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ABSTRACT

ALLOSTERIC FUNCTIONALITY IN MECHANICAL AND FLOW NETWORKS

Jason W. Rocks

Andrea J. Liu, Ph.D.

Functionally optimized networks abound in nature, efficiently and precisely control-

ling the propagation of inputs to perform specific tasks. The regulation of protein

activity via allostery presents one of the most well-studied examples: such proteins

utilize specific conformational or dynamical changes upon the binding of ligands to

facilitate communication between distant active sites. Venation networks in animals,

plants, fungi and slime molds also display a type of allosteric communication, hav-

ing the ability to precisely distribute oxygen and nutrients from a limited number

of inputs to locally support growth and activity. Whether via genetic evolution or

dynamic adaptation, many of these networks are able to create and control allosteric

functionality by locally tuning interactions between nodes. Taking inspiration from

this ability to regulate function, we approach allostery as a problem in metamate-

rials design, asking whether it is possible to create synthetic mechanical and flow

networks with allosteric properties. We show that not only is this possible, but is

remarkably easy, only requiring a small percentage of interactions in a network to be

tuned. Leveraging the large statistical ensembles of allosteric networks generated in
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this way, we show that the limits of multifinctionality in both flow and mechanical

networks are governed by the same constraint satisfaction phase transition, unifying

both systems into a single theoretical framework. Finally, we investigate the under-

lying mechanisms by which allosteric function is created in flow networks. We show

that the relationship between structure and function in flow networks is topological

in nature, not depending on local details of the network architecture. The approaches

presented in this work for studying allostery in both flow and mechanical networks set

the blueprint for understanding and controlling general functional complex networks.
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Chapter 1

Introduction

The term allostery was originally coined in 1961 by Monod and Jacob [46] to de-

scribe the inhibition of proteins “where the inhibitor is not a steric analogue of the

substrate [8].” Accordingly, it is composed of two Greek roots: allos, meaning “other”

or “different” and stereos, meaning “solid” or “body”, signifying the “difference in

specificity of the two binding sites for regulatory effector and for substrate [8].” Since

its conception, allostery has become a central focus in molecular biology, arriving

at its modern definition as “the process by which biological macromolecules (mostly

proteins) transmit the effect of binding at one site to another, often distal, functional

site, allowing for regulation of activity [47].”

Although allosteric proteins are ubiquitous in nature, with some even claiming that

all proteins are allosteric to some extent [31], a general theory of protein allostery re-

mains elusive [47]. The wide variation in observed allosteric mechanisms, along with
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the structural complexity inherent to proteins, poses a significant barrier towards de-

veloping a theoretical model that generally applies to all proteins. Faced with this

apparent disconnect between protein structure and function, much effort has instead

concentrated on developing methods to characterize allosteric mechanisms in individ-

ual proteins. These methods often focus on quantifying the dynamic and structural

conformational changes undergone by allosteric proteins or identifying pathways of

residues responsible for communicating allosteric signals [59, 14]. The guiding hope

behind this approach is that understanding the allosteric mechanisms of enough in-

dividual proteins will help to identify generic motifs, eventually providing enough

insight to develop a unified conceptual description.

Over the last few decades, a common perspective has arisen that allostery is a property

of a protein’s underlying network of interactions. In many of the approaches that have

been developed to characterize allostery, a protein is approximated as a mechanical

(or elastic) network, with edges (bonds) representing interactions between amino

acids [35]. When a localized source is applied at one site, the signal is mediated by

the network to induce a specific localized response at a second distant site. Although

this phenomenon has historically been discussed in the context of proteins, allostery

has also been more broadly framed as a property of any molecular system composed

of a network of interactions [14]. Here we propose an even more inclusive definition

of allostery: it is not just a property of molecules, but rather a property of complex

networks in general. Given this broader definition, many other types of naturally

occurring and synthetic networks could potentially exhibit allostery-like behaviors.
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In particular, venation networks in animals [77], plants [55, 66], fungi [33], and slime

molds [74] present an interesting example, as they are often composed of complex hier-

archical network structures that are optimized to direct flow from a limited number of

inputs to support local activity or growth throughout the system. While much effort

has been devoted to understanding the design and optimization of general transport

networks [1], the problem of fuctional control in flow networks has never been framed

in the context of allostery. This is in spite of the close mathematical relationship be-

tween mechanical and flow networks; in the linear regime, flow (or resistor) networks

can be mapped onto one-dimensional linear spring networks [73]. This correspondence

provides an alternative framework within which to study allostery, as flow networks

are less mathematically complex (having less degrees of freedom per node), but still

share many of the qualitative behaviors of their higher-dimensional counterparts. Ex-

perimental studies of biological flow networks suffer from some of the same obstacles

encountered when studying proteins. This is especially apparent in systems such as

the brain vasculature where significant variation in micro-scale architectures can exist

between individuals [32], although brains from individuals within the same species (or

even between different species) are ostensibly able to redistribute blood in the same

ways. Understanding how this variation does or does not affect function is difficult

as experiments are limited to sampling network architectures from relatively small

numbers of – or even single – individuals [13].

One of the most interesting properties shared by both proteins and venation networks

is the ability to regulate and change their allosteric functionality. In proteins, this

3



occurs over many generations via the accumulation of genetic mutations, modifying

a protein’s constituent amino acids and consequently its network of interactions. If

these changes cause the protein to develop some beneficial allosteric functionality,

then the corresponding genes may experience positive selection. On the other hand,

many venation networks can actively redirect flow as dictated by the needs of the

system. For example, the cerebral vasculature can dynamically contract and dilate

blood vessels, enabling the brain to actively control the propagation of blood to

support local neuronal activity [29, 26]. More generally, the ability to locally tune

the conductances of individual vessels in venation networks enable animals, fungi,

and slime molds to control the spatial distribution of water, nutrients, oxygen, or

metabolic byproducts.

Taking inspiration from the ability of both proteins and venation networks to modu-

late functionality, this dissertation follows an alternative route towards developing an

understanding of allostery. We approach allostery from the perspective of metamate-

rials design, developing techniques to create synthetic allosteric networks in both flow

and mechanical systems. In mechanical networks, we define allostery in terms of the

elastic response to applied strains, while in flow networks we consider the redistribu-

tion of pressures upon the application of external pressure sources. In both cases, an

allosteric function is one in which a specific target site responds in a predetermined

way when a source is applied at a predetermined site elsewhere in the network.

Not only does designing synthetic allosteric systems allow us to determine the ingre-

dients necessary for allostery to exist, but also allows us to generate large ensembles
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of such networks. By using these ensembles, we are better able to investigate the

types of allosteric function that are possible and simultaneously reveal the seemingly

complex relationship between structuture and function. We can also investigate to

what extent allosteric mechanisms are optimal and the trade-offs between this opti-

mality and adaptability. By efficiently creating synthetic allosteric networks, we can

also better study the statistical variation in the network architectures of such systems

without the constraints imposed by limited experimental data. The inclusion of flow

networks in our studies helps to generalize our results, providing a system which is

often simpler to understand while still giving us insight in mechanical systems.

This thesis contains content that is primarily reproduced in order from Refs. [61],

[62], and [63]. Chapter 2 starts by presenting methods to create synthetic allosteric

mechanical networks in both theory and experiment. We find that creating allosteric

functionality is remarkably easy; by simply removing a small percentage of the bonds

in a spring network, almost any initial network can be tuned to exhibit allosteric

behavior. This shows that the requirements of allostery are minimal, simply ne-

cessitating a network to have enough tunable degrees of freedom. Next, Chapter 3

extends the tuning method to include flow networks. Using this combined frame-

work, we show that the limits of multifunctionality in both systems are set by the

same constraint satisfaction phase transition. This provides strong evidence that the

problems of controlling allosteric behavior in flow and mechanical networks belong

to the same class. Chapter 4 uses topological data analysis to identify the structural

means by which allosteric functionality is created in flow networks. We find that
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the relationship between structure and function is topological in nature, providing a

universal characterization that applies to all tuned allosteric flow networks.

An additional supplemental chapter is provided at the end of the thesis, reproducing

content from Ref. [6]. This chapter contains work to which I contributed signifi-

cantly at the beginning of my doctoral studies, but does not fit as cleanly into the

narrative of this dissertation outlined above. In this work, we developed a model

of the embryonic chicken heart as a mechanically active medium. When the heart

beats, cardiac muscle cells contract in a coordinated fashion, generating a nonlinear

contractile wavefront that propagates across the heart. Traditional models of this

behavior assume this wavefront is coordinated via electrical signaling between cells.

However, recent experiments revealed that the velocity of this wavefront can depend

on the mechanical properties of the cardiac tissue, behavior that cannot be explained

by standard electrochemical signaling. To remedy this, we proposed a mechanical

signaling mechanism in which cells contract in response to strains exerted by their

neighbors. Our prediction that the embryonic heart would continue to beat even in

the absence of electrical signaling was confirmed experimentally using gap junction

blocking drugs. This result demonstrated that the embryonic heart does indeed use

mechanical signaling to coordinate the heartbeat. While this work is not specifi-

cally concerned with allostery in biological networks, it still adheres to the theme of

long-range signaling in complex biological systems. By utilizing a mechanical signal-

ing mechanism, the embryonic heart is able to robustly propagate mechanical strains

generated by a small collection of cells in a localized area throughout the entire organ.
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If one desired, this long-range signaling behavior could be interpreted as a dynamic

form of allostery, further demonstrating that developing a general understanding of

allosteric mechanisms could give insight into a very broad range of biological systems.
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Chapter 2

Designing allotery-inspired
response in mechanical networks

Note: The following content is reproduced with minor revision from Ref. [61].

2.1 Introduction

The ability to tune the response of mechanical networks has significant applications

for designing meta-materials with unique properties. For example, the ratio G/B

of the shear modulus G to the bulk modulus B can be tuned by over 16 orders

of magnitude by removing only 2% of the bonds in an ideal spring network [28].

Such a pruning procedure allows one to create a network that has a Poisson ratio

ν anywhere between the auxetic limit (ν = −1) and the incompressible limit (ν =

1/(d− 1) in d dimensions). In another example, the average coordination number of
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a network controls the width of a failure zone under compression or extension [15].

Both these results are specific to tuning the global responses of a material. However,

many applications rely on targeting a local response to a local perturbation applied

some distance away. For example, allostery in a protein is the process by which a

molecule binding locally to one site affects the activity at a second distant site [59].

Often this process involves the coupling of conformational changes between the two

sites [11]. Here we ask whether disordered networks, which generically do not exhibit

this behavior, can be tuned to develop a specific allostery-inspired structural response

by pruning bonds.

We introduce a formalism for calculating how each bond contributes to the mechanical

response anywhere in the network to an arbitrary applied source strain. This allows

us to develop algorithms to control how the strain between an arbitrarily chosen pair

of target nodes responds to the strain applied between an arbitrary pair of source

nodes. In the simplest case, bonds are removed sequentially until the desired target

strain is reached. For almost all of the initial networks studied, only a small fraction

of the bonds need to be removed in order to achieve success. As was the case in

tuning the bulk and shear moduli, we can achieve the desired response in a number

of ways by pruning different bonds. We have extended our approach to manipulate

multiple targets simultaneously from a single source, as well as to create independent

responses to different locally applied strains in the same network. Our central result

is the ease and precision with which allostery-inspired conformational responses can

be created with only minimal changes to the network structure.
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We demonstrate the success of this method by reproducing our theoretical networks

in macroscopic physical systems constructed in two dimensions by laser cutting a

planar sheet and in three dimensions by using 3D printing technology. Thus, we

have created a new class of mechanical meta-materials with specific allostery-inspired

functions.

2.2 Theoretical Approach

Our networks are generated from random configurations of soft spheres in three di-

mensions or discs in two dimensions with periodic boundary conditions that have

been brought to a local energy minimum using standard jamming algorithms [51, 43];

the spheres overlap and are in mechanical equilibrium. We convert a jammed packing

into a spring network by joining the centers of each pair of overlapping particles with

an unstretched central-force spring. We chose this ensemble because it is disordered

and provides initial networks with properties – such as elastic moduli – that depend

on the coordination of the network in ways that are understood [19, 20, 28]. We can

work either with the entire system that is periodically continued in space or with a

finite region with free boundaries that is cut from the initial network.

Starting with a network with N nodes and Nb bonds in d dimensions, our aim is to

tune the strain εT between a pair of target nodes in response to the strain εS applied

between two source nodes. (The two nodes comprising each of the target or source are
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chosen so that they are not initially connected by a bond; see Appendix). We create

a specific response in our system by tuning the strain ratio η = εT/εS to a desired

value η∗. At each step, we calculate to linear order the change in η in response to the

removal of each bond in the network using a computationally-efficient linear algebra

approach (see Methods). We then remove the bond which minimizes the difference

between η and η∗ and repeat until we reach a desired tolerance.

2.3 Computational Results

(A) Target

Source

(B)

Figure 2.1: Network with 194 nodes, 407 bonds at ∆Z = 0.19 tuned to exhibit (A)
expanding (η = +1) and (B) contracting (η = −1) responses to within 1% of the
desired response. Source nodes are shown in blue, while target nodes are shown in
black. Arrows indicate the sign and magnitude of the extension between the pairs of
source and target nodes. The removed bonds are shown as red lines.

We apply our tuning approach to networks with free boundaries in both two and

three dimensions (see Methods). We characterize the connectivity of our networks

by the excess coordination number ∆Z ≡ Z − Ziso. Here Z is the average number of

bonds per node and Ziso ≡ 2d− d(d+ 1)/N is the minimum number of bonds needed
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for rigidity in a network with free boundary conditions [27]. For each trial, a pair

of source nodes was chosen randomly on the network’s surface, along with a pair of

target nodes located on the surface at the opposing pole. (Note that we could have

chosen anywhere in the network for the location of the source and target.) In two

dimensions we chose networks that on average had 190 nodes and 400 bonds before

tuning, with ∆Z ≈ 0.19. In three dimensions networks had on average 240 nodes, 740

bonds and ∆Z ≈ 0.18. Prior to pruning, the average strain ratio of the networks in

two dimensions was η ≈ 0.03 and in three dimensions was η ≈ 0.2 for the system sizes

and ∆Z values we studied. The response of each network was tuned by sequentially

removing bonds until the difference between the actual and desired strain ratios, η

and η∗ respectively, was less than 1%.

To demonstrate the ability of our approach to tune the response, we show results

for η = ±1. Note that η > 0 (< 0) corresponds to a larger (smaller) separation

between the target nodes when the source nodes are pulled apart. Fig. 2.1 shows a

typical result for a two-dimensional network: in Fig. 2.1(A), the strain ratio has been

tuned to η = +1 with just 6 (out of 407) bonds removed; Fig. 2.1(B) shows the same

network tuned to η = −1 with a different set of 6 removed bonds. The red lines in

each figure indicate the bonds that were pruned. Animations of the full nonlinear

responses of these networks are provided in Videos 2.8 and 2.9 of the Appendix. We

note that some of the removed bonds are the same for both η = +1 and η = −1.

The average strain ratio versus the number of removed bonds is shown in Fig. 2.2(A).

Remarkably few bonds need to be removed in order to achieve strain ratios of η = ±1.
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Figure 2.2: (A) Strain ratio η versus the number of removed bonds Nr for expanding
(red) and contracting (blue) responses in both 2D (solid lines) and 3D (dashed lines).
For each response type and dimension, the strain ratio is averaged over 1024 tuned
networks constructed from 512 initial systems. Networks in 2D have about 190 nodes
and 400 bonds on average with an initial excess bond coordination of ∆Z ≈ 0.19,
while those in 3D have about 240 nodes and 740 bonds on average with ∆Z ≈ 0.18.
(B) Failure rate of tuning systems to within 1% of a specified strain ratio magnitude
in 2D (dashed lines) and 3D (solid lines) averaged over contracting and expanding
responses. (C) The distribution of the number of removed bonds for three different
strain ratio magnitudes: |η| = 0.1 (blue), |η| = 1.0 (green), and |η| = 10.0 (red).
Inset: All three distributions collapse when scaled by the average number of removed
bonds 〈Nr〉.

In two dimensions only about 5 bonds out of about 400 were removed on average

(∼1%); similarly, in three dimensions only about 4 bonds out of about 740 were

removed on average (∼0.5%). Fig. 2.2(B) shows the fraction of networks that cannot

be tuned successfully to within 1% of a given strain ratio. The failure rate is less

13



than 2% for strain ratios of up to |η| = 1 in two dimensions and less than 1% in

three dimensions. Therefore, not only does our algorithm allow for precise control of

the response, it also works the vast majority of the time. The failure rate increases

significantly for |η| � 1, but here we are considering only the linear response of the

network. Extremely large values of η necessitate an extremely small input strain at

the source and may therefore not be physically relevant.

The failure rate is insensitive to ∆Z except at very small values. In the small ∆Z

regime the failure rate is higher because very few bonds can be removed without

compromising the rigidity of the system. If we increase the bond connectivity to

∆Z ≈ 1.0 for networks in two dimensions, the failure rate remains very low, but

bonds are removed in a thin region connecting the target and source. This narrowing

of the “damage” region is reminiscent of the results of Ref. [15], in which bonds above

a threshold stress were broken, or of Ref. [28], in which bonds that contribute the

most to either the bulk or shear modulus were successively pruned.

Fig. 2.2(C) shows the distribution of the number of bonds that must be removed to

tune a network to within 1% of a desired strain ratio for |η| = 0.1, 1, and 10. These

distributions are broad and the mean shifts upwards as η increases. The inset shows

that the distributions collapse when normalized by the average number of removed

bonds 〈Nr〉. Note that we do not achieve the desired strain ratio simply by tuning

the entire free surface of the network to have large strain ratios; the response of the

designated target is large while the response between other pairs of nodes is essentially

unaffected by the source strain (see Fig. 2.12 in the Appendix).
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Figure 2.3: Distribution of strain ratios for pairs of neighboring nodes on the surface
(excluding the source and target pairs) of the networks before (red) and after (blue)
tuning. Results are shown for 2D networks that had on average 190 nodes and 400
bonds with ∆Z ≈ 0.19. This includes 512 initial networks each tuned separately to a
positive and negative strain ratio with magnitude |η| = 1.0 for a total of 1024 tuned
networks. Tuned networks are only included if the tuned strain ratio is within 1% of
the desired strain ratio. The response for pairs other than the source and target are
essentially unaffected. The target strain ratio is shown with a vertical dashed line.
All distributions include both contracting and expanding responses.

Fig. 2.4 demonstrates the variety of responses that we are able to create. Fig. 2.4 3(A-

I) and (A-II) show a single network with two independent sources and targets whose

responses were tuned simultaneously and independently of one another. When a

strain is applied to the first pair of source nodes, its target responds strongly while

the other target does not respond at all. Likewise, when the strain is applied to the

second pair of source nodes, its target responds while the first target does not. In

Fig. 2.4(B), a network with one pair of source nodes controls three targets, each of

which has been tuned to a different strain ratio. These networks have ∆Z = 1.0;

the failure rate for creating these more complicated responses is generally higher for

lower values of ∆Z in two dimensions. Fig. 2.4(C) shows a periodic disordered network

with one source and target, demonstrating that a network can be tuned successfully
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η=−1

η= 2

η= 1(B)

η=−1

η= 0(A-I)

η= 0

η=−1(A-II)

(C)

Figure 2.4: (A) Network with 200 nodes and 502 bonds at ∆Z = 1.0 with two inde-
pendent responses tuned simultaneously into the system. (A-I) One target contracts
in response to a strain at the first pair of source nodes while the other target does
not respond. (A-II) Second target responds to a strain at the second source while
the first target remains unaffected. This demonstrates that separate responses can
be shielded effectively from one another. (B) Same network tuned to show responses
at three targets with responses of η = 1, 2, and −1. All three targets are controlled
by a single pair of source nodes. (C) Periodic network with 254 nodes and 568 bonds
at ∆Z = 0.47 tuned to display an expanding response with η = 1, showing that open
boundaries are not necessary for tuning to be successful.

without free boundaries (see Video 2.10 in the Appendix for an animation of the

nonlinear response). We have also found that initial disorder in the network is not

necessary for success (Fig. 2.5(A)), nor is close proximity of the two nodes comprising

the source or the target (Fig. 2.5(B)).

16



(A)
(B)

Figure 2.5: (A) Periodic triangular lattice with 256 nodes and 768 bonds at ∆Z = 2.0
tuned to exhibit a strain ratio of η = 1.0. This example shows that disorder in the
initial network is not necessary for a response to be tuned successfully. (B) Network
with 200 nodes and 457 bonds with ∆Z = 0.57 tuned to show a strain ratio of η = 1.0.
This demonstrates that the proximity of the source nodes to each other, and similarly
the target nodes, is also not necessary for success.

2.4 Experimental Results

Fig. 2.5(A) shows an image of a two-dimensional network created by laser cutting a flat

sheet. The network is the same as the simulation shown in Fig. 2.1(A). The zoomed-

in areas show the strain response at the target along with the applied strain at the

source nodes. Video 2.11 of the Appendix shows the response of a similarly designed

network. Fig. 2.6(B) shows an image of a three-dimensional network created by 3D

printing. In this case, the network was designed to have a strain ratio of η = −5. The

insets again show the relative strains between the pairs of target and source nodes.

In order to obtain a quantitative analysis of how well the physical realizations agree

with the simulated networks, we measure the strain on every bond in the two-

dimensional example when the distance between the source nodes is varied. A major-
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Figure 2.6: (A) Physical realization of the network in Fig. 2.1(A). The zoomed-in
photographs show the initial and final distance between the pair of source nodes, lS
and lS + eS, respectively, and between the pair of target nodes, lT and lT + eT . The
undeformed network is shown in black, while the deformed network is superimposed
in red. (B) Photograph of a three-dimensional network constructed by 3D printing
with 33 nodes and 106 bonds at ∆Z = 0.42 tuned to exhibit a negative response
(η = −5.0). In the zoomed-in photographs, the yellow and blue arrows show the
distance between the undeformed, lS (lT ), and deformed, lS + eS (lT + eT ), source
(target) nodes, respectively.

ity of the bonds do not change their length appreciably. We therefore focus only on

the distance between nodes that were connected by bonds that were removed as the
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network was tuned. As one might expect, these are the most sensitive to the applied

source strain. We calculate, for those changes in distances, the Pearson correlation

coefficient between the experiments and the simulations:

C =
〈(xi − 〈xi〉)(ci − 〈ci〉)〉

σxσc
(2.4.1)

Here xi (ci) is defined as the fractional change due to the source strain in the distance

between nodes initially connected by bond i as measured in experiments (computer

simulations). The standard deviations of xi and ci are σx and σc, respectively. We find

that when averaged over 4 experimental realizations of different designed networks,

C = 0.98 ± 0.02. This indicates that the experiments are very accurate realizations

of the theoretical models.

In contrast to our simulations, where junctions are connected only via central-force

springs, our experimental systems have physical struts between the nodes. This in-

troduces bond-bending forces because the struts emerging from a node have preferred

angles between them. In order to minimize such forces, we have manufactured the

struts with a non-uniform width so that they are thinner at their ends where they

attach to a node than along the rest of their length. This ensures that the struts

deform preferentially near the nodes rather than buckling in their middle. Figure 5

shows that decreasing the width of the thinnest part of the struts alleviates effects

due to bond-bending and monotonically increases the response. This is crucial for

determining how much of the designed response survives in our physical networks.
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Apart from bond-bending, there is also a possibility of two-dimensional networks

buckling out of the plane, along with nonlinear effects that are present in real systems

undergoing finite strains. All these factors can weaken the designed response. To

investigate these effects, we used laser cutting to create realizations of 10 of the

two-dimensional networks produced from the computations in Fig. 2.2. The networks

chosen were tuned successfully in the linear regime and had nonlinear responses within

a factor of two of the linear prediction at a source strain of 5%, according to our

computations. For the experimental realizations, we found that in the nonlinear

regime, 3 of the networks demonstrated a response that was more than 10% of the

designed response at a source strain of 5%.

1.00 1.25 1.50 1.75 2.00
w [mm]

0.1
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2 mm w

Figure 2.7: Strain ratio η versus w, the width of the struts near their ends. These
are responses of the network shown in Fig. 2.1(A) for 4 values of w. The response
increases monotonically as the bonds are made thinner near the nodes. At their
center, the struts have a full width of 2 mm. Inset shows the strut geometry.
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2.5 Discussion

We have shown that it is strikingly easy to tune allosteric deformation responses into

an arbitrary spring network by removing only a small fraction of the bonds. Not

only can we tune the strain ratio to large negative or positive values for the same

network, but we achieve strain ratios of order |η| ∼ 1 with almost 100% success.

Our theoretical approach can also be extended to more general responses. We can

control multiple pairs of target nodes simultaneously with the same pair of source

nodes and we can tune multiple independent source/target responses simultaneously

into a network. We have also achieved similarly excellent results for tuning responses

in periodically-continued systems.

The approach we have described here performs a discrete optimization of the re-

sponse. We have also tuned the response using a standard numerical optimization

technique (e.g., gradient descent), by varying the stiffnesses of all the bonds contin-

uously. This brute-force method is less efficient but equally successful in producing

a desired response, and has the advantage of being able to tune nonlinear behavior.

Our approach can also be generalized to other types of bond manipulation such as

introducing new bonds.

Our theoretical approach provides a framework for understanding and controlling the

response of networks relevant to a wide range of fields. For example, networks with

built-in localized, long-distance responses could be a novel way of designing archi-

tectural structures based on disordered frameworks that have added functionalities.
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In addition, our theoretical approach can be generalized to other problems such as

origami, where one may wish to tune the fold structure so that the system folds in

a specific way in response to locally applied external forces [24]. This problem is

similar to ours, except that folds are added instead of bonds being removed. Ref. [24]

introduces an optimization technique in which fold rigidities vary continuously. This

technique is computationally expensive because the network response must be recal-

culated with each optimization step. A generalization of our theoretical approach to

origami, using language similar to that of Ref. [67], could lead to a more efficient

algorithm.

The network responses we create are reminiscent of the localized, long-range-correlated

deformations which characterize allostery in proteins. In fact, folded proteins have

long been modeled as elastic networks [35] and the response to localized forces in the

resulting networks has been studied [2]. Our results demonstrate the ease with which

allosteric conformational changes in networks can be achieved by removing a very

small set of bonds. As such, it suggests why allostery is so common in large biological

molecules [31].

Similarly, our finding that networks can be tuned to have a variety of different re-

sponses may help elucidate multifunctional behavior [49] and multiple allosterically

interacting sites [84] in proteins. It has also been observed that small changes in a

protein’s covalent structure can often change its biochemical function [37]. One might

ask whether our method could be extended to develop a systematic way to determine

which intra-protein interactions to modify or create new allosteric functions. It has
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been emphasized that the ability to control allosteric responses in folded proteins

could lead to significant advances in drug design [50, 30]. While much work has fo-

cused on identifying, understanding and controlling pre-existing allosteric properties,

the question of how to introduce new allosteric functions is relatively unexplored [14].

Our success in constructing experimental systems in spite of nonlinear and bond-

bending effects suggests that results are often robust even outside the simple linear

regime. However, proteins are thermal whereas our networks are athermal struc-

tures. Statistical fluctuations in the structure of proteins has been shown to play an

important role in allosteric functionality [76, 47]. In the linear response regime, the

equilibrium response at finite temperature is equivalent to that at zero-temperature,

so the set of bonds that are removed and the average strain ratio are independent

of temperature in the harmonic regime. However, the nonlinear response will show

differences, particularly at temperatures beyond the harmonic regime. It is thus im-

portant to investigate how thermal effects can influence the ability to design a desired

response in the nonlinear regime. In addition, protein contact networks generally con-

tain pre-stressed bonds, as well as bond-bending and twisting constraints, while our

theoretical networks are constructed in the absence of such effects [18, 75, 71].

Further work needs to be done to understand why removing specific bonds achieves

the desired response. Our method of identifying the elements of the stress basis as-

sociated with individual bonds indicates that these stress states are fundamental to

this understanding. The dependence on network size and node connectivity also needs

to be understood in greater detail. The limits of our algorithm are not yet known,
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including the number of targets that can be controlled and the number of indepen-

dent responses that can be tuned for networks of a given size and coordination. To

understand experimental systems ranging from proteins to the macroscopic networks

we have fabricated, we must extend the theory to include temperature, dynamics,

pre-stress, bond-bending, and nonlinear effects due to finite strains. Our approach

provides a starting point for addressing these issues.

2.6 Materials and Methods

2.6.1 Computed Networks and Choice of Source and Target
Nodes

To create a finite network, we choose a cut-off radius from the center of our box

and remove all bonds that cross that surface. This process often creates zero energy

modes at the boundary of our network. Since we require rigid networks, we remove

nodes associated with these modes. We calculate zero modes by performing a spectral

decomposition of the dynamical matrix. For each zero mode calculated this way, we

identify the node with the largest displacement amplitude and remove it. We then

recalculate the zero modes and repeat this process until no zero modes exist. This

method of removing zero modes works in any dimension and does not require an

arbitrary threshold for whether a node contributes to a zero mode or not. Our final

networks are approximately disc-shaped in two dimensions or ball-shaped in three
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dimensions with N nodes and Nb bonds.

We choose the pair of source nodes to lie on the exposed surface of the networks.

The pair of target nodes is chosen to be on the opposing pole of the network surface.

When choosing a pair of nodes, we also ensure that they are not connected by a bond.

This is done to avoid surface bonds whose tensions do not couple the the rest of the

network. However, since our formalism relies on applying tensions and measuring the

strains of bonds, we introduce a bond of zero stiffness, called a “ghost” bond, between

each pair of nodes for convenience (see Appendix).

2.6.2 Further Details of Theoretical Approach

Our approach tunes the ratio η = εT/εS of the target strain εT to the source strain εS

by removing bonds sequentially, one at a time. First, we define the cost function which

measures the difference between the network’s response η and the desired response

η∗. This is given by

∆2 ≡
n∑
j=1


(ηj/η

∗
j − 1)2 if η∗j 6= 0

η2
j if η∗j = 0

(2.6.1)

where j indexes the targets and their corresponding sources (e.g., n = 1, 2, 3 in

Fig. 2.1, Fig. 2.4(A) and Fig. reffig:examples(B), respectively). Target/source pairs

may be defined for the same network response, or for separate independent responses

for the same network with different applied source strains. With each step, we choose
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to remove the bond which creates the largest decrease in ∆2.

To decide which bond to remove, we must calculate how the removal of each bond

changes η. First we define the vectors of bond extensions |e〉 and bond tensions |t〉

in response to the externally applied strain, each of length Nb. In order to access

the extensions and tensions on individual bonds, we define the complete orthonormal

bond basis |i〉 where i indexes the bonds. The extension on bond i can then be found,

ei = 〈i|e〉, along with the bond tension, ti = 〈i|t〉. The strain of bond i is εi = ei/li

where li is the bond’s equilibrium length. The tension and extension are related by a

form of Hooke’s law,

|t〉 = F−1 |e〉 (2.6.2)

where the flexibility matrix is defined as 〈i|F |j〉 = δij/ki. Here we choose the stiffness

of bond i to be ki = λi/li where λi is the bond’s material modulus with units of energy

per unit length.

In addition to the bond tensions and extensions, we can define the dN -vectors of

node displacements |u〉 and net forces on nodes |f〉. The equilibrium matrix Q

relates quantities defined on the bonds to those defined on the nodes through the

expressions QT |u〉 = |e〉 and Q |t〉 = |f〉 [7]. In general Q, is a rectangular matrix

with dN rows and Nb columns. The total energy can then be written

E =
1

2
〈u|H|u〉 (2.6.3)
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where the Hessian matrix H = QF−1QT is a dN × dN matrix. In the presence of an

externally applied set of tensions |t∗〉, the minimum energy configuration satisfies

H |u〉 = Q |t∗〉 . (2.6.4)

To calculate the change in the displacements if a bond were removed, the naive

approach would be to set the stiffness to zero for that bond in the flexibility matrix and

to solve this equation. However, performing this matrix inversion to test the removal

of each bond can be prohibitively expensive with a computational cost of O(NbN
3),

so we have developed a more efficient approach. Note that here we calculate the

response to applied tensions, not the strains we need to calculate η. However, since

we are only interested in the ratio of the target strain to the source strain and are

working in the linear regime, we do not need to explicitly apply a strain nor specify

the tension amplitude.

We use the equilibrium matrix Q to define a convenient basis of the bond tensions

and extensions. Performing a singular value decomposition of Q gives access to is

right singular vectors [54]. This yields two mutually orthonormal sub-bases of vectors

that together form a complete basis of size Nb. The first sub-basis is comprised of

vectors with singular values of Q that are zero; that is, tensions that do not result in

net forces on the nodes. These are commonly known as the states of self-stress (SSS),

and we denote them as |sβ〉 where β indicates the particular basis vector. These

vectors can also be interpreted as incompatible extensions, or extensions that do not
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correspond to valid displacements. The second sub-basis is comprised of vectors with

positive singular values of Q; tensions that correspond to net forces on nodes, or

extensions that are compatible with node displacement. We call these vectors the

states of compatible stress (SCS) and denote them as |cα〉 where α indicates the basis

vector. In total there are Nc SCS basis vectors and Ns SSS basis vectors which total

to Nc +Ns = Nb.

Using these two sub-bases (and rescaling the bond stiffnesses so they are identicall k;

see Appendix), we can calculate the discrete Green’s function

G =
1

k

∑
α

|cα〉 〈cα| (2.6.5)

which maps bond tensions to extensions. Using this result, we calculate the change

in the bond extension vector |e〉 if bond i were to be removed,

|∆e〉 = |Ci〉
〈Ci|t∗〉

k(1− C2
i )

(2.6.6)

where |Ci〉 = kG |i〉 and C2
i ≡ 〈Ci|Ci〉. From this equation we can calculate the

changes in both εT and εS and therefore the change η. This result can also be derived

by inverting (2.6.4) and using the Sherman-Morrison formula to calculate the change

in the inverse of the Hessian [70]. Note that this calculation does not include the zero

stiffnesses of the ghost bonds, which cannot be mapped to unity with the rest of the

system. A generalization of (2.6.6) is needed in order to take this into account (see

Appendix).
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The next step is to calculate (2.6.6) (or its generalization found in the Appendix)

for the removal of each bond. We choose the bond which minimizes ∆2 in (2.6.1)

upon removal. One restriction is that we do not choose bonds which introduce zero

modes (see Appendix). Finally, once a bond is chosen, we recalculate the SCS and

SSS sub-bases with the bond removed (see Appendix).

A summary of our tuning algorithm contains the following steps:

1. Transform to a system where all bonds initially have the same stiffnesses and

add a ghost bond of zero stiffness for each pair of target and source nodes (see

Appendix).

2. Use the equilibrium matrix to calculate the initial SCS and SSS bases.

3. Calculate the initial extensions of the source and target bonds in response to

the applied tension t∗ using (2.6.5). Use this result to calculate the initial η.

4. For each bond, use the general form of (2.6.6) found in Eq. 2.7.15 of the Ap-

pendix to calculate the change in η if that bond were to be removed.

5. Remove the bond that minimizes ∆2 in (2.6.1). Recalculate the SCS and SSS

sub-bases with the bond removed.

We repeat steps (3) - (5) until
√

∆2 < 0.01 or the process fails. The computational

cost of determining and removing a bond using this algorithm is dominated by step

(5) with a complexity of O(N3
b ); much faster than the naive approach of directly

solving (2.6.4) with a complexity of O(NbN
3).
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There are three potential sources of failure represented in Fig. 2(B):
√

∆2 cannot be

lowered below 0.01 by removing any bond, no bonds can be removed without creating

zero modes, or the numerical error in ∆2 exceeds 0.01. This third source of failure

arises because numerical error is introduced as bonds are removed. In order to ensure

that our results are accurate, we compare ∆2 to the value obtained from the solution

of (2.6.4) with the given set of pruned bonds removed. If the absolute value of the

difference exceeds 1%, we call it a failure. Our results constitute an upper bound on

the failure rate, which could potentially be reduced by using more accurate techniques

to decrease numerical error or more sophisticated minimization algorithms.

2.6.3 Experimental Networks

We create experimental realizations of the theoretically-designed networks in both two

and three dimensions. To make two-dimensional networks, we obtain the positions

of the nodes and struts from our design algorithm. Next, we laser cut the shape of

the network from a silicone rubber sheet. To reduce out-of-plane buckling, we use 1.6

mm thick polysiloxane sheets with a Shore value of A90. The ratio of strut length to

width within the plane of the network is approximately 10:1. The struts are designed

to be thinner at their ends in order to alleviate bond-bending.

To make three-dimensional networks, we determine the positions of nodes and struts

from the computer simulations and fabricate the networks using 3D printing technol-

ogy. The proprietary material is a mixture of rubber (simulating styrene based ther-
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moplastic elastomers) and rigid plastic (simulating acrylonitrile butadiene styrene,

ABS) with a Shore value of A85. The dimensions of each strut have a ratio of ap-

proximately 1:1:11. As in our two-dimensional networks, the struts are made thinner

at their ends.

2.7 Appendix

2.7.1 Ghost bonds

On the surface of our networks there are many nodes with exactly d bonds in d

dimensions. Any bond attached to one of these nodes is uncoupled from the rest of

the network - applying a tension to one of these bonds does not affect any tensions

or extensions on any of the other bonds in the network to linear order. Likewise, no

extensions can be measured on these bonds when a tension is applied elsewhere in

the network. Therefore, we avoid choosing pairs of source or target nodes that are

connected by uncoupled bonds. This is done by ensuring that neither the pair of

nodes comprising the source nor the target share a bond.

However, all calculations involve the bonds, so in order to apply a tension or measure

an extension between two nodes, it is convenient if they share a bond. To apply our

approach, we introduce a “ghost” bond of zero stiffness between each pair of source

or target nodes. These bonds do not affect our results, but allow us to work without
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any direct reference to the nodes.

2.7.2 Creating identical bond stiffnesses

In order to calculate the Green’s function in Eq. 2.6.5 in the main text, it is necessary

to work in a system where all bonds have identical stiffness. However, we do not

want to be restricted to systems that satisfy this special requirement. The bonds

in our experimental systems all have the same material modulus λi = λ, but their

equilibrium lengths li differ, resulting in bonds with non-identical stiffnesses ki = λ/li.

To handle this, we start with a system in which the bond stiffnesses are all different

and map it onto an equivalent system in which all the default bond stiffnesses are

identical. This is done by introducing a flexibility matrix F (as defined below Eq. 2.6.2

in the main text) and scaling the equilibrium matrix so that Q̄ = QF−
1
2 . (Note: We

can only scale out stiffnesses that are nonzero.) The energy can then be written in

terms of Q̄:

E =
1

2
uT Q̄F̄−1Q̄Tu (2.7.1)

where the scaled flexibility matrix F̄ is proportional to the identity matrix except for

any entries that are zero. This energy is the same as that in Eq. 2.6.3 in the main

text, so the minimum energy configurations should have a one-to-one correspondence.
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Scaled extension or tension vectors are related to the unscaled versions by

|ē〉 = F−
1
2 |e〉 (2.7.2)

|t̄〉 = F
1
2 |e〉 (2.7.3)

Thus we have implicitly performed all of our calculations on the scaled system and

have converted back when calculating η.

2.7.3 Discrete Green’s function

Using the SSS and SCS sub-bases, our goal is to calculate the discrete Green’s function

shown in Eq. 2.6.5. We start by decomposing the bond tensions and extensions,

|t〉 =
∑
α

|cα〉 〈cα|t〉+
∑
β

|sβ〉 〈sβ|t〉 (2.7.4)

|e〉 =
∑
α

|cα〉 〈cα|e〉+
∑
β

|sβ〉 〈sβ|e〉 (2.7.5)

Now suppose we apply some external tension to the bonds, |t∗〉. The part of the

external tension that projects onto the SCS basis will be balanced by tensions in the

bonds, so that 〈cα|t〉 = 〈cα|t∗〉. Additionally, the bond extensions that project onto

the incompatible extensions, or SSS basis, should be zero because they are unphysical,

〈sβ|e〉 = 0. Inserting our decompositions of the tension and extension into Eq. 2.6.2,
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we get ∑
α

|cα〉 〈cα|t∗〉+
∑
β

|sβ〉 〈sβ|t〉 =
∑
α

F−1 |cα〉 〈cα|e〉 (2.7.6)

If we project this equation onto the SCS vector 〈cα′|, we get a system of Nc equations,

〈cα′ |t∗〉 =
∑
α

〈cα′ |F−1|cα〉 〈cα|e〉 (2.7.7)

=
∑
α

Kα′α 〈cα|e〉 (2.7.8)

where Kα′α = 〈cα′|F−1|cα〉 is an Nc × Nc square matrix. If we invert this system of

equations to solve for the extensions, we get

〈cα|e〉 =
∑
α′

K−1
αα′ 〈cα′|t∗〉 (2.7.9)

The full extension is then

|e〉 =
∑
α

|cα〉 〈cα|e〉 =
∑
αα′

|cα〉K−1
αα′ 〈cα′|t∗〉 (2.7.10)

In general, calculating the matrix inverse K−1
αα′ is computationally intensive since it is

a square matrix of size Nc. To improve this, we map our system to one where all the

bond stiffnesses are identically k or zero as described in the previous section. Finally,

we arrive at the Green’s function in Eq. 2.6.5,

G =
1

k

∑
α

|cα〉 〈cα| (2.7.11)
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2.7.4 Modifying a single bond

Using the Green’s function in (2.7.11), our goal is to find the change in |e〉 when the

stiffness of a given bond is modified. First we define a unique SCS basis vector for

bond i,

|Ci〉 = kG |i〉 (2.7.12)

This SCS is closely related to the unique SSS defined in Ref. [72]. We rotate the

SCS basis so that one of the SCS vectors is |cµ〉 = |Ci〉 /
√
〈Ci|Ci〉, making sure to

re-orthonormalize the rest of the basis with respect to this unique SCS. The benefit of

this rotation is that now only the unique SCS contains a nonzero element for bond i.

Next, we introduce a separate stiffness for bond i, ki which is not necessarily identical

to the rest of the bonds. The matrix Kα′α defined in the previous section can then

be simplified to

Kα′α =


kiC

2
i + k(1− C2

i ) if α = α′ = µ

kδαα′ otherwise

(2.7.13)

where we have defined C2
i ≡ 〈Ci|Ci〉 = 〈i|Ci〉. The resulting extensions are

|e〉 =
|Ci〉 〈Ci|t∗〉

C2
i [kiC2

i + k(1− C2
i )]

+
1

k

∑
α6=µ
|cα〉 〈cα|t∗〉 (2.7.14)
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with change in extensions

|∆e〉 = |Ci〉
〈Ci|t∗〉

k(1− C2
i )

(2.7.15)

where we have taken ki from an initial value of k to zero.

2.7.5 Modifying multiple bonds

Here we extend (2.7.15) to allow for multiple bonds that do not have identical stiffness

k. Suppose that all the bond stiffnesses are identically ki = k, except for a small

subset of bonds which we call B. We say a bond i ∈ B if and only if ki 6= k. This set

includes any ghost bonds with zero stiffness, along with bonds that are being tested

for removal or modification.We typically include just three bonds in B – the source

and target ghost bonds of zero-stiffness, along with the bond tested for removal.

Our goal now is to rotate our SCS sub-basis |cα〉 so that as few basis vectors as

possible project onto the bonds in B. We will denote this new rotated SCS sub-

basis |c̃α〉. We define a special set of basis vectors V such that α ∈ V if and only if

〈i|c̃α〉 6= 0 for some i ∈ B. Typically, the size of B will equal the size of V . In other

words, the basis vectors in V are the only vectors with non-zero elements for the set

of bonds with non-identical stiffnesses B

In order to calculate our rotated SCS sub-basis, |c̃α〉, we first find the unique SCS for

each bond in B, which we denote |Ci〉 shown in (2.7.12). These unique SCS vectors

36



are then orthonormalized using a modified Graham-Schmidt algorithm. The result

is the set of basis vectors V described previously. The remainder of the rotated SCS

basis is found by using the modified Graham-Schmidt algorithm to orthonormalize

the original SCS basis with respect to the set of vectors V , throwing out any vectors

that are completely zeroed out. The result is our set of Nc orthonormal rotated SCS

vectors. However, it will be shown that only the vectors in V will be necessary for

our solution.

Each basis vector that is not in V has zero projection onto bonds that are in B, i.e.

if α /∈ V , then 〈i|c̃α〉 = 0 for all i ∈ B. This means that if either α /∈ V or α′ /∈ V ,

then |c̃α〉 and |c̃α′〉 are orthogonal over a reduced basis such that

〈c̃α|
(∑

i

|i〉 〈i|
)
|c̃α′〉 = 〈c̃α|

(∑
i/∈B
|i〉 〈i|

)
|c̃α′〉 (2.7.16)

This new basis now gives us the means to rewrite Kαα′ for α /∈ V or α′ /∈ V ,

Kαα′ = 〈cα′ |F−1|cα〉 (2.7.17)

= 〈c̃α|
(∑
i∈B

ki |i〉 〈i|+
∑
i/∈B

k |i〉 〈i|
)
|c̃α′〉 (2.7.18)

= k
∑
i/∈B
〈c̃α|i〉 〈i|c̃α′〉 (2.7.19)

= k 〈c̃α|c̃α′〉 = kδαα′ (2.7.20)
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The total matrix is then

Kαα′ =


K̃αα′ if α, α′ ∈ V

kδαα′ otherwise

(2.7.21)

where we have defined the sub-matrix K̃αα′ = 〈cα′ |F−1|cα〉 for α, α′ ∈ V . We see that

the matrix inversion problem is simplified to just inverting K̃αα′ .

K−1
αα′ =


K̃−1
αα′ if α, α′ ∈ V

1
k
δαα′ otherwise

(2.7.22)

Since the size of B is very small (in our case typically a set of size 3), calculating the

inverse of this matrix is very fast. The extension can now be represented as

|e〉 =
∑
α,α′∈V

|c̃α〉 K̃−1
αα′ 〈c̃α′|t∗〉+

∑
α/∈V

1

k
|c̃α〉 〈c̃α|t∗〉 (2.7.23)

The change in extension on bond i when the stiffnesses are modified is then

|∆e〉 =
∑
α,α′∈V

|c̃α〉∆(K̃−1
αα′) 〈c̃α′|t∗〉 (2.7.24)

Note that the solution only depends on the basis vectors in V . This means that only

this small number vectors must calculated and the rest may be neglected.
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2.7.6 Avoiding the introduction of zero modes

We impose the constraint that we do not introduce any zero energy modes into

the system when we remove bonds. We ensure this by only removing bonds which

contribute to the SSS sub-basis. By Maxwell-Calladine counting, N0−Ns = dN−Nb,

where N0 is the number of zero modes [7]. This means that if we remove a bond, we

can either add a zero mode (increase N0) or remove a SSS (decrease Ns). If a bond

is removed that contributes to the SSS sub-basis, a unique SSS will also be removed

and no zero mode will be created [54]. This unique SSS, which we define as |Si〉 for

bond i, is calculated analogously to the unique SCS, |Ci〉, shown in Eq. 2.6.6. We

find that

|Si〉 =
∑
β

|sβ〉 〈sβ|i〉 (2.7.25)

As long as S2
i ≡ 〈Si|Si〉 > 0, then bond i contributes to the SSS sub-basis.

2.7.7 Removing bonds from SSS and SCS sub-bases

When a bond i is removed, we remove the unique SSS vector |Si〉 from our SSS sub-

basis by subtracting off its projection onto each SSS basis vector. We also remove

the entries for bond i from all vectors in both our SSS and SCS sub-bases. The two

bases are then reorthonormalized using a modified Graham-Schmidt algorithm.
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2.7.8 Animations

Videos 2.8 and 2.9 show animations of the responses of the networks in Fig. 2.1 in the

main text, while Video 2.11 shows the response of the network in Fig. 2.4(C) (Note:

To view animations and videos, please see web links in Ref. [61]). Although our

algorithm only considers and controls the linear response, we show the full nonlinear

deformations in these videos so that the source and target strains are clearly visible.

To calculate the nonlinear response, we start with a tuned network and minimize

the nonlinear configurational energy for increments of the source strain in a cycle

from from 0% to εmax and back to 0%, and then to -εmax and back to 0% again .The

quantity εmax is the maximum strain amplitude. In the network’s undeformed state,

each node i has an initial position vector Ri. If the network is deformed in some way,

then each node will have a new position

Xi = Ri + ui (2.7.26)

where ui is the node’s displacement vector. If two nodes share a bond, then the bond

vector going from node i to node j is Rij with magnitude lij, while the deformed
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bond vector is

Xij = Xj −Xi (2.7.27)

= Rj −Ri + uj − ui (2.7.28)

= Rij + ∆uij (2.7.29)

where ∆uij is the bond extension vector. The configurational energy summed over

all bonds 〈ij〉 with central-force harmonic potentials is then

E =
∑
〈ij〉

1

2
kij(Xij − lij) (2.7.30)

where Xij = |Xij| and kij is the stiffness of bond 〈ij〉. We minimize this energy

numerically with respect to the displacement vectors ui under the constraint that the

source strain εS is a specified value.

2.7.9 Response of experimental networks

We measured the target strain of the physical realization of the network in Fig. 2.1(A)

for a range of source strains. Fig. 2.12 shows that the response is a monotonic function

of the source strain. Our networks, though designed in the linear regime, work well

even for source strains in the nonlinear regime.
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Figure 2.8: Animation of the tuned expansion response of the network in Fig. 2.1(A).
The source nodes are indicated in blue, while the target nodes are black. The network
has been tuned to have a strain ratio of η = +1 in the linear regime. Here we calculate
the full nonlinear response for oscillatory source strain of amplitude εmax = 40% by
minimizing the nonlinear configurational energy (see Appendix).
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Figure 2.9: Animation of the tuned contraction response of the network in Fig. 2.1(B).
The source nodes are indicated in blue, while the target nodes are black. The network
has been tuned to have a strain ratio of η = −1 in the linear regime. Here we calculate
the full nonlinear response for oscillatory source strain of amplitude εmax = 40% by
minimizing the nonlinear configurational energy (see Appendix).
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Figure 2.10: Animation of the tuned expansion response of the network in Fig. 2.4(C).
The source nodes are indicated in blue, while the target nodes are black. The network
has been tuned to have a strain ratio of η = 1 in the linear regime. Here we calculate
the full nonlinear response for oscillatory source strain of amplitude εmax = 40% by
minimizing the nonlinear configurational energy (see Appendix).
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Figure 2.11: Movie of an experimental network with 51 nodes and 112 bonds tuned
to show an expansion response. Output nodes are indicated in blue. The network
has been tuned to have a strain ratio of η = 2 in the linear regime.
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Figure 2.12: The target strain εT as a function of source strain εS is shown in blue
for a physical realization of the network depicted in Fig. 2.6(A). The red line shows
that the response is linear over a large range of input strains.
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Chapter 3

Limits of multifunctionality in
tunable networks

Note: The following content is reproduced with minor revision from Ref. [62].

3.1 Introduction

Many naturally occurring and synthetic networks are endowed with specific and effi-

cient functionality. For example, allosteric proteins globally adjust their conformation

upon ligand binding to control the activity of a distant active site [47, 59]. Venation

networks in the leaves of plants are highly optimized for water and nutrient trans-

port [66]. In some cases, networks can change their function depending on the needs of

the system; vascular networks in animals [77, 48, 26], fungi [33], and slime molds [74]

can reroute the transport of fluids, enhancing or depleting nutrient levels in order
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to support local growth or activity. Modern power grids must precisely distribute

electrical energy generated from a limited number of sources to a large number of

consumers with widely varying consumption needs at different times [53]. All of these

networks are optimized to some degree, by evolution via natural selection, dynamic

reconfiguration, or human planning.

A key aspect of such functionality is the complexity of a specific task. We define

a “function” as an optimized response of a localized component of a network when

another predefined, localized component of the system is activated. A “task” is then

defined as the collective response of a set of individual functions due to a single input.

The number of functions representing a specific task is the task complexity.

In this work we address the limits of complexity for a single task: how many func-

tions comprising a single task can be programmed into a network? We consider two

examples: (i) mechanical networks – in which nodes are connected by central-force

harmonic springs – locally flexing in response to an applied strain and (ii) flow (or re-

sistor) networks – in which nodes are connected by linear resistors – locally producing

a pressure drop due to an applied pressure at the source. These systems are related;

flow networks are mathematically equivalent to mechanical networks embedded in

one spatial dimension – but with a nontrivial node topology [73].

Macroscopic properties of mechanical networks, such as their bulk and and shear

moduli, can be tuned by modifying only a tiny fraction of the springs between

nodes [28, 34, 58] (in contrast to random removal [19]). This idea was extended
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to show that such networks can be tuned to develop allosteric behavior via selective

spring removal [61, 82, 21]. Allostery in these systems is a single-function task in

which a randomly selected spring (the target) responds in a specified way to a strain

imposed on a separate pair of nodes (the source). Here we study complex tasks in

which multiple targets are controlled by a single source. We study the scaling of

the maximal complexity of a task with network size by asking how many individual

targets can be successfully tuned simultaneously, and show that in both flow and

mechanical networks, the limit of task complexity is set by a phase transition.

3.2 Network Tuning Protocol

Our method for tuning networks follows the general scheme described in our previous

work [61] with slight modifications. We start with two-dimensional configurations

of soft spheres with periodic boundary conditions created using standard jamming

algorithms. We construct networks by placing nodes at the centers of each sphere and

links (edges) between nodes corresponding to overlapping particles. This ensemble of

networks is used for both spring networks, in which edges are unstretched central-force

springs, and flow networks, in which edges are resistive conduits. By using the same

set of nodes and edges for both systems, we can directly compare results. We chose

this ensemble because it is disordered and provides initial networks with properties

reminiscent of the corresponding biological systems. Elastic networks with close-

range interactions have often been used to model proteins [35], while many natural
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flow networks have high numbers of closed loops [39] and are highly interconnected [5].

However, our networks do not exhibit modular topologies which can appear in some

systems [53]. While we briefly touch on modularity, an in-depth study of modular

networks is outside the scope of this work.

For each network, a pair of source nodes is chosen randomly, along with a set of

NT target edges. Our goal is to tune the extension (or pressure drop) eα of each

target edge, indexed by α, in response to an extension (pressure drop) eS applied to

the source nodes by adding and removing edges from the network. We explore two

different types of sources: pairs of nodes connected by a randomly chosen edge and

pairs of nodes that are each chosen randomly anywhere in the network (see Appendix

for global compression and shear sources in mechanical networks).

To control the response of the targets, we define the response ratio ηα ≡ eα/eS for

each target. Each ηα is in general a collective property of the network; the response

of each target is a function of the total network structure. Before tuning the network,

we measure the initial extension (pressure drop) e
(0)
α to obtain the initial response

ratio of each target η
(0)
α = e

(0)
α /eS. We then tune the response ratio of each target

so that its relative change as compared to the initial state is greater than or equal

to a specified positive constant ∆; that is, we tune each response ratio to satisfy the

constraint

ηα − η(0)
α

η
(0)
α

≥ ∆, α = 1, . . . , NT . (3.2.1)
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Thus, for mechanical networks we require contracting edges to contract more, and

expanding edges to expand more. For flow networks, we require the magnitude of

the pressure drop to increase without changing the direction of the flow through each

target link.

(A) (B)

(C) (D)

Figure 3.1: Networks tuned to display multifunctional responses. Each network starts
with the same initial topology and same choice of four target edges (corresponding
nodes shown in green). (A) and (C) are flow networks while (B) and (D) are mechan-
ical network. For each network a source extension (pressure drop) is applied to a pair
of source nodes (shown in red). In (A) and (B) the pair of source nodes is connected
by an edge, while in (C) and (D) the source nodes are not connected by an edge.
For flow networks, response ratios are tuned to ηα ≥ 0.5, while for the mechanical
networks they are ηα ≥ 1.0. The edges removed by tuning are shown as thick blue
lines. For flow networks, the magnitude of the pressure on each node is indicated
by the node size and the sign of the node pressure is represented by the shape. For
mechanical networks, the node displacements are shown as black arrows.

Our optimization scheme involves minimizing a loss function which penalizes devi-
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ations from the constraints in (3.2.1) (Methods and Materials). Each optimization

step consists of either removing a single link, or reinserting a previously removed

link to modify the network topology in discrete steps. More specifically, at each step

we measure the resulting change in the loss function for each single link removal or

reinsertion, and remove or reinsert the link to most decrease the loss function.

Fig. 3.1 depicts examples of both flow and mechanical networks which have been tuned

using our prescribed method for the two different types of applied sources. Fig. 3.1(A)

and (B) show flow and mechanical networks, respectively, tuned to respond to a source

applied to a pair of nodes connected by an edge. Fig. 3.1(C) and (D) show the same

networks, but with a pair of source nodes that are not connected by an edge.

3.3 Results

For both flow and mechanical networks, we explore the effects of various aspects of

the tuning problem, with particular focus on task complexity. Figs. 3.2(A) and (B)

display typical results for the fraction of networks that can be tuned successfully,

PSAT , for flow and mechanical networks, respectively. Data is shown for a randomly

chosen edge source and NT randomly chosen target edges with a desired relative

change in target response of ∆ = 0.1. System sizes range from N = 8 to 4096

nodes. Each value of PSAT is calculated by tuning at least 512 independent randomly

generated networks. At low NT , PSAT ≈ 1 while at large NT , PSAT drops to zero.
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Figure 3.2: The fraction of satisfied configurations PSAT for (A) flow networks and
(B) mechanical networks as a function of number of targets NT for systems of N
nodes. Results are shown for a pressure or extension applied to a single source edge
with a desired response ratio of ∆ = 0.1. Curves are smoothing splines and estimated
error bars are shown for binomially distributed data (Appendix). (C) Scaling collapse
for all N for four cases: flow networks with an edge source (red circles) and with a
node pair source (blue triangles) and mechanical networks with an edge source (green
squares) and with a node pair source (black triangles). In each case, we plot PSAT
vs. (NT − N c

T )/w where PSAT = 1
2

at N c
T and w is the interval in NT over which

0.25 < PSAT < 0.75. (D) The transition points NC
T and (E) width of the transition w

are reasonably described by power laws in N with fits for N c
T giving exponents 0.67

and 0.65 for flow networks and 0.71 and 0.74 for mechanical networks with an edge
and node pair source, respectively. In the same order, the power law fits for w have
exponents of 0.71, 0.66, 0.74, and 0.66.

In Fig. 3.2(C), we plot the transition curves for all system sizes for the four cases stud-

ied on the same axes. Using the smoothing spline interpolations shown in Fig. 3.2(A)

and (B) (Appendix), we estimate the number of targets N c
T at which PSAT = 0.5.

Next, we estimate the width of the transition, w, taken as the interval in NT over

which 0.25 < PSAT < 0.75. We attempt to collapse each curve by plotting PSAT

vs. (NT −N c
T )/w. We find a similar functional form for all cases, with only a slight

difference between flow and mechanical networks near (NT −N c
T )/w ≈ −1.
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Figs. 3.2(D) and (E) show that flow networks and mechanical networks have similar

power-law behaviors for N c
T and w. Both the transition location and width scale

approximately as N ν with ν ≈ 0.7. Because the scaling exponent for N c
T is less

than 1, the critical fraction of functions that can be tuned simultaneously approaches

zero as N goes to infinity, even though the number of simultaneously tuned functions

diverges with system size. Thus small networks are relatively more tunable than large

ones. In addition, the sub-linear scaling of the transition width shows that PSAT drops

more rapidly with NT/N as N increases, implying that the crossover becomes sharp

as N →∞. At the same time, Fig. 3.3 shows that the average number of links that

need to be removed for a successful tuning operation grows approximately linearly

with the number of targets. Thus, those networks that can be tuned successfully

typically only require removal of a constant fraction of edges. Together, our results

suggest PSAT (NT/N) ∼ F [(NT/N − ρ∞)N1−ν ] with ρ∞ consistent with zero. For

ν < 1, this implies a random first order transition in the thermodynamic limit, with

a discontinuity in PSAT and power-law finite-size scaling. Such hybrid transitions are

typical of constraint-satisfaction problems.

3.4 Discussion

We framed the problem of the maximum number of target edges that can be tuned suc-

cessfully in a mechanical or flow network as a type of discrete constraint-satisfaction

problem, in which we asked how many inequality constraints can be satisfied simul-
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Figure 3.3: Power law behavior of the average number of removed edges as a function
of number of targets NT for (A) flow networks and (B) mechanical networks for
various system sizes N . Included networks correspond to those that have been tuned
successfully in Figs. 3.2(A) and (B) with an edge source and desired change in target
response of ∆ = 0.1. Error bars indicate the error on the mean. Power laws with an
exponent of 1.0 are depicted as black dashed lines for comparison.

taneously. This places the tuning of multifunctionality in the context of a variety

of other problems including jamming [51], spin glasses [4], the k-SAT problem [44],

k-core percolation [69], and the perceptron [23]. Much progress has been made by

linking such transitions to the statistical physics of critical phenomena. The hall-

mark of these systems is the emergence of a SAT-UNSAT transition between regions

in parameter space where the constraints can always (or with high probability) be

satisfied and regions where the system is frustrated, such that not all constraints can
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be satisfied simultaneously [23]. In mean-field, and in some cases in finite dimensions,

the SAT-UNSAT transition is a random first-order transition, with a discontinuous

jump in the order parameter (the fraction of satisfied configurations PSAT ) as in a

first-order phase transition, but with power law scaling as in a second-order transition.

We have demonstrated a SAT-UNSAT transition in the complexity of a single task

that can be tuned into disordered mechanical and flow networks. In both cases, the

maximum task complexity diverges with a power law that is sublinear in N , the

number of nodes in the network. The width of the SAT-UNSAT transition (relative

to N) vanishes as N diverges, showing that the transition is a true phase transition.

Although we find PSAT (NT/N) ∼ F [(NT/N − ρ∞)N1−ν ] for the four cases displayed

in Fig. 3.2, both F (x) and ν can vary depending on a variety of factors. These

factors include: (i) the local or global nature of the source, (ii) the magnitude of

desired change in target response ∆, (iii) disorder in the link topology, (iv) initial

coordination of the network, and (v) the choice of whether to tune the link tensions

(currents) or extensions (pressure drops) (Appendix). The values of ν lie in the range

of 0.6-0.8, with the exception of one case of 1.0 for a very large relative change in

target response of ∆ = 1000 (Table 3.1). We find that the behavior is not well-

described by a power law for tuning negative relative changes in target response

(∆ < 0) and for tuning small changes in current or tension. The former case is still

under investigation, while the latter exception has a simple explanation (Appendix).

Overall, the divergence of the maximum number of tunable targets with system size
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and the corresponding vanishing of the transition width (indicating the existence of

a phase transition) are very robust observations for positive and sufficiently large

relative changes in target responses. We note also that both mechanical networks

and flow networks exhibit very similar quantitative behavior despite the fact that

flow networks are purely topological, requiring no explicit spatial embedding.

The SAT-UNSAT transition of the task complexity problem introduced here repre-

sents a new class of discrete constraint-satisfaction transitions due to a new compli-

cation that arises in the form of the constraints. When tuning a mechanical network,

the removal of links can introduce soft modes, making it impossible to uniquely eval-

uate the network response, and subsequently tune a given target. Similarly, in a flow

network the tuning process can lead to regions being disconnected from the source,

making it impossible to tune any target in that region. To avoid such cases, at each

step of the tuning process we are forced to exclude specific link removals (Methods

and Materials). In both mechanical and flow networks, we find that it becomes more

and more likely to introduce a soft mode/disconnected region as the task complexity

increases. This makes the problem more difficult to tackle both numerically and ana-

lytically compared to previously-studied constraint-satisfaction transitions, and may

lead to differences in the nature of the transition.

For mechanical functions, a perfectly engineered mechanism (e.g., a pair of chopsticks,

which creates a large displacement at the tips in response to strain applied where they

are held) may perform exactly one function superlatively well, but we have shown

that more complex network structures are able to adapt to a number of functions
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that diverges with the system size. The same argument holds for flow networks: an

optimally engineered distribution network is a topological tree, perfectly suited for a

specified task but at the same time “rigid,” in the sense that it can not easily adapt

to other tasks. The networks that we have studied are more complex than a pair

of chopsticks or a topological tree, and this allows them to be tuned successfully to

perform arbitrarily complex tasks.

Our finding that a disordered network topology allows for tunability may have rele-

vance to real biological networks. For example, the development of certain vascular

structures within animals are characterized by the initial appearance of a tightly

meshed disordered network of veins (the vascular plexus) that is subsequently pruned

and tuned to its function [6]. The initial disordered network may be a prerequisite

of the great variability and versatility seen in natural networks. The tuned mechan-

ical networks serve as simple models for multifunctional allostery in proteins (with

a single regulatory site that can control more than one active site, e.g., [68, 42]) or

multifunctional metamaterials. Our flow network results give insight into how to

control, for example, blood and oxygen distribution in vascular systems, or power in

an electrical network. Indeed, we find very similar behavior in a flow network with

nonplanar topology derived from the UK railroad network, which exhibits a high de-

gree of modularity. PSAT exhibits a qualitatively similar transition in the number of

targets that can be tuned as the networks studied here (Appendix).

Our results raise a number of issues for future investigation. The divergence in the

task complexity and vanishing of the transition width with system size are reasonably
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well-approximated by power laws but may deviate for larger system sizes (Appendix).

The measured exponents appear to depend on many specific properties of the prob-

lems studied. This may be due to corrections to scaling or to a more fundamental

deviation from power-law scaling. Also, it is not clear what conditions on the net-

work topology are necessary to observe the transition we see. For example, networks

with high degrees of modularity may not be able to support tasks spanning multiple

neighborhoods. However, our results for the UK railroad network suggest that even

in this case, we observe identical qualitative behavior, but with an overall decreased

PSAT corresponding to the possibility of choosing sources and targets in different

neighborhoods (Appendix). More generally, it has not been investigated how the re-

sults depend on network structure/topology and dimensionality nor how they depend

on the tuning algorithm. For instance, the values of N c
T/N and ν might be higher

for simulated annealing, which explores a wider region of solution space than the

minimization algorithm studied here.

One further aspect of our results deserves mention: a simple function that controls

only a single pair of target nodes can be achieved in an extremely large number

of ways. We have shown that a task can be complex with NT randomly chosen

target nodes controlled by a single source. However, if one is only interested in

controlling a single target, one can create different paths for its control by choosing

any of the N other nodes in the system also to be a target. Likewise, one could

specify a third node to be controlled as well, etc. That means that there are at least

∼ (N − 1)!/(N − N c
T )!(N c

T − 1)! ways of creating that simple function. Because we
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find N c
T ∼ Nν , for ν < 1 this lower bound is smaller than the prediction of eO(N)

solutions in the large-N limit [82].

Here we studied the limits of the complexity of a single task. It would be interesting

to understand how many different tasks can be designed successfully, and whether

that is controlled by a similar SAT-UNSAT transition. Finally, we note that for the

mechanical and flow networks studied here, the behavior is governed by a discrete

Laplacian operator [57]–mechanical networks obey force balance on each node and

flow networks obey Kirchhoff’s law. However, many networks, such as gene regulatory

networks, metabolic networks, social networks, etc. are non-conservative. Moreover,

the problems we have studied are linear in their couplings but ecological networks

or neural networks, for example, are typically nonlinear. It is known that even non-

conservative and/or nonlinear networks, such as the Hopfield model and jammed

packings, can support SAT-UNSAT transitions as well [22, 43]. It would interesting

to study systematically how conservation constraints and linearity affect the nature

of the transition.
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3.5 Methods

3.5.1 Linear Response

Our networks are described by a set of N nodes and NE edges. The response of a

flow network to external stimuli is represented by a pressure pi on each node i. Anal-

ogously, the response of a d-dimensional mechanical network is the d-dimensional

displacement vector ~ui of each node. Each edge linking nodes i and j is character-

ized by either a conductance or stiffness, denoted kij in both cases. For mechanical

networks, kij = λij/`ij where λij is the stretch modulus per unit length and `ij is the

rest length. Initially, we set all stretch moduli λij identically to one. Similarly, for

flow networks we set all conductivities kij to one. Removing an edge ij corresponds

to setting kij to zero, whereas reinserting an edge corresponds to setting kij back to

its original value.

To calculate the response of each type of network, we minimize the corresponding

functional. In the case of flow networks, we minimize the power loss through the

network,

P =
∑
〈ij〉

kij(pj − pi)2 (3.5.1)

where 〈ij〉 indicates a sum over all edges. For mechanical networks, we minimize the
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elastic energy

E =
1

2

∑
〈ij〉

kij

[
b̂ij · (~uj − ~ui)

]2

(3.5.2)

where b̂ij is a unit vector pointing from node i to node j in the undeformed configura-

tion. The power loss for a flow network can be mapped to the energy of a mechanical

network for d = 1 by mapping the pressure on each node to a one-dimensional dis-

placement [73]. In this case, the unit vectors b̂ij are scalars with values of either ±1,

which drop out when squared; the embedding of the network in space does not matter

as is be expected for flow networks.

Minimizing (3.5.1) for a flow network in the presence of externally applied boundary

currents qi on each node i, we obtain a system of linear equations characterized by a

graph Laplacian L,

L |p〉 = |q〉 (3.5.3)

where |p〉 is an N -dimensional vector of node pressures and |q〉 is a N -dimensional

vector of external currents on nodes. We define the vector |i〉 so that the pressure

and current on the ith node are pi = 〈i|p〉 and qi = 〈i|q〉, respectively. Similarly for

mechanical networks, minimizing (3.5.2) in the presence of externally applied forces,

we obtain

H |u〉 = |f〉 (3.5.4)
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where |u〉 is an dN -dimensional vector of node displacements and |f〉 is a dN -

dimensional vector of external forces on nodes. Again we define the N×d matrix |id〉

to pick out the displacement and force on the ith node, ~ui = 〈id|u〉 and ~fi = 〈id|f〉.

The matrix H is the matrix of second derivatives known as the dynamical or Hessian

matrix and can be interpreted as graph Laplacian where each element is a d× d ma-

trix. We define the d-Laplacian, denoted Ld, as a generalized version of the standard

Laplacian matrix. The case d = 1 corresponds to the Laplacian of a flow network (or

a one-dimensional mechanical network) such that L1 = L, while for d > 1, Ld is a

Hessian for a d-dimensional mechanical network, i.e. Ld>1 = H. The ijth d×d-block

of the d-Laplacian is

〈id|Ld|jd〉 =


∑
l 6=i
kilb̂ilb̂

T
il if i = j

−kij b̂ij b̂Tij if i 6= j

(3.5.5)

where kij is nonzero only if edge ij exists.

Consequently, the response of either type of network is calculated by solving the

corresponding set of linear equations rewritten as

Ld |u〉 = |f〉 (3.5.6)

where |u〉 and |f〉 are the appropriate dN -dimensional response and source vectors,

respectively. To apply a pressure drop or edge extension source, we use a bordered

Laplacian formulation.
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3.5.2 Bordered Laplacian Formulation

Calculating the linear response requires solving (3.5.6). However, there are two com-

plications. The first is that the Laplacian operator is in general not invertible due to

the presence of global degrees of freedom. For a periodic network, in d dimensions,

there are d global translational degrees of freedom. Second, we apply edge extension

(pressure drop) sources, rather than tension (current) sources. These sources can be

applied as constraints on the system. Using a bordered Laplacian formulation, we

add a constraint for each global translation and for the source.

First, we define the extension (or pressure drop) of the source as

eS = b̂S · (~uS2 − ~uS1) = 〈S|u〉 (3.5.7)

with source nodes S1 and S2. The unit vector b̂S points from node S1 to S2 and

is a scalar in the case of a flow network. The vector |S〉 is defined to extract the

extension of the source from the full vector of node displacements. We specify the

desired extension as e∗S. Additionally, we define the vectors |Gi〉 for i = 1, . . . , d

corresponding to translations of the entire system uniformly along the ith axis. We

define the Lagrangian

L = E −
d∑
i=1

λi 〈Gi|u〉 − λS(eS − e∗S) (3.5.8)

where the parameters λi and λS are Lagrange multipliers. We include the Lagrange
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multipliers as additional unknown parameters that must be determined in our calcu-

lations. We find solutions by extremizing the Lagrangian with respect to both the

displacements and Lagrange multiplier. We rewrite the Lagrangian in matrix form:

L =
1

2
〈u|Ld|u〉 − 〈λG|GT |u〉 − λS( 〈S|u〉 − e∗S). (3.5.9)

The vector |λG〉 is size d with elements 〈i|λG〉 = λi and G is a size dN × d matrix

with columns G |i〉 = |Gi〉. In this context we can further condense notation, writing

the Lagrangian as

L =
1

2
〈u|Ld|u〉 (3.5.10)

where we define the bordered Laplacian Ld as a block matrix of second derivatives of

the Lagrangian.

Ld =


Ld −G |S〉

−GT 0 0

〈S| 0 0

. (3.5.11)

We also define the bordered displacement and force vectors |u〉 and |f〉, respectively,
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each of size dN + d+ 1 as

|u〉 =


|u〉

|λG〉

λS

, |f〉 =


|f〉

0

−e∗S.

. (3.5.12)

As a result, the system of equations we must solve is now Ld |u〉 = |f〉. The bordered

Laplacian is invertible due to the presence of the constraints and solving this equation

is straightforward.

3.5.3 Tuning Loss Function

Framed according to (3.2.1), the problem of tuning a complex task can be viewed as

a constraint-satisfaction problem. The goal is to find a set of stiffnesses (conductiv-

ities) that simultaneously satisfy each constraint in (3.2.1). To study this problem

numerically, we recast it as an optimization problem in the style of Ref. [23], in which

we define an objective function that penalizes deviation of the system’s behavior from

the desired multifunctionality. Thus, we introduce the loss function

F [{kij}] =
1

2

NT∑
α=1

r2
αΘ(−rα), (3.5.13)

which is a function of the set of all the spring constants (conductivities) {kij}, and is

composed of a sum over the set of NT target edges to be tuned. For each target edge
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α we define the residual

rα =
ηα − η(0)

α

η
(0)
α

−∆. (3.5.14)

which measures how close each target is to being tuned successfully. The Heaviside

function Θ(−rα) is included so that if rα > 0 , i.e., the response ratio has increased

at least by the desired proportion ∆, then the residual does not contribute to the loss

function.

3.5.4 Optimization Method

Our method for tuning a network involves minimizing the loss function in (3.5.13). In

the spirit of [28, 61], our optimization consists of removing or reinserting previously

removed edges from the network one at a time, modifying the network topology in

discrete steps. More specifically, we use a greedy algorithm in which we remove or

reinsert the edge which minimizes the loss function at each step. This requires a

calculation of the new response for each possible move.

Suppose we have a network whose stiffnesses at the current step are {kij} for all valid

ij where some kij might already be zero, having been removed at previous steps. Our

goal is to measure the change in response when the stiffness of edge ij is changed by
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an amount ∆kij. We note that the Laplacian can be decomposed as

Ld = QKQT (3.5.15)

where the equilibrium (or incidence) matrix Q of size dN ×NE defines the mapping

of nodes to edges[54, 57] and K is a size NE ×NE diagonal matrix of edge stiffnesses

such that 〈ij|K|lm〉 = kijδij,lm. We can define a bordered incidence matrix Q by

appending d + 1 rows of zeros to Q, giving us a corresponding decomposition of the

bordered Laplacian Ld = QKQ
T

. The change in response is

|∆u〉 =
[(
Ld + ∆Ld

)−1 − L−1

d

]
|f〉 (3.5.16)

with the corresponding change in the bordered Laplacian ∆Ld = ∆kij |qij〉〈qij| with

the vector |qij〉 = Q |ij〉. We now need to calculate the inverse of the updated

bordered Laplacian. This can be done using the Sherman-Morrison formula [70]

(
Ld + ∆Ld

)−1
= L

−1

d −
L
−1

d ∆kij |qij〉〈qij|L−1

d

1−∆kij 〈qij|L−1

d |qij〉
(3.5.17)

The change in response is then

|∆u〉 = −L
−1

d ∆kij |qij〉〈qij|L−1

d |f〉
1−∆kij 〈qij|L−1

d |qij〉
(3.5.18)

The new response is then used to calculate an updated loss function.
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In order to reduce numerical error and maintain the numerical invertibility of the

bordered Laplacian, we define the quantity

S2
ij ≡ 1−∆kij 〈qij|L−1

d |qij〉 (3.5.19)

If S2
ij is less than 10−4, we do not remove an edge. This quantity can be shown

to be the contribution of an edge to the states-of-self-stress in mechanical systems

[72, 34]. By ensuring that every removed edge has some contribution to the states-

of-self-stress, then by Maxwell-Calladine counting, we are guaranteed that no zero

modes are introduced [7].

We repeatedly add or remove edges until either the loss function is explicitly zero

(i.e., all constraints are satisfied), or the relative change in the objective function is

less than 10−8.

3.6 Appendix

3.6.1 Variations of the network tuning problem

We performed many variations of the standard network tuning problem presented

in the main text. The default simulation parameters we used were a pressure (flow

networks) or extension (mechanical networks) source, a target relative change in re-

sponse of ∆ = 0.1, and an average node coordination of Z = 2NE/N ≈ 5.0. For
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both flow and mechanical networks, we studied the two cases in which the two source

nodes were connected by a single edge and where the two source nodes were chosen

randomly from all the nodes, giving 4 cases altogether that we discuss in the main

text. Table 3.1 shows the many variations on these parameters that we explored,

along with the resulting power law exponents where applicable and the correspond-

ing figures showing the satisfiability transitions and scaling of the transition position

N c
T and width w. Each set of simulations had at least 128 simulations per data

point to calculate the satisfaction probability. The first section of the table shows

the data for the four cases discussed in the main text. The second and third sections

show configurations for flow and mechanical networks, respectively for higher values

of the target relative change ∆. The fourth and fifth sections show results for random

networks with Z ≈ 4.1 (close to isostaticity for mechanical networks) and initially

perfect triangular lattices. The sixth section shows configurations for tuning the re-

sponse with global strains applied to mechanical networks. The seventh section shows

results for tuning a target current in response to a current source (flow networks) or

target tension in response to a tension source (mechanical networks). Finally, the

last two sections show results for a negative relative change in the target response

for flow and mechanical networks. All variations on the tuning problem show qual-

itatively similar power law behavior except for tuning small changes in current or

tension (see Section “Tuning target current”) or negative desired relative changes in

target response, ∆ < 0.0) (see Section “Tuning negative target change ∆”).
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Tuning target current

In Table 3.1, we do not list exponents for flow networks tuned for target current nor

mechanical networks tuned for target tension with ∆ = 0.1. As seen in Figs. 3.10(A)

and (B), these cases do not result in the typical power law behavior seen elsewhere.

Instead we find that it is almost always possible to achieve the desired response.

This stems from the fact that the current in flow networks or tension in mechanical

networks can be trivially increased in magnitude by simply removing the source edge.

Typically, the source edge acts as either a resistor or a spring in parallel to the rest

of the network, diverting a significant fraction of all current or tension through that

edge. If the source edge is removed, then the magnitude of the current or tension

is increased without changing the sign. We find that this increase is always enough

to satisfy at least a 10% change in magnitude (∆ = 0.1), but not enough to satisfy

∆ = 1.0 in flow networks nor ∆ = 10.0 in mechanical networks. For these latter

cases, the resulting transitions revert back to the typical behavior seen elsewhere.

Tuning negative target change ∆

The last two sections of Table 3.1 contain the sets of variables we tested for the

alternate case of a negative relative target response, ∆ < 0. The resulting transitions

are depicted in Figs. 3.11 and 3.12. For these cases, we flip the inequality in Eq. (1),
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resulting in the constraints

ηα − η(0)
α

η
(0)
α

≤ ∆, α = 1, . . . , NT . (3.6.1)

Note that ∆ > 0 corresponds to increasing the magnitude of the response without

changing the sign, −1 < ∆ < 0 corresponds to decreasing the magnitude of the re-

sponse without changing the sign, and ∆ < −1 corresponds to tuning target responses

of the opposite sign from the source. For ∆ < 0, we do not always see a simple power

law behavior for reasons that are still under investigation.

Transition in the UK rail network

In order to demonstrate that real transportation networks possess properties similar

to those of the jammed packing topologies considered in the main text, we ana-

lyze three networks derived from the UK rail network presented in Ref. [25]. (i) In

Fig. 3.13, we measure PSAT for the full network consisting of N = 2490 nodes and

NE = 4377 edges for both a node pair source and edge source depicted as blue curves

with circular symbols. (ii) While the rail network comprises a single connected com-

ponent, it contains several parts which are connected through bridges, edges whose

removal creates two disconnected components. Because a source located in one such

component does not influence any other component, we remove all bridges in the

rail network graph and focus on the remaining largest connected component, which

consists of N = 2030 nodes and NE = 3868 edges. The resulting PSAT curves are
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shown as the green curves with square symbols in Fig. 3.13. (iii) Within the largest

connected component, there are edges whose pressure difference is always zero. For

example, such edges may belong to a part of the largest connected component that

is connected to the source through only a single node – such a node is topologically

equivalent to a bridge. Therefore, we also measure PSAT for the largest connected

component where these special edges are excluded from being chosen as targets. The

resulting curves are shown in Fig. 3.13 in red with triangular symbols. Each case

demonstrates decreasing levels of modularity in order from (i) to (iii). In all three

cases, we find that the PSAT curves are qualitatively similar to the results we found

for networks derived from jammed packings, with increasing modularity resulting in

overall lower values of PSAT .

Table 3.1: Variations of tuning problem and corresponding transition exponents

Physical
System

Source
Properties

Target
Properties

Target
Change ∆

Network
Properties

Transition Position
Exponent ν

Figure(s)

Flow Edge Pressure Drop Edge Pressure Drop 0.1 Random - Z ≈ 5.0 0.7 3.1(A), 3.2(A), 3.3, 3.4(A)
Mechanical Edge Extension Edge Extension 0.1 Random - Z ≈ 5.0 0.7 3.1(B), 3.2(B), 3.3, 3.4(B)
Flow Node Pair Pressure Drop Edge Pressure Drop 0.1 Random - Z ≈ 5.0 0.7 3.1(C), 3.3, 3.4(C)
Mechanical Node Pair Extension Edge Extension 0.1 Random - Z ≈ 5.0 0.7 3.1(D), 3.3, 3.4(D)
Flow Edge Pressure Drop Edge Pressure Drop 1.0 Random - Z ≈ 5.0 0.7 3.5(A)
Flow Edge Pressure Drop Edge Pressure Drop 10.0 Random - Z ≈ 5.0 0.8 3.5(A)
Mechanical Edge Extension Edge Extension 1.0 Random - Z ≈ 5.0 0.7 3.6(A)
Mechanical Edge Extension Edge Extension 10.0 Random - Z ≈ 5.0 0.7 3.6(B)
Mechanical Edge Extension Edge Extension 100.0 Random - Z ≈ 5.0 0.8 3.6(C)
Mechanical Edge Extension Edge Extension 1000.0 Random - Z ≈ 5.0 1.0 3.6(D)
Flow Edge Pressure Drop Edge Pressure Drop 0.1 Random - Z ≈ 4.1 0.7 3.7(A)
Mechanical Edge Extension Edge Extension 0.1 Random - Z ≈ 4.1 0.7 3.7(B)
Flow Edge Pressure Drop Edge Pressure Drop 0.1 Triangular Lattice 0.8 3.8(C)
Mechanical Edge Extension Edge Extension 0.1 Triangular Lattice 0.7 3.8(D)
Mechanical Global Shear Edge Extension 0.1 Random - Z ≈ 5.0 0.7 3.9(A)
Mechanical Global Expansion Edge Extension 0.1 Random - Z ≈ 5.0 0.6 3.9(B)
Flow Edge Current Edge Current 0.1 Random - Z ≈ 5.0 N/A 3.10(A)
Flow Edge Current Edge Current 1.0 Random - Z ≈ 5.0 0.7 3.10(B)
Mechanical Edge Tension Edge Tension 0.1 Random - Z ≈ 5.0 N/A 3.10(C)
Mechanical Edge Tension Edge Tension 10.0 Random - Z ≈ 5.0 0.7 3.10(D)
Flow Edge Pressure Drop Edge Pressure Drop −1.5 Random - Z ≈ 5.0 N/A 3.11(A)
Flow Edge Pressure Drop Edge Pressure Drop −1.0 Random - Z ≈ 5.0 N/A 3.11(B)
Flow Edge Pressure Drop Edge Pressure Drop −0.5 Random - Z ≈ 5.0 N/A 3.11(C)
Mechanical Edge Extension Edge Extension −1.5 Random - Z ≈ 5.0 N/A 3.12(A)
Mechanical Edge Extension Edge Extension −1.0 Random - Z ≈ 5.0 N/A 3.12(B)
Mechanical Edge Extension Edge Extension −0.5 Random - Z ≈ 5.0 N/A 3.12(C)

N/A indicates power law estimates not applicable due to lack of transition, or
clearly non-power-law-like behavior.
Bold text indicates changes from default parameters.
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Figure 3.4: Satisfaction probability and scaling of the transition position and width
for the four main cases shown in the main text: (A) flow networks and (B) mechanical
networks with an edge source and (C) flow networks and (D) mechanical networks
with a node pair source. See Table 3.1 for more details.
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Figure 3.5: Satisfaction probability and scaling of the transition position and width
for flow networks with desired relative change in target response of (A) ∆ = 1.0 and
(B) ∆ = 10.0. See Table 3.1 for more details.
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Figure 3.6: Satisfaction probability and scaling of the transition position and width for
mechanical networks with desired relative change in target response of (A) ∆ = 1.0,
(B) ∆ = 10.0, (C) ∆ = 100.0, and (D) ∆ = 1000.0. See Table 3.1 for more details.
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Figure 3.7: Satisfaction probability and scaling of the transition position and width for
(A) flow networks and (B) mechanical networks with average connectivity of Z ≈ 4.1,
lower than the default of Z ≈ 5.0. See Table 3.1 for more details.
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Figure 3.8: Satisfaction probability and scaling of the transition position and width
for (A) flow networks and (B) mechanical networks on an ordered triangular lattice.
See Table 3.1 for more details.
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Figure 3.9: Satisfaction probability and scaling of the transition position and width
for mechanical networks with global (A) shear and (B) compression sources. See
Table 3.1 for more details.
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Figure 3.10: Satisfaction probability and scaling of the transition position and width
for flow networks tuned for target current with (A) ∆ = 0.1 and ∆ = 1.0 and
mechanical networks tuned for target tension with (C) ∆ = 0.1 and (D) ∆ = 10.0.
See Table 3.1 for more details. Large error bars reflect a lack of available networks
with enough edges to measure PSAT for large NT .
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Figure 3.11: Satisfaction probability and scaling of the transition position and width
for flow networks tuned for a negative relative change in target response of (A) ∆ =
−0.5, (B) ∆ = −1.0, and (C) ∆ = −1.5. See Table 3.1 for more details.
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Figure 3.12: Satisfaction probability and scaling of the transition position and width
for mechanical networks tuned for a negative relative change in target response of (A)
∆ = −0.5, (B) ∆ = −1.0, and (C) ∆ = −1.5. See Table 3.1 for more details. Large
error bars reflect a lack of available networks with enough edges to measure PSAT for
large NT .
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Figure 3.13: Satisfaction probability of flow networks derived from real UK railroad
networks with (A) an edge source and (B) a node pair source. Three cases are
shown for each source: (blue curves with circular symbols) The entire network is
used. (green curves with square symbols) All bridge edges are removed and only
the largest connected component is used. (red curves with triangular symbols) The
largest connected component is used and edges whose pressure differences will always
be zero are excluded from being chosen as targets. See Section 3.6.1 for more details.
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3.6.2 Transition power law fitting and deviations

Fig. 3.14 demonstrates the deviations from power laws for the four systems displayed

in Fig. 3.2. We have plotted the fractional difference of each measured point, N c
T or

w, from its fitted power law function f(N) and g(N), respectively, as a function of

system size N . In both cases our fitted function is of the form ANα where A and

α are our fit parameters. Both the data sets for N c
T and w are fit simultaneously

with the same power α, but different coefficients A, resulting in a total of three fit

parameters. Error bars have been estimated by dividing the uncertainty in N c
T or w

by the respective fit function at that point. It is apparent that the simple power law

form does not perfectly match the underlying data.

3.6.3 Satisfaction probability error bars

Each data point of the various satisfaction probability plots is representative of a

binomial distribution

pi ∼ Binomial(ni, p̂i) (3.6.2)

where ni is the number samples and p̂i is the fraction of successful tuning attempts.

To calculate the error bars depicted in the various satisfaction probability plots, we
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Figure 3.14: Deviations of the power laws in Fig. 3 of the main text from power
laws of the form f(N) = ANα for the transition position and g(N) = BNα for the
transition width. Error bars for the position and width have been rescaled by dividing
by f(N) or g(N), respectively.

use the Wilson score interval [80]

p±i =
1

1 + 1
ni
z2

[
p̂i +

1

2ni
z2 ± z

√
1

ni
p̂i(1− p̂i) +

1

4n2
i

z2

]
(3.6.3)

with a z-score of z = 1. This gives us an estimate of the uncertainty for each data

point which is analogous to the standard deviation for a Gaussian distribution. How-

ever, since the probability is restricted between zero and one, the error bars are not

necessarily symmetric.
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3.6.4 Satisfaction probability curve fitting

The satisfaction probability curves depicted in Fig. 3.2, along with many of the sup-

plemental figures, were estimated using smoothing splines constructed from a basis

of cubic B-splines. The procedure for constructing the splines and estimating the

smoothing parameter were drawn with some modification from Ref. [78, Chapter 9.2].

To generate an estimate of a satisfaction probability curve, we start with a set of

n satisfaction probabilities yi each generated for a corresponding number of targets

xi where i goes from 1 to n. Each satisfaction probability counts the fraction of

successfully tuned networks from a collection of ni samples. Our goal is to find a

function p(x) which approximates the underlying function sampled by the data. Since

we do not know what functional form we should use, we would like to approximate

this function using a spline. However, the function p(x) should be limited to the

interval [0, 1], while splines are not typically limited in this way. Therefore, we write

p(x) in terms of a more general function as

p(x) =
eS(x)

1 + eS(x)
(3.6.4)

where S(x) is the spline function which can take on any real value.
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B-spline approximation

In terms of B-splines, the approximating spline function S(x) is written

S(x) =
m∑
i=1

ciB
k
i (x) (3.6.5)

with m coefficients ci and degree-k basis splines Bk
i (x). The coefficients are the fit

parameters we would like to estimate.

We must address the specific choices made in the use of B-splines. First, we choose

to use cubic splines (k = 3). One knot is chosen for each data point plus an extra k

at the lowest and highest values of x for padding. This gives us a total of m = n+ 2k

knots,

ti =


x1 if 0 < i ≤ k

xi−k if k < i ≤ n+ k

xn if n+ k < i < n+ 2k

(3.6.6)

The result is m = n+ 2k − (k + 1) basis splines with corresponding coefficients.

B-spline coefficient estimation

Typically, one would employ a least squares approach to calculate the spline coef-

ficients. However, this assumes that each data point is drawn from some normal

distribution, while we know in this case they are drawn from a set of binomial distri-
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butions

yi ∼ Binomial(ni, p(xi)) (3.6.7)

Carrying out a standard maximum likelihood estimation, the corresponding log-

likelihood of the binomially distributed data is

L(y) =
1

n

n∑
i=1

ni[yi log p(xi) + (1− yi) log(1− p(xi))] (3.6.8)

In terms of S(x), the log-likelihood can be written

L(y) =
1

n

n∑
i=1

[b(xi)− yiS(xi)] (3.6.9)

up to a constant with

b(xi) = ni log
(
1 + eS(xi)

)
(3.6.10)

To implement smoothing, we introduce a term with penalty parameter λ which pe-

nalizes the square of the curvature of S(x). This gives us the penalized generalized

linear model

Iλ(c) =
1

n

n−1∑
i=0

[
ni log

(
1 + eS(xi)

)
− yiS(xi)

]
+ λ

xn−1∫
x0

dx[S ′′(x)]2 (3.6.11)
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Smoothing parameter

Next we must choose a good value for λ. This is accomplished using a generalized

cross-validation (GCV) approach, allowing us to choose λ in an agnostic manner.

Using GCV effectively chooses λ so that the approximating spline curve changes as

little as possible if an arbitrary subset of data is left out of the fit. For the sake of

convenience, we write

S(x) = 〈c|Bk(x)〉 (3.6.12)

where ci = 〈i|c〉 and Bk
i (x) = 〈i|Bk(x)〉 are vectors of size m. We also write

Σij =

xn−1∫
x0

dxBk
i (x)Bk

j (x) (3.6.13)

Finally, we minimize the generalized cross-validation function

V (λ)GCV =

n∑
i=1

[
D
− 1

2
i (yi − µi)

]2

1
n

tr2(I − A)
(3.6.14)

with

µi = b′(S(xi)) (3.6.15)

Di = b′′(S(xi)) (3.6.16)
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and

Aij = D
1
2
i 〈Bk(xi)|

[
n∑
l=1

Dl |Bk(xl)〉〈Bk(xl)|+ 2λΣ

]−1

|Bk(xj)〉D
1
2
j (3.6.17)

The size n × n matrix I is the identity. When testing a particular value of λ, the

values ci are always chosen to minimize (3.6.11) for that λ. Therefore, the spline

coefficients are treated as a function of λ.

When minimizing (3.6.14), there may sometimes be extraneous minima at λ = 0 or

λ =∞. Since we would like some degree of smoothing, we never choose the minimum

at zero. Also, moderate smoothing is generally preferable to infinite smoothing, so if

a local minimum exists for finite λ, it is chosen even if it is not the global minimum.

3.6.5 Transition measurements

We use the spline approximations of each satisfaction probability curve in order to

estimate the positions and widths of each satisfiability transition. The center of the

transition is simply chosen as the number of targets N c
T such that the probability of

success is exactly 50%, PSAT (N c
T ) = 0.5. The width of the transition w is found by

first finding the number of targets corresponding to success rates of 25% and 75% and

taking their differences, w = P−1
SAT (0.75)− P−1

SAT (0.25). In order to weight each point

correctly when finding the power law scaling of the transition properties, we utilized

Monte Carlo resampling to estimate uncertainty [56]. To find the uncertainty values
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for N c
T and w for a particular curve, each data point for that curve is resampled from

its underlying binomial distribution. The spline approximation is then recalculated

for this new set of data points and new values of N c
T and w are extracted. This

process is repeated numerous times, resulting in a distribution of value of N c
T and

w. The uncertainty is then calculated by finding the standard deviation of of these

distributions.
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Chapter 4

The topological basis of function in
flow networks

Note: The following content is reproduced with major revision from Ref. [63].

4.1 Introduction

Many biological fluid transport networks are optimized to redirect flow as dictated by

the needs of the system. The cerebral vasculature provides the most striking example:

by dynamically contracting and dilating blood vessels, the brain is able to actively

control the propagation of blood in order to support local neuronal activity [29, 26].

More generally, the ability to locally tune the link (edge) conductances of venation

networks enable animals [77], plants [55, 66], fungi [33], and slime molds [74] to

control the spatial distribution of water, nutrients, oxygen, or metabolic byproducts.
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Flow networks have been shown to be remarkably tunable with the ability to support

highly complex, multifunctional tasks. By adding or removing a small number of

edges from a network, the pressure differences of a large number of edges can be

tuned simultaneously to respond in a predetermined way to a pressure difference

applied elsewhere in the network [62].

While venation networks between individuals within a species – and sometimes be-

tween related species – often share common macro- and meso-scale network archi-

tectures, micro-scale network structures can often seem random with no known un-

derlying geometric organizational principle [32]. This gives raise to a fundamental

question: What is the means by which a flow network performs a given task? In

other words, what is the relationship between structure and function?

Here we use persistent homology to identify the underlying basis of function in flow

networks tuned to perform specific tasks. By modifying the edge conductances of

a network, we tune the pressure difference of a single “target” edge to respond by

a specified amount when a unit pressure difference is applied to a separate, prede-

termined pair of “source” nodes. We find that the structure-function relationship

is topologically encoded in the response: as a network is tuned to achieve a desired

target pressure difference, it separates into two sectors of relatively uniform pres-

sure, even though the underlying network architecture remains a single connected

component.

While this description is simple, it provides a unifying topological description for
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all networks tuned for the same function, regardless of the underlying network ar-

chitecture, along with a quantitative means to compare networks tuned for different

functions. We demonstrate that it is robust even when the magnitude of the tuned

response is small, and is also easily extended to analyze complex, multifunctional re-

sponses. The general approach we develop here could serve as the basis for studying

the structure-function relationship for a wide variety of complex networks.

4.2 Design of Functional Flow Networks

We consider flow networks in which edges between nodes represent linear resistors.

In this framework, the response of a network to external stimuli is governed by a

discrete version of Laplace’s equation equivalent to Kirchoff’s equations. We derive

our flow networks from randomly-generated two-dimensional configurations of soft

spheres with periodic boundary conditions, created using standard jamming algo-

rithms. Flow networks are extracted from these configurations by placing nodes at

the centers of each sphere and edges – with associated fluid conductances (inverse

resistance) – between nodes corresponding to spheres that overlap. We chose this

ensemble because it provides initial networks that are reminiscent of those seen in

biological. At small length-scales, many natural flow networks are disordered [32],

have high numbers of closed loops [38], and are highly interconnected [5].

We tune our flow networks to perform simple functions: when a unit pressure dif-
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ference is applied between a pair of source nodes, the pressure difference of a single

target edge responds by at least an amount ∆ (chosen to be non-negative). For each

network the source nodes and target edge are chosen at random. Before tuning, the

values of the edge conductances of each network are chosen randomly from the range

0.01 to 1.0 in discrete increments of 0.01. To achieve the desired target pressure dif-

ference of at least ∆ across the target edge, we use a greedy algorithm: in each step

we increase or decrease the conductance of a single edge by 0.01 (staying within the

range 0 to 1, inclusively), modifying the edge conductance that best optimizes the

response at that step (for further details, see the Appendix, along with Ref. [62] and

similar work on mechanical networks in Ref. [61]).

Although we design our networks to perform elementary functions, the discrepancy

between structure and function is readily apparent. Figs. 4.1(A) and (B) show ex-

amples of two different networks that have been tuned to perform the same function,

namely to have similar relative positions of the source and target and the same target

pressure difference of ∆ = 0.2 relative to the source. Clearly, the spatial distribu-

tions of edge conductances and pressures in the networks are noticeably different; it

is unclear whether the underlying architectures of the two networks share anything

in common. In contrast, Figs. 4.1(C) and (D) show examples of the same initial

network tuned to before different functions. Both the relative positions of the source

and target are different, along with the target pressure differences of ∆ = 0.05 and

0.5, respectively, which differ by an order of magnitude. Although the two network

structures are identical before tuning and even share much in common afterwards,
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(A) ∆ = 0.2 (B) ∆ = 0.2

(C) ∆ = 0.1 (D) ∆ = 0.5

Figure 4.1: Four examples of tuned flow networks. In all examples, when a unit
pressure difference is applied across the source nodes (shown in red), a single target
composed of a pair of nodes (shown in green) responds with a pressure difference of
∆. The pressures on the nodes are shown in black where the symbol denotes the
sign of the pressure and the size denotes the magnitude. The thickness of the edges
corresponds to the conductance. Edges that are shown as thick dashed blue lines
have been entirely removed (set to zero conductance) in the process of tuning. (A)
and (B): Comparison of two flow networks with different initial structures tuned to
perform the same function. The relative positions of the source and target are similar
and the target is tuned to respond with a pressure difference of ∆ = 0.2. (B) and
(C): Comparison of two networks with the same untuned structure tuned to perform
different functions. The relative positions of the source and target are different and
the tuned pressure differences differ by an order of magnitude with values of ∆ = 0.05
and ∆ = 0.5, respectively.

the networks are able to perform very different tasks.
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4.3 Maximum Tuning Limit (∆ = 1)

(A1) ∆ = 1.0 (B1) ∆ = 0.05

(A2) (B2)

10-3 10-2 10-1 100

Pressure Difference ∆p

Figure 4.2: The same flow network tuned to show a pressure difference of (A) ∆ = 1.0
and (B) ∆ = 0.05. The source nodes are shown in red, while the target nodes are
shown in green. (A1) and (B1): The pressures on the nodes are shown in black where
the symbol denotes the sign of the pressure and the size denotes the magnitude. The
thickness of the edges corresponds to the conductance. Edges that are shown as
thick dashed blue lines have been removed in the process of tuning. (A2) and (B2):
The absolute values of the pressure differences on the edges of the tuned networks in
(A1) and (B1) shown in shades of blue. In the ∆ = 1.0 limit, the network clearly
splits into two components of uniform node pressure, separated by a boundary of
pressure difference equal to one. For smaller ∆, the network structure is not as
clearly delineated.

It is illuminating to first examine the extreme limit where ∆ = 1, the maximum

achievable pressure difference at the target edge (see Figs. 4.2(A1) and (A2)). Here the
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network clearly separates into two distinct sectors of perfectly uniform node pressure,

connected only by a small region between the source nodes. These two regions are

separated by a crack-like structure with pressure differences of precisely 1.0 along

edges that have been removed during the tuning process. The structural changes in

the network architecture are purely topological: all edges connecting the two sectors

are removed (excluding those connecting the source nodes, which could be removed

with no change in the response), increasing the number of connected components in

the network from one to two. The exact details of the local structure (which specific

edges are modified) do not matter as long as this partitioning takes place. In this

extreme case, the relationship between structure and function is clear: the presence

of the two separate connected components, each associated with one source node

and one target node, allows the desired target pressure difference to be achieved.

Intuitively, this description should extend to all networks tuned to this same extreme

limit, since adding any extra links between the two sectors would allow current to

flow between them and necessarily decrease the pressure difference. However, when

∆ is less than 1, as in Fig. 4.1(B1) and (B2), the entire network is highly connected

and the important aspects of the structure are not as well-defined.

Here we show that a persistent homology analysis of the response of such networks

allows us to generalize the sector description observed in the extreme ∆ = 1.0 case

to smaller pressure differences. The analysis is able to identify two analogous sectors,

even in cases such as Fig. 4.1(B1) where the target pressure difference of ∆ = 0.05 is

too small for the components to be discerned by eye and the underlying the network
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architecture is still composed of a single connected component. Consequently, this

process allows us to relate the structures of different networks tuned to perform the

same function.

4.4 Topological Signature of Tuning

At its core, the process of tuning networks is local; it involves modifying the conduc-

tances of individual edges. However, the extreme example of Fig. 4.2(A1) provides ev-

idence that coordinated, large-scale topological changes in the structure and response

can arise from local edge tuning. To see if remnants of these topological changes are

responsible for function when ∆ < 1, we use persistent homology, a technique that

can detect and assign significance to the topological features of geometrically and/or

topologically structured data [17, 52]. In this case, our data consists of the pressure

response of tuned networks, along with the connectivities of the nodes and edges.

In general, the types of topological features the persistence algorithm can detect in-

clude connected components, loops, voids, etc; for flow networks, only the first two

are relevant. Since the extreme case for ∆ = 1 suggests that the network partitions

into different sectors, we focus solely on connected components. In the past, the

persistence algorithm (or related techniques) has been used to study various topo-

logical aspects of flow networks [38, 45], along with their higher-dimensional analogs,

mechanical networks [40, 41].
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To apply the persistence algorithm, one needs an ordering of the network elements

(vertices, edges) in terms of a quantity defined on the particular elements that are

relevant to the tuned function. An obvious candidate is the pressures on the nodes.

However, since the node pressures obey a discrete version of Laplace’s equation, local

minima and maxima in the node pressures can only occur at the source. As a result,

there can only be a single (global) minimum on one of the source nodes, and a

single (global) maximum at the other source node. Since local extrema play an

important role in defining topological features, their absence means that very few

interesting features would be detected by the persistence algorithm (in fact, we would

only detect a single connected component corresponding to the two global extrema

at the source nodes). We therefore define our ordering on the edges instead of the

nodes, sorting each edge according to the absolute value of the difference in pressure

between its nodes. Given a network with NE edges, we label each edge with an integer

i according to this order, with 1 ≤ i ≤ NE, as illustrated in Fig. 4.3(A), and denote

its corresponding pressure difference as ∆pi.

We then proceed as follows: starting with an empty network with no edges, we add

each edge to the network in order of its pressure difference, one at a time. With each

step i, we obtain a larger subset of our original network, consisting of the first i edges.

This sequence of subnetworks corresponds to a filtration of the pressure differences

on our original network. In the “ascending filtration,” we perform this process for

each edge in order of the absolute value of the pressure differences from smallest to

largest. Similarly, for the “descending filtration” we proceed in order of decreasing
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pressure difference.

At each step in the filtration, the persistence algorithm records any changes in the

topological structure, i.e. any changes in the number of connected components. When

an edge is added, there are three possibilities: (i) the new edge is not connected to

any of the pre-existing edges, increasing the number of connected components by one,

(ii) the new edge is shared between two of the pre-existing components, joining them

together and decreasing the number of connected components by one, or (iii) the new

edge is only connected to a single pre-existing component, incurring no change in

the number of connected components. For the first case, in which a new component

appears, we say that it is “born” and record the pressure difference at that step, ∆pb,

as its “birth pressure difference.” The new edge is the “birth edge.” In the second

case, in which two components merge, we say that the component in the pair that

was born most recently has “died,” and we record the pressure difference, ∆pd, as

its “death pressure difference.” The new edge is the “death edge.” In this way, each

connected component that appears during the filtration is assigned a birth-death pair

(∆pb,∆pd). By carrying out the filtration in both ascending and descending order,

we collect two sets of birth-death pairs, one for each filtration (The approach we

have described here has been simplified for the sake of discussion, but is a sufficient

version of the persistence algorithm. See the Appendix and Ref. [17] for a detailed

explanation of the complete algorithm).

Figs. 4.3(B)-(F) illustrate this process for an example network. New components are

born in Figs. 4.3(B), (C), and (D), colored green, orange, and blue, respectively, with
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Figure 4.3: Example of the persistence algorithm carried out on a toy flow network
tuned for a pressure difference of ∆ = 0.5. (A) Ordering indices of the edges from
smallest to largest pressure difference, defining the ascending filtration. (B) - (D)
Birth of three components at pressure differences ∆p1, ∆p4 and ∆p5 colored green,
orange and blue, respectively. (E)-(F) Deaths of the blue and orange components
at pressure differences ∆p7 and ∆p16, respectively. (G) The resulting persistence
pairs of the ascending filtration (blue) and descending filtration (red, algorithm not
shown) plotted on a persistence diagram. Points farther from the diagonal signify
more important features.

corresponding birth pressures of ∆p1, ∆p4, and ∆p5. Figs. 4.3(E) and (F) show the

deaths of two of the components. In Fig. 4.3(E), the blue component dies with a death
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Figure 4.4: Average persistence diagram of (A) untuned flow networks and (B) net-
works tuned to a pressure difference of ∆ = 0.8. Each bin is colored according to
the average number of points found in that bin in the persistence diagrams for over
30000 flow networks of 256 nodes. Points located above the diagonal correspond to
the ascending filtration, while those located below the diagonal correspond to the
descending filtration. Features for which the birth and death pressure differences are
exactly equal are excluded from all persistence diagrams due to negligible topologi-
cal significance (persistence τ = 0).(C) Evolution of the average persistence diagram
with tuning. The average persistence diagram is calculated for 11 values of target
pressures ∆ ranging from 0 to 1 in steps of 0.1. Each bin is colored according to the
value of ∆ whose average persistence diagram has the largest number points in that
bin.

pressure of ∆p7, resulting in the birth-death pair (∆p5,∆p7), while in Fig. 4.3(F), the

orange component dies with death pressure ∆p16, resulting in the birth-death pair

(∆p4,∆p16). The final component, consisting of the entire network, never dies, so we

do not assign it a birth-death pair.

Once we have collected all birth-death pairs, (∆pb,∆pd), we can construct a per-

sistence diagram as depicted in Fig. 4.3(G). For the ascending filtration, the death

pressure difference exceeds the birth pressure difference in each pair; these pairs are

represented by points colored in blue. For the descending filtration, the death pressure

difference is always smaller than the birth pressure difference in each pair; these pairs
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are represented by points colored in red. The complete set of points characterizes the

topological structure of connected components in the network. Points associated with

the ascending/descending filtration represent regions of the network with relatively

low/high pressure differences.

Additionally, the vertical distance of a point from the black diagonal line in Fig.4.3(G),

along which ∆pb = ∆pd, is called the “persistence”: τ = |∆pd −∆pb|. This measures

the lifetime of a feature during the filtration process, and provides a measure of its

significance. Small fluctuations in pressure differences, for example, would yield birth-

death pairs with low persistence. In the example of Fig. 4.3, we see that the point

(∆p4,∆p16) has a large persistence value. This means that the corresponding orange

connected component survives, or persists, for a large range of pressure differences

during the persistence algorithm. This high persistence suggests that this feature is

important for characterizing the structure of the network.

We have carried out the persistence analysis for ensembles of tuned and untuned

networks and collected the results for each ensemble into a persistence diagram.

Fig. 4.4(A) depicts a two-dimensional histogram of the average persistence diagram

of over 30000 untuned networks, each composed of 256 nodes. For each network, the

source and target edges are selected randomly. The histogram is calculated by divid-

ing the persistence diagram into bins in ∆pb and ∆pd (shown as individual pixels)

and counting the average number of points (birth-death pairs) that fall within each

bin across all of the networks in the ensemble. We exclude any points for which τ

is exactly zero, as these features can be interpreted as having no topological signif-
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icance. We observe two different clusters of features for untuned networks, both of

which correspond to fluctuations in the response due to the discrete nature of the

initial networks. The the features clustered near the origin are typically located far

from the target edge where the pressure difference scale is relatively low. The band

of features below the diagonal at birth pressure differences between about ∆pb = 0.35

and 0.6 typically correspond to small numbers of isolated edges of relatively high pres-

sure differences located near the source. In the continuum limit of Laplace’s equation

with infinite system size, both sets of features would collapse towards a single point

at the origin.

Fig. 4.4(B) shows the equivalent histogram for an ensemble of networks tuned to

a target pressure of ∆ = 0.8. A comparison of Figs. 4.4(A) and (B) shows that

the histogram of the persistence diagrams changes drastically in two ways. First,

a high concentration of features appears in the ascending diagram, located above

the diagonal, concentrated in a thin vertical band at a birth pressure of ∆pb = 0,

with death pressures ranging from zero to our tuned response of ∆ = 0.8. This

indicates that tuned networks tend to develop regions of almost perfectly uniform

node pressure (zero pressure difference), separated by boundaries of high pressure

differences up to the tuned pressure difference. Most of these features are located far

above the diagonal, indicating that they are of high significance. Similarly, for the

descending diagram, a vertical band appears for the tuned networks that is absent

for untuned networks. This band is concentrated at a birth pressure equal to our

tuned response ∆ = 0.8 with a death pressure ranging from zero to 0.8. This band
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corroborates our observations of the ascending filtration; it indicates that there are

regions of pressure differences equal to our tuned response. These likely correspond

to the boundaries between regions of uniform node pressures. Again, many of these

features are of high significance because they are located far below the diagonal.

To understand how persistence diagrams evolve in more detail, we calculate the aver-

age persistence diagram for 11 target pressures ranging from ∆ = 0.0 to 1.0. For each

bin we find the value of ∆ whose average persistence diagram is most highly repre-

sented, with the largest average number of points in that bin compared to all ∆. We

color each bin according to this representative value of ∆ as shown in Fig.4.4(C). We

see that as networks are tuned for larger and larger target pressures ∆, the average

ascending persistence diagram is steadily populated with points far above the diago-

nal in a band at ∆pb = 0 ranging from ∆pd = 0 to ∆, while the average descending

diagram develops features at the tuned target pressure, in bands located at ∆pb = ∆.

This confirms that the trends we see in Figs. 4.4(A1) to (A2) generalize to all values

of ∆.

4.5 Topological Characterization

Now that we have identified persistent features that appear in the tuned network

structures, namely the features in the vertical bands that appear at ∆pb = 0 in the

ascending filtration and at ∆pb = ∆ in the descending filtration, we associate these
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features with their actual components in the tuned networks. The obvious approach

would be simply to identify the connected components that define each point in the

persistence diagrams at either their birth or directly before their death as shown in

Fig. 4.3. However, components can merge multiple times, forming a binary tree of

component mergers. This results in identified regions that overlap with one another,

with each node belonging to a large set of different components. Instead, for simplicity

we seek to divide the network into non-overlapping regions.

To accomplish this, we start by creating a skeletonized tree representation of our

network, as shown in Fig. 4.5(A), which both encodes the topological changes we

saw in our persistence algorithm and also allows us to uniquely divide our network

in distinct components. To create this tree, we first perform the ascending filtration

we defined in the previous section, keeping any edge which fits at least one of the

following criteria: (i) the edge creates a new connected component (a birth edge), (ii)

the edge merges two connected components (a death edge), or (iii) the edge adds a

new vertex to the network. Alternatively, we could exclude any edge which creates a

cycle during the filtration.

Next, we mark any edges that fit the second criterion with a dashed line. As these

edges denote merging events in our filtration, they naturally separate our network

into different components. Using these edges as the boundaries between regions in the

skeletonized network, we partition the network into different connected components,

shown as the green, orange and blue regions in Fig. 4.5(B). Each boundary edges

we identify corresponds to a death event and can therefore be associated with a
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Figure 4.5: (A) Skeletonized tree of the tuned network structure shown as thick lines
gray lines, with death edges shown as thick dashed lines overlayed on the absolute
values of the pressure differences shown in shades of blue. This tree encodes the
topology of the connected components of the network. The filtration index of birth
and death edges are shown with circular and rectangular backgrounds, respectively.
(B) Using the death edges as the boundaries of components, three components shown
in green, orange and blue can be identified. (C1)-(C2) Each boundary (death) edge
can be used to decompose the network into two unique sectors shown in green and
orange. The birth-death pair associated with each boundary edge can be used to
assign a normalized persistence value t̂ to each possible pair of sectors. In (C1)
τ̂ = 0.03, while in (C2) τ̂ = 1.0, the maximum possible value, indicating the greatest
possible topological significance. The pair of sectors with the greatest value of τ̂ which
places each target node into a separate region is chosen (in this case the sectors in
(C2)).

particular birth-death pair found using the persistence algorithm. The corresponding

birth edge is always the edge with minimum filtration index in one of the sectors.

However, a death edge is not guaranteed to be located on the boundary of the sector
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corresponding to its birth edge. In the example, the boundary edge connecting the

orange and green sectors is associated with the pair (∆p4,∆p16), while the edge

connecting the orange and blue sectors is associated with the pair (∆p5,∆p7).

(A1) ∆ = 0.2 (B1) ∆ = 0.2

(A2) (B2)

(A3) (B3)

10-3 10-2 10-1 100

Pressure Difference ∆p

Figure 4.6: Comparison of the topological structure of the two flow networks from
Fig. 4.1 with different structures tuned to perform the same function both before and
after the simplification process. (A1) and (B1): Before simplification, each network
shows a high degree of over-segmentation with its structure decomposing into a large
number of connected components. Each component is colored arbitrarily such that
no two neighbors have the same color. The skeletonized tree representing the topol-
ogy of the connected components is shown with thick gray lines. Edges in the tree
that overlap two separate regions correspond to boundary (death) edges. (A2) and
(B2): After simplification, the number of connected components is greatly reduced.
We identify the two main components of highest persistence (shown in green and or-
ange), each associated with a single target node. (A3) and (B3): The correspondence
between the resulting sectors and the pressure differences on the edges.
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This process decomposing the network into sectors is analogous to the watershed

transform often used in image segmentation [64]; each component we find is effec-

tively a basin associated with a local minimum that corresponds to the component’s

birth edge. The main drawback to this method is that it results in rampant over-

segmentation, as is often the case when performing watershed transforms on noisy

data. Each of the large number of points in our persistence diagram results in a new

segment, no matter how small its persistence value. Figs. 4.1(A1) and (B1) show all

of the individual components corresponding to birth-death pairs for the two networks

from Fig. 4.1, along with the underlying tree structure. Each component is colored

arbitrarily in order to highlight individual regions. Clearly, the two networks are

highly segmented, and the many individual connected components do not provide

much structural intuition.

To remedy this, we draw insight from the extreme ∆ = 1 case and attempt to coarse-

grain the network into the two most significant sectors. Since a tree by definition

has no cycles, each boundary edge divides the network into exactly two sectors, as

shown in Figs. 4.5(C1) and (C2). In order to choose which decomposition of the

network is most relevant, we examine the value of the persistence τ for the birth-

death pairs corresponding to each boundary edge. We normalize each value of τ by

the maximum persistence value of all birth-death pairs for that network τmax. We

denote this normalized persistence τ̂ = τ/τmax. This normalized persistence value

ranges from zero to one, providing a measure of the topological significance of each

possible pair of sectors. For example, the sectors in Fig. 4.5(C1) have a persistence of
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only τ̂ = 0.03, while those in Fig. 4.5(C2) have maximum possible value of τ̂ = 1.00,.

Although a large value of τ̂ may indicate high significance, it does not guarantee

relevance to the tuned response on its own. Therefore, we apply a physical criterion

to choose the appropriate pair of sectors. Since we have tuned the network to have a

certain pressure differential between the target nodes, we choose the boundary edge

with the largest associated value of τ̂ which places each of the two target nodes into

a different sector. In this way, we are able to uniquely decompose each of our tuned

network structures into a pair of significant regions associated with each target node

without choosing any arbitrary cutoffs. Furthermore, the value of τ̂ for the resulting

sectors gives us a quantitative measure of the validity of our assumption that the

two components corresponding to each target node are separate pressure sectors. If

τ̂ is measured to be zero, then it is not possible to separate the network into two

components in this way. But if τ̂ is equal to one, then the resulting sectors also

correspond to the most topologically significant pair of connected components in the

network.

Figs. 4.6(A2) and (B2) demonstrate the results of this procedure for the networks

shown in Fig. 4.1. After coarse-graining via persistence, the topological structure of

both networks has been greatly simplified compared to the initial components shown

in Figs. 4.6(A1) and (B1), allowing us to identify two main regions (shown as green

and orange), each associated with a single target node. Figs. 4.6(A3) and (B3) depict

how the sectors correspond to the pressure differences on the edges of the networks.

These regions allow us to directly compare the structures of the two networks that

109



have been tuned for the same function.

(A1) Untuned (B1) ∆ = 0.05 (C1) ∆ = 0.20 (D1) ∆ = 1.00
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Figure 4.7: Evolution of the network structure and response with corresponding sector
partitioning for (A) an untuned network and the same network tuned for target
pressure differences of (B) ∆ = 0.05 (C) ∆ = 0.2, and (D) ∆ = 1.0. Each network is
tuned directly from the same initial configuration in (A). (First Row) The simplified
sectors characterizing the response are highlighted in green and orange. The source
nodes are shown in red and the target nodes in green. The pressures on the nodes are
shown in black where the symbol denotes the sign of the pressure and the size denotes
the magnitude. The thickness of the edges corresponds to the conductance. Edges
that are shown as thick dashed blue lines have been fully removed in the process of
tuning. (Second Row) Correspondence of the sectors and the pressure differences on
the edges. Edges are colored white-to-blue on a log-scale according to the absolute
value of the pressure differences. (Third Row) The associated histogram of node
pressures with green and orange portions showing the contributions of nodes in the
green and orange sectors, respectively, shown in the first and second rows.
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4.6 Structure-Function Relationship

Fig. 4.7 shows how the two sectors evolve with tuning. In Figs. 4.7(A1) and (A2),

we see that before tuning, the sectors (highlighted as green and orange) do not have

any obvious structural significance, with a small normalized persistence τ̂ = 0.04.

Fig. 4.7(A3) shows a histogram of the pressures on the nodes, highlighting the regions

of the histogram associated with each sector. If we calculate the median node pressure

for the nodes in the green region and separately for the nodes in the orange region, we

can take the absolute value of the difference between the two median pressures, ∆p,

as an effective pressure difference between the two regions. We find that the untuned

network has a very small effective pressure difference of ∆p = 0.001.

After tuning to a target pressure of ∆ = 0.05, Figs. 4.7(B1) and (B2) show that the

network response has more clearly segregated into two sectors bounded by a crack-like

region of slightly larger pressure differences. These pressure differences are a result of

edges that have been completely removed in that region. Examining the histogram

in Fig. 4.7(B3), we see that the pressures of the nodes in the two sectors fall into

different regions of the histogram with an effective pressure difference of ∆p = 0.09,

relatively close to the tuned pressure difference. The persistence of the sectors is

τ̂ = 0.10, significantly larger than that of the untuned network.

Further tuning to a target pressure of ∆ = 0.2, we see in Figs. 4.7(C1) and (C2)

that the two sectors partition the network even more clearly, even as the underlying

network architecture remains connected as a single component. The areas of the
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Figure 4.8: (A) Average difference in median node pressures ∆p between the two
sectors corresponding to the two target nodes for a variety of system sizes N and
target pressure difference ∆. The black dashed line corresponds to ∆p = ∆. (B)
Average standard deviation of the distribution of ∆p at each value of N and ∆.

histogram in Fig. 4.7(C3) associated with each sector now comprise separate peaks.

The nodes are almost completely partitioned into the two regions with node pressures

of different signs. The effective pressure difference between the two sectors is ∆p =

0.21, closely tracking the tuned pressure difference, and the persistence is τ̂ = 0.46.

Finally, Figs. 4.7(D1) and (D2) show a complete partitioning of the network accord-

ing to node pressure at a tuned pressure difference of ∆ = 1.0. The histogram in

Fig. 4.7(D3) confirms this, as it shows two narrow peaks of node pressures with

∆p = 1.0 and a maximum possible persistence of τ̂ = 1.0.
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Figure 4.9: (A) Average normalized persistence τ̂ = τ/τmax of the two sectors for a
variety of system sizes N and target pressure differences ∆. A maximum value of
one indicates maximum topological significance. (B) Average percentile rank of τ̂ for
the two sectors out of all possible pairs of sectors in a given network. The percentile
rank is calculated independently for each network before averaging. (C) Fraction of
networks where the target nodes can

In summary, Fig. 4.7 shows that as the target edge is tuned to larger and larger

pressure differences, the network’s response steadily partitions the nodes into two

distinct sectors, even as the underlying network architecture remains a single con-
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nected component. The node pressures within each sector are relatively uniform and

the difference between the median pressures in the two sectors corresponds closely to

the tuned target pressure difference. The separation of the two regions, as measured

by the normalized persistence τ̂ , increases as well, to a maximum value of τ̂ = 1.0 in

the limit ∆ = 1.0.

We have established the generality of this observation by tuning many networks to a

variety of target pressure differences, obtaining the two sectors with the largest nor-

malized persistence τ̂ that separate the target nodes in each case. For each network,

we calculate the effective pressure difference ∆p, the difference in median node pres-

sures between the two sectors. Fig. 4.8(A) shows the average of ∆p for various system

sizes N and target pressure differences ∆. Each point is calculated by averaging the

results over an ensemble of 512 independent networks. We see that ∆p is close to ∆

for all system sizes and target pressure differences, with almost perfect agreement for

larger systems. We also measure the average standard deviation σ∆p of the effective

pressure difference for each system size and tuning threshold in Fig. 4.8(B). We see

that the spread of each distribution is very narrow, especially for large N . (Note: We

choose the median, rather than the mean, to reduce the effect of the source nodes,

which are typically outliers in the node pressure distributions of the two sectors. This

choice only improves the results for very small system sizes tuned for small values of

∆).

The rest is completely rewritten
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In Fig. 4.9(A), we measure the average normalized sector persistence taken as the

persistence of the birth-death pair associated with the boundary (death) separating

the two sectors, normalized by the maximum persistence of any birth-death pair for

that particular network, τ̂ = τ/τmax. We see that the sector persistence approaches a

maximum value of one for large tuning thresholds, indicating the sectors correspond

to one of the most topologically significant features for each network. To further

validate this, Fig. 4.9(B) shows the average rank percentile of τ̂ out of all birth-death

pairs with nonzero persistence within each network. We see that in all cases, the rank

percentile is close to unity, indicating that even if the sectors do not correspond to

the feature with highest persistence in a given network, they still correspond to one

of the most topologically significant features.

Sometimes it is not possible to divide the network into two sectors either because the

target nodes are not separate by a boundary edge or a lack of any birth-death pairs,

indicating no topological features were found during the filtration. In these cases,

we exclude the network from all of our results. Fig. 4.9(C) measures the number of

networks that cannot be divided successfully into two sectors. We see that this only

occurs for small system sizes or for larger systems when ∆ is zero.

Since the sectors we find correspond to relatively uniform node pressures, calculate

the similarity of the tuned network response with an approximate response where each

sector is assigned a uniform node pressure equal to its average in the exact response.

Given a network with N nodes, we represent the response with as length N vector

~p where the ith component is the pressure of the ith node. Similarly, we define the
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Figure 4.10: Average similarity of the effective measured response with the actual
response of the network for a variety of system sizes N and target pressure differences
∆. The approximate response is calculated by assigning each node within a sector a
pressure equal to the average pressure within that sector.(B) The average two-sample
Kolmogorov-Smirnov statistic between the distributions of node pressures of the two
sectors for each system for the actual response. This measures distance between the
two distributions with zero indicating maximum overlap of the two, and one indicating
no overlap.

represent the approximate response as the vector ~p′. We measure the similarity of

these two responses using the following measure of overlap:

q =
~p · ~p′
p2 + p′2

where p and peff are the norms of the two vectors. This measure of overlap of the

two vectors is zero when the vectors are orthogonal and one if both their directions
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and magnitudes are identical. In Fig. 4.10(A), we see that q steadily increases to

a maximum value of one for large ∆. Although, it is not perfectly one for all tun-

ing thresholds, q is substantially greater than zero for all system sizes and tuning

thresholds.

Fig. 4.10(B) shows the average two-sample Kolmogorov-Smirnov (K-S) statistic be-

tween the node pressure distribution of the two sectors (the green and orange his-

tograms in Fig. 4.7) for each network. This quantifies the difference between the

contributions to the total node pressure histograms of the two sectors, with a value

of one indicating no overlap between the two sectors (as in Fig. 4.7(D3)) and zero

indicating that the two sectors overlap significantly (as in Fig. 4.7(B3)). We see that

the K-S statistic quickly approaches unity with increasing ∆, especially for larger N ,

indicating that the two sectors rapidly segregate into regions with non-overlapping

distributions of node pressures.

Finally, Fig. 4.11 shows the four sectors for a multifuncitonal flow network where

six separate target edges have each been tuned to ∆ = 0.2. In the presence of

multiple targets, it is generally not possible use the skeletonized tree representation

of a network to simultaneously separate each pair of targets using only two sectors.

Therefore, we extend our coarse-graining procedure to account for the possibility

of multiple relevant sectors. T accomplish this, we first treat each pair of target

nodes separately, recording the boundary edge of highest persistence that places each

node into a separate sector. The result is a list of boundary edges which is less

than or equal to the number of targets. We then use these boundary edges as the
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boundaries between each sector within the tree. Fig. 4.11(A) shows the structure of

the network, while Figs. 4.11(B) and (C) show the pressure differences on the edges

and the skeletonized tree represenation of the network. In Fig. 4.11(C), we see that

each of the four sectors comprises a distinct peak in the histogram of node pressures.

The separation between neighboring peaks roughly corresponds to the tuned response

of ∆ = 0.2.

4.7 Discussion

4.7.1 Summary

In summary, we have established a quantitative characterization of function in flow

networks by analyzing their responses using persistent homology. This analysis reveals

the topological means by which function is tuned into these networks, providing a

clear relationship between structure and function. As a network is tuned to larger

and larger pressure differences at the target, it segregates into two sectors of relatively

uniform pressure which characterize and predict the tuned response. These sectors are

a property of the response of the network to external stimuli, rather than solely the

underlying graph structure (i.e. the node connectivity and edge weights). Although

the network does not physically separate into two topologically distinct components,

the topology of the response robustly sorts each node into a particular sector.
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Figure 4.11: Network tuned to perform a multifunctional task: When a unit pressure
difference is applied across the source nodes (shown in red) six separate pairs of target
nodes (shown in green) have each been tuned to exhibit a pressure difference of at
least ∆ = 0.1. (A-C): The network can be decomposed into four distinct sectors
colored in green, orange, purple, and red. (A) The pressures on the nodes are shown
in black where the symbol denotes the sign of the pressure and the size denotes the
magnitude. The thickness of the edges corresponds to the conductance. Edges that
are shown as thick blue dashed lines have been completely removed in the process
of tuning. (B) The absolute values of the pressure differences are shown in white-
to-blue on a log scale. (C) Skeletonized tree representation of the network encoding
the topological structure of the network. (D) The histogram of nodes pressures with
portions highlighted in different colors corresponding to the contributions of each
sector. Each sector comprises a separate peak in the histogram, with the differences
between neighboring peaks each approximating the tuned response of the targets.

This description provides a unifying description for all flow networks tuned to perform

this type of function, including networks with different underlying network architec-

tures tuned for the same function and networks with the same underlying network
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architectures tuned for different functions. This description also extends to networks

tuned to perform complex, multifunctional tasks. In analogy to the way in which

genus is used to classify manifolds with different numbers of holes, independent of

geometrical details (e.g. the famous equivalence between a coffee cup and a dough-

nut), the number of connected components (i.e. the 0th Betti number) encoded in

the response allow us to classify tuned networks.

Although the local node connectivity and geometrical structure can differ between

two networks tuned for the same function, the commonality in structure of the net-

works becomes apparent when viewed through a topological lens. This leads us to

propose a refinement of the structure-function paradigm in the context of functional

flow networks. Since the process of tuning is inherently topological, the aspect of

structure that relates to function is also topological; it is the relationship between

the topological structure and function that is important, not the relation between

geometric structure and function. The fact that the structure-function relationship

is topological contributes to the robustness of our results even in the case of small ∆,

when the structures relevant to the tuned function are not discernible by eye.

We have also demonstrated that the techniques provided by persistent homology -

both the persistence algorithm and our persistence-based coarse-graining procedure

- are powerful tools for quantifying network structures in a unique and threshold-

independent manner. The persistence algorithm allows us to identify the general

physics that distinguishes between systems (e.g. tuned and untuned networks) by

taking advantage of statistical differences in topological structure, but is unable to
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uncover the precise features responsible. The coarse-graining procedure allows the

topological differences revealed by the persistence algorithm to be translated into

concrete and unique features (in this case two connected components), even in the

case of noisy data.

4.7.2 Experimental Implications and Application

The techniques we have demonstrated, along with the resulting characterization of the

tuning process, reveal a path forward for understanding biological flow networks in ex-

periment. Obtaining an accurate and complete map of every single vessel of an entire

organ or organism poses a difficult experimental challenge, as vasculature networks

frequently consist of millions of nodes and span several lengthscales. In addition, it

is known that small errors in the connectivity or conductances can be disastrous in

determining function [10]. In spite of these obstacles, experimental researchers have

directed their efforts to fully characterizing node connectivity and edge conductances

(vessel diameters) [13]. Our results show that such detailed knowledge of the under-

lying network architecture is not necessary. Rather, we suggest taking measurements

of local pressure, as function is encoded robustly in regions of nearly-uniform node

pressure.

In its current form, our analyses does not require information about the edge weights

(conductances), nor the locations of the source nodes. However, we do utilize infor-

mation about the node pressures, local node connectivity, and locations of the target
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nodes. In practice, perfect knowledge of these details will not always be available

in an experimental setting. Here we propose several variations of our analysis which

may alleviate the need for such information.

First, perfect knowledge of node pressure and connectivity is not strictly necessary. In

fact, as long as pressure is measured at enough locations with small enough spacings

in order to capture fluctuations at desired length scales, a best-guess reconstruction

of the network in which edges are placed between nearest neighbors (e.g. a Delau-

nay triangulation) would suffice. This could potentially eliminate the need for any

measurement of the vessel micro-structure.

Second, Figs. 4.9(A) and (B) reveal that the sectors that best separate the target

nodes typically correspond to one of boundary edges with highest topological signif-

icance, that is, the largest normalized persistence τ̂ . If the scale of the fluctuations

in pressure differences relevant to network function is approximately known, then all

boundary edges with persistence above some threshold could be used to define the

final sectors. Not only does this eliminate the need to know the target edges, but

it also loosens the restriction that the network is divided into only two sectors. We

have already shown in Fig. 4.11 that developing an understanding of multifunction-

ality would require this generalization. (In the case of flow networks, the approach

we describe should be identical to the persistence-based simplification described in

Refs. [60] and [12]. Although constructing the skeletonized tree version of a net-

work and identifying boundary edges is sufficient, we provide instructions in order to

directly apply persistence-based simplification to flow networks in the Appendix.)
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Alternatively, boundary edge(s) could be chosen which maximize the similarity q be-

tween the actual and approximate uniform responses. We know from Figs. 4.10(A)

that q is often large for the final sectors. While coarse-graining the network to elim-

inate features of low persistence should eliminate noise from small fluctuations in

pressure, optimizing for large q could be useful for eliminating larger-scale fluctua-

tions, as long as they only occur at small length scales.

In summary, the alternative approaches we propose reduce experimental requirements

of our analysis to only partial measurements of node pressure at relatively closely

spaced intervals. It does not require, knowledge of the small-scale micro-structure

of the underlying network, nor the locations of source and target nodes. It should

also be robust to noise characterized by low-amplitude fluctuations in pressure or

fluctuations on small length scales, depending on the specifics of the implementation.

We hope that our results will inspire experimentalists to characterize network struc-

tures using a topologically-informed approach, revealing the underlying relationship

between structure and function.

4.7.3 Broader Impacts

The the persistence analysis we performed allowed us to detect the topological signa-

ture of tuning using persistence diagrams, without making any assumptions about the

underlying process. The persistence-based coarse-graining procedure then allowed us

to identify unique regions of each network corresponding to these features. We note
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that here are many procedures exist to decompose networks into local community

structures and quantify modularity [36]. However, none of these procedures provide

the guarantee that the resulting sectors uniquely correspond to the features (birth-

death pairs) we observed in the persistence diagrams. In addition, it is only after

following the persistence process we have demonstrated that it becomes obvious that

these sectors encode function, as they are present in the tuned response, not the

underlying network architecture.

In particular, many methods make use of tree representatations of networks, known

as dendrograms, to perform divisive hierarchical clustering algorithms [65]. While we

also create a skeletonized tree representation of our networks, we note that they are

not dendrograms. Persistent homology provides a rigorous mathematical foundation

for constructing our trees. Coarse-graining based on persistence, rather than simply

looking for boundaries with large pressure differences, ensures that the sectors we find

are topologically significant. This is important as edges located near the source nodes

typically have very large nodes pressure, creating small sectors with large pressure

difference boundaries. However, they often have small persistence values (they contain

small ranges of pressure differences) and are not necessarily relevant to the tuned

function. Constraining the target nodes to be located in separate sectors also helps

to eliminate the influence of these small sectors, even when they have relatively large

persistence values. In addition, simply choosing a cutoff in node pressure to separate

the network into sectors would be difficult for smaller ∆. As seen in Figs. 4.7(B3)

and (B4), the nodes do not always cleanly separate into two regions separate by a
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gap in pressure.

In the past, algorithms have been proposed to take advantage of the properties of

resistor networks to detect modular neighborhoods in other types of networks as well.

To detect community structures, a unit resistance is assigned to each edge and a

voltage is applied across a pair of source nodes. In one implementation, edges with

large currents can be removed to divide the network into community structures [79].

Alternatively, if a network has a high degree of modularity, it can be divided into

regions separated by large pressure differences [81]. However, if a network is not very

modular, choosing an appropriate cutoff in pressure can be difficult. Both of these

approaches require testing every possible pair of source nodes, or randomly sampling

a sufficiently large number of possible pairs, limiting these approaches to smaller

networks in practice. Our approach does not suffer from any of the these drawbacks.

Another set of related methods focuses on detecting bottlenecks, or minimum cuts, in

general transportation networks [1]. In the context of network flow optimization (in

which flows are more broadly construed to allow for upper and lower bounds on edge

currents and unidirectional edge current constraints), an s − t cut is a set of edges

that when removed partitions the nodes of a flow network into two components, one

containing the source node s (positive node pressure) and the other the sink node t

(negative node pressure). The max-flow min-cut theorem states that the maximum

possible value of the flow from a source node to a sink node is given by the total sum

of the edge weights (conductances) defining the minimum cut, the s− t cut with the

minimum possible sum of edge weights. Various algorithms utilize this theorem to
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calculate maximum flows and, by extension, minimum cuts [1]. While we expect that

the sectors we obtain are closely related to those found by the mininum cut algorithms,

we do expect some differences as these algorithms generally require an upper bound

on the maximum flow (capacity) through a sufficient number of edges, while our

flow networks lack these constraints. Developing a formal connection between these

two methods could provide further insight into the physical interpretation of the

components we detect, along with a deeper understanding of the topological properties

of more general transport networks.

In our tuned flow networks, crack-like structures formed by edge removals partition

the network into different sectors. These crack-like defects in resistor networks have

been studied in some detail in the random resistor network literature, but not in

the context of tuning [57]. By forming cracks, bottlenecks form between the sectors,

inhibiting the flow of current between the source nodes. When tuning pressure differ-

ence, these bottlenecks are located far from the target edge. However, if one were to

tune current through the target edge rather than the pressure difference, we expect

these bottlenecks would form at the target. An analytical theory of tuning would

likely require providing a relationship between these crack structures, the segregation

of the network into sectors, and the tuned response. This work has provided an im-

portant step towards relating the latter two, but has not explicitly explored the role

of cracks.

The analysis introduced here is general and could also be used to study the relation-

ship between structure and function of flow networks tuned to perform other types
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of tasks such as displaying a specific current response or power loss through a target

edge, or networks optimized to minimize global power loss, etc. However, the problem

of tuning the pressure difference through an edge provides a good starting point for

our analysis that can be extended easily to networks tuned to perform more complex

tasks composed of multiple targets such as those in Ref. [62].

Since these techniques do not depend on the local node connectivity, we would also

expect our results to be robust to the overall network topology before tuning (e.g.

non-planar, non-local edge structures or network with high degrees of modularity).

As long has a function has been successfully tuned into a network, we would expect

qualitatively similar results. In addition, in this work we only explored the nature

of connected components (0-cycles), but the persistence algorithm can also be used

to identify significant cycles of edges (1-cycles) as well. Repeating our analysis to

quantify the 1-cycle topology may prove useful in understanding the effects of the

untuned network properties on what types of functions a network can be tuned to

perform.

Biological flow networks employ a variety of mechanisms over a wide range of time

scales in order to regulate local flow. On relatively short time scales, the vasculature

systems of animals – notably that of the brain – and slime molds can dynamically

control local flow by constricting and dilating vessels in order to support local activity.

On longer time scales, animals, fungi, and slime molds can control flow to restructure

the vasculature network. All these systems also undergo evolution on generational

time scales to modify their network designs depending on the needs of the system or
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environmental changes. In all cases, our results suggest there may be a topological

basis for function that could be uncovered by applying the analysis introduced here.

Given that flow networks are mathematically equivalent to one-dimensional mechan-

ical networks [62], our results suggest that one could ask whether the structure-

function relationship is also topological in mechanical networks that can perform

mechanical functions, such as motor proteins or allosteric proteins. Mechanical net-

works can also be tuned to perform specific functions [61, 82, 21] and can undergo

topological changes in structure, displaying responses ranging from hinge-like mo-

tions [16, 83] to more exotic “trumpet”-like responses [82]. The extreme case of a

flow network segregated into two components with ∆ = 1 is analogous to the notion

of a mechanical mechanism, or soft mode, since the response does not require any

expenditure of energy (or power in the case of flow networks). The role of soft modes

in function has been studied in proteins [3]. Our analysis of flow networks provides a

generalization of this idea to the case where the components are still connected with

∆ < 1. A similar analysis is therefore likely to be useful in identifying the general-

ization of a mechanical mechanism to the case where the deformation involved in the

function is not a soft mode.

More generally, a topological description of function may help elucidate significant

structures in other types of non-conservative or nonlinear functional networks. For ex-

ample, one could ask whether characteristic topological features correspond to mem-

ories encoded in neural networks trained via machine learning or in neuron networks.
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Finally, we wish to emphasize that applications of persistent homology to networks,

including studies of flow networks in particular, tend to focus on the underlying

network structure, not the response of the network [38, 45, 40, 41]( Perhaps add more

examples?). By using flow networks as a model system, in this work we established

that the topology of the response encodes the function of a network, not just the

topology of the underlying graph structure. It is the topology of the response that

provides the bridge between structure and function.

4.8 Appendix

4.8.1 Network Tuning Protocol

For this work, we follow the tuning procedure detailed in Ref. [62] with a small

modification. Rather than tuning the relative change in the response of the target,

here we tune the value of the target pressure difference directly. In addition, the

pressure difference on a given edge is the difference between the pressures of the two

nodes connected by that edge, with a sign that is arbitrary because the nodes are not

ordered. This means that the sign of the target pressure difference before tuning can

be negative. In such a case, a small amount of tuning is necessary even when ∆ is

zero.
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4.8.2 Persistence Algorithm Details

In the main text, we describe simplified versions of the persistence and simplification

algorithms. Here we provide the additional details that in conjunction with Refs. [17],

[60], and [12], comprise the full versions of the algorithms used here. We will use the

language of the aforementioned references to facilitate the merging of our approach

with theirs.

We represent a network as a graph G = (V , E) which is a tuple composed of a set of N

vertices (nodes) V = {v1, . . . , vN} and a set of NE edges E = {e1, . . . , eNE
}. On each

edge i we define a function g(ei) = |∆pi| which is the absolute value of the pressure

difference on that edge.

We model a graph G as a cell complex K(G) composed of the collection of both the

vertices (0-dimensional cells) and edges (1-dimensional cells). When necessary, we

denote the dimension of a p-dimensional cell (or p-cell for short) by a superscript

α(p). We say a cell α(p) is the face of another cell β(q) if p ≤ q and the vertices of α(p)

are a subset of the vertices of β(q). If p is strictly less than q, we write this relationship

as α(p) < β(q), while if p ≤ q, we write α(p) ≤ β(q).

Network Filtration

To perform both the persistence algorithm, we need to formally define a filtration on

our cell complex K(G). This requires prescribing an ordering on all cells, including
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both edges and vertices, with the requirement that a cell must always be ordered

after its faces. In analogy to Ref. [60], we define the upper costar of an edge x as the

set of cells it introduces into the cell complex,

U(x) = {α ∈ K | x ≥ α and g(x) = min
y≥α

g(y)} (4.8.1)

These sets provide a unique non-overlapping partitioning of K(G). Since we only have

vertices and edges, these sets can only be composed of (i) a single edge, (ii) an edge

and one of its vertices, or (iii) an edge and both of its vertices (In Ref. [60], function

values are defined on the vertices, resulting in the use of lower stars. However, here

we have function values that are defined on the edges, resulting in the use of upper

costars). Now we can define level cuts of our cell complex, composed of all cells in

upper costars whose defining edge has a function value less than t,

Kt(G) = {α ∈ K(G) | α ∈ U(x)

and g(x) ≤ t, ∀x ∈ E}
(4.8.2)

The resulting sequence of level cuts Kt(G) for increasing values of t define the ascend-

ing filtration of g(x) on K(G) used to perform the standard persistence algorithm,

which is described in detail in Ref. [17].

The result of using this filtration to perform the persistence algorithm would be to

assign a birth-death pair to every edge that does not create a 1-dimensional cycle.

Each of these edges join together a pair of vertices comprising separate components
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and would therefore constitute a death edge. In case (i), as long as the edge does

not create a 1-cycle, it would combine two connected components and be assigned a

nonzero persistence. In case (ii), a new component would be born with the introduc-

tion of a vertex, but immediately die with the corresponding edge. In case (iii), two

new components would be born with the two new vertices, but one would immedi-

ately die with the introduction of the edge. Therefore, edges associated with cases

(ii) and (iii) would be assigned a persistence of τ = 0 and be skipped when finding a

pair of sectors. However, edges from all three cases that do not create 1-dimensional

cycles would be included in the skeletonized tree representation of the network.

Persistence-based Simplification

In the main text, we outline a simplified version of a persistence-based simplification

algorithm for finding sectors with large associated persistence values, inspired by the

procedure described in Refs. [60] and [12]. While the algorithm we provide is sufficient,

here we describe the modifications one would make in order to directly adapt the full

version from the provided references. The first step in the simplification process is

to compute a discrete gradient vector field, V , composed of a collection of pairs of

cells (α(p) < β(p+1)) in Kt(G) such that each cell is in at most one pair. Unpaired

cells are called “critical cells” and represent essential topological features (analogous

to critical points on a manifold). This vector field encodes the topological structure

and is later used to determine which topological features to eliminate. In Ref. [60],

constructing V makes use of a lower star filtration which requires function values
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defined on the vertices. However, we define our function values on the edges and

use an upper costar filtration. To accommodate this difference, we provide a new

algorithm ProcessUpperCostars which is essentially the dual version of Algorithm 1.

ProcessLowerStars in Ref. [60].

Similar to its counterpart, ProcessUpperCostars requires an ordering of all cells within

each upper costar. Given a cell α ∈ U(x) with coface edges {x, yi1 , . . . , yik} (for a

vertex, this list is composed of all adjacent edges, while for an edge it simply contains

itself), define

G(α) = (g(x), g(yi1), . . . , g(yik))

where g(x) < g(yi1) < · · · < g(yik)

(4.8.3)

Each cell is then ordered according to two criteria: (i) cell dimension ordered from

smallest to largest (the faces of a cell must always appear before that cell) and (ii) the

lexicographic ordering of these sequences from largest to smallest. All other functions

or objects in ProcessUpperCostars that we do not explicitly define are identical to

those in Ref. [60] (or can be transparently inferred).
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Algorithm 1 ProcessUpperCostars(E , g)
Input E set of edges in network
Input g values on edges
Output C critical cells
Output V discrete vector field V [α(p)] = β(p+1)

1: for x ∈ E do
2: add all α ∈ U(x) to PQzero such that

num unpaired cofaces(α) = 0
3: add all α ∈ U(x) to PQone such that

num unpaired cofaces(α) = 1
4: while PQone 6= ∅ or PQzero 6= ∅ do
5: while PQone 6= ∅ do
6: α := PQone.pop front
7: if num unpaired cofaces(α) = 0 then
8: add α to PQzero
9: else

10: V [pair(α)] = α
11: remove pair(α) from PQzero
12: add all cells β ∈ U(x) to QPone such that

(β < α or β < pair(α)) and
num unpaired cofaces(β) = 1

13: end if
14: end while
15: if PQzero 6= ∅ then
16: γ := PQzero.pop front
17: add γ to C
18: add all cells α ∈ U(x) to PQone such that

α < γ and num unpaired cofaces(α) = 1
19: end if
20: end while
21: end for
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Chapter 5

Conclusions and Future Directions

By approaching allostery as a problem in matematerials design, this dissertation pro-

vides an alternative framework in which to understand this type of functionality in

both flow and mechanical networks. Chapter 2 demonstrated that very little is nec-

essary to create mechanical networks with allosteric behavior, providing insight into

why allosteric proteins are common in nature. Chapter 3 extended this description to

flow networks, unifying both systems into a single mathematical framework. It also

showed that the limits of multifuncionality in both systems are governed by the same

constraint satisfaction phase transition. Finally, Chapter 4 revealed the underlying

basis of function in flow networks, showing that the relationship between structure

and function is topological in nature as it does not depend on the precise details of

the local network architecture, instead being topologically encoded in the response.

The results presented in this dissertation provide the blueprint for the next steps
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in developing a complete quantitative understanding of allostery. The topological

analysis of flow networks in Chapter 4 provides a unified description of function

that applies to networks with different underlying architectures tuned for the same

function, as well as networks with the same underlying architecture tuned for different

functions. As a flow network is tuned to display larger and larger responses, its

response topologically separates the network into two sectors which correlate strongly

with tuned function. This result suggests that a similar description could be developed

for allosteric mechanical networks as well. The fact that many allosteric proteins

exhibit hinge-like motions suggests that this should be possible, as a hinge is the

mechanical analog to the sectors seen in flow networks. Once such a description is

developed, an analysis of real protein structures would be possible, providing a robust

quantitative characterization of allostery in real systems. Such a characterization

would provide insight to enable the development of a general topological theory of

allostery which clearly relates atomic structure to biological function, as it would

be robust to the complexity and variety of protein structures. The structural order

parameters revealed by topological data analysis provide a strong starting point for

developing a general analytical theory.

Finally, it would be very interesting to follow the route we have provided to investigate

functionality in other types of networks. In principle, any system which can be

described as a network which takes in a limited number of local inputs and propagates

the response to another set of localized outputs could be approached in a similar

manner. In particular, identifying the underlying structural mechanisms responsible
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for function in neural networks used in machine learning remains a critical area of

study. One could also imagine extending our topological approach to take into account

the dynamical aspects of complex networks such as those present in proteins or neuron

networks in the brain. By combining insights from a wide variety of fields ranging

from structural biology to mechanical matematerials to applied topology, making

sense of allostery in proteins, and complex networks in general, should become an

achievable goal in the foreseeable future.
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Appendix A

Mechanical signaling coordinates
the embryonic heartbeat

Note: The following content is reproduced with minor revision from Ref. [6].

A.1 Introduction

The heart is a prime example of an active system with mechanical behavior – the

heartbeat – that is robust and remarkably well coordinated. The fundamental con-

tractile units of the heart are muscle cells called cardiac myocytes (CMs). Individual

CMs coordinate their contractions through intercellular signaling, generating contrac-

tile wavefronts that propagate through the tissue to pump macroscopic volumes of

fluid. When this organization breaks down, tissue-scale contractions cease and blood

circulation stops. It has long been understood that this signal is electrical [24]: ions
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pass from one cell to another through gap junctions [23], depolarizing the cell mem-

brane and initiating a process that ultimately releases Ca2+ from intracellular stores,

driving CM contraction. The potential difference between CMs drives ion transport

through gap junctions into the next cell, thus propagating the signal. This electri-

cal signaling cascade is responsible for the contractile wavefronts of the heartbeat in

adults and has been assumed to regulate the heartbeat at all stages of development.

Here we propose that the early embryonic heart does not follow this established elec-

trical signaling mechanism, but may instead use mechanical signaling to coordinate

and propagate its beat. In our picture, embryonic CMs are mechanically excitable:

we postulate that sufficiently high strains trigger intracellular release of Ca2+ ions

through a molecular mechanism that is not yet determined, leading to contraction.

We denote this mechanically-driven release of Ca2+ ions and subsequent contraction

as mechanical activation. This in turn strains neighboring CMs and induces addi-

tional contraction, resulting in a coordinating signal that is propagated mechanically

rather than electrically.

Although embryonic CMs beat spontaneously [38, 36], they would contract with

random phases in the absence of a coordinating signal. A number of studies have

shown that embryonic, neonatal, and adult CMs are sensitive to mechanical cues

[22, 13, 2, 18, 35]. Recently the role of mechanics was explored at the tissue scale

through extracellular matrix (ECM) stiffening and softening of isolated avian embry-

onic hearts [26]. The speed and strain of the contractile wavefront were found to be

strongly dependent upon the tissue stiffness, suggesting that the electrical signaling
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picture is insufficient for the embryonic heart and that the stiffness of the matrix

must be taken into account.

Here we show that mechanical signaling between CMs can explain stiffness-dependent

contractile wavefront speed and strain via a nonlinear mechanical “reaction-diffusion”

mechanism, in which sufficient strain on a CM causes it to “react” by triggering

contraction and stress “diffuses” through the tissue. Few models of CM signaling in

the heart include mechanics; of these, most assume instantaneous mechanical signal

propagation [32, 34] and therefore do not exhibit strong stiffness dependence. Our

model is related to a mechanical version [26, 20] of the fire-diffuse-fire model [9],

which also fails to capture key stiffness-dependent features. We model the heart

as tissue composed of active and passive components. We treat the active CMs

as mechanically-excitable inclusions that contract when the local strain exceeds a

threshold value. The surrounding ECM is treated as a passive elastic-fluid biphasic

material. This simple mechanical signaling model quantitatively captures the stiffness

dependence of contractile wavefront velocity and strain, as well as the strain of CMs

cultured on hydrogels observed in Ref. [26].

We challenge the hypothesis underlying our model–that mechanical signaling coordi-

nates the embryonic heart– by blocking gap junctions with 18-β-glycyrrhetinic acid

(BGA). We find that embryonic hearts continue to beat, even at BGA concentrations

10-fold higher than those sufficient to stop the adult heartbeat in minutes, confirming

our hypothesis. Finally, our model predicts a minimum matrix modulus necessary

to support a steady-state mechanical wavefront. We show experimentally that this
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value is consistent with the heart’s stiffness when it first starts to beat. Thus the

heart, the first functional organ in the embryo, begins to beat as soon as mechanical

signaling can support propagating wavefronts.

Production of CMs from pluripotent stem cells has generated considerable interest

in the factors that govern maturation of these cells to heart tissue [5] particularly

for repair of adult heart damage. Mechanical determinants in this process remain

poorly understood, although the role of mechanical cues is increasingly recognized

in cell differentiation, proliferation, and morphogenesis [46, 50, 48, 12]. Our results

here indicate that mechanics in the developing heart may be necessary to tissue-scale

function during stem cell maturation and may have application to heart damage

repair.

A.2 Physical model of cardiac mechanical signal-

ing

The myocardium of the embryonic heart is composed primarily of mechanically-

excitable CMs (that contract when activated) and the surrounding ECM. We treat

CMs as elastic inclusions embedded in the ECM, in accord with recent experiments of

CMs embedded in three dimensional hydrogels [40]. We ignore direct cell-cell mechan-

ical coupling; experimental evidence indicates that stresses are transmitted primarily

through cell-matrix adhesions rather than cell-cell contacts during development [27],

likely due to the prevalence of cell-junction remodeling. In addition, collagenase treat-
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ment indicates that ECM is the primary component of tissue structural integrity [26].

We find that a good approximation (see Fig. A.6) is to consider CMs as infinitesimal

and arranged in a cubic array, spaced by ∆x = 10µm (see Table A.1). We consider

a three dimensional mechanical version of fire-diffuse-fire signaling. This requires

capturing the physics of 1) activated CMs creating mechanical stress; 2) stress prop-

agation between CMs; and 3) activation of quiescent CMs in response to mechanical

stress in the ECM.

How activated CMs create stress. We use two models to characterize the eigen-

strain, i.e. the strain of an active inclusion (CM) in the absence of external stresses.

In the constant eigenstrain (CE) model, we assume that CMs contract with a fixed

eigenstrain independent of ECM stiffness. In the saturating eigenstrain (SE) model,

the eigenstrain increases linearly with Young’s modulus E up to a stall stiffness Es,

and is independent of E for E > Es (see Fig. A.1A inset). This behavior is observed

for embryonic and neonatal CMs cultured on hydrogels[22, 2, 18, 17] and has been

studied theoretically [7].

The two models for the strain exerted by a CM when it contracts are

ε∗ij = ε∗f(E/Es)Qij,

fCE(E/Es) = 1 ∀E

fSE(E/Es) =


E/Es E < Es

1 E ≥ Es

(A.2.1)
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Figure A.1: Model for stress propagation in the myocardium. (A) Inset: CE and
SE models as a function of ECM Young’s modulus, which determines the strength
of contraction (Eq. (A.2.1)). Main: The contracting CM (green) acts as a stress
source for a quiescent CM (white). An activated cell a contracts with an eigen-
strain ε∗cell

a,ij (x′, t′), locally inducing a stress σ∗a,ij(x
′, t′) in the ECM that depends on

the relative stiffness between the ECM and CMs. We capture these physics via the
tensor T out

ijkl in accordance with the Eshelby theory of elastic inclusions (see Support-
ing Information). This stress propagates according to the ECM response function
Gijkl(x − x′, t − t′) (see Supporting Information). The matrix stress at (x, t) due to
cell a is σa,ij(x, t) =

∫
d3x′dt′Gijkl(x − x′, t − t′)σ∗a,kl(x

′, t′). This creates εcell
a,ij(x, t),

the strain induced in the quiescent CM due to the contraction of a (modified by
T in
ijkl). (B) Sketch depicting quiescent (white) and activated (green) CMs in a trav-

eling mechanical wavefront at subsequent activation times separated by ∆t. Arrows
represent stresses propagated through the ECM (not all shown) to a quiescent CM,
which activates when εcell

ii (x, t) ≥ α.
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whereQij is the strain tensor representation of a uniaxial contraction in the x direction

(see Supporting Information) and ε∗ is the magnitude of the eigenstrain in the CE

model or of the eigenstrain for E > Es in the SE model. See Fig. A.1A inset.

The eigenstrain ε∗kl from the activated CM induces a stress in the matrix. In order

to properly capture the physical effects of differences in stiffness between CMs and

their surrounding ECM, we use Eshelby’s theory of elastic inclusions [31? ]. We

compute the tensor T out
ijkl(E) which relates the CM eigenstrain to the stress it induces

in the ECM, shown schematically in Fig. A.1A (see Supporing Information for detailed

calculations). The resulting ECM stress source due to an activated CM takes the form

σ∗a,ij(x, t) = T out
ijklε

∗
klΘ(t− ta)Θ(τ + ta − t)δ3(x− xa), (A.2.2)

where Θ(t) is the Heaviside function.

How stress propagates between CMs. At the cellular length scale and CM

contraction velocity scale, the Reynolds number is small (∼ 10−5). We therefore

model the ECM as an overdamped, incompressible biphasic material. See Table A.1

for parameter values. It is composed of a linear elastic mesh (with Young’s modulus

E and Poisson ratio ν = 0.4 [19, 26]) and interstitial fluid (of viscosity η similar to

water). The fluid and elastic components are coupled through incompressibility and

a drag term Γ, an effect of matrix permeability to fluid. Similar approaches were used

to model collagenous tissue [30] and active gels [1]. Using this model, we calculate

the response function Gijkl(x, t) to describe propagation of mechanical stress within
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the ECM (see Supporing Information).

How quiescent CMs are activated mechanically. We assume that when the

strain on a quiescent CM exceeds threshold α (εcell
kk (xq, t) ≥ α), the CM is activated

(it contracts). To describe this mathematically, we index noncontracting (quiescent)

cells with q and contracting (active) cells with a. Each activated CM contracts for a

physiologically relevant amount of time τ before deactivating and becoming refractory.

We assume that the refractory timescale is longer than mechanical relaxation, allowing

us to ignore back-propagation. Let us consider a CM at xa which activated at time ta.

Then ta is the moment when this CM’s strain trace first crossed the strain activation

threshold εcell
kk (xa, ta) = α, transforming the originally quiescent CM into an active

one. The active CM contracts, creating an eigenstrain ε∗kl (see Eq. (A.2.1)) for time

ta < t < ta + τ which can be represented as a product of Heaviside functions.

To relate the strain on an embedded quiescent CM q at (xq, t) due to local mechanical

stress within the ECM, we compute the tensor T in
ijkl(E) (also shown schematically in

Fig. A.1A) using elastic inclusion theory (see Supporting Information). The strain

contribution on q from an activated CM a is then

εcell
a,ij(xq, t) = T in

ijkl

∫
Gklmn(xq − x′; t− t′)σ∗a,mn(x′, t′) (A.2.3)

with σ∗a,mn(x′, t′) from Eq. (A.2.2). The total strain induced in q is the sum over the

contribution from all activated cells εcell
ij (xq, t) =

∑
a ε

cell
a,ij(xq, t).
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Table A.1: Parameter symbols, references, and values

Parameter Symbol Value [fit/ref]

Mesh/fluid drag Γ 0.4 mPa s / µm2 [fit]

E4 myocardium modulus E∗ 1.6 kPa [26]

ECM Poisson ratio ν 0.4 [19]

Fluid fraction (average) φ 0.8 [45, 47]

Fluid viscosity (water 25◦C) η 0.89 mPa s

CM spacing ∆x 10 µm [26]

CM modulus Ec 0.75 kPa [fit]

CM eigenstrain magnitude ε∗ 0.2 [13]

CM strain threshold α 0.11 [fit]

CM Poisson ratio νc 0.4 [19]

Contraction time (AP duration) τ 250 ms

A.3 Results

A.3.1 Mechanical signaling model yields contractile wave-
fronts

From the model, we calculate the velocity of the propagating contractile wavefront

as a function of matrix stiffness as follows. When a CM contracts, it creates a stress

field σ∗a,ij in the ECM which can induce further contraction by activating quiescent

CMs. If the activation process cascades through the tissue, the resulting contraction

wavefront can attain a co-moving steady state εij(x, t) = εij(x − vt) with velocity

v. This is unsurprising since the model is a mechanical analog of nonlinear reaction-

diffusion; such systems are well-known to exhibit propagating wavefront solutions.

The activation condition εcell
kk (x, t) = α with a co-moving steady state relates the

wavefront velocity v to the model parameters through an algebraic relation (see Sup-

porting Information). Once v is determined, we compute the maximal tissue strain
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by coarse-grained solution of the waveform (see Supporting Information).
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Figure A.2: Results from CE (blue) and SE (red) models (Eq. (A.2.1)) compared
to experimental measurements (black) from Ref. [26]. (A) Best fits (Table A.1) of
model contractile wavefront velocities to experimental data from the embryonic ven-
tricle. (B)Maximal tissue strain as a function of E calculated with no additional fit
parameters vs. experimental data (black circles). Green triangles denote likelihood
that wavefront propagated across the entire ventricle in experiment; for the two low-
est E/E∗ data points, the likelihood falls below 50% (green dotted line), consistent
with our models, which predict no stationary solutions below E0. (C) Predicted in-
duced strain trace for a single cell adhered to gel surface (see Supporting Information)
compared to cell-on-gel data (black circles).
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A.3.2 Mechanical signaling model fits experimental wave-
front velocities with physiologically relevant param-
eters

We obtain most of the physiological parameter values from the literature (Table A.1).

We treat CMs as elastic inclusions with Young’s modulus Ec and with the same Pois-

son ratio as the surrounding tissue [19] and estimate CM eigenstrain magnitude to be

ε∗ = 0.2 from intracellular embryonic CM principal strain measurements [13]. Stress

saturation stiffness is estimated to be the cell modulus Es = Ec [22, 13]. Three

model parameters could not be identified from the literature and are fit via nonlinear

regression to wavefront velocity data from Ref. [26]. These three parameters are the

mesh-fluid drag Γ, the CM activation threshold α, and the effective CM Young’s mod-

ulus Ec. All three fit values (Table A.1) fall within physiologically sensible ranges.

The resulting velocity is plotted against ventricle contraction velocity data (black

circles, from Ref. [26]) of stiffness-modified E4 hearts in Fig. A.2A. No steady-state

solution exists below stiffness E0 (which differs between CE and SE models). Physi-

cally, E0 arises because when the tissue is too soft, contracting CMs cannot provide

enough strain to trigger additional contraction in quiescent CMs. This is consistent

with a significantly reduced likelihood of wavefront propagation observed in exper-

iment (green triangles in Fig. A.2B). Likewise, the wavefront velocity vanishes at

high tissue stiffness, where the stiffness mismatch between CMs and the surrounding

ECM prevents contracting CMs from exerting sufficient strain on the ECM to trigger

contraction of quiescent cells.
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A.3.3 Calculated wavefront strain agrees with experimental
observations with no additional fitting parameters

Using the three parameters (Γ, α, Ec) fit from wavefront velocity data, we indepen-

dently calculate the tissue strain of the contractile wavefront and compare to the

measured maximal ventricular strain from Ref. [26] (Fig. A.2B). Both the CE (blue)

and SE (red) models are in excellent quantitative agreement with the observed behav-

ior (black circles) as a function of tissue stiffness, providing strong evidence in favor of

our model. Note that the correct optimum stiffness naturally emerges from our model

by treating CMs as elastic inclusions (see Supporting Information) embedded within

a surrounding matrix of variable stiffness. This quantitative agreement is significant

and nontrivial, as we can observe from the different values of E corresponding to

optimum velocity and optimum strain in experiment and model. Note also that no

purely electrochemical model can correctly predict strain as a function of stiffness.

A.3.4 Saturating eigenstrain (SE) model is consistent with
cell-on-gel measurements with no additional fitting pa-
rameters

We further test our model by comparing to data for beating E4 CMs cultured on

PAG where gel strain at cell edges was measured for varying gel stiffness [26]. We

calculate the trace of the 2d projected strain by finite-element simulation (see Mate-

rials and Methods and Fig. A.5) using the fit Ec value and comparing to experiment

in Fig. A.2C. The failure of the CE model on soft gels is expected from cultured CM
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experiments [17, 2, 18]. Remarkably, we find agreement between the SE model with

cell-on-gel measurements, demonstrating that we can deduce this single CM behavior

as a function of E quantitatively from collective behavior in tissue.

A.3.5 Mechanical signaling model correctly predicts appear-
ance of first heartbeats

The developing heart stiffens with age due to increased collagen in the ECM [26].

CMs begin periodic contractions at about 1.5 days after fertilization (E1.5). At that

point, the heart does not beat but “shivers;” this shivering is similar to behavior

observed in strain-activated contractile cell aggregates [16], which lack a signaling

mechanism to coordinate the phases of the periodically-contracting cells. The first

fully-coordinated beats do not occur until hours after CMs start contracting. Our

model predicts that coordinated beats cannot appear until the matrix reaches the

minimum stiffness E0 (see Fig. A.2A). Here we ask whether the predicted value of E0

coincides with heart stiffness at the onset of beating.

We measure embryonic chick hearts stiffnesses at Hamburger-Hamilton (HH) stages

10 and 11 (E1.5-2) via micropipette aspiration (see Materials and Methods). Early

Stage 10 does not exhibit fully coordinated beats while Stage 11 exhibits full-tissue

contraction (see Video A.12). At the strains applied, the tissue behaves as a standard

linear solid (see Fig. A.7).

We sort the measured stiffnesses depending on whether or not the hearts exhibit
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Figure A.3: Measurements of heart stiffness before and after the appearance of
heartbeats, compared to minimum stiffness necessary to support a mechanically-
coordinated contraction in our model. Stiffness is measured via micropipette as-
piration for six Hamburger-Hamilton (HH) stage 10 and five HH stage 11 hearts,
corresponding to embryonic days E1.5-2 (see Materials and Methods). Dashed lines
indicate predicted E0 values for the CE (blue) and SE (red) models, corresponding
to the lower-stiffness cutoffs shown in Fig. A.2A.

coordinated contractions (black circles in Fig. A.3). The pre-beating stiffness is just

above that of the undifferentiated embryonic disc [26], suggesting that the first stage

of heart development involves some differentiation with little stiffening. The minimum

stiffnesses E0 for the CE (blue) and SE (red) models both fall between the measured

pre- and post- beating values. These measurements are consistent with our model

prediction and suggest that heartbeats may initially emerge once the tissue becomes

stiff enough to support mechanically-activated wavefronts.
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A.3.6 Conduction interference experiments are consistent with
mechanically-coordinated heartbeats

Gap junctions are critical for electrical coordination of adult heartbeats. Our mechan-

ical signaling hypothesis implies that blocking electrical signaling should not impede

the embryonic heartbeat. We therefore test our hypothesis by blocking electrical

signaling through pharmacological interference of gap junctions.

Time after +BGA (min)

B
ea

ts
 / 

m
in

 (
B

P
M

)

-20 0 20 40 60
0

50

100

150

200 Adult 25 μM BGA
E4 100 μM BGA
E6 100 μM BGA

Figure A.4: Conduction interference results for isolated hearts from 3 murine adults
and 4 chick embryos. Gap junctions are disrupted by perfusing intact adult (red) and
embryonic E4 and E6 (blue and green respectively) hearts with β-glycyrrhetinic acid
(BGA). Heart functionality is quantified by beats per minute (BPM). Adult hearts
stop beating after ∼10 minutes at 25µM BGA (see Video A.13). Embryonic hearts
perfused at higher 100 µM show little to no effect after an hour. See Fig. A.8 for
adult heart BPM controls and Fig. A.9 for control experiments on embryonic heart
BGA perfusion.

We perfuse isolated adult and embryonic hearts with BGA, a non-specific gap junc-

158



tion blocker known to inhibit inter-cellular ion transport between embryonic chick

epithelial cells at 10 µM [25] and in rat, frog, mouse and human systems [4, 39, 51, 8].

We also validated its effect in embryonic hearts via fluorescence recovery after photo-

bleaching (FRAP) experiments and found that BGA treatment reduced intercellular

diffusion (see Supporting Information and Fig. A.9). Adult hearts stopped beating

within 10 min post-treatment at 25µM BGA. However, the embryonic heartbeat was

unaffected for 1 hr even at 100 µM BGA (Fig. A.4), and was robust even when sub-

jected to 250µM for an additional hour. This experiment demonstrates that embry-

onic CMs can coordinate their contractions without functional gap junctions needed

to support electrical signaling, supporting our hypothesis of mechanically coordinated

CMs in the early heart. See Materials and Methods.

A.4 Discussion

A.4.1 Mechanical signaling robustly explains strong depen-
dence of wavefront velocity and strain on stiffness

Tissue stiffness is a mechanical property that cells can sense. A strong dependence on

tissue stiffness is an indicator of cell response to mechanical cues. Our model combines

elasticity with simple mechanical activation of cardiac myocytes, using a minimum of

assumptions and adjustable parameters, and yet captures multiple observed cell- and

tissue-scale phenomena quantitatively.
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Our model is robust to noise: the predicted strain threshold α requires several nearest

neighbor contractions in order to trigger activation. As a result, a rogue contrac-

tion cannot set off a wavefront. Our results are also robust to how we incorporate

mechanosensitivity. We considered a model variant in which the CM contracts with

a probability p(εkk) that increases with strain, and found similar stiffness dependence

of the contractile wavefront. This stochastic activation model corresponds mathe-

matically to stochastic pulse-coupled oscillator (SPCO) models of neural networks

[11], but with an additional spatially-dependent phase set by mechanical reaction-

diffusion. Synchronized states in SPCO models map onto steady-state wavefronts of

our stochastic model.

We note that embryonic CMs spontaneously contract in periodic manner [38, 36].

In the beating embryonic heart, the wavefront is initiated at the atrial end of the

heart tube by CMs which contract at a higher frequency. Our model describes the

nonlinear propagating wavefront emanating from each contraction of these atrial CMs

which activates other CMs. An alternate but equivalent description is to consider the

coordination of CMs as non-linear oscillators coupled through the ECM. Because the

ECM has a viscous fluid component as well as an elastic component, this coupling does

not lead to synchronization, as typical for phase-coupled biological oscillators [29], but

to a propagating wavefront.
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A.4.2 Mechanical signaling is consistent with known mechanosen-
sitivity of cardiac myocytes

There is solid evidence that stretch can trigger contraction of CMs. External tissue-

scale stretch of the heart triggers arrhythmic beats [41]. Healthy adult rat CMs

exhibit increased intracellular calcium release events under 8% strain [21], while dis-

eased adult myocytes demonstrate direct mechano-chemotransduction through full

intracellular calcium release [35]. Mechanical stimulation of the substrate in cultured

embryonic chick CMs with 6% stretch excites quiescent myocytes [42]. Mechanical

stress exerted by fibroblasts affects the wavefront velocity of neonatal rat CMs [43, 44],

and neonatal and adult rat CMs cultured in similar conditions exhibit mechanical

stimulation and entrainment [33]. In some of these experiments, it is known that

stretch-induced activation involves cardiac ryanodine receptors [35].

A.4.3 Mechanical vs. electrical signaling in the developing
heart

There is evidence in the literature that electrical conduction may not be fully func-

tional in the early heart. When whole-tissue contractions first appear, the cardiac

conduction system is not yet identifiable [28]. Embryonic chick hearts exhibit low lev-

els of the primary cardiovascular gap junction protein, Connexin43 (Cx43), and the

small amounts present are distributed uniformly through the cytosol until trabecula-

tion occurs [10, 49]. Other studies find that in post-hatch and adult chick, the primary
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ventricle myocardial gap junction is Cx42. However Cx42 appears to be absent in

working myocytes and cardiac conduction tissues until E9-11, leading to speculation

that CMs may not be electrically coupled by gap junctions during embryogenesis [14].

Primary markers of the conduction system do not appear definitively until E9-E15

[15].

In conjunction with our results, such observations suggest that the heart may switch

from mechanical to electrical signaling as it matures. We speculate that mechanically-

coordinated heartbeats may assist in organizing the heart: myocytes seeking to max-

imize contractile activity will align with each other [3] and cyclic stretch of neonatal

rat ventricular myocytes was found to polarize gap junction localization [37]. Per-

haps current limitations in producing fully mature CMs from stem cells [5] reflect an

incomplete understanding of the role of mechanics in heart development.

It is possible that mechanical signaling prevails in early development because it is

robust. Electrical coupling requires gap junctions, which may be difficult to maintain

as CMs proliferate and rearrange in the rapidly growing heart. Mechanical signals,

on the other hand, are inevitably present because CMs must exert stresses on their

surroundings when they contract. However, electrical signaling is easier to regulate

when the heart develops more complicated structure.

In summary, the highly sophisticated electrical conduction system that precisely reg-

ulates the adult heart has been assumed to coordinate every heartbeat, from the first

to the last. Here we employ a biophysical theory, bolstered by experiment, to pro-
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pose that mechanical—not electrical—signaling is responsible for coordinating early

heartbeats. If further verified, this idea could transform the way we think about how

the heart develops and functions.

A.5 Materials and Methods

Model details We solve the matrix response function in three dimensions. We as-

sume a stationary constant-velocity wavefront (εij(x, t) = εij(x− vt)) within a cubic

array of active sites. Self-consistency of the activation condition with the time be-

tween activation events relates v to model parameters. See Supporting Information.

Numerical computations and data analysis Numerical computations were per-

formed in C/C++ and MATLAB. Data analysis and nonlinear least-squares param-

eter fitting was done in MATLAB with custom subroutines.

Finite element simulation Linear elastic finite element simulations were performed

in MATLAB and COMSOL. Cell-on-gel culture was modeled as a hemisphere adhered

to a substrate. See Supporting Information.

Myocardium stiffness measurements Embryonic hearts were isolated as described

in [26]. Aspiration was performed at room temperature. See Supporting Information.

Conduction interference: embryonic hearts Embryonic chick hearts were iso-

lated as in [26] and incubated in heart medium at 37 (alpha-MEM supplemented with

10% FBS and 1% penn-strep, Gibco, 12571?063) for at least 2 hrs before drug treat-

ment. Desired concentrations of 18-β-glycyrrhetinic acid (Cayman Chemical, 11845)
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and blebbistatin (EMD Millipore, 203390) were prepared by diluting in heart culture

medium (with or without 105 FBS) and DMSO, respectively. Isolated hearts were

then treated with BGA or blebbistatin by aspirating out the medium and perfusing

the hearts in the prepared drug solutions. E4 hearts were imaged using an Olympus

I81 microscope and recorded for a minimum of 15 seconds using a CCD camera at 21

frames/sec. E6 hearts were imaged using a Nikon SMZ1500 microscope. Analysis was

performed in ImageJ by tracking morphological parameters over 10-15 sec intervals.

Conduction interference: adult hearts Adult (8-12 week) C57/BL6 mice were

anesthetized by induction in an isofluorane chamber, followed by thoracotomy and

excision of the heart. Isolated hearts were suspended from a Langendorff perfusion

column via cannulation of the aorta and perfused with an oxygenated heart medium

at 37C. Under control conditions, hearts cannulated via this method generate in-

trinsic rhythm and maintain rhythmic beating for over 3 hours. BGA solution was

prepared by dilution in medium and DMSO. After ensuring 20 minutes of rhythmic

beating, the medium was exchanged for BGA-prepped solution. 20-second video ac-

quisitions were acquired every 3-5 minutes to analyze changes in heart rate over time.

Experiments were terminated if the heart stopped beating for more than 10 minutes.

Video segments from different time points were randomized and analyzed blindly to

determine BPM from 20-second intervals.
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A.6 Supporting Information

Abbreviations: CM, cardiomyocytes; ECM, extracellular matrix; BGA, 18-β-glycyrrhetinic

acid; CE, constant eigenstrain; SE, saturating eigenstrain

A.6.1 Linearized biphasic model

In the linearized biphasic model composed of fluid and elastic mesh, we assume that

the fluid and elastic components mutually exclude each other and that the total

volume is fixed. Then for a infinitesimal volume element at x, if the fluid volume

fraction is φ the elastic mesh must occupy 1−φ. As a result, within the volume element

at x neither fluid nor mesh network satisfy the regular incompressible condition, since

fluid and mesh mutually displace each other. In our model, we take into account

the fluid dynamic viscosity, mesh elasticity, fluid-mesh drag coupling, and the total

volume (fluid + mesh) constraint to linear order in the dynamic variables:

Γ (u̇i − vi) =
E

2(1 + ν)

[
∂2ui +

1

1− 2ν
∂i∂juj

]
− (1− φ)∂ip

Γ (vi − u̇i) = η

[
∂2vi +

1

3
∂i∂jvj

]
− φ∂ip

0 = (1− φ)∂iu̇i + φ∂ivi.

(A.6.1)

Since we are interested primarily in comparing to experimental wavefront speeds and

tissue strain trace, for brevity we detail only the strain trace and strain rate trace

equations here. The fluid and solid (traces of) strain rates and strain are ε̇f,ii = ∂ivi,
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ε̇s,ii = ∂iu̇i, and εs,ii = ∂iui. For physiological values of φ ≈ 0.8 in muscle tissue

(Table 1), we solve the equations:

Γ (ε̇s − ε̇f ) =
E(1− ν)

(1 + ν)(1− 2ν)
∂2εs − (1− φ)∂2p

Γ (ε̇f − ε̇s) =
4

3
η∂2ε̇f − φ∂2p

ε̇f = −ε̇s
1− φ
φ

.

(A.6.2)

Then solving in terms of εs, we obtain the equation of motion

[
ε̇s −

4(1− φ)2η

3Γ
∂2ε̇s

]
= D∂2εs (A.6.3)

where D = φ2E(1 − ν)/(Γ(1 + ν)(1 − 2ν)). We assume that the interstitial fluid

viscosity is approximately the viscosity of water at body temperature. Best fits (see

Results) then indicate that Γ ≈ 45 η
∆x2

where ∆x the spacing between myocytes. As a

result, the fluid-mesh drag Γ is dominant over fluid viscosity at physical length scales

of interest, and the second term on the left hand side in Eq. (A.6.3) can be dropped.

This result is used throughout the text. For our parameter values, the linearized

equations are stable to perturbations at the onset of propagation. In contrast to

standard reaction-diffusion models, but consistent with fire-diffuse-fire [9] models,

the nonlinear character of transitions between the non-propagating and propagating

phases is a result of threshold activation and as a result is not captured by linear

stability analysis.
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A.6.2 Induced strain of Eshelby inclusions

Here we detail the stresses induced by CMs, which are treated as spherical Eshelby

inclusions (elastic inclusions with elastic constants that may be different from the

surrounding matrix). We compute two tensors, T out
ijkl and T in

ijkl which correspond (re-

spectively) to strain induced in the matrix due to an active inclusion, and the strain

felt by a passive inclusion due to strain in the matrix (see Fig. A.1A). Since we model

CM sources as infinitesimal, incoming stresses are treated as far-field. Note that we

have checked this approximation using finite-element calculations (see Supplemental

Methods, CMs-in-matrix FEM simulations and Fig. A.6), and find that it is quan-

titatively quite accurate. We also assume that near an excited inclusion the matrix

responds quickly; this allows us to make use of the static Eshelby tensor.

Suppose a cell, represented as an ellipsoidal inclusion with stiffness tensor Cijkl, is

embedded in an infinite bulk medium (i.e. the tissue) with the same stiffness tensor.

Although we use the general form, in the isotropic case this tensor is determined by

just two independent parameters, which we call the Young’s modulus E and Poisson

ratio ν in the main text. Suppose the cell contracts uniformly throughout its volume

with an eigenstress σ∗cell
ij . We equivalently represent this contraction strength as an

eigenstrain ε∗cell
ij , related to the stress by σ∗cellij = Cijklε

∗cell
kl . This eigenstrain can be

thought of as how much the cell would strain if the surroundings exerted no stress on

the cell. By Eshelby inclusion theory, the observed strain of an embedded inclusion
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is related to the eigenstrain by

ε∗ij = Sijklε
∗cell
kl (A.6.4)

where Sijkl is the Eshelby tensor [31]. For a spherical inclusion, this tensor is uniform

and given by

Sijkl =
1 + ν

3(1− ν)
|v1〉ijkl +

2(4− 5ν)

15(1− ν)
|v2〉ijkl (A.6.5)

where |v1〉ijkl and |v2〉ijkl are defined for convenience as

|v1〉ijkl =
1

3
δijδkl

|v2〉ijkl =
1

2

[
δikδjl + δilδjk −

2

3
δijδkl

] (A.6.6)

Stress locally induced in matrix by Eshelby inclusion

Now suppose the cell and tissue have different stiffness tensors Cc
ijkl and Cijkl respec-

tively. As before, an isotropic medium reduces the independent parameters to E and

ν. Assume the cell contracts with a stress σ∗cellij = Cc
ijklε

∗cell
kl . The total stress inside

the cell embedded in the tissue is related to the strain by

σTij = Cc
ijkl(ε

∗
kl − ε∗cell

kl ) (A.6.7)
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By superposition, we can map this to a problem to the Eshelby tensor for a homo-

geneous material with an additional strain source [31]. This is done by imposing an

effective strain source in the cell ε∗eff
ij such that we get identical stresses and strains

as the inhomogeneous problem. The stress-strain relation then becomes

σTij = Cijkl(ε
∗
kl − ε∗eff

kl ) (A.6.8)

Note that the effective strain source ε∗eff
ij does not actually exist, but is just a mathe-

matical trick to reduce the inhomogeneous inclusion problem to the previously solved

homogeneous inclusion problem. Eshelby’s solution now tells us that the strain ex-

perienced in the cell embedded in the tissue is

ε∗ij = Sijklε
∗eff
kl (A.6.9)

with the Eshelby tensor calculated using Cijkl. Now we calculate the effective source

ε∗eff
ij by equating Eqs.(A.6.7) and (A.6.8), to identify the (actual) inhomogeneous case

with the (constructed) homogeneous problem.

Cc
ijkl(ε

∗
kl − ε∗cell

kl ) = Cijkl(ε
∗
kl − ε∗eff

kl ) (A.6.10)

Substituting in Eq. (A.6.9), we get an equation for ε∗eff
ij ,

[(
Cc
ijkl − Cijkl)Sklmn + Cijmn

)]
ε∗eff
mn = Cc

ijklε
∗cell
kl (A.6.11)
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Solving for ε∗eff
ij in terms of ε∗cell

ij , we find ε∗ij (via Eq. (A.6.9)). We can now calculate

the stress source in the homogeneous case σ∗ij = Cijklε
∗
kl. We define the tensor T out

ijkl

to relate this stress to our cell strain source,

σ∗ij = T out
ijklε

∗cell
kl (A.6.12)

as in Fig. 1A. For a spherical inclusion and isotropic matrix with Young’s moduli Ec

and E and Poisson ratios νc and ν respectively,

T out
ijkl =

[
E

(1−2ν)
(1−ν)
(1+ν)

1 + 2 (1−2νc)
(1+ν)

E
Ec

]
|v1〉ijkl +

[
15E

4(1+ν)
(1−ν)
(4−5ν)

1 + 1
2

(7−5ν)
(4−5ν)

(1+νc)
(1+ν)

E
Ec

]
|v2〉ijkl

=
E

3(1− 2ν)
T out

1 |v1〉ijkl +
E

2(1 + ν)
T out

2 |v2〉ijkl

(A.6.13)

where T out
1 and T out

2 are dimensionless quantities, with pre-factors of the tissue bulk

and shear moduli.

Stress induced in Eshelby inclusion by uniform stress in matrix

As in the previous section, we can likewise compute the strain in a cell given some

homogeneous stress σij = Cijklεkl throughout the neighborhood of tissue surrounding

the inclusion. The primary difference is that this system now exists under a pre-stress

condition without a cell source. As before, cell and tissue stiffness tensors are Cc
ijkl
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and Cijkl. The total stress inside the cell is given by

σTij = Cc
ijklε

cell
kl (A.6.14)

By linearity, the strain in the cell can be broken up into two components: the homo-

geneous strain in the surrounding tissue εij, and the effects of the inclusion’s stiffness

mismatch with the tissue εIij,

εcell
ij = εij + εIij (A.6.15)

As in the previous section, we map this inhomogeneous problem to a homogeneous

one with additional cell strain source ε∗eff
ij , but the same total stress and strain

σTij = Cijkl(ε
cell
kl − ε∗eff

kl ). (A.6.16)

Eshelby’s solution now tells us that the contribution to the strain from the inclusion

is

εIij = Sijklε
∗eff
kl . (A.6.17)

Equating Eqs. (A.6.14) and (A.6.16) and using the relation from Eq. (A.6.15),

Cc
ijkl(εkl + εIkl) = Cijkl(εkl + εIkl − ε∗eff

kl ). (A.6.18)
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Substituting in Eq. (A.6.17), we get an equation for ε∗eff
ij ,

[(
Cc
ijkl − Cijkl)Sklmn + Cijmn

)]
ε∗eff
mn = (Cijkl − Cc

ijkl)εkl (A.6.19)

Solving for ε∗eff
ij in terms of εij, we find εIij via Eq. (A.6.17). This gives the cell strain

εcell
ij . Using the relation σij = Cijklεkl for the homogeneous case, we express εcell

ij in

terms of σij. We define T in
ijkl to relate this stress to the strain in the cell

εcell
ij = T in

ijklσkl (A.6.20)

as in Fig. 1A. For a spherical inclusion and isotropic matrix with Young’s moduli Ec

and E and Poisson ratios νc and ν,

T in
ijkl =

3(1− 2ν)

E

[
1 +

(1−2νc)
(1−2ν)

E
Ec − 1

1 + 2 (1−2νc)
(1+ν)

E
Ec

]
|v1〉ijkl +

2(1 + ν)

E

[
1 +

(1+νc)
(1−ν)

E
Ec − 1

1 + 1
2

(7−5ν)
(4−5ν)

(1+νc)
(1+ν)

E
Ec

]
|v2〉ijkl

=
3(1− 2ν)

E
T in

1 |v1〉ijkl +
2(1 + ν)

E
T in

2 |v2〉ijkl

(A.6.21)

where T in
1 and T in

2 are dimensionless quantities, with pre-factors of the inverse tissue

bulk and shear moduli.
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A.6.3 Activation condition

In our model, when CMs contract they generate an eigenstress corresponding to a

negative force-dipole in the x direction. This assumption is based on the observation

that E4 cardiac myocytes exhibit striations, which polarize contraction, and serves to

simplify analysis. An activated CM in our model has an eigenstrain ε∗kl and induces

a matrix stress σ∗ij:

ε∗kl = ε∗


−1 0 0

0 νc 0

0 0 νc

 , σ∗ij = T out
ijklε

∗
kl. (A.6.22)

Given a stress source σ∗a,kl(r
′, t′) indexed by a in the biphasic medium, the strain trace

induced in an included cell at (r, t) is

εcell
a,ii(r, t) =

1− 2ν

E
T in

1

∫
dt′d3r′Giikl(r − r′; t− t′)σ∗a,kl(r′, t′) (A.6.23)

for the Green’s function Gijkl. Combining Eqs. (A.6.12) and (A.2.2),

σ∗a,ij(r
′, t′) = T out

ijklε
∗cell
a,kl (r′, t′) = T out

ijklε
∗
klΘ(t− ta)Θ(τ + ta − t)δ3(x− xa). (A.6.24)
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For a quiescent cell at (r, t) to reach the activation threshold α, we consider all

activated CMs (indexed here by a) as contributing to the local strain. This requires

εcell
ii (r, t) =

∑
a

εcell
a,ii(r, t) = α. (A.6.25)

Consider a steady-state wavefront traveling in the x direction through a cubic array of

CMs spaced by ∆x as in Fig. A.1. We label each CM with lattice indices [nx, ny, nz].

Steady state assumes CMs with the same x coordinate activate simultaneously with

a constant (but unknown) time interval ∆t between activations at neighboring sites

(x, y, z) and (x+ ∆x, y, z).

We express the activation positions and times as ra = [nxa, n
y
a, n

z
a]
T∆x and ta =

nxa∆t where the index nx is in the propagation direction x. In conjunction with the

activation condition (Eq. (A.2.3)),

E
∑

a ε
cell
a,ii

(1− 2ν)T in
1

=
∑
a

∫
dt′d3r′Giikl(r − r′; t− t′)σ∗a,kl(r′, t′)

=
∑

nx,ny ,nz

∫
dt′Giikl(r −


nx

ny

nz

∆x; t− t′) [Θ(t′ − nx∆t)−Θ(t′ − nx∆t− τ)]T out
klmnε

∗
mn

(A.6.26)

for nx ∈ {1, 2, . . . ,∞} and ny, nz ∈ {−∞, . . . ,−1, 0, 1, . . . ,∞} and the activation

eigenstrain ε∗mn as defined in main text Eq. (A.2.1). Using the Green’s function
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Gijkl(r, t) for Eq. (A.6.3), we find that the response to a Heaviside point force dipole

∼ δ3(r)Θ(t) is

Hiikl(r, t) =

∫
dt′Giikl(r, t− t′)Θ(t′) =

1

4πΓDr3

[
H1(r, t)δkl +H2(r, t)

rkrl
r2

]
Θ(t),

H1 = erfc

(
r√
4Dt

)
+

2r√
4πDt

e−
r2

4Dt

H2 = −3erfc

(
r√
4Dt

)
−
(

6r√
4πDt

+
4r2

4πDt

)
e−

r2

4Dt

(A.6.27)

in the limit where Γ � ηq2. Here D = φ2E(1 − ν)/(Γ(1 + ν)(1 − 2ν)) as before.

Combining equations (A.6.25) - (A.6.27), we find a transcendental relation for ∆t in

terms of CM and ECM parameters:

Eα

1− 2ν
= T in

1

∑
a

(Hiikl(r − ra; t− ta)−Hiikl(r − ra; t− ta − τ)T out
klmnε

∗
mn. (A.6.28)

We truncate the sum when the estimated relative error δ < 10−4 which corresponds

to |m|, |n|, |o| < 20 for physiological parameters. We use Newton-Raphson to solve

numerically for ∆t to obtain the steady-state wave-front velocity, v = ∆x/∆t. The

cubic lattice approximation was chosen due to its simple analytic solution. We found

that the steady-state wavefront behavior depends primarily on average spacing be-

tween active sites and not the chosen lattice.
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A.6.4 Tissue strain calculation

We calculate the wavefront strain trace with a coarse-grained, stationary wave-back

solution. Consider Eq. (A.6.3) in the limit η/(Γ∆x2)� 1. We assume a steady state

traveling wavefront ε(x, y, z, t) = ε(x−vt, y, z) with a co-moving excitation front with

velocity v driven by the activation condition solved above. Since the sites behind the

wavefront are refractory, there are no other stress sources other than the activation

front. The equations of motion then become

−v∂xεkk(x− vt, y, z) = D∂2εkk(x− vt, y, z)− σ∗ij
Γ
∂i∂j

∑
a

δ3(x− xa − vt, y − ya, z − za).

(A.6.29)

where D = φ2E(1−ν)
Γ(1+ν)(1−2ν)

, σ∗ij = T out
ijklε

∗
kl the stress generated in the matrix by each

contracting myocyte, and a the activated sites. Assuming a cubic lattice in the co-

moving frame, the number of activated sites N in x corresponds to the width of the

activated front, N = vτ/∆x. So we take

∑
a

=
∑

nx,ny ,nz

(A.6.30)

where nx ∈ {1, . . . , N}, ny, nz ∈ {−∞, . . . ,∞}. In co-moving Fourier space, we find

that the strain trace becomes

ε̃kk =
(
−ivkx − k2D

)−1 σ
∗
ijkikj

Γ

∑
nx,ny ,nz

e−i∆x(kxnx+kyny+kznz). (A.6.31)
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To compute the tissue-scale limit, we coarse-grain the system and consider length

scales 1/|k| � ∆x. We can then express the sum over all activated sites as

∑
nx,ny ,nz

e−i∆x(kxnx+kyny+kznz) =
1

(∆x)3

(
N∑

nx=0

∆xe−in
xkx∆x

)( ∞∑
ny ,nz=−∞

(∆x)2e−i(n
yky+nzkz)∆x

)
.

(A.6.32)

We then replace the sums with integrals. Let us call x′ = nx∆x, y′ = ny∆x, z′ =

nz∆x, ∆x the spacing between myocytes. In the continuum limit:

1

(∆x)3

∫ 0

−vτ
dx′e−ikxx

′
∫ ∞
−∞

dy′dz′e−i(kyy
′+kzz′) =

(2π)2

ikx(∆x)3

[
1− eikxvτ

]
δ(ky)δ(kz).

(A.6.33)

Substituting this into (A.6.31), we observe that the infinite number of excitations

in y and z only contribute in the infinite wavelength limit ky, kz → 0 and these

components are trivially integrated out. The inverse transform in kx is a simple

contour integral with poles no higher than second-order. Computing this gives the

tissue scale response in terms of the individual CM excitation strength

εkk =
σ∗xx

DΓ(∆x)3
×


exp

(
v
D

(x− vt+ vτ)
)

x < v(t− τ)

1 v(t− τ) < x < vt

(A.6.34)

where σ∗xx/(∆x)3 is associated with the microscopic stress exerted by each CM. The

coefficient in Eq. (A.6.34) is the maximal tissue strain of the contracting wavefront.

We note that this solution fails for x > vt since for those positions the tissue is not
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passive: CMs are primed for activation.

A.6.5 BGA obstructs intercellular transport in embryonic
cardiac tissue

To verify that BGA properly interferes with gap junctions in embryonic CMs, we

performed fluorescence recovery after photobleaching (FRAP) experiments to verify

reduced intercellular transport between myocytes. Through α-actinin staining, we

first verified that the cells of interest exhibited characteristic striations found in my-

ocytes and myocyte precursors (Fig. A.9A). E4 chick hearts were loaded with calcein

red-orange AM, a cell tracer. This compound is cleaved as it enters cells, rendering it

membrane impermeable. Myocytes are selected within the tissue and bleached down

to 20% of the initial intensity. Fluorescence recovery was recorded and analyzed via

(software) and ImageJ (see Video A.14). Quantitative FRAP results are shown in

Fig. A.9B-C. BGA-treated hearts systematically exhibited CMs (N=49) with signifi-

cantly reduced fluorescence recovery in rate and intensity when compared to control

(N=73), demonstrating that BGA does indeed interfere with gap junctions in E4

avian heart tissue. See Supplemental Methods.

A.6.6 Small-molecule drugs perfuse embryonic hearts

Treating embryonic hearts with blebbistatin, a drug that blocks myosin-II activity,

disrupts the heartbeat (see Fig. A.10); the heartbeat is then rescued by mecarbil,
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a cardiac-myosin force-enhancing drug (see Fig. A.11). This further indicates that

many small-molecule drugs indeed perfuse the tissue given our experimental protocols

and serves as a control for pharmacologically disrupted (and rescued) beating.

A.6.7 Supplemental Methods

Cell-on-gel FEM simulations

Finite element simulations were performed using the Structural Mechanics Module in

COMSOL. An isolated hydrogel cultured cell was modeled as a hemisphere resting

with its flat side fully in contact with a substrate. The substrate was also modeled

as a hemisphere with the cell placed in the center of its flat surface (see Fig. A.5).

The substrate radius was 10∆x, large enough such that substrate boundary effects

are negligible on cell strain. Both components were modeled as static linear elastic

materials. Under cell contraction, the partial strain trace (ε2d = εxx+εyy) in the plane

of the substrate surface was calculated and averaged over the cell’s contact surface.

This procedure was repeated for a range of values for the substrate Young’s modulus.

Both the saturating and constant eigenstrain models were used for the contraction

strength of the cell. The “fine” option was used for the element mesh size to ensure

convergence. See Table A.2 for a list of input parameters.
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Figure A.5: Illustration and meshing of COMSOL finite element simulated “cell-on-
gel” contraction. Active CM (green) contracts while adhered to matrices (blue) of
variable stiffness. Chosen mesh is shown in gray. Maximal matrix strain trace is
averaged over CM-matrix contact surface and shown in Fig. A.2A

Table A.2: FEM simulation parameter descriptions, symbols, and values

Description Parameter Value
Hemispherical cell radius ∆x 5µm
Hemispherical substrate radius R 10∆x
Cell Young’s modulus Ec 0.75 kPa
Force saturation Young’s modulus Es Ec
Substrate Young’s modulus E [0.1− 100] kPa
Poisson ratio ν 0.4
Cell strain amplitude ε∗ 0.2

CMs-in-matrix FEM simulations

Finite element simulations were performed using the Structural Mechanics Module in

COMSOL. Thirty six CMs were modeled as linear elastic spherical inclusions arranged

in a cubic array and embedded within a surrounding elastic matrix of 30 × 30 ×

40µm3 (see Fig. A.6), with all model parameters corresponding to Table A.2, except

that the CM radius is set to 4.6µm < 5.0µm to prevent issues with meshing in the

simulation. We then excited one of the centrally located CMs by inducing a contractile

eigenstrain and com“cell-on-gel”puted the volume-averaged maximal strain induced
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in the neighboring central CM as a function of effective tissue Young’s modulus.

The effective modulus was determined by simulated uniaxial tensile testing on the

composite system. The “fine” element mesh size was used to ensure convergence.

Note the excellent quantitative agreement between our analytical calculation and

the finite-element calculations for finite-sized inclusions; this agreement justifies our

approximation of CMs as point-like elastic inclusions.
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Figure A.6: Comparison of mechanical response between point-like and finite-sized
CMs. We perform finite element simulations in COMSOL. We embed 36 elastic
inclusions (CMs) within a surrounding elastic matrix, as shown in panel A. We impose
a contractile eigenstrain in one of the centrally-located CMs. We plot (panel B) the
maximum strain induced in the neighboring centrally-located CM against our analytic
result for point-like CMs as a function of effective tissue Young’s modulus. We observe
good quantitative agreement between the two models, justifying our approximation
of CMs as point-like elastic inclusions.

Myocardial stiffness measurements

White Leghorn chicken eggs (Charles River Laboratories) were incubated at 37C

until the desired developmental stage was reached and isolated as described in [26].
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Embryos were extracted at room temperature and placed into a Petri dish. The thick

albumen was removed using blunt forceps and KimWipes. The embryos were adhered

to a Whatman #2 filter paper with an elliptical hole of approximately 1 by 2 cm cut

in it. The embryos were rinsed in PBS and placed ventral side up. Pre-warmed chick

heart media (alpha-MEM supplemented with 10% FBS and 1% penn-strep, Gibco,

12571-063) was added at this point.

The heart was extracted with fine forceps severing above the atrium and below the

outflow tract and transferred into a six-well plate. Micropipettes were pulled from

glass capillaries (World Precision Instruments, Sarasota, FL) and broken to final inner

diameters of 30-100 µm. Pipettes were filled with PBS and attached to water-filled

reservoir. Aspiration was performed at room temperature in either PBS supplemented

with 3% BSA or heart culture media. Before each experiment, pipette tips were placed

in the solution for ≤ 20 min to prevent sticking. During aspiration, several pressures

were applied in the range of 0 - 0.8 kPa. Imaging was done using a Nikon TE300

microscope with a 20x air objective and recorded using a Cascade Photometric CCD

camera. Image analysis was performed in ImageJ.

Beta-glycyrrhetinic acid (BGA) fluorescence recovery after bleaching (FRAP)

Isolated day 4 embryonic hearts (E4) were stained with 0.5 µM CellTrace Calcein

Red-Orange, AM (ThermoFisher Scientific #C34851) and Hoechst 33342 in HEPES

buffered alpha-MEM culture media (Gibco #12571-063, supplemented with 10% FBS
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and 1% penn-strep) for 15 minutes at RT with gentle rocking. Cytochalasin D (Cay-

man Chemical Company #11330, 25µM) was added to minimize contractions and

drift during imaging. Calcein and Hoechst 33342 were then washed out three times

with culture media supplemented with cytochalasin D. For BGA treatment, embry-

onic hearts preloaded with calcein were perfused in 100 µM 18-β-glycyrrhetinic acid

(BGA, Cayman Chemical, 11845) for 1hr at RT, with gentle rocking. BGA-treated

and untreated control hearts were placed on 35 mm glass bottom dishes (MatTek

#P35G-1.5-10-C, Ashland, MA) with media filling up the center well and capped

with a coverslip for FRAP imaging.

Confocal time-lapse images were acquired using a Zeiss 880 laser scanning confocal

microscope equipped with a 40X oil 1.4NA objective. Zeiss ZEN Black software was

configured to acquire images every 2 seconds for 6 min and photobleaching started af-

ter acquiring 8 frames and stopped until the intensity dropped to 20% of the original.

Average intensity in each bleached region and a non-bleached region were measured

by using ImageJ (http://rsb.info.nih.gov/ij/download.html) with the time se-

ries analyzer plugin (http://rsb.info.nih.gov/ij/plugins/time-series.html).

Intensity of the bleached region was normalized to that of the non-bleached region in

the same time series to correct overall photobleaching during imaging. Data was an-

alyzed with a custom C++ code and graphs were plotted in GraphPad Prism version

6.0d (http://www.graphpad.com).
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Immunostaining of embryonic hearts

Isolated day 4 embryonic hearts (E4) were fixed in 4% paraformaldehyde for 15 min

at RT on a rocker. Fixed E4 hearts were then washed with PBS three times for

5 min each and permeabilized with 0.1% Triton-X in PBS for 30 min. Blocking

was performed in 5% BSA and 0.1% Triton-X in PBS for 1.5 hrs at RT. Hearts

were immunostained for α-actinin-2 (Abcam EA-53 mouse monoclonal Ab, 1:200

dilution in blocking solution) and DNA (Hoechst 33342, 1:1000) for 3 hours at RT

with gentle shaking. Primary antibodies were washed out with PBS X3 for 15 min

each. Secondary antibody (Goat anti-mouse IgG Atto565, Hypermol #2107, 1:500)

staining was performed for 1.5 hours at RT and the hearts were washed with PBS X3

before confocal imaging. Images were acquired using a Zeiss 880 Airyscan confocal

with a 40X oil 1.4NA objective. Image analysis was performed using ZEN Black

software for Airyscan processing.
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Figure A.7: Results from ramp-hold experiments performed on explanted HH stage
10-11 avian hearts. Pressure of micropipette applied to the tissue increases with
increments of 0.13 kPa every 46 seconds. Excursion length differences as a function
of pressure (indicated colors) and time after a pressure ramp (axis) are plotted. The
best-fit standard linear solid (SLS) model is shown in black. For the majority of
pressures applied, the heart behaves quantitatively as a linear viscoelastic material.
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Figure A.8: BPM from isolated Langendorff perfused adult mouse heart control ex-
periment shown with mean BPM from 3 adult hearts treated with 25 µM BGA (from
Fig. A.4 in main text). BPM data was extracted from 20-second intervals of acquired
video. This demonstrates the effectiveness of BGA on adult heartbeat disruption.

186



0 50 100 150 200 250

0.2

0.4

0.6

1.0
1.5

Time [s]

R
el

at
iv

e 
in

te
n

si
ty

 
Control (n=73) BGA (n=49)

control BGA
0

5

10

15

20

25

%
 R

ec
o

ve
ry

***

B CA

Figure A.9: Panel A displays a representative image of E4 chick embryonic CMs
stained for α-actinin and DNA. Image was taken 4 µm below the surface in the out-
flow tract of the looping heart. Scale bar is 5 µm. As exampled here, CMs in the E4
heart exhibit premature periodic striations, suggesting myofibrillogenesis of cardiac
myocytes. These cells were subjected to testing for effective gap junction interference
via FRAP. Panel B shows aggregated results from calcein red-orange FRAP experi-
ments in control and BGA-treated E4 avian hearts. Individual CMs within the tissue
were selected and photobleached (see example Video A.14). Fluorescent intensity
recovery was tracked over at four minutes in 49 +BGA CMs and 73 -BGA CMs.
Rapid early recovery is likely due to intracellular diffusion and is unaffected by BGA
treatment. In contrast, BGA treatment disrupts prolonged recovery, which is likely
mediated by intercellular transport through gap junctions. Panel C demonstrates
the significantly higher fluorescence recovery after four minutes in control hearts,
demonstrating BGA efficacy in disrupting E4 avian heart gap junctions.
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Figure A.10: Results from blebbistatin disruption on E4 chick heart. Mean-
normalized aspect ratio is recorded over time intervals of 30s at time points 0hrs,
1hrs, and 3hrs after treatment of 20µM blebbistatin. Significant decreases in beating
amplitude and BPM are observed.
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Figure A.11: Results from blebbistatin disruption with mecarbil rescue on E4 chick
heart. Mean-normalized aspect ratio is recorded over 24s intervals at time points
before drug treatment, post-blebbistatin, and post-blebbistatin and mecarbil. At
t = 0hrs the heart tube is treated with 20 µM blebbistatin dilution to disrupt acto-
myosin activity. At t = 3hrs, the blebbistatin solution is removed via aspiration and
replaced with 1 µM mecarbil to enhance cardiac myosin activity. We observe rescued
beat amplitude and coherence. This also demonstrates effective small molecule per-
fusion into isolated embryonic hearts. Additionally, force-enhancing rescue of beats
is consistent with a mechanical signaling model.

189



Figure A.12: Video of HH stage 10-11 (E1.5-2) chick hearts pre- and post-onset of
beating. Pre-beating hearts exhibit “shivering” behavior of uncoordinated cardiomy-
ocyte contractions. Post-beating hearts exhibit fully coordinated beats. Video plays
at 3x real-time. Micropipette in view has an outer diameter of ∼ 50µm (Note: Video
can be found in Ref. [6]).
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Figure A.13: Video of Langendorff-perfused adult mouse hearts pre- and post-
administration of 25µM BGA drug dilution. Time points shown are -20min, 0min
and +7min relative to BGA treatment (Note: Video can be found in Ref. [6]).
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Figure A.14: Video comparison of FRAP experiments on calcein-labeled CMs in
E4 hearts in control and BGA conditions. The left video demonstrates fluorescence
recovery under control conditions, while the right corresponds to a BGA-treated heart.
Scale bars are 5 µm. Videos are over the course of four minutes and synchronized to
the onset of photobleaching (Note: Video can be found in Ref. [6]).

192



Bibliography

[1] Banerjee, S. and Marchetti, M. C. 2011. Instabilities and oscillations in isotropic
active gels. Soft Matter , 7(2): 463–473.

[2] Bhana, B., Iyer, R. K., Chen, W. L. K., et al. 2010. Influence of substrate stiffness
on the phenotype of heart cells. Biotechnology and Bioengineering , 105(6): 1148–
1160.

[3] Bischofs, I. B. and Schwarz, U. S. 2003. Cell organization in soft media due to
active mechanosensing. Proceedings of the National Academy of Sciences , 100(16):
9274–9279.

[4] Böhmer, C., Kirschner, U., and Wehner, F. 2001. 18-β-Glycyrrhetinic Acid (BGA)
as an electrical uncoupler for intracellular recordings in confluent monolayer cul-
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