umbrella sampling approaches are also shown in Figure 3.7a. As was the case with the 

flexible chain, the critical contact angle shows a reduction up to 𝑁 ≈ 25 and then plateaus 

around 77°, lower than that of the flexible chains.  
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I can analytically predict the value of the plateau in cos 𝜃𝑐 by substituting Eq 3.1 into Eq 

3.5 and taking the limit for large N to find 

cos 𝜃𝑐 =
𝑏/𝐷

4 (
𝛾1

𝜌0𝑏𝑘𝐵𝑇
+ Γ∞ (1 −

2𝐴
Γ∞𝑁))

≈
𝑏/𝐷

4(Γ1 + Γ∞)
  3.6 

where Γ1 =
𝛾1

𝜌0𝑏𝑘𝐵𝑇
. I observe from Eq 3.6 that dimensionless surface tensions for both 

simple fluid (Γ1) and infinite chains (Γ∞) and the ratio 𝑏 𝐷⁄  are sufficient to characterize 𝜃𝑐 

in the long-chain limit. Since the monomeric fluid has the same dimensionless surface 

tension Γ1 for both polymer models, and if I assume Γ∞ is insensitive to small changes in 

the backbone stiffness, then the changes in 𝑏 accounts for the plateaus of 83° and 77° 

observed in 𝜃𝑐 in Figure 3.7a and b. Thus, the more rigid polymer backbones decrease the 

critical contact angle for infiltration more than a flexible polymer backbone. 

 

3.7 Critical contact angle of polymer infiltration into nanoparticle packings 

Although I observe a depression of the critical contact angle in cylinders that is 

independent of chain length for long chains, I wish to know whether these results extend 

to infiltration in nanoparticle packings. Due to the large size of the packings, umbrella 

sampling becomes significantly slower and more expensive due to the large number of 

simulations and high degree of parallelism required to perform it efficiently. Therefore, I 

rely on dynamic profiles of infiltration to determine the critical contact angle. 

Using chains with length 𝑁 = 1, 5, 10, 25, and 50, I calculated their critical contact 

angles in the nanoparticle packing by infiltrating them into the same packings from 

Chapter 2.2  at different contact angles. The height was calculated following the 
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integration protocol in Chapter 2.3 with a cut-off fraction of 99% of the total monomers. 

A plot of height vs time for a simple fluid (N=1) is shown in Figure 3.10 for different 

contact angles. It is not immediately apparent which curves are infiltrating or not near the 

critical angle, since the height changes slowly with time. To make visualization easier, 

the profiles of height versus time, such as those shown in Figure 3.10a, are converted into 

profiles of height versus contact angle, as shown in Figure 3.10b, by plotting profiles at 

select time points. As contact angle increases in these plots, the height profiles converge 

together, indicating that there is less infiltration. We can extract a qualitative estimate of 

the critical value from these plots by looking at the contact angle where the height curves 

appear to converge. In the simple fluid case (N = 1) shown in Figure 3.10a and b, contact 

angles higher than 90° provide a visual baseline for the variance in the height that can be 

used to determine whether infiltration is occurring. 
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Figure 3.10: (a) Simple fluid infiltration h vs t (b) Simple fluid h vs theta for select time points showing that 

infiltration appears to stop at 90°. (c) N = 5 infiltration h vs θ for select time points. Infiltration appears to 

stop just above 80°. (d) Critical contact angle values for different chain lengths. 

In Figure 3.10c, I show a sample set of curves for N=5 to illustrate how these curves 

appear for a polymer. Although I did not perform infiltration for polymers above a 

contact angle of 90°, the polymers should have a very similar baseline to the simple fluid 

case. Visually comparing to the baseline in Figure 3.10b, it appears that the critical 

contact angle is around 80°. We can approximate the error in the critical contact angle 

using the distance between the critical contact angle and the surrounding contact angles 

used for other infiltration trajectories. After extracting the critical contact angle for each 

system, I observe in Figure 3.10d that they also have a plateau as observed in the 

a b 

c d 
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cylindrical capillaries. Since this is a less precise method for extracting the critical 

contact angle, the plateau is at a lower value than observed in cylindrical capillaries. 
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3.8 Summary 

In this work, I have shown that despite the confinement-induced loss of entropy that is 

experienced by individual polymer chains, the critical contact angle that induces 

spontaneous surface-driven infiltration of polymers into cylindrical pores does not strongly 

depend on N, for large N. The stiffness of the chain, as represented in terms of the Kuhn 

segment length, rather than the overall length of the chain determines the critical contact 

angle. The implications of these findings are that stiffer chains in a melt have a smaller 

window of contact angles under which they can infiltrate narrow pores. Additionally, 

studying model cylinder geometries provides insight for polymer imbibition into other 

porous media such as random packings of nanoparticles, which have paved the way 

towards new fabrication methods of composite materials with extremely high volume 

fractions of nanoparticles.[4] However, nanoparticle packings have many features that are 

not present in cylinders, including a cross-section that varies with height. The presence of 

expansions and constrictions in the cross-section could introduce large barriers into the free 

energy due to the change in the free surface area. Thus, it would be useful to study 

capillaries that share these structural features with nanoparticle packings. 
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CHAPTER 4: Infiltration of polymer into nano-capillaries with 

periodically varying cross-section 

4.1 Introduction 

Capillary infiltration is typically modeled with the Lucas-Washburn equation. As 

explained in Chapter 1.3, the Lucas-Washburn equation is derived for cylindrical 

geometries and adapted to packings using empirical correction factors. Despite the success 

of this simple model, it would be useful to investigate whether other geometries could 

provide insight into other features relevant to different porous media. A feature of 

nanoparticle packings not captured by cylinders is the changing cross-section with height 

and variation in pore size. As described in Chapter 2.3, regions with necking can be very 

important to the final distribution of polymers in undersaturated systems; however, small 

necks could potentially provide physical barriers for infiltration to occur.  

An interesting alternative geometry to explore is a capillary with sinusoidally varying 

diameter. This geometry retains the smooth, continuous features of a cylinder while also 

capturing the periodic constrictions of a nanoparticle packing and excluding tortuosity and 

pore connectivity. Prior work on these capillaries of non-constant cross-section has almost 

exclusively focused on macroscale problems using continuum theory, such as the 

derivation in Chapter 1.3. However, in nanoparticle packings, confinement and non-

continuum mechanics could be important to understanding the infiltration behavior of 

polymers. Additionally, only one study attempts to connect free energy to infiltration 

behavior in these wavy capillaries, but doesn’t verify the validity of the free energy they 
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compute[37]. Figure 4.1 shows the power consumption, free energy, tube radius, 

infiltration resistance, and curvature of the capillary in question. 

 

Figure 4.1: Variation of meniscus curvature, resistance to liquid flow, tube radius, free energy as the liquid 

penetrates the tube and the accompanying power consumption by the liquid during penetration are plotted 

as a function of position in the sinusoidal tube. At the constrictions, marked by an arrow, the curvature of 

the meniscus, resistance to flow and power consumption increase. The free energy decreases monotoni- 

cally as penetration proceeds. These calculations were for silicone oil (𝜂 = 971 cP, 𝛾 = 21.2 dyn cm-1, 𝜃 = 

20°)[37]. 

Finally, wavy capillaries with low wave amplitudes are favored in these studies because 

the meniscus cannot satisfy the contact angle without intersecting the wall at multiple 

points in continuum mechanics studies. However, infiltration into packings of very high 

aspect ratio particles would include pores with wave amplitudes well above those studied 

previously. Additionally, no one has yet applied molecular dynamics simulations to 

studying capillaries with sinusoidally varying cross-section. Molecular dynamics has the 
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advantage of simulating polymer confinement and the infiltrating meniscus directly at the 

molecular scale rather than relying on assumptions from continuum theory. 

Therefore, the goal of this chapter is to understand the influence of necks and voids in 

capillaries with sinusoidal walls and exploring the connection between the local free energy 

landscape and infiltration dynamics. I will use umbrella sampling combined with 

infiltration studies to map out the free energy as a function of height and determine how 

the infiltration height is affected, and the results will be compared to analytic continuum 

models. 

 

4.2 Making Wavy Capillaries 

Wavy capillaries are generated using a sinusoidal function 𝐷(ℎ) = 𝐷0 + 2𝐴0 cos (
2𝜋ℎ

𝜆
+

𝜙) where 𝐷0 is the average or “cylinder” diameter of the capillary, 𝐴0 is the amplitude of 

the wall variation, ℎ is the height along the axis of the capillary, 𝜆 is the wavelength of the 

sinusoid, and 𝜙 is a shift factor that changes whether the mouth of the capillary is a void 

or neck. Capillaries are constructed with unit area per site of 0.717, which is similar to the 

surfaces of the plates, cylinders and particles in my previous studies. Figure 4.2a shows an 

example capillary to illustrate. I do not account for the curvature of the free surface in the 

following calculations. This is partially to simplify the calculation so that an analytical 

model can be derived but is also found to agree well with the simulated free energy curves. 

Additionally, due to the high wave amplitudes in the capillaries, a spherical meniscus 

cannot satisfy both the contact angle and capillary boundaries.  
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Figure 4.2: (a) A wavy capillary is characterized by its amplitude, A, radius, R, and wavelength, λ. (b) 

The free energy in a wavy capillary has 3 main contributions: polymer confinement (orange), free surface 

expansion and contraction (red), and wetting (green). (c) By changing the relative importance of each term, 

barriers can be introduced into the free energy profiles. Increasing the contact angle, θ, reduces the role of 

wetting and halts infiltration. 

 

4.3 Derivation of the Free Energy Model 

The volume of a wavy capillary is calculated as  

𝑉 = 𝜋ℎ (
𝐷0

2

4
+

𝐴0
2

2
) +

𝜆𝐴0𝐷0

2
sin (

2𝜋ℎ

𝜆
) +

𝜆𝐴0
2

8
sin (

4𝜋ℎ

𝜆
) 4.1 
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When compared to a cylinder with similar diameter, the volume is observed to increase 

faster on average in the wavy capillary than the cylinder. Scaling the volume by 𝐷2 and 𝜆 

(a cylinder with same average volume and height equal to a single period) shows that two 

main groups emerge, 𝑊 =
𝐴0

𝐷0
 and 𝐻 =

2𝜋ℎ

𝜆
. The first group W indicates how wavy the 

capillary is and the second indicates the fluid height relative to constriction/expansion 

locations. 

The free energy can be derived by considering the free energy of confinement, wetting, 

and free surface. For a given change in height, the volume changes as 𝑑𝑉 =
𝜋𝐷2(ℎ)

4
𝑑ℎ, the 

wetted perimeter changes as 𝑑𝐴 = 𝜋𝐷(ℎ)𝑑ℎ, and the free surface area (i.e. the capillary 

cross-section) changes as 𝑑𝐴 =
𝜋𝐷

2
(

𝑑𝐷

𝑑ℎ
) 𝑑ℎ. Using the de Gennes confinement free energy 

for a chain in a melt, the free energy gradient can be written as  

𝑑𝐹 = 𝜌0𝑘𝐵𝑇 (
𝑏

𝐷
)

2 𝜋𝐷2

4
𝑑ℎ − 𝛾𝑝 cos 𝜃 𝜋𝐷(ℎ)𝑑ℎ + 𝛾𝑝

𝜋𝐷

2
(

𝑑𝐷

𝑑ℎ
) 𝑑ℎ. 4.2 

Integrating along the height of the capillary gives  

Δ𝐹 =
𝜋

4
𝜌0𝑘𝐵𝑇𝑏2ℎ − 𝜋𝐷0𝛾𝑝 cos 𝜃 ℎ − 𝜆𝐴0𝛾𝑝 cos 𝜃 [sin (

2𝜋ℎ

𝜆
+ 𝜙) − sin 𝜙]

+ 𝜋𝐴0𝐷0𝛾𝑝 [cos (
2𝜋ℎ

𝜆
+ 𝜙) − cos 𝜙]

+ 𝜋
𝐴0

2

2
𝛾𝑝 [cos (

4𝜋ℎ

𝜆
+ 2𝜙) − cos 2𝜙] 

4.3 

Since the infiltrating driving force is proportional to cos 𝜃, I expect that changing 𝜃 will 

lead to regimes where there are appreciable barriers along the capillary. This is predicted 

in Figure 4.2 showing the effect of changing 𝜃 on free energy.  
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Observe that H appears in the free energy and that scaling by 𝐷𝜆 produces W and 2 other 

groups. The scaled equation becomes  

ℱ =
𝐵𝐻

8
− Γ𝑝 cos 𝜃 [

𝐻

2
+ 𝑊Δ sin(𝐻 + 𝜙)]

+
𝐺Γ𝑝

2
[Δ cos(𝐻 + 𝜙) +

𝑊

2
Δ cos(2𝐻 + 2𝜙)] 

4.4 

with the groups ℱ =
Δ𝐹

𝜌0𝑘𝐵𝑇𝑏𝐷0𝜆
, 𝐵 =

𝑏

𝐷
, Γ𝑝 =

𝛾𝑝

𝜌0𝑘𝐵𝑇𝑏
, 𝐺 =

2𝜋𝐴0

𝜆
. The group G is an estimate 

of the maximum slope of the capillary wall, which indicates how rapidly the cross-section 

changes. Plotting the free energy in Figure 4.3:  for high G (a) and low G (b) shows that G 

can dictate whether the necks and avoids create periodic barriers in the capillary. 

 

Figure 4.3: λ = 4, A0 = 3 has rapidly changing cross-section and barriers exceeding kBT by ~102. (b) λ = 

16, A0 = 2 has a slowly changing cross-section with no barriers in the total free energy. Changing the 

geometric parameters of the wall, I can artificially create energy barriers even under highly wetting 

conditions. Thus, some highly wavy walls would be resistant to infiltration of most imbibing fluids. 
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4.4 INDirect Umbrella Sampling 

As explained in Chapter 3.5, umbrella sampling is a free energy computation method that 

uses biasing potentials to improve sampling in particular regions of phase space. Whereas 

sampling infiltration free energies in cylinders was performed by controlling the center of 

mass separation between the cylinder and the polymer melt, this method of umbrella 

sampling was determined to not be sensitive enough to capture the features of the free 

energy model for the wavy capillaries. Therefore, I turned to a technique called INDirect 

Umbrella Sampling (INDUS). INDUS computes the probability that a number of atoms, 

N, are found in a probe volume. It was originally developed as a means to study water 

thermodynamics, wetting, and the free energy of hydration around proteins[58]–[60]. The 

biasing potential is computed as (𝑁) =
𝜅

2
(𝑁̃ − 𝑁∗)

2
 , where 𝜅 is the strength of the biasing 

potential, 𝑁∗ is the window center, and 𝑁̃ is a field that is closely correlated to the number 

of atoms found in the probe. This field smears the interaction between particles, 𝒓𝒊, and the 

boundary of the probe volume, 𝑣, and is computed over all atoms, M,  

𝑁̃ = ∑ ∫ Φ(𝒓 − 𝒓𝒊)𝑑𝒓
 

𝑣

𝑀

𝑖=1

 4.5 

where Φ(𝒓 − 𝒓𝒊) = 𝜙(𝑥)𝜙(𝑦)𝜙(𝑧) and 𝜙(𝛼) ∝ [𝑒−𝛼2 2𝜎2⁄ − 𝑒−𝛼𝑐
2 2𝜎2⁄ ]Θ(αc − |𝛼|). 

Thus, as particles approach the boundary of the probe volume, they contribute to the overall 

number of particles in the probe volume to give a continuous bias potential. Also, since the 

smearing function 𝜙(𝛼) is cut-off at 𝛼𝑐 forces are only applied on particles that are close 

to the boundary, rather than the entire set of particles. 
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I use a cylindrical probe volume with diameter 𝐷0 + 2𝐴0 and with base at -1 and stretching 

the entire length of the capillary to sample the number of monomers within a wavy 

capillary. Since the capillary starts at ℎ = 0, the probe volume extends a short way into the 

melt to allow sampling of the free energy for the interface relaxation as well as the start of 

infiltration. I would expect that this interface collapse is roughly quadratic with height since 

the interface forms a spherical cap. 

After sampling the free energy as a function of the number of monomers in a capillary, I 

can convert N to h by fitting 𝜌0𝑉(ℎ) to data from all the umbrella windows. Finally, all the 

umbrella windows are stitched together using the Weighted Histogram Analysis Method 

(WHAM) [58], [61]–[63]equations 

𝑒−𝛽𝑓𝑘 = 𝐶 ∑ ∑
𝑒−𝛽𝑈𝑘(𝑁̃𝑗𝑙)

∑ 𝑛𝑖𝑒−𝛽[𝑈𝑖(𝑁̃𝑗𝑙)−𝑓𝑖]𝑛𝑤

𝑖=1

𝑛𝑗

𝑙=1

 

𝑛𝑤

𝑗=1

 4.6 

where {𝑓𝑘} is the set of free energy offsets, 𝑈𝑘 is the bias potential, and the double sum 

runs over each of the total 𝑛𝑤 windows and over all the bins 𝑛𝑗  in the jth window, 

respectively. The constant 𝐶 is a normalization constant for the total histogram. This 

method reweights the distributions from each window by minimizing the overlap error 

between the distribution tails. This is identical to applying a vertical shift to the potential 

of mean force in each window so that a continuous free energy curve is produced. 
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Figure 4.4: Free energy from theory predicts the presence of local minima and maxima that can vanish 

above a certain contact angle. The same is observed in simulations for the contact angles of 0°, 84°, and 

90°, however, the free energy barriers are lower than predicted. 
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Figure 4.4b shows 3 curves produced by INDUS for different contact angles as well as a 

set of probabilities below that were used to generate the θ = 0° curve. The model is 

plotted with the curves as dashed lines. I observe good qualitative agreement between the 

theory and the computed free energy. The locations of minima and maxima appear to 

match remarkably well, although the predicted barriers are almost twice as a big. This 

discrepancy is probably a result of approximations used in deriving the free energy. The 

model assumes a flat interface rather than a curved interface, which is closer to the 

simulation than expected as shown in the four simulation snapshots in Figure 4.4a. 

4.5 Infiltration Comparison 

In order to determine how the free energy landscape influences infiltration, I simulate 

infiltration using different contact angles and observe the profiles of h vs t. Figure 4.5 

shows curves from 4 different contact angles that are representative of different infiltration 

behaviors. For a contact angle above 84°, I observe that there is no infiltration happening 

within the simulation time; this is consistent with the discussion of critical contact angle 

𝜃𝑐 in Chapter 3.6, which for flexible polymers under similar confinement ratios had a 𝜃𝑐 =

84°. However, below 84° infiltration is observed with two distinct modes. For higher 

contact angles, infiltration occurs periodically as a series of jumps from minimum to 

minimum in the free energy as denoted by the solid horizontal lines. These minima match 

the locations of constrictions along the axis of the capillary, which is consistent with the 

idea that the area of the free surface dominates the free energy. The residence time at each 

constriction is qualitatively observed to decrease as the contact angle increases, but there 

are insufficient data to recover a numerical residence time. Finally, for the lowest contact 
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angles (𝜃 < 40°), infiltration progresses smoothly and without clear distinction of minima 

despite the presence of shallow wells in the free energy. 

 

Figure 4.5: (a) At θ = 90° infiltration is not observed at all. (b) At θ = 84° infiltration is still observed, but 

proceeds stepwise jumping between minima, indicating that infiltration for this system is an activated 

process. (c) At θ = 72° infiltration still proceeds stepwise, but individual jumps become harder to distinguish. 

(d) At θ = 40° infiltration proceeds smoothly without jumping like would be expected in a Lucas-Wasburn 

system.  

 

(a) (b) 

(c) (d) 
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4.6 Summary 

In conclusion, capillaries with non-constant cross-section have a rich and dynamic and free 

energy landscape that could provide insight into infiltration in nanoparticle packings. From 

continuum theory, I observed that the free energy of infiltration into a wavy capillary can 

exhibit barriers corresponding to voids along the axis of the capillary. From molecular 

dynamics simulations of polymer infiltration into wavy capillaries, I also observe that when 

the barriers are low enough, infiltration can still proceed, but appears to follow an activated 

pathway. This implies that rather than smoothly infiltrating along the capillary, the 

polymers are forced to jump from constriction to constriction following a probability 

related to the free energy barriers. These constrictions appear to act like enthalpic traps that 

polymers must overcome in order to penetrate deeper into the pore. It also implies that 

probability of making it over the barrier could be exponentially improved by increasing the 

temperature at which infiltration occurs. 
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CHAPTER 5: Conclusions and Outlook 

5.1 Conclusions 

Polymers infiltrating under extreme confinement exhibit a range of different behaviors 

not seen in bulk. These make it possible for polymer infiltration to be an excellent means 

to create polymer nanocomposites by using capillarity to infiltrate a nanoparticle film. 

Additionally, it can be used to create gradient and uniformly porous nanocomposite thin 

films by changing the relative thicknesses of the initial layers. These films have excellent 

mechanical properties and porosity even at very low polymer fill fractions due to 

reinforcement from particle bridging[20], making them excellent candidates for 

separation  membranes and lightweight structural materials. 

Infiltration of cylindrical capillaries and nanoparticle packings comes at the loss of 

polymer entropy. This is demonstrated by the depression in the critical contact angle, 

which is found to decrease for short chains and plateau for long chains. In melts, this is 

due to the melt entropy being constant for different chain lengths. However, stiffer chains 

experience a bigger loss of melt entropy, making it less energetically feasible for them to 

infiltrate. This ultimately means that they require stronger wetting in order to infiltrate 

under extreme confinement.  

Finally, capillaries with sinusoidally varying diameters are potential model systems 

for understanding how variations in cross-section affect infiltration in nanoparticle 

packings. The free energy of these capillaries is observed to have local minima and 

maxima around constrictions and expansions, respectively. This is due to the large 

change in free surface area, which dominates the free energy. Barriers between these free 
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energy wells lead to different infiltration behaviors depending on the contact angle. 

Below 90° non-infiltration, activated jumping, and Lucas-Washburn like infiltration are 

observed. This indicates that there may be new and important ways to tune infiltration in 

nanoparticle packings that hadn’t been considered previously. 

From the findings of this study we can see that there are a number of outstanding 

questions that merit investigation. Studies on the confinement of stiff polymers and DNA 

molecules indicate that other regimes of confinement could yield surprising results 

compared to the de Gennes regime studied here for melts of flexible and semi-flexible 

polymers. It is not understood whether polymers would experience even greater 

resistance to infiltration at higher stiffnesses, or whether they could infiltrate via an 

entirely different mechanism. These regimes could also yield interesting results if the 

infiltration was performed in solvent instead of the melt state since the solvent quality 

would form an integral part of the infiltration mechanism. Finally, the free energy of 

infiltration could be greatly affected by the nature of the packings themselves and the 

anisotropy of the nanoparticles that make them up. We already know that polymers 

experience greater resistance to infiltration in capillaries with a high wave amplitude, but 

it is not known whether that translates into resistance in anisotropic packings. 

We should also consider the temporal characteristics of polymer infiltration rather 

than just the free energy. The effect of confinement on polymer viscosity and infiltration 

rate has indicated that the chain dynamics can change drastically compared to bulk and 

are non-monotonic. This could provide many new questions for study, including whether 

we can observe polymer dead zones and disentanglement effects directly in MD 
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simulations. It could also be useful to examine whether the extensional viscosity and 

shear thinning characteristics of the polymers play a role in the mechanics of polymers 

with different chain lengths and stiffnesses. In the following sections I will discuss these 

questions in more detail and put forward some preliminary research that may indicate 

interesting avenues for the further research. 

5.2 Confinement Free Energy of Stiff Polymers 

For biopolymers and very stiff synthetic varieties, D < 𝑙𝑝, the de Gennes free energy 

breaks down. Instead of following random statistics, the polymers behave more like stiff 

rods that are deflected by the capillary walls. Depending on the type of polymer, the free 

energy can be described using a couple of different theories, although the two most well 

known were put forth by Odijk[64]–[66]. For many stiff polymers under strong 

confinement, the free energy is described in terms of a deflection length, 𝜆 ≈ (𝐷2𝑙𝑝)
1 3⁄

 

which represents the distance between points of contact between the polymer and the 

capillary as it is deflected along the capillary axis. I did not consider this case in my 

research as the polymers I modeled never had sufficiently high stiffness values to deflect 

along the length of the capillary.  

More recently, there has been a push to unite the de Gennes and Odijk regimes into 

one theory. The most successful model to date is known as the Telegraph Model and 

describes polymers using a 1-D random walk[66]. It is unclear whether my polymers fall 

in this regime, but it may be informative to revisit some of the free energy arguments in 
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this paper with knowledge of the telegraph model to look at how bio-polymers and other 

stiff polymers infiltrate under such extreme confinement. 

5.3 Free Energy landscape with solvent addition 

While all the studies conducted in this thesis were performed on polymers in the melt 

state, infiltration can also occur in the presence of solvent. Solvent driven Infiltration of 

Polymers (SIP) is related to CaRI but relies on the entropy of mixing of polymers in 

solvent rather than capillary forces to induce infiltration[67]. Thus, by using different 

solvents with a range of solvent qualities for a particular polymer, it is possible to change 

both the rate and extent of infiltration into the nanoparticle packings. 

Figure 5.1 shows a schematic demonstration of the SIP process. The process starts 

with a polymer nanoparticle bilayer, to which solvent vapor is introduced. Due to the 

small size of the nanoparticles which leads to high local curvature in the packing, the 

solvent vapor condenses within the top layer of the film. It then diffuses into the lower 

polymer layer and swells it, mobilizing polymers chains to infiltrate. 
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Figure 5.1: Schematic illustration of solvent-driven infiltration of polymer (SIP) into a NP film. A 

polymer/NP bilayer is annealed with solvent vapor, leading to capillary condensation of solvent in the NP 

packing, followed by swelling and infiltration of polymer[67]. 

From Figure 5.2a, it is observed that for a polystyrene (PS) and silica bi-layer, a smaller 

fraction of the nanoparticle film is infiltrated for higher Flory-Huggins 𝜒 parameter. This 

is because solvents with higher 𝜒 have weaker interactions with PS and therefore, are 

poorer solvents. Poorer solvents are not as good at swelling and softening the polymer 

layer, thus leading to less infiltration. It is also observed that the extent of infiltration is 

greater for packings made with smaller nanoparticles. Figure 5.2b shows that even very 

high molecular weight polymers can infiltrate into nanoparticle packings with good 

solvents. 
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Figure 5.2: Volume fraction of PS in the NP packing (ϕPS) (A) for PS (Mn = 8000 g/mol) into 23 nm 

particle packings (circles) and 77 nm particle packings (diamonds), after 30 min (closed) or 24 h (open) of 

vapor exposure for various solvents at different χ, and (B) using different good solvents (χ < χc) as a 

function of PS molecular weight after 30 min of vapor exposure[67]. 

SIP has the advantage over CaRI of not requiring heat to mobilize the polymer. Also, the 

wide range of polymer and solvent interactions available provide a way to finely tune the 

extent of infiltration. However, free energy of infiltration in the presence of solvent is not 

well understood. It is possible, since SIP does not rely on capillarity that the critical 

contact angle for infiltration would match the Lucas-Washburn limit or that cross-

sectional variation has a different impact on the infiltration process. These would be 
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interesting questions to determine since SIP is a promising route toward improving the 

environmental footprint of CaRI. 

5.4 Free energy of infiltration in packings of anisotropic particles 

The packings and capillaries in this study assume roughly spherical particles. However, 

packings of platelets or rods with high aspect ratio could have very different free energy 

landscapes due to their different packing fractions, cross-sectional variation and 

morphologies. An example of nanoparticle anisotropy influencing polymer behavior can 

be observed in studies of polymers diffusing within nanocomposites. These studies 

indicate that high aspect ratio nanoparticles can significantly and non-monotonically 

change the diffusivity of polymers[68], [69]. This is demonstrated in Figure 5.3 where 

panel (a) shows that polymer diffusivity decreases as a function of nanorod fraction when 

the polymers are shorter than the nanorod length. However, when polymers have a larger 

𝑅𝑔 than the nanorod length as shown in panel (b), the diffusivity initially drops but then 

recovers. This is attributed to an enhancement in polymer diffusivity along the axis of the 

nanorods, which is enhanced above the percolation threshold of the nanoparticles. This 

provide an interesting route towards creating structures that closely resemble the brick 

and mortar structures of nacre, or the Bouligand structures in the mantis shrimp dactyl 

club. 
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Figure 5.3: Reduced tracer diffusion coefficients of dPS for (a) Mn = 168 (squares) and 532 (triangles) kg 

mol−1 or (b) Mn = 1866 (circles) and 3400 (inverse triangles) kg mol−1 in nanocomposites containing NR-

long (ϕNR = 0−0.1) exhibiting a monotonic decrease or a minimum of diffusion coefficients, respectively. 

Insets describe the local polymer diffusion in the direction parallel (D||) and perpendicular (D⊥) to NRs, 

depending on the relative size of the RNR to Rg; (a) isotropic tracer diffusion (D|| ≅ D⊥) when RNR > Rg and 

(b) anisotropic tracer diffusion (D|| > D⊥) when RNR < Rg[69]. 
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5.5 Influence of dynamics and extensional viscosity 

Experimental studies of confined polymers undergoing CaRI in nanoparticle packings 

indicate that the viscosity increases several orders of magnitude relative to bulk for short 

chains[40], [48]. Figure 5.4 shows the relative viscosity increase and glass transition 

temperature increase with increasing confinement ratio. 

 

Figure 5.4: (a) Normalized viscosity (μconfined/μbulk) obtained for PS undergoing CaRI at T = 403 K and the 

(b) ΔTg (Tg − Tg,bulk) as a function of confinement ratio (CR). The lines are to guide the eye[21], [40]. 

However, this phenomenon is not easy to explain. The data from CaRI and glass 

transition temperature measurements indicate that both local and global chain dynamics 
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are slowing down, but the exact origin of this slow down remains a mystery. Theory 

indicates that viscosity should increase for short chains, and then drop for longer chains, 

however, the data agrees with the model qualitatively at best[48] as shown in Figure 5.5. 

This theory is based on the competition of two effects, the formation of a dead zone near 

the wall of the pore due to polymer absorption which increases the effective viscosity, 

and the loss of entanglements relative to the bulk for long chains leading to an overall 

decrease in viscosity. 

 

Figure 5.5: Comparison between the experiment and the theory. The symbols are shown for the 

experimental data taken from reference [14]. The lines are from theoretical prediction of Equation (25). 

[48] 
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Given the variation in cross-section, I suspect that the extensional viscosity of 

polymers will be important to the infiltration process. It would be interesting to determine 

whether extensional viscosity results in the increase in viscosity for short chain polymers. 

Additionally, determining the extensional viscosity in polymer flows through converging 

and diverging capillaries could provide a novel way to measure these properties in 

simulations of confinement rather than relying on bulk measurements. 
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