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part due to the limitations in finding accurate models for these complex systems. While both exact and 
heuristic approaches have been developed for select problems of interest, as these systems grow in 
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only in its ability to develop solutions without reliance on models, but also due to the fact that a resource 
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ideas of control-awareness in wireless scheduling to derive an assignment problem to determine optimal, 
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we first establish a bounded duality gap result of the constrained optimization problem, and subsequently 
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we focus our attention on deep neural networks (DNNs). While fully connected networks can be represent 
many functions, they are impractical to train for large scale systems. In Chapter 5, we tackle the parallel 
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architectures, that are well suited for representing wireless resource allocation policies. Due to the graph 
structure inherent in wireless networks, we propose the use of graph convolutional neural networks to 
parameterize the resource allocation policies. 

Before concluding remarks and future work, in Chapter 6 we present initial results on applying the learning 
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ABSTRACT

LEARNING OPTIMAL RESOURCE ALLOCATIONS IN WIRELESS SYSTEMS

Mark Eisen

Alejandro Ribeiro

The goal of this thesis is to develop a learning framework for solving resource allocation

problems in wireless systems. Resource allocation problems are as widespread as they are

challenging to solve, in part due to the limitations in finding accurate models for these

complex systems. While both exact and heuristic approaches have been developed for select

problems of interest, as these systems grow in complexity to support applications in Internet

of Things and autonomous behavior, it becomes necessary to have a more generic solution

framework. The use of statistical machine learning is a natural choice not only in its ability

to develop solutions without reliance on models, but also due to the fact that a resource

allocation problem takes the form of a statistical regression problem.

The second and third chapters of this thesis begin by presenting initial applications of

machine learning ideas to solve problems in wireless control systems. Wireless control systems

are a particular class of resource allocation problems that are a fundamental element of IoT

applications. In Chapter 2, we consider the setting of controlling plants over non-stationary

wireless channels. We draw a connection between the resource allocation problem and

empirical risk minimization to develop convex optimization algorithms that can adapt to

non-stationarities in the wireless channel. In Chapter 3, we consider the setting of controlling

plants over a latency-constrained wireless channel. For this application, we utilize ideas

of control-awareness in wireless scheduling to derive an assignment problem to determine

optimal, latency-aware schedules.

The core framework of the thesis is then presented in the fourth and fifth chapters.

In Chapter 4, we formally draw a connection between a generic class of wireless resource

allocation problems and constrained statistical learning, or regression. From here, this

inspires the use of machine learning models to parameterize the resource allocation problem.

To train the parameters of the learning model, we first establish a bounded duality gap

result of the constrained optimization problem, and subsequently present a primal-dual

learning algorithm. While any learning parameterization can be used, in this thesis we

focus our attention on deep neural networks (DNNs). While fully connected networks

can be represent many functions, they are impractical to train for large scale systems. In

Chapter 5, we tackle the parallel problem in our wireless framework of developing particular

learning parameterizations, or deep learning architectures, that are well suited for representing

wireless resource allocation policies. Due to the graph structure inherent in wireless networks,

v



we propose the use of graph convolutional neural networks to parameterize the resource

allocation policies.

Before concluding remarks and future work, in Chapter 6 we present initial results on

applying the learning framework of the previous two chapters in the setting of schedul-

ing transmissions for low-latency wireless control systems. We formulate a control-aware

scheduling problem that takes the form of the constrained learning problem and apply the

primal-dual learning algorithm to train the graph neural network.1

1Work presented in this thesis has been published and submitted for review to IEEE Transactions
on Signal Processing, IEEE Internet of Things Journal, and the Proceedings of the American Control
Conference, International Conference on Acoustics, Speech, and Signal Processing, Asilomar Conference on
Signals, Systems, and Computers, and International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). Submissions available at [30–33, 35–40]. Work in this thesis is supported by
ARL DCIST CRA W911NF-1, 7-2-0181 and Intel Science and Technology Center for Wireless Autonomous
Systems (ISTC-WAS).
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Chapter 1

Introduction

The advent of the Internet of Things (IoT) brings way towards the rise of integrating fully

autonomous systems into our infrastructure and daily lives. With applications ranging from

industrial robotics to smart grid to autonomous vehicles, the future of these technologies

invariably depend up our ability to increase the capacity of the underlying technology of

autonomous IoT systems to support their increasing scale and complexity. One of the most

fundamental of such underlying technologies is our wireless communication systems [7,79,128].

Indeed, a primary feature of future autonomous systems is their ability to communicate

sensing and actuation information over the wireless medium—whether it be through 5G,

LTE, Bluetooth, etc.—to make autonomous decisions. It is thus increasingly necessary to

optimally design wireless systems that can support the various demands—e.g. capacity,

latency, throughput, etc.—placed by these autonomous systems.

The defining feature of wireless communication is fading, or the various random disturb-

ances experienced by the signal as it propagates through the air. The role of optimal wireless

system design is to allocate resources across fading states to optimize long term system

properties. Mathematically, we have a random variable h that represents the instantaneous

fading environment, a corresponding instantaneous allocation of resources p(h), and an

instantaneous performance outcome f
(
p(h),h

)
resulting from the allocation of resources p(h)

when the channel realization is h. The instantaneous system performance tends to vary too

rapidly from the perspective of end users for whom the long term average x = E
[
f
(
p(h),h

)]
is a more meaningful metric. This interplay between instantaneous allocation of resources

and long term performance results in distinctive formulations where we seek to maximize a

utility of the long term average x subject to the constraint x = E
[
f
(
p(h),h

)]
. Problems of

this form range from the simple power allocation in wireless fading channels – the solution of

which is given by water filling – to the optimization of frequency division multiplexing [126],

beamforming [8, 112], and random access [61,62].

Optimal resource allocation problems are as widespread as they are challenging. This
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is because of the high dimensionality that stems from the variable p(h) being a function

over a dense set of fading channel realizations and the lack of convexity of the constraint

x = E
[
f
(
p(h),h

)]
. For resource allocation problems, such as interference management,

heuristic methods have been developed [18,111,130]. Generic solution methods are often

undertaken in the Lagrangian dual domain. This is motivated by the fact that the dual

problem is not functional, as it has as many variables as constraints, and is always convex

whether the original problem is convex or not. A key property that enables this solution is

the lack of duality gap, which allows dual operation without loss of optimality. The duality

gap has long being known to be null for convex problems – e.g., the water level in water filling

solutions is a dual variable – and has more recently being shown to be null under mild technical

conditions despite the presence of the nonconvex constraint x = E
[
f
(
p(h),h

)]
[103, 136].

This permits dual domain operation in a wide class of problems and has lead to formulations

that yield problems that are more tractable, although not necessarily tractable without

resorting to heuristics [31, 42, 47, 76, 92, 124, 138]. All such approaches invariably require

accurate system models and may require prohibitively large computational complexity for

each allocation decision.

In contrast to such model-based heuristics, more recent work has applied machine learning

and regression techniques to solve resource allocation problems. Machine learning methods

train a generic learning model, most commonly a deep neural network (DNN), to make

resource allocation decisions for a wide variety of problems. One such approach follows the

tenants of supervised learning, or in other words fitting a neural network to a training set of

solutions obtained using an existing algorithm [70,115,121,131]. These techniques are useful

in their simplicity and relative effectiveness—neural networks are well suited for finding

good local minima in loss functions typically used in supervised learning, e.g. Euclidean loss.

However, supervised learning techniques are limited by both the availability of solutions

needed to build a training set as well as the accuracy of such solutions. The former limitation

implies supervised learning can only be used in resource allocation problems with existing

heuristic solutions, while the latter limitation implies that the learning model will only meet

the performance of such heuristics but never exceed them. For many of the open problems

in wireless autonomous system design, a training set required to perform supervised training

methods is unavailable.

A crucial observation in the understanding of wireless resource allocation problems and

their connection to machine learning is the fact that the expectation E
[
f
(
p(h),h

)]
has a

form that is typical of learning problems. Indeed, in the context of learning, h represents

a feature vector, p(h) the regression function to be learned, f
(
p(h),h

)
a loss function to

be minimized, and the expectation E
[
f
(
p(h),h

)]
the statistical loss over the distribution

of the dataset. We may then learn without labeled training data by directly minimizing
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the statistical loss with stochastic optimization methods which merely observe the loss

f
(
p(h),h

)
at sampled pairs (h,p(h)). In this way, we follow the interpretation of wireless

autonomous system design as a constrained learning problem, in which we seek a resource

allocation function, or policy, that minimizes a statistical loss that represents the physical

performance of the system, subject to the necessary constraints.

In Chapter 2, we present our first method to exploit this interpretation in tackling the

problem of the non-stationarity of wireless channels in practical systems. The optimal

resource allocation policy to close a series of wireless control systems is inherently linked

to the statistics of the wireless channel. In most practical applications, the statistics will

invariably change over time. To address this problem, we utilize the statistical learning

interpretation of resource allocation to leverage ideas of empirical risk minimization (ERM).

ERM substitutes the statistical loss with a deterministic, empirical loss. With the application

of second order convex optimization methods, we demonstrate how we can quickly adapt

the resource allocation policy as the wireless channel distribution changes over time.

We proceed in Chapter 3 to apply techniques from machine learning in studying another

wireless resource allocation problem of growing interest in autonomous system design—

namely, the challenge of designing ultra-reliable, low-latency communications (URLLC).

As in Chapter 2, we may formulate a constrained resource allocation problem that models

the performance of a resource allocation decision relative to the expected performance

of the control system. In such a manner, the resource allocation is a scheduling policy

that minimizes total latency while meeting a control performance constraint. For added

practical value, we look specifically at a formulation employing the IEEE 802.11ax WiFi

architecture. The combinatorial size of the scheduling decision space inspires the use of

so-called assignment methods to find solutions to the resulting optimization problem.

While these initial approaches for solving complex wireless resource allocation problems

prove effective, they are limited in that they are custom designed to tackle specific problems

in wireless autonomous systems, and moreover utilize a large degree of model information. In

this thesis, we are ultimately interested in developing a comprehensive learning framework for

addressing open wireless resource allocation problems. This requires both the generality in

the algorithmic approach, as well as an ability to operate when knowledge of the model—e.g.

system dynamics, capacity model, etc.—-is unavailable, as is most often the case in complex

systems of practical interest.

A more promising approach in learning for resource allocation uses the learning model,

e.g. deep neural network, to directly parameterize the resource allocation policy in the

optimization problem [25,38,69,73,83,132]. This can be considered unsupervised in that

such techniques can train neural networks with respect to an arbitrary system performance

measure and thus does not require the acquisition of a training set—or, in other words,

3



reinforcement learning. These techniques are further beneficial in that they can be applied

to any arbitrary resource allocation problem and have the potential to exceed performance

of existing heuristics. This setting is typical of, e.g., reinforcement learning problems [117],

and is a learning approach that has been taken in several unconstrained problems in wireless

optimization [25,93, 94, 134]. In general, wireless optimization problems do have constraints

as we are invariably trying to balance capacity, power consumption, channel access, and

interference. We develop such a constrained learning framework in Chapters 4 and 5 of this

dissertation.

In Chapter 4, we formally draw an equivalence between resource allocation problems

and constrained statistical learning—or constrained regression—to develop a theoretical and

algorithmic framework for learning resource allocation policies for a generic class of resource

allocation problems. In particular, this involves using the universal approximation properties

of fully connected neural network (FCNNs) is to recover the duality results of [103, 136].

From there, we present a so-called primal-dual learning method that can be used to learn

the optimal weights of the FCNN for a generic class of resource allocation problems. We

moreover demonstrate how the proposed primal-dual method can be performed model-free,

or agnostic to particular system model knowledge.

The primal-dual framework provides an algorithmic approach for training learning

parameterizations of a resource allocation policy. The next question of interest concerns

precisely which learning parameterizations are best suited for representing resource allocation

policies. FCNNs are an immediate candidate due to their general universality property—that

is, they can theoretically approximate any continuous function arbitrarily well. However,

just as FCNNs are made a naturally viable choice from their universality property [38, 115],

so too are they limited. The practical challenge of training FCNNs to parameterize strong

performing policies is well documented in empirical study , as their full expressive power

inherently requires performing optimization over a very high dimensional space. Moreover,

the completely generic structure of FCNN contains no intrinsic invariance to input scaling or

variation; any change in wireless network size or shuffling of the network labels renders the

current FCNN-based policy ineffective. Convolutional neural networks architectures (CNNs),

on the other hand, have proved a solution to this problem for many learning domains such as

image classification and recommender systems by preserving invariances in the architecture

itself. While some existing work has used CNNs for wireless resource allocation [69,121,131],

they utilize standard temporal or spatial CNNs and thus do not leverage the true invariances

present in wireless networks. In particular, the structure—and subsequent invariances—of

wireless networks comes from the links between transmitters and receivers that result from

fading. The work in [23] uses spatial CNNs that utilize the geometric structure of the

network, but in doing so does not incorporate the fading link structure. In Chapter 5,
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we incorporate a recent development in CNNs that perform convolutions on arbitrarily

structured data—called graph neural networks [45,55]—to fully utilize the network of fading

links in parameterizing a resource allocation policy. When such learning architectures are

used in conjunction with the model-free algorithmic learning approach developed in Chapter

4, we obtain a more complete framework for learning effective resource allocation policies in

large wireless systems for application in autonomous system settings.

We conclude in Chapter 6 to apply the developed learning framework in the low-latency

wireless control system problem previously tackled in Chapter 3. In this chapter, we

demonstrate how a scheduling problem to address low-latency control systems can be

formulated as the constrained statistical learning problem, and utilize both the primal-dual

learning algorithm and graph neural network parameterization discussed in Chapters 4 and

5, respectively, to solve.

The outline for our developed framework for learning in wireless systems is presented

in Figure 1.1. Chapters 2 and 3 discuss initial applications that utilize machine learning

techniques, i.e. empirical risk minimization and assignment methods, to address specific

problems. These applications are shown in green diamonds in the first row of Figure 1.1.

Chapters 4 and 5, shown in the following row in red rectangles, develop the two pillars

of a specific framework for addressing generic resource allocations problems. One pillar

involves the formulation of the resource allocation problem and the resulting algorithm—we

discuss the primal-dual learning framework in Chapter 4—and the parallel pillar is in specific

learning architectures and parameterization to utilize in the learning process—we discuss

the use of Graph Neural Networks in Chapter 5. Finally, we utilize these two pillars to

again address an application of interest, namely the low-latency wireless control system, in

Chapter 6.

The work presented in this thesis develops a learning framework to be applied to a wide

variety of complex and large-scale wireless resource allocation problems. Such problems are

becoming increasingly prevalent in the design of the wireless autonomous systems that will

compose the future of IoT technology and infrastructure. As these problems grow in both

scale and complexity, machine learning has an enormous potential to become a fundamental

feature of next generation wireless technology, from 6G [19, 46] to Industry 4.0 [79]. The

methodology proposed here is intended to provide a pathway towards successful application

of machine learning technology to communication systems. Indeed, there still exist many

important extensions to be made to fully address the challenges posed by wireless IoT

systems. We conclude the thesis in Chapter 7 by discussing the numerous opportunities for

future work.
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Chapter 2

Empirical Risk Minimization for

Non-Stationary Wireless Control

Systems

2.1 Introduction

The recent developments in autonomy in industrial control environments, teams of robotic

vehicles, and the Internet-of-Things have motivated intelligent design of wireless systems.

Even though wireless communication facilitates connectivity, it also introduces uncertainty

that may affect stability and performance. To guarantee performance and safety of the

control application it is common to employ model-based approaches. However wireless

communication is naturally uncertain and time-varying due to effects that are not always

amenable to modeling, such as mobility in the environment. In this chapter we propose an

alternative learning-based approach, where autonomy relies on collected channel samples to

optimize performance in a non-stationary environment. The connection between the two

approaches is based on the observation that a sampled version of the model-based design

approach can be cast as an empirical risk minimization (ERM) problem, a typical machine

learning problem. Even so, standard techniques developed for solving ERM problems in

machine learning do not address the additional challenges present in wireless autonomous

systems, namely the non-stationarity of sample distributions.

The traditional model-based approach is motivated by the desire to build wireless control

systems with stability and optimal performance. To counteract channel uncertainties it is

natural to include a model of the wireless communication, for example an i.i.d. or Markov

link quality, alongside the model of the physical system to be controlled. These models have

been valuable to help analysis and control/communication design. For example, one can

7



characterize that it is impossible to estimate and/or stabilize an unstable plant if its growth

rate is larger than the rate at which the link drops packets [51,56,106,113], or below a certain

channel capacity [105,120]. Additionally models facilitate the design of controllers [22,41,63],

as well as the allocation of communication resources to optimize control performance,

for example power allocation over fading channels with known distributions [48, 100], or

event-triggered control [5, 54,80,81,101].

In practice wireless autonomous systems operate under unpredictable channel conditions

following unknown time-varying distributions. While one approach would be to estimate the

distributions using channel samples and then follow the above model-based design approach,

in this chapter we propose an alternative learning-based approach which bypasses the

channel-modeling phase. We exploit channel samples taken from the time-varying channel

distributions with the goal to learn directly the solution to communication design problems.

To apply this approach we exploit a connection between the model-based and the learning-

based design problems. Existing works [20, 47, 49] study related problems in multiple-access

wireless control systems and resource allocation problems in wireless systems but under a

stationary channel distribution. These works generally employ first-order stochastic methods,

which have slow convergence rates and hence not suitable for the present framework. A

significant challenge remains in how to continuously learn optimal policies over a wireless

channel that is time-varying. This shortcoming of existing sample-based approaches used

in [20,47,49] and more general machine learning scenarios motivates the higher-order learning

approach proposed in this chapter. Some existing machine learning methods account for

nonstationarity by optimizing an averaged objective over all time [11, 65, 86]. Our approach

differs in that we seek and track optimality locally with respect to the current channel

distribution at every time epoch.

In this chapter we consider a wireless autonomous system where the design goal is to

maximize a level of control performance for multiple systems while meeting a desired transmit

power budget over the wireless channel (Section 2.2). The wireless channel is modeled as a

fading channel with a time-varying and unknown distribution, and only available through

samples taken over time. We derive in Section 2.2.1 a wireless control problem that finds

optimal power allocation policies for an individual time epoch where the wireless channel

distribution does not change, and then proceed to derive the Lagrange dual (Section 2.2.2).

We show in Section 2.3 that the dual of the power allocation problem can be rewritten using

channel samples as an empirical risk minimization problem, a common machine learning

problem in which an expected loss function over an unknown distribution is approximated

by optimized over a set of samples. Here the risk is loosely related to how far the current

solution is from the desired optimal power allocation.

Because the wireless channel is varying over time, we develop a new approach to solving
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Figure 2.2: Time axis showing evolution of time t and epochs k. Each channel distribution Hk is
stationary for a set of time instances.

a sequence of ERM problems. We collect and store a window of channel samples taken from

consecutive distributions to reduce sampling complexity and employ Newton’s method to

learn new policies quickly (Section 2.4). More specifically, the quadratic convergence rate of

Newton’s method is shown to be sufficient to find approximate solutions to slowly varying

objectives with a single update. Using Newton’s method, we propose an algorithm that uses

channel samples to approximate the solution of a power allocation wireless control problem

over a non-stationary channel. We prove that, under specific conditions, the algorithm

reaches an approximately optimal point in a single iteration of Newton’s method (Section

2.5). This result establishes both a suboptimality bound with respect to the sampled problem

(Section 2.5.1) as well as with respect to control performance metric in the wireless control

problem (Section 2.5.2). We additionally show a stability result for a particular problem

description common in wireless control systems (Section 2.5.3) and provide considerations for

practical implementation of the method (Section 2.6). These results are further demonstrated

in a numerical demonstration of learning power allocation policies across multiple control

systems over a time-varying channel (Section 2.7).

2.2 Wireless Control Problem

We consider a wireless control problem (WCP) with m independent control systems labeled

i = 1, . . . ,m, as shown in Figure 2.1. Each control system/agent i communicates at time t

its state xit over a wireless channel in order to close a loop and maximize a level of control

performance. In particular, system i tries to close the control loop over the wireless channel
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by transmitting with power level pi ∈ [0, p0]. Due to propagation effects the channel fading

conditions that each system i experiences, denoted by hi ∈ R+, change unpredictably over

time [50, Ch. 3]. Together, the channel fading hi and transmit power pi determine the

signal-to-noise ratio (SNR) at the receiver for system i, which in turn affects the probability

of successful decoding of the transmitted packet at the receiver. We consider a function

q(hi, pi) that, given a current channel state and transmit power, determines the probability

of successful transmission and decoding of the transmitted packet – see, e.g., [48,100] for

more details on this model. Transmission are assumed on different frequencies/bands and

are not subject to contention – see [47,49] for alternative formulations.

Because these fading conditions vary quickly and unpredictably, they can be modeled

as independent random variables drawn from distribution H that itself is non-stationary,

or time-varying. Channel fading is assumed constant during each transmission slot and

it is independently distributed over time slots (block fading). Furthermore, the channel

distribution H may vary across time epochs, but will in general be stationary within a single

time epoch. In particular, consider an epoch index k = 0, 1, . . . that specifies a particular

channel distribution Hk with realization hik for system i. In Figure 2.2, we display a time

axis rendering of this model. The state variables change at each transmission slot t, while

the channel changes at scale k, which will in general contain multiple time steps. This is

to say that we assume that the channel distribution Hk changes at a rate slower than the

system evolution, and that within a single time epoch the channel is effectively stationary.

We proceed to derive a formal description of the wireless control problem of interest

within a single time epoch, where the channel is assumed stationary. In Section 2.4 we

extend this formulation to the non-stationary setting.

2.2.1 WCP in single epoch

Within a particular time epoch k with channel distribution Hk, we can derive a formulation

that characterizes the optimal power allocations between the m control systems so as to

maximize the aggregate control performance across all systems, where p0 reflects a maximum

transmission power of the system. Given a random channel state hik ∈ R+ drawn from the

distribution Hk. We wish to determine the amount of transmit power pik(h
i
k) : R+ → [0, p0]

to be used when attempting to close its loop—see [48] for details. We note that we are

looking for transmit power as a function of current channel conditions, as the power necessary

to close the loop will indeed change with channel conditions. We assume the current channel

gain hik is available at the transmitter at each slot, as this can generally be obtained via

short pilot signals—see [48]. Then the probability of closing the loop is given by the value

yik := Ehik
{
q(hik, p

i
k(h

i
k))
}
. (2.1)
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The variable yik ∈ [0, 1] is the expectation of successful transmission over the channel

distribution Hk.
Using the variable yik we use a monotonically increasing concave function J i : [0, 1]→ R

that returns a measure of control system performance as a function of the probability of

successful transmission. Such a function can take on many forms and, in general, can be

derived in relation to the particular control task of interest. In the following example, we

derive such a measure for a typical wireless control problem setting, namely the quadratic

control performance of a switched linear dynamical system – see, e.g., [51, 106].

Example 1. Consider for example that a control system i is a scalar linear dynamical

system of the form

xit+1 = Aiox
i
t +Biuit + wit (2.2)

where xit ∈ R is the state of the system at transmission time t, Aio is the open loop (potentially

unstable) dynamics of the system, uit ∈ R is the control input applied to the system at time

t, and wit is some zero-mean i.i.d. disturbance process with variance W i. Consider a given

linear state feedback is applied to the system as the control input when a transmission is

successful, i.e.,

uit =

{
Kixit if loop closes

0 otherwise
(2.3)

As a result, the system switched between an open loop mode Aio and a closed loop stable mode

Aic = Aio +BiKi, as in

xit+1 =

{
Aiox

i
t + wit if loop closes

Aiox
i
t + wit otherwise

(2.4)

The goal is to regulate the system state close to zero, i.e., the system attempts to close the

loop at a high rate in order to minimize an expected quadratic control cost objective of the

form

lim
N→∞

1

N

N−1∑
t=0

E(xit)
2 (2.5)

Assuming the control loop in (2.4) is closed with the success probability yik in (2.1) at all

time steps, it is possible to express the above cost explicitly as a function of yik. Using the

system dynamics (2.4), the variance of the system state satisfies the recursive formula

E(xit+1)
2 = yik (Aic)

2 E(xit)
2 + (1− yik) (Aio)

2 E(xit)
2 +W i (2.6)

that is, with probability yik the variance grows according to the open loop dynamics, and with

probability 1− yik the variance shrinks according to the closed loop stable dynamics.
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Operating recursively and using the geometric series sum, we can rewrite the variance at

time t as

E(xit)
2 = [yik (Aic)

2 + (1− yik) (Aio)
2]tE(xi0)

2 (2.7)

+W i 1− [yik (Aic)
2 + (1− yik) (Aio)

2]t

1− [yik (Aic)
2 + (1− yik) (Aio)

2]
. (2.8)

As follows from the above expression, the system is stable, i.e., the variance is bounded, if the

packet success rate satisfies [yik (Aic)
2 + (1− yik) (Aio)

2] < 1 so that the sum above is bounded

– see also [51, 106]. In that case, the state variance as well as the average (2.5) converge to

the same limit value, which we can define as our control performance function

J i(yik) = − W i

1−
[
yik(A

i
c)

2 + (1− yik)(Aio)2
] (2.9)

This control performance function satisfies the assumption of concavity, and it is also

monotonically increasing because we have added the negative sign in front of the expression.

It is also possible to extend this analysis to include a cost on the control input, as is common

in the Linear Quadratic Control problem, i.e., replace the cost in (2.5) with E(xit)
2 + (uit)

2.

Remark 1. In Example 1, observe that the control system performance in (2.5) is a long

term objective asymptotically for t→∞. As the channel fading distribution Hk will change

unpredictably in the future it is hard to define an accurate value of this control performance.

As a surrogate, in the above example we write a control system performance in (2.9) with

respect to the current channel distribution Hk, i.e., as if this channel distribution is stationary

and will not change in the future. Later, in Section 2.5.3 we argue that this approximation

and the power allocation algorithm we develop can indeed guarantee system stability.

To derive the full formulation of the wireless control problem for current channel dis-

tribution Hk, we first define using boldface vectors the set of m channel states hk :=

[h1k;h2k; . . . ;hmk ] ∼ Hmk observed by the control systems and the set of power allocation policies

pk(hk) := [p1k(h1k); p2k(h2k); . . . ; pmk (hmk )] ∈ P := [0, p0]m. We further define the vector of trans-

mission probabilities at specific channel states q(hk,pk(hk)) := [q(h1k, p
1
k(h1k)); . . . ; q(hmk , p

m
k (hmk ))]

and expected transmission probabilities yk := [y1k; y
2
k; . . . ; y

m
k ] from (2.1). The goal is to

select pk(hk) whose expected aggregate value is within a maximum power budget pmax while

maximizing the total system performance
∑
J i over m agents. Because J i is monotonically

increasing, we can relax the equality in (2.1) to an inequality constraint and write the
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following optimization problem.

{p∗k(h),y∗k} := argmax
pk∈P,yk∈Rm

J(yk) :=
m∑
i=1

J i(yik) (WCPk)

s. t. yk ≤ Ehk {q(hk,pk(hk))} ,
m∑
i=1

Ehik(pik(h
i
k)) ≤ pmax

The problem in (WCPk) states the optimal power allocation policy p∗k(hk) is the one that

maximizes the expected aggregate control performance over channel states while guaranteeing

that the expected total transmitting power is below an available budget pmax. We stress

that this only provides the optimal policy with respect to a particular channel distribution

Hk. In the non-stationary wireless setting we are interested in solving (WCPk) for all k.

2.2.2 Dual formulation of (WCPk)

Solving this optimization problem directly has a number of significant challenges. The first

is that the problem is non-convex, in particular due to the first constraint in (WCPk). The

second challenge is that the problem is optimized over an infinite-dimensional variable pk(hk).

It is very difficult to solve such a problem if there is no assumed parameterization of p∗k(hk).

We can show, however, from a result in [103] that a naturally occurring parameterization of

p∗k(hk) indeed can be derived from Lagrangian duality theory.

We proceed then to derive the dual problem from the constrained problem in (WCPk).

To simplify the presentation, we first introduce a set of augmented variables, denoted with

tildes. Define the augmented vectors q̌(hk,pk(hk)) ∈ Rm+1 and y̌k ∈ Rm+1 as

q̌(hk,pk(hk)) :=


q(h1k, p

1
k(h

1
k))

...

q(hmk , p
m
k (hmk ))

−
∑m

i=1 p
i
k(h

i
k)]

 y̌k :=


y1k
...

ymk
−pmax

 . (2.10)

The augmented q̌(hk,pk(hk)) includes transmission probabilities augmented with the total

power allocation while y̌k includes auxiliary variables augmented with total power budget.

Using this new notation, the Lagrangian function is formed as

Lk(pk(hk),yk,µk) :=
m∑
i=1

J i(yik) (2.11)

+µTk (Ehk q̌(hk,pk(hk))− y̌k) ,
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where µk := [µ1k; . . . ;µ
m
k ; µ̃] ∈ Rm+1

+ contains the dual variables associated with each of the

m+ 1 constraints in (WCPk). From the Lagrangian function in (2.11), the Lagrangian dual

loss function is defined as Lk(µk) := maxpk,yk Lk(pk(hk),yk,µk)—see, e.g., [14]—and the

corresponding dual problem as

µ̃∗k := argmin
µk≥0

Lk(µk) (2.12)

Lk(µk) := Ehk

{
max
pk,yk

m∑
i=1

J i(yik)+ µ
T
k (q̌(hk,pk(hk))− y̌k)

}
.

Note in (2.12) that the expectation operator and maximization were exchanged without loss

of generality—see, e.g. [47, Proposition 2]. It is important to stress here the connection

between the dual problem in (2.12) with the original problem in (WCPk). While (WCPk)

is indeed not convex, problems of this form can be shown to exhibit zero duality gap under

the technical assumption that the primal problem is strictly feasible and that the channel

probability distribution is non-atomic [103]. This implies that the optimal primal variable

p∗k(hk) in (WCPk) can be recovered from the optimal dual variable µ̃∗k in (2.12). Thus, the

power allocation policy for each agent i is found indirectly by solving (2.12) and recovering

as

pik(h
i
k,µk) = argmax

pik∈[0,p0]
µikq(h

i
k, p

i
k(h

i
k))− µ̃pik(hik), (2.13)

yik(µk) = argmax
yik

J i(yik)− µikyik. (2.14)

The optimal policy is subsequently recovered using the optimal dual variable as p∗k(hk) :=

[p1k(h
1
k, µ̃

∗
k); . . . ; p

m
k (hmk , µ̃

∗
k)]. Observe that the problem in (2.12) is a simply constrained

stochastic problem that is known to always be convex from duality theory, and can be solved

efficiently with a variety of projected stochastic descent methods [12,26,29,47,49]. Thus, the

non-convex, infinite-dimensional optimization problem in (WCPk) can be solved indirectly

but exactly with the convex, finite-dimensional problem in (2.12).

Remark 2. The problem formulation given in (WCPk) that we use in this chapter assumes

there is a fixed power budget and the metric to be optimized is a measure of control

performance. An alternative formulation of resource allocation that may be more relevant

in some settings would instead fix a bound on the required control performance, typically

derived from a stability margin for the control system. Here the objective would instead be

to minimize total power usage, subject to the constraint on control performance. Indeed,

these two problems are very similar when reformulated in the dual domain, and can thus be

studied almost identically as such. We specifically focus on the problem in (WCPk) in this
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chapter but stress that all the results will apply to this alternative problem as well.

2.3 ERM Formulation of (WCPk)

The stochastic program in (2.12) features an objective that is the expectation taken over

a random variable, and can thus be considered as a particular case of the empirical risk

minimization (ERM) problem. Empirical risk minimization is a common problem studied in

machine learning due to its ubiquity in training classifiers, and the same structure appears

naturally in the dual formulation of the WCP. A generic ERM problem considers a convex

loss function f(µk,hk) of a decision variable µk ∈ Rm+1 and random variable hk drawn

from distribution Hk and seeks to minimize the expected loss Lk(µk) := Ehk [f(µk,hk)]. For

the WCP in (WCPk), we rewrite the loss function L and associated ERM problem in terms

of a function f(µk,hk) using its dual as

µ̃∗k := argmin
µk≥0

Lk(µk) := argmin
µk≥0

Ehkf(µk,hk), (2.15)

f(µk,hk) := J(yk(µk)) + µTk (q̌(hk,pk(hk,µk))− y̌k(µk)) .

Typically the distribution Hk is not known by the user, so the expected loss cannot be

evaluated directly, but is instead replaced by an empirical risk by taking n samples labeled

h1
k,h

2
k, . . . ,h

n
k ∈ Hmk , (where hlk := [h1,lk ; . . . ;hm,lk ]). In practice, such samples can be

obtained through the use of short pilot signals sent from the users to measure channel

conditions—see [48]. We then consider the empirical average loss function

L̂k(µk) :=
1

n

n∑
l=1

f(µk,h
l
k) :=

1

n

n∑
l=1

f lk(µk). (2.16)

To characterize the closeness of the empirical risk L̂k(µk) with n samples with respect to

the expected loss Lk(µk), we define a constant Vn called the statistical accuracy of L̂k. The

statistical accuracy Vn provides a bound of the difference in the empirical and expected loss

for all µk with high probability (i.e. at least 1− γ for some small γ). In other words, we

define Vn to be the constant that satisfies

sup
µk

|L̂k(µk)− Lk(µk)| ≤ Vn w.h.p. (2.17)

The upper bounds on Vn are well studied in the learning literature and in general may

involve a number of parameters of the loss function f as well as, perhaps most importantly,

the number of samples n. For L̂k(µk) defined in (2.16), a bound for the statistical accuracy

Vn can be obtained in the order of O(1/
√
n) or, in some cases, O(1/n) [13,122]. This further
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implies a suboptimality of L̂∗k := min L̂k(µk) of the same accuracy, i.e. |L∗k − L̂∗k| ≤ 2Vn [13].

As is often the case in machine learning problems, the statistical accuracy informs the

proper use of regularization terms in the empirical loss function. We can add regularizations

to prescribe desirable properties on the empirical risk L̂k(µk), such as strong convexity,

without adding additional bias beyond that already accrued by the empirical approximation.

In other words, as L̂∗k will be of order Vn from the optimal expected value L∗, any additional

bias of order Vn or less is permissible. With that in mind, we add the regularization term

αVn/2‖µk‖2 where α > 0 to the empirical risk in (2.16) to impose strong convexity. We can

further remove the non-negativity constraint on the dual variables in (2.15) through the use

of a logarithmic barrier. To preserve smoothness for small µk, we use an ε-thresholded log

function, defined as

logε(µk) :=

log(µk) µk ≥ ε

`2,ε(µk − ε) µk < ε,
(2.18)

where `2,ε(µk) is a second order Taylor series expansion of log(µk) centered at ε for some

small 0 < ε < 1. We then use −βVn1T logε µk where β > 0 as a second regularization term,

and obtain a regularized empirical risk function

Rk(µk) :=
1

n

n∑
l=1

f lk(µk) +
αVn

2
‖µk‖2 − βVn1T logε µk. (2.19)

From here, we can seek a minimizer of the strongly convex regularized risk Rk(µk) without

explicitly enforcing a non-negativity constraint on µk and find a solution with suboptimality

of order O(Vn) with respect to (2.15). Such a deterministic and strongly convex loss function

as in (2.19) can be minimized using a wide array of optimization methods [26, 34, 64, 85].

However, all such methods only solve the problem for a particular epoch k, or otherwise

assume a stationary channel distribution Hk as is typical in machine learning settings.

2.4 ERM over non-stationary channel

The ERM problem we are interested in solving in wireless autonomous systems is further

complicated by the non-stationarity of H, making existing solution methods insufficient.

This is due to the fact that finding the minimizer to Rk(µ) will only provide an optimal

power allocation for the respective channel distribution Hk. In wireless systems, we instead

must continuously learn optimal policies as the channel varies, or in other words, find optimal

points for Rk(µ) for k = 0, 1, . . .. To formulate the non-stationarity, however, we first define

an epoch-indexed empirical risk function. While we may use a simple empirical risk as we
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did in (2.16), we instead define a more general statistical loss function for a non-stationary

channel using samples from the previous M epochs. We define a windowed empirical loss

function L̃k(µ) at epoch k as

L̃k(µ) :=
1

M

k∑
j=k−M+1

L̂j(µ) (2.20)

By keeping a window of samples, we may retain N = Mn total samples while drawing only

n new samples at each epoch. If the successive channel distributions Hk−M+1, . . . ,Hk are

not very different, we may expect the old channel samples to still be of interest. We define

the associated statistical accuracy ṼN as the constant that satisfies

sup
µ
|L̃k(µ)− Lk(µ)| ≤ ṼN w.h.p. (2.21)

Here we stress that the bounds on this constant ṼN are not as easily obtainable or

well-studied as in the stationary setting. Such a bound over non-i.i.d. samples may be

dependent upon many parameters such as the sample batch size n, window size M , and

correlation between successive distributions Hj and Hj+1. Therefore, finding precise bounds

on ṼN would require a sophisticated statistical analysis and is outside the scope of this work.

We instead define a user-selected accuracy V̂ that may estimate the statistical accuracy ṼN .

We assume that V̂ ≥ ṼN , with equality holding in cases where ṼN is known. Using the same

regularizations introduced previously, we obtain the regularized windowed empirical loss

function

R̃k(µ) :=
1

M

k∑
j=k−M+1

L̂j(µ) +
αV̂

2
‖µ‖2 −βV̂ 1T logεµ. (2.22)

We subsequently define µ̃∗k := argminµ R̃k(µ). The definition of the loss function in

(2.22) includes the batches of n samples taken from the previous M channel distributions

Hk−M+1, . . . ,Hk. This definition is, in a sense, a generalization of the simpler empirical

risk Rk(µ) in (2.19). Observe that, by using a window size of M = 1, we use only samples

from the current channel and recover Rk(µ). In the following proposition we establish the

accuracy of an optimal point of our regularized empirical risk function R̃k(µ) relative to the

optimal point of the original dual loss function Lk(µ).

Proposition 1. Consider L∗k = Lk(µ
∗
k) and L̃∗k = minµ≥0 L̃k(µ), and define R̃∗k :=

minµ L̃k(µ) + αV̂ /2‖µ‖2 − βV̂ 1T logµ as the optimal value of the regularized empirical

risk. Define ṼN by (2.21). Assuming ṼN ≤ V̂ , the difference |L∗k − R̃∗k| is upper bounded on
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the order of statistical accuracy V̂ , i.e. for some ρ > 0

|L∗k − R̃∗k| ≤ 2ṼN + ρV̂ ≤ (2 + ρ)V̂ , w.h.p. (2.23)

Proof: To obtain the result in (2.23), consider expanding and upper bounding |L∗k − R̃∗| =
|L∗k− L̃∗k + L̃∗k + R̃∗k| ≤ |L∗k− L̃∗k|+ |L̃∗k + R̃∗k|. The first term is bounded by 2ṼN as previously

discussed. The second term, can be decomposed into the bias introduced by the logarithmic

barrier −βV̂ 1T logµ and the bias introduced by the quadratic regularizer cV̂ /2‖µ‖2. The

former of these is known to produce an optimality bias of (m+ 1)βV̂ [14, Section 11.2.2],

while the latter is known to introduce a bias on the order of O(V̂ ) [108]. Combining these,

we get a total suboptimality between the regularized risk function optimal and the true

optimal of 2ṼN + ρV̂ for some constant ρ > 0. As we assume that ṼN ≤ V̂ , the rightmost

bound in (2.23) follows. �

A key observation to be made here is that any exact solution to (2.22) only minimizes

the expected loss Lk to within accuracy V̂ (assuming V̂ ≥ ṼN ). There is therefore no

need to minimize (2.22) exactly but is in fact sufficient to find a V̂ -accurate solution, as

this incurs no additional error relative to the statistical approximation itself. While many

optimization methods can be used to find a minimizer to (2.22), we demonstrate in the next

section that fast second order methods can be used to learn approximate minimizers—and

by Proposition 1 approximately solve (2.15)—at each epoch k with just single updates as

the channel distribution Hk changes, thus tracking near-optimal points at every epoch. This

is done by exploiting an important property of second order optimization methods, namely

local quadratic convergence.

Remark 3. Observe in the text of Proposition 1 that we define R̃∗k to be the optimal point

of the loss function L̃k(µk) regularized with a standard log barrier − log(µk), rather than the

thresholded barrier − logε(µk) used in the definition in (2.22). Indeed, using the thresholded

barrier does not explicitly enforce nonnegativity for values smaller than ε. However, this

thresholding is necessary to preserve smoothness of the barrier, which will be necessary for

the proof of Lemma 1 in Section 2.5. The threshold ε can be made as small as necessary

to enforce nonnegativity, although this comes at the cost of a worse smoothness constant.

In practice, however, we observe this thresholding to not be explicitly needed and is just

included here for ease of analysis. We also stress that the smoothness constant itself does

not play a pivotal role in the proceeding analysis.

2.4.1 Learning via Newton’s Method

In this chapter, we use Newton’s method to approximately minimize (2.22) efficiently as

the channel Hk changes over epochs. Motivated by the recent use of Newton’s method in
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solving large scale ERM problems through adaptive sampling policies [34,85], we use the

N samples drawn from recent distributions to find an iterate µk that approximately solves

for µ̃∗k. At the next epoch, the iterate µk provides a “soft” start towards finding a point

µk+1 that approximately minimizes R̃k+1(µ). In this way, with single iterations we may find

near-optimal solutions for each regularized empirical loss function, and thereby efficiently

learn the optimal power allocation of the wireless channel as the channel distribution evolves

over time epochs.

We proceed by presenting the details of Newton’s method. At epoch k, we compute a new

iterate µk+1 by subtracting from the current iterate µk the product of the Hessian inverse

and the gradient of the function R̃k+1(µk). For the empirical dual loss function R̃k defined

in (2.22), we define the gradient ∇R̃k(µ) and Hessian ∇2R̃k(µ). The new approximate

solution µk+1 is then found from current approximate solution µk using the Newton update

µk+1 = µk −H−1k+1∇R̃k+1(µk), (2.24)

where we use Hk+1 := ∇2R̃k+1(µk) as simplified notation.

To understand the full algorithm, consider that µk is a V̂ -accurate solution of current

loss function R̃k, i.e. R̃k(µk) − R̃∗k ≤ V̂ . Recall that the new loss function R̃k+1 differs

from R̃k only in the discarding of old samples L̂k−M+1 and inclusion of samples L̂k+1 drawn

from Hk+1. If we consider that the distributions are varying slowly across successive time

epochs, i.e. Hk+1 is close to Hk, then the respective loss functions R̃k+1 and R̃k and their

optimal values R̃∗k+1 and R̃∗k will also not differ greatly under some smoothness assumptions.

Therefore, under such conditions a single step of Newton’s method as performed in (2.24)

can in fact be sufficient to reach a V̂ -accurate solution of the new loss function R̃k+1. This

is possible precisely because of the Newton method’s property of local quadratic convergence,

meaning that Newton’s method will find a near-optimal solution very quickly when it is

already in a local neighborhood of the optimal point. Given then a V̂ -accurate solution

µ0 of initial loss R̃0, the proceeding and all subsequent iterates µk will remain within the

statistical accuracy of their respective losses R̃k as the channel distribution varies over time.

The formal presentation of the exploitation of this property and other technical details of

this result are discussed in Section 2.5 of this chapter.

The learning algorithm is presented in Algorithm 1. After preliminaries and initializations

in Steps 1-4, the backtracking loop starts in Step 5. Each iteration begins in Step 6 with

the the drawing of n samples from the new channel distribution Hk and discarding of old

samples from Hk−M to form R̃k. Note that samples will be only be discarded for k > M .

The gradient ∇R̃k and Hessian Hk of the regularized dual loss function are computed in

Step 7. The Newton step is taken with respect to R̃k+1 in Step 8. In Step 9, the optimal

primal variables are computed with respect to the updated dual variables. This includes
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Algorithm 1 Learning via Newton’s Method
1: Parameters: Sample size increase constants n0 > 0, M0 ≥ 1 backtracking params 0 < γ < 1 <
Γ , and accuracy V̂ .

2: Input: Initial sample size n = m0 and argument µn = µm0
with ‖∇R̃n(µk+1)‖ < (

√
2α)V̂

3: for [ domain loop]k = 0, 1, 2, . . .
4: Reset factor n = n0, M = M0 .
5: repeat[sample size backtracking loop]
6: Draw n samples from Hk, discard from Hk−M .
7: Compute Gradient ∇R̃k(µk−1), Hessian Hk.
8: Newton Update [cf. (2.24)]:

µk = µk−1 −H−1k ∇R̃k(µk−1)

9: Determine power allocation, aux. variables [cf. (2.13), (2.14)]:

pik(hik,µk) = argmax
pi
k∈[0,p0]

µi
kq(h

i
k, p

i
k(hik))− µ̃pik(hik),

yik(µk) = argmax
yi
k

J i(yik)− µi
ky

i
k.

10: Backtrack sample draw n = Γn, window size M = γM .
11: until ‖∇R̃k(µk)‖ < (

√
2α)V̂

12: end for

both the auxiliary variables y(µk) and the power allocation policy p(h,µk) itself. Because

there are function and channel system parameters that are not known in practice, we include

a backtracking step for the parameters n and M in Step 10 to ensure the new iterate µk is

within the intended accuracy V̂ of µ∗k. Further details on the specifics of the backtracking

procedure are discussed in Section 2.6 after the presentation of the theoretical results.

2.5 Convergence Analysis

In this section we provide a theoretical analysis of the Newton learning update in (2.24).

We do so by first analyzing the convergence properties of the ERM problem in (2.22). We

subsequently return to the WCP in (WCPk) and establish a control performance result.

2.5.1 Convergence of ERM problem

We begin by analyzing the ERM formulation of the power allocation problem in (2.22) and

establish a theoretical result that, under certain conditions, guarantees each iterate µk is

within the statistically accuracy of the risk function at epoch k. Our primary theoretical

result characterizes such conditions dependent on statistical accuracy and rate of non-

stationarity. We begin by presenting a series of assumptions made in our analysis regarding

the dual loss functions f .
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AS1. The expected loss function Lk and empirical loss functions f(µ,hk) are convex with

respect to µ for all values of hk. Moreover, their gradients ∇Lk(µ) and ∇f(µ, z) are

Lipschitz continuous with constant ∆.

AS2. The loss functions f(µ,h) are self-concordant with respect to µ for all h, i.e. for all

i,

|∂3/∂µ3i f(µ,h)| ≤ 2∂2/∂µ2i f(µ,h)3/2.

Assumption 1 implies that the regularized empirical risk gradients ∇R̃k are Lipschitz

continuous with constant ∆ + cV̂ where c := α + β/ε2 and α, β, ε are the regularization

constants in (2.22). The function R̃k is also strongly convex with constant αV̂ . This implies

an upper and lower bound of the eigenvalues of the Hessian of R̃k, namely

αV̂ I � Hk � (∆+ cV̂ )I. (2.25)

Assumption 2 states the loss functions are additionally self concordant, which is a common

assumption made in the analysis of second-order methods—see, e.g. [14, Ch. 9], for such

an analysis. It also follows that the functions R̃k+1 are therefore self concordant because

both the quadratic and thresholded log regularizers are self-concordant. We present a brief

remark regarding the implications of these assumptions on the dual risk function on the

wireless control problem.

Remark 4. We state the preceding assumptions in terms of the sampled dual functions f

due to their direct use in the proceeding analysis. However, they indeed have implications

on the primal domain problem in (WCPk). While the dual function is always convex, the

smoothness condition in Assumption 1 can be obtained from the strong concavity of the

control performance
∑

i J
i with strong concavity 1/∆. The self-concordance property on

the dual function in Assumption 2, however, is not easily derived from properties of J i(·)
or q(·). We point to work that establishes self concordance of the dual for various machine

learning problems [88,95].

The two preceding assumptions deal specifically with the properties of the empirical dual

loss functions used in the ERM problem. To connect the solving of the sampled functions f l

with the expected loss function L, we additionally include two assumptions regarding the

statistics of the expected and empirical losses.

AS3. The difference between the gradients of the empirical risk L̂k and the statistical average

loss Lk is bounded by V
1/2
N for all µ and k with high probability,

sup
µ
‖∇Lk(µ)−∇L̂k(µ)‖ ≤ V 1/2

N , w.h.p. (2.26)
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AS4. The difference between two successive expected loss functions Lk(µ) = Ehkf(µ, hk)

and Lk+1(µ) = Ehk+1
f(µ, hk+1) and the difference between their gradients are bounded

respectively by a bounded sequence of constants {Dk}, {D̄k} ≥ 0 for all µ,

sup
µ
|Lk(µ)− Lk+1(µ)| ≤ Dk, (2.27)

sup
µ
‖∇Lk(µ)−∇Lk+1(µ)‖ ≤ D̄k. (2.28)

Assumption 3 bounds the difference between gradients of the expected loss and the

empirical risk with N samples by V
1/2
N , which can be readily obtained using the law of large

numbers. Assumption 4 bounds the point-wise difference in the expected loss functions and

their gradients at epochs k and k + 1. This can be interpreted as the rate at which the

channel evolves between epochs, and is used to establish that optimal dual variables for

two consecutive empirical risk functions R̃k and R̃k+1 are not very different. We discuss

practical implications of this assumption in Section 2.6.

Remark 5. Observe that the bounds provided in Assumption 4 are with respect to the

dual function rather than explicitly on the non-stationary statistics of the channel. They

are provided as such because this is the manner in which the non-stationarity appears in

the proceeding analysis. To see how the channel characteristics play a role in the provided

bound, consider that, e.g., (2.27) can be expanded using the definition of the dual function

Lk(µ) as

sup
µ
|Ehk

{
max
p∈P

µT q̌(hk,p(hk))

}
(2.29)

− Ehk+1

{
max
p∈P

µT q̌(hk+1,p(hk+1))

}
| ≤ Dk.

The exact condition this imposes upon the channel distribution variation thus depends both

on the form of the distributions Hk, Hk+1, and the function q(h,p). Thus, the exact manner

in which the varying channel conditions effect this bound are indeed problem-specific, and

a generic condition on non-stationarity of the channel is only present in the proceeding

analysis indirectly through the condition in (2.29).

The proceeding analysis is organized in the following manner. Our goal is to establish

conditions on the parameters of the statistical accuracy—V̂—and the non-stationarity—Dk

and D̄k—that guarantee that, starting from an approximate solution to R̃k, a single step of

Newton’s method generates an approximately accurate solution to R̃k+1. From there, we

can recursively say that, assuming an initial point µ0 that is within the intended accuracy
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of R̃0, the method will continue to find a V̂ -accurate solution at each epoch as the channel

distribution changes with k. We achieve this result in two steps. We first find a condition

that guarantees that a V̂ -accurate solution of R̃k is also in the quadratic convergence region

of R̃k+1. Second, we find a condition that guarantees that such a point within the quadratic

convergence region of R̃k+1 will reach its intended accuracy with a single update as in (2.24).

We begin by establishing the condition in the first step, namely that a V̂ -accurate solution

to R̃k, labeled µk is in in the quadratic convergence region of R̃k+1 if certain conditions hold.

The quadratic convergence region is a region local to the optimum in which Newton’s method

is known to converge at a fast quadratic rate. The analysis of Newton’s method commonly

characterizes quadratic convergence in terms of a quantity called the Newton decrement,

explicitly defined as λk+1(µ) := ‖∇2R̃k+1(µ)−1/2∇R̃k+1(µ)‖. We say the dual iterate µ is

in the quadratic convergence region of R̃k+1 when λk+1(µ) < 1/4—see [14, Chapter 9.6.4].

In the following proposition, we give conditions under which any iterate µk that is within the

accuracy V̂ of the optimal point R̃∗k = minµ R̃k(µ) is also within the quadratic convergence

region of the subsequent loss function R̃k+1.

Lemma 1. Consider µk as a V̂ -accurate optimal solution of the loss R̃k, i.e., R̃k(µk)−R̃∗k ≤

V̂ . In addition, define λk+1(µ) :=
(
∇R̃k+1(µ)T∇2R̃k+1(µ)−1∇R̃k+1(µ)

)1/2
as the Newton

decrement of variable µ associated with the loss R̃k+1. If Assumptions 1-4 hold, then Newton’s

method at point µk is in the quadratic convergence phase for the objective function R̃k+1,

i.e., λk+1(µk) < 1/4, if we have(
2(∆+ cV̂ )V̂

αV̂

)1/2

+
2Ṽ

1/2
N + D̄k

(αV̂ )1/2
<

1

4
. w.h.p. (2.30)

Proof: See Appendix. �

Lemma 1 provides the first necessary condition in our analysis by identifying the statistical

parameters under which every iterate µk is in the quadratic region of R̃k+1. From here we

can show the second step, in which such a point in the quadratic convergence region of R̃k+1

can reach its statistical accuracy with a single Newton step as given in (2.24). To achieve

this, we first present the following lemma that upper bounds the sub-optimality of the point

µk with respect to the optimal solution of R∗k+1.

Lemma 2. Consider a point µk that minimizes the loss function R̃k to within accuracy V̂ , i.e.

R̃k(µk)− R̃∗k ≤ V̂ . Provided that Assumptions 1-4 hold, the sub-optimality R̃k+1(µk)− R̃∗k+1

is upper bounded w.h.p. as

R̃k+1(µk)− R̃∗k+1 ≤ 4ṼN + V̂ + 2Dk (2.31)
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Proof: See Appendix. �

In Lemma 2 we establish a bound on the suboptimality of µk with respect to R̃k+1. The

following lemma now bounds the suboptimality of µk+1 in terms of the suboptimality of µk

with a quadratic rate.

Lemma 3. Consider µk to be in the quadratic neighborhood of the loss R̃k+1, i.e., λk+1(µk) ≤
1/4. Recall the definition of the variable µk+1 in (2.24) as the updated variable using New-

ton’s method. If Assumptions 1-3 hold, then the difference R̃k+1(µk+1) − R̃∗k+1 is upper

bounded by

R̃k+1(µk+1)− R̃∗k+1 ≤ 144(R̃k+1(µk)− R̃∗k+1)
2. (2.32)

Proof: See Appendix. �

With Lemma 3 we establish the known quadratic rate of convergence of the suboptimality

of the Newton update in (2.24). Now by substituting the upper bound on R̃k+1(µk)− R̃∗k+1

from Lemma 2, a condition can easily be derived under which the suboptimality of the new

iterate is within the accuracy V̂ of R̃k+1. Using the results of Lemmata 1-3, we present our

main result in the following theorem.

Theorem 1. Consider Newton’s method defined in (2.24) and the full learning method

detailed in Algorithm 1. Define ṼN to be the statistical accuracy of N = Mn samples

by (2.21), with n samples taken from each of the M most recent channel distributions

Hk. Further consider the variable µk as a V̂ -optimal solution of the loss R̃k, and suppose

Assumptions 1-4 hold. If the sample size n and window size M are chosen such that the

following conditions (
2(∆+ cV̂ )V̂

αV̂

)1/2

+
2V̂ 1/2 + D̄k

(αV̂ )1/2
<

1

4
(2.33)

144(4ṼN + V̂ + 2Dk)
2 ≤ V̂ (2.34)

are satisfied, then the variable µk+1 computed from (2.24) has the suboptimality of V̂ with

high probability, i.e.,

R̃k+1(µk+1)− R̃∗k+1 ≤ V̂ , w.h.p. (2.35)

The inequalities 2.33-2.34 in Theorem 1 specify conditions under which µk+1 as generated

by (2.24) is a V̂ -optimal solution of R̃k+1. Note that these conditions come directly from the

preceding lemmata. Thus, when these conditions are satisfied, single iterations of Newton’s

method at each epoch k—as detailed in Algorithm 1—successively generate approximately

optimal dual parameters. A further discussion of the satisfaction of such conditions in

regards to practical implementation is provided later in Section 2.6. We first extend the

theoretical result of Theorem 1 to establish properties of the resulting WCP solution.
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Remark 6. Observe in Theorem 1 that the provided conditions cannot be satisfied if the

true statistical accuracy ṼN is greater than the selected V̂ . While we assume in our analysis

this is not the case, (i.e. V̂ is a conservative estimate of ṼN ), this may not be guaranteed

if very little information is known about VN . In the case V̂ < VN , we point out that the

results in Theorem 1 can simply be modified by replacing achieved accuracy V̂ by VN . In

other words, the accuracy we can achieve is limited by the greater of these terms. We do

not go through the details of this analysis for clarity of presentation, but such result can be

obtained through the same steps of the preceding analysis.

2.5.2 Sub-optimality in wireless control system

Because the proposed Newton method indeed solves (2.15) to within a statistical approxima-

tion V̂ , it is important to consider the effect of such an approximation on the original WCP

in (WCPk). In this section we provide a sequence of results that characterize the accuracy

of the solutions generated by the Newton update in (2.24) in the original primal control

problem in (WCPk). Firstly, recall the constraints in (WCPk) reflect both a power budget

limited by pmax and that the auxiliary variable yi should not exceed the expected packet

success function q(·). In solving the dual problem approximately, we may then also violate

these constraints by a small margin. We can specifically characterize such a constraint

violation, as well as address the suboptimality in terms of the primal objective. Both these

results together can then be combined to demonstrate the stability of the switched system

WCP introduced in Example 1. To do so, we first introduce an assumption regarding the

feasibility and boundedness of the dual loss solutions L∗k and the optimal dual point µ∗k.

AS5. For all epochs k, the problem in (WCPk) under distribution Hk is strictly feasible.

There also exists constants K and K̂ such that the optimal dual objective value L∗k is bounded

as L∗k ≤ K and optimal dual variable bounded as ‖µ∗k‖ ≤ K̂.

From strict feasibility of the primal problem in (WCPk), we also obtain a finite upper

bound on the value of the dual function. This can be used with the suboptimality result in

Theorem 1 to bound the norm of the dual variables µk generated from the Newton update

in (2.24). This is presented in the following corollary.

Corollary 1. The norm of the dual variables µk generated by the update in (2.24) is bounded

as ‖µk‖ ≤
√

(2/α) + K̂.

Proof: From strong convexity we have that ‖µk − µ̃∗k‖2 ≤ (2/αV̂ )(R̃k(µk)− R̃∗k). Using

the reverse triangle inequality with 2.35 and Assumption 5, we obtain the intended result. �

Observe that the boundedness of the solutions to the regularized dual function in

Assumption 5 in effect states that, for all distributions Hk, the empirical, or sampled,
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versions of the constrained problem in (WCPk) will be strictly feasible. From here, we can

establish through duality a bound on each constraint violation that may occur from solving

the dual problem to its statistical accuracy. This result is stated in the following proposition.

Proposition 2. Consider µk to be a V̂ -optimal minimizer of R̃k, i.e. R̃k(µk)− R̃∗k ≤ V̂ .

Further consider p(h,µk) and y(µk) to be the Lagrangian maximizers over dual parameter

µk. If Assumptions 1 and 5 hold, then the norm of the constraint violations in (WCPk) can

each be upper bounded as ∣∣∣∣∣
m∑
i=1

Ehik(pi(hik,µ))− pmax

∣∣∣∣∣ ≤
√

2∆(ṼN + CV̂ ), (2.36)

‖y(µk)− Ehk {q(hk,p(hk,µk))}‖ ≤
√

2∆(ṼN + CV̂ ), (2.37)

where C := 1 + ρ+ βκ and κ such that 1T logε(µk) ≤ κ.

Proof: See Appendix. �

In Proposition 2, we establish a bound that is proportional to V̂ on the violation of the

constraints in (WCPk). There are two points to be stressed here. First, is that this constraint

violation can indeed be made small by controlling the target accuracy V̂ . Additionally, we

point out that the violation of the budget constraint can be controlled by adding a slack

term to the maximum power as p̂max = pmax − 2∆CV̂ . In this way, any such violation will

still be within the true intended budget pmax.

We proceed by establishing suboptimality of the generated variables y(µk) in terms of

control performance. Recall the final result in Theorem 1 that establishes at each epoch

k, the current dual function value R̃k(µk) will be within accuracy V̂ of the optimal value

R̃k(µ̃
∗
k) (after satisfying the necessary conditions). To establish that the control systems

induced by such dual parameters µk remain stable, we first connect the accuracy of the dual

function value to the accuracy of associated primal variables p(h,µk) and y(µk) with respect

to their optimal values p∗k(h) := p(h,µ∗k) and y∗k := y(µ̃∗k). This bound is established in

the following theorem.

Theorem 2. Consider µk to be a V̂ -optimal minimizer of R̃k, i.e. R̃k(µk) − R̃∗k ≤ V̂ .

Further consider p(h,µk) and y(µk) to be the Lagrangian maximizers over dual parameter

µk. Under Assumptions 1-5 the primal objective function sub-optimality J(y(µk))− J(y∗k)

can be upper bounded as

J(y(µk))− J(y∗k) ≤ (1 + C)∆

(
1

α
+ 2V̂ (

√
2/α+ K̂)

)
. (2.38)

Proof: See Appendix. �
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In Theorem 2, we derive a bound on the suboptimality of the primal objective function

J(y) that is proportional also to the statistical accuracy V̂ plus a constant. Recall that this

function is, in general, a measure of the control performance of the system. Thus, solving the

dual problem approximately indeed can be translated into approximate accuracy in terms

of our original utility metric with respect to the control system. In many problems, the

performance J(y) will also effectively establish a stability margin for control systems that

have unstable regions of operation. To demonstrate the effect of using the proposed Newton’s

method over a non-stationary wireless channel, we return to the switched dynamical system

in Example 1.

2.5.3 Stability of switched dynamical system (Example 1)

Consider the switched dynamical system given in (2.4) and the derived performance metric

J(y) in (2.9) that tracks the asymptotic behavior of the state xt. In this system, if the open

loop gain is unstable |Ao| > 1 it can indeed cause the system to grow in an unstable manner

if the system is not closed sufficiently often. As mentioned in Example 1 the system reaches

instability if yA2
c + (1− y)A2

o becomes close to 1. A question of interest in this example is,

using the power allocation policy found using Newton’s method over a time-varying channel,

whether or not the system remains stable over time. We can indeed demonstrate this to be

true with the following argument.

From Theorem 2, we obtained that the primal suboptimality with respect to the control

performance function J(y) is bounded by a term proportional to V̂ . Assuming that J(y∗k)

is finite for all epochs k, it follows then that the generated performance J(y(µk)) is also

finite. Considering the expression for J i(yi) given in (2.9), this is finite if and only if the

denominator is positive, i.e., there exists a ω such that

1− yi(µk)((Aio)2 − (Aic)
2) ≤ ω < 1 (2.39)

at all epochs k.

Moreover from Proposition 2 we also have that the actual packet success rate during

epoch k satisfies

Ehk
{
q(hik, p(h

i
k, µk))

}
≥ yi(µk)−

√
2∆(ṼN + CV̂ ), (2.40)

If the statistical accuracy at the right hand side of this expression is sufficiently small, then

using (2.39) we also get that

1− Ehk
{
q(hik, p(h

i
k, µk))

}
((Aio)

2 − (Aic)
2) ≤ ω̃ < 1 (2.41)
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In particular this holds if

√
2∆(ṼN + CV̂ )((Aio)

2 − (Aic)
2) < 1− ω.

Substituting (2.41) back into the recursive expression in (2.6), we get that the variance

of the state at each time step satisfies

E(xit+1)
2 ≤ ω̃E(xit)

2 +W i. (2.42)

Operating recursively and using the geometric series as in Example 1, we can bound (2.42)

as

E(xit+1)
2 ≤ ω̃t+1E(xi0)

2 +W i 1− ω̃t+1

1− ω̃
. (2.43)

As both terms on the right hand side of (2.43) are finite, we can conclude that the state

variables remain bounded in variance for all t in the non-stationary channel.

2.6 Details of Implementation

In this section we provide a discussion of necessary considerations for practical implementation

of the result in Theorem 1. Observe that the conditions in 2.33 and 2.34 are functions

of four primary terms, V̂ , ṼN , Dk, and D̄k. While V̂ is user-selected, the latter three

terms come directly from statistical properties of the control performance functions and

the channel distribution. They can, however, be indirectly controlled for with some careful

implementation techniques.

First, consider that the latter two terms Dk and D̄k provide a bound on the difference of

the neighboring expected loss functions Lk and Lk+1 and their gradients, respectively. Thus,

these terms collectively can be interpreted as a bound on the degree of non-stationarity of

the channel distribution H between successive time iterations, or in other words the rate at

which the channel changes over time epochs. In a practical sense, this rate is controllable

by determining how much real time makes up a single discrete time epoch. That is, time

epochs k and k + 1 that are closer together in a real time-sense will naturally have a lower

bound for Dk, and D̄k, assuming the rate of change of the channel distribution is indeed

smooth. In this sense, Dk and D̄k can be lowered to satisfy the conditions in 2.33 and 2.34

by considering shorter time between discrete epochs. This is to say that, because the channel

conditions are not in our control, if necessary we may change the rate at which we apply

our algorithm in a real time sense. By using shorter epochs, we collect channel samples and

run the proposed Newton step more often to adapt to quickly changing channel conditions.

The second term present in the conditions of Theorem 1—namely ṼN—represents the

statistical accuracy of the non-i.i.d. samples taken from the window of M most recent

channel distributions with respect to the current channel distribution. A condition on ṼN in
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fact then indirectly provides conditions on the sample size n and window size M used to

define R̃k necessary to learn a V̂ -optimal solution. We reiterate here that, in the simpler

setting of M = 1, a well-studied bound on ṼN exists of the order O(1/
√
n). For the case of

windowed sampling the bound on ṼN can nonetheless still be varied through various choices

of window size M and sample draw size n. However, because the exact nature of both ṼN

and Dk come from statistical properties not known in practice, precise selection of such

parameters n and M can be chosen via a standard backtracking procedure.

The details of the backtracking procedure can be seen in Steps 10 and 11 in Algorithm

1. At each epoch k, the parameters n and M are initialized to n0 and M0 in Step 4. In

the inner loop, in Step 10 these parameters are respectively increased and decreased by

factors of Γ and γ after performing the Newton step. In Step 11, the accuracy of the new

dual iterate µk+1 is checked to be within the intended accuracy V̂ . Note that, while the

sub-optimality cannot be checked directly without knowledge of R̃∗k+1, it can be checked

indirectly by checking the norm of the gradient ‖∇R̃k+1(µk+1)‖ < (
√

2α)V̂ from the strong

convexity property in (2.25). If the condition in Step 11 is satisfied, the parameters n and M

require no further modification. Otherwise, they are further modified until µk+1 is within the

target accuracy which in turn may imply that the conditions in 2.33 and 2.34 are satisfied.

Note that the backtracking rates γ, Γ are standard parameters used in the definition of a

backtracking algorithm and effectively tradeoff the speed of the backtracking search vs. its

thoroughness or accuracy. Generally speaking, values closer to 1 will result in a slower, more

careful backtracking search while values of γ and Γ that are, respectively, smaller and larger

will result in a faster, more aggressive search. Tuning of these parameters should thus reflect

the desired tradeoff. With this practical considerations in mind, we proceed by simulating a

wireless control learning problem using the proposed use of Newton’s method on the ERM

relaxation.

2.7 Simulation Results

We simulate the performance of our second order learning method on a simple WCP. Consider

the 1-dimensional switched dynamical system in 1 governed by the transition constants

Ao and Ac for m = 4 systems/states. The control performance for the ith agent J i(yi)

measures the mean square error performance and is now given by the expression in (2.9). The

open and closed loop control gains for each agents are chosen between [1.1, 1.5] and [0, 0.8],

respectively. The probability of successful transmission for agent i is modeled as a negative

exponential function of both the power and channel state, q(hi, pi(hi) := 1− e−hipi(hi), while

channel states at epoch k are drawn from an exponential distribution with mean uk. The

channel varies over time by the mean uk changing for different times. We draw n = 200

samples and store a window of the previous M = 5 distributions for a total of N = 1000

29



Epoch
0 5 10 15 20 25 30 35

7
1

4

5

6

7

8

9

10

11

12
Newton
Optimal Path

Epoch
0 5 10 15 20 25 30 35

~7

1

1.5

2

2.5

3

3.5

4

4.5
Newton
Optimal Path

Epoch
0 5 10 15 20 25 30

C
o
n
tr

o
l
P
er

fo
rm

a
n
ce

10

11

12

13

14

15

16

17
Newton
Optimal Path

Figure 2.3: Convergence paths of optimal values vs. values generated by the Newton learning method
for time-varying Hk for dual variables (left) µ1, (center) µ̃, and (right) control performance

∑
J i(yi).

Newton’s method is able to find an approximately optimal value for the dual variables and respective
control performance at each iteration.

samples at each epoch. As we assume the that channel statistics vary only vary across time

epochs, but stay constant within a single epoch, we may consider it reasonable to collect 200

channel samples within an epoch.

To demonstrate the ability of Newton’s method to instantaneously learn an approximately

optimal power allocation as the channel distribution varies over time, we perform Algorithm

1 over the ERM problem in (2.15) with the defined control performance J(·), transmission

probabilities q(·) and channel distributions Hk. In Figure 2.3 we show the path of Newton’s

method at each time k for the dual variables µ1k, µ̃k, and the control performance
∑m

i=1 J
i(yik).

The red line of each figure plots the optimal values for the current distribution parameter uk

as it changes with k. These values are obtained by solving the optimization problem at each

epoch offline a priori. The blue line, alternatively, plots the values generated by Newton’s

method for each epoch k in an online manner. The channel evolves at each iteration by a

fixed rate uk+1 = uk ± r for some rate r. Observe that within some small error Newton’s

method is indeed able to quickly and approximately find each new solution as the channel

varies over time.

To compare the effect of selecting different choices of accuracy V̂ numerically, we present

in Figure 2.4 the simulation performance of two representative cases with respective accuracies

of V̂ = 0.01 (left) and V̂ = 0.03 (right). In the top figures, we show the suboptimality

relative to the optimal control performance and show on the bottom figures the resulting

constraint violation (where a positive value reflect violation) over a set of time epochs where

the channel varies. Here, we see an interesting case that highlights the need of proper

selection or estimation of V̂ . Although the left hand figures strive for a better accuracy,

the performance is better on the right hand figures. This is due to the fact that single

iterations of Newton’s method cannot reach accuracies of 0.01, resulting in a more suboptimal

trajectory of resource allocation policies. On the other hand, the more moderate goal of 0.03

allows for the learning method to reach intended accurate goals with each step of Newton’s

method as the channel varies.
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Figure 2.4: Comparison of suboptimality (top) and constraint violation (bottom) for the case of
V̂ = 0.01 (left) and V̂ = 0.03 (right). Although the right-hand figures strive for less accuracy, they
perform better because Newton’s method can adapt to the intended accuracy more easily with single
iterations.

Using the dual parameters found by Newton’s method, we simulate the resulting dynam-

ical system. The dual parameters are used to determine the power allocation policy, which

is used to determine transmission probabilities given current channel conditions. In Figure

2.5 we show the resulting state evolution of xit for each of the 4 state variables. The blue

curve shows the process using the opportunistic transmission policy from Newton’s method,

while the red curve shows the process when the loop is always closed, i.e. no packet drops.

Here, we observe that while there are some instances when the state variable grows large

when the system is in open loop, overall the system remains stable over time.

2.8 Conclusion

In this chapter we considered the wireless control system over a non-stationary wireless

channel. The problem of maximizing a control utility subject to resource constraints can be

formulated as a stochastic optimization problem in the dual domain. Because the wireless

channel is random and time-varying, channel samples must be taken, resulting in a relaxed

empirical risk minimization (ERM) problem. Standard ERM techniques do not suffice in the

wireless setting because the channel is constantly changing. We propose the use of Newton’s

method, whose local quadratic convergence property allows us to continuously learn and

adapt our optimal power allocation policies to changes in the channel distribution. We

derive specific conditions on achieving instantaneous convergence to an approximate solution

and characterize the suboptimality and stability in the wireless control problem (WCP). We

additionally provide numerical simulations that demonstrate the use of Newton’s method to
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Figure 2.5: Dynamic evolution of each of the 4 state variables over the time-varying channel. The
blue curve shows the opportunistic power allocation policy found with Newton’s method while the
red curve shows the evolution assuming the loop can always be closed.

learn and track optimal power allocations over a time varying channel. While this chapter

considers only resource allocation on contention-free links, consider the scheduling problem

on a shared channel with non-stationary distributions remains an area of future work.

2.9 Appendix: Proof of Lemma 1

We start with the definition of the Newton decrement at time k + 1. We can add and

subtract ∇R̃k(µk) and upper bound using the triangle inequality as

λk+1(µk) = ‖H−1/2k+1 ∇R̃k+1(µ)‖ = ‖∇R̃k+1(µk)‖H−1
k+1

≤ ‖∇R̃k(µk)‖H−1
k+1

+ ‖∇R̃k+1(µk)−∇R̃k(µk)‖H−1
k+1

. (2.44)

First, we will upper bound the second term in (2.44). By adding and subtracting the

expected losses ∇Lk(µk) and ∇Lk+1(µk) and using the triangle inequality to obtain

‖∇R̃k+1(µk)−∇R̃k(µk)‖ ≤ ‖∇L̂k+1(µk)−∇Lk+1(µk)‖

+ ‖∇Lk(µk)−∇L̂k(µk)‖+ ‖∇Lk+1(µk)−∇Lk(µk)‖.

The first two terms in the above sum are bounded by Ṽ
1/2
N per (2.26), while the third term

is the difference of two consecutive loss functions and is therefore bounded by D̄k from

(2.28). The norm weight H−1k+1 additionally provides a bound of αV̂ as the strong convexity

constant of R̃k+1 providing an upper bound on the norm of Hessian inverse as in (2.25).
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Combining these, we obtain

‖∇R̃k+1(µk)−∇R̃k(µk)‖H−1
k+1
≤

2Ṽ
1/2
N + D̄k

(αV̂ )1/2
. (2.45)

We now can bound the first term in (2.44) using the Lipschitz continuity of the gradient

∆+ cV̂ , i.e.

‖∇R̃k(µk)‖H−1
k+1
≤

(
2(∆+ cV̂ )‖µk − µ̃∗k‖

αV̂

)1/2

(2.46)

Recall that µk is given to be a V̂ -accurate minimizer of R̃k. The difference ‖µk − µ̃∗k‖ can

subsequently be bounded with V̂ , resulting in the final bound for the first term

‖∇R̃k(µk)‖H−1
k+1
≤

(
2(∆+ cV̂ )V̂

αV̂

)1/2

(2.47)

To be in the quadratic convergence region, i.e. λk+1(µk) < 1/4, follows by summing (2.45)

and 2.47 as in 2.30.

2.10 Appendix: Proof of Lemma 2

To prove this result, we start by expanding the term R̃k+1(µk) − R̃∗k+1. By adding and

subtracting R̃k(µk), R̃
∗
k, and R̃k(µ

∗
k+1), we obtain

R̃k+1(µk)− R̃∗k+1 = R̃k+1(µk)− R̃k(µk) (2.48)

+ R̃k(µk)− R̃∗k
+ R̃∗k − R̃k(µ∗k+1)

+ R̃k(µ
∗
k+1)− R̃∗k+1.

We now individually bound each of the four differences in 2.48. Firstly, the difference

R̃k+1(µk)− R̃k(µk) becomes

R̃k+1(µk)− R̃k(µk) = L̂k+1(µk)− L̂k(µk), (2.49)

Using the same reasoning as in (2.45) with the functional statistical accuracy bound in

place of the bound for gradients in (2.26) and using (2.27) in place of (2.28), we obtain the

equivalent bound

R̃k+1(µk)− R̃k(µk) ≤ 2ṼN +Dk. (2.50)
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For the second term in 2.48, we again use the fact that µk as an V̂ -optimal solution for the

sub-optimality R̃k(µk)− R̃∗k to bound with the statistical accuracy as

R̃k(µk)− R̃∗k ≤ V̂ . (2.51)

We proceed with bounding the third term in 2.48. Based on the definition of µ∗k as the

optimal solution of the loss R̃k, the the difference R̃∗k − R̃k(µ∗k+1) is always negative, i.e.,

R̃∗k − R̃k(µ∗k+1) ≤ 0. (2.52)

For the fourth term in 2.48, we use the triangle inequality to bound the difference R̃k(µ∗k+1)−
R̃∗k+1 in 2.48 as

R̃k(µ
∗
k+1)− R̃∗k+1 = L̂k(µ

∗
k+1)− L̂k+1(µ

∗
k+1)

≤ 2ṼN +Dk. (2.53)

Observe that 2.53 uses the same reasoning as 2.50. Replacing the differences in 2.48 by the

upper bounds in 2.50-2.53,

R̃k+1(µk)− R̃∗k+1 ≤ 4ṼN + V̂ + 2Dk w.h.p. (2.54)

2.11 Appendix: Proof of Lemma 3

The proof for this result follows from [85, Proposition 4], which we repeat here for com-

pleteness. We proceed by bounding the difference R̃k+1(µ)− R̃∗k+1 in terms of the Newton

decrement parameter λk+1(µ). We first use the result in [89, Theorem 4.1.11], showing that

λk+1(µ)− ln (1 + λk+1(µ)) ≤ R̃k+1(µ)− R̃∗k+1 (2.55)

≤ −λk+1(µ)− ln (1− λk+1(µ)) .

We can use the Taylor’s expansion of ln(1 + a) for a = λk+1(µ) to show that λk+1(µ) −
ln (1 + λk+1(µ)) is bounded below by (1/2)λk+1(µ)2− (1/3)λk+1(µ)3 for 0 < λk+1(µ) < 1/4

. Likewise, we have that (1/6)λk+1(µ)2 ≤ (1/2)λk+1(µ)2 − (1/3)λk+1(µ)3 and subsequently

λk+1(µ)− ln (1 + λk+1(µ)) is bounded below by (1/6)λ2. We again use Taylor’s expansion

of ln(1 − a) for a = λk+1(µ) to show that −λk+1(µ) − ln (1− λk+1(µ)) is bounded above

by λk+1(µ)2 for λk+1(µ) < 1/4; see e.g., [14, Ch. 9]. Considering these bounds and the

inequalities in 2.55 we obtain that

1

6
λk+1(µ)2 ≤ R̃k+1(µ)− R̃∗k+1 ≤ λk+1(µ)2. (2.56)
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Because we assume that λk+1(µk) ≤ 1/4, the quadratic convergence rate of Newton’s

method for self-concordant functions [14] implies that the Newton decrement has a quadratic

convergence and we can write

λk+1(µk+1) ≤ 2λk+1(µk)
2. (2.57)

We combine the results in 2.56 and 2.57 to show that the optimality error R̃k+1(µk+1)−R̃∗k+1

has an upper bound which is proportional to (R̃k+1(µk)−R̃∗k+1)2. In particular, we can write

R̃k+1(µk+1)− R̃∗k+1 ≤ λk+1(µk+1)2 based on the second inequality in 2.56. This observation

in conjunction with the result in 2.57 implies that

R̃k+1(µk+1)− R̃∗k+1 ≤ 4λk+1(µk)
4. (2.58)

The first inequality in 2.56 implies that λk+1(µk)
4 ≤ 36(R̃k+1(µk)− R̃∗k+1)

2. Thus, we can

substitute λk+1(µk)
4 in 2.58 by 36(R̃k+1(µk)− R̃∗k+1)

2 to obtain the result in 2.32.

Appendix: Proof of Proposition 2

We begin by bounding the gradient of the expected dual loss L(µk) at the kth dual iterate

µk by using Lipschitz continuity, i.e.

‖∇Lk(µk)‖2 ≤ 2∆(Lk(µk)− L∗k). (2.59)

We expand the sub-optimality L(µk)− L∗ by adding and subtracting terms as follows

1

2∆
‖∇Lk(µk)‖2 ≤ Lk(µk)− L̃k(µk) + L̃k(µk) (2.60)

− R̃k(µk) + R̃k(µk)− R̃∗k + R̃∗k − L∗k,

where we recall the notation R̃∗k := R̃k(µ̃
∗
k). We now proceed by bounding each successive

pair of terms in (2.60). The first difference Lk(µk)− L̃k(µk) comes from the sampling and

is thus bounded by the statistical accuracy ṼN . The second difference L̃k(µk)− R̃k(µk) can

be bounded by the regularizers as

L̃k(µk)− R̃k(µk) ≤ βV̂ 1T logε(µk)−
αV̂

2
‖µk‖2. (2.61)

The second term on the right hand side of (2.61) is negative and can be ignored. Because

the dual variable ‖µk‖ was upper bounded in Corollary 1, we can place a finite bound

on 1T logε(µk) ≤ κ and then bound the term βV̂ 1T logε(µk) ≤ βV̂ κ. The third difference

R̃k(µk)− R̃∗k is bounded by the suboptimality V̂ from the main result in 2.35 and the fourth
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difference R̃∗k −L∗k can be bounded by ρV̂ from (2.23). We can therefore bound the gradient

of the dual loss as

‖∇Lk(µk)‖2 ≤ 2∆(ṼN + CV̂ ), (2.62)

where C := 1 + ρ + βm log κ. From here, consider that the norm of the dual gradient

‖∇Lk(µk)‖2 is the sum of squares of each constraint violation in (WCPk), i.e.,(
m∑
i=1

Ehik(pi(h))− pmax

)2

+
m∑
i=1

(
yi − Ehik

{
q(h, pi(h))

})2
≤ 2∆(ṼN + CV̂ ). (2.63)

The results in (2.36) and (2.37) then follow from here.

Appendix: Proof of Theorem 2

Consider that, using the definitions of the primal maximizers p(h,µk) and y(µk) at a dual

point µk, we can write the dual function as

L(µk) = J(y(µk)) + µTk (Ehq̌(p(h,µk))− y̌(µk)) . (2.64)

Likewise, we know from strong duality that the optimal dual values L∗k is equivalent to the

optimal primal objective value J(y∗k). Therefore, we can write the suboptimality of dual

functions as

L(µk)− L∗k = J(y(µk))− J(y∗k) (2.65)

+ µTk (Ehq̌(p(h,µk))− y̌(µk)) .

Using the bound on dual suboptimality that comes from combining strong convexity and

the gradient bound in (2.62), we can upper bound (2.65) as

(1 + C)∆/α ≥ J(y(µk))− J(y∗k) (2.66)

+ µTk (Ehq̌(p(h,µk))− y̌(µk)) .
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We can lower bound the right hand side of (2.66) by taking the negative of the absolute

value of the final term. Rearranging terms we obtain

(1 + C)∆/α+|µTk (Ehq̌(p(h,µk))− y̌(µk)) | (2.67)

≥ J(y(µk))− J(y∗k).

From here, we can upper bound the second term on the left hand side using the Cauchy-

Schwartz inequality. The norm ‖µk‖ is bounded by
√

2/α+ K̂ from Corollary 1 while the

norm ‖Ehq̌(p(h,µk))− y̌(µk)‖ is bounded by 2∆(1 + C)V̂ from (2.37). This provides us

the final result as

(1 + C)∆

(
1

α
+ 2V̂ (

√
2/α+ K̂)

)
≥ J(y(µk))− J(y∗k). (2.68)
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Chapter 3

Control-Aware Scheduling for

Low-Latency Wireless Systems

3.1 Introduction

The Internet-of-Things (IoT) promises enhanced modes of interaction with the physical

world through the deployment of large numbers of sensing and control devices. Relative to

conventional communication systems, the deployment of a control system over a commu-

nication network increases the sensitivity to packet loss and latency. This is not a major

consideration if we rely on wired networks that can simultaneously achieve very low latency

and ultra high reliability. However, the cost of installing and maintaining a wired network

poses significant challenges [128, 137] that motivate the use of wireless communications.

Consequently, there has been great effort in the design of wireless control systems that can

achieve high performance in terms of reliability and latency [72, 123]. While this effort is

widespread in its range of applications it is of note that wireless control systems hold promise

in streamlining industrial control [10,97,123,127,137]—e.g. factory automation [15,135].

The primary challenge in designing this ultra reliable low latency communications

(URLLC) systems is the tradeoff between reliability and latency. To achieve ultra-high

reliability we need significant protection against packet losses. This can be achieved by

increasing packet length, thereby increasing latency, or by increasing bandwidth consumption.

Such a tradeoff between latency and reliability is present in any communication medium but

it is exacerbated in wireless communications because of fading and shadowing effects. The

physical properties of a wireless channel impose inherent limitations in achieving both ultra

high reliability and low latency. Such a mismatch has lead to the proposal of several radio

resource allocation schemes have been proposed to improve the management of the latency

reliability tradeoff in wireless systems [133]. This include seminal works on the design of

delay-aware schedulers for communication systems in general [4, 78] and wireless control
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systems in particular [129]. The exploitation of spatial and frequency diversity deserves

particular mention as a technique that is increasingly recognized as a necessary component

of URLLC [91,97,119].

In this chapter we propose an alternative approach in which we adapt the communication

reliability to the dynamics and state of the plant. We expect this to provide significant

advantages because high communication reliability is not a strict requirement of control

reliability. In fact, control loops can, in general, drop packets with small impact if the

plant is not close to unsafe states. The successful transmission of a packet becomes crucial

only when in these unsafe regions. In adapting reliability to the state of the plant we

expect that the resources that are saved with plants in safe states are available to achieve

high reliability with plants close to unsafe states. Our specific contribution is to develop

a control-aware scheduling protocol designed to enable larger scale low latency systems.

This is done through the mathematical formulation of the control system design goal in the

form of a Lyapunov function that ensures stability of the control system. This formulation

naturally induces a bound on the packet delivery rate each control system needs to achieve

to meet the control-based goal. Such packet delivery rates depend upon current control

and channel states and thus dynamically change over the course of the system life time. In

particular, we use IEEE 802.11ax WiFi [9] to allocate bandwidth and data rates to reduce

total transmission times. As these control-based reliability targets may be significantly lower

than traditional, high reliability communication demands, the proposed method is better

suited to find scheduling configurations that can meet strict latency requirements imposed

by the physical system.

We remark that in the context of wireless control systems, there have been a range of

works that incorporates control system information in the networking and communication

policies. For example, control system stability under fixed periodic protocols, e.g. round-

robin, can be analyzed—see, e.g., [28,57,106,140]. Periodic sequences leading to stability [60],

controllability and observability [139], or optimizing control objectives [68, 82, 102] have

been proposed. More sophisticated schedulers do not rely on a predefined sequence but

try to dynamically access the communication medium at each step. Initial approaches

abstract control performance requirements in the time/frequency domain, e.g., how often a

task needs resource access, employing algorithms from real-time scheduling theory [16,74].

More recent scheduling approaches often depend on the current control system states, i.e.,

informally the subsystem with the largest state discrepancy is scheduled to communicate—see,

e.g., [17,28,53,80,110]. Alternatively scheduling can take into account current wireless channel

conditions opportunistically to meet target control system reliability requirements [47]. None

of these approaches, however, are explicitly designed for low-latency communication systems,

which is the subject of our work and a key contribution with respect to previous approaches.
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Plant 1 · · · Plant m

· · ·Controller 1 Controller m

Access Point

h1 hm

Wireless
Channel

Figure 3.1: Wireless control system with m independent systems. Each system contains a sensor
that measure state information, which is transmitted to the controller over a wireless channel. The
state information is used by the controller to determine control policies for each of the systems.The
communication is assumed to be wireless in the uplink and ideal in the downlink.

The chapter is organized as follows. We formulate the wireless control system in which

state information is communicated to the control over a wireless channel. Due to the

potential for random packet drops, this is modeled as a switched dynamical system (Section

3.2). A Lyapunov function is used to evaluate the stability of the control state, and the

uncertainty in this measurement grows the more consecutive packets are lost for a particular

system. We then discuss the scheduling parameters of the IEEE 802.11ax communication

model (Section 3.2.1). From there, we derive a mathematical formulation of the optimal

scheduling problem (Section 3.3). This can be formulation by minimizing a control cost

with an explicitly latency constraint (Section 3.3.1) or minimizing transmission time with

an explicit control performance constraint (Section 3.3.2).

Using this formulation, we develop the control-aware low latency scheduling (CALLS)

method (Section 3.4). The CALLS method uses current control states and channel conditions

to derive dynamic packet success rates for each user (Section 3.4.1). In this way, control

systems that are closest to instability will be given priority in the scheduling so that they

may close their control loops. The scheduling procedure consists of a random user selection

procedure to reduce the number of required PPDUs that incur significant overhead (Section

3.4.2), followed by an assignment-method based scheduling of selected users to minimize

total transmission time (Section 3.4.3). The performance of the CALLS method is analyzed

in a series of simulation experiments in which its performance is compared against a control-

agnostic procedure (Section 3.5). We demonstrate in numerous control systems that the

control-aware, adaptive reliability approach may support more users than the alternative

and achieve more robust overall performance.
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3.2 Wireless Control Sysyem

Consider a system of m independent linear control systems, or devices, where each system

i = 1, . . . ,m maintains a state variable xi ∈ Rp. The dynamics are discretized so that the

state evolves over time index k. Applying an input ui,k ∈ Rq causes the state and output to

evolve based on the discrete-time state space equations,

xi,k+1 = Aixi,k + Biui,k + wk (3.1)

where Ai ∈ Rp×p and Bi ∈ Rp×q are matrices that define the system dynamics, and wk ∈ Rp

is Gaussian noise with co-variance Wi that captures the errors in the linear model (due to,

e.g., unknown dynamics or from linearizion of non-linear dynamics). We further assume the

state transition matrix Ai is on its own unstable, i.e. has at least one eigenvalue greater

than 1. This is to say that, without an input, the dynamics will drive the state xi,k →∞ as

k →∞.

In the wireless control system model presented in Figure 3.1. Each system is closed over a

wireless medium, over which the sensor located at the control system sends state information

to the controller located at a wireless access point (AP) shared among all systems. Using

the state information xi,k received from device i at time k, the controller determines the

input ui,k to be applied. We stress in Figure 3.1 we restrict our attention to the wireless

communications at the sensing, or “uplink”, while the control actuation, or “downlink, is

assumed to occur over an ideal channel. We point out that while a more complete model

may include packet drops in the downlink, in practice the more significant latency overhead

occurs in the uplink. We therefore keep this simpler model for mathematical coherence.

In low-latency applications, a high state sampling rate is required be able to adapt to the

fast-moving dynamics This subsequently places a tight restriction on the latency in the

wireless transmission, so as to avoid losing sampled state information. This specific latency

requirement between the sensor and AP we denote by τmax, and is often considered to be in

the order of milliseconds.

Because the control loop in Figure 3.1 is closed over a wireless channel, there exists a

possibility at each cycle k that the transmission fails and state information is not received

by the controller. We refer to this as the “open-loop’ configuration; when state information

is received, the system operates in “closed-loop.” As such, it is necessary to define the

system dynamics in both configurations. Consider a generic linear control, in which the

input being determined as ui,k = Kixi,k for some matrix Ki ∈ Rq×p. Many common control

policies indeed can be formulated in such a manner, such as LQR control. In general, this

matrix K is chosen such as that the closed loop dynamic matrix A + BK is stable, i.e. has

all eigenvalues less that 1. Thus, application of this control over time will drive the state
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xi,k → 0 as k →∞. We assume that this choice of K is given—in other words, the controller

is pre-designed with respect to ideal closed loop behavior. As the controller does not always

have access to state information, we alternatively consider the estimate of state information

of device i known to the controller at time k as

x̂
(li)
i,k := (Ai + BiKi)

lixi,k−li , (3.2)

where k− li ≥ k− 1 is the last time instance in which control system i was closed. There are

two important things to note in (3.2). First, this is the estimated state before a transmission

has been attempted at time k; hence, li = 1 when state information was received at the

previous time. Second, observe that in (3.2) we assume that the AP/controller has knowledge

of the dynamics Ai and Bi, as well as the linear control matrix Ki. Any gap in this knowledge

of dynamics is captured in the noise wk in the actual dynamics in (3.35). Note that the

estimated state (3.2) is used in place of the true state in both the determination of the

control and the radio resource allocation decisions as discussed later in this chapter.

At time k, if the state information is received, the controller can apply the input ui,k =

Kixi,k exactly, otherwise it applies an input using the estimated state, i.e. ui,k = Kix̂i,k.

Thus, in place of (3.35), we obtain the following switched system dynamics for xi,k as

xi,k+1 =

(Ai + BiKi)xi,k + wk, in closed-loop,

Aixi,k + BiKix̂
(li)
i,k + wk, in open-loop.

(3.3)

The transmission counter li is updated at time k as

li ←

1, in closed-loop,

l1 + 1, in open-loop.
(3.4)

Observe in (3.3) that, when the system operates in open loop, the control is not applied

relative to the current state xi,t but on the estimated state x̂
(li)
i,k , which indeed may not be

close to the true state. In this case, the state may not be driven to zero as in the closed-loop

configuration. To see the effect of operating in open loop for many successive iterations, we

can write the error between the true and estimated state as

ei,k := xi,k − x̂
(li)
i,k =

li−1∑
j=0

Aj
iwi,k−j−1. (3.5)

In (3.5), it can be seen that as li grows, the error ei,k grows with the accumulation of the

noise present in the actual state but not considered in the estimated state. Thus, if li is

large and wi,k is large (i.e., high variance), this error will become large as well.
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Figure 3.2: Multiplexing of frequencies (RU) and time (PPDU) in IEEE 802.11ax transmission window
(formally referred as Transmission Opportunity or TXOP in the standard. The total transmission
time is the time of all PPDUs, including the overhead of trigger frames (TF) and acknowledgments.

To conclude the development of the wireless control formulation, we define a quadratic

Lyapunov function L(x) := xTPx for some positive definite P ∈ Rp×p that measures the

performance of the system as a function of the state. Because the scheduler only has access

to estimated state info, we consider the expected value of L(x) given the state estimate,

which can be found via (3.5) as

E[L(xi,k) |x̂
(li)
i,k ] (3.6)

= (x̂
(li)
i,k )TP(x̂

(li)
i,k ) +

li−1∑
j=0

Tr[(AT
i P

1
j Ai)

jWi].

Thus, the control-specific goal is to keep E[L(xi,k) | x̂(li)
i,k ] within acceptable bounds for each

system i. We now proceed to discuss the wireless communication model that determines the

resource allocations necessary to close the loop.

3.2.1 IEEE 802.11ax communication model

We consider the communication model provided in the next-generation Wi-Fi standard IEEE

802.11ax. While 3GPP wireless systems such as LTE [107] or the next generation 5G [3]

can also be considered as alternate communication models, most factory floors are already

equipped with Wi-Fi connectivity and, moreover, Wi-Fi can operate in the unlicensed band.

It is generally considered to be cost-effective to operate and maintain.

Traditional Wi-Fi systems rely only on contention-based channel access and may introduce

high or variable latency in congested or dense deployment scenarios even in a fully managed

Wi-Fi network, which is typically available in industrial control and automation scenarios.

To address the problems with dense deployment, the draft 802.11ax amendment has defined

scheduling capability for Wi-Fi access points (APs). Wi-Fi devices can now be scheduled for

accessing the channel in addition to the traditional contention-based channel access. Such

scheduled access enables more controlled and deterministic behavior in the Wi-Fi networks.
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Within each transmission window (formally referred as transmission opportunity or TXOP

in the standard), the AP may schedule devices through both frequency and time division

multiplexing using the multi-user (MU) OFDMA technique. This to say that devices can be

slotted in various frequency bands—formally called resource units (RUs)—and in different

timed transmission slots—formally called PPDUs. An example of the multiplexing of devices

across time and frequency is demonstrated in Figure 3.2. The AP additionally sends a

trigger frame (TF) indicating which devices should transmit data in the current TXOP and

the time/frequency resources these triggered devices should use in their transmissions.

To state this model formally, the scheduling parameters assigned by the AP to each

device consist of a frequency-slotted RU, time-slotted PPDU, and an associated modulation

and coding scheme (MCS) to determine the transmission format. The transmission power

is assumed to be fixed and equally divided amongst all devices. We define the following

notations to formulate these parameters. To specify an RU, we first notate by f1, f2, . . . , f b,

where n is the number of discrete frequency bands of fixed bandwidth (typically 2 MHz) in

which a device can transmit; in a 20MHz channel, for example, there are n = 10 such bands.

For each device, we then define a set of binary variables ςji ∈ {0, 1} if device i transmits in

band f j and collect all such variables for device i in ςi = [ς1i ; . . . ; ςbi ] ∈ {0, 1}b and for all

devices in Σ := [ςi, . . . , ςm] ∈ {0, 1}b×m. A device may transmit in bands in certain multiples

of 2MHz as well, which would be notated as, e.g. ςi = [1; 1; 0; . . . ; 0] for transmission in an

RU of size 4MHz. Note, however, that allowable RU’s contain only sizes of certain multiples

of 2MHz—namely, 2MHz, 4MHz, 8MHz, and 20MHz in the 802.11ax standard. Furthermore,

it is only permissible to transmit in adjacent bands, e.g. f j and f j+1. We therefore define

the set S ⊂ {0, 1}b as the set of binary vectors that define permissible RUs and consider

only ςi ∈ S for all devices i. Finally, note that the RU assignment 0 ∈ S signifies a device

does not transmit in this particular transmission window.

To specify the PPDU of all scheduled devices, we define for device i a positive integer

value αi ∈ Z++ that denotes the PPDU slot in which it transmits and collect such variables

for all devices in α = [α1; . . . ;αm] ∈ Zm++. Likewise, device i is given an MCS µi from the

discrete space M = {0, 1, 2, . . . , 10}. The MCS in particular defines a pair of modulation

scheme and coding rate that subsequently determine both the data rate and packet error rate

of the transmission. The allowable MCS settings provided in 802.11ax are provided in Table

3.1. Finally, we notate by hi := [h1i ;h
2
i ; . . . ;h

b
i ] ∈ Rb+ a set of channel states experienced by

device i, where hji is the gain of a wireless fading channel in frequency band f j . We assume

that channel conditions are constant within a single TXOP, i.e. do not vary across PPDUs.

We now proceed to define two functions that describe the wireless communications over

the channel. Firstly, we define a function q : Rb+ ×M× S → [0, 1] which, given a set of

channel conditions h, MCS µ, and RU ς, returns the probability of successful transmission,
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µ Modulation type Coding rate Data rate (Mb/s)

0 BPSK 1/2 4
1 QPSK 1/2 16
2 QPSK 3/4 24
3 16-QAM 1/2 33
4 16-QAM 3/4 49
5 64-QAM 2/3 65
6 64-QAM 3/4 73
7 64-QAM 5/6 81
8 256-QAM 3/4 98
9 256-QAM 5/6 108
10 1024-QAM 3/4 122

Table 3.1: Data rates for MCS configurations in IEEE 802.11ax for 20MHz channel. The modulation
type and coding rate in the first 2 columns together specify a PDR function q(µ, ς) for RU ς. The
data rate in the third column specifies the associated transmission time τ(µ, ς).

otherwise called packet delivery rate (PDR). Furthermore, define by τ : M× S → R+ a

function that, given an MCS µ and RU ς, returns the maximum time taken for a single

transmission attempt. Assuming a fixed packet size, such a function can be determined

from the data rates associated with each MCS in Table 3.1. Observe that all functions just

defined are determined independent of the PPDU slot the transmission takes place in, while

transmission time is also independent of the channel state. Because a PPDU cannot finish

until all transmissions within the PPDU have been completed, the total transmission time

of a single PPDU s is the maximum transmission time taken by all devices within that time

slot. We define the transmission time of PPDU slot s as

τ̂(Σ,µ,α, s) := max
i:αi=s

τ(µi, ςi) + τ0(α, s), (3.7)

where τ0 : Zm++ × Z++ → R+ is a function that specifies the communication overhead of

PPDU s. This overhead may consist of, e.g., the time required to send TFs to scheduled

users, as seen in Figure 3.2.

3.3 Optimal Control Aware Scheduling

Using the communication model of 802.11ax just outlined and the control-based Lyapunov

metric of (3.6), we can formulate an optimization problem that characterizes the exact optimal

scheduling of transmissions with a transmission window to maximize control performance.

The optimal scheduling and allocation selects the set of RUs Σ. MCS µ, and PPDUs

α for all devices–which in effect fully determine the schedule—such to minimize a cost

subject to scheduling design and feasibility constraints. In particular, we discuss two related,
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alternative formulations of the low-latency scheduling problem.

3.3.1 Latency-constrained scheduling

In the latency-constrained formulation, we are interested in minimizing a common control

cost subject to strict latency requirements. In particular, in the low-latency setting we set a

bound τmax on the total transmission time across all PPDUs in a TXOP. This constraint is

relevant in design of MAC-layer protocols that set strict limits on transmission times. In

addition, the RU and PPDU allocation across devices must be feasible, i.e., two devices

cannot be transmitting in the same frequency band in the same PPDU.

Recall the PDR function q(h, µ, ς) and consider that this can alternatively be interpreted

as the probability of closing the control loop under certain channel conditions and scheduling

parameters. From there, we can now write the expected Lyapunov value for at time k + 1

given its current state xi,k, channel state hi,k, MCS µi, and RU ςi using the expected cost

in (3.6). By defining xci,k+1 and xoi,k+1 as the closed loop and open loop states, respectively,

as determined by the switched system in (3.3), this is written as

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) := E(L(xi,k+1) | x̂

(li)
i,k ,hi,k, µi, ςi)

=(1− q(hi,k, µi, ςi))EL(xoi,k+1 | x̂
(li)
i,k )

+ q(hi,k, µi, ςi)EL(xci,k+1 | x̂
(li)
i,k ). (3.8)

For notational convenience, we collect all current estimated control states at time k

as X̂k := [x̂
(l1)
1,k , . . . , x̂

(lm)
m,k ] and channel states Hk = [h1,k, . . . ,hm,k]. Now, define the total

control cost, given the current states and scheduling parameters as some aggregation of the

combined expected future Lyapunov costs across all devices, i.e.,

J̃(X̂k,Hk,µ,Σ) := (3.9)

g(J1(x̂
(l1)
1,k ,h1,k, µ1, ς1), . . . , Jm(x̂

(lm)
m,k ,hm,k, µm, ςm)).

Natural choices of the aggregation function g(·) are, for example, either the sum or maximum

of its arguments.

The optimal scheduling at transmission time k is formulated as the one which minimizes

this cost J̃ while satisfying low-latency and feasibility requirements of the schedule, expressed

46



formally with the following optimization problem.

[Σ∗k ,µ
∗
k,α

∗
k] := argmin

Σ,µ,α,S
J̃(X̂k,Hk,µ,Σ) (3.10)

s. t.
∑
i:αi=s

ςji ≤ 1, ∀j, s, (3.11)

S∑
s=1

τ̂(Σ,µ,α, s) ≤ τmax, (3.12)

1 ≤ αi ≤ S, ∀i, (3.13)

ςi ∈ S, ∀i, µ ∈Mm, α ∈ Zm+ , S ∈ Z+. (3.14)

The optimization problem in (3.10) provides a precise and instantaneous selection of frequency

allocations between devices given their current control states X̂k and communication states

Hk. The constraints in (3.11)-(3.14) encode the following scheduling conditions. The

constraint (3.11) ensures that for every PPDU s, there is only one device transmitting on a

frequency slot j. In (3.12), we set the low-latency transmission time constraint in terms of

the sum of all transmission times for each PPDU s. The constraint in (3.13) bounds each

transmission slot by the total number of PPDU’s S while (3.14) constrains each variable to

its respective feasible set. Note that S is itself treated as an optimization variable in the

above problem, so that the number of PPDUs may vary as needed.

Observe in the objective in (3.10) that, by minimizing an aggregate of local control costs,

the devices with the highest cost Ji as described by (3.8) will be given the most bandwidth or

most favorable frequency bands to increase probability of successful transmission q(hi,k, µi, ςi).

This in effect increases the chances those devices will close their control loops and be driven

towards a more favorable state. Likewise, a device who is experiencing very adverse channel

conditions may not be allocated prime transmission slots to reserve such resources who have

more favorable channel conditions. In this way, we say this is control-aware scheduling, as it

considers both the control and channel states of the devices to determine optimal scheduling.

However, we stress that the optimization problem described in (3.10)-(3.14) is by no means

easy to solve. In fact, the optimization over multiple discrete variables makes this problem

combinatorial in nature. In the following section, we discuss a practical reformulation of

the problem above and develop heuristic methods to approximate the solutions in realistic

low-latency wireless applications.

3.3.2 Control-constrained scheduling

We reformulate the problem in (3.10)-(3.14) to an alternative formulation that more directly

informs the control-aware, low-latency scheduling method to be developed. To do so, we
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introduce a control-constrained formulation, in which the Lyapunov decrease goals are

presented as explicit requirement, i.e. constraints in the optimization problem. We are

interested, then, in constraint of the form

J̃(X̂k,Hk,µ,Σ) ≤ Jmax, (3.15)

where Jmax is a limiting term design to enforce desired system performance. Determining

this constant is largely dependent on the particular application of interest, needs of the

control systems, and also may be related to the choice aggregation function g(·) in (3.9).

For example, Jmax may represent a point at which control systems become volatile, unsafe,

or unstable.

For the scheduling procedure developed in this chapter, we focus on a particular formula-

tion of the control constraint in (3.15) that constrains the expected future Lyapunov value of

each system by a rate decrease of its current value. In particular the following rate-decrease

condition for each device i,

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) ≤ ρiE[L(xi,k) | x̂

(li)
i,k ] + ci, (3.16)

where ρi ∈ (0, 1] is a decrease rate and ci ≥ 0 is a constant. Recall the definition of

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) in (3.8) as the expected Lyapunov value of time k + 1 given its current

estimate and scheduling µi, ςi. The constraint in (3.16) ensures the future Lyapunov cost

will exhibit a decrease of at least a rate of ρi for device i in expectation. The constant ci is

included to ensure this condition is satisfied by default if the state x̂
(li)
i,k is already sufficiently

small.

We formulate the control-constrained scheduling problem by substituting the latency

constraint with the control constraint in (3.16), i.e.,

[Σ∗k ,µ
∗
k,α

∗
k] := argmin

Σ,µ,α,S

S∑
s=1

τ̂(Σ,µ,α, s) (3.17)

s. t.
∑
i:αi=s

ςji ≤ 1, ∀j, s, (3.18)

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) ≤ ρE[L(xi,k) | x̂

(li)
i,k ] + ci ∀i, (3.19)

1 ≤ αi ≤ S, ∀i, (3.20)

ςi ∈ S, ∀i, µ ∈Mm, α ∈ Zm+ , S ∈ Z+. (3.21)

Observe that the objective in (3.17) is now to minimize the total transmission time, rather

than being forced as an explicit constraint. In this way, the optimization problem defined

in (3.17)-(3.21) can be viewed as an alternative to the latency constrained problem in
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(3.10)-(3.14). Because the scheduling algorithm we develop in this chapter requires the

ability to quickly identify feasible solutions, we focus our attention on the control-constrained

formulation in (3.17)-(3.21). Before presenting the details of the scheduling algorithm, we

present a brief remark regarding the addition of “safety”, or worst-case, constraints to either

problem formulation.

Remark 7. The control constraint in (3.19) is formulated to guarantee an average decrease

of expected Lyapunov value by a rate of ρ. This is of interest to ensure the system states

are driven to zero over time. However, in practical systems we may also be interested in

protecting against worst-case behavior, e.g. entering an unsafe or unstable region. Consider

a vector bi ∈ Rp as the boundary of safe operation of system i. A constraint that protects

against exceeding this boundary can be written as

P [[] |xi,k+1| ≥ bi | x̂(li)
i,k ,hi,k, µi, ςi] ≤ δ, (3.22)

where δ ∈ (0, 1) is small. The expression in (3.22) can be included as an additional constraint

to either the latency-constrained or control-constrained scheduling problems previously

discussed.

3.4 Control-Aware Low-Latency Scheduling (CALLS)

We develop a control-aware low-latency scheduling (CALLS) algorithm to approximately

solve the control-constrained scheduling formulation in (3.17)-(3.21). Because this problem

is combinatorial in nature, it is infeasible to solve exactly. Instead, we focus on a practical

and efficient means of solving approximately. In particular, we identify sets of feasible points

and use a heuristic approach towards minimizing the transmission time objective among

the set of feasible points. Additionally, within the development of the CALLS method we

identify and characterize new PDR requirements that are defined relative to the control

system requirements; these are generally significantly less strict than the PDR requirements

often considered in general high reliability communication systems without codesign. Overall,

the CALLS method consists of (i) the derivation of adaptive control-aware PDR targets,

(ii) a principled random selection of devices to schedule to reduce latency, and (iii) the

use of assignment based methods to find a low-latency schedule. We discuss these three

components in detail in the proceeding subsections.

3.4.1 Control adaptive PDR

Due to the complexity of the scheduling problem in (3.17)-(3.21), we first focus our at-

tention on identifying scheduling parameters {Σk,µk,αk} that are feasible, i.e. satisfy
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the constraints in (3.18)-(3.21). In particular, the Lyapunov control constraint in (3.19)

is of significant interest. Recall that the control cost function Ji(x̂
(li)
i,k ,hi,k, µi, ςi) is itself

determined by the PDR q(hi,k, µi, ςi), as per (3.8). Thus, the constraint in (3.19) can be

seen as indirectly placing a constraint on the required PDR necessary to achieve a ρi-rate

decrease in expectation. The equivalent condition on PDR q(hi,k, µi, ςi) is presented in the

following proposition.

Proposition 3. Consider the Lyapunov control constraint in (3.19) and the definition

of Ji(x̂
(li)
i,k ,hi,k, µi, ςi) given in (3.8). Define the closed-loop state transition matrix Ac

i :=

Ai + BiKi and j-accumulated noise ωji := Tr[(AT
i P1/jAi)

jWi]. The control constraint in

(3.19) is satisfied for device i if and only if the following condition on PDR q(hi,k, µi, ςi)

holds,

q(hi,k, µi, ςi) ≥ q̃i(x̂
(li)
i,k ) := (3.23)

1

∆i

∥∥∥(Ac
i − ρiI)x̂

(li)
i,k

∥∥∥2
P

1
2

+ (1− ρi)
li−1∑
j=0

ωji + ωlii − ci

 ,
where we have further defined the constant

∆i :=

li−1∑
j=0

[ωj+1
i − Tr(AcT

i (AT
i P1/jAi)

jAc
iWi)]. (3.24)

Proof: Consider the Lyapunov decrease constraint as written in (3.19). As the same logic

holds for all i and k, for ease of presentation we remove all subscripts when presenting the

details of this proof. We further introduce the simpler notation q := q(h, µ, ς). Now, we

may expand the left hand side of (3.19) be rewriting the definition in (3.8) as

J(x̂(l),h, µ, ς) = qEw[L(Acx + w)] (3.25)

+ (1− q)Ew[L(Ax + BKx̂ + w)].

Recall the definition of the quadratic Lyapunov function L(x) := xTPx for some positive

definite P. Further recall the relation x = x̂ + e as described by (3.5). Combining these, we

expand the right hand size of (3.25) as

J(x̂(l),h, µ, ς) = (3.26)

qEw [Ac (x̂ + e) + w]T P [Ac (x̂ + e) + w]

+ (1− q)Ew [Acx̂ + Ae + w]T P [Acx̂ + Ae + w] .
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To evaluate the expectations in (3.26), recall the random noise w follows a Gaussian

distribution with zero mean and covariance W. Thus, the expectation can be evaluated over

w and expanded as

J(x̂(l),h, µ, ς) = (3.27)

q

‖Acx̂‖2
P

1
2

+ Tr(PW) +

l−1∑
j=0

Tr(Ac(A
TP

1
j A)jAcW)

+

(1− q)

‖Acx̂‖2
P

1
2

+ Tr(PW) +
l∑

j=1

Tr((ATP
1
j A)jW)

 .
From here, we rearrange terms and substitute the notation ωj := Tr[(ATP1/jA)jW] to

obtain that the control cost can be written as

J(x̂(l),h, µ, ς) =

‖Acx̂‖2
P

1
2

+ Tr(PW) +
l∑

j=1

ωj

 (3.28)

+ q

l−1∑
j=0

[Tr(Ac(A
TP

1
j A)jAcW)− ωj+1].

With (3.28), we have expanded the control cost in terms of the PDR q. Now, we return to

the constraint in (3.19). Recall the expansion for E[L(x) | x̂(l)] via (3.6). By combining this

with the expansion in (3.28), the terms in(3.19) can be rearranged to obtain the inequality

in (3.23). �

In Proposition 3 we establish a lower bound q̃i(x̂
(li)
i,k ) on the PDR of device i that is

dependent upon the current estimated state x̂
(li)
i,k and system dynamics determined by Ac

i ,Ai,

and Wi. We may note the following intuitions about the constraint in (3.23). The PDR

condition naturally grows stricter as the bound q̃i(x̂
(li)
i,k ) defined on the right hand side of

(3.23) gets larger. The first term on the right hand side reflects the current estimated channel

state, and will become larger as the state gets larger. Similarly, the latter two terms on the

right hand side together reflect the size of the noise that has accumulated by operating in

open loop. When the noise variance Wi is high and when the last-update counter li is large,

these latter two noise terms will both be large. Thus, both the current magnitude of the

control state and the growing uncertainty from infrequent transmissions together determine

how large is the PDR requirement in (3.23).

We stress the value of the PDR condition in (3.23) is both in its adaptability to the

control system state and dynamics, as well as its identification of precise target delivery

rates that are necessary to keep the control systems moving towards stability on average.
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Depending on the particular system dynamics as described in (3.35), such PDR’s may be, and

often are considerably more lenient than the default target transmission success rates used

in practical wireless systems (e.g. q = 0.999). Thus, through (3.23) we make a claim that,

with knowledge of the control system dynamics and targeted control performance, we can

effectively soften the targeted communication performance—or “reliability”— accordingly

to something more easily obtained in low-latency constrained systems.

Remark 8. It is worthwhile to note that by placing a stricter Lyapunov decrease constraint

with smaller rate ρi in (3.19), then the first term on the right hand side of (3.23) also grows

larger and increases the necessary PDR. Generally, selecting a smaller ρ will result in a

faster convergence to stability but will require stricter communication requirements. In fact,

we may use the inherent bound on the probability q(hi,k, µi, ςi) ≤ 1 to find a lower bound

on the Lyapunov decrease rate ρi that can be feasibly obtained based upon current control

state and system dynamics. This bound, however, may not be obtainable in practice due to

the scheduling constraints. In practice, we select ρi to be in the interval [0.90, 0.1).

3.4.2 Selective scheduling

We now proceed to describe the procedure with which we can find a set of feasible scheduling

decisions {Σk,µk,αk}. To begin, we first consider a stochastically selective scheduling

protocol, whereby we do not attempt to schedule every device at each transmission cycle,

but instead select a subset to schedule a principled random manner. Define by νi,k ∈ [0, 1]

the probability that device i is included in the transmission schedule at time k and further

recall by q(hi,k, µi, ςi) to be the packet delivery rate with which it transmits. Then, we may

consider the effective packet delivery rate q̂ as

q̂(hi,k, µi, ςi) = νi,kq(hi,k, µi, ςi) (3.29)

Selective scheduling is motivated by the ultimate goal of minimizing total transmit time

as described in the objective in (3.17). As we consider a large number of total devices m,

scheduling all such devices will require a larger number of PPDU slots—a maximum of

9 devices can transmit within a single PPDU. Recall in (3.7) that each additional PPDU

requires unavoidable overhead in τ0, which in aggregation over multiple PPDUs may become

a significant bottleneck in minimizing τ̂ or meeting a strict latency requirement τmax. Thus,

by decreasing the amount of scheduled devices, we may decrease the number of total PPDUs

and the overhead that is added to the total transmission time.

Observe that by introducing the term νi to the evaluation of effective PDR q̃i in (3.29),

we would thus need to transmit with higher PDR q(hi,k, µi, ςi) ≥ q̃i(x̂
(li)
i,k )/νi,k to meet the

condition in (3.23). While imposing a tighter PDR requirement will indeed require longer
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transmission times, this added time cost is generally less than the transmission overhead of

additional PPDUs. In this work, we use the determine scheduling probability of device i

through its PDR requirement q̃i(x̂
(li)
i,k ) as

νi,k := eq̃i(x̂
(li)

i,k )−1. (3.30)

With (3.30), the probability of scheduling device i increases as the required PDR increases.

Notice that, when a transmission is required, i.e. q̃i(x̂
(li)
i,k ) = 1, then device i is included in

the scheduling with probability 1. In general, devices with very high PDR requirements, e.g.

> 0.99, will be scheduled with very high probability. Thus, the transmission time gains that

are provided through selective scheduling using (3.30) would be minimal, if non-existent,

in high-reliability settings in which PDR requirements remain high at all times. However,

with the lower PDR requirement obtained through the control-aware scheduling in (3.23),

selective scheduling as the potential to create significant time savings, as will be later shown

in Section 3.5 of this chapter.

3.4.3 Assignment-based scheduling

We now proceed to discuss how the PDR requirements previously derived are used to schedule

the devices during a TXOP. Rather than employing a greedy method as is commonly done

in wireless scheduling problems, in the proposed method we use assignment-type methods.

In such assignment-type methods, we assign all scheduled devices to a PPDU and RU at the

beginning of the TXOP rather than make scheduling decisions after each PPDU. To begin,

we must determine a set of schedules that satisfy the constraints in (3.18)-(3.21). Recall

each device i is selected to be scheduled at cycle k with probability νi,k and define the set

of mk devices to selected be scheduled as Ik ⊆ {1, 2, . . . ,m} where |Ik| = mk. To specify

the sets of RUs that we consider in our scheduling, we first define some notation necessary

in the description. We define Ŝ(n) ⊂ S to be an arbitrary set of RUs that do not intersect

over any frequency bands (i.e. satisfy the constraint in (3.18)) with exactly n elements. To

accommodate the mk devices to be scheduled, we consider a set of Sk such sets Ŝ(ns) with

size ns, whose combined elements total
∑Sk

s=1 ns = mk. In other words, we identify a set Sk

PPDUs in which the sth PPDU contains ns non-intersecting PPDUs. We define this full set

of assignable RUs at cycle k as

S ′k := Ŝ1(n1)
∪ Ŝ1(n2)

∪ . . . ∪ ŜSk(nSk ). (3.31)

Note that in (3.31) we further superindex each set by a PPDU index s, in order to stress

that elements are distinct between sets. That is, an RU ς present in sets Ŝx(nx) and Ŝy(ny)
is considered as two distinct elements in S ′k, denoted ςx and ςy, respectively. In this way
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PPDU 1 PPDU 2 PPDU 3

RU 1
RU 10

RU 13
RU 2
RU 3

RU 11
RU 4

RU 5

RU 12 RU 14
RU 6
RU 7
RU 8

RU 9

Table 3.2: Example of RU selection with mk = 14 devices. There are a total of Sk = 3 PPDUs, given
n1 = 9, n2 = 3, n3 = 2 RUs, respectively.

(3.31) defines a complete set of combinations of frequency-allocated RU and time-allocated

PPDUs to assign devices during this cycle. We point out that there are numerous ways

in which to define such sets of RUs in each PPDU that total mk assignments. There are

various heuristic methods that may be employed to quickly identify a permissible assignment

pool S ′k, and various simple heuristics may be developed to make this selection in a manner

that reduces the overall latency of the transmission window. An example of the set S ′k for

scheduling mk = 14 devices is shown in Table 3.2.

For all i ∈ Ik and RU ς ∈ S ′k, define the largest affordable MCS given the modified PDR

requirement q̃i(x̂
(li)
i,k )/νi,k by

µi,k(ς) :=

max{µ | q(hi,k, µ, ς) ≥ q̃i(x̂
(li)
i,k )/νi,k}

1, if q(hi,k, µ, ς) < q̃i(x̂
(li)
i,k )/νi,k ∀µ

(3.32)

Observe in (3.32) that, when no MCS achieves the desired PDR in a particular RU, this

value is set to µ = 1 by default. The above adaptive MCS selection can be achieved based on

channel conditions using the techniques outlined in [58]. This MCS selection subsequently

then yields a corresponding time cost τ(µi,k(ς), ς) for assigning device i to RU ς. Further

define an 3-D assignment tensor V—where vsij = 1 when device i is assigned to RU ςsj and

0 otherwise—and V as the set of all possible assignments. Recalling the form of the total

transmission time given PPDU arrangements in (3.7), the assignment that minimizes total

transmission time is given by

V ∗ = argmin
V ∈V

S∑
s=1

max
j

[
vsijτ(µi,k(ς

s
j ), ςsj )

]
. (3.33)

The expression in (3.33) can be identified as a particular form of the assignment problem,
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Algorithm 2 Control-Aware Low Latency Scheduling (CALLS) at cycle k

1: Parameters: Lyapunov decrease rate ρ
2: Input: Channel conditions Hk and estimated states X̂k

3: Compute target PDR q̃i(x̂
(li)
i,k ) for each device i [cf. (3.23)].

4: Determine selection probabilities νi,k for each device [cf. (3.30)].
5: Select devices Ik with probs. {ν1,k, . . . , νm,k}
6: Determine set of RUs/PPDUs S ′k [cf. (3.31)].
7: Determine maximum MCS for each device/RU assignment [cf. (3.32)].
8: Schedule selected devices via assignment method.
9: Return: Scheduling variables {Σk,µk,αk}

a common combinatorial optimization problem in which the selection of mutually exclusive

assignment of agents to tasks incurs some cost. Here, the cost is the total transmission time

across all PPDUs necessary for scheduled devices to meet the target PDRs. Assignment

problems are generally very challenging to solve—there are mk! combinations—although

polynomial-time algorithms exist for simple cases. The Hungarian method [67], for example,

is a standard method for solving linear-cost assignment problems. While the cost we consider

in (3.33) is nonlinear, the Hungarian method may be used as an approximation. Alternatively,

other heuristic assignment approaches may be designed to approximate the solution to (3.33).

We note that, for the simulations performed later in this chapter, we apply such a heuristic

method, the details of which are left out for proprietary reasons.

By combining these methods with the control-based PDR targets and selective scheduling

procedure, we obtain the complete control-aware low-latency scheduling (CALLS) algorithm.

The steps as performed by the centralized AP/controller are outlined in Algorithm 2. At

each cycle k, the AP determines the scheduling parameters based on the current channel

states Hk (obtained via pilot signals) and the current estimated control states X̂k (obtained

via (3.2) for each device i). With the current state estimates, the AP computes target PDRs

q̃i(x̂
(li)
i,k ) for each device via (3.23) in Step 3. In Step 4, the target PDRs are used to establish

selection probabilities νi,k for each agent with (3.30). After randomly selecting devices Ik
with their associated probabilities in Step 5, the set of RUs and PPDUs S ′k are determined

in Step 6 as in (3.31) , based upon the number of devices selected to be scheduled |Ik|. In

Step 7, the associated MCS values are determined each possible assignment of device to

RU via (3.32). Finally, in Step 8 the assignment is performed using either the Hungarian

method [67] or other user-designed heuristic assignment method. The resulting assignment

determines the scheduling parameters Σk,µk,αk for the current cycle.

Remark 9. Observe that the CALLS method as outlined in Algorithm 2 seeks to minimize

the total latency of the transmission but does not explicitly prevent latency from exceeding

some specific threshold τmax. In practical systems, this limit may need to be enforced. In
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such a setting, the CALLS method can be modified so that all devices scheduled in PPDUs

whose transmission end after τmax seconds do not transmit.

Remark 10. In practical systems, the channel state information Hk is often obtained with

some estimation errors, which may impact the channel aware scheduling approach taken

here. Observe, however, that the computation of adaptive PDR targets in (3.23) does

not depend upon channel state information. Thus, the primary component of the CALLS

method—namely Steps 3-6 in Algorithm 2— is unaffected by inaccurate channel estimation.

Likewise, the assignment method-based scheduling in Step 8 does also not directly depend

upon channel information—see the formulation of the assignment problem in (3.33). The

only component that may be negatively impacted by estimation errors is Step 7, i.e. the

maximum MCS selection in (3.32). Here, estimation errors may result in the selection of

an MCS that cannot meet the target PDR targets. Such an effect can be mitigated by

selecting a smaller, more conservative MCS to account for channel estimation errors. Such a

conservative scheme would tradeoff latency to the benefit of reliability or robustness.

3.5 Simulation Results

In this section, we simulate the implementation of both the control-aware CALLS method

and a standard “control-agnostic” scheduling methods for various low-latency control systems

over a simulated wireless channel. We point out the low-latency based scheduling/assignment

approaches of both methods being compared are identical, with the distinguishing features

being the dynamic control-aware packet delivery rates incorporated in the CALLS method.

In doing so, we may analyze the performance of the control-aware design outlined in the

previous section relative to a standard latency-aware approach in terms of, e.g., number of

users supported with fixed latency threshold or best latency achieved with fixed number

of users. As we are interested primarily in low latency settings that tightly restrict the

communication resources, we consider two standard control systems whose rapidly changing

state requires high sampling rates, and consequently a communication latency on the order

of milliseconds. The parameters for the simulation setup are provided in Table 3.3. The

wireless fading channel modeled using IEEE Indoor Channel Model E. In our performance

analysis, we use link layer abstractions commonly used for wireless system level simulations

(SLS) to model the wireless physical layer. In this approach, the AWGN SINR-BLER curves

are used to evaluate the packet delivery rate function q(h, µ, ς); note that the curves are

evaluated at the effective SNR (ESINR) values that take into account the instantaneous

fading channel conditions and selected MCS. The transmission time τ(µ, ς) is computed in

the simulations using the associated data rates of an MCS in Table 3.1 for a 100 byte packet

and overhead (e.g. TFs) of the 802.11ax specifications. The latency overhead for this setting
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Channel model IEEE Model E (indoor) [75]
Sensor to AP distances Random (1 to 50 meters)
Transmit power 23 dbm
Channel bandwidth 20 MHz
RU sizes 2, 4, 8, 20 MHz
# of antennas at AP 2
# of antennas at sensors 1
MCS options See Table 3.1
State sampling period 10 ms

Table 3.3: Simulation setting parameters.

ui,k

θi,k

Figure 3.3: Inverted pendulum-cart system i. The state xi,k = [xi,k, ẋi,k, θi,k, θ̇i,k] contains specifies
angle θi,k of the pendulum to the vertical, while the input ui,k reflects a horizontal force on the cart.

amounts to approximately τ0 ≈ 100µs.

3.5.1 Inverted pendulum system

We perform an initial set of simulations on the well-studied problem of controlling a series

of inverted pendulums on a horizontal cart. While conceptually simple, the highly unstable

dynamics of the inverted pendulum make it a representative example of control system

that requires fast control cycles, and subsequently low-latency communications when being

controlled over a wireless medium. Consider a series of m identical inverted pendulums, as

pictured in Figure 3.3. Each pendulum of length L is attached at one end to a cart that can

move along a single, horizontal axis. The position of the pendulum changes by the effects of

gravity and the force applied to the linear cart. For our experiments, we use the modeling

of the inverted pendulum as provided by Quanser [99]. The state is p = 4 dimensional

vector that maintains the position and velocity of the cart along the horizontal axis, and the

angular position and velocity of the pendulum, i.e. xi,k := [xi,k, ẋi,k, θi,k, θ̇i,k]. The system

input ui,k reflects a horizontal force placed upon ith pendulum. By applying a zeroth order

hold on the continuous dynamics with a state sampling rate of 0.01 seconds and linearizing,
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we obtained the following discrete linear dynamic matrices of the pendulum system

Ai =


1 0.037 3.477 0.042

0 2.055 −0.722 4.828

0 0.023 0.91 0.037

0 0.677 −0.453 2.055

 ,Bi =


0.034

0.168

0.019

0.105

 . (3.34)

Because the state xi,k measures the angle of the ith pendulum at time k, the goal is to

keep this close to zero, signifying that the pendulum remains upright. The input matrix K

is computed to be a standard LQR-controller.

We perform a set of simulations scheduling the transmissions to control a series of inverted

pendulums, varying both the latency threshold τmax and number of devices m. We perform

the scheduling using the proposed CALLS method for control-aware low latency scheduling

an, as a point of comparison, consider scheduling using a fixed “high-reliability” PDR of 0.99

for all devices. Each simulation is run for a total of 1000 seconds and is deemed “successful”

if all pendulums remain upright for the entire run. We perform 100 such simulations for each

combination of latency threshold and number of devices to determine how many devices we

can support at each latency threshold using both the CALLS and fixed-PDR methods for

scheduling.

In Figure 3.4 we show the results of a representative simulation of the control of m = 25

pendulum systems with a latency bound of τmax = 10−3 seconds. In both graphs we show

the average distance from the center vertical of each pendulum over the course of 1000

seconds. In the top figure, we see by using the control-aware CALLS method we are able to

keep each of the 25 pendulums close to the vertical for the whole simulation. Meanwhile,

using the standard fixed PDR, we are unable to meet the scheduling limitations imposed

by the latency threshold, and many of the pendulums swing are unable to be kept upright,

as signified by the large deviations from the origin. This is due to the fact that certain

pendulums were not scheduled when most critical, and they subsequently became unstable.

We present in Figure 3.5 the final capacity results obtained over all the simulations.

We say that a scheduling method was able to successfully serve m′ devices if it keeps all

devices within a |θi,k| ≤ 0.05 error region for 100 independent simulations. Observe that the

proposed approach is able to increase the number of devices supported in each case, with up

to 1.5 factor increase over the standard fixed PDR approach. Indeed, the proposed CALLS

method is able to allocate the available resource in a more principled manner, which allows

for the support of more devices simultaneously being controlled.
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Figure 3.4: Average pendulum distance to center vertical for m = 25 devices using (top) CALLS and
(bottom) fixed-PDR scheduling with τmax = 1 ms latency threshold. The proposed control aware
scheme keeps all pendulums close to the vertical, while fixed-PDR scheduling cannot.
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Figure 3.5: Total number of inverted pendulum devices that can be controlled using Fixed-PDR and
CALLS scheduling for various latency thresholds.
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3.5.2 Balancing board ball system

We perform another series of experiments on the wireless control of a series of balancing

board ball systems developed by Acrome [2]. In such a system, a ball is kept on a rectangular

board with a single point of stability in the center of the board. Two servo motors underneath

the board are used to push the board in the horizontal and vertical directions, with the

objective to keep the ball close to the center of the board. The state here reflects the position

and velocity in the horizontal and vertical axes, i.e. xi,k := [xi,k, ẋi,k, yi,k, ẏi,k]. The input

ui,k = [vx, vy] reflects the voltage applied to the horizontal and vertical motors. As before,

we apply a zeroth order hold on the continuous dynamics with a state sampling rate of 0.01

seconds and linearize, thus obtaining the following dynamic system matrices,

Ai =


1 0.01 0 0

0 1 0 0

0 0 1 0.01

0 0 0 1

 ,Bi =


−0.0001 0

−0.02 0

0 −0.00008

0 −0.01

 . (3.35)

As before, we compute the control matrix K using standard LQR-control computation.

In the simulations performed with the balancing board system, in addition to making

comparisons of the CALLS method to a fixed PDR low latency scheduling scheme, we

perform additional comparisons to a standard control-aware scheduling approach—namely,

the event-triggered scheduling approach [17,80]. In event triggered scheduling, we schedule

devices only when its estimated control state goes above some threshold value. When such

an event occurs, this device is scheduled with a fixed high reliability PDR using a low-latency

assignment based scheduling method. This, in effect, combines the selective scheduling

approach of CALLS with fixed high reliability PDR targets commonly used in URLLC.

In Figure 3.6 we show the results of a representative simulation of the control of m = 50

balancing board ball systems with a latency bound of τmax = 10−3 seconds. Observe that,

in this system, even with a large number of users, both the event-triggered scheduling and

the CALLS method can keep all systems very close to the center of the board, while the

fixed PDR scheduler loses a few of the balls due to the agnosticism of the scheduler.

To dive deeper into the benefits provided by control aware scheduling, we present in

Figure 3.7 a histogram of the actual packet delivery rates each of the devices achieved over

the representative simulation. It is interesting to observe that, for the CALLS method,

the achieved PDRs are closely concentrated, ranging from 0.3 to 0.44. On the other hand,

using either event-triggered or a fixed PDR scheduling scheme, the non-variable rates are

too strict for the low-latency system to support, and without control-aware scheduling the

achieved PDRs range wildly from close to 0 to close to 1. In this case, some devices are able
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Figure 3.6: Average ball distance to center for m = 50 devices using (top) CALLS, (middle) event-
triggered, and (bottom) fixed-PDR scheduling with τmax = 1 ms latency threshold. The control
aware schemes keeps all balancing balls close to center, while fixed-PDR scheduling cannot.

Figure 3.7: Histogram of achieved PDRs in m = 50 balancing board systems (top) CALLS, (middle)
event-triggered, and (bottom) fixed-PDR scheduling with τmax = 1 ms latency threshold. The
proposed CALLS method achieves similar PDRs for all devices, while the fixed-PDR and event-
triggered scheduling results in large variation in packet delivery rates.

to transmit almost every cycle while others are almost never able to successfully transmit

their packets. This suggests that, by using control aware scheduling, we indirectly achieve a

sense of fairness across users over the long term. Further note that the PDRs required to

keep the balancing board ball stable, e.g. 0.4, are relatively small. This is due to the fact

that the balancing board ball features relatively slow moving dynamics, making it easier

to control with less frequent transmissions. This is comparison to the inverted pendulum

system, in which the pendulums were kept stable with PDRs in the range 0.6-0.75.

We present in Figure 3.8 the final capacity results obtained over all the simulations for

the balancing board ball system. Observe that proposed approach increases the number of

supported devices by factor of 2 relative to the standard fixed PDR approach. The even

greater improvement here relative to the inverted pendulum simulations can be attributed

61



0.5 ms 1 ms

20

40

60

9

27

17

50

25

60

#
d
ev

ic
es

su
p
p

o
rt

ed

Fixed PDR Event-Trigged CALLS

Figure 3.8: Total number of balancing ball board devices that can be controlled using Fixed-PDR,
Event-Triggered, and CALLS scheduling for various latency thresholds.

to the slower dynamics of the balancing board ball, which allows for even more gains using

control-aware PDRs due to the lower PDR requirements of the system. Likewise, the

Lyapunov-based adaptive PDR requirements allow for even greater scalability than the more

standard event-triggered approach, which can service only 17 and 50 users with 0.5 and 1

ms latency thresholds, respectively.

3.6 Discussion and Conclusions

In this chapter we proposed a novel control-communication co-design approach to solving

the radio resource allocation problem for time-sensitive wireless control systems. Given

a channel state and control state, we mathematically derive a minimum packet delivery

rate a device must meet to maintain a control-orientated target, as defined by a stability-

inducing Lyapunov function. By dynamically assigning variable packet delivery rate targets

to each device based on its current conditions, we are able to more easily meet feasibility

requirements of a latency-constrained wireless control problem and maintain stability and

strong performance. We perform simulations on numerous well-studied low-latency control

problems to demonstrate the benefits of using the control-aware approach, which can include

a 2x gain on number of devices that can be supported. In future research, we aim to

investigate how more sophisticated and realistic modeling, such as non-linear control or

actuation over wireless links, may be used in this control-aware framework.

The results presented in this chapter suggest an interesting potential for control-aware

resource allocation and scheduling, particularly in low-latency industrial systems. By consid-

ering the control-specific targets such as maintaining stability or an error margin, we observe

that the standard high reliability targets considered in URLLC (e.g. packet delivery rates

≥ 0.999) can in some cases be substantially stricter than necessary for adequate performance.
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Wireless control systems with sufficiently slow dynamics can be kept stable with much lower

packet delivery rates, which in turn make low-latency communications more achievable.

Furthermore, in realistic industrial systems there will be many heterogeneous devices being

controlled, whose variation in communication needs is well-served by control-aware adaptivity

proposed in this chapter. This suggests the potential for wireless communications to be

adopted using a smart control-communication co-design approach even while ultra-reliable

wireless system technology remains under development.
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Chapter 4

Primal-Dual Learning for Wireless

Systems

4.1 Introduction

The defining feature of wireless communication is fading and the role of optimal wireless

system design is to allocate resources across fading states to optimize long term system

properties. Mathematically, we have a random variable h that represents the instantaneous

fading environment, a corresponding instantaneous allocation of resources p(h), and an

instantaneous performance outcome f
(
p(h),h

)
resulting from the allocation of resources p(h)

when the channel realization is h. The instantaneous system performance tends to vary too

rapidly from the perspective of end users for whom the long term average x = E
[
f
(
p(h),h

)]
is a more meaningful metric. This interplay between instantaneous allocation of resources

and long term performance results in distinctive formulations where we seek to maximize a

utility of the long term average x subject to the constraint x = E
[
f
(
p(h),h

)]
. Problems of

this form range from the simple power allocation in wireless fading channels – the solution of

which is given by water filling – to the optimization of frequency division multiplexing [126],

beamforming [8, 112], and random access [61,62].

Optimal resource allocation problems are as widespread as they are challenging. This

is because of the high dimensionality that stems from the variable p(h) being a function

over a dense set of fading channel realizations and the lack of convexity of the constraint

x = E
[
f
(
p(h),h

)]
. For resource allocation problems, such as interference management,

heuristic methods have been developed [18,111,130]. Generic solution methods are often

undertaken in the Lagrangian dual domain. This is motivated by the fact that the dual

problem is not functional, as it has as many variables as constraints, and is always convex

whether the original problem is convex or not. A key property that enables this solution is

the lack of duality gap, which allows dual operation without loss of optimality. The duality
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gap has long being known to be null for convex problems – e.g., the water level in water filling

solutions is a dual variable – and has more recently being shown to be null under mild technical

conditions despite the presence of the nonconvex constraint x = E
[
f
(
p(h),h

)]
[103, 136].

This permits dual domain operation in a wide class of problems and has lead to formulations

that yield problems that are more tractable, although not necessarily tractable without

resorting to heuristics [31,42,47,76,92,124,138].

The inherent difficulty of resource allocation problems makes the use of machine learning

tools appealing. One may collect a training set composed of optimal resource allocations

p∗(hk) for some particular instances hk and utilize the learning parametrization to interpolate

solutions for generic instances h. The bottleneck step in this learning approach is the

acquisition of the training set. In some cases this set is available by reverse engineering as

it is possible to construct a problem having a given solution [43,116]. In some other cases

heuristics can be used to find approximate solutions to construct a training set [69, 70, 115].

This limits the performance of the learning solution to the performance of the heuristic,

though the methodology has proven to work well at least in some particular problems.

Instead of acquiring a training set, one could exploit the fact that the expectation

E
[
f
(
p(h),h

)]
has a form that is typical of learning problems. Indeed, in the context of

learning, h represents a feature vector, p(h) the regression function to be learned, f
(
p(h),h

)
a loss function to be minimized, and the expectation E

[
f
(
p(h),h

)]
the statistical loss

over the distribution of the dataset. We may then learn without labeled training data by

directly minimizing the statistical loss with stochastic optimization methods which merely

observe the loss f
(
p(h),h

)
at sampled pairs (h,p(h)). This setting is typical of, e.g.,

reinforcement learning problems [117], and is a learning approach that has been taken in

several unconstrained problems in wireless optimization [25,93,94,134]. In general, wireless

optimization problems do have constraints as we are invariably trying to balance capacity,

power consumption, channel access, and interference. Still, the fact remains that wireless

optimization problems have a structure that is inherently similar to learning problems. This

realization is the first contribution of this paper:

(C1) Parametrizing the resource allocation function p(h) yields an optimization problem

with the structure of a learning problem in which the statistical loss appears as a

constraint (Section 4.2).

This observation is distinct from existing work in learning for wireless resource allocation.

Whereby existing works apply machine learning methods to wireless resource allocation,

such as via supervised training, here we identify that the wireless resource allocation is itself

a statistical learning problem. This motivates the use of learning methods to directly solve

the resulting optimization problems bypassing the acquisition of a training set. To do so, it
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is natural to operate in the dual domain where constraints are linearly combined to create a

weighted objective (Section 4.3). The first important question that arises in this context is

the price we pay for learning in the dual domain. Our second contribution is to show that

this question depends on the quality of the learning parametrization. In particular, if we use

learning representations that are near universal—meaning that they can approximate any

function up to a specified accuracy (Definition 1)—-we can show that dual training is close

to optimal:

(C2) The duality gap of learning problems in wireless optimization is small if the learning

parametrization is nearly universal (Section 4.3.1). More formally, the duality gap

is O(ε) if the learning parametrization can approximate arbitrary functions with

error O(ε) (Theorem 3).

A second question that we address is the design of training algorithms for optimal resource

allocation in wireless systems. The reformulation in the dual domain gives natural rise to

a gradient-based, primal-dual learning method (Section 4.3.2). The primal-dual method

cannot be implemented directly, however, because computing gradients requires unavailable

model knowledge. This motivates a third contribution:

(C3) We introduce a model-free learning approach, in which gradients are estimated by

sampling the model functions and wireless channel (Section 4.4).

This model-free approach additionally includes the policy gradient method for efficiently

estimating the gradients of a function of a policy (Section 4.4.1). We remark that since

the optimization problem is not convex, the primal-dual method does not converge to the

optimal solution of the learning problem but to a stationary point of the KKT conditions [14].

This is analogous to unconstrained learning where stochastic gradient descent is known to

converge only to a local minima.

The quality of the learned solution inherently depends on the ability of the learning

parametrization to approximate the optimal resource allocation function. In this paper we

advocate for the use of neural networks:

(C4) We consider the use of deep neural networks (DNN) and conclude that since they are

universal parameterizations, they can be trained in the dual domain without loss of

optimality (Section 4.5).

Together, the Lagrangian dual formulation, model-free algorithm, and DNN parameterization

provide a practical means of learning in resource allocation problems with near-optimality.

We conclude with a series of simulation experiments on a set of common wireless resource

allocation problems, in which we demonstrate the near-optimal performance of the proposed

DNN learning approach (Section 4.6).
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4.2 Optimal Resource Allocation in Wireless Communica-

tion Systems

Let h ∈ H ⊆ Rn+ be a random vector representing a collection of n stationary wireless

fading channels drawn according to the probability distribution m(h). Associated with each

fading channel realization, we have a resource allocation vector p(h) ∈ Rm and a function

f : Rm × Rn → Ru. The components of the vector valued function f
(
p(h),h

)
represent

performance metrics that are associated with the allocation of resources p(h) when the

channel realization is h. In fast time varying fading channels, the system allocates resources

instantaneously but users get to experience the average performance across fading channel

realizations. This motivates considering the vector ergodic average x = E
[
f
(
p(h),h

)]
∈ Ru,

which, for formulating optimal wireless design problems, is relaxed to the inequality

x ≤ E
[
f
(
p(h),h

)]
. (4.1)

In (4.1), we interpret E
[
f
(
p(h),h

)]
as the level of service that is available to users and x as

the level of service utilized by users. In general we will have x = E
[
f
(
p(h),h

)]
at optimal

operating points, but this is not required a priori.

The goal in optimally designed wireless communication systems is to find the instantan-

eous resource allocation p(h) that optimizes the performance metric x in some sense. To

formulate this problem mathematically we introduce a vector utility function g : Ru → Rr

and a scalar utility function g0 : Ru → R, taking values g(x) and g0(x), that measure the

value of the ergodic average x. We further introduce the set X ⊆ Ru and P ⊆M, where M
is the set of functions integrable with respect to m(h), to constrain the values that can be

taken by the ergodic average and the instantaneous resource allocation, respectively. We

assume P contains bounded functions, i.e., that the resources being allocated are finite. With

these definitions, we let the optimal resource allocation problem in wireless communication

systems be a program of the form

P ∗ := max
p(h),x

g0(x),

s. t. x ≤ E
[
f
(
p(h),h

)]
,

g(x) ≥ 0, x ∈ X , p ∈ P. (4.2)

In (4.2) the utility g0(x) is the one we seek to maximize while the utilities g(x) are required

to be nonnegative. The constraint x ≤ E
[
f
(
p(h),h

)]
relates the instantaneous resource

allocations with the long term average performances as per (4.1). The constraints x ∈ X
and p ∈ P are set restrictions on x and p. The utilities g0(x) and g(x) are assumed to be
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concave and the set X is assumed to be convex. However, the function f(·,h) is not assumed

convex or concave and the set P is not assumed to be convex either. In fact, the realities

of wireless systems make it so that they are typically non-convex [103]. We present three

examples below to clarify ideas and proceed to motivate and formulate learning approaches

for solving (4.2).

Example 2 (Point-to-point wireless channel). In a point-to-point channel we measure

the channel state h and allocate power p(h) to realize a rate c(p(h);h) = log(1 + hp(h))

assuming the use of capacity achieving codes. The metrics of interest are the average rate

c = Eh[c(p(h);h)] = Eh[log(1 + hp(h))] and the average power consumption p = Eh[p(h)].

These two constraints are of the ergodic form in (4.1). We can formulate a rate maximization

problem subject to power constraints with the utility g0(x) = g0(c, p) = c and the set

X = {p : 0 ≤ p ≤ p0}. Observe that the utility is concave (linear) and the set X is convex

(a segment). In this particular case the instantaneous performance functions log(1 + hp(h))

and p(h) are concave. A similar example in which the instantaneous performance functions

are not concave is when we use a set of adaptive modulation and coding modes. In this case

the rate function c(p(h);h) is a step function [103].

Example 3 (Multiple access interference channel). A set of m terminals communicates

with associated receivers. The channel linking terminal i to the its receiver is hii and the

interference channel to receiver j is given by hji. The power allocated in this channel is pi(h)

where h = [h11;h12; . . . ;hmm]. The instantaneous rate achievable by terminal i depends on

the signal to interference plus noise ratio (SINR) ci(p(h); h) = hiipi(h)/[1 +
∑

j 6=i h
jipj(h)].

Again, the quantity of interest for each terminal is the long term rate which, assuming use

of capacity achieving codes, is

xi ≤ Eh

[
log

(
1 +

hiipi(h)

1 +
∑

j 6=i h
jipj(h)

)]
. (4.3)

The constraint in (4.3) has the form of (4.1) as it relates instantaneous rates with long

term rates. The problem formulation is completed with a set of average power constraints

pi = Eh[pi(h)]. Power constraints can be enforced via the set X = {p : 0 ≤ p ≤ p0} and

the utility g0 can be chosen to be the weighted sum rate g0(x) =
∑

iw
ixi or a proportional

fair utility g0(x) =
∑

i log(xi). Observe that the utility is concave but the instantaneous

rate function ci(p(h); h) is not convex. A twist on this problem formulation is to make

P = {0, 1}m in which case individual terminals are either active or not for a given channel

realization. Although this set P is not convex, it is allowed in (4.2).

Example 4 (Time division multiple access). In Example 3 terminals are allowed to transmit

simultaneously. Alternatively, we can request that only one terminal be active at any point
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in time. This can be modeled by introducing the scheduling variable αi(h) ∈ {0, 1} and

rewriting the rate expression in (4.3) as

xi ≤ Eh

[
αi(h) log

(
1 + hipi(h)

)]
, (4.4)

where the interference term does not appear because we restrict channel occupancy to

a single terminal. To enforce this constraint we define the set P := {αi(h) : αi(h) ∈
{0, 1},

∑
i α

i(h) ≤ 1}. This is a problem formulation in which, different from Example 3, we

not only allocate power but channel access as well.

4.2.1 Learning formulations

The problem in (4.2), which formally characterizes the optimal resource allocation policies

for a diverse set of wireless problems, is generally a very difficult optimization problem to

solve. In particular, two well known challenges in solving (4.2) directly are:

(i) The optimization variable p is a function.

(ii) The channel distribution m(h) is unknown.

Challenge (ii) is of little concern as it can be addressed with stochastic optimization

algorithms. Challenge (i) makes (4.2) a functional optimization problem, which, compounded

with the fact that (4.1) defines a nonconvex constraint, entails large computational complexity.

This is true even if we settle for a local minimum because we need to sample the n-dimensional

space H of fading realizations h. If each channel is discretized to d values the number

of resource allocation variables to be determined is mdn. As it is germane to the ideas

presented in this paper, we point that (4.2) is known to have null duality gap [103]. This,

however, does not generally make the problem easy to solve and moreover requires having

model information.

This brings a third challenge in solving (4.2), namely the availability of the wireless

system functions:

(iii) The form of the instantaneous performance function f
(
p(h),h

)
, utility g0(x), and

constraint g(x) may not be known.

As we have seen in Examples 2-4, the function f
(
p(h),h

)
models instantaneous achievable

rates. Although these functions may be available in ideal settings, there are difficulties in

measuring the radio environment that make them uncertain. This issue is often neglected

but it can cause significant discrepancies between predicted and realized performances.

Moreover, with less idealized channel models or performance rate functions—such as bit
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error rate—reliable models may even not be available to begin with. While the functions

g0(x) and g(x) are sometimes known or designed by the user, we assume they are not here

for complete generality.

Challenges (i)-(iii) can all be overcome with the use of a learning formulation. This is

accomplished by introducing a parametrization of the resource allocation function so that

for some θ ∈ Rq we make

p(h) = φ(h,θ). (4.5)

With this parametrization the ergodic constraint in (4.1) becomes

x ≤ E
[
f
(
φ(h,θ),h

)]
(4.6)

If we now define the set Θ := {θ | φ(h,θ) ∈ P}, the optimization problem in (4.2) becomes

one in which the optimization is over x and θ

P ∗φ := max
θ,x

g0(x),

s. t. x ≤ E
[
f
(
φ(h,θ),h

)]
,

g(x) ≥ 0, x ∈ X , θ ∈ Θ. (4.7)

Since the optimization is now carried over the parameter θ ∈ Rq and the ergodic variable

x ∈ Ru, the number of variables in (4.7) is q+u. This comes at a loss of of optimality because

(4.5) restricts resource allocation functions to adhere to the parametrization p(h) = φ(h,θ).

E.g., if we use a linear parametrization p(h) = θTh it is unlikely that the solutions of

(4.2) and (4.7) are close. In this work, we focus our attention on a widely-used class of

parameterizations we define as near-universal, which are able to model any function in P to

within a stated accuracy. We present this formally in the following definition.

Definition 1. A parameterization φ(h,θ) is an ε-universal parameterization of functions

in P if, for some ε > 0, there exists for any p ∈ P a parameter θ ∈ Θ such that

E ‖p(h)− φ(h,θ)‖∞ ≤ ε. (4.8)

A number of popular machine learning models are known to exhibit the universality

property in Definition 1, such as radial basis function networks (RBFNs) [96] and reproducing

kernel Hilbert spaces (RKHS) [114]. This work focuses in particular on deep neural networks

(DNNs), which can be shown to exhibit a universal function approximation property [59]

and are observed to work remarkably well in practical problems—see, e.g, [66, 77]. The

specific details regarding the use of DNNs in the proposed learning framework of this paper
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are discussed in Section 4.5.

While the reduction of the dimensionality of the optimization space is valuable, the most

important advantage of (4.7) is that we can use training to bypass the need to estimate

the distribution m(h) and the functions f
(
p(h),h

)
. The idea is to learn over a time index

k across observed channel realizations hk and probe the channel with tentative resource

allocations pk(hk) = φ(hk,θk). The resulting performance f
(
hk,φ(hk,θk)

)
is then observed

and utilized to learn the optimal parametrized resource allocation as defined by (4.7). The

major challenge to realize this idea is that existing learning methods operate in unconstrained

optimization problems. We will overcome this limitation by operating in the dual domain

where the problem is unconstrained (Section 4.3). Our main result on learning for constrained

optimization is to show that, its lack of convexity notwithstanding, the duality gap of (4.7) is

small for near-universal parameterizations (Theorem 3). This result justifies operating in the

dual domain as it does not entail a significant loss of optimality. A model-free primal-dual

method to train (4.7) is then introduced in Section 4.4 and neural network parameterizations

are described in Section 4.5.

4.3 Lagrangian Dual Problem

Solving the optimization problem in (4.7) requires learning both the parameter θ and the

ergodic average variables x over a set of both convex and non-convex constraints. This can

be done by formulating and solving the Lagrangian dual problem. To do so, introduce the

nonnegative multiplier dual variables λ ∈ Rp+ and µ ∈ Rr+, respectively associated with the

constraints x ≤ E
[
f
(
φ(h,θ),h

)]
and g(x) ≤ 0. The Lagrangian of (4.7) is an average of

objective and constraint values weighted by their respective multipliers:

Lφ(θ,x,λ,µ) := g0(x) + µTg(x) (4.9)

+ λT
(
E
[
f
(
φ(h,θ),h

)]
− x

)
.

With the Lagrangian so defined, we introduce the dual function Dφ(λ,µ) as the maximum

Lagrangian value attained over all x ∈ X and θ ∈ Θ

Dφ(λ,µ) := max
θ∈Θ,x∈X

Lφ(θ,x,λ,µ). (4.10)

We think of (4.10) as a penalized version of (4.7) in which the constraints are not enforced but

their violation is penalized by the Lagrangian terms µTg(x) and λT (E
[
f
(
φ(h,θ),h

)]
− x).

This interpretation is important here because the problem in (4.10) is unconstrained except

for the set restrictions θ ∈ Θ and x ∈ X . This renders (4.10) analogous to conventional

learning objectives and, as such, a problem that we can solve with conventional learning
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algorithms.

It is easy to verify and well-known that for any choice of λ ≥ 0 and µ ≥ 0 we have

Dφ(λ,µ) ≥ P ∗φ. This motivates definition of the dual problem in which we search for the

multipliers that make Dφ(λ,µ) as small as possible

D∗φ := min
λ,µ≥0

Dφ(λ,µ). (4.11)

The dual optimum D∗φ is the best approximation we can have of P ∗φ when using (4.10) as a

proxy for (4.7). It follows that the two concerns that are relevant in utilizing (4.10) as a

proxy for (4.7) are: (i) evaluating the difference between D∗φ and P ∗φ and (ii) designing a

method for finding the optimal multipliers that attains the minimum in (4.11). We address

(i) in Section 4.3.1 and (ii) in Section 4.3.2.

4.3.1 Suboptimality of the dual problem

The duality gap is the difference D∗φ − P ∗φ between the dual and primal optima. For convex

optimization problems this gap is null, which implies that one can work with the Lagrangian

as in (4.10) without loss of optimality. The optimization problem in (4.7), however, is

not convex as it incorporates the nonconvex constraint in (4.6). We will show here that

despite the presence of this nonconvex constraint the duality gap D∗φ − P ∗φ is small when

using parametrizations that are near universal in the sense of Definition 1. In proving this

result we need to introduce some restrictions to the problem formulation that we state as

assumptions next.

AS6. The probability distribution m(h) is nonatomic in H. I.e., for any set E ⊆ H of

nonzero probability there exists a nonzero probability strict subset E ′ ⊂ E of lower probability,

0 < Eh(I (E ′)) < Eh(I (E)).

AS7. Slater’s condition hold for the unparameterized problem in (4.2) and for the para-

metrized problem in (4.7). In particular, there exists variables x0 and p0(h) and a strictly

positive scalar constant s > 0 such that

E
[
f
(
p0(h),h

)]
− x0 ≥ s1. (4.12)

AS8. The objective utility function g0(x) is monotonically non-decreasing in each component.

I.e., for any x ≤ x′ it holds g0(x) ≤ g0(x′).

AS9. The expected performance function E
[
f
(
p(h),h

)]
is expectation-wise Lipschitz on

p(h) for all fading realizations h ∈ H. Specifically, for any pair of resource allocations
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p1(h) ∈ P and p2(h) ∈ P there is a constant L such that

E‖f(p1(h),h)− f(p2(h),h)‖∞ ≤ LE‖p1(h)− p2(h)‖∞. (4.13)

Although Assumptions 6-9 restrict the scope of problems (4.2) and (4.7), they still allow

consideration of most problems of practical importance. Assumption 7 simply states that

service demands can be provisioned with some slack. We point that an inequality analogous

to (4.12) holds for the other constraints in (4.2) and (4.7). However, it is only the slack s

that appears in the bounds we will derive. Assumption 8 is a restriction on the utilities

g0(x), namely that increasing performance values result in increasing utility. Assumption

9 is a continuity statement on each of the dimensions of the expectation of the constraint

function f—we point out this is weaker than general Lipschitz continuity. Referring back

to the problems discussed in Examples 2-4, it is evident that they satisfy the monotonicity

assumption in Assumption 8. Furthermore, the continuity assumption in Assumption 9 is

immediatley satisfied by the continuous capacity function in Examples 2 and 3, and is also

satisfied by the binary problem in Example 4 due to the bounded expectation of the capacity

function.

Assumption 6 states that there are no points of strictly positive probability in the

distributions m(h). This requires that the fading state h take values in a dense set with a

proper probability density – no distributions with delta functions are allowed. This is the

most restrictive assumption in principle if we consider systems with a finite number of fading

states. We observe that in reality fading does take on a continuum of values, though the

channel estimation algorithms may quantize estimates to a finite number of fading states.

We stress, however, that the learning algorithm we develop in the proceeding sections does

not depend upon this property, and may be directly applied to channels with discrete states.

The duality gap of the original (unparameterized) problem in (4.2) is known to be

null – see Appendix 4.8 and [103]. Given the validity of Assumptions 6 - 9 and using a

parametrization that is nearly universal in the sense of Definition 1, we show that the

duality/parametrization gap |D∗φ − P ∗| between problems (4.2) and (4.11) is small as we

formally state next.

Theorem 3. Consider the parameterized resource allocation problem in (4.7) and its Lag-

rangian dual in (4.11) in which the parametrization φ is ε-universal in the sense of Definition

1. If Assumptions 6–9 hold, then the dual value D∗φ is bounded by

P ∗ − ‖λ∗‖1Lε ≤ D∗φ ≤ P ∗, (4.14)
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where the multiplier norm ‖λ∗‖1 can be bounded as

‖λ∗‖1 ≤
P ∗ − g0(x0)

s
<∞, (4.15)

in which x0 is the strictly feasible point of Assumption 7.

Proof: See Appendix 4.8. �

Given any near-universal parameterization that achieves ε-accuracy with respect to all

resource allocation policies in P, Theorem 3 establishes an upper and lower bound on the

dual value in (4.11) relative to the optimal primal of the original problem in (4.2). The dual

value is not greater than P ∗ and, more importantly, not worse than a bias on the order

of ε. These bounds justify the use of the parametrized dual function in (4.10) as a means

of solving the (unparameterized) wireless resource allocation problem in (4.2). Theorem 3

shows that there exist a set of multipliers – those that attain the optimal dual value D∗φ –

that yield a problem that is within O(ε) of optimal.

It is interesting to observe that the duality gap P ∗ −D∗φ ≤ ‖λ∗‖1Lε has a very simple

dependance on problem constants. The ε factor comes from the error of approximating

arbitrary resource allocations p(h) with parametrized resource allocations φ(h,θ). The

Lipschitz constant L translates this difference into a corresponding difference between the

functions f
(
p(h),h

)
and f

(
φ(h,θ),h

)
. The norm of the Lagrange multiplier ‖λ∗‖1 captures

the sensibility of the optimization problem with respect to perturbations, which in this case

comes from the difference between f
(
p(h),h

)
and f

(
φ(h,θ),h

)
. This latter statement is

clear from the bound in (4.15). For problems in which the constraints are easy to satisfy,

we can find feasible points close the optimum so that P ∗ − g0(x0) ≈ 0 and s is not too

small. For problems where constraints are difficult to satisfy, a small slack s results in a

meaningful variation in P ∗ − g0(x0) and a large value for the ratio [P ∗ − g0(x0)]/s. We

point out that (4.15) is a classical bound in optimization theory that we include here for

completeness.

4.3.2 Primal-Dual learning

In order to train the parametrization φ(h,θ) on the problem (4.7) we propose a primal-dual

optimization method. A primal-dual method performs gradient updates directly on both the

primal and dual variables of the Lagrangian function in (4.9) to find a local stationary point

of the KKT conditions of (4.7). In particular, consider that we successively update both

the primal variables θ,x and dual variables λ,µ over an iteration index k. At each index

k of the primal-dual method, we update the current primal iterates θk,xk by adding the

corresponding partial gradients of the Lagrangian in (4.9), i.e. ∇θL,∇xL, and projecting to
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the corresponding feasible set, i.e.,

θk+1 = PΘ [θk + γθ,k∇θEf(φ(h,θk),h)λk] , (4.16)

xk+1 = PX [xk + γx,k(∇g0(x) +∇g(xk)µk − xk)] , (4.17)

where we introduce γθ,k, γx,k > 0 as scalar step sizes. Likewise, we perform a gradient update

on current dual iterates λk,µk in a similar manner—by subtracting the partial stochastic

gradients ∇λL,∇µL and projecting onto the positive orthant to obtain

λk+1 = [λk − γλ,k (Ehf(φ(h,θk+1),h)− xk+1)]+ , (4.18)

µk+1 = [µk − γµ,kg(xk+1)]+ , (4.19)

with associated step sizes γλ,k,γµ,k > 0. The gradient primal-dual updates in (4.16)-(4.19)

successively move the primal and dual variables towards maximum and minimum points of

the Lagrangian function, respectively.

The above gradient-based updates provide a natural manner by which to search for the

optimal point of the dual function Dφ. However, direct evaluation of these updates requires

both the knowledge of the functions g0, g, f , as well as the wireless channel distribution

m(h). We cannot always assume this knowledge is available in practice. Indeed, existing

models for, e.g., capacity functions, do not always capture the true physical performance

in practice. The primal-dual learning method presented is thus considered here only as a

baseline method upon which we can develop a completely model-free algorithm. The details

of model-free learning are discussed further in the following section.

4.4 Model-Free Learning

In this section, we consider that often in practice, we do not have access to explicit

knowledge of the functions g0, g, and f , along with the distribution m(h), but rather observe

noisy estimates of their values at given operating points. While this renders the direct

implementation of the standard primal-dual updates in (4.16)-(4.19) impossible, given their

reliance on gradients that cannot be evaluated, we can use these updates to develop a

model-free approximation. Consider that given any set of iterates and channel realization

{θ̃, x̃, h̃}, we can observe stochastic function values ĝ0(x̃), ĝ(x̃), and f̂(h̃,φ(h̃, θ̃)). For

example, we may pass test signals through the channel at a given power or bandwidth

to measure its capacity or packet error rate. These observations are, generally, unbiased

estimates of the true function values.

We can then replace the updates in (4.16)-(4.19) with so-called zeroth-ordered updates, in

which we construct estimates of the function gradients using observed function values. Zeroth-
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ordered gradient estimation can be done naturally with the method of finite differences,

in which unbiased gradient estimators at a given point are constructed through random

perturbations. Consider that we draw random perturbations x̂1, x̂2 ∈ Ru and θ̂ ∈ Rq from a

standard Gaussian distribution and a random channel state ĥ from m(h). Finite-difference

gradients estimates ∇̂g0, ∇̂g, and ∇̂θEf can be constructed using function observations at

given points {x0,θ0} and the sampled perturbations as

∇̂g0(x0) :=
ĝ0(x0 + α1x̂1)− ĝ0(x0)

α1
x̂1, (4.20)

∇̂g(x0) :=
ĝ(x0 + α3x̂2)− ĝ(x0)

α3
x̂T2 , (4.21)

∇̂θE[f(φ(h,θ0),h)] := (4.22)

f̂(φ(ĥ,θ0 + α2θ̂), ĥ)− f̂(φ(ĥ,θ0), ĥ)

α2
θ̂T ,

where we define scalar step sizes α1, α2, α3 > 0. The expressions in (4.20)-(4.22) provide

estimates of the gradients that can be computed using only two function evaluations. Indeed,

the finite difference estimators can be shown to be unbiased, meaning that that they coincide

with the true gradients in expectation—see, e.g., [90]. Note also in (4.22) that, by sampling

both the function f and a channel state ĥ, we directly estimate the expectation Ehf . We

point out that these estimates can be further improved by using batches of B samples,

{x̂(b)
1 , x̂

(b)
2 , θ̂(b), ĥ(b)}Bb=1, and averaging over the batch. We focus on the simple stochastic

estimates in (4.20)-(4.22), however, for clarity of presentation.

Note that, while using the finite difference method to estimate the gradients of the

deterministic function g0(x) and g(x) is relatively simple, estimating the stochastic policy

function Ehf(φ(h,θ),h) is often a computational burden in practice when the parameter

dimension q is very large—indeed, this is often the case in, e.g., deep neural network models.

An additional complication arises in that the function must be observed multiple times for

the same sample channel state ĥ to obtain the perturbed value. This might be impossible

to do in practice if the channel state changes rapidly. There indeed exists, however, an

alternative model free approach for estimating the gradient of a policy function, which we

discuss in the next subsection.

4.4.1 Policy gradient estimation

The ubiquity of computing the gradients of policy functions such as ∇θEf(φ(h,θ),h) in

machine learning problems has motivated the development of a more practical estimation

method. The so-called policy gradient method exploits a likelihood ratio property found

in such functions to allow for an alternative zeroth ordered gradient estimate. To derive
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the details of the policy gradient method, consider that a deterministic policy φ(h,θ) can

be reinterpreted as a stochastic policy drawn from a distribution with density function

π(p) defined with a delta function, i.e., πh,θ(p) = δ(p − φ(h,θ)). It can be shown that

the Jacobian of the policy constraint function Eh,φ[f(φ(h,θ),h)] with respect to θ can be

rewritten using this density function as

∇θEhf(φ(h,θ),h) = Eh,p[f(p,h)∇θ log πh,θ(p)T ], (4.23)

where p is a random variable drawn from distribution πh,θ(p)—see, e.g., [118]. Observe in

(4.23) that the computation of the Jacobian reduces to a function evaluation multiplied by

the gradient of the policy distribution ∇θ log πh,θ(p). Indeed, in the deterministic case where

the distribution is a delta function, the gradient cannot be evaluated without knowledge

of m(h) and f . However, we may approximate the delta function with a known density

function centered around φ(h,θ), e.g., Gaussian distribution. If an analytic form for πh,θ(p)

is known, we can estimate ∇θEhf(φ(h,θ),h) by instead directly estimating the left-hand

side of (4.23). In the context of reinforcement learning, this is called the REINFORCE

method [118]. By using the previous function observations, we can obtain the following

policy gradient estimate,

∇̂θEhf(φ(h,θ),h) = f̂(p̂θ, ĥ)∇θ log πĥ,θ(p̂θ)T , (4.24)

where p̂θ is a sample drawn from the distribution πh,θ(p).

The policy gradient estimator in (4.24) can be taken as an alternative to the finite

difference approach in (4.22) for estimating the gradient of the policy constraint function,

provided the gradient of the density function π can itself be evaluated. Observe in the

above expression that the policy gradient approach replaces a sampling of the parameter

θ ∈ Rq with a sampling of a resource allocation p ∈ Rm. This is indeed preferable for many

sophisticated learning models in which q � m. We stress that while policy gradient methods

are preferable in terms of sampling complexity, they come at the cost of placing an additional

approximation through the use of a stochastic policy analytical density functions π.

4.4.2 Model-free primal-dual method

Using the gradient estimates in (4.20)-(4.22)—or (4.24)—we can derive a model-free, or

zeroth-ordered, stochastic updates to replace those in (4.16)-(4.19). By replacing all function

evaluations with the function observations and all gradient evaluations with the finite
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difference estimates, we can perform the following stochastic updates

θk+1 = PΘ

[
θk + γθ,k∇̂θEhf(φ(h,θk),h)λk

]
, (4.25)

xk+1 = PX

[
xk + γx,k(∇̂g0(x) + ∇̂g(xk)µk − xk)

]
, (4.26)

λk+1 =
[
λk − γλ,k

(
f̂(φ(ĥk,θk+1), ĥk)− xk+1

)]
+

(4.27)

µk+1 = [µk − γµ,kĝ(xk+1)]+ . (4.28)

The expressions in (4.25)-(4.28) provides means of updating both the primal and dual

variables in a primal-dual manner without requiring any explicit knowledge of the functions

or channel distribution through observing function realizations at the current iterates. We

may say this method is model-free because all gradients used in the updates are constructed

entirely from measurements, rather than analytic computation done via model knowledge.

The complete model-free primal-dual learning method can be summarized in Algorithm 3.

The method is initialized in Step 1 through the selection of parameterization model φ(h,θ)

and form of the stochastic policy distribution πh,θ and in Step 2 through the initialization of

the primal and dual variables. For every step k, the algorithm begins in Step 4 by drawing

random samples (or batches) of the primal and dual variables. In Step 5, the model functions

are sampled at both the current primal and dual iterates and at the sampled points. These

function observations are then used in Step 6 to form gradient estimates via finite difference

(or policy gradient). Finally, in Step 7 the model-free gradient estimates are used to update

both the primal and dual iterates.

We briefly comment on the known convergence properties of the model-free learning

method in (4.25)-(4.28). Due to the non-convexity of the Lagrangian defined in (4.9),

the stochastic primal-dual descent method will converge only to a local optima and is

not guaranteed to converge to a point that achieves D∗θ. These are indeed the same

convergence properties of general unconstrained non-convex learning problems as well. We

instead demonstrate through numerical simulations the performance of the proposed learning

method in practical wireless resource allocation problems in the proceeding section.

Remark 11. The algorithm presented in Algorithm 3 is generic in nature and can be supple-

mented with more sophisticated learning techniques that can improve the learning process.

Some examples include the use of entropy regularization to improve policy optimization

in non-convex problems [52]. Policy optimization can also be improved using actor-critic

methods [117], while the use of a model function estimate to obtain “supervised” training

signals can be used to initialize the parameterization vector θ. The use of such techniques in

optimal wireless design are not explored in detail here and left as the study of future work.

78



Algorithm 3 Model-Free Primal-Dual Learning

1: Parameters: Policy model φ(h,θ) and distribution form πh,θ
2: Input: Initial states θ0,x0,λ0µ0

3: for [ domain loop]k = 0, 1, 2, . . .
4: Draw samples {x̂1, x̂2, θ̂, ĥk}, or in batches of size B
5: Obtain random observation of function values ĝ0, f̂ ĝ at current and sampled iterates
6: Compute gradient estimates ∇̂g0(x), ∇̂g(x), ∇̂θEh,φf(φ(h,θ),h), [cf. (4.20)-(4.22)

or (4.24)]
7: Update primal and dual variables [cf. (4.25)-(4.28)]

θk+1 = PΘ

[
θk + γθ,k∇̂θEhf(φ(ĥk,θk), ĥk)λk

]
,

xk+1 = PX

[
xk + γx,k(∇̂g0(x) + ∇̂g(xk)µk − xk)

]
,

λk+1 =
[
λk − γλ,k

(
f̂(φ(ĥk,θk+1), ĥk)− xk+1

)]
+

µk+1 = [µk − γµ,kĝ(xk+1)]+ .

8: end for
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Figure 4.1: Typical architecture of fully-connected deep neural network.

4.5 Deep Neural Networks

We have so far discussed a theoretical and algorithm means of learning in wireless systems

by employing any near universal parametrization as defined in Definition 1. In this section,

we restrict our attention to the increasingly popular set of parameterizations known as deep

neural networks (DNNs), which are often observed in practice to exhibit strong performance

in function approximation. In particular, we discuss the details of the DNN parametrization

model and both the theoretical and practical implications within our constrained learning

framework.

The exact form of a particular DNN is described by what is commonly referred to

as its architecture. The architecture consists of a prescribed number of layers, each of

which consisting of a linear operation followed by a point-wise nonlinearity—also known
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as an activation function. In particular, consider a DNN with L layers, labelled l =

1, . . . , L and each with a corresponding dimension ql. The layer l is defined by the linear

operation Wl ∈ Rql−1×ql followed by a non-linear activation function σl : Rql → Rql .
If layer l receives as an input from the l − 1 layer wl−1 ∈ Rql−1 , the resulting output

wl ∈ Rql is then computed as wl := σl(Wlwl−1). The final output of the DNN, wL, is

then related to the input w0 by propagating through each later of the DNN as wL =

σL(WL(σL−1(WL−1(. . . (σ1(W1w0)))))).

An illustration of a fully-connected example DNN architecture is given in Figure 4.1.

In this example, the inputs w are passed through a single hidden layer, following which is

an output layer. The grey lines between layers reflect the linear transformation Wl, while

each node contains an additional element-wise activation function σl. This general DNN

structure has been observed to have remarkable generalization and approximation properties

in a variety of functional parameterization problems.

The goal in learning DNNs in general then reduces to learning the linear weight functions

W1, . . . ,WL. Common choices of activation functions σl include a sigmoid function, a

rectifier function (commonly referred to as ReLu), as well as a smooth approximation to the

rectifier known as softplus. For the parameterized resource allocation problem in (4.7), the

policy φ(h,θ) can be defined by an L-layer DNN as

φ(h,θ) := σL(WL(σL−1(WL−1(. . . (σ1(W1h)))))), (4.29)

where θ ∈ Rq contains the entries of {Wl}Ll=1 with q =
∑L−1

l=1 qlql+1. Note that q1 = n by

construction.

To contextualize the primal-dual algorithm in (4.16)-(4.19) with respect to traditional

neural network training, observe that the update in (4.16) requires computation of the

gradient ∇θEhf(h,φ(h,θ)). Using the chain rule, this can be expanded as

∇θEhf(φ(h,θk),h) = (4.30)

∇φEhf(φ(h,θk),h)∇θφ(h,θk).

Thus, the computation of the full gradient requires evaluating the gradient of the policy

function f as well as the gradient of the DNN model φ. For the DNN structure in (4.29),

the evaluation of ∇θφ may itself also require a chain rule expansion to compute partial

derivatives at each layer of the network. This process of performing gradient descent to find

the optimal weights in the DNN is commonly referred to as backpropogation.

We further take note how our learning approach differs from a more traditional, supervised

training of DNNs. As in (4.30), the backpropogation is performed with respect to the given

policy constraint function f , rather than with respect to a Euclidean loss function over a set
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of given training data. Furthermore, due to the constraints, the backpropogation step in

(4.16) is performed in sequence with the more standard primal and dual variable updates in

(4.17)-(4.19). In this way, the DNN is trained indirectly within the broader optimization

algorithm used to solve (4.7). This is in contrast with other approaches of training DNNs in

constrained wireless resource allocation problems—see, e.g. [69,70,115]—which train a DNN

to approximate the complete constrained maximization function in (4.2) directly. Doing so

requires the ability to solve (4.2) either exactly or approximately enough times to acquire

a labeled training set. The primal-dual learning approach taken here is preferable in that

it does not require the use of training data. The dual problem can be seen as a simplified

reinforcement learning problem—one in which the actions do not affect the next state.

For DNNs to be valid parametrization with respect to the result in Theorem 3, we must

first verify that they satisfy the near-universality property in Definition 1. Indeed, deep neural

networks are popular parameterizations for arbitrary functions precisely due to the richness

inherent in (4.29), which in general grows richer with number of layers L and associated layer

sizes ql. This richness property of DNNs has been the subject of mathematical study and

formally referred to as a complete universal function approximation [24,59]. In words, this

property implies that a large class of functions p(h) can be approximated with arbitrarily

small accuracy ε using a DNN parameterization of the form in (4.29) with only a single layer

of arbitrarily large size. With this property in mind, we can present the following theorem

that extends the result in Theorem 3 in the special case of DNNs.

Theorem 4. Consider the DNN parametrization φ(h,θ) in (4.29) with non-constant,

continuous activation functions σl for l = 1, . . . , L. Define the vector of layer lengths

q = [q1; q2; . . . ; qL] and a DNN defined in (4.29) with lengths q as φq(h,θ). Now consider

the set of possible L-layer DNN parameterization functions Φ := {φq(h,θ) | q ∈ NL}. If

Assumptions 6–9 hold, then the optimal dual value of the parameterized problem satisfies

inf
φ∈Φ

D∗φ = P ∗. (4.31)

Proof: See Appendix 4.9. �

With Theorem 4 we establish the null duality gap property of a resource allocation

problem of the form in (4.7) given a DNN parameterization that achieves arbitrarily small

function approximation accuracy as the dimension of the DNN parameter—i.e. the number

of hidden nodes—grows to infinity. While such a parametrization is indeed guaranteed to

exist through the universal function approximation theorem, one would require a DNN with

arbitrarily large size to obtain such a network in practice. As such, the suboptimality bounds

presented in Theorem 3, which require only an DNN-approximation of given accuracy ε

provide the more practical characterization of (4.7), while the result in Theorem 4 suggests
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hi
µi

σi

Figure 4.2: Neural network architecture used for simple AWGN channel. Each channel state hi is fed
into an independent SISO network with two hidden layers of size 8 and 4, respectively. The DNN
outputs a mean µi and standard deviation σi for a truncated Gaussian distribution.

DNNs can be used find parameterizations of arbitrarily strong accuracy.

4.6 Simulation Results

In this section, we provide simulation results on using the proposed primal-dual learning

method to solve for DNN-parameterizations of resource allocation in a number of common

problems in wireless communications that take the form in (4.2). For the simulations

performed, we employ a stochastic policy and implement the REINFORCE-style policy

gradient described in Section 4.4.1. In particular, we select the policy distribution πθ,h as a

truncated Gaussian distribution. The truncated Gaussian distribution has fixed support on

the domain [0, pmax]. The output layer of the DNN φ(h,θ) ∈ R2m is the set of m means

and standard deviations to specify the respective truncated Gaussian distributions, i.e.

φ(h,θ) := [µ1;σ1;µ2;σ2; . . . ;µm;σm]. Furthermore, to represent policies that are bounded

on the support interval, the output of the last layer is fed into a scaled sigmoid function

such that the mean lies in the area of support and the variance is no more than the square

root of the support region. In the following experiments, this interval is [0, 10].

For updating the primal and dual variables, we use a batch size of 32. The primal

dual method is performed with an exponentially decaying step size for dual updates and

the ADAM optimizer [65] for the DNN parameter update. Both updates start with a

learning rate of 0.0005, while random channel conditions are generated with an exponential

distribution with parameter λ = 2 (to represent the square of a unit variance Rayleigh fading

channel state).
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Figure 4.3: Convergence of (left) objective function value, (center) constraint value, and (right) dual
parameter for simple capacity problem in (4.32) using proposed DNN method with policy gradients,
the exact unparameterized solution, and an equal power allocation amongst users. The DNN
parameterization obtains near-optimal performance relative to the exact solution and outperforms
the equal power allocation heuristic.

4.6.1 Simple AWGN channel

To begin, we simulate the learning of a DNN to solve the problem of maximizing total

capacity over a set of simple AWGN wireless fading channel. In this case, each user is given

a dedicated channel to communicate, and we wish to allocate resources between users within

a total expected power budget pmax. In this case, the capacity over the channel can be

modeled as log(1 + SNRi), where SNRi := hipi(hi)/vi is the signal-to-noise ratio experienced

by user i and vi > 0 is the noise variance. The capacity function for the ith user is thus

given by f i(pi(hi), hi) := log(1 + hipi(hi)/vi). We are interested in maximizing the weighted

aggregate throughput across all users, with user i weighted by wi ≥ 0. The total capacity

problem can be written as

P ∗φ := max
θ,x

m∑
i=1

wixi (4.32)

s. t. xi ≤ Ehi
[
log(1 + hiφi(hi,θ)/vi)

]
, ∀i

Eh

[
m∑
i=1

φi(hi,θ)

]
≤ pmax.

Note that, despite the non-convex structure of the problem in (4.32), the loose coupling over

the resource allocation variables allows for this problem to be solved exactly without any

DNN parametrization using a simple dual stochastic gradient (SGD) method—see, e.g., [125].

Nonetheless, this is an instructive example with which to validate our approach by seeing

if the DNN is capable of learning resource allocation policies that closely match the exact

optimal solutions found without any parametrization. Furthermore, the model-free learning

capabilities of the DNN parametrization make the proposed learning method applicable in

cases in which the, e.g., capacity function is not known.
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Figure 4.4: Example of 8 representative resource allocation policy functions found through DNN
parameterization and unparameterized solution. Although the policies differ from the analytic
solution, many contain similar shapes. Overall, the DNN method learns variations on the optimal
policies that nonetheless achieve similar performance.
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To have the the outputs of the DNN match the same form as the analytic solution

(4.32), we construct m independent, uncoupled DNNs for each user. Each channel gain hi

is provided as input to a single-input-single-output (SISO) DNN, which outputs a power

allocation pi(hi). In particular, each DNN is constructed with two hidden layers, of size 8 and

4, respectively. In addition, each layer is given a ReLU activation function, i.e. �(z) = [z]+;

see Figure 4.2 for the architecture.

The results of a simple experiment with m = 20 users with random weights wi and

variances vi is shown in Figure 4.3. We further set the maximum power as pmax = 20. In

this plot we compare the performance of the DNN primal dual learning method with the

exact, unparameterized solution and an equal power allocation policy. In the equal power

allocation policy, we allocate a power of pi = pmax/m for all users. Here we see in the left

figure that the the total capacity achieved by the DNN primal-dual method converges to

roughly the same value as the exact solution found by SGD. Likewise, in the center figure,

we plot the value of the constraint function. Here, we see that primal-dual converges to 0,

thus implying feasibility of the learned policy. Finally, in the left figure we see that the dual

variable obtained by the DNN matches that of the unparameterized.

Remark 12. Observe that the learning process may take many iterations to converge than

the unparameterized solution due to the many parameters that need to be learned and the

model-free nature of the learning process. It is generally the case that the training is done

offline before implementation, in which the case the learning rate does not play a significant

factor. In the case in which the weights wi and channel noise power vi may change over time,

we may use the existing as a “warm-start” to quickly adapt to the changes in the model.

For problem parameters that are changing fast, there have been higher order optimization

methods that have been proposed to adapt to changing conditions of the problem [31].

In Figure 4.4 we show the actual learned policies from both methods for 8 example

users. Here, comparing the optimal unparameterized policies to those learned with DNNs,

we see in some cases the policies learned with the DNN match the shape and function, while

others differ. For instance, the fourth user shown in Fig 4.4 is not assigned any resources

by the DNN-based policy, while the seventh user is likewise not given any resources by the

unparameterized policy. In any case, the overall performance achieved matches that of the

the exact solution. We further note that this phenomenon of certain users not being given

any resources in both policies occurs because our only goal in (4.32) is to maximize the

sum-capacity, which does not necessitate that every user gets to transmit. To impose this

condition, we may add a constraint to (4.32) that specifies a maximum average capacity for

all users to achieve.

For a more thorough comparison of the DNN approach to the exact solution to (4.32),

we perform multiple experiments for varying number of users and with different DNN layer
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Figure 4.5: Optimality gap between optimal objective value and learned policy for the simple capacity
problem in (4.32) for different number of users m and DNN architectures. The results are obtained
across 10 randomly initialized simulations. The mean is plotted as the solid lines, while the one
standard deviation above and below the mean is show with error bars.

sizes. In Figure 4.5, we plot the normalized optimality gap between the precise solution P ∗

and the parameterized solution P̂ ∗φ found after convergence of the primal-dual method. If

we define P ∗(m) and P̂ ∗φ(m) to be the sum capacities achieved by the optimal policy and

DNN-based policy found after 40,000 learning iterations, respectively, with m users, the

normalized optimality gap can be computed as

γ(m) :=

∣∣∣∣∣ P̂ ∗φ(m)− P ∗(m)

P ∗(m)

∣∣∣∣∣ . (4.33)

The blue line shows the results for small DNNs with layer sizes 4 and 2, while the red line

shows results for networks with hidden layers of size 32 and 16. Observe that, as the number

of channels grows, the DNNs of fixed size achieve the same optimality. Further note that,

while the blue line shows that even small DNNs can find near-optimal policies for even

large networks, increasing the DNN size increases the expressive power of the DNN, thereby

improving upon the suboptimality that can be obtained.

4.6.2 Interference channel

We provide further experiments on the use of neural networks in maximizing capacity

over the more complex problem of allocating power over an (IC) interference channel. We

first consider the problem of m transmitters communicating with a common receiver, or

base station. Given the fading channels h := [h1; . . . ;hm], the capacity is determined

using the signal-to-noise-plus-interference ratio (SNIR), which for transmission i is given

as SNIRi := hipi(h))/(vi +
∑

j 6=i h
jpj(h)). The resulting capacity function observed by the

receiver from user i is then given by f i(pi(h),h) := log(1 + hiipi(h)/(vi +
∑

j 6=i h
jipj(h)))
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Figure 4.6: Neural network architecture used for interference channel problem in (4.34). All channel
states h are fed into a MIMO network with two hidden layers of size 32 and 16, respectively (each
circle in hidden layers represents 4 neurons). The DNN outputs means µi and standard deviations
σi for i truncated Gaussian distributions.

and the DNN-parameterized problem is written as

P ∗φ := max
θ,x

m∑
i=1

wixi (4.34)

s. t. xi ≤ Eh

[
log

(
1 +

hiφi(h,θ)

vi +
∑

j 6=i h
iφj(h,θ)

)]
, ∀i

Eh

[
m∑
i=1

φi(h,θ)

]
≤ pmax.

Here, the coupling of the resource policies in the capacity constraint make the problem

in (4.34) very challenging to solve. Existing dual method approaches are ineffective here

because the non-convex capacity function cannot be minimized exactly. This makes the

primal-dual approach with the DNN parametrization a feasible alternative. However, this

means that we cannot provide comparison to the analytic solution, but instead compare

against the performance of some standard, model-free heuristic approaches.

As the power allocation of user i will depend on the channel conditions of all users,

due to the coupling in the interference channel, rather than the m SISO networks used in

the previous example, we construct a single multiple-input-multiple-output (MIMO) DNN

architecture, shown in Figure 4.6, with a two layers of size 32 and 16 hidden nodes. In

this architecture, all channel conditions h are fed as inputs to the DNN, which outputs

the truncated Gaussian distribution parameters for every user’s policy. In Figure 4.7 we

plot the convergence of the objective value and constraint value learned using the DNN

parameterization and those obtained by three model-free heuristics for a system with m = 20

users. These include (i) an equal division of power pmax = 20 across all m users, (ii) randomly

selecting 4 users to transmit with power p = 5, and (iii) randomly selecting 3 users to
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Figure 4.7: Convergence of (left) objective function value and (right) constraint value for interference
capacity problem in (4.34) using proposed DNN method, WMMSE, and simple model free heuristic
power allocation strategies m = 20 users. The DNN-based primal dual method learns a policy that
achieves close performance to WMMSE, better performance than the other model free heuristics,
and moreover converges to a feasible solution.

transmit with power p = 6. While not a model free method, we also compare performance

against the well-known heuristic method WMMSE [111]. Here, we observe that, as in the

previous example, all values converge to stationary points, suggesting that the method

converges to a local optimum. We can also confirm in the right plot of the constraint value

that the learned policy is indeed feasible. It can be observed that the performance of the

DNN-based policy leaned with the primal dual method is superior to that of the other model

free heuristic methods, while obtaining close performance to that of WMMSE, which we

stress does indeed require model information to implement.

To study another key aspect of the parameters of the DNN—namely the output distribu-

tion πθ,h—we make a comparison against the performance achieved using two natural choices

for distribution in the power allocation problem in (4.34). The primary motivation behind

using a truncated Gaussian is that the parameters, namely mean and variance, are easy to

interpret and learn. The Gamma distribution, alternatively, has parameters that are less

interpretable in this scenario and the outputs may vary as the parameters change. In Figure

4.8 we demonstrate the comparison of performance between using a Gamma distribution and

the truncated Gaussian distribution. Here, we observe that the performance of the method

does indeed rely on proper choice of output distribution, as it can be seen that the truncated

Gaussian distribution induces stronger performance relative to a Gamma distribution.

Our last series of experiment concerns the classical problem in interference management

in which there are m transmitter/receiver pairs sending information to each other. The

allocation policy for each user is given as a binary decision αi ∈ {0, 1} of whether or not to

transmit with power p0—a variation of this problem is described further detail in Example

3. In this case, the SNIR for transmission i can be given as SNIRi := hiip0α
i(h))/(vi +
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Figure 4.8: Comparison of performance using Gamma and truncated Gaussian distributions in output
layer of a DNN.

p0
∑

j 6=i h
jiαj(h)). The DNN-parameterized problem is written as

P ∗φ := max
θ,x

m∑
i=1

wixi (4.35)

s. t. xi ≤ Eh

[
log

(
1 +

hiip0φ
i(h,θ)

vi + p0
∑

j 6=i h
jiφj(h,θ)

)]
, ∀i

Eh

[
m∑
i=1

φi(h,θ)

]
≤ pmax, φ(h,θ) ∈ {0, 1}m.

As the case in (4.34), this problem cannot be solved exactly. We instead compare the

performance against that of the random selection heuristic considered in previous examples.

We plot in Figure 4.9 the performance achieved during the learning process for the

DNN against the performance of WMMSE and heuristic that randomly selects 2 users to

transmit. These simulations are performed on a system of size m = 5 with a maximum

power of pmax = 20 and unit weights and variances wi = vi = 1. The DNN has the same

fully-connected architecture as used in the previous example. However, given the binary

nature of the allocation policies, we employ a Bernoulli distribution as the output policy

distribution. In Figure 4.9, we observe that using a DNN learning model, we in fact learn a

policy that is close to matching the performance that can be obtained using the WMMSE

heuristic and outperforms other model-free heuristics. We further note in the right figure

that the learned policy is indeed feasible. This demonstrates the ability of the generic

primal-dual learning method to either match or exceed the performance given by heuristic
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Figure 4.9: Convergence of (left) objective function value and (right) constraint value for interference
capacity problem in (4.35) using proposed DNN method, heuristic WMMSE method, and the equal
power allocation heuristic for m = 5 users. The DNN-based primal dual method learns a policy that
is feasible and almost matches the WMMSE method in terms of achieved sum-capacity, without
having access to capacity model.

methods that are specifically designed to solve certain problems when applied to problems

that do not have a known exact solution. We also stress that the proposed learning method

learned such a policy using the model-free learning, thereby not having access to the model

for the capacity function, which is necessary in the WMMSE method.

4.7 Conclusion

In this paper, we studied a generic formulation for resource allocation in wireless systems.

The functional-optimization, non-convex constraints, and lack of model knowledge makes

these problems challenging, if not impossible, to solve directly. We used the concept of

universal function approximation of deep neural networks and the theory of Lagrangian

duality to show that, despite the non-convex nature of these problems, they can be formulated

with a finite-dimensional, unconstrained optimization problem in the dual domain with

either bounded suboptimality, or in the case of arbitrarily large DNNs, precise optimality

with respect to the original problem. The dual domain formulation motivates solving via the

use of primal-dual descent methods, which can furthermore be replaced with zeroth-ordered

equivalents that estimate gradients without explicit model knowledge. We additionally

perform a variety of simulations on common resource allocation problems that demonstrate

the effectiveness in DNN-parameterizations to find accurate solutions.

4.8 Proof of Theorem 3

To inform the analysis of the suboptimality of D∗φ from (4.11), we first present an established

result previously referenced, namely the null duality gap property of the original problem in

(4.7). We proceed by presenting the associated Lagrangian function and dual problem for

90



the constrained optimization problem in (4.2):

L(p(h),x,µ,λ) := g0(x) + µTg(x) (4.36)

+ λT (Eh [f(p(h),h)]− x) ,

D∗ := min
λ,µ≥0

max
p∈P,x∈X

L(p(h),x,µ,λ). (4.37)

Despite non-convexity of (4.2), a known result established in [103] demonstrates that problems

of this form indeed satisfy a null duality gap property given the technical conditions previously

presented. Due to the central role it plays in the proceeding analysis of (4.11), we present

this theorem here for reference.

Theorem 5. [103, Theorem 1] Consider the optimization problem in (4.2) and its Lag-

rangian dual in (4.37). Provided that Assumptions 6 and 7 hold, then the problem in (4.2)

exhibits null duality gap, i.e., P ∗ = D∗.

With this result in mind, we begin to establish the result in (4.14) by considering the

upper bound. First, note that the dual problem of (4.7) defined in (4.11) can be written as

D∗φ = min
λ,µ≥0

{
max
x∈X

g0(x) + µTg(x)− λTx

+ max
θ∈Θ

λTEh [f(φ(h,θ),h)]

}
. (4.38)

Focusing on the second term, observe then that for any solution p∗(h) of (4.2), it holds that

max
θ∈Θ

λTEh [f(φ(h,θ),h)] = λTEh [f(p∗(h),h)]

+ max
θ∈Θ

λTEh [f(φ(h,θ),h)− f(p∗(h),h)] . (4.39)

Since Pφ ⊆ P , it must be that g0(x?θ) ≤ g0(x?), where x? and x?θ are the maximizers of (4.2)

and (4.7) respectively. Because g0 is monotonically non-decreasing, the ergodic constraint

holds with equality and g0(x
?
θ) ≤ g0(x?) implies that

Eh [f(h,φ(h,θ?))] = x?θ ≤ x? = Eh [f(p∗(h),h)] ,

where θ? is a solution of (4.7). By optimality, it holds that Eh [f(φ(h,θ),h)− f(p∗(h),h)] ≤
0 for all θ ∈ Θ. Since λ ≥ 0, (4.39) yields

max
θ∈Θ

λTEh [f(φ(h,θ),h)] ≤ λTEh [f(p∗(h),h)] . (4.40)

Substituting (4.40) back into (4.38) and using the strong duality result from Theorem 5, we
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obtain

D∗φ ≤ min
λ,µ≥0

max
x∈X

g0(x) + µTg(x)− λTx

+ λTEh [f(p∗(h),h)] = D∗ = P ∗, (4.41)

where we used the fact that the right-hand side of the inequality in (4.41) is the optimal

dual value of problem (4.2) as defined in (4.37).

We prove the lower bound in (4.14) by proceeding in a similar manner, i.e., by manipu-

lating the expression of the dual value in (4.38). In contrast to the previous bound, however,

we obtain a perturbed version of (4.2) which leads to the desired bound. Explicitly, notice

that for all p ∈ P it holds that

max
θ∈Θ

λTEh [f(φ(h,θ),h)] = λTEh [f(p(h),h)]

−min
θ∈Θ

λTEh [f(p(h),h)− f(φ(h,θ),h)] , (4.42)

where we used the fact that for any f0 and Y , it holds that maxy∈Y f0(y) = −miny∈Y −f0(y).

Then, apply Hölder’s inequality to bound the second term in (4.42) as

min
θ∈Θ

λTEh [f(p(h),h)− f(φ(h,θ),h)]

≤ ‖λ‖1
[
min
θ∈Θ
‖Eh [f(p(h),h)− f(φ(h,θ),h)] ‖∞

]
. (4.43)

To upper bound the minimization in (4.43), start by using the convexity of the infinity norm

and the continuity of Ehf(h, ·) to obtain

min
θ∈Θ
‖Eh [f(p(h),h)− f(φ(h,θ),h)] ‖∞

≤ min
θ∈Θ

Eh [‖f(p(h),h)− f(φ(h,θ),h)‖∞]

≤ min
θ∈Θ

Eh [L‖p(h)− φ(h,θ)‖∞] .

The definition in (4.8) then readily gives

min
θ∈Θ
‖Eh [f(p(h),h)− f(φ(h,θ),h)] ‖∞ ≤ Lε. (4.44)

Substituting (4.43) and (4.44) into (4.42) yields

max
θ∈Θ

λTEh [f(φ(h,θ),h)] ≥ λTEh [f(p(h),h)]− ‖λ‖1Lε,

92



which we can then use in the definition of the dual value (4.38) to obtain

D∗φ ≥ min
λ,µ≥0

max
x∈X

g0(x) + µTg(x)− λTx

+ λTEh [f(p(h),h)]− ‖λ‖1Lε. (4.45)

We are now ready to derive the perturbed version of (4.2) in order to obtain our lower

bound. To do so, notice that λ ≥ 0 implies that ‖λ‖1 = λT1, where 1 is a column vector of

ones. Since (4.45) holds for all p ∈ P, we get

D∗φ ≥ min
λ,µ≥0

max
x∈X

g0(x) + µTg(x)− λTx

+ max
p∈P

λT {Eh [f(p(h),h)]− Lε1} . (4.46)

Now, observe that the right-hand side of (4.46) is the dual value of an (Lε)-perturbed version

of (4.2)

P ∗Lε := max
p,x

C(x)

s. t. Lε1 + x ≤ Eh [f(p(h),h)] , 0 ≤ g(x),

x ∈ X , p ∈ P (4.47)

Naturally, (4.47) has the same strong duality property as (4.2) from Theorem 5, which

implies that D∗φ ≥ D∗Lε = P ∗Lε. A well-known perturbation inequalitiy, e.g., [14, Eq. (5.57)],

relates P ∗Lε to P ∗ as

P ∗Lε ≥ P ∗ − ‖λ∗‖1Lε. (4.48)

Combining (4.48) with D∗φ ≥ P ∗Lε, we obtain (4.14).

We proceed to prove the bound in (4.15). Note that the strong duality result in Theorem 5

implies that

P ∗ = D∗ = max
p∈P,x∈X

g0(x) + µ∗Tg(x)

+ λ∗T (Eh [f(p(h),h)]− x)

≥ g0(x′) + µ∗Tg(x′)

+ λ∗T
(
Eh

[
f(h,p′(h))

]
− x′

)
,

(4.49)

where (λ∗,µ∗) are the minimizers of (4.37) and (x′,p′) are arbitrary feasible points of (4.2).

Since Slater’s condition holds, we can choose (x′,p′) to be strictly feasible, i.e., such
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that g(x′) > 0 and Eh [f(h,p′(h))] > x′, to obtain

P ∗ ≥ g0(x′) + λ∗T
(
Eh

[
f(h,p′(h))

]
− x′

)
≥ g0(x′) + λ∗T1 · s, (4.50)

where s = mini Eh [fi(h,p
′(h))]− x′i as defined in Assumption 7, with f = [fi] and x′ = [xi].

Note that s > 0 since x′ is strictly feasible. Finally, since λ∗ ≥ 0, we can rearrange (4.50) to

obtain

‖λ∗‖1 ≤
P ∗ − g0(x′)

s
. (4.51)

4.9 Proof of Theorem 4

We start by presenting the well-established result that a DNN of arbitrarily large size is a

universal parameterization for measurable functions in probability.

Theorem 6. [59, Theorem 2.2] Define D = {φ(·,θ) : θ ∈ Rq} to be the set of all functions

described by the DNN in (4.29) with σl non-constant and continuous for all l = 1, . . . , L.

Then, for an arbitrarily large number q of hidden nodes, D is dense in probability in the set

of measurable functions M, i.e., for every function p̂(h) ∈M and all ε̃ > 0, there exists a

q > 0 and θ ∈ Rq such that

m ({h ∈ H : ‖p̂(h)− φ(h,θ)‖∞ > ε̃}) < ε̃. (4.52)

Using Theorem 6, we can show that DNNs satisfy the ε-universality condition from

Definition 1 for all ε > 0.

Lemma 4. The entire class of DNN parameterizations φ ∈ Φ, where φ is defined in (4.29)

with non-constant, continuous activation σl for some layer size q > 0, is an ε-universal

parametrization as in Definition 1 for all ε > 0.

Proof. Let Kε′ = {h ∈ H : ‖p̂(h) − φ(h,θ)‖∞ > ε′} ⊆ H and observe that (4.8) can be

written as

E ‖p(h)− φ(h,θ)‖∞ =

∫
H\Kε′

‖p(h)− φ(h,θ)‖∞ dm(h)

+

∫
Kε′
‖p(h)− φ(h,θ)‖∞ dm(h),

where m is the probability measure from which the channel state is drawn. It is ready

that the first integral is upper bounded by ε′ ·m(H \ Kε′) < ε′ ·m(H) < ε′ for all ε′ > 0.

To bound the second integral, recall that the set of feasible policies P is bounded and
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let Γ = sup{‖p̂(h)‖∞ : p̂ ∈ P and h ∈ H} <∞. Then, from (4.52), we obtain the following

bound over all DNNs φ, i.e.

inf
φ∈Φ

∫
Kε′
‖p(h)− φ(h,θ)‖∞ dm(h) < 2Γ ·m(Kε′) < 2Γε′.

Thus, for all ε′ > 0,

inf
φ∈Φ

E ‖p(h)− φ(h,θ)‖∞ < (1 + 2Γ )ε′. (4.53)

Taking ε′ = ε/(1 + 2Γ ) in (4.53) yields (4.8).

Lemma 4 implies that the dual value bound (4.14) from Theorem 3 holds for all ε > 0 if

we consider the entire class of DNN functions φ ∈ Φ. Since the Lipschitz constant L <∞,

the only obstacle to completing a continuity argument is if ‖λ∗‖1 is unbounded. However,

recall from (4.15) that

‖λ∗‖1 ≤
P ∗ − g0(x0)

s
<∞. (4.54)

Hence, we obtain that

P ∗ − δ ≤ inf
φ∈Φ

D∗φ ≤ P ∗

for all δ > 0 (simply take ε = δ ‖λ∗‖−11 L−1 > 0). Then, there would exist δ′ > 0 such

that P ∗ > D∗φ + δ′ (e.g., take δ′ to be the midpoint between P ∗ and D∗φ), which would

contradict Theorem 3. Hence, infφD
∗
φ = P ∗.
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Chapter 5

Wireless Resource Allocation with

Graph Neural Networks

5.1 Introduction

The design of wireless systems has become an integral part of recent developments in large

scale intelligent systems, from robotics to the Internet of Things. Such a design requires the

balancing of the numerous utilities and constraints of large networks of wireless connected

devices. At a high level, the problem of optimal design can be viewed as the allocation

of a finite set of resources to achieve strong average performance over the randomly noisy

wireless channel. Problems of this form range from power control to the optimization of

frequency division multiplexing [126], beamforming [8, 112], and random access [61,62].

The optimal resource allocation can, in general, be formulated as an optimization

problem that maximizes the expected capacity over all devices subject to a set of system

constraints. While this problem can be easily formulated, both the non-convexity and infinite

dimensionality inherent in the problem makes it generally challenging to solve. Simpler

wireless systems of this form can be solved in the Lagrangian dual domain [103,136] and

subsequently solved using dual descent methods—see, e.g. [47,124,138] for applications of this

approach. All such approaches invariably require accurate system models and may require

prohibitivley large computational complexity for each allocation decision. Alternatively,

heuristic optimization and scheduling methods have been developed for the more canonical

resource allocation problems [18,87,111,130].

In contrast to such model-based heuristics, more recent work has applied machine learning

and regression techniques to solve resource allocation problems. Machine learning methods

train a generic learning model, such as a deep neural network (DNN), to approximate the

behavior of resource allocation strategies for a wide variety of problems. One such approach

follows the tenants of supervised learning, or in other words fitting a neural network to
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a training set of solutions obtained using a specific algorithm [70, 115, 121, 131]. These

techniques are useful in their simplicity and relative effectiveness—neural networks are

well suited for finding good local minima in loss functions typically used in supervised

learning, e.g. Euclidean loss. However, supervised learning techniques are limited by both

the availability of solutions needed to built a training set as well as the accuracy of such

solutions. The former limitation implies supervised learning can only be used in resource

allocation problems with existing heuristic solutions, while the latter limitation implies that

the learning model will only meet the performance of such heuristics but never exceed them.

A more promising approach in learning for resource allocation uses a learning model to

directly parameterize the resource allocation policy in the optimization problem [?, 25,69,

73,83,132]. This can be considered unsupervised in that such techniques can train neural

networks with respect to an abstract performance measure and thus does not require the

acquisition of a training set—or, in other words, reinforcement learning. These techniques

are further beneficial in that they can be applied to any arbitrary resource allocation

problem and have the potential to exceed performance of existing heuristics. Previous work

in [?] formally draws an equivalence between resource allocation problems and constrained

statistical learning—or constrained regression—to develop a theoretical and algorithmic

framework for learning resource allocation policies for a generic class of resource allocation

problems. The universal approximation properties of fully connected NNs (FCNNs) is

also used to recover the duality results of [103, 136], making them an attractive policy

parameterization.

Just as FCNNs are made a naturally viable choice for resource allocation parameter-

izations from their universality property [?, 115], so too are they limited. The practical

challenge of training FCNNs to parameterize strong performing policies is well documented

in empirical study, as their expressive power inherently necessitates performing optimization

over a very high dimensional space. Moreover, the completely generic structure of FCNN

contains no intrinsic invariance to input scaling or variation; any change in wireless network

size or shuffling of the network labels renders the current FCNN-based policy ineffective.

Convolutional neural networks architectures (CNNs), on the other hand, have proved a

solution to this problem for many learning domains such as image classification and recom-

mender systems by preserving invariances in the architecture itself. While some existing

work has used CNNs for wireless resource allocation [69, 121, 131], they utilize standard

temporal or spatial CNNs and thus do not leverage the true invariances present in wireless

networks. In particular, the structure—and subsequent invariances—of wireless networks

comes from the links between transmitters and receivers that result from fading. The work

in [23] uses spatial CNNs that utilize the geometric structure of the network, but in doing

so does not incorporate the fading link structure. In this work, we incorporate a recent
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development in CNNs that perform convolutions on arbitrarily structured data—called graph

neural networks [45, 55]—to fully utilize the network of fading links in parameterizing a

resource allocation policy. When such learning architectures are used in conjunction with the

model-free algorithmic learning approach developed in [38], we obtain a unified framework

for learning effective resource allocation policies in wireless systems.

We begin the paper by introducing a generic formulation of wireless resource allocation

problems in which we seek a instantaneous resource allocation policy given a set of random

fading states and a set of transmitter states (Section 5.2). Such a formulation has many

applications, ranging from multiple access to wireless control systems. By observing that

the resource allocation problem takes the form of a statistical learning problem, we proceed

by parameterizing the resource allocation policy with a learning model (Section 5.2.1). The

choice of this parameterization, however, is key in finding good policies. A FCNN, despite

its universality property, is ineffective for large scale systems and is thus not appropriate for

modeling complex and practical wireless systems. We instead opt to utilize a parameterization

that retains a key structural property of the optimal resource allocation policy—namely, its

permutation equivariance (Section 5.2.2).

We proceed to discuss the details of the so-called graph neural network (GNN), a

recently developed architecture that generalizes the popular convolutional neural networks

for graph structured data (Section 5.3). Such an architecture is perfectly suited for resource

allocation policies, as the graph structure naturally occurs though the fading interference

graph on the links between transmitters and receivers. However, as such a graph will itself

randomly vary with the fading states, we consider the resulting random edge graph neural

networks (REGNNs) as our policy parameterizations (Section 5.3.1). The REGNN retains

the permutation equivariance property, thus making it easier to scale and generalize to

varying networks. To train the filters weights of the REGNN, we utilize a model-free, primal-

dual learning algorithm that optimizes the objective while learning to satisfy constraints

(Section 5.4). We perform a comprehensive set of numerical simulations to evaluate the

REGNN-based policies on three different resource allocation problems (Section 5.5).

5.2 Optimal Resource Allocation

Consider a large scale wireless system with a set m transmitter in M := {1, 2, . . . ,m} and a

set of n receivers in N := {1, 2, . . . , n}, as pictured in Figure 5.1. Each transmitter i ∈M is

paired with a single receiver ki ∈ N—denote the set of transmitters paired with receiver

k as Mk := {i | ki = k} such that
⋃n
k=1Mk =M and Mk ∩Mk∗ = ∅ for all k 6= k∗. The

system experiences random states both on the links between transmitters—as a result of

their interference in the wireless fading channel—and on the transmitters themselves—some

state of the system associated with the transmitter. We denote by H ∈ H ⊆ Rm×m the
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T1 T2 · · · Tm

R1 R2 · · · Rn

Figure 5.1: A wireless network with m transmitters (green) and n receivers (blue). The transmitters
send information over a wireless fading channel, with direct links between transmitter and receiver
shown in solid lines and the interference links shown in dashed lines.

random link states drawn from a distribution m(H) and by η ∈ Rm the random transmitter

states drawn from a distribution µ(η). The components hij reflect the state of the link

between transmitter i and j, while ηi reflects the state of transmitter i. Typically, the

diagonal terms hii denote the fading state of the direct link between transmitter i and its

associated receiver ki, while of the off-diagonal terms hji denote the fading state of the

interference link between transmitter j and receiver ki.

For each fading channel realization H and transmitter state η, we define a resource

allocation policy p(H,η) ∈ Rm. Furthermore, given a channel realization and a resource

allocation, the system experiences a performance level f(p(H,η),H) that is some measure

of channel utilization, e.g. channel capacity, bit error rate—see Examples 5-7. Likewise, we

define a cost function g(p(H,η),η) that represents the cost of being in transmitter state

η with power allocation p(H,η). In fast fading channels, the system allocates resources

instantaneously but the policy is designed with respect to long term or average behavior. For

this, we consider the vector x = E
[
f
(
p(H,η),H

)]
∈ Rm as the average level of performance

experienced by users and the vector y = E
[
g
(
p(H,η),η

)]
∈ Rm as the average cost

experienced by users.

The goal in optimal design of wireless communication systems is to find the instantaneous

resource allocation policy p(H,η) that optimizes a utility over the performance metric x

and cost metric y. To formulate this problem mathematically we introduce a scalar utility

w : Rm×Rm → R and a vector constraint function c : Rm×Rm → Ru. We further introduce

the sets P ⊆ M, where M is the set of functions integrable with respect to m(H) and

µ(η), to constrain the values that can be output by the instantaneous resource allocation

policy. We assume P contains bounded functions, i.e., that the resources being allocated

are finite. With these definitions, we let the optimal resource allocation problem in wireless
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communication systems be a program of the form

P ∗ := max
p(H,η),x,y

w(x,y), (5.1)

s. t. x = E
[
f
(
p(H,η),H

)]
, y = E

[
g
(
p(H,η),η

)]
c(x,y) ≥ 0, p(H,η) ∈ P.

In (5.1) the utility w(x,y) is the one we seek to maximize while the constraints c(x,y) are

required to be nonnegative. Note that the utilities w(x,y) and c(x,y) are assumed to be

concave with respect to x and y. However, the functions f(·,H) and g(·,η) are not assumed

convex or concave, nor the set P. For many resource allocation problems of interest, these

functions are indeed non-convex so it is thus essential that this no such modeling assumption

holds here—see [103]. To elaborate further on the resource allocation formulation in 5.1, we

present practical cases that take this form.

Example 5 (Multiple access AWGN channel). Consider a set of m terminals communicating

with associated receivers on a shared channel. A standard instantaneous performance metric

of interest here is the capacity experience by each user, which is generally obtained as

c = log(1 + SINR), where SINR denotes the signal to interference plus noise ratio. The ith

element of f(p(H,η),H) may then denote the instantaneous capacity achieved by transmitter

i. In a channel subject to additive white Gaussian noise (AWGN) and multi-user interference

and assuming the use of capacity achieving codes, this is written as

fi(p,H) := log

(
1 +

hiipi(H,η)

1 +
∑

j 6=i hjipj(H,η)

)
. (5.2)

Defining the performance as in (5.2) in the constraint in (5.1) reflects the a maximization

with respect to long term or average capacity experienced by the users. A constraint of

the form c(x,y) can be a minimum average capacity c(x,y) := x − cmin for all users.

Power constraints can be enforced via the set P = {p : 0 ≤ p ≤ p0} and the utility

w can be chosen to be the weighted sum rate w(x,y) =
∑

iwixi or a proportional fair

utility w(x,y) =
∑

i log(xi). Observe that, in this problem, it is assumed that there is no

transmitter state η or associated cost function g(p,η) that play a role in the system design.

Example 6 (Multiple access with data collection). Example 5 can be further augmented

to consider transmitter states when the transmitters are co-located with local sensors

that are collecting data to be transmitted. Here, the state ηi reflects the collection or

arrival rate at the i transmitter. A simple cost metric is then given by the arrival rate,

i.e. gi(p(H,η),η) := ηi, and a necessary constraint of the system is that average capacity
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exceeds the average collection rate, i.e.

c(x,y) := x− y ≥ 0. (5.3)

This is a problem formulation that makes full use of the generality in (5.1) by containing

both the fading channel states and associated performance metric in the capacity function

given in (5.2), as well as a transmitter state given by data collection and associated coupled

constraint given by (5.3).

Example 7 (Random access wireless control systems). A more complex example that takes

the form of (5.1) is the modeling of a wireless control system. Consider that transmitters are

sending plant state information to a single receiver/base station to compute control inputs

over a shared random access channel that is subject to potential packet collisions. Given

the direct and interference channel states and transmission powers, we define a function

q(pi, hii, pj , hij) → [0, 1] that gives a probability of collision between nodes i and j. We

are interested in a performance metric fi(p,H) that measures the probability of successful

transmission of transmitter i as

fi(p,H) :=
∏
j 6=i

(1− q(pi, hii, pj , hij)) . (5.4)

Likewise, the transmitter state ηi denotes the state of the plant at the ith transmitter. If

power is applied, the system state evolves with gain γc > 0; otherwise, it evolves with gain

γo > γc. We are often concerned with a quadratic cost that measures the one future step

distance from the origin of the plant state, which can be written as

gi(p,η) := 1[pi ≥ 0](γcηi)
2 + 1[pi = 0](γoηi)

2. (5.5)

From here, we wish to minimize a long-term objective that scales the long term quadratic

cost in (5.5) with the long-term packet success rate in (5.4), i. e. w(x,y) :=
∑m

i=1 xiyi and

constraints that impose a minimum long-term cost κmax for each plant, i. e. ci(xi, yi) :=

xiyi − κmax ≤ 0.

As exemplified in Examples 5-7, the resource allocation problem in (5.1) generalizes a

wide variety of problems of interest in optimal design of wireless systems. We can thus

proceed to develop a means of obtaining solutions to (5.1) for large scale systems, i.e. when

m or n are large. Finding policies that solve (5.1) directly is inherently challenging, due

to both the functional optimization form it takes, as well as the non-convex constraints

it includes. To handle these complexities, we follow an interpretation of (5.1) originally

developed in [?], in which we identify it as a constrained statistical learning, or regression,

problem. Observe that the constraints the channel performance function f(p(H,η),H)
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and state cost function g(p(H,η),η) are statistical in nature in that they are functions of

random quantities H and η. In this way, seek a function that optimizes over statistical losses

or utilities, precisely the goal of standard statistical regression. The resource allocation

problem in (5.1) is distinct from standard regression, however, due to the statistical losses

appearing as constraints. We present a manner in which to handle the constraints in Section

5.4, but may nonetheless proceed in a manner similar to regression problems—by replacing

the functional optimization with a finite dimensional policy parameterization.

5.2.1 Parameterization of resource allocation policy

We reduce the dimensionality of the problem in (5.1) by parameterizing the resource

allocation function p(H,η) with a policy of a pre-specified form. That is, we define some

function φ(H,η,θ) that has a closed, analytic from for any given parameter vector θ ∈ Rq.
For example, we may select a simple linear-quadratic parameterization, i.e. φ(H,η,θ) =

θTHθ + θTη. With a given parametrization, the optimization problem in (5.1) becomes

one in which the optimization is over p(H,η) is replaced with an optimization over the set

of parameter vectors θ,

P ∗φ := max
θ,x,y

w(x,y), (5.6)

s. t. x = E
[
f
(
φ(H,η,θ),H

)]
,y = E

[
g
(
φ(H,η,θ),η

)]
c(x,y) ≤ 0, φ(H,η,θ) ∈ Θ,

where we have defined the set Θ := {θ ∈ Rp | φ(H,η,θ) ∈ P} as the set of policies of the

parameterized form that are in P. We further define the optimal policy p∗(H,η) as the

policy that solves (5.1).

Observe in (5.6) that by restricting our attention to policies of the parameterized form,

we remove the functional optimization in (5.1) with optimization over a parameter vector

θ with finite dimension q. While the problem in (5.6) can be formed with any choice

of parameterization, this choice is critical in far from arbitrary and plays a central role

in the design of learning policies for wireless resource allocation systems. Naturally, the

difference between P ∗φ and P ∗ depends upon the representative power of the φ(·,θ) relative

to the optimal power allocation policy p∗(H,η). This is to say that proper selection of a

parameterization can be done with two approaches:

(a) Select φ(·,θ) that is sufficiently dense that it can represent a large class of arbitrary

functions, or

(b) Select φ(·,θ) that retains specific structural properties held by p∗(H,η).

102



For the former approach (a) of parameterization design, it reasons to select one among

those known to exhibit a property of universality, or near-universality. Such parameterizations

have theoretical properties that allow them to approximate any arbitrary or integrable

function within small error. Well-known cases of this include deep neural networks, radial

basis function networks, and reproducing kernel Hilbert spaces. Fully connected deep

neural networks (FCNNs), in particular, are commonly used in many function approximation

applications and was the focus of previous work in wireless resource allocation; see, e.g. [?,115].

It can be shown that the optimality gap between solutions can be bounded by a small

constant when using near-universal parameterizations [?]. However, for large scale wireless

systems that are necessary for design of modern IoT applications and considered in this

work, near-universal parameterizations are not necessarily a proper design choice. The mere

theoretical existence of a parameter that achieves small error does not imply that such a

parameter is easy to find.

To see this, consider the case of a FCNN with L layers labeled l = 1, . . . , L and each

with a corresponding dimension ql. In the FCNN architecture, each layer l is defined by the

linear operation Wl ∈ Rql−1×ql followed by a non-linear activation function σl : Rql → Rql .
If layer l receives as an input from the l− 1 layer zl−1 ∈ Rql−1 , the resulting output zl ∈ Rql

is then computed as zl := σl(Wlzl−1). The final output of the FCNN, is then related

to the input z0 := [H,η] by propagating through each later of the DNN as φ(H,η,θ) =

σL(WL(σL−1(WL−1(. . . (σ1(W1z0)))))). Observe that the parameter vector θ here contains

the entries of {Wl}Ll=1 and q =
∑L−1

l=1 qlql+1. By construction, the input dimension will equal

q1 = m(n+ 1) as it includes the channel and transmitter states. Future layer dimensions

ql, l > 1 will often be even larger. As can be seen, the full parameter dimension q grows quickly

with wireless network size and is challenging to learning in practice. Furthermore, achieving

the near-universality property inherently requires considering very deep or wide FCNN

architectures, and thus q will necessarily be large in practice. Computational challenges aside,

this further complicates the learning process by increasing the likelihood of getting stuck

in poor local minima of the non-convex FCNN. These complications make near-universal

parameterizations impractical for large scale systems.

These complications motivate the adoption of the latter approach (b), in which we employ

a lower-dimensional parametrization that retains some of the overall structure of p∗(H,η),

thus significantly facilitating the learning process in practice. Such a structure preserving

parameterization has the additional benefit of having better generalization properties with

respect to small variations in the p∗(H,η) that come from perturbing the problem in

(5.1)—FCNNs, on the other hand, are known for being prone to overfitting. We proceed by

establishing a key structural property of p∗(H,η) called permutation equivariance.
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5.2.2 Permutation equivariance of optimal resource allocation

A function or policy that demonstrates permutation equivariance is one such that a per-

mutation of inputs results in an equally permuted output. We define a permutation matrix

Π ∈ {0, 1}m×m as a binary matrix that satisfies

Π1 = 1, ΠT1 = 1. (5.7)

A permutation can alternatively be thought of as a re-labeling or reordering of the coordinates

in a vector or matrix. This is an intuitive property, as it implies that the output of the

policy should not rely on the ordering of the input, and naturally holds for many regression

or classification functions. More specifically, this property can be established for the

optimal policy p∗(H,η), i.e. the argument that solves (5.1), given a couple commonly held

assumptions on the functions given in (5.1). We present the following assumptions.

AS10. The function w(x,y) is permutation invariant, i.e. w(ΠTx,ΠTy) = w(x,y).

AS11. The constraint functions f(p,H), g(p,η), and c(x,y) are permutation equivariant,

i.e.

f(ΠTp,ΠTHΠ) = ΠT f(p,H), (5.8)

g(ΠTp,ΠTη) = ΠTg(p,η), c(ΠTx,ΠTx) = ΠT c(x,y).

Assumptions 10-11 establish permutation equivariances (or invariances) for the component

functions that make up the resource allocation problem in (5.1). We point out that most

common cases, such as those described in Examples 5-7, can be easily shown to satisfy

such properties. In the case of the utility function w(x,y), common choices that satisfy

Assumption 10 include the unweighted sum-rate
∑
xi and sum-log-rate

∑
log(xi). Likewise,

both the capacity function in (5.2) and the packet success rate in (5.4) satisfy the permutation

equivariant property for f(p,H) in Assumption 11. Given these assumptions, we present a

proposition on the permutation equivariance of the optimal resource allocation policy.

Proposition 4. Denote by p∗(H) as the argument that solves the power control problem (5.1)

with wireless fading channels H ∼ m(H) and η ∼ µ(η). Further assume that Assumptions 10

and 11 hold. There exists an optimal policy p∗(H,η) of (5.1) that is permutation equivariant,

i.e. for any permutation matrix Π, it holds that

p∗(ΠTHΠ,ΠTη) = ΠTp∗(H,η). (5.9)

Proof:

104



For notational convenience throughout this proof, we use the hat notation to define

permutations of vectors and matrices by an arbitrary permutation matrix Π , e.g. x̂ = ΠTx

and Ĥ = ΠTHΠ. To demonstrate the permutation equivariance of p∗(H,η) with respect

to H and η, first consider the relation between the optimal policy p∗(H,η) and associated

ergodic variables x∗ and y∗ that solve (5.1)

x∗ = E [f(p∗(H,η),H)] , (5.10)

y∗ = E [g(p∗(H,η),η)] . (5.11)

Consider the following policy p′(H,η) that outputs permutations of the optimal policy given

permuted states, i.e. p′(Ĥ, η̂) = p̂∗(H,η). Further consider the ergodic performances x′

and y′ obtained by the resource allocation p′(H,η) when that states H and η are permuted

by Π as Ĥ and η̂, respectively, i.e.

x′ = E
[
f(p′(Ĥ, η̂), Ĥ)

]
=

∫
H

f(p′(Ĥ, η̂), Ĥ)m(H)dH. (5.12)

y′ = E
[
g(p′(Ĥ, η̂), η̂)

]
=

∫
η

g(p′(Ĥ, η̂), Ĥ)µ(η)dη. (5.13)

Given the definition of p′(H,η) and further considering the permutation equivariance of f

and g from Assumption 11, it follows that

x′ =

∫
H

f̂(p∗(H,η),H)m(H)dH = x̂∗, (5.14)

y′ =

∫
η

ĝ(p∗(H,η),η)µ(η)dη = ŷ∗, (5.15)

where the right hand sides x̂∗ and ŷ∗ are the respective permutations of x∗ and y∗ in

(5.10)-(5.11). From here, we recall from Assumption 10 the permutation invariance of

the objective w(x̂∗, ŷ∗) = w(x∗,y∗) = P ∗. Likewise, the permutation equivariance of the

constraint function c(x,y) from Assumption 11, the policy p′(H,η) satisfies c(x′,y′) ≥ 0.

Given that p′ ∈ P by its definition, the policy p′(H,η) is both feasible and achieves the

optimal objective value P∗, implying it is an optimal solution to (5.1). As the definition of

p′(H,η) is permutation equivariant by construction, this concludes the proof. �

In Proposition 4, we establish that there exists a solution to (5.1) that is permutation

equivariant. We point out that this a very intuitive property to be held by the optimal

power allocation, as the labeling of the nodes is generally arbitrary and the structure of the

policy should indeed reflect that. Such a structural property not only aids in the learning

process by restricting the policy search to a significantly lower dimensional subspace, but is

essential for the practical execution of a learned resource allocation policy in wireless systems.
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(a)

(b)

Figure 5.2: An illustration of (a) a graph signal colored onto the nodes of graph with grey-colored
edges and (b) a graph convolution operation performed on the graph signal.

Indeed, the geometric configuration of the wireless system is not fixed over time, so an

effective resource allocation policy should not need to be retrained as the system undergoes

small changes. We point out that while FCNNs have the expressive power to represent a

permutation equivariant function, they do not hold this property by default. The difficulty

of training FCNNs thus lies, in part, in the difficulty of training the layer weights such that

a permutation equivariant policy is found. We proceed to discuss a more appropriate neural

network architecture for application in wireless resource allocation problems.

Remark 13. The permutation equivariance in Proposition 4 relies on a permutation

invariance of the objective w(x,y) as stated in Assumption 10. It is natural to consider

objectives where this assumption does not hold, such as the commonly used weighted

sum-rate w(x) =
∑

iwixi. For many of these cases, although w(x) is not permutation

invariant with respect to x, it may nonetheless by permutation invariant with respect to

some transformation ω(x). In the case of the weighted sum-rate, such a transformation can

be immediately found as ω(xi) := wixi.
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5.3 Graph Neural Networks

Convolutional neural networks (CNNs) are perhaps the most common alternative to FCNNs

that have structure-preserving properties for many learning problems. CNNs are relatively

low-dimensional NN architectures that replace the full weight matrices of FCNNs with sparse

matrices populated by convolutional filters. They are empirically observed to be strikingly

effective in many learning tasks ranging from image classification [66] to recommender

systems [21]. This is in large part due to the fact that the optimal classification functions

in these tasks with certain permutation invariances that are retained by the convolution

operations that make up any CNN architecture. The parameter dimension furthermore

does not grow with change in input dimension and is significantly less prone to overfitting.

Thus, convolutional architectures are a promising direction to pursue for designing policy

parameterizations for large scale wireless resource allocation. Standard CNNs perform either

spatial or time-series convolutions, making them naturally suited for, e.g., image or video

input data, respectively. In this work, we consider convolutional neural network architectures

that are better suited to solve problems in wireless networks with arbitrary relational, or

graph, structure.

A convolutional neural network with arbitrarily structured data is referred to as a

graph neural network (GNN), which perform generalized graph convolutional operations

at each layer [45, 55]. The GNN architecture is built around a the structure of a given

graph G = {V, E} with m vertices, or nodes, V = {1, 2, . . . ,m} and the e weighted edges

E = {ei,j | i, j connected} that connect them. The network structure can be compactly

encoded in the graph shift operator (GSO) matrix S ∈ Rm×m+ whose (i, j)th component

sij = eij for all edges in E and 0 otherwise. The graph represents a relationship between

elements of a graph signal z ∈ Rm, whose component zi represents the value of the signal

at node i. In Figure 5.2(a) we show an example of such a graph. The colors of the vertex

nodes represent the value of the signal z and the grey edges represent the edges connecting

nodes. Observe that this graph structure is a generalization of 1-dimensional time signal or

2-d spatial grid signal, i.e. image. For example, a time signal is equivalent to a graph signal

on a so-called cycle graph with a GSO matrix

Scycle =


0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

1 0 0 . . . 0

 . (5.16)

The graph is a highly relevant structure in the context of wireless systems as it can naturally
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encode wireless network. Recall the transmitter/receiver network considered in this work

and shown in Figure 5.1. The set of fading links H between the transmitters and receivers

can be used to define a GSO for a graph that represents the wireless network. E.g., a

stronger link hij between transmitter i and receiver j will reflect a higher weighted edge eij

in the graph. Likewise, the transmitter state η can be used to represent a corresponding

graph signal z for the graph created by the fading channels. It is thus natural to proceed by

considering these graph structures as representations of the wireless network on which we

can perform operations and develop learning parameterizations.

As the graph structure generalizes time series signal, so too can the convolution, or

filtering, operation be generalized for this arbitrary domain. The graph convolution of input

signal z ∈ Rm and graph filter α ∈ RK with respect to the GSO S is a vector ŵ ∈ Rm whose

jth component is

ŵj := [α ∗S z]j :=

K∑
k=0

αk[S
kz]j . (5.17)

In (5.17), the term Sk shifts the elements of z in k turns according to the structure defined

in S. Observe that the the graph convolution applied to Scycle indeed recovers the standard

cyclic time-series convolution. We illustrate the graph convolution in Figure 5.2(b), where

the larger colored circles reflect the summing operations over the neighboring node signals.

Note that the size of the larger signals reflects the filter size K—larger circles sum over

larger neighborhoods—and the shade reflects the filter coefficients αk—darker circles sum

neighbor signals with higher weight.

Given the graph definition and convolution operation in (5.17), we can define the resulting

GNN architecture. A GNN is constructed with a sequence of L so-called hidden layers,

each of which contains a set of Fl graph filters of size Kl. The output of layer l is some

accumulation of the outputs of its Fl filters, which is subsequently used as an input to layer

l + 1. Denote by zl := [z1l ; z
2
l ; . . . ; z

Fl
l ] ∈ Rqlas the input to layer l—a concatenation of Fl

features of dimension ql = mFl. At layer l, each feature in zl is passed through a graph

filter αijl ∈ R
Kl that generates an intermediate vector uijl+1 from the feature zil to next layer

feature zjl+1. The complete jth feature at the subsequent layer l + 1 aggregates all such

intermediate inputs from the previous layer and applies the non-linear activation σl(·)as

zjl+1 := σl

(
Fl∑
i=1

αijl ∗S zil

)
. (5.18)

The full signal output from layer l and input to l+1 is then constructed as the concatenation

of its Fl+1 layers zl+1 := [z1l+1; . . . ; z
Fl+1 ] ∈ Rql+1 , with its dimension ql+1 = mFl+1.
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The full GNN architecture composes the filter operations for each layer l = 1, . . . , L

as in (5.18) to produce an output zL. Observe that parameters to be learned for a GNN

consists of the filter coeffcients at each layer. At layer l, this requires the learning of the

filter coefficients αijl ∈ R
Kl for all feature combinations (i, j), for a total of Kl × Fl × Fl+1

coefficients. The total number of parameters then amounts to q :=
∑L

l=1Kl×Fl×Fl+1. This

number may appear large but is often in practice significantly smaller than that of a FCNN

in practice, as Kl, Fl, Fl+1 are themselves small relative to the input dimension. We proceed

to discuss the architectural considerations made to utilize the GNN parameterization in

wireless resource allocation problems.

5.3.1 Random edge graph neural networks (REGNNs)

The GNN architecture presented in the previous section provides a parameterization with

which we may utilize the various inputs H and η of the resource allocation function. In

particular, the fading channel state matrix H can itself be used to represent an underlying

graph G that encodes the state of the wireless network. The nodes V of such a graph represent

each of the m direct transmitter/receiver pairings, while the edge (i, j) ∈ E represent the

fading channel state between transmitter i and receiver nj paired with transmitter j. Note

that such a graph is both directed and necessarily contains self loops, i.e. the direct fading

channel between a transmitter and its paired receiver. The resulting adjacency matrix, or

GSO, for graph G is then given precisely by the link state matrix, i.e. S := H. As this link

state invariably changes randomly over time as a result of wireless fading, so does the edges

of the underlying graph G—we refer to this as a random edge (RE) graph.

Just as the link states H are encoded into the graph topology itself via the GSO matrix

S, the transmitter states η can be subsequently defined as a graph signal whose component

for node i is the transmitter state ηi for the ith transmitter. For given states H and η, we

may define a parametrization in (5.6) as the resulting GNN, i.e.

φ(H,η,θ) := (5.19)

σL(αL ∗H (σL−1(αL−1 ∗H (. . . (σ1(α1 ∗H η) . . .)))),

where the parameter θ contains the L sets of filter weights, i.e. θ = {αl}Ll=1 and has

dimension q =
∑L

l=1

∑L
l=1Kl×Fl×Fl+1. Note that in (5.19) only for clarity of presentation

we assume all layers have a single feature, i.e. Fl = 1, l = 1, . . . , L. As the GNN used for

the parameterization in (5.19) is defined over a random edge graph defined via the fading

network, we refer to the resulting learning architecture as a random edge graph neural network

(REGNN). An REGNN is noted to be distinct from traditional GNN architectures, which

receive a random input from a statistical distribution but whose underlying architecture is
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fixed. Here, however, the REGNN receives both a random graph signal input η ∼ µ(η) and

a random underlying graph GSO H ∼ m(H). The filter weights θ are trained relative to

the statistics of the both the random inputs and the random underlying graphs.

There are a number of immediate advantages of using REGNNs as a parameterization

of resource allocation policies. First, as previously noted the parameter dimension q for

a REGNN is typically significantly smaller than that of a FCNN, which helps facilitate

learning. This is, in part, due to the fact that the REGNN incorporates the channel link

inputs H as part of its underlying architecture rather than as distinct input to the neural

network. Thus, the effective input dimension for the REGNN is m rather than m(m+ 1)

as for the FCNN. Second, observe that the parameterization, as an application of graph

filters, does not depend upon input dimension—the convolution operation with filters αl can

be performed on signal of any dimension. Thus, same GNN can be be applied to varying

size networks. This is not the case in FCNN, whose first layer weights W1 must have the

dimension of the input. The third, and perhaps most important, advantage of REGNN in

the context of resource allocation policies concerns its structural properties that match those

of p∗(H,η)

As previously alluded to, the REGNN defined in (5.19) does not retain the universality

property of its fully-connected counterpart. This is due to the fact that the dense weight

matrices Wl used to define the lth layer of a FCNN are here replaced with a matrix with a

sparse, convolutional structure. However, what we lose in universality we gain in structure.

That is, in learning the weights of a NN we restrict our attention to a class of graph

convolutional matrices that contain certain structural properties. Recall in Proposition

4, we establish a permutation equivariance property help by the optimal allocation policy

p∗(H,η). The convolutional structure of the GNN—and its RE counterpart—allows us to

establish the same equivariance property. That is, a permutation of the underlying graph

and input signal of a GNN will produce an equally permuted output. We present this result

formally in the following proposition from [104, Proposition 1].

Proposition 5 ( [104]). Furthermore, consider the REGNN defined in (5.19). For any

choice of filter weights θ, the function φ(H,θ) is also permutation equivariant w.r.t the

channel network H and transmitter state η, i.e.

φ(H,η,θ) = ΠTφ(ΠTHΠ,θ). (5.20)

Proposition 5 establishes the permutation equivariance of REGNNs. In the context of

wireless networks, this implies that a relabelling or reordering of the transmitters in the

network will produce an appropriately permutation of the power allocation without any

permutation of the filter weights. This essential structural property is not satisfied by general

FCNNs, in which a restructuring of the network would require an equivalent permutation of
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the interlayer weights. This is equivariance implies a certain degree of robustness towards

shifts in the input data and is indeed a primary reason that general CNNs have proven

significantly more valuable in speech and imaging applications than FCNNs. We proceed

with a brief regarding the generalization implications of permutation equivariance.

Remark 14. Permutation equivariance alone doesn’t necessarily suggest any robustness

towards varying network topologies or increasing network size. However, recent results

in [44] demonstrate a stability property of GNNs. That is, the distance between the output

of GNN defined on some graph S and the output of the same GNN defined on some graph

S′ will be proportionally to the distance between the graphs S and S′. As wireless networks

increase in size, it becomes more likely that various random physical configurations of the

transmitters and receivers in an equally dense area will be close to permutations of one

another. This suggests a possibility that a GNN trained for one network will work well

for another network of similar density. We explore this potential in extensive numerical

simulations in Section 5.5.

5.4 Primal-Dual Learning

To find the optimal REGNN weights θ and associated ergodic variables x and y in (5.6),

we employ the model-free primal-dual learning method previously developed in Chapter 4.

The primal-dual algorithm is a means of applying traditional gradient descent approaches to

constrained optimization problems. To derive such an algorithm, consider that we are first

interested in transforming the constrained problem in (5.6) to one that is unconstrained.

This can be done naively by adding some penalty term to the objective function w(x,y) that

penalizes violation of the constraints. However, such a penalty would require hyperparameter

tuning and is thus not ideal. Rather, we form a Lagrangian function via the introduction of

so-called dual variables. To form the Lagrangian, we first define for notational convenience

the stacked ergodic variables χ := [x; y] ∈ R2m and the stacked policy constraint functions,

i.e.

ϕ(θ,χ) := E

[
f
(
φ(H,η,θ),H

)
g
(
φ(H,η,θ),η

)]− χ. (5.21)

We introduce the multiplier dual variables λ ∈ Rm and µ ∈ Ru and write the Lagrangian

dual problem as

D(θ,χ,λ, µ) := (5.22)

min
λ,µ

max
θ,χ

[
w(χ) + λTϕ(θ,χ) + µT c(χ)

]
.
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The dual problem in (5.22) is an unconstrained saddle point problem that simultaneously

maximizes the primal variables θ and χ and minimizes the dual variables λ and µ. We may

then perform standard gradient-based optimization methods directly on (5.22) to obtain

solutions via a so-called primal-dual optimization method to find a local stationary point to

(5.6). In particular, consider that we successively update both the primal variables θ,χ and

dual variables λ,µ over an iteration index k. At each iteration we update the current primal

iterates θk,χk by adding the corresponding partial gradients of the saddle point problem in

(5.22), i.e.,

θk+1 = θk + α∇θϕ(θk,χk)λk, (5.23)

χk+1 = χk + β(∇w(χk)− λk +∇c(χk)µk), (5.24)

where we introduce α, β > 0 as scalar step sizes. In the same manner we descend on the

dual variables using the partial gradient of saddle point problem in (5.22), i.e.,

λk+1 = λk − γ (ϕ(θk+1,χk+1) , (5.25)

µk+1 = µk − γc(χk+1). (5.26)

with associated step size γ > 0. The gradient primal-dual updates in (5.23)-(5.26) successively

move the primal and dual variables towards maximum and minimum points of the Lagrangian

dual function, respectively.

The combined updates in (5.23)-(5.26) form the primal-dual learning method for finding

the parameters of the REGNN while learning the optimal dual parameter λ to enforce

constraint satisfaction. Recall that this method is unsupervised in the sense that, contrary

to standard neural network training methods, does not require a supervised training set of

solutions to (5.6). Rather, we optimize directly with respect to the capacity function in a

manner similar to, e.g., reinforcement learning.

Remark 15. We further point out that evaluating the updates in (5.23)-(5.26) require

computing potentially challenging gradients and expectations—in practice, the channel

may not even be known explicitly. The gradients in these updates can be replaced with

well-known model free gradient estimation methods, such as policy gradient [118], that can

be obtained with function and evaluations and channel sampling—see Chapter 4 or [38] for

details on these approaches.

5.5 Numerical Results

In this section, we provide a numerical study of the performance of resource allocation policies

that parameterized with REGNNs and trained with the model-free primal-dual learning
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Figure 5.3: Performance comparison during training of REGNN for m = 20 pairs. With only q = 40
parameters, the REGNN strongly outperforms the WMMSE algorithm.The network is plotted in top
figure, and the achieved sum-rate over the learning process is shown in the bottom figure.

method. We simulate the performance of the policy on a number of canonical resource

allocation functions that take the form of (5.1) and compare against existing heuristic

approaches. Where applicable, we point out the compared heuristics that rely on accurate

model knowledge to be implemented, which as discussed in Section ??, is not required to

implement the primal-dual learning method. For all sets of simulations, we construct the

wireless network illustrated in Figure 5.1 as follows. For a set of m pairs, we construct

a random geometric graph by dropping transmitter i uniformly at random at location

ti ∈ [−m,m]2, with its paired receiver at location ri ∈ [ti − m/4, ti + m/4]2 around its

paired transmitter—see, e.g., Figure 5.3(a) for an example. Given the geometric placements,

the complete fading channel state between transmitter i and receiver j is composed of

hij = hpijh
f
ij , where hpij is a constant path-loss gain and hfij is the time varying fast fading.

The path loss is related to the geometric distance as hpij = ‖ti − rj‖−2.2 and the fast fading

hfij is drawn randomly from a standard Rayleigh distribution at each scheduling cycle.

5.5.1 Binary power control

The first problem we study is the canonical problem of binary power control between m

transmitter/receiver pairs over an AWGN channel with interference—see Example 5 for a

discussion of this problem. In addition to maximizing the sum-rate capacity, a practical

constraint of interest is a maximum average power budget Pmax to be shared between
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transmitters connected to a common power supply. The complete resource allocation

problem can be written as

P ∗ := max
p(H),x

m∑
i=1

xi, (5.27)

s. t. xi ≤ log

(
1 +

|hii|2pi(H)

1 +
∑

j 6=i |hji|2pj(H)

)
,

EH

[
1Tp(H)

]
≤ Pmax, p(H,η) ∈ {0, p0}m.

As discussed in Example 5, the problem in (5.27) does not utilize any transmitter state η

and associated cost constraint. This is however an instructive problem to study, as it is well

studied and has numerous developed heuristic solutions with which the compare as baselines.

Observe also that the power allocation is a binary selection of transmitting with power p0 or

not transmitting.

In employing the primal dual learning method in (5.23)-(5.26), we consider the model

free version in which gradients are estimated via the policy gradient approximation. We

construct a REGNN architecture with L = 8 hidden layers, each with Fl = 1 graph filters of

length Kl = 5 and a standard ReLu non-linear activation function i.e. σ(z) = [z]+. The

final layer is passed through a sigmoid function to normalize the outputs, which are then

used as the parameter of a Bernoulli policy distribution (random policies are a necessary

component of policy gradient computation—see [38]). The primal dual method is performed

with a geometrically decaying step size for dual updates and the ADAM optimizer [65] for

the primal updates.

In general, we make our comparisons against existing heuristic methods for solving (5.27).

We primarily consider (i) the popular WMMSE heuristic [111] as a baseline, while also

making comparisons against naive heuristics that either (ii) assign equal power P̄ /m to all

users or (iii) randomly select P̄ /pmax users to transmit with full power. Furthermore, we

simulate the learning and performance of the convolutional REGNN architecture to a fully

connected neural network (FCNN) for medium scale networks. In the top of Fig. 5.3, we

show the geometric configuration of the network. The paired transmitter and receiver are

shown in a cross and circle, respectively, with a matching color. In the bottom figure, we

show the performance, or sum-capacity, achieved throughout the learning process of the

REGNN and FCNN trained with the primal-dual learning method and the performance

of the three heuristic baselines for a medium scale wireless system with m = 20 pairs. It

can be observed that both the REGNN and FCNN narrowly outperform the performance

of WMMSE for the medium scale system. We stress that this matching performance was

obtained by the NNs using the model-free gradients, meaning that knowledge of the capacity

function was not assumed. Explicit knowledge of capacity functions is needed, however, for
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Figure 5.4: Performance comparison during training of REGNN for m = 50 pairs. With only q = 40
parameters, the REGNN strongly outperforms the WMMSE algorithm. The network is plotted in
top figure, and the achieved sum-rate over the learning process is shown in the bottom figure.

the WMMSE algorithm. We also point out that the REGNN, with only q = 40 parameters,

matched the performance of the FCNN with two fully connected layers of size 64 and 32 for

a total of q = 20× 64 + 64× 32 + 32× 20 ≈ 4000 parameters—a 100 factor increase than

that used by the REGNN.

In Figure 5.4, we show the performance while learning a REGNN in a larger scale system

with m = 50 transmitter/receiver pairs. At this scale, the parameter dimension of the FCNN

makes it challenging to train; the input dimension of channel states is 2500. Here, we see

that the learned REGNN substantially outperforms all three heuristics, including WMMSE.

Observe that while WMMSE achieves a sum-capacity of roughly 3.7 in the medium scale

system, the algorithm performs even worse when more transmitters are added, obtaining a

sum-rate of only 2.3. The REGNN, meanwhile, is able to still achieve a sum-rate of 3.1, all

while only learning 40 parameters.

As previously alluded to in Remark 14, we are interested in exploring the generalization

abilities of an REGNN learned over some fixed network. Recall that the filter-bank structure

of an REGNN in (5.19) allows the same neural network to receive inputs of varying input

dimension, or network size. Consider the REGNN leaned in the previous experiment in

Figure 5.4. As an instructive example, consider another randomly drawn network of 50 pairs

as shown in Figure 5.5. The performance of the REGNN trained in Figure 5.4 over many

random iterations is shown here compared to the heuristics as an empirical histogram of

sum-rates over all random iterations. We see that the same parameterization learned for
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Figure 5.5: Performance comparison of an REGNN that was trained in Figure 5.4 in another randomly
drawn network of equal size. The top figure plots the geometric configuration of the new network.
The bottom figure shows the empirical distribution of the sum-rate achieved over many random
iterations for all heuristic methods.

one network performs well with another network. Intuitively speaking, this relates to the

stability and permutation equivariance of GNNs because random networks of size 50 may

be close to each other in expectation.

Another comparison of interest here is the relative performance of a REGNN trained on

a network of size m = 50 with an REGNN trained on a network of m′ > m. In Figure 5.6

we show a histogram of the sum-rate performance over 50 randomly generated networks of

size m′ = 75 and m′ = 100. For a set of m′ pairs, we construct a random geometric graph by

dropping transmitter i uniformly at random at location ti ∈ [−m
√
m′/m,m

√
m′/m]2, with

its paired receiver at location ri ∈ [ti −m/4, ti +m/4]2 around its paired transmitter. This

is done to keep the density of the network constant as the number of transceiver pairs grows.

The performance for each random network is itself evaluated over 100 separate fast fading

samples. As can be seen, the performance of the REGNN trained on the smaller network of

size m = 50 almost matches the performance of an REGNN trained on a network of size

75. The same procedure is performed for networks of size m′ = 100. In Figure 5.7, we show

the performance of the REGNN trained on a network of size 50 against the performance

of a network trained on a network of size 100 on random networks of size 100. Again, the

performance of the REGNN trained on the smaller network only slightly degrades relative
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Figure 5.6: Empirical histogram of sum rates obtained by (top, blue) REGNN trained on network
of size m = 50 and (bottom, red) REGNN trained on network of size m′ = 75 on 50 randomly
drawn networks of size of m′ = 75. The REGNN trained on the smaller network closely matches the
performance of the REGNN trained on the larger network

Figure 5.7: Empirical histogram of sum rates obtained by (top, blue) REGNN trained on network
of size m = 50 and (bottom, red) REGNN trained on network of size m′ = 100 on 50 randomly
drawn networks of size of m′ = 100. The REGNN trained on the smaller network closely matches
the performance of the REGNN trained on the larger network

to the REGNN trained on the larger network. This highlights a potential to train REGNNs

on smaller networks to later be implemented on larger networks. We point out that this

is a powerful property for practical learning for such systems, as we can potentially train

our neural networks on smaller systems when larger networks are either unavailable during

training or when computational expense is prohibitive.

To fully explore these capabilities for increasingly large networks, we again use the

REGNN trained in Figure 5.4 in random wireless networks of increasing size. Note that, as

we increase the size of the networks, the density of the network remains constant so that the

statistics of the channel conditions are the same. In Figure 5.8, we show the average sum-rate

achieved by the REGNN over many random iterations for networks of increasing size m′,

where the geometric configurations generated using the fixed-density random geometric

graph as done previously. We observe that, even as the network size increases, the same
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Figure 5.8: Performance of REGNN trained in Figure 5.4 in randomly drawn networks of varying
size. From networks of size m′ = 50 to 500, the REGNN is able to outperform the heuristic methods.

REGNN is able to outperform the heuristic methods.

As a final numerical study for the pairwise network, we compare the performance of the

REGNN trained on a fixed network of size m = 50 in new random networks of equivalent

number of pairs but varying density. In these experiments, we draw random geometric graphs

with some density factor r by dropping transmitter i uniformly at random at location ti ∈
[−r−1m

√
m′/m, r−1m

√
m′/m]2, with its paired receiver at location ri ∈ [ti−m/4, ti+m/4]2

around its paired transmitter. In this manner, as the density factor r increases, the physical

space of the network gets smaller and thus more dense. In Figure 5.11, we show the average

sum-rate achieved by the REGNN over many random iterations for networks of increasing

densities r. We observe that, for wireless networks of equal or less density than the one

used for training, the REGNN has strong performance relative to the heuristics. However,

as the networks more dense, the REGNN is unable to match the performance of WMMSE.

This results follows from the fact that the statistics of data seen in training begins to vary

more and more from that seen in execution time as the networks increase in density. Indeed,

as the transmitters become closer together, the path-loss component of the fading state

decreases and the interference grows.

5.5.2 Multi-cell interference network

In this section, we consider a variation of the network architecture previously considered

known as a multi-cell interference network. In contrast to the pair-wise setting, in the mutli-

cell network there exist n receivers—or cellular base stations—who service the transmissions

of a total m cellular users, which we assume are distributed evenly amongst the base stations.

An example of such a multi-cell configuration is provided in the top of Figure 5.10 for n = 5

base stations, marked with circles, covering m = 50 cellular users, marked with crosses.

The settings here is instructive not only in the real world practicality of its setting, but

in its tendency to scale largely as the number of base stations or number of users grows.
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Figure 5.9: Performance of REGNN trained in Figure 5.4 in randomly drawn networks of varying
densities from factors ranging from r = 0.1 to 10. As the density of the network increases, the
REGNN is unable to match the performance of the WMMSE algorithm.
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Figure 5.10: Performance comparison during training of REGNN for multi-cell interference network
with m = 50 users and n = 5 base stations. With q = 40 parameters, the REGNN outperforms the
model-free heuristics but does not quite meet the performance of WMMSE, which utilizes model
information in its implementation. The top figure plots the geometric configuration of the network,
and the bottom figure plots the sum-rate over learning iterations.

119



5 10 15 20 25 30
0

5

10

15

Figure 5.11: Performance of REGNN trained in Figure 5.10 in randomly drawn multo-cell networks
of varying size. From networks of size 5 to 50 cells, the REGNN matches the performance of the best
performing heuristic method.

In the bottom of Figure 5.10, we show the performance obtained by the REGNN during

training compared to the heuristic methods. Here we see that the REGNN almost meets

the performance of WMMSE. It is interesting to note that the performance of the REGNN

degrades in the multi-cell network relative to its performance in the pairwise network

previously considered. This may, in part, be attributed to the fact that the underlying

graph for this problem is not as distinctive or informative in the pairwise network. That is,

there are only n = 5 unique receivers, and thus much of the interference patterns will be the

same for different transmitters. Another way to say this is that the GSO matrix S = H will

contain repeated rows, and is subsequently low-rank rank(S) = n < m.

5.5.3 Wireless sensor networks

We proceed to perform simulations an extension to the binary control problem in the pairwise

network studied in the previous section—namely binary power control with data collection.

The problem was previously discussed in Example 6. For this setting, we assume that each

transmitter additionally maintains a local state ηi that reflects an arrival or collection rate

of data to be transmitted. Such a problem is highly relevant in, e.g. sensor networks and

robotics applications. The resource allocation problem is closely related to that in (5.27),

but with an additional constraint the ergodic capacity achieved by each transmitter must

exceed the average collection rate of its associated sensor. We may write this problem as

P ∗ := max
p(H),x

m∑
i=1

xi, (5.28)

s. t. xi ≤ log

(
1 +

|hii|2pi(H)

1 +
∑

j 6=i |hji|2pj(H)

)
,

x ≥ E[η], p(H,η) ∈ {0, p0}m.
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Figure 5.12: Convergence of training of an REGNN for the wireless sensor network problem with
m = 30 sensors/transmitters. In the top figure, we show the constraint violation for each of the
transmitters converges to a feasible solution. In the bottom figure, we show the objective function
converge to a local maximum.

The problem in (5.28) contains an additional complexity in the ergodic constraint, which

must be independently satisfied by each transmitter. The optimal resource allocation policy

is which obtains sufficient capacity is achieved by each transceiver pair in expectation, while

then maximizing the sum-rate achieved over the network.

We perform the primal-dual learning method to train a REGNN in a system with

m = 30 transmitter/receiver pairs, who are placed randomly as in previous simulations. The

collection rates η are drawn from a exponential distribution with mean 0.05. We train a

REGNN with L = 10 layers, each with Fl = 1 filters of length Kl = 5. In Figure 5.12 we

show the performance of the learning procedure. In Figure 5.12(a), we show the constraint

violation for all 30 sensors. with a negative value of E[η] − x signifying a satisfaction of

the capacity constraint, i.e. the sensor is transmitting data faster that it collects. While

we may observe a wide variance in the capacities achieved by different sensors, a close

examination of Figure 5.12(a) shows that all but 1 sensor achieves constraint satisfaction

(constraint satisfaction can be seen with a negative constraint violation value). Likewise,

in Figure 5.12(b), we show the REGNN-based resource allocation policy achieve an overall

performance converges to local optimum as the rate constraints are being satisfied.
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5.6 Conclusion

We considered the problem of optimal power allocation in a large scale wireless fading

channel with interference. We parameterize the power allocation with a deep neural network.

Because fully connected architectures are unsuited for large scale problems, we consider

a graph convolutional architecture with only a small number of parameters. In wireless

problems, the graph used to define the architecture is randomly varying due to the fast

fading phenomenon, leading us to consider random edge graph neural networks (REGNNs).

Such architectures retain an important property of permutation equivariance that is held by

the optimal power allocation policy. Using a model free primal dual learning algorithm to

train the parameters, numerical simulations show the advantages of the proposed learning

method and NN architecture in comparison to existing baseline heuristics.
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Chapter 6

Low-Latency Wireless Control via

Primal-Dual Learning

6.1 Introduction

The recent advances in wireless technology and automation have given rise to efforts in

integrating wireless communications in autonomous environments, particularly in industrial

control and Tactile Internet settings where the scale of wired networks is proving increasingly

costly [7]. The analysis of control systems operating over wireless communication links

is thus an integral apart in enabling these wireless industrial automation applications.

However, the performance specifications of Tactile Internet applications demands the design

of wireless networks that can meet both the high reliability and low latency demands of

the system [7, 10, 97]. Ultra reliable low latency communications (URLLC) is inherently

challenging as the physical medium of wireless communication trades off reliability and

latency, making it hard to meet both demands.

One promising direction in enabling low latency communications involves specific devel-

opments in radio resource allocation, or scheduling. For low latency applications, traditional

delay-aware schedulers [4, 78, 129] have been employed, in addition to more recent URLLC

techniques based on various forms of diversity [6, 97,119]—all of which are agnostic to the

control system. However, due to the physical limitations of the wireless channel, it is often

necessary to use information from the control system to make proper use of scheduling

resources in meeting latency requirements. While there exist numerous ways in which control

system information is incorporated into “control-aware” scheduling methods [17,27,47,53,71],

these are agnostic to latency requirements of the system. More recent work [36] looks at

heuristic based scheduling methods that are both control and latency aware, but whose

practical use in low latency systems is limited both by its computational complexity at every

scheduling cycle and reliance on explicit knowledge of the communication model and control
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dynamics.

Aside from traditional heuristic based scheduling methods, machine learning approaches

can be incorporated into making intelligent scheduling and resource allocation decisions

in wireless control systems without requiring model knowledge. The work in [38] builds a

framework for solving a generic set of resource allocation problems by interpreting resource

allocation as a constrained statistical learning problem. This leads to a natural use of

learning models, such as deep neural networks (DNNs), for designing schedulers. Recent

advancements apply techniques from both reinforcement learning and deep learning for

control-aware scheduling in simple systems [27,71]. Learning-based scheduling policies are

well suited for URLLC as the computational complexity at each scheduling round is very

low and can furthermore be implemented model-free. Our contributions namely consist of

1. formulating a statistical learning problem for control-aware, low latency scheduling,

2. parameterizing the scheduling policy with a deep neural network (DNN), and

3. utilizing the model-free, primal-dual learning framework of [38] to find control-aware

scheduling policies.

This paper is organized as follows. We discuss the wireless control system in which state

information is communicated to the control over a wireless channel as a switched dynamical

system (Section 6.2). We formulate the optimal scheduling problem that minimizes a control

cost under latency constraints (Section 6.2.1) and parameterize the optimal policy with a

deep neural network (Section 6.2.2). The constrained learning problem is solved using a

so-called primal-dual learning method (Section 6.3). We further discuss ways in which the

primal-dual method can be approximated without explicit model knowledge (Section 6.3.1).

The performance of the learned control-aware scheduling method is analyzed in a numerical

simulation and compared other heuristic scheduling methods (Section 6.4).

6.2 Wireless Control Systems

We consider a series of m control systems—each a wireless device or plant—operating over a

shared wireless channel as shown in Figure 6.1. The state of system i at control cycle index

k is given by the variable xki ∈ Rp. At each control/scheduling cycle, the sensor measures

the state xki and transmits it over a wireless channel to a common base station (BS) that

is co-located with the controller. Given the state information, the controller determines

the necessary control input which is fed back to the system. This is referred to as the

closed-loop configuration of the control cycle. Given the noisy nature of the wireless channel,

there is the potential for the communications packet containing the state information to be
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Figure 6.1: A series of independent wireless control systems send state information over a shared
wireless medium to a base station, where control information is fed back to the systems. The uplink
transmissions (red arrow) is subject to latency constraint tmax.
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Figure 6.2: Scheduling architecture of m = 4 users—colored in green, blue, red, and yellow—across
n = 3 channels. The total transmission length varies across channels. The channels need not
be located on consecutive frequency bands, and are placed as such here only for the purposes of
illustration.

dropped, resulting in an open-loop configuration of the control cycle. We may model the

linear dynamics of the wireless control system for system i as

xk+1
i =

{
Âix

k
i + wk if packet received

Åix
k
i + wk otherwise

, (6.1)

where Âi ∈ Rp×p is the closed loop gain, Åi ∈ Rp×p is the open loop gain, and wk ∈ Rp is

zero-mean i.i.d. disturbance process with covariance W. The closed loop and open loop

gains may reflect, e.g., controlled dynamics using accurate and estimated state information,

respectively. We assume that the closed loop gains are preferable to the open loop gain, i.e.

λmax(Âi) < λmax(Åi). Further note this model restricts its attention to wireless connections

in uplink of the control loop, while downlink is assumed to occur over an ideal channel—i.e.

no packet drops.

Given this dynamical model of the wireless control systems, the communications goal is

to allocate radio resources among the various systems to maintain strong performance across

all the systems. To do so, we present a generic frequency and time division multiplexing

scheduling architecture with which the BS allocates scheduling resources to the systems. A
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scheduling window occupies the uplink of a single cycle in the control loop in which each

system has a single packet containing state information to transmit. For URLLC systems,

the total length of this scheduling window is subject to a tight low-latency bound tmax.

We assume that transmissions are scheduled by the BS across n available channels

occupying different (possibly non-consecutive) frequency bands. Each channel is subject to

continuous time division multiple access (TDMA), meaning that multiple transmissions in

the same channel will occur in sequence. For full generality, we assume that a single device

may be scheduled in multiple channels in a single cycle to add redundancy and improve

chance of success. Denote by ςi ∈ {0, 1}n a binary vector whose jth element ςi,j is 1 if the

ith device transmits in the jth channel, and 0 otherwise. Further denote for each device a

data rate selection µi ∈ [µmin, µmax]. These two scheduling parameters together define the

scheduling decision made for the ith system. An illustration of m = 4 users making multiple

transmission across n = 3 channels is shown in Figure 6.2.

The achieved communications performance by a given scheduling decision can be formu-

lated as follows. We first define hki ∈ Rn+ to be the set of fading channel states experienced

by device i at cycle k, where the j element hki,j is the fading channel gain in channel j.

We assume that these channel conditions do not change over the course of a scheduling

window. In any given channel with fading state h, we define a function q(h, µ) that returns

the packet delivery rate (PDR), or the probability of successful transmission of the packet,

when transmitting with data rate µ. Likewise, we define a function τ(µ) that returns the

transmission time to transmit a packet of fixed length with data rate µ. These two functions

play a critical role in designing low-latency wireless control systems, as they allow us to

explore the trade-off between PDR and transmission time and the resulting effect on control

system performance. We may consider that the functions q(h, µ) and τ(µ) both get smaller

as we increase data rate µ, i.e.

µ′ > µ =⇒ q(h, µ) ≤ q(h, µ′), τ(µ′) ≤ τ(µ). (6.2)

Thus, by increasing the data rate we may reduce the transmission time to satisfy latency

constraints, but at the cost of control system performance, as illustrated by the switched

dynamics in (6.1).

Remark 16. The communication architecture utilized here has a generic form that assumes

both continuous time division and simultaneous transmission in independent, unsynchronized

channels. We present the architecture in this form both for the purposes of a more tractable

mathematical model as well as its generalization of the architectures used in, e.g., Bluetooth

or centralized scheduled WiFi. Note that common OFDMA architectures, such as 5G [3]

and next-generation WiFi IEEE 802.11ax [75], do not conform precisely to this architecture

although it can be adapted as such with slight modifications. We leave the consideration of a
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synchronized, OFDMA architecture as a point of future work.

6.2.1 Optimal scheduling design

We are interested in designing scheduling policies that optimize control performance, subject

to the strict low latency constraints of the system. To do so, we first formulate the global

control-based performance given a scheduling decision. Collect in the matrix Σ ∈ {0, 1}n×m

all of the channel transmission vectors ςi for i = 1, . . . ,m and collect in the vector µ ∈
[µmin, µmax]m the data rates µi for i = 1, . . . ,m. Given that a device may transmit in

multiple channels within a single scheduling cycle, the probability of successful transmission

can be given as the probability that the transmission was successful in at least one channel,

i.e.

q̃(hi, ςi, µi) := 1−
n∏
j=1

(1− ςi,jq(hi,j , µi)) . (6.3)

The total delivery rate in (6.3) can be viewed as the probability of receiving the packet

and experiencing the closed loop dynamics in (6.1). Now, to evaluate the performance of a

given system at a particular state x, define a quadratic Lyapunov function Li(x) := xTPix

with some positive definite matrix Pi ∈ Rp×p. Such a function can be used to evaluate

performance or stability of the control system. Because the control system evolves in a

random manner, the cost of a given scheduling decision {ςi, µi} for the ith system can be

formulated as the expected future Lyapunov cost under such a schedule. As the probability

of closing the loop in (6.1) is given by q̃(hki , ςi, µi), we may write this expected future cost as

Ji(xi,hi, ςi, µi) := E
[
Li(x

k+1
i ) | xki = xi,h

k
i = hi

]
(6.4)

= q̃(hi, ςi, µi)(Âixi)
TPi(Âixi) +

(1− q̃(hi, ςi, µi))(Åiξ)TPi(Åixi)

+ Tr(PiWi).

Observe that the local control cost for the ith system Ji(x
k
i ,h

k
i , ςi, µi) is a function of

both the system states—the fading channel hki and control state xki —and the scheduler

actions—channel selection ςi and data rate µi. The objective is to choose the actions ςi and

µi that minimizes the cost relative to states hki and xki .

In addition to minimizing a control cost, we must make scheduling decisions that respect

the low-latency requirements of the system. To formulate this constraint, consider the total

time of a global scheduling decision Σ,µ of channel j as the sum of all active transmissions,

i.e.

τ̃j(Σ,µ) :=
m∑
i=1

ςi,jτ(µi). (6.5)
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Combining all the local costs for systems i = 1, . . . ,m in (6.4) with the a constraint

on the latency costs for all channels j = 1, . . . , n in (6.5), we may define the optimal

scheduling design problem. Because we are interested in long-term, or average, performance

across random channels and control states, we optimize with respect to expected costs and

probabilistic constraints. Collect all channel vectors hi in a matrix H ∈ Rn×m+ and states xi

in a matrix X ∈ Rp×n. Consider a scheduling policy p(H,X) := {Σ,µ} that, given a set of

channel states H and control states X, returns a schedule defined by the channel selection

matrix Σ and data rate selection vector µ. The optimal low-latency constrained scheduling

policy for the wireless control systems is the one which solves the program

J∗ := min
p(H,X)

EH,X

[
m∑
i=1

Ji(xi,hi, ςi, µi)

]
, (6.6)

s. t. PH,X (τ̃j(Σ,µ) ≤ tmax) ≥ 1− δ j = 1 . . . , n,

p(H,X) := {Σ ∈ {0, 1}n×m,µ ∈ [µmin, µmax]m}.

In (6.6), we minimize the average cost over the distribution of channel and control states,

subject to the condition that the probability of violating the latency constraint over the

distribution of states is less than some small value δ. Because each channel’s transmission

time varies, we impose this constraint independently for each channel. The above scheduling

problem can be viewed as a constrained statistical learning problem—a connection made for a

more generic class of resource allocation problems in [38]. While such a problem characterizes

the optimal scheduling decision for the latency-constraint wireless control system, finding

solutions to such a problem is a significant challenge. This is due to a number of complexities

in (6.6), namely: (i) it requires functional optimization, (ii) it contains explicit constraints,

and (iii) we typically do not have analytic forms for the functions and distributions in (6.6).

The first of these complexities can be resolved using a standard technique in statistical

learning, discussed next in Section 6.2.2. The latter two of these complexities are discussed

and resolved later in Sections 6.3 and 6.3.1, respectively.

6.2.2 Deep learning parameterization

The scheduling problem in (6.6) is computationally challenging because it requires finding a

policy—or function—p(H,X). In statistical learning, or regression, problems the regres-

sion function is replaced by some given parameterization φ(H,X,θ) that is defined with

some finite dimensional parameter θ ∈ Rq. There exist a wide variety of choices of this

parameterization, but in modern machine learning problems the deep neural network (DNN)

is commonly employed. This is due to the fact the DNN can be shown both empirically and

analytically to contain strong representative power and generalization ability, meaning that
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it can approximate almost any function well. A DNN is defined as a composition of L layers,

each of which consisting of a linear operation followed by a point-wise nonlinearity—also

known as an activation function. More specifically, the layer l is defined by the linear opera-

tion Wl ∈ Rql−1×ql followed by a non-linear activation function σl : Rql → Rql . Common

choices of activation functions σl include a sigmoid function or a rectifier function (commonly

referred to as ReLu). Given an input from the l− 1 layer wl−1 ∈ Rql−1 , the resulting output

wl ∈ Rql is then computed as wl := σl(Wlwl−1). The full DNN-parameterization of the

scheduling policy is then defined as an L-layer DNN whose input at the initial layer is the

concatenation of states w0 := [vec(H); vec(X)], i.e.

φ(H,X,θ) := σL(WL(σL−1(WL−1(. . . (σ1(W1w0)))))). (6.7)

The parameter vector θ ∈ Rq that defines the DNN is then the entries of {Wl}Ll=1 with

q =
∑L−1

l=1 qlql+1. Further note that we can easily construct an activation function at the

final layer σL—or the output layer—such that the outputs φ(H,X,θ) are in the space

{0, 1}n×m × [µmin, µmax] that contains possible schedules. With this DNN parameterization,

the control-aware scheduling problem can be rewritten as

J∗φ := min
θ∈Rq

EH,X

[
m∑
i=1

Ji(xi,hi,σi, µi)

]
, (6.8)

s. t. PH,X (τ̃j(Σ,µ) ≤ tmax) ≥ 1− δ ∀j,

φ(H,X,θ) := {Σ ∈ {0, 1}n×m,µ ∈ [µmin, µmax]m}.

Observe in (6.8) that the optimization is performed over θ rather than the scheduling policy

directly. In other words, we look for the interlayer weights that define a DNN that minimizers

the total control cost while satisfying the latency constraints. We proceed then to discuss a

learning method that can find solutions to the constrained optimization problem in (6.8).

6.2.3 Graph Neural Network

As discussed in the previous chapter, the fully connected neural networks used in (6.7) may

not be the best in practice. Observe that the input dimension for this problem is mp+mn, as

it incorporates both the channel control states for each plant. An alternative approach here

is to utilize the random edge graph neural network (REGNN) parameterization discussed

in the previous chapter. To recap these details, recall that the REGNN is a convolutional

architecture that, at each layer, performs convolutions over some graph. In the previously

considered work of interference networks, the so-called graph shift operator (GSO) could

be represented with the fading interference graph. In the problem considered here, we are

interested in fading states over n independent channels. Therefore, the graph structure is
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not immediately present for this setting as it was for those considered in Chapter 5.

We can, however, construct a graph of interest using the fading states H ∈ Rm×n+ over

each of the channels. Consider that H considers the fading state that each of the m devices

experiences in each of the n channels. We may then consider a GSO matrix defined as

S := HHT ∈ Rm×m+ . Observe that the edges of the graph encoded by S will represent a

degree of similarity between the channel states of two systems. In particular, the element

sij = hTi hj will be largest when the channel state is favorable in similar channels between

systems i and j. We may also interpret this as some degree of competition between these

systems, as they will be interested in transmitting in the same channels.

To utilize the REGNN architecture then, we may input the control and channel states

w0 into an L layer REGNN defined over the GSO matrix S. Note that, as S is constructed

using a random matrix H, the GSO is also a random matrix. For given states w0, we may

define a parametrization in (6.8) as the resulting GNN, i.e.

φ(w0,θ) := (6.9)

σL(αL ∗S (σL−1(αL−1 ∗S (. . . (σ1(α1 ∗S w0) . . .)))),

where the parameter θ contains the L sets of filter weights, i.e. θ = {αl}Ll=1 and has

dimension q =
∑L

l=1

∑L
l=1Kl × Fl × Fl+1—recall Kl and Fl as the filter length and number

of features at layer l, respectively. Again for only for clarity of presentation we assume all

layers have a single feature, i.e. Fl = 1, l = 1, . . . , L in the definition in (6.9). Because the

GSO is randomly varying, the filter weights θ are trained relative to the statistics of the

both the random inputs and the random underlying graphs.

6.3 Primal-Dual Learning

Finding the DNN layer weights θ that provide good solutions to (6.8) requires the solving

of a constraint learning problem. The standard approach of gradient-based optimization

methods cannot be applied directly here due to the presence of the latency constraints.

To proceed then, we must formulate an unconstrained problem that captures the form

of (6.8). A naive penalty-based reformulation will introduce a similar but fundamentally

different problem, so we thus opt for constructing a Lagrangian dual problem. For notational

convenience, moving forward we employ the following shorthands for the state variables,
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aggregate Lyapunov function, latency constraint functions, respectively:

w := [vec(H); vec(X)], (6.10)

f(φ(w,θ),w) : =

m∑
i=1

Ji(xi,hi, ςi, µi), (6.11)

gj(φ(w,θ),w) := I [τ̃j(Σ,µ) ≤ tmax]− (1− δ) (6.12)

We introduce the nonnegative dual variables λ ∈ Rn+ associated with the vector of constraint

functions g(p(w,θ),w) := [g1(·); . . . ; gn(·)], and form the Lagrangian as

L(θ,λ) := Ew

[
f(φ(w,θ),w)− λTg(φ(w,θ),w)

]
. (6.13)

The Lagrangian in (6.13) penalizes constraint violation through the second term. Note,

however, that the penalty is scaled by the dual parameter λ. The so-called Lagranian dual

problem is one in which both the primal variable θ is simultaneously minimized while the

dual parameter λ is maximized. Such a problem can be written with the saddle point

formulation

D∗φ := max
λ≥0

min
θ
L(θ,λ). (6.14)

The dual optimum D∗φ is the best approximation of the form in (6.13) we can have of

J∗φ. In fact, under some standard assumptions on the problem and assuming a sufficiently

dense DNN architecture, we can formally bound the difference between D∗φ and J∗ to be

proportional to the approximation capacity of the DNN φ(H,X,θ)—see [38] for details on

this result. Thus, we may say that, up to some approximation, solving the unconstrained

problem in (6.14) is equivalent to solving the constrained problem in (6.8).

With the unconstrained saddle point problem in (6.14), we may perform standard gradient-

based optimization methods to obtain solutions. The max-min structure necessitates the use

of a primal-dual learning method, in which we iteratively update both the primal and dual

variable in (6.13) to find a local stationary point of the KKT conditions of (6.8). Consider

a learning iteration index t = 0, 1, . . . over which we define a sequence of primal variables

{θt} and dual variables {λt}. At index t, we determine the value of next primal iterate xt+1

by adding to the current iterates the corresponding partial gradients of the Lagrangian in

(6.13) ∇θL, i.e.,

θt+1= θt−αt∇θEw

[
f(φ(w,θt),w)−λTt g(φ(w,θt),w)

]
, (6.15)

where we introduce αt > 0 as a scalar step size. We subsequently perform a corresponding
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partial gradient update to compute the dual iterate λt+1, i.e.

λt+1 = [λt − βtEwg(φ(w,θt+1),w)]+ , (6.16)

with associated step size βt > 0. Observe in (6.16) that we additionally project onto

the positive orthant to maintain the nonnegative constraint on λ. The gradient primal-

dual updates in (6.15) and (6.16) successively move the primal and dual variables towards

maximum and minimum points of the Lagrangian function, respectively.

6.3.1 Model-free updates

The updates in (6.15)-(6.16) cannot, in general, be applied exactly. To see this, observe that

computing the gradients in (6.15) requires computing the gradient of Ji(·)—which depends

on PDR function q̃(·) and system dynamics—and the gradient of an indicator of transmission

length function τ̃(·). In practical systems, we do not typically have easily available analytic

forms for these functions to take gradients. Furthermore, both the updates in (6.15) and

(6.16) require to take the expectation over the distribution of states x and h. These, too,

are often unknown in practice. However, there exist standard ways of approximating the

updates with stochastic, model-free updates that do not require such knowledge. Most

popular among these is the policy gradient approximation [118].

To compute a policy gradient update, we consider the scheduling parameters Σ and

µ are drawn stochastically from a distribution with given form πφ(w,θ) whose parameters

are given by the output of the DNN φ(w,θ)—e.g. the mean and variance of a normal

distribution. Using such a stochastic policy, it can be shown that an unbiased estimators of

the gradients in (6.15) and (6.16) can be formed as,

∇̂θEwf(φ(w,θ),w)=f(p̂θ, ŵ)∇θ log πφ(ŵ,θ)(p̂θ) (6.17)

∇̂θEwg(φ(w,θ),w)=g(p̂θ, ŵ)∇θ log πφ(ŵ,θ)(p̂θ)T (6.18)

Êwg(φ(w,θ),w) = g(p̂θ, ŵ), (6.19)

where ŵ is a sampled state and p̂θ is a sample drawn from the distribution πφ(ŵ,θ). In

practice, we may reduce the variance of these unbiased estimates by taking B samples and

averaging. Note that the updates here only require taking gradients of the log likelihoods

rather than of the functions themselves. This implies we can perform the learning process

without explicitly knowing, e.g., system dynamics, performance metrics, state distributions.

Thus, we can replace the updates in (6.15) and (6.16) with their model free counterparts

by substituting the gradient estimates in (6.17)-(6.19). The complete primal-dual learning

algorithm is summarized in Algorithm 4. We conclude with a brief remark on state sampling.
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Algorithm 4 Model-Free Primal-Dual Learning

1: Parameters: Policy model φ(h,θ) and distribution πh,θ
2: Input: Initial states θ0,λ0

3: for [ domain loop]t = 0, 1, 2, . . .
4: Draw samples {θ̂, ĥ}, or in batches of size B
5: Compute policy gradients [ c.f. (6.17)-(6.19)]
6: Update primal and dual variables

θt+1= θt−αt∇̂θEw

[
f(φ(w,θt),w)−λTt g(φ(w,θt),w)

]
, [cf.(6.15)]

λt+1 =
[
λt − βtÊwg(φ(w,θt+1),w)

]
+
[cf.(6.16)]

7: end for

Remark 17. In the gradient estimations in, e.g. (6.17), we sample both the control states

x and channel states h. This assumes that such samples can be drawn i.i.d. While this

may generally be true for the channel states h, it will not be generally be true for the

control states x in practice, due to the fact that the states evolve based on the switched

dynamics in (6.1), which itself depends on the scheduling actions taken. A more precise way

to model the statistics of the control states would be with a Markov decision process (MDP).

The generalization of the presented techniques for this setting make up what is known as

reinforcement learning algorithms. In this work, we nonetheless assume that x can also be

drawn i.i.d. from an approximate distribution and leave the full MDP formulation as the

study of future work.

6.4 Simulation Results

We perform a series of simulations on latency-constrained wireless control systems to evaluate

the performance the learning method in and the resulting control-aware scheduling policies.

We generate a series m = 9 systems with closed-loop gains Âi ∼ Uniform(0.85, 0.95) and

open-loop gains Åi ∼ Uniform(1.01, 1.2). The variance for all system noise wi is set to be

W = 1. All such systems send their state information over a shared wireless channel with

n = 2 independent channels with a total latency constraint of tmax = 0.5 ms. A latency

bound of this order is typical of industrial control systems such as printing machines and

presses [7]. We further assume that the states of the systems are confined to the box [−10, 10].

In simulations, we substitute the fully-connected DNN with the more practically efficient

REGNN discussed in Section 6.2.3.

With the scheduling architecture given in Figure 6.2 for 5 channels and 20 systems, at

each control scheduling interval each system is given a data rate µi and a set of channels

to transmit on. In our simulations, we use the modulation and coding schemes (MCS)
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Figure 6.3: Convergence of (left) transmission time for a low-latency, control aware scheduling
policy over the learning process. The DNN parameterized scheduling policy obtains feasible latency-
contained schedules (tmax = 5×10−4 shown in dashed red line) on both channels. In the (right) image,
we simulate the control system using the learned scheduler and two baseline model-free heuristic
scheduler. The NN policy keeps 8 systems stable, while RR and PR keep 6 and 0, respectively.

of the next-generation IEEE 802.11ax Wi-Fi protocol as a representative architecture for

data rate selection and packet error rate computation. As such, the continuous data rates

µi are selected in an interval of [1.6, 13] and rounded down to the nearest discrete MCS

selection given in 802.11ax—see [75] for details on the MCS tables given in this protocol.

The corresponding transmission time τ(µ) is then calculated assuming a fixed packet size

of 100 bytes and the packet delivery rate q(h, µ) is computed using the associated AWGN

error curve (scaled by the effective SNR given channel conditions).

In Figure 6.3 we show the training process for the control-aware scheduler using the

primal-dual scheduler given in Algorithm 4. In the left figure, we show the transmission time

utilized over the 2 channels by the NN-based scheduling policy over the course of 50, 000

learning iterations. As can be seen the in the left figure, the policies converge to scheduling

decisions that respect latency requirements for both channels after 50, 000 iterations.

We proceed to compare the performance of the learned policy in terms of the control

metric in (6.4) against other scheduling heuristics. We compares against a standard, control-

agnostic round-robin scheduling policy (RR) and a control-aware priority ranking (PR)

heuristic in which transmissions are prioritized for systems with largest states. We point out

that both of the scheduling policies used fixed PDRs of 0.95 to determine data rate selection.

In the right image of Figure 6.3 we show evolution of the 9 systems when using each of the
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schedulers. It can be observed that the performance of the DNN scheduling policy learned

with primal-dual learning outperforms both heuristics. The NN-based scheduler is able to

keep 8 out of 9 systems stable, while the RR and PR schedulers keep only 6 and 0 systems

stable, respectively. This can be attributed to the fact that DNN has been model-free

trained to adapt to both changing channel conditions and the individual dynamics of each

of the systems, which allows it to make more efficient scheduling policies with regards to the

varying system dynamics and latency constraints.

6.5 Conclusion

We consider the setting of scheduling for low-latency wireless control systems. To handle

the challenge of achieving high reliability performance with limited scheduling resources,

we formulate a control-aware scheduling problem in which reliability is adapted to control

and channel states. This problem takes the form of a constrained statistical learning

problem, in which solutions can be found by parameterized the scheduling policy with a

deep neural network and finding optimal weights with a primal-dual learning algorithm that

can be implemented without system or dynamical models. Numerical simulations showcase

DNN-based scheduling policies that outperform baseline scheduling procedures.
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Chapter 7

Conclusions and Future Work

In this dissertation, we consider the problem of developing learning techniques for solving

resource allocation problems in wireless systems. Learning is expected to play a crucial role

in next-generation wireless networks, e.g. 6G internet [19,46], to enable new applications

in large scale autonomous networks. Learning techniques are advantageous in this context

both due to their reliance on adapting to data over relying on models and their potential

to generalize and scale as the problems grow in size and complexity. After studying some

motivating examples of ongoing research problems in wireless control systems, we develop

a learning framework to solve generic resource allocation problems. The framework firstly

consists of a constrained learning formulation of wireless resource allocation that leads

naturally to a primal-dual learning algorithm to train the parameters of the learning model.

Secondly, we discuss the particular learning architectures or parameterizations, namely graph

neural networks, that are well-suited for approximating resource allocation policies.

While the proposed framework provides a basis of which we may learn resource alloc-

ation policies for a wide variety of problems of practical interest in wireless autonomous

systems, there nonetheless exists many opportunities to expand both the scope and practical

deployment of such systems. In this concluding chapter, we outline just a few different

extensions we believe are vital in future work. To do so, we represent the organizational

flowchart in Figure 7.1, in which we include additional blocks with dashed edges to reflect

future advances.

The first primary thrust of future work concerns the formulation of resource allocation

problem itself, as well as the subsequent learning algorithms that follow. The formulation

we study is generic in that it captures all problems in which the expected performance

function can be sampled with i.i.d. samples of the state. In other words, we can sample

states independently during training because future states are not correlated on previous

actions or state. There do, however, exist problems of interest where this does not hold.

Many wireless channel models, for instance, utilize a Markov model in which channel quality
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Figure 7.1: Outline of future extensions to learning framework for wireless resource allocation
problems. Future thrusts are outlined in dashed borders.

at one time step is related to the quality at previous time steps. Similarly, problems in

proportional fairness for wireless systems consider an additional state that tracks relative

power history of each transmitter [109]. Perhaps most importantly, the plant state used

in the design of wireless control systems will necessarily have dependence upon resource

allocation decisions previously taken. To formulate such problems, consider that given an

state/action pair at time t, denoted {ht,φ(ht)}, the state ht+1 at time t+ 1 belongs to some

distribution ψ(ht,φ(ht)), parameterized by the previous state and action. We may then

consider the statistical cost over some time horizon of length T , and rewrite the original

learning formulation from Chapter 4 as

P ∗φ := max
θ,x

g0(x),

s. t. x ≤ Eψ(h,φ(h))

T∑
t=0

f
(
φ(ht,θ),ht

)
,

g(x) ≥ 0, x ∈ X , θ ∈ Θ. (7.1)

The statistical constraint in (7.1) is evaluated over a time horizon and the expectation is

taken with respect to the distributions parameterized by the policy. Such a formulation

is called a Markov decision process (MDP). The algorithms employed in this context are

known as reinforcement learning (RL) methods [117]. It is necessary then to formulate such
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problems as constrained MDPs and employ a primal-dual RL algorithm to solve. There has

been some work studying constrained policy optimization, e.g. [1], but none focused on the

challenges specifically brought on by wireless systems. We include this thrust in dashed, red

line in the left side of the revised flow chart in Figure 7.1.

The second primary thrust of future work concerns the learning architectures we employ

to parameterize the resource allocation policy. In Chapter 5 we focus our attention of graph

neural networks, as many problems of interest will naturally contain an underlying graph

structure to the data. Moreover, we can identify in many cases a permutation equivariance

of the optimal resource allocation function, making the GNN a suitable architecture to

solve. There are, however, numerous other key problems in wireless autonomous systems

that do not readily contain a graph structure to exploit or a permutation equivariance

property. For instance, wireless scheduling systems that feature discrete scheduling resource

blocks, such as in OFDMA, may not be describable with a fully connected graph, but do

contain structure that is worth incorporating into the learning architecture. Such a resource

block assignment may be described with a weighted bipartite graph, or can alternatively

be represented with data sequences. This latter representation suggests a potential use of

recurrent neural network (RNN) architectures to parameterize the scheduling policy; see,

e.g. recent work in using GNNs [98] or RNNs [84] for solving assignment-type problems. We

include the development of RNN architectures in the dashed red line in the right side of the

revised flow chart in Figure 7.1.

The third primary thrust considers another extension to be made to the deep learning

architectures we employ. Distributed resource allocation remains an ongoing problem of

interest in the study of autonomous wireless systems. Many applications of interest do

not feature a centralized coordinator or scheduler to make resource allocation decisions

for all transmitters. As an alternative, we may learn resource allocation polices that can

be implemented locally at each transmitter, using only state information it can collect

from neighboring systems. Some existing work considers learning distributed schedulers for

simpler unconstrained resource allocation problems [25]. A promising direction to incorporate

distributed policies into the constrained learning framework developed here, on the other

hand, involves the use of a special architecture of GNNs called aggregation GNNs [45]. Such

an architecture naturally leads to distributed implementation and, when combined with the

primal-dual learning process, provides a manner in which we can learn distributed policies

for complex resource allocation problems. We include the development of distributed policy

learning in the dashed red line in the center column of the revised flow chart in Figure 7.1.

The final primary thrust of future work focuses on the new applications that may

be enabled by the previous future thrusts. First and foremost is the continued study of

wireless control systems necessary for solving problems in industrial control and robotics.
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As previously mentioned, the extension of the formulation of the statistical learning problem

to include MDPs will allow us to more accurately model both control system utilities and

control system constraints. Particular problems of interest for Industry 4.0 include the

previously considered low-latency wireless control systems, as well as safe reinforcement

learning in wireless industrial systems. Another application domain that is highly relevant in

next-generation wireless systems is learning for OFDMA-type scheduling architectures such

as 5G/6G and IEEE 802.11ax. The combinatorial size of the action space requires some

consideration into the learning architectures used. The previous future thrust in recurrent

neural networks can be used to devise sequential architectures for scheduling policies. These

two new applications are included in the bottom row of the revised flow chart in Figure 7.1.
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[63] O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of LTI systems over unreliable
communication links,” Automatica, vol. 42, no. 9, pp. 1429–1439, 2006.

[64] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” in Advances in neural information processing systems, 2013, pp.
315–323.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Proceedings
of the International Conference on Learning Representations (ICLR), 2015.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[67] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[68] J. Le Ny, E. Feron, and G. J. Pappas, “Resource constrained lqr control under
fast sampling,” in Proc. of the 14th International Conference on Hybrid Systems:
Computation and Control. ACM, 2011, pp. 271–280.

144



[69] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power control scheme
based on convolutional neural network,” IEEE Communications Letters, vol. 22, no. 6,
pp. 1276–1279, 2018.

[70] L. Lei, L. You, G. Dai, T. X. Vu, D. Yuan, and S. Chatzinotas, “A deep learning
approach for optimizing content delivering in cache-enabled HetNet,” in Wireless
Communication Systems (ISWCS), 2017 International Symposium on. IEEE, 2017,
pp. 449–453.

[71] A. S. Leong, A. Ramaswamy, D. E. Quevedo, H. Karl, and L. Shi, “Deep reinforcement
learning for wireless sensor scheduling in cyber-physical systems,” arXiv preprint
arXiv:1809.05149, 2018.

[72] X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial
wireless networks in the context of industry 4.0,” Wireless networks, vol. 23, no. 1, pp.
23–41, 2017.

[73] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control via ensembling
deep neural networks,” arXiv preprint arXiv:1807.10025, 2018.

[74] J. W. Liu, Real-Time Systems. Prentice-Hall, Inc, 2000.

[75] J. Liu, R. Porat, N. Jindal et al., “Ieee 802.11 ax channel model document,” Wireless
LANs, Rep. IEEE 802.11–14/0882r3, 2014.

[76] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission scheduling with
resource-sharing constraints in wireless networks,” IEEE Journal on Selected Areas in
Communications, vol. 19, no. 10, pp. 2053–2064, 2001.

[77] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[78] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet networks,”
IEEE/ACM Transactions on networking, vol. 7, no. 4, pp. 473–489, 1999.

[79] Y. Lu, “Industry 4.0: A survey on technologies, applications and open research issues,”
Journal of Industrial Information Integration, vol. 6, pp. 1–10, 2017.
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