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ABSTRACT

FAIRNESS AND FEEDBACK IN LEARNING AND GAMES

Shahin Jabbari

Michael Kearns

In this thesis, we study fairness and feedback effects in game theory and machine learning. In

game theory and economics, financial or technological networks are analyzed for feedback

effects. These studies analyze how the connectivity benefits or risk of contagious shocks

affect the individual agents or the structure of the network formed by these rational agents.

Towards this direction, in the first part of this thesis, we study a series of novel network

formation games and analyze the structural properties of the equilibrium networks.

Feedback effects can also occur in machine learning problems such as reinforcement learning

or sequential allocation problems where the decisions of an algorithm over time can change

the resources or actions available to the algorithm in the future as well as the environment

in which the algorithm is operating. In the second part of this thesis, we study the effect

of these feedback loops and ways to prevent them while also ensuring that the algorithm’s

actions and allocations satisfy natural notions of fairness. In particular we are interested in

quantifying the cost of imposing fairness on learning algorithms.
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Chapter 1

Introduction

This thesis is devoted to the study of feedback effects both in game theory and machine

learning. In the game theory chapters, we revisit classic network formation games modified

to incorporate feedback effects by introducing an adversarial attack that can spread through

the collectively formed network. In the machine learning chapters, we focus on classic

learning settings where the learning is sequential and feedback loops might occur as a result

of the interactive nature of the learning process. These feedback effects can in turn impose

fairness concerns and we study these effects both in theory and practice.

In the first part of this thesis (Chapters 2 and 3) we study network formation games where

strategic agents (or vertices) benefit from connectivity to other agents but also incur a cost

for forming these connections. Most of the previous work on network formation games only

focus on the case where the cost to an agent is direct (e.g. via purchasing a link). Motivated

by scenarios as diverse as technological vulnerability or biological contagion we consider a

game which incorporates indirect costs i.e. in our model an agent’s connection might also

expose her to the negative contagious shocks the network might endure after the formation.

In our first model of network formation games, in Chapter 2, we begin with the well-studied

reachability network formation game [9] and modify this game by introducing an adversary

that is allowed to examine the network and choose a single vertex to attack. The attack

then spreads throughout the network destroying all the vertices in the connected component

of the originally attacked vertex. The agents crucially have the option of purchasing immu-

nization against the attack for a fixed cost. Thus the attack can only spread to the vertices

that are reachable solely by unimmunized vertices from the originally attacked vertex.

We introduce several adversarial attacks including an adversary that seeks to maximize the

destruction, an adversary whose goal is to minimize the social welfare and even an adversary
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than randomly selects a vertex to attack. Our focus is to understand the properties of the

formed networks in equilibria. In particular, we are interested in understanding the tension

between the connectivity benefits and indirect risks of contagious shocks with questions such

as “Would the introduction of attack and immunization result in over-building or erode in

welfare in equilibrium networks compared to the attack-free game?”

Our first result shows that the edge density of the networks formed in the equilibria of the

new game over n vertices is bounded by 2n−4 and this upper bound is tight. This is less than

twice as the number of edges in the equilibria of the original reachability network formation

game. So the amount of overbuilding is sharply limited. In our second result, we show that

in any non-trivial equilibrium network, the social welfare is at least n2 − o(n5/3), which is

asymptotically the maximum welfare possible with a polynomial rate of convergence.

The model analyzed in Chapter 2 relies on the assumption that the attack spreads deter-

ministically to adjacent vertices. However, in most real-world scenarios the spread of the

attack is non-deterministic (e.g. the spread of a contagions disease over a biological net-

work). This rather simple modification makes the game drastically complex as now even

computing the utility of vertices becomes #P-complete. Regardless of this difficulty, in

Chapter 3, we show that the results of Chapter 2 are robust to this modification. We focus

on the regime where the cost of immunization is high and an adversary that selects a ver-

tex uniformly at random to start the attack. We show that when the attack spreads with

constant probability (independent of size of the network) and according to the independent

cascade model [61], the edge density in the equilibrium networks over n vertices is bounded

by O(n log(n)), so again the amount of overbuilding compared to the original reachability

game is limited. We also show that the in any non-trivial equilibrium network the social

welfare is Ω(n2) as long as the network is not too dense. Therefore, many of the properties

of the game with deterministic spread are preserved in the new variant.

The second part of this thesis (Chapters 4-6) is regarding the recent and emerging area of

machine learning referred to as algorithmic fairness. Algorithms have been used to make
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decisions in seemingly low impact tasks like email spam filtering for a long time. With

the advance of machine learning and the invention of sophisticated and accurate learning

algorithms, machine learning has been recently applied to make high impact decisions like

hiring [76], sentencing [10] and lending [18] which has been traditionally made by humans.

In addition to improving the accuracy of the decisions over a human decision maker it is

tempting to think that the learning algorithms would not inherit the biases that are usually

exhibited in human decision makers towards specific subgroups characterized e.g. by race or

gender. However, recent empirical evidence suggests that this is not the case [85]. There are

several ways to explain why the algorithms exhibit bias or behave unfairly. First, usually

the learning algorithm is trained on historic data which itself can contain bias. It is then

inevitable that the algorithm inherits these biases from the data. This feedback effect can

be amplified with continuous utilization of the algorithm over time in a scenario where the

data from the past interactions are repeatedly used to fine tune the algorithm’s decisions

for future. To make matters worse and more complicated, it has also been observed that

the algorithm can exhibit unfairness even when the historic data is unbiased or when the

process of learning starts with no initial data (e.g. in online learning [52]). In addition, the

successes of machine learning algorithms are highly dependent on the amount of training

data available to them. Lack of sufficient amount of training data for minority groups has

also been credited as another reason behind the unfair behavior of the algorithms.

Before describing how to deal with unfairness, we note that there are several proposals and

definitions for what it means for a learning algorithm to be fair (see e.g. [30, 45, 63, 78, 90]).

Not only these definitions are drastically different and somewhat task-dependent, unless in

trivial cases, satisfying some of these definitions at the same time is also impossible [37, 63].

This implies that different solutions should be designed to remedy different type of unfairness

in different learning settings. Regardless of these differences, usually a fairness notion can

be interpreted as a constraint imposed on the learning algorithm. Therefore, enforcing

fairness would usually deter the prediction utility of the algorithm. Studying the trade-off
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between fairness and utility is an important direction in the algorithmic fairness literature.

The approaches used in the algorithmic fairness literature can be roughly divided into

three categories. In pre-processing [44, 53], before any learning is done, the training data

itself would be modified so that the desired fairness notion is satisfied. After the pre-

processing step, a black-box learning algorithm can be used to learn a predictor hoping that

fairness would continue to hold when using this learned predictor on the modified data. In-

processing [19, 55] can refer to two types of approaches. In the first type, initially a predictor

is learned ignoring fairness altogether. Then the predictor is modified to account for fairness

(e.g. by shifting the decision boundary in favor of the minority group). In the second type,

fairness is usually written as a constraint in the optimization problem used to derive a

predictor. Then the constrained optimization problem is solved either directly or using a

heuristic. In post-processing [45, 88], first a prediction model is learned, again ignoring

fairness altogether. Then the outcome of the predictor will be distorted only as a function

of the group the data point belongs to and the prediction of the algorithm. Crucially, the

modification in post-processing cannot depend on the group-agnostic attributes of the input

and this is the essential difference between in-processing and post-processing.

Finally, most of the current body work on algorithmic fairness is on classification which

is the most well-understood task in machine learning aiming to predict binary outcomes.

We consider three different machine learning settings, introduce new notions of fairness for

each setting, design algorithmic frameworks to satisfy these notions of fairness and finally

quantify the trade-off between fairness and utility in each of these settings.

More specifically, in Chapter 4, we consider the reinforcement learning setting where unlike

the stationary dynamics of the classification task has the property that the decisions made

by the algorithm in the past can change the environment in which the algorithm is operating

as well as the possibilities available to the algorithm in the future. Our notion of fairness in

reinforcement learning is inspired by the weakly meritocratic notion of fairness introduced

by Joseph et al. [52] for online learning. In reinforcement learning, our notion implies that
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an algorithm cannot favor an action with a lower true long-term potential to an action with a

higher true long-term potential. Since the true long-term potential of an action is unknown

to the algorithm, the constraint of fairness mandates the learning algorithm to explore

extensively. Given this observation, we show that imposing such a fairness constraint to an

algorithm makes efficient learning impossible. We further design an efficient in-processing

learning algorithm for a slightly relaxed version of this fairness notion.

In Chapter 5 we consider the regression setting where the goal is to predict a real valued

number using a linear model. We introduce a rich family of fairness metrics for regression

models that take the form of a fairness regularizer and apply them to the standard loss

functions for linear and logistic regression. Our family of fairness metrics covers the spec-

trum from the type of group fairness that are common in the classification setting to much

stronger notions of individual fairness. Our framework allows for computationally efficient

in-processing algorithms and we empirically study the trade-off between fairness and the

prediction utility of our learning algorithm across several real-world datasets where fairness

is a concern. Our analysis reveals that the trade-off between fairness and utility can vary

significantly when considering different notions of fairness or different learning domains.

Finally, in Chapter 6, we study allocation problems under a notion of fairness inspired by

the general principle of equality of opportunity [45]. We assume a population is divided

into groups and each group is consisted of candidates that the algorithm (or the allocator)

would like to receive the resource and non-candidates which are the remaining members of

the group. The goal is to maximize utility defined to be the number of candidates that

receive the resource in the allocation of the algorithm. Our notion of fairness requires that

conditioned on being a candidate for the resource, the probability of receiving the resource

should be independent of the group. We further study the learning problem in our fairness

constrained allocation problem where the algorithm needs to reason about the distributions

of candidates in each group to ensure both fairness and optimal utility. We provide efficient

in-processing algorithms for our setting and also study the trade-off between fairness and
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utility of the allocation both in theory and empirically over a real-world dataset.

Bibliography Chapter 2 is based on Goyal et al. [42]. Chapter 3 is adapted from Chen et al.

[22]. The results in Chapter 4 are from Jabbari et al. [48]. Chapter 5 is based on Berk et al.

[12]. Finally, Chapter 6 is based on Elzayn et al. [31]. We refer the reader to these papers

for omitted proofs and details. Additional publications while at University of Pennsylvania

are as follows: Assadi et al. [8], Jabbari et al. [47], Berk et al. [13] and Dong et al. [28]. We

thank K. Amin, S. Assadi, R. Berk, Y. Chen, J. Dong, H. Elzayn, S. Goyal, H. Heidari, J.

Hsu, M. Joseph, C. Jung, M. Kearns, S. Khanna, J. Morgenstern, S. Neel, R. Rogers, A.

Roth, Z. Schutzman and Z.S. Wu for their collaborations in these works.

6



Chapter 2

Network Formation Games with Attack and Deter-

ministic Spread

2.1. Introduction

In network formation games, distributed and strategic agents receive some benefit from their

connectedness to others, but also incur some cost for forming these links. Much research

in this area [9, 16, 34] studies the structure of equilibrium networks formed as the result of

various choices for the network benefit function, as well as the social welfare in equilibria.

In many network formation games, the costs incurred from forming links are direct: each

edge costs CE > 0 for an agent to purchase. Recently, motivated by scenarios as diverse as

financial crises, terrorism and technological vulnerability, games with indirect connectivity

costs have been considered: an agent’s connections expose her to negative, contagious shocks

the network might endure.

We begin with the simple and well-studied reachability network formation game [9], in

which players purchase links to each other, and enjoy a network benefit equal to the size

of their connected component in the collectively formed graph. We modify this model by

introducing an adversary who is allowed to examine the network, and choose a single vertex

or player to attack. This attack then spreads throughout the entire connected component

of the originally attacked vertex, destroying all of these vertices. Crucially however, players

also have the option of purchasing immunization against attack. Thus the attack spreads

only to those non-immunized (or vulnerable) vertices reachable from the originally attacked

vertex. We examine several natural adversarial attacks such as an adversary that seeks to

maximize destruction, an adversary that randomly selects a vertex for the start of infection

and an adversary that seeks to minimize the social welfare of the network post-attack to

7



name a few. A player’s overall payoff is thus the expected size of her post-attack component,

minus her edge and immunization expenditures.

Our game can be viewed as a stylized model for settings where reachability rather than

centrality is the primary interest in joining a network vulnerable to adversarial attack.

Examples include technological networks such as the Internet, where packet transmission

times are sufficiently low that being “central” [34] or a “hub” [16] is less of a concern, but

in the presence of attacks such as viruses or DDoS, mere reachability may be compromised.

Parties may reduce risks via costly measures such as anti-virus. In a financial setting,

vertices might represent banks and edges credit/debt agreements. The introduction of an

attractive but extremely risky asset is a threat or attack on the network that naturally

seeks its largest accessible market, but can be mitigated by individual institutions adopting

balance sheet requirements or leverage restrictions. In a biological setting, vertices could

represent humans, and edges physical proximity or contact. The attack could be an actual

biological virus that randomly infects an individual and spreads by physical contact through

the network; again, individuals may have the option of immunization. While our simplified

model is obviously not directly applicable to any of these examples in detail, we do believe

our results provide some high-level insights about the strategic tensions in such scenarios.

See Section 2.8 for discussion of some variants of our model.

Immunization against attack has recently been studied in games played on a network where

risk of contagious shocks are present [21] but only in the setting in which the network is first

designed by a centralized party, after which agents make individual immunization decisions.

We endogenize both these aspects, which leads to a model incomparable to this earlier work.

The original reachability game [9] permitted a sharp and simple characterization of all

equilibrium networks: any tree as well as the empty graph. We demonstrate that once

attack and immunization are introduced, the set of possible equilibria becomes considerably

more complex, including networks that contain multiple cycles, as well as others which are

disconnected but nonempty. This diversity of equilibrium topologies leads to our primary

8



questions of interest: How dense can equilibria become? In particular, does the presence

of the attacker encourage the creation of massive redundancy of connectivity? Moreover,

does the introduction of attack and immunization result in dramatically lower social welfare

compared to the original game?

Our Results and Techniques The main theoretical contributions of this work are to

show that our game still exhibits edge sparsity at equilibrium, and has high social welfare

properties despite the presence of attacks. First we show that under a very mild assumption

on the adversary’s attack model, the equilibrium networks with n ≥ 4 players have at most

2n − 4 edges, fewer than twice as many edges as any nonempty equilibria of the original

reachability game without attack. We prove this by introducing an abstract representation

of the network and use tools from extremal graph theory to upper bound the resources

globally invested by the players to mitigate connectivity disruptions due to any attack,

obtaining our sparsity result.

We then show that with respect to several adversarial attack models, in any equilibrium

with at least one edge and one immunized vertex, the resulting network is connected. These

results imply that any new equilibrium network (i.e. one which was not an equilibrium of

the original reachability game) is either a sparse but connected graph, or is a forest of

unimmunized vertices. The latter occurs only in the rather unnatural case where the cost

of immunization or edges grows with the population size, and in the former case we further

show the social welfare is at least n2 − O(n5/3), which is asymptotically the maximum

possible with a polynomial rate of convergence. These results provide us with a complete

picture of social welfare in our model. We show the welfare lower bound by first proving

any equilibrium network with both immunization and an edge is connected, then showing

that there cannot be many targeted vertices who are critical for global connectivity, where

critical is defined formally in terms of both the vertex’s probability of attack and the size of

the components remaining after the attack. Thus players myopically optimizing their own

utility create highly resilient networks in presence of attack.
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We complement our theory with simulations demonstrating fast and general convergence

of swapstable best response, a type of limited best response which generalizes linkstable

best response but is much more powerful in our game. The simulations provide a dynamic

counterpart to our static equilibrium characterizations and illustrate a number of interesting

further features of equilibria, such as heavy-tailed degree distributions.

Organization We formally present our model and review some related work in Section 2.2.

In Section 2.3 we describe some interesting topologies that arise as equilibria in our model

illustrating the richness of the solution space. We present our sparsity result and lower

bound on welfare in Sections 2.4 and 2.5, respectively. Sections 2.6 and 2.7 describe our

simulations and behavioral experiment, respectively. We conclude with some directions for

future work in Section 2.8.

2.2. Model

We assume the n vertices of a graph (network) correspond to individual players. Each player

has the choice to purchase edges to other players at a cost of CE > 0 per edge. Each player

additionally decides whether to immunize herself at a cost of CI > 0 or remain vulnerable.

A (pure) strategy for player i (denoted by si) is a pair consisting of the subset of players

i purchased an edge to and her immunization choice. Formally, we denote the subset of

edges which i buys an edge to as xi ⊆ {1, . . . , n}, and the binary variable yi ∈ {0, 1} as

her immunization choice (yi = 1 when i immunizes). Then si = (xi, yi). We assume that

edge purchases are unilateral i.e. players do not need approval or reciprocation in order

to purchase an edge to another but that the connectivity benefits and risks are bilateral.

Furthermore, we restrict our attention to pure strategy equilibria and our results show they

exist and are structurally diverse.

Let s = (s1, . . . , sn) denote the strategy profile for all the players. Fixing s, the set of

edges purchased by all the players induces an undirected graph and the set of immunization
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decisions forms a bipartition of the vertices. We denote a game state as a pair (G, I), where

G = (V,E) is the graph induced by the edges purchased by the players and I ⊆ V is the

set of players who decide to immunize. We use U = V \ I to denote the vulnerable vertices

i.e. the players who decide not to immunize. We refer to a subset of vertices of U as a

vulnerable region if they form a maximally connected component. We denote the set of

vulnerable regions by V = {V1, . . . , Vk} where each Vi is a vulnerable region.

Fixing a game state (G, I), the adversary inspects the formed network and the immunization

pattern and chooses to attack some vertex. If the adversary attacks a vulnerable vertex

v ∈ U , then the attack starts at v and spreads, killing v and any other vulnerable vertices

reachable from v. Immunized vertices act as “firewalls” through which the attack cannot

spread. In this work we restrict the adversary to only pick one seed to start the attack.

More precisely, the adversary is specified by a function that defines a probability distribution

over vulnerable regions. We refer to a vulnerable region with non-zero probability of attack

as a targeted region and the vulnerable vertices inside of a targeted region as targeted

vertices. We denote the targeted regions by T = {T1, . . . , Tk′} where each T ′ ∈ T denotes

a targeted region and k′ ≤ k.

T = ∅ corresponds to the adversary making no attack, so player i’s utility (or payoff )

is equal to the size of her connected component minus her expenses (edge purchases and

immunization). When |T | > 0, then player’s i expected utility (fixing a game state) is

equal to the expected size of her connected component less her expenditures, where the

expectation is taken over the adversary’s choice of attack (a distribution on T ) and the

size of the connected component of a vertex is defined to be zero in the event she is killed.

Formally, let Pr[T ′] denote the probability of attack to targeted region T ′ and CCi(T ′) the

size of the connected component of player i post-attack to T ′. Then the expected utility of
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i in strategy profile s denoted by ui(s) is precisely

ui(s) =
∑
T ′∈T

(
Pr
[
T ′
]
CCi

(
T ′
) )
− |xi|CE − yiCI.

We refer to the sum of expected utilities of all players playing s as the (social) welfare of s.

Examples of Adversaries We highlight several natural adversaries that fit into our frame-

work. We begin with an adversary whose goal is to maximize the number of agents killed.

Definition 1. The maximum carnage adversary attacks the vulnerable region of maximum

size. If there are multiple such regions, the adversary picks one of them uniformly at random.

Once a targeted region is selected for the attack, the adversary selects a vertex inside of that

region uniformly at random to start the attack.

Then a targeted region with respect to a maximum carnage adversary is a vulnerable region

of maximum size and the adversary defines a uniform distribution over such regions (see

Figure 1). We now introduce another natural but less sophisticated adversary which starts

an attack by picking a vulnerable vertex at random.

V3
V2

V1

Figure 1: Blue and red vertices denote I and U , respectively. The probability of attack
to the vulnerable regions V1,V2 and V3 (in that order) for each adversary are as follows.
maximum carnage: 0.5, 0, 0.5; random attack: 0.4, 0.2, 0.4; maximum disruption: 0, 1, 0.

Definition 2. The random attack adversary attacks a vulnerable vertex uniformly at ran-

dom.

So every vulnerable vertex is targeted with respect to the random attack adversary and the

adversary induces a distribution over targeted regions such that the probability of attack to

a targeted region is proportional to its size (see Figure 1). Lastly, we define another natural

adversary whose goal is to minimize the post-attack social welfare.
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Definition 3. The maximum disruption adversary attacks the vulnerable region which min-

imizes the post-attack social welfare. If there are multiple such regions, the adversary picks

one of them uniformly at random. Once a targeted region is selected for the attack, the

adversary selects a vertex inside of that region uniformly at random to start the attack.

This adversary only attacks those vulnerable regions which minimize the post-attack welfare

and the adversary defines a uniform distribution over such regions (again see Figure 1).

Equilibrium Concepts We analyze the networks formed in our game under two types of

equilibria. We model each of the n players as strategic agents who choose deterministically

which edges to purchase and whether or not to immunize, knowing the exogenous behavior

of the adversary defined as above. A strategy profile s is a pure-strategy Nash equilibrium

(Nash equilibrium for short) if, for any player i, fixing the behavior of the other players to

be s−i, the expected utility for i cannot strictly increase playing any action s′i over si.

In addition to Nash, we study another equilibrium concept that is closely related to linkstable

equilibrium (see e.g. [15]), a bounded-rationality generalization of Nash. We refer to this

concept as swapstable equilibrium. This equilibrium concept was first introduced by Lenzner

[68] under the name greedy equilibrium. A strategy profile is a swapstable equilibrium if

no individual agent’s expected utility (fixing other agent’s strategies) can strictly improve

under any of the following swap deviations: (1) Dropping any single purchased edge, (2)

Purchasing any single unpurchased edge, (3) Dropping any single purchased edge and pur-

chasing any single unpurchased edge, (4) Making any one of the deviations above, and also

changing the immunization status.

The first two deviations correspond to the standard linkstability. The third permits the more

powerful swapping of one purchased edge for another. The last additionally allows reversing

immunization status. Our interest in swapstable networks derives from the fact that while

they only consider “simple” or “local” deviation rules, they share several properties with

Nash networks that linkstable networks do not. In that sense, swapstability is a bounded
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rationality concept that moves us closer to full Nash. Intuitively, in our game (and in many

of our proofs), we exploit the fact that if a player is connected to some other set of vertices

via an edge to a targeted vertex, and that set also contains an immune vertex, the player

would prefer to connect to the immune vertex instead. This deviation involves a swap

not just a single addition or deletion. It is worth mentioning explicitly that by definition

every Nash equilibrium is a swapstable equilibrium and every swapstable equilibrium is a

linkstable equilibrium. The reverse of none of these statements are true in our game. We

also point out that the set of equilibrium networks with respect to adversaries defined in

Definitions 1, 2 and 3 are disjoint.

2.2.1. Related Work

The problem of strategic network design and defense has been extensively studied in eco-

nomics, electrical engineering, and computer science (see e.g. [4, 5, 41, 81]). Most of

the existing work takes the network as given and examines optimal security choices (see

e.g. [7, 26, 43, 58, 67]). To the best of our knowledge, our we offer the first model in which

both links and defense (immunization) are chosen by the players.

Combining linking and immunization within a common framework yields new insights. We

start with a discussion of the network formation literature. In a setting with no attack, our

model reduces to the original model of one-sided reachability network formation of Bala

and Goyal [9]. They showed that a Nash equilibrium network is either a tree or an empty

network. By contrast, we show that in the presence of a security threat, Nash networks

exhibit very different properties: both networks containing cycles and partially connected

networks can emerge in equilibrium. Moreover, we show that while networks may contain

cycles, they are sparse (we provide a tight upper bound on the number of links in any

equilibrium network of our game).

Regarding security, Cerdeiro et al. [21] study optimal design of networks in a setting where

players make immunization choices against a maximum carnage adversary but the network
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design is given. A vertex v is defined to be k-critical in a connected network if the size

of the largest connected component after removing v is k. Cerdeiro et al. [21] show that

an optimal network is either a hub-spoke or a network containing k-critical vertices or a

partially connected network (observe that a k-critical vertex can secure n − k vertices by

immunization). We extend this work by showing that there is a pressure toward the emer-

gence of k-critical vertices even when linking is decentralized. We also contribute to the

study of welfare costs of decentralization. Cerdeiro et al. [21] show that the Price of Anarchy

(PoA) is bounded, when the network is centrally designed while immunization is decentral-

ized (their welfare measure includes the edge expenditures of the planner). By contrast, we

show that the PoA is unbounded when both decisions are decentralized. Although we also

show that non-trivial equilibrium networks with respect to various adversaries have a PoA

very near 1. This highlights the key role of linking and resonates with the original results

on the PoA in for pure network formation games (see e.g. [40]).

Blume et al. [16] study network formation where new links generate direct (but not reach-

ability) benefits, infection can flow through these links and immunization is not a choice.

They demonstrate a fundamental tension between socially optimal and stable networks: the

former lie just below a linking threshold that keeps contagion under check, while the latter

admit linking just above this threshold, leading to extensive contagion and very low payoffs.

Furthermore, Kliemann [64] introduced a reachability network formation game with attacks

but without defense. In their model, the attack also happens after the network is formed

and the adversary destroys exactly one link in the network (with no spread) according to a

probability distribution over links that can depend on the structure of the network. They

show equilibrium networks in their model are chord-free and hence sparse. We also show

an abstract representation of equilibrium networks in our model corresponds to chord-free

graphs and then use this observation to prove sparsity. While both models lead to chord-

free graphs in equilibria, the analysis of why these graphs are chord-free is quite different.

In their model, the deletion of a single link destroys at most one path between any pair of
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vertices. So if there were two edge-disjoint paths between any pairs of vertices, they will

certainly remain connected after any attack. In our model the adversary attacks a vertex

and the attack can spread and delete many links. This leads to a more delicate analysis.

The welfare analysis is also quite different, since the deletion of an edge can cause a network

to have at most two connected components, while the deletion of (one or more) vertices

might lead to many connected components.

Finally, in a follow up work, Friedrich et al. [38] study the complexity of computing Nash

best response for our game with respect to the maximum carnage and random adversaries.

2.3. Diversity of Equilibrium Networks

In contrast to the original reachability network formation game [9], our game exhibits equi-

librium networks which contain cycles, as well as non-empty graphs which are not connected.

Figure 2 gives several examples of specific Nash equilibrium networks with respect to the

maximum carnage adversary for small populations, each of which is representative of a

broad family of equilibria for large populations and a range of values for CE and CI. In

this chapter, we represent immunized and vulnerable vertices as blue and red, respectively.

Although we treat the networks as undirected graphs (since the connectivity benefits and

risks are bilateral), we use directed edges in some of the figures to denote which player

purchased the edge e.g. i → j means that i has purchased an edge to j. Finally, we use

the maximum carnage adversary in many of our illustrations throughout this chapter be-

cause both the adversary’s choice of attack and verifying certain properties are the easiest

in this model compared to other natural models of Section 2.2. The examples in Figure 2

show that the tight characterization of the reachability game, where equilibrium networks

are either empty graph or trees, fails to hold for our more general game (though such graphs

can also form at equilibrium in our game). However, in the following sections, we show that

an approximate version of this characterization continues to hold for several adversaries.

On the one hand, examples in Figure 2 show that equilibrium networks can be denser in our
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(a) (b) (c) (d)

Figure 2: Examples of equilibria with respect to the maximum carnage adversary: (2a)
forest, (2b) cycle, (2c) 4-petal flower, (2d) complete bipartite.

game compared to the non-attack reachability game. It is thus natural to ask just how dense

they can be. In Section 2.4, we prove that (under a mild assumption on the adversary) the

equilibria of our game cannot contain more than 2n− 4 edges when n ≥ 4. So while these

networks can be denser than trees, they remain quite sparse, and thus the threat of attack

does not result in too much “over-building” or redundancy of connectivity at equilibrium.

Our density upper bound is tight, as the generalized complete bipartite graph in Figure 2d

has exactly 2n− 4 edges.

On the other hand, the examples also show that equilibrium networks can be disconnected

(even before the attack) and this might raise concerns regarding the welfare compared to the

reachability game. In Section 2.5, we show that for several adversarial attacks, all equilibria

which contain at least one edge and at least one immunized vertex (and are thus non-trivial

as they are different than any equilibrium of the reachability game without attack) are

connected and have immunization patterns such that even after the attack the network

remains highly connected. Hence such equilibria in fact enjoy very good welfare.

2.4. Sparsity

We show that despite the existence of equilibria containing cycles, under a very mild re-

striction on the adversary, any (Nash, swapstable or linkstable) equilibrium network of our

game has at most 2n − 4 edges and is thus quite sparse. Moreover, this upper bound is

tight as the generalized complete bipartite graph in Figure 2d has exactly 2n− 4 edges.
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We start by defining a natural restriction on the adversary. We then propose an abstract

view of the networks in our game and proceed to show that the abstract network is chord-

free in equilibria with respect to the restricted adversary. We finally derive the edge density

of the original network by connecting its edge density to the density of the abstract network.

We start by defining equivalence classes for networks.

Definition 4. Let G1 = (V,E1) and G2 = (V,E2) be two networks. G1 and G2 are

equivalent if for all vertices v ∈ V , the connected component of v is the same in both G1

and G2 for every possible choice of initial attack vertex in V .

Based on equivalence, we make the following natural restriction on the adversary.

Assumption 1. An adversary is well-behaved if on any pair of equivalent networks G1 =

(V,E1) and G2 = (V,E1), the probability that a vertex v ∈ V is chosen for attack, is equal.

Note that the adversaries in Definitions 1-3 are all well-behaved. We proceed to abstract

the network formed by the agents and argue about the edge density in this abstraction.

Let G = (V,E) be any network, I ⊆ V the immunized vertices in G and V1, . . . ,Vk the

vulnerable regions in G. In the abstract network every vulnerable region in G is contracted

to a single vertex. More formally, let G′ = (V ′, E′) be the abstract network. Define

V ′ = I∪{u1, . . . uk} where each ui represents a contracted vulnerable region of G. Moreover,

E′ is constructed from E as follows. For any edge (v1, v2) ∈ E such that v1, v2 ∈ I there is

an edge (v1, v2) ∈ E′. For any edge (v1, v2) ∈ E such that v1 ∈ Vi for some i and v2 ∈ I

there is an edge (ui, v2) ∈ E′ where ui denotes the contracted vulnerable region of G that

v1 belongs to. For any edge (v1, v2) such that v1, v2 ∈ Vi for some i there is no edge in G′.

We illustrate an example of the original network and the abstract network in Figure 3.

We next show that if G is an equilibrium network then G′ is a chord-free graph.

Lemma 1. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium network and

G′ = (V ′, E′) the abstraction of G. Then G′ is chord-free if the adversary is well-behaved.

As the next step we bound the edge density of chord-free networks in Theorem 2 using
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V3
V2

V1

(a) original network (b) abstract network

Figure 3: Blue: immunized vertices in both networks. Red: vulnerable vertices and regions
in the original and abstract networks, respectively.

Theorem 1 from the graph theory literature.

Theorem 1 (Mader [74]). Let G = (V,E) be an undirected graph with minimum degree d.

Then there is an edge (u, v) ∈ E such that there are d vertex-disjoint paths from u to v.

Theorem 2. Let G = (V,E) be a chord-free graph on n ≥ 4 vertices. Then |E| ≤ 2n− 4.

Theorem 2 implies the edge density of the abstract network G′ = (V ′, E′) is at most 2|V ′|−4.

To derive the edge density of the original network, we first show that any vulnerable region

in G (contracted vertices in G′) is a tree when G is an equilibrium network.

Lemma 2. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium network. Then

all the vulnerable regions in G are trees if the adversary is well-behaved.

We use Lemmas 1, 2 and Theorem 2 to prove a density bound on the equilibrium networks.

Theorem 3. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium network on

n ≥ 4 vertices. Then |E| ≤ 2n− 4 for any well-behaved adversary.

2.5. Connectivity and Social Welfare in Equilibria

The results of Section 2.4 show that despite the potential presence of cycles at equilibrium,

there are still sharp limits on collective expenditure on edges in our game. However, they

do not directly lower bound the welfare, due to connectivity concerns: if the graph could

become highly fragmented after the attack, or is sufficiently fragmented prior to the attack,

the reachability benefits to players could be sharply lower than in the attack-free reachability

game. In this section we show that when CI and CE > 1 are both constants with respect

to n, none of these concerns are realized in any “interesting” equilibrium network.
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In the original reachability game [9], the maximum welfare achievable in any equilibrium is

n2−O(n). Here we will show that the welfare achievable in any “non-trivial” equilibrium is

n2−O(n5/3). Obviously with no restrictions on the adversary and the parameters this cannot

be true. Just as in the original game, for CE > 1, the empty graph remains an equilibrium in

our game with respect to all the natural adversaries in Section 2.2. The empty graph has a

social welfare of only O(n) (each vertex has an expected payoff of 1−1/n). We thus assume

the equilibrium network contains at least one edge and at least one immunized vertex. We

refer to all equilibrium networks that satisfy the above assumption as non-trivial equilibria.

They capture the equilibria that are new to our game compared to the original attack-free

setting — the network is not empty, and at least one player has chosen immunization.

Limiting attention to non-trivial equilibria is necessary if we hope to guarantee that the

welfare at equilibrium is Ω(n2) when CE > 1. Without the edge assumption, the empty

graph is an equilibrium with respect to several natural adversaries. Furthermore, without

the immunization assumption, n/3 disjoint components where each component consists of

3 vulnerable vertices is an equilibrium (for carefully chosen CE and CI) with respect to e.g.

the maximum carnage adversary. In both cases, the social welfare is only O(n).

Similar to Section 2.4, to get any meaningful results for the welfare we need to restrict

the adversary’s power. To simplify presentation, for the most of this section we state and

analyze our results for the maximum carnage adversary. At the end of this section, we show

how these results (or their slight modifications) can be extended to several other adversaries.

Consider any connected component that contains an immunized vertex and an edge in a

non-trivial equilibrium network with respect to the maximum carnage adversary. We first

show that any targeted region in such component (if exists) has size one when CE > 1.

Lemma 3. Let G be a non-trivial Nash or swapstable equilibrium network with respect to

the maximum carnage adversary. Then in any component of G with at least one immunized

vertex and at least one edge, the targeted regions (if they exist) are singletons when CE > 1.
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We then show that non-trivial equilibrium networks with respect to the maximum car-

nage adversary are connected when CE > 1.

Theorem 4. Let G be a non-trivial Nash, swapstable or linkstable equilibrium network with

respect to the maximum carnage adversary. Then, G is a connected graph when CE > 1.

Together, Lemma 3 and Theorem 4 imply that any non-trivial equilibrium network with

respect to maximum carnage adversary is a connected network with targeted regions of size

1. Finally, we state our main result regarding the welfare in such non-trivial equilibria.

Theorem 5. Let G be a non-trivial Nash or swapstable equilibrium network on n vertices

with respect to the maximum carnage adversary. If CE and CI are constants (independent

of n) and CE > 1 then the welfare of G is n2 −O(n5/3).

Lastly, although non-trivial linkstable equilibrium networks with respect to the maximum

carnage adversary are connected when CE > 1, the size of targeted regions in such networks

can be bigger than 1. So Theorem 5 might not extend to such networks.

Remarks We proved our sparsity result with a rather mild restriction on the adversary.

However, we presented our welfare results with respect to a very specific adversary – the

maximum carnage adversary. The reader might have noticed that our proofs in this section

essentially relied only on the following two properties of the maximum carnage adversary:

(1) Adding an edge between any 2 vertices (at least 1 of which is immunized) does not change

the distribution of the attack and (2) Breaking a link inside of a targeted region does not

increase the probability of attack to the targeted region while at the same time does not

decrease the probability of attack to any other vulnerable regions. These same properties

hold for the random attack adversary and other adversaries that set the probability of

attack to a vulnerable region directly proportional to an increasing function of the size of

the vulnerable region. Thus our welfare results extend to random attack adversary and

other such adversaries without any modifications.

However, other natural adversaries might not satisfy these properties (e.g. the maximum

disruption adversary does not satisfy the first property). While the techniques in the wel-
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fare proofs are not directly applicable to such adversaries, it is still possible to reason about

the welfare with respect to such adversaries using different techniques e.g. we can show

that in any non-trivial and connected equilibrium with respect to the maximum disrup-

tion adversary, when CE and CI are constants (independent of n) and CE > 1, then the

welfare is n2−O(n5/3). Note that this is slightly weaker than the statement with respect to

the maximum carnage adversary, because we cannot show any non-trivial Nash equilibrium

network with respect to the maximum disruption adversary is connected when CE > 1. We

leave the question of whether arguing about welfare is possible using unified techniques for

a wide class of adversaries as future work.

2.6. Simulations

We complement our theory with simulations investigating various properties of swapstable

best response dynamics. Again we focused on the maximum carnage adversary and im-

plemented a simulation allowing the specification of the following parameters: number of

players n; edge cost CE; immunization cost CI; and initial edge density. The first three of

these parameters are as discussed before but the last is new and specific to the simulations.

Note that for any CE ≥ 1, empty graph is a Nash equilibrium. Thus to sensibly study

any type of best response dynamics, it is necessary to “seed” the process with at least

some initial connectivity. As for motivation, one could view the initial edge purchases as

occurred prior to the introduction of attack and immunization. We examine simulations

starting both from very sparse initial connectivity and rather dense initial connectivity,

for varying combinations of the other parameters. In all cases the initial connectivity was

chosen randomly via the Erdős-Renyi model.

Our simulations proceed in rounds, where each round consists of a swapstable best response

update for all n players in some fixed order. More precisely, in the update for player i we fix

the edge and immunization purchases of all other players, and compute the expected payoff

of i if she were to alter her current action according to swap deviations stated in Section 2.2.

Swapstable dynamics is a rich but “local” best response process, and thus more realistic than

22



full Nash best response dynamics from a bounded rationality perspective. The phenomena

we report on here appear to be qualitatively robust to a variety of natural modifications

of the dynamics, such as restriction to linkstable best response, changes to the ordering of

updates, and so on. Recall that all of our formal results hold for swapstable as well as Nash

equilibria, so the theory remains relevant for the simulations.

Figure 4: Average number of rounds for swapstable convergence vs. n, for CE = CI = 2.

The first question that arises in the consideration of any kind of best response dynamic is

whether and how quickly it will converge to the corresponding equilibrium notion. Inter-

estingly, empirically it appears that swapstable best response dynamics always converges

rather rapidly. In Figure 4 we show the average number of rounds to convergence over

many trials, starting from dense initial connectivity (average degree 5), for varying values

of n. The growth in rounds appears to be strongly sublinear in n (recall that each round

updates all n players, so the overall amount of computation is still superlinear in n). Thus

we conjecture the general and fast convergence of swapstable dynamics.

In Section 2.3, we gave a number of formal examples of Nash and swapstable equilibria

with respect to the maximum carnage adversary. These examples tended to exhibit a large

amount of symmetry, especially those containing cycles, due to the large number of cases
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that need to be considered in the proofs. Figure 5 shows a sampling of “typical” equilibria

found via simulation for n = 50 and initial edge density of 1/(2n), which exhibit interesting

asymmetries and illustrate the effects of the parameters.

Figure 5: Sample equilibria reached by swapstable best response dynamics for n = 50. Left:
CE = 0.5, CI = 2. Middle: CE = 2, CI = 2. Right: CE = 0.5, CI = 20.

In the left panel of Figure 5, CE = 0.5 and CI = 2. Thus players have an incentive to

buy edges even to isolated vertices as long as they do not increase their vulnerability to

the attack. In this regime, despite the initial disconnectedness of the graph, we often see

equilibria with a long cycle (as shown), with various tree-like structures attached. In the

middle panel we left CI = 2 but increased CE to 2. In this regime cycles are less common due

to the higher CE. The equilibrium illustrated is a tree formed by a connected “backbone”

of immunized players, each with varying numbers of vulnerable children. Finally, in the

right panel we return to inexpensive edges (CE = 0.5), but greatly increased CI to 20. In

this regime, we see fragmented equilibria with no immunizations. We note that unlike the

right example which is trivial, the examples in the left and middle are non-trivial equilibria

with high social welfare as predicted by theory.

Figure 5 provides snapshots only at the conclusion of swapstable dynamics while Figure 6

examines entire paths, again at n = 50. We started from denser initial graphs (average

degree 5), and each panel visualizes a different quantity per number of rounds, for 3 cost

regimes: inexpensive cost CE = CI = 2 (blue); moderate cost CE = CI = 6 (red); and

expensive cost CE = CI = 10 (green). There are 10 simulations for each cost regime.

24



Figure 6: Number of edges (left panel), number of immunizations (middle panel), and
average welfare (right panel) vs. number of rounds, for N = 50 and varying values for CI

and CE. See text for discussion.

In the left panel, we show the evolution of the total number of edges (y axis) in the graph

over successive rounds (x axis). In all regimes, there is initially a precipitous decline in

connectivity, as the overly dense initial graph cannot be supported at equilibrium. So in the

early rounds all players are dropping edges. The ultimate connectivity, however, depends

on the cost regime. In the inexpensive regime, connectivity falls monotonically until it

levels out very near the threshold for global connectivity at n − 1 (horizontal black line),

resulting in trees or perhaps just one cycle. In the moderate regime, we see a bifurcation; in

some trials, connectivity fall all the way to the empty graph at equilibrium, while in others

fall well below the n − 1 tree threshold, but then “recover” back to that threshold (which

we discuss shortly). In the expensive regime, all trials again result in a monotonic fall of

connectivity all the way to the empty graph.

For the same cost regimes and trials, the middle panel shows the number of immunizations

purchased over successive rounds. In the inexpensive regime, immunizations, sometimes

many, are purchased in early rounds. These act as a “safety net” that prevents connectivity

from falling below the tree threshold. Typically immunizations grow initially and then

decline. In the moderate regime, we see that the explanation for the connectivity bifurcation

discussed above can be traced to immunization decisions. In the trials where connectivity

is recovered, some players eventually choose to immunize and thus provide the focal points

for edge repurchasing. In many trials resulted in the empty graph, immunizations never
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occurred (these remain at y = 0). In the expensive regime, no trials are visible because

immunizations are never purchased.

Finally, the right panel shows the evolution of the average social welfare per player over

successive rounds. In the inexpensive regime, welfare increase slowly and modestly from

negative values in the initial graph, then increase dramatically as the benefits of immuniza-

tion are realized. In the moderate regime, we see a bifurcation of welfare corresponding

directly to the bifurcation of connectivity. In the expensive regime, all trials converge from

below to the minimum (1-1/n) welfare of the empty graph. Again as theory suggested,

the relationship between CE, CI and n is determining whether convergence is to a non-

trivial equilibrium and thus high social welfare, or to a highly fragmented network with no

immunizations and low social welfare.

We conclude by noting that for many parameters, the dynamics above result in heavy-tailed

degree distributions — a property commonly observed in large-scale social networks that is

easy to capture in stochastic generative models (such as preferential attachment), but more

rare in strategic network formation. Across 200 simulations for n = 100, CE = 0.5 and

CI = 2, we computed the ratio of the maximum to the average degree in each equilibrium

found. The lowest, average and maximum ratio observed were 6, 15.8, and 41, respectively

(so the highest degree is consistently an order of magnitude greater than the average or

more). Moreover, in all 200 trials the highest-degree vertex chose immunization, despite

the average rate of immunization of 23% across the population. Thus an amplification

process seems to be at work, where vertices that immunize early become the recipients

of many edge purchases, since they provide other vertices connectivity benefits that are

relatively secure against attack without the cost of immunization.

2.7. A Behavioral Experiment

To complement our theory, we conducted a behavioral experiment on our game with 118

participants. The participants were students in an undergraduate survey course on network
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science at the University of Pennsylvania. As training, participants were given a detailed

document and lecture on the game, with simple examples of payoffs for players on small

graphs under various edge purchase and immunization decisions. Participation was a course

requirement, and students were instructed that their grade on the assignment would be

exactly equal to their payoffs according to the rules of the game.

The payoffs used the maximum carnage adversary, with costs of CE = 5 and CI = 20.

With n = 118 participants (so a maximum connectivity benefit of 118 points), it felt that

these values made edge purchases and immunization significant expenses and thus worth

careful deliberation. Second, running swapstable best response simulations using these

values generally resulted in non-trivial equilibria with high welfare, whereas raising CE and

CI significantly generally resulted in empty or fragmented graphs with low welfare.

In a game of such complexity, with so many participants, it is unreasonable and uninteresting

to formulate the experiment as a one-shot simultaneous move game. Rather, some form of

communication must be allowed. We chose to conduct the experiment in a courtyard with

the single ground rule that all conversations be quiet and local i.e. in order to hear what a

participant was saying to others, one should have to stand next to them.

Other than the quiet rule, there were no restrictions on the nature of conversations: partici-

pants were free to enter agreements, make promises or threats and move freely. However, it

was made clear that any agreements or bargains struck would not be enforced by the rules

of the experiment (thus were non-binding). Each subject was given a handout that required

them to indicate which other subjects they chose to purchase edges to (if any), and whether

or not they chose to purchase immunization. The handout contained a list of subject names,

along with a unique identification number for each subject used to indicate edge purchases.

Thus subjects knew the names of the others as well as their assigned ID numbers. An entire

class session was devoted to the experiment, but subjects were free to (irrevocably) turn in

their handout at any time and leave. Subjects committed and exited sequentially, and the

entire duration was approximately 30 minutes. During the experiment, subjects tended to
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Figure 7: Left: the final undirected network formed by the edge purchases and immunization
decisions (blue for immunized, red for vulnerable). Right: a “nearby” Nash network.

gather quickly in small discussion groups that reformed frequently, with subjects moving

freely from group to group. It is clear from the outcome that despite adherence to the quiet

rule, the subjects engaged in widespread coordination via this rapid mixing.

In the left panel of Figure 7, we show the final undirected network formed by the edge

purchases and immunization decisions. The graph is clearly anchored by two main immu-

nized hub vertices, each with many spokes who purchased their single edge to the respective

hub. These two large hubs are both directly connected, as well as by a longer “bridge” of

three vulnerable vertices. There is also a smaller hub with just a handful of spokes, again

connected to one of the larger hubs via a chain of two vulnerable vertices.

For the payoffs, inspection of the network reveals that there are 2 groups of 3 vertices that

are the largest vulnerable connected components, and thus are the targets of the attack.

These 6 players are each killed with probability 1/2 for a payoff that is only half that of

the wealthiest players (the vulnerable spokes of degree 1). In between are the players who

purchased immunization including the 3 hubs and 2 immunized spokes. The immunized

spoke of the upper hub is unnecessarily so, while the immunized spoke in the lower hub is

best responding — had they not purchased immunization, they would have formed a unique

largest vulnerable component of size 4 and thus been killed with certainty.

It is striking how many properties the behavioral network shares with the theory: multiple

hub-spoke structures with sparse connecting bridges, resulting in high welfare and a heavy-
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tailed degree distribution; a couple of cycles. To quantify how far the behavioral network

is from equilibrium we use it as the starting point for swapstable best response dynamics

and run it until convergence. In the right panel of Figure 7, we show the resulting network

reached from the behavioral network in only 4 rounds of swapstable dynamics, and with only

15 of 118 vertices updating their choices. The dynamics clean up suboptimal behavioral

decisions e.g. the vulnerable bridges between hubs are replaced by direct edges, the other

targeted group of 3 spokes drops their fatal edges, and immunizing spokes no longer do so.

Participants were required to complete a survey after the experiment: they were asked

to comment on any strategies they contemplated prior to the experiment; whether and

how those strategies changed during the experiment; and what strategies or behaviors they

observed in other participants.

Many subjects reported entering the experiment with not just a strategy for themselves,

but also a “master plan” they hoped to convince others to join. One frequently reported

plan involved variations on cycles. Though little thought seems to have been given to

coordinating a global ordering in a cycle via only the quiet rule. Another frequently cited

plan involved the hub-spoke. Although most strategies are based on abstractions, others

reported planning to use social relationships e.g. connecting to students they know.

Of course, of particular interest are the surveys of the hubs. One seems to report an altruistic

motivation for purchasing immunization, hoping to maximize welfare. In contrast, the other

displays a Machiavellian attitude, willing to immunize in the hopes of creating 3 distinct

groups of participants: the “winners” who would connect to the hub; the hub with slightly

lower payoff; a large group of “losers” deliberately left out of the hub-spoke structure.

It is clear from the surveys that the word quickly spread during the experiment to connect

to hubs and many participants joined though not without some mistrust and hesitation.
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2.8. Conclusion and Discussion

We mention some areas for further study. Within our model, the question of whether

swapstable best response provably converges (as seen empirically) is open. The benefit

function considered here is one of many possible natural choices. It would be interesting

to consider other functions. Another extension includes imperfect immunization which fails

with some probability e.g. as a function of the amount of investment.

We mention two natural variants. The first is the combination of our original model with

a standard diffusion model for the spread of attack. For example, combining with the in-

dependent cascade model [61], when a targeted vertex is attacked, the infection spreads

with probability p along the edges from the attacked point for which both endpoints are

unimmunized. This spread then continues until we reach immunized vertices which again

act as firewalls. Again different adversaries can have different objectives e.g. the maximum

carnage adversary will pick an attack point which maximizes the expected spread. Wang

et al. [87] showed that computing the spread in the independent cascade model is #P-

complete. This suggests that even before considering the complexity of analysis, agents’

reasoning about the choice of attack by the adversary can become quite complicated. Fur-

thermore, due to the probabilistic nature of the spread, it is nontrivial to establish any

sparsity properties of the equilibria, because additional overbuilding might occur to hedge

against uncertainty of how the infection will spread. Welfare is yet more difficult to an-

alyze; unlike the deterministic spread, it is no longer obvious that a vertex likely to end

up in a small component post-attack has a single fixed edge purchase that would greatly

improve her utility, since different spread patterns can disconnect her from different regions.

Regardless of these hurdles, in Chapter 3, we study the variant of the probabilistic spread

under the random attack adversary.

The second variant is identical to our current model except that it requires edge purchases

to be bilateral. In this variant, the concept of equilibrium might be replaced by the notion
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of pairwise stability (see e.g. [49]). As a majority of our results hinge upon the analysis of

unilateral deviations, our current analysis cannot be easily modified to accommodate this

change. As a first step towards this goal, the game we study could be modified by adding a

blocking action with 0 cost while maintaining the unilateral edge formation. Namely for any

edge purchased from player i to j, player j can block the edge with no cost. The blocking

action removes both the potential connectivity benefit or risk of contagion from edge (i, j)

for both i and j. The first observation is that there are equilibrium networks in our game

which are not equilibria in this new game with blocking. Moreover, we can show that in

any equilibrium of the new game, no player blocks any of edges purchased to her. Finally

we can show that all the properties of our game (sparsity, connectivity and social welfare)

hold in the new game with blocking as well.
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Chapter 3

Network Formation Games with Attack and Stochas-

tic Spread

3.1. Introduction

We study a network formation game where strategic agents (vertices on a graph) receive

both benefits and costs from forming connections to other agents. While various benefit

functions exist in the literature [9, 34], we focus on the reachability network benefit. Here,

the benefit of an agent is the size of her connected component in the collectively formed

graph. This models settings where reachability (rather than centrality) motivates joining the

network, e.g. when transmitting packets over technological networks such as the Internet.

Most previous works feature a direct edge cost CE > 0 for forming a link. Goyal et al. [42]

(Chapter 2) depart from this notion by studying a game where forming links introduces an

additional indirect cost by exposing agents to contagious network shocks. These indirect

costs can model scenarios such as virus spread through technological or biological networks.

Our work continues this investigation of direct and indirect connection costs. To model the

indirect cost we assume that, after network formation, an adversary attacks a single vertex

uniformly at random. The attack then kills the vertex and spreads through the network

via the independent cascade model according to parameter p [61]. This random attack and

probabilistic spread captures the epidemiological quality of virus spread in both biological

and technological networks.

At a high level, our work is most closely related to two previous works. Bala and Goyal

[9] study a reachability network game without attacks and show a sharp characterization

of equilibrium networks: every tree and the empty network can form in equilibria. Goyal
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et al. [42] study a reachability network formation game where an adversary inspects the

formed network and then deliberately attacks a single vertex in the network. The attack

then spreads deterministically to neighboring vertices according to a known rule, while

agents may immunize against the attack for a fixed cost. Our game is most similar to

the latter setting under a random adversary and high immunization cost. However, in

our setting attacks spread probabilistically (through independent cascades) rather than

deterministically. This yields an arguably more realistic model of infection spread but

incurs additional complexity: computing the expected connectivity benefit of an agent in a

given network is now #P-complete [87].

Goyal et al. [42] show that while more diverse equilibrium networks, including ones with

multiple cycles, can emerge in addition to trees and the empty graph, the equilibrium net-

works with n agents will have at most 2n−4 edges; less than twice the number of edges that

can form in the equilibria of the attack-free game. Furthermore, they show that the social

welfare is at least n2 − o(n5/3) in non-trivial equilibrium networks. Asymptotically, this

is the maximum welfare possible achieved in any nonempty equilibrium of the attack-free

game. In the regime where the cost of immunization is high, the game of Goyal et al. [42]

only admits disconnected and fragmented equilibrium networks due to deterministic spread

of the attack, and the social welfare of the resulting networks may be as low as Θ(n).

Our Results and Techniques In our game, computing utilities or even verifying network

equilibrium is computationally hard. We circumvent this difficulty by proving structural

properties for equilibrium networks. First, we provide an upper bound on the edge density

in equilibria and show that any equilibrium network on n vertices has O (n log n/p) edges.

For constant p this upper bound is tight up to a logarithmic factor. The possibility of

over-building therefore differentiates our game from those of Bala and Goyal [9] and Goyal

et al. [42], but the extent of over-building is limited.
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To prove the density result, we first show that any equilibrium network with more than

Ω(n log(n/p)) edges contains an induced subgraph with large minimum cut size. We then

show that if a network has large minimum cut size, in every attack (with high probability),

either almost all vertices in the network will die or almost all vertices in the network will

survive. As a result, any vertex in the induced subgraph can beneficially deviate by dropping

an edge. Together, these observations allows us to prove the claimed edge density bound.

Next, we show that any equilibrium network that is nontrivial (i.e. contains at least one

edge) also contains a large connected component. Moreover, as long as the network is not

too dense, it achieves a constant approximation to the best welfare possible of the attack-

free game. More formally, any non-trivial equilibrium network over n vertices contains

a connected component of size at least n/3. Furthermore, if the number of edges in the

network is O(n/p), then the social welfare is Ω(n2).

To prove the welfare result, we first show that any agent in a small connected component

can increase her connectivity benefits by purchasing an edge to a larger component without

significantly increasing her attack risk. This implies the existence of a large connected

component. We then use the large component to argue that when the equilibrium network

is sparse, the surviving network post-attack still contains a large connected component.

This guarantees large social welfare.

While Goyal et al. [42] show robustness of the structural properties of the original reacha-

bility game of Bala and Goyal [9] to a variation with attack, deterministic spread and the

option of immunization for players, we show robustness in another variant that involves a

cascading attack but disallows immunization. However, on the technical front, the tools

that we use to prove these robustness results are very different from the previous games.

Organization We introduce our model and discuss the related work in Section 3.2. In

Section 3.3 we present examples of equilibrium networks of our game. Sections 3.4 and 3.5

are devoted to the characterization of the edge density and social welfare. We conclude
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with directions for future work in Section 3.6.

3.2. Model

We start by formalizing our model for completeness. We assume the n vertices of a graph

(network) correspond to individual players. Each player has the choice to purchase edges

to other players at a fixed cost of CE > 0 per edge. Throughout we assume that CE is

a constant independent of n. Furthermore, we use the term high probability to refer to

probability at least 1− o(1/n) henceforth.

A (pure) strategy si ⊆ [n] for player i consists of a subset of players to whom player i

purchased an edge. Similar to Chapter 2, we assume that edge purchases are unilateral i.e.

players do not need approval to purchase an edge to another player but that the connectivity

benefits and risks are bilateral.

Let s = (s1, . . . , sn) denote the strategy profile for all the players. Fixing s, the set of edges

purchased by all the players induces an undirected graph. A game graph GG = (V,E) is

defined to be the undirected graph induced by the edge purchases of all players.

Fixing a game graph G, the adversary selects a single vertex v ∈ V uniformly at random

to start the attack. The attack kills v and then spreads according to the independent

cascade model with probability p ∈ (0, 1) [61]. (Throughout we assume that p is a constant

independent of the number of players n. We discuss the regime in which p decreases as

the number of players increases in Section 3.4.1.) In the independent cascade model, in the

first round, the attack spreads independently killing each of the neighbors of the initially

attacked vertex v with probability p. In the next round, the spread continues from all the

neighbors of v that were killed in the previous round. The spread stops when no new vertex

was killed in the last round or when all the vertices are killed.

The adversary’s attack can be alternatively described as follows. Fixing a game graph G,

let G[p] denote the random graph obtained by retaining each edge of G independently with
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probability p. The adversary picks a vertex v uniformly at random to start the attack. The

attack kills v and all the vertices in the connected component of G[p] that contains v.

Let CCi(v) denote the expected size of the connected component of player i post-attack to

a vertex v and we define CCv(v) to be 0. Then the expected utility (utility for short) of

player i in strategy profile s denoted by ui(s) is precisely

ui(s) =
1

|V |
∑
v∈V

CCi (v)− |si|CE.

The sum of utilities of all the players playing s is defined to be the social welfare of s.

Wang et al. [87] show that computing the exact spread of the attack in the independent

cascade model is #P-complete in general. This implies that, given a strategy profile s, com-

puting the expected size of the connected component of all vertices (and hence the expected

utility of all vertices) is #P-complete. However, an approximation of these quantities can

be obtained by Monte Carlo simulation.

We model each of the n players as strategic agents who deterministically choose which edges

to purchase. A strategy profile s is a pure strategy Nash equilibrium if, for any player i,

fixing the behavior of the other players to be s−i, the expected utility for i, ui(s), cannot

strictly increase when playing any strategy s′i over si. We focus our attention to pure

strategy Nash equilibrium (or equilibrium) in this work. Since computing the expected

utilities in our game is #P-complete, even verifying that a strategy profile is an equilibrium

is #P-complete. Hence as our main contribution, we prove structural properties for the

equilibrium networks regardless of this computational barrier.

3.2.1. Related Work

There are two lines of work closely related to ours. First, Bala and Goyal [9] study the

attack-free version of our game. They show that equilibrium networks are either trees or

the empty network. Also since there is no attack, the social welfare in nonempty equilibrium
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networks is asymptotically n2 − o(n2).

Second, Goyal et al. [42] study a network formation game where players in addition to hav-

ing the option of purchasing edges can also purchase immunization from the attack. Since

we do not study the effect of immunization purchases in our game, our game corresponds

to the regime of parameters in their game where the cost of immunization is so high that

no vertex would purchase immunization in equilibria. Moreover, they study several dif-

ferent adversarial attack models and our attack model coincides with their random attack

adversary. The main difference between our work and theirs is that they assume the attack

spreads deterministically while we assume the attack spreads according to the independent

cascade model [61]. In many real world scenarios e.g. the spread of contagious disease over

the network of people, the spread is not deterministic. Hence our work can be seen as a first

attempt to make the model of Goyal et al. [42] closer to real world applications. However,

the change in the spread of attack comes with a significant increase in the complexity of

the game as even computing the utilities of the players in our game is #P-complete. While

Friedrich et al. [38] have shown that best responses for players can be computed in poly-

nomial time under various attack models, the question of whether best response dynamics

converges to an equilibrium network is open in the model of Goyal et al. [42].

Similar to Goyal et al. [42] we show that diverse equilibrium networks can form in our game.

While they show that all equilibrium networks over n ≥ 4 players have at most 2n−4 edges,

we show that the number of edges in any equilibrium network is at most O(n log n) and this

bound is tight up to a logarithmic factor. Furthermore, Goyal et al. [42] show that the social

welfare is asymptotically n2− o(n2) in non-trivial equilibrium networks. Their definition of

non-trivial networks requires the network to have at least one immunized vertex and one

edge. In the regime where the cost of immunization is high, the game of Goyal et al. [42]

only admits disconnected and fragmented equilibrium networks due to the deterministic

spread of the attack. Such networks (even excluding the empty graph) can have social

welfare as low as Θ(n). We show that any low density equilibrium network of our game
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enjoys a social welfare of Θ(n2) as long as the network contains at least one edge.

Kliemann [64] introduced a network formation game with reachability benefits and an at-

tack on the formed network that destroys exactly one link with no further spread. Their

equilibrium networks are sparse and also admit high social welfare as removing an edge can

create at most two connected components. Kliemann et al. [65] extend this to allow attacks

on vertices while focusing on swapstable equilibria.

Blume et al. [16] introduce a game with bilateral edge formation. They assume both edge

and link failures can happen simultaneously but independent of the failures so far in the

network. These differences make it hard to directly compare the two models.

Finally, network formation games, with a variety of different connectivity benefit models,

have been studied extensively in computer science see e.g. [9, 16, 64]. We refer the reader to

the related work section in Chapter 2 for a comprehensive summary of other related work

especially on the topic of optimal security choices for networks.

3.3. Examples of Equilibrium Networks

In this section we show that a diverse set of topologies can emerge in the equilibrium of our

game. Similar to the models of Bala and Goyal [9] and Goyal et al. [42] the empty graph can

form in the equilibrium of our game when CE ≥ 1. Moreover, similar to both models, trees

can form in equilibria (See the left panel of Figure 8). Finally, while Goyal et al. [42] show

that in the regime of their game where the cost of immunization is high (so no vertex would

immunize) no connected network can form in equilibria due to the deterministic spread of

the attack, we show that connected networks indeed can form in our game (See Figure 8).

We remark that pure strategy equilibria exist in all parameter regimes of our game. When

CE ≥ 1, the empty network can form in equilibria for all p. When CE < 1 a cycle or two

disconnected hub-spoke structure of size n/2 can form in equilibria depending on whether

p is far or close to 1 ((1− ω(1/n)) and (1− o(1)), respectively).
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Figure 8: From left to right: hub-spoke, cycle and linear-paths network. A directed arrow
determines the vertex that purchases the edge.

Examples in Figure 8 show that denser networks can form in equilibria compared to the

model of Bala and Goyal [9] and the high immunization cost regime of the model of Goyal

et al. [42]. So we ask how dense equilibrium networks can be in Section 3.4 and show an

upper bound of O(n log n) on the density of the equilibrium networks. Since the examples

in Figure 8 have Θ(n) edges, our upper bound is tight up to a logarithmic factor.

Moreover, while all the equilibrium networks in Figure 8 are connected, there might still

exist equilibrium networks in our game that are highly disconnected. In Section 3.5 we show

that any equilibrium network with at least one edge contains a large connected component.

However, even with the guarantee of a large connected component, there might still be

concerns that the equilibrium networks can become highly fragmented after the attack. We

show that as long as the equilibrium network is not too dense, the social welfare is lower

bounded by Θ(n2) i.e. a constant fraction of the social welfare of the attack-free game.

These structural results are obtained despite the computational hardness of equilibrium

verification. We view these results as are our most significant technical contributions.

3.4. Edge Density

We now analyze the edge density of equilibrium networks.

Theorem 6. Any equilibrium network on n vertices has O (n log n/p) edges.

The prove Theorem 6, we first show that if G has large enough edge density, then G contains

an induced subgraph H whose minimum cut size is large. We then show a large minimum

cut size implies that H[p] is connected with high probability and in almost all attacks that
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infect a vertex in H, all vertices in H will get infected. So a vertex in H would have a

beneficial deviation in the form of dropping an edge; which contradicts the assumption that

G was an equilibrium network. This proves that equilibrium networks cannot be too dense.

More formally, we first show in Lemma 4 that if G is dense enough it contains a subgraph

H with a minimum cut size, denoted by α(H), of at least Ω (log n/p).

Lemma 4. Let G = (V,E) be a graph on n vertices. There exists a constant k such that if

|E| ≥ kn log n/p then G contains an induced subgraph H with α(H) ≥ k log n/p.

We then show that if α(G) is Ω (log n/p) then with high probability G[p] is connected.

Lemma 5 (Alon [3]). Let G = (V,E) be a graph on n vertices. Then for any constant

b > 0 there exists a constant k(b) such that if α(G) ≥ k(b) log n/p then with probability at

least 1− n−b, G[p] is connected.

We now define a property which we call almost certain infection and show that no equilib-

rium network can contain an induced subgraph satisfying this property.

Definition 5. Let G = (V,E) be a graph on n vertices and H a subgraph of G on more

than one vertex. H has the almost certain infection property if whenever any vertex in H

is attacked, then with probability at least 1− o(1/n) the attack spreads to every vertex in H.

Lemma 6. Let G = (V,E) be an equilibrium network on n vertices. G cannot contain an

induced subgraph H = (V ′, E′) such that H satisfies the almost infection property.

The most interesting regime for the probability of spread p is when p is a constant indepen-

dent of n. While the upper bound in Theorem 6 holds for all p, it becomes vacuous as p gets

small i.e. it becomes bigger than the trivial bound of n2/2 when p ≤ k log n/n for constant

k. In Section 3.4.1 we analyze the edge density of equilibrium networks in the regime where

p < 1/n. We show that the number of edges in any equilibrium network is bounded by

O(n) in this regime. The proof utilizes properties of the Galton-Watson branching process

and random graph model of Erdös-Rényi, as well as tools from extremal graph theory.
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3.4.1. Small p Regime

We now focus on the regime where p < 1/n and prove the following density upper bound.

Theorem 7. Let p = κ/n for some constant κ < 1. Let G = (V,E) be an equilibrium

network over n vertices. Then for sufficiently large n, |E| ≤ max{1/CE, 24000}n.

To prove Theorem 7, we show that if the equilibrium graph has more than max{1/CE, 24000}n

edges, there exists a beneficial deviation in the form of dropping an edge for one of the play-

ers. To do so, we need structural results stated in Lemmas 7 and 8. First, consider an edge

(u, v) purchased by vertex u. Purchasing this edge would not have increased the connectiv-

ity benefit of u unless, after some attack, the edge (u, v) is the only path connecting u to v

(and possibly other vertices that are only reachable through v). In Lemma 7 we show that

if a graph is dense enough, then there exists an edge (u, v) such that many vertices should

be deleted in order to make (u, v) the only remaining path connecting u and v.

Lemma 7. Let G = (V,E) be a graph on n > 3γ vertices with |E| ≥ 2.5γ(n − γ) − 1 for

some γ ∈ N. Then there exist vertices v1, v2 ∈ V such that (v1, v2) ∈ E, and at least γ + 1

vertices need to be deleted so that the only path from v1 to v2 is through the edge (v1, v2).

Second, as described in Section 3.2, the number of vertices that are killed in any attack

is the size of the connected component in G[p] that contains the initially attacked vertex.

Lemma 8 bounds the size of a randomly chosen connected component in G[p].

Lemma 8. Let G = (V,E) be an equilibrium network over n vertices with |E| = kn and

max{1/CE, 24000} ≤ k = O(log n). When p < 1/n and n is sufficiently large, the size of the

connected component of a randomly chosen vertex v in G[p] is at most k/3 with probability

at least 1− 2CE/(3n).

3.5. Social Welfare

In this section we provide a lower bound on the social welfare of equilibrium networks.

Similar to other reachability games, the empty graph can form in equilibrium [9, 42]. Hence
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without any further assumptions, no meaningful guarantee on the social welfare can be

made. Hence, we focus on non-trivial equilibrium networks defined as follows.

Definition 6. An equilibrium network is non-trivial if it contains at least one edge.

Definition 6 rules out the empty network but it is still possible that a non-trivial equilibrium

network contains many small connected components or becomes highly fragmented after the

attack. In this section we show that none of these concerns materialize. In particular, in

Theorem 8, we first show that any non-trivial equilibrium network contains at least one

large connected component. We then show in Lemma 9 that when the network is not too

dense, the equilibrium network cannot become highly fragmented after the attack. These

two observations allows us to prove our social welfare lower bound as stated in Theorem 9.

First we show any non-trivial equilibrium network contains a large connected component.

Theorem 8. Let G = (V,E) be a non-trivial equilibrium network over n vertices. Then,

for sufficiently large n, the largest connected component of G has at least n/3 vertices.

We next present Lemma 9 that describes the relationship between the expected size of the

largest connected component of G[p] and the connectivity benefits of the vertices in G.

Lemma 9. Let G = (V,E) be an equilibrium network over n vertices. Let C be any

connected component in G of size nC . If the expected size of the largest component of C[p]

is at most nC(1− ε), then the expected sum of the connectivity benefits of the vertices in C

is at least (n− nC)n2
C/n+ εn3

C/(3n).

Theorem 8 and Lemma 9 allow us to prove a lower bound on the social welfare.

Theorem 9. Let G = (V,E) be a non-trivial equilibrium network over n vertices. For any

ε ∈ (0, 1/8) and sufficiently large n, if |E| < (1− 2ε)n log(1/ε)/p, then the social welfare of

G is at least εn2/3−O(n/p).

Finally, we remark that unlike the models of Bala and Goyal [9] and Goyal et al. [42],

achieving a social welfare of n2 − o(n2) is impossible in our game even when restrciting to

sparse and non-trivial equilibrium networks. This is formalized in Proposition 1.
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Proposition 1. There exists a non-trivial equilibrium network G = (V,E) over n vertices

with O(n) edges such that the social welfare of G is kn2 for k < 1.

3.6. Conclusions

We studied a natural network formation game where each network connection has the

potential to both bring additional utility to an agent as well add to her risk of being

infected by a cascading infection attack. We showed that the equilibria resulting from these

competing concerns are essentially sparse and containing at most O(n log n) edges. We also

showed that any non-trivial equilibrium network in our game achieves the highest possible

social welfare of Θ(n2) whenever the equilibrium network has only O(n) edges.

The Price of Anarchy in our model is Θ(n). To illustrate, consider the CE ≥ 1 regime.

A central planner can built a cycle or two disconnected hub-spoke structures of size n/2

depending on whether the probability of spread of the attack p is low or high, respectively

(and both of these structures can also form in equilibrium). Such networks have social

welfare of Θ(n2). However, the empty network is an equilibrium network in this regime

implying a Price of Anarchy of at least Θ(n) – the worst Price of Anarchy possible. The

Price of Stability in our model is Θ(1) since the social welfare is trivially bounded by n2

and either of the two equilibrium networks above achieve a social welfare of Θ(n2).

Our results suggest several natural questions for future work. Our upper bound of O(n log n)

is a logarithmic factor higher than the densest equilibrium network that we can create.

Narrowing this gap is the most interesting open question. Improving our network den-

sity upper bound to O(n) edges would immediately imply that all non-trivial equilibrium

networks achieve Ω(n2) social welfare. Another direction for future work is to analyze how

network density and social welfare evolves when agents additionally have an option to invest

in immunization that protects them from infections.
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Chapter 4

Fairness in Reinforcement Learning

4.1. Introduction

The growing use of machine learning for automated decision-making has raised concerns

about the potential for unfairness in learning algorithms and models. In settings as diverse

as policing [82], hiring [76], lending [18], and criminal sentencing [10], mounting empirical

evidence suggests these concerns are not merely hypothetical [6, 85].

We initiate the study of fairness in reinforcement learning, where an algorithm’s choices

may influence the state of the world and future rewards. In contrast, previous work on

fair machine learning has focused on myopic settings where such influence is absent, e.g.

in i.i.d. or no-regret models [30, 35, 45, 52]. The resulting fairness definitions therefore

do not generalize well to a reinforcement learning setting, as they do not reason about

the effects of short-term actions on long-term rewards. This is relevant for the settings

where historical context can have a distinct influence on the future. For concreteness, we

consider the specific example of hiring (though other settings such as college admission or

lending decisions can be embedded into this framework). Consider a firm aiming to hire

employees for a number of positions. The firm might consider a variety of hiring practices,

ranging from targeting and hiring applicants from well-understood parts of the applicant

pool (which might be a reasonable policy for short-term productivity of its workforce), to

exploring a broader class of applicants whose backgrounds might differ from the current set

of employees at the company (which might incur short-term productivity and learning costs

but eventually lead to a richer and stronger overall applicant pool).

We focus on the standard model of reinforcement learning, in which an algorithm seeks to

maximize its discounted sum of rewards in a Markovian decision process (MDP). Through-
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out, the reader should interpret the actions available to a learning algorithm as correspond-

ing to choices or policies affecting individuals (e.g. which applicants to target and hire).

The reward for each action should be viewed as the short-term payoff of making the corre-

sponding decision (e.g. the short-term influence on the firm’s productivity after hiring any

particular candidate). The actions taken by the algorithm affect the underlying state of

the system (e.g. the company’s demographics as well as the available applicant pool) and

therefore in turn will affect the actions and rewards available to the algorithm in the future.

Informally, our fairness notion requires that (with high probability) in state s, an algorithm

never chooses an available action a with probability higher than another action a′ unless

Q∗(s, a) > Q∗(s, a′), i.e. the long-term reward of a is greater than that of a′. This definition,

adapted from Joseph et al. [52], is weakly meritocratic: facing some set of actions, an

algorithm must pick a distribution over actions with (weakly) heavier weight on the better

actions (in terms of their discounted long-term reward). Correspondingly, a hiring process

satisfying our fairness definition cannot probabilistically target one population over another

if hiring from either population will have similar long-term benefit to the firm’s productivity.

Unfortunately, our first result shows an exponential separation in expected performance

between the best unfair algorithm and any algorithm satisfying fairness. This motivates

our study of a natural relaxation of (exact) fairness, for which we provide a polynomial

time learning algorithm, thus establishing an exponential separation between exact and

approximately fair learning in MDPs.

Our Results Throughout, we use (exact) fairness to refer to the adaptation of Joseph et al.

[52]’s definition defining an action’s quality as its potential long-term discounted reward.

We also consider two natural relaxations. The first, approximate-choice fairness, requires

that an algorithm never chooses a worse action with probability substantially higher than

better actions. The second, approximate-action fairness, requires that an algorithm never

favors an action of substantially lower quality than that of a better action.
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The contributions of this paper can be divided into two parts. First, in Section 4.3, we

give a lower bound on the time required for a learning algorithm to achieve near-optimality

subject to (exact) fairness or approximate-choice fairness. We show that for any constant

ε, to achieve ε-optimality, (i) any fair or approximate-choice fair algorithm takes a number

of rounds exponential in the number of MDP states and (ii) any approximate-action fair

algorithm takes a number of rounds exponential in 1/(1− γ), for discount factor γ.

Second, we present an approximate-action fair algorithm (Fair-E3) in Section 4.4 and prove

a polynomial upper bound on the time it requires to achieve near-optimality. In particular,

we show that for any constant ε and any MDP satisfying standard assumptions, Fair-E3 is

an approximate-action fair algorithm achieving ε-optimality in a number of rounds that is

(necessarily) exponential in 1/(1− γ) and polynomial in other parameters.

The exponential dependence of Fair-E3 on 1/(1− γ) is tight: it matches our lower bound

on the time complexity of any approximate-action fair algorithm. Furthermore, our results

establish rigorous trade-offs between fairness and performance in reinforcement learning.

4.1.1. Related Work

The most relevant parts of the large body of literature on reinforcement learning focus on

constructing learning algorithms with provable performance guarantees. E3 [59] was the

first learning algorithm with a polynomial learning rate, and subsequent work improved this

rate (see e.g. Szita and Szepesvári [86]). The study of robust MDPs [70, 75, 77] examines

MDPs with high parameter uncertainty but generally uses “optimistic” learning strategies

that ignore (and often conflict with) fairness and so do not directly apply to this work.

Our work also belongs to a growing literature studying the problem of fairness in machine

learning. Early work in data mining [44, 55, 56, 73, 78, 91] considered the question from

a primarily empirical standpoint, often using statistical parity as a fairness goal. Dwork

et al. [30] explicated several drawbacks of statistical parity and instead proposed one of the

first broad definitions of algorithmic fairness, formalizing the idea that “similar individuals
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should be treated similarly”. Recent papers have proven several impossibility results for

satisfying different fairness requirements simultaneously [37, 62]. More recently, Hardt

et al. [45] proposed new notions of fairness and showed how to achieve these notions via

post-processing of a black-box classifier. Woodworth et al. [88] and Zafar et al. [90] further

studied these notion theoretically and empirically.

4.1.2. Strengths and Limitations of Our Models

In recognition of the duration and consequence of choices made by a learning algorithm

during its learning process – e.g. job applicants not hired – our work departs from previous

work and aims to guarantee the fairness of the learning process itself. To this end, we adapt

the fairness definition of Joseph et al. [52], who studied fairness in the bandit framework and

defined fairness with respect to one-step rewards. To capture the desired interaction and

evolution of the reinforcement learning setting, we modify this myopic definition and define

fairness with respect to long-term rewards: a fair learning algorithm may only choose action

a over action a′ if a has true long-term reward at least as high as a′. Our contributions thus

depart from previous work in reinforcement learning by incorporating a fairness requirement

(ruling out existing algorithms which commonly make heavy use of “optimistic” strategies

that violates fairness) and depart from previous work in fair learning by requiring “online”

fairness in a previously unconsidered reinforcement learning context.

First note that our definition is weakly meritocratic: an algorithm satisfying our fairness

definition can never probabilistically favor a worse option but is not required to favor a bet-

ter option. This confers both strengths and limitations. Our fairness notion still permits

a type of “conditional discrimination” in which a fair algorithm favors group A over group

B by selecting choices from A when they are superior and randomizing between A and B

when choices from B are superior. In this sense, our fairness requirement is relatively min-

imal, encoding a necessary variant of fairness rather than a sufficient one. This makes our

lower bounds and impossibility results (Section 4.3) relatively stronger and upper bounds

(Section 4.4) relatively weaker.
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Next, our fairness requirement holds (with high probability) across all decisions that a

fair algorithm makes. We view this strong constraint as worthy of serious consideration,

since “forgiving” unfairness during the learning may badly mistreat the training population,

especially if the learning process is lengthy or even continual. Additionally, it is unclear

how to relax this requirement, even for a small fraction of the algorithm’s decisions, without

enabling discrimination against a correspondingly small population.

Instead, aiming to preserve the “minimal” spirit of our definition, we consider a relaxation

that only prevents an algorithm from favoring a significantly worse option over a better

option (Section 4.2.1). Hence, approximate-action fairness should be viewed as a weaker

constraint: rather than safeguarding against every violation of “fairness”, it instead restricts

how egregious these violations can be. See Section 4.5 for further relaxations.

4.2. Preliminaries

In this paper we study reinforcement learning in Markov Decision Processes (MDPs). An

MDP is a tuple M = (SM ,AM , PM , RM , T, γ) where SM is a set of n states, AM is a set

of k actions, T is a horizon of a (possibly infinite) number of rounds of activity in M , and

γ is a discount factor. PM : SM × AM → SM and RM : SM → [0, 1] denote the transition

probability distribution and reward distribution, respectively. We use R̄M to denote the

mean of RM . A policy π is a mapping from a history h (the sequence of triples (state,

action, reward) observed so far) to a distribution over actions. The discounted state and

state-action value functions are denoted by V π and Qπ, and V π(s, T ) represents expected

discounted reward of following π from s for T steps. The highest values functions are

achieved by the optimal policy π∗ and are denoted by V ∗ and Q∗ [84]. We use µπ to denote

the stationary distribution of π. Throughout we make the following assumption.

Assumption 2 (Unichain Assumption). The stationary distribution of any policy in M is

independent of its start state.

We denote the ε-mixing time of π by T πε . Lemma 10 relates the ε-mixing time of any policy
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π to the number of rounds until the V π
M values of the visited states by π are close to the

expected V π
M values (under the stationary distribution µπ).

Lemma 10. Fix ε > 0. For any state s, following π for T ≥ T πε steps from s satisfies

Es∼µπ [V π
M (s)]− E

[
1
T

T∑
t=1

V π
M (st)

]
≤ ε

1−γ ,

where st is the state visited at time t when following π from s and the expectation in the

second term is over the transition function and the randomization of π.

The horizon time Hγ
ε := log (ε(1− γ)) / log(γ) of an MDP captures the number of steps

an approximately optimal policy must optimize over. The expected discounted reward of

any policy after Hγ
ε steps approaches the expected asymptotic discounted reward (Kearns

and Singh [59], Lemma 2). A learning algorithm L is a non-stationary policy that at each

round takes the entire history and outputs a distribution over actions. We now define a

performance measure for learning algorithms.

Definition 7 (ε-optimality). Let ε > 0 and δ ∈ (0, 1/2). L achieves ε-optimality in T steps

if for any T ≥ T

Es∼µ∗ [V ∗M (s)]− E

[
1

T

T∑
t=1

V ∗M (st)

]
≤ 2ε

1− γ
, (4.1)

with probability at least 1− δ, for st the state L reaches at time t, where the expectation is

taken over the transitions and the randomization of L, for any MDP M .

We thus ask that a learning algorithm, after sufficiently many steps, visits states whose

values are arbitrarily close to the values of the states visited by the optimal policy. Note

that this is stronger than the “hand-raising” notion in Kearns and Singh [59], which only

asked that the learning algorithm stop in a state from which discounted return is near-

optimal, permitting termination in a state from which the optimal discounted return is

poor. In Definition 7, if there are states with poor optimal discounted reward that the

optimal policy eventually leaves for better states, so must our algorithms. We also note the

following connection between the average V π
M values of states visited under the stationary
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distribution of π (and in particular an optimal policy) and the average undiscounted rewards

achieved under the stationary distribution of that policy.

Lemma 11 (Singh [83]). Let R̄M be the vector of mean rewards in states of M and Vπ
M

the vector of discounted rewards in states under π. Then µπ · R̄M = (1− γ)µπ ·Vπ
M .

We design an algorithm which quickly achieves ε-optimality and we bound the number of

steps T before this happens by a polynomial in the parameters of M .

4.2.1. Notions of Fairness

We now turn to formal notions of fairness. Translated to our setting, Joseph et al. [52]

define action a’s quality as the expected immediate reward for choosing a from state s and

then require that an algorithm not probabilistically favor a over a′ if a has lower expected

immediate reward.

However, this naive translation does not adequately capture the structural differences be-

tween bandit and MDP settings since present rewards may depend on past choices in MDPs.

In particular, defining fairness in terms of immediate rewards would prohibit any policy sac-

rificing short-term rewards in favor of long-term rewards. This is undesirable, since it is

the long-term rewards that matter in reinforcement learning, and optimizing for long-term

rewards often necessitates short-term sacrifices. Moreover, the long-term impact of a deci-

sion should be considered when arguing about its relative fairness. We will therefore define

fairness using the state-action value function Q∗M .

Definition 8 (Fairness). L is fair if for all input δ > 0, all M , all rounds t, all states s

and all actions a, a′

Q∗M (s, a) ≥ Q∗M (s, a′)⇒ L(s, a, ht−1) ≥ L(s, a′, ht−1)

with probability at least 1− δ over histories ht−1 where L(s, a, h) denotes the probability L

chooses a from s given history h.
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Fairness requires that an algorithm never probabilistically favors an action with lower long-

term reward over an action with higher long-term reward. In hiring, this means that an

algorithm cannot target one applicant population over another unless the targeted popula-

tion has a higher quality.

In Section 4.3, we show that fairness can be extremely restrictive. Intuitively, L must play

uniformly at random until it has high confidence about the Q∗M values, in some cases taking

exponential time to achieve near-optimality. This motivates relaxing Definition 8. We first

relax the probabilistic requirement and require only that an algorithm not substantially

favor a worse action over a better one.

Definition 9 (Approximate-choice Fairness). L is α-choice fair if for all inputs δ > 0 and

α > 0: for all M , all rounds t, all states s and actions a, a′:

Q∗M (s, a) ≥ Q∗M (s, a′)⇒ L(s, a, ht−1) ≥ L(s, a′, ht−1)− α,

with probability of at least 1 − δ over histories ht−1. If L is α-choice fair for any input

α > 0, we call L approximate-choice fair.

A slight modification of the lower bound for (exact) fairness shows that algorithms satisfying

approximate-choice fairness can also require exponential time to achieve near-optimality.

We therefore propose an alternative relaxation, where we relax the quality requirement. As

described in Section 4.1.1, the resulting notion of approximate-action fairness is in some

sense the most fitting relaxation of fairness, and is a particularly attractive one because it

allows us to give algorithms circumventing the exponential hardness proved for fairness and

approximate-choice fairness.

Definition 10 (Approximate-action Fairness). L is α-action fair if for all inputs δ > 0 and

α > 0, for all M , all rounds t, all states s and actions a, a′:

Q∗M (s, a) > Q∗M (s, a′) + α⇒ L(s, a, ht−1) ≥ L(s, a′ht−1)
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with probability of at least 1 − δ over histories ht−1. If L is α-action fair for any input

α > 0, we call L approximate-action fair.

Approximate-choice fairness prevents equally good actions from being chosen at very differ-

ent rates, while approximate-action fairness prevents substantially worse actions from being

chosen over better ones. In hiring, an approximately-action fair firm can only (probabilis-

tically) target one population over another if the targeted population is not substantially

worse. While this is a weaker guarantee, it at least forces an approximately-action fair

algorithm to learn different populations to statistical confidence. This is a step forward

from current practices, in which companies have much higher degrees of uncertainty about

the quality (and impact) of hiring individuals from under-represented populations. For this

reason and the computational benefits mentioned above, our upper bounds will primarily

focus on approximate-action fairness.

We now state several useful observations regarding fairness. We note that there always

exists a (possibly randomized) optimal policy which is fair; moreover, any optimal policy

(deterministic or randomized) is approximate-action fair, as is the uniformly random policy.

Finally, we consider a restriction of the actions in an MDP M to nearly-optimal actions (as

measured by Q∗M values).

Definition 11 (Restricted MDP). The α-restricted MDP of M , denoted by Mα, is identical

to M except that in each state s, the set of available actions are restricted to {a : Q∗M (s, a) ≥

maxa′∈AM Q∗M (s, a′)− α | a ∈ AM}.

Mα has the following two properties: (i) any policy in Mα is α-action fair in M and (ii)

the optimal policy in Mα is also optimal in M . These properties aid our design of an

approximate-action fair algorithm: we construct Mα from estimates of the Q∗M values (see

Section 4.4.3 for more details).
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4.3. Lower Bounds

We now demonstrate a stark separation between the performance of learning algorithms

with and without fairness. First, we show that neither fair nor approximate-choice fair

algorithms achieve near-optimality unless the number of time steps T is at least Ω(kn),

exponential in the size of the state space. We then show that any approximate-action

fair algorithm requires a number of time steps T that is at least Ω(k1/(1−γ)) to achieve

near-optimality. We start by proving a lower bound for fair algorithms.

Theorem 1. If δ < 1/4, γ > 1/2 and ε < 1/8, no fair algorithm can be ε-optimal in

T = O(kn) steps.

Standard reinforcement learning algorithms (absent a fairness constraint) learn an ε-optimal

policy in a number of steps polynomial in n and 1/ε; Theorem 1 therefore shows a steep

cost of imposing fairness. We outline the idea for proof of Theorem 1. For intuition, first

consider the special case when the number of actions k = 2. We introduce the MDPs

witnessing the claim in Theorem 1 for this case.

Definition 12 (Lower Bound Example). For AM = {L,R}, let M(x) = (SM ,AM ,PM ,RM , T, γ, x)

be an MDP with

• for all i ∈ [n], PM (si, L, s1) = PM (si, R, sj) = 1 where j = min{i + 1, n} and is 0

otherwise.

• for i ∈ [n− 1], RM (si) = 0.5, and RM (sn) = x.

Definition 13. Let M(x) = (SM ,AM , PM , RM , T, γ, x) be an MDP where

• SM = {s1, . . . , sn}.

• AM = {L,R}.

• for all i ∈ [n], PM (si, L, s1) = PM (si, R, sj) = 1 where j = min{i + 1, n} and is 0

otherwise (transitions are deterministic).
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• for i ∈ [n− 1], RM (si) = 0.5, and RM (sn) = x (rewards are deterministic).

Figure 9: MDP(x): Circles represent states (labels denote the state name and deterministic
reward). Arrows represent actions.

Figure 9 illustrates the MDP from Definition 13. All the transitions and rewards in M are

deterministic, but the reward at state sn can be either 1 or 1
2 , and so no algorithm (fair or

otherwise) can determine whether the Q∗M values of all the states are the same or not until

it reaches sn and observes its reward. Until then, fairness requires that the algorithm play

all the actions uniformly at random (if the reward at sn is 1/2, any fair algorithm must

play uniformly at random forever). Thus, any fair algorithm will take exponential time in

the number of states to reach sn. This can be easily modified for k > 2: from each state

si, k − 1 of the actions from state si (deterministically) return to state s1 and only one

action (deterministically) reaches any other state smin{i+1,n}. It will take kn steps before

any fair algorithm reaches sn and can stop playing uniformly at random (which is necessary

for near-optimality). The same example also provides a lower bound of Ω((k/(1 + kα))n)

time steps for approximate-choice fair algorithms as stated in Theorem 2.

Theorem 2. If δ < 1/4, α < 1/4, γ > 1/2 and ε < 1/8, no α-choice fair algorithm is

ε-optimal for T = O((k/(1 + kα))n) steps.

Fairness and approximate-choice fairness are both extremely costly, ruling out polynomial

time learning rates. Hence, we focus on approximate-action fairness. Before moving to

positive results, we mention that the time complexity of approximate-action fair algorithms
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will still suffer from an exponential dependence on 1/(1− γ).

Theorem 3. For δ < 1/4, α < 1/8, γ > max(0.9, c), c ∈ (1/2, 1) and ε < (1 − ec−1)/16,

no α-action fair algorithm is ε-optimal for T = O((k1/(1−γ))c) steps.

The MDP in Figure 9 also witnesses the claim of Theorem 3 when n = dlog(1/(2α))/(1 −

γ)e. The discount factor γ is generally taken as a constant, so in most interesting cases

1/(1−γ)� n: this lower bound is substantially less stringent than the lower bounds proven

for fairness and approximate-choice fairness. Hence, from now on, we focus on designing

algorithms satisfying approximate-action fairness with learning rates polynomial in every

parameter but 1/(1− γ), and with tight dependence on 1/(1− γ).

4.4. A Fair and Efficient Learning Algorithm

We now present an approximate-action fair algorithm, Fair-E3 with the performance guar-

antees stated below.

Theorem 4. Given ε > 0, α > 0, δ ∈ (0, 1/2) and γ ∈ [0, 1) as inputs, Fair-E3 is an

α-action fair algorithm which achieves ε-optimality after

T = Õ

(
n5T ∗ε k

1
1−γ+5

min{α4, ε4}ε2 (1− γ)12

)
(4.2)

steps where Õ hides poly-logarithmic terms.

The running time of Fair-E3 (which we have not attempted to optimize) is polynomial in

all the parameters of the MDP except 1/(1 − γ); Theorem 3 implies that this exponential

dependence on 1/(1− γ) is necessary.

Several more recent algorithms (e.g. R-MAX [17]) have improved upon the performance of

E3. We adapted E3 primarily for its simplicity. While the machinery required to properly

balance fairness and performance is somewhat involved, the basic ideas of our adaptation

are intuitive. We further note that subsequent algorithms improving on E3 tend to heavily

leverage the principle of “optimism in face of uncertainty”: such behavior often violates
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fairness, which generally requires uniformity in the face of uncertainty. Thus, adapting

these algorithms to satisfy fairness is more difficult. This in particular suggests E3 as an

apt starting point for designing a fair planning algorithm.

The remainder of this section will explain Fair-E3, beginning with a high-level description

in Section 4.4.1. We then define the “known” states Fair-E3 uses to plan in Section 4.4.2,

explain this planning process in Section 4.4.3, and bring this all together to prove Fair-E3’s

fairness and performance guarantees in Section 4.4.4.

4.4.1. Informal Description of Fair-E3

Fair-E3 relies on the notion of “known” states. A state s is defined to be known after

all actions have been chosen from s enough times to confidently estimate relevant reward

distributions, transition probabilities, and QπM values for each action. At each time t,

Fair-E3 then uses known states to reason about the MDP as follows:

• If in an unknown state, take a uniformly random trajectory of length Hγ
ε .

• If in a known state, compute (i) an exploration policy which escapes to an unknown

state quickly and p, the probability that this policy reaches an unknown state within

2T ∗ε steps, and (ii) an exploitation policy which is near-optimal in the known states

of M .

– If p is large enough, follow the exploration policy; otherwise, follow the exploita-

tion policy.

Fair-E3 thus relies on known states to balance exploration and exploitation in a reliable way.

While Fair-E3 and E3 share this general idea, fairness forces Fair-E3 to more delicately

balance exploration and exploitation. For example, while both algorithms explore until

states become “known”, the definition of a known state must be much stronger in Fair-E3

than in E3 because Fair-E3 additionally requires accurate estimates of actions’ QπM values

in order to make decisions without violating fairness. For this reason, Fair-E3 replaces the
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deterministic exploratory actions of E3 with random trajectories of actions from unknown

states. These random trajectories are then used to estimate the necessary QπM values.

In a similar vein, Fair-E3 requires particular care in computing exploration and exploitation

policies, and must restrict the set of such policies to fair exploration and fair exploitation

policies. Correctly formulating this restriction process to balance fairness and performance

relies heavily on the observations about the relationship between fairness and performance

provided in Section 4.2.1.

4.4.2. Known States in Fair-E3

We now formally define the notion of known states for Fair-E3. We say a state s becomes

known when one can compute good estimates of (i) RM (s) and PM (s, a) for all a, and (ii)

Q∗M (s, a) for all a.

Definition 14 (Known State). Let

m1 = O

(
kH

γ
ε +3n

(
1

(1− γ)α

)2

log

(
k

δ

))
and m2 = O

((
n

min{ε, α}

)4

Hγ
ε

8 log

(
1

δ

))
.

A state s becomes known after taking

mQ := k ·max{m1,m2} (4.3)

length-Hγ
ε random trajectories from s.

It remains to show that motivating conditions (i) and (ii) indeed hold for our formal defi-

nition of a known state. Informally, m1 random trajectories suffice to ensure that we have

accurate estimates of all Q∗M (s, a) values, and m2 random trajectories suffice to ensure

accurate estimates of the transition probabilities and rewards.

To formalize condition (i), we rely on Theorem 5, connecting the number of random tra-

jectories taken from s to the accuracy of the empirical V π
M estimates.
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Figure 10: Left: An MDP M with actions L and R and deterministic transition functions
and rewards. Green denotes the set of known states Γ. Middle: MΓ. Right: M[n]\Γ.

Theorem 5 (Theorem 5.5, Kearns et al. [60]). For any state s and α > 0, after

m = O

(
kH

γ
ε +3

(
1

(1− γ)α

)2

log

(
|Π|
δ

))

random trajectories of length Hγ
ε from s, with probability of at least 1− δ, we can compute

estimates V̂ π
M such that |V π

M (s)− V̂ π
M (s) | ≤ α, simultaneously for all π ∈ Π.

Theorem 5 enables us to translate between the number of trajectories taken from a state

and the uncertainty about its V π
M values for all policies (including π∗ and hence V ∗M ). Since

|Π| = kn, we substitute log (|Π|) = n log (k). To estimate Q∗M (s, a) values using the V ∗M (s)

values we increase the number of necessary length-Hγ
ε random trajectories by a factor of k.

For condition (ii), we adapt the analysis of E3 [59], which states that if each action in a

state s is taken m2 times, then the transition probabilities and reward in state s can be

estimated accurately (see Section 4.4.4).

4.4.3. Planning in Fair-E3

We now formalize the planning steps in Fair-E3 from known states.

Fair-E3 constructs two ancillary MDPs for planning: MΓ is the exploitation MDP, in which

the unknown states of M are condensed into a single absorbing state s0 with no reward.

In the known states Γ, transitions are kept intact and the rewards are deterministically set

to their mean value. MΓ thus incentivizes exploitation by giving reward only for staying
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within known states. In contrast, M[n]\Γ is the exploration MDP, identical to MΓ except

for the rewards. The rewards in the known states Γ are set to 0 and the reward in s0 is set

to 1. M[n]\Γ then incentivizes exploration by giving reward only for escaping to unknown

states. See the middle (right) panel of Figure 10 for an illustration of MΓ (M[n]\Γ).

Fair-E3 uses these constructed MDPs to plan according to the following natural idea: when

in a known state, Fair-E3 constructs M̂Γ and M̂[n]\Γ based on the estimated transition and

rewards observed so far, and then uses these to compute additional restricted MDPs M̂α
Γ

and M̂α
[n]\Γ for approximate-action fairness. Fair-E3 then uses these restricted MDPs to

choose between exploration and exploitation.

More formally, if the optimal policy in M̂α
[n]\Γ escapes to the absorbing state of MΓ with

high enough probability within 2T ∗ε steps (T ∗ε can be guessed by the doubling trick), then

Fair-E3 explores by following that policy. Otherwise, Fair-E3 exploits by following the

optimal policy in M̂α
Γ for T ∗ε steps. While following either of these policies, whenever Fair-

E3 encounters an unknown state, it stops following the policy and proceeds by taking a

length-Hγ
ε random trajectory.

4.4.4. Analysis of Fair-E3

We next formally analyze Fair-E3 and prove Theorem 4. We begin by proving that Mα
Γ is

useful in the following sense: Mα
Γ has at least one of an exploitation policy achieving high

reward or an exploration policy that quickly reaches an unknown state in M .

Lemma 12 (Exploit or Explore Lemma). For any state s ∈ Γ, β ∈ (0, 1) and any T > 0

at least one of the statements below holds:

• there exists an exploitation policy π in Mα
Γ such that

max
π̄∈Π

E
T∑
t=1

V π̄
M

(
π̄t(s), T

)
− E

T∑
t=1

V π
MΓ

(
πt(s), T

)
≤ βT

where the random variables πt(s) and π̄t(s) denote the states reached from s after
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following π and π̄ for t steps, respectively.

• there exists an exploration policy π in Mα
Γ such that the probability that a walk of 2T

steps from s following π will terminate in s0 exceeds β/T .

We can use this fact to reason about exploration as follows. First, since the optimal policy

in M is approximate-action fair, if the optimal policy stays in the set of M ’s known states

MΓ, then following the optimal policy in Mα
Γ is both optimal and approximate-action fair.

However, if instead the optimal policy in M quickly escapes to an unknown state in M , the

optimal policy in Mα
Γ may not be able to compete with the optimal policy in M . Ignoring

fairness, one natural way of computing an escape policy to “keep up” with the optimal

policy is to compute the optimal policy in M[n]\Γ. Unfortunately, following this escape

policy might violate approximate-action fairness – high-quality actions might be ignored in

lieu of low-quality exploratory actions that quickly reach the unknown states of M . Instead,

we compute an escape policy in Mα
[n]\Γ and show that if no near-optimal exploitation policy

exists in MΓ, then the optimal policy in Mα
[n]\Γ (which is fair by construction) quickly

escapes to the unknown states of M .

Next, in order for Fair-E3 to check whether the optimal policy in Mα
[n]\Γ quickly reaches

the absorbing state of MΓ with significant probability, Fair-E3 simulates the execution of

the optimal policy of Mα
[n]\Γ for 2T ∗ε steps from the known state s in Mα

Γ several times,

counting the ratio of the runs ending in s0, and applying a Chernoff bound.

Having discussed exploration, it remains to show that the exploitation policy described in

Lemma 12 satisfies ε-optimality as defined in Definition 7. By setting T ≥ T ∗ε in Lemma 12

and applying Lemmas 10 and 13, we can prove Corollary 1 regarding this exploitation policy.

Corollary 1. For any state s ∈ Γ and T ≥ T ∗ε if there exists an exploitation policy π in

Mα
Γ then ∣∣∣∣∣ 1

T
E

T∑
t=1

V π
M

(
πt(s), T

)
− Es∼µ∗V ∗M (s)

∣∣∣∣∣ ≤ ε

1− γ
.

60



Finally, we have so far elided the fact that Fair-E3 only has access to the empirically

estimated MDPs M̂α
Γ and M̂α

[n]\Γ. We remedy this issue by showing that the behavior of

any policy π in M̂α
Γ (and M̂α

[n]\Γ) is similar to the behavior of π in Mα
Γ (and Mα

[n]\Γ). To do

so, we prove a stronger claim: the behavior of any π in M̂Γ (and M̂[n]\Γ) is similar to the

behavior of π in MΓ (and M[n]\Γ).

Lemma 13. Let Γ be the set of known states and M̂Γ the approximation to MΓ. Then for

any state s ∈ Γ, any action a and any policy π, with probability at least 1− δ:

1. V π
MΓ

(s)−min{α2 , ε} ≤ V
π
M̂Γ

(s) ≤ V π
MΓ

(s) + min{α2 , ε},

2. QπMΓ
(s, a)−min{α2 , ε} ≤ Q

π
M̂Γ

(s, a) ≤ QπMΓ
(s, a) + min{α2 , ε}.

4.5. Discussion and Future Work

Our work leaves open several interesting questions. For example, we give an algorithm that

has an undesirable exponential dependence on 1/(1−γ), but we show that this dependence is

unavoidable for any approximate-action fair algorithm. Without fairness, near-optimality

in learning can be achieved in time that is polynomial in all of the parameters of the

underlying MDP. So, we can ask: does there exist a meaningful fairness notion that enables

reinforcement learning in time polynomial in all parameters?

Moreover, our fairness definitions remain open to further modulation. It remains unclear

whether one can strengthen our fairness guarantee to bind across time rather than simply

across actions available at the moment without large performance tradeoffs. Similarly, it

is not obvious whether one can gain performance by relaxing the every-step nature of our

fairness guarantee in a way that still forbids discrimination. These and other considerations

suggest many questions for further study; we therefore position our work as a first cut for

incorporating fairness into a reinforcement learning setting.
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Chapter 5

Fairness in Regression

5.1. Introduction

The widespread use of machine learning to make consequential decisions about individual

citizens (including in domains such as credit, employment, education and criminal sentenc-

ing [10, 18, 76, 82]) has been accompanied by increased reports of instances in which the

algorithms and models employed can be unfair or discriminatory in a variety of ways [6, 85].

As a result, research on fairness in machine learning and statistics has seen rapid growth

in recent years [1, 19, 20, 24, 30, 35, 36, 44, 45, 53–56, 73, 78], and several mathematical

formulations have been proposed as metrics of (un)fairness for a number of different learn-

ing frameworks. While much of the attention to date has focused on (binary) classification

settings, where standard fairness notions include equal false positive or negative rates across

different populations, less attention has been paid to fairness in (linear and logistic) regres-

sion settings, where the target and/or predicted values are continuous, and the same value

may not occur even twice in the training data.

In this work, we introduce a rich family of fairness metrics for regression models that take

the form of a fairness regularizer and apply them to the standard loss functions for linear

and logistic regression. Since these loss functions and our fairness regularizer are convex, the

combined objective functions obtained from our framework are also convex, and thus permit

efficient optimization. Furthermore, our family of fairness metrics covers the spectrum from

the type of group fairness that is common in classification formulations (where e.g. false

arrests in one racial group can be “compensated” for by false arrests in another racial group)

to much stronger notions of individual fairness (where such cancellations are forbidden, and

every injustice is charged to the model). Intermediate fairness notions are also covered.

Our framework also permits one to either forbid the use of a “protected” variable (such as
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race), by demanding that a single model be learned across all groups, or to build different

group-dependent models.

Most importantly, by varying the weight on the fairness regularizer, our framework per-

mits us to compute the entire “Pareto curve” or efficient frontier of the trade-off between

predictive accuracy and fairness. Such curves are especially important to examine and un-

derstand in a domain-specific manner: since demanding fairness of models will always come

at a cost of reduced predictive accuracy [25, 36, 50, 90], it behooves practitioners working

with fairness-sensitive data sets to understand just how mild or severe this trade-off is in

their particular arena, permitting them to make informed modeling and policy decisions.

Our central results take the form of an extensive comparative empirical case study across

six distinct datasets in which fairness is a primary concern. For each of these datasets, we

compute and examine the corresponding fairness-accuracy efficiency frontier. We introduce

an intuitive quantity called the Price of Fairness (PoF), which numerically quantifies the

extent to which increased fairness degrades accuracy. We compare the PoF across datasets,

fairness notions, and treatments of protected variables.

Our primary contributions are:

• The introduction of a flexible but convex family of fairness regularizers of varying

strength that spans the spectrum from group to individual fairness.

• The introduction of a quantitative, data-dependent measure of the severity of the

accuracy-fairness tradeoff.

• An extensive empirical comparative study across six fairness-sensitive data sets.

While our empirical study does reveal some reasonably consistent findings across datasets

(e.g. efficiency curves show broadly similar shapes; PoF generally higher for individual

fairness than group; somewhat surprisingly, PoF not generally improved much when using

protected variables), perhaps the most important message is a cautionary one: the detailed
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trade-off between accuracy and fairness, and the comparison of different fairness notions,

appears to be quite domain-dependent and lacking prescriptive “universals”. This is perhaps

consistent with the emerging theoretical literature demonstrating the lack of a single “right”

definition of fairness [24, 37, 62], and our work adds evidence to the view that fairness is a

topic demanding careful domain-specific considerations.

5.2. The Regression Setting

Consider the (linear and logit) regression setting: denote the explanatory variables (or

instances) by x ∈ X = Rd and the target variables (or labels) by y ∈ Y = [−1, 1]. For both

linear and logit models, the target values are continuous. Let P denote the joint distribution

over X × Y. Suppose every instance x belongs to exactly one of 2 groups, denoted by 1

and 2. This partition of X into groups (e.g. into different races or genders) is encoded in a

“sensitive” feature Xd+1. Let S = {(xi, yi)}ni=1} be a training set of n samples drawn i.i.d.

from P, separated by groups into S1 and S2. Let n1 = |S1| and n2 = |S2|. (n = n1 + n2.)

This work studies the trade-off between fairness and accuracy for the class of linear and

logit regression models. Given a pair of explanatory and target variables (x, y), we treat

y as the ground truth description of x’s merit for the regression task at hand: two pairs

(x, y), (x′, y′) with y ≈ y′ have similar observed outcomes. We aim to design models which

treat two such instances with similar observed outcomes similarly, a notion we refer to as

fairness with respect to the ground truth. For a given accuracy loss ` and fairness loss (or

penalty) f , we define the λ-weighted fairness loss of a regressor w on a distribution P to be

`P(w) + λfP(w). For our sample S, we analogously define the λ-weighted fairness training

loss of w as `(w, S) + λf(w, S). For linear regression, we let ` be mean-squared error; for

logistic regression, we let ` be the standard log loss. Finally, we use `2 regularization for

both models, so the overall loss is then `P(w) + λfP(w) + γ||w||2.
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5.2.1. A Convex Family of Fairness Regularizers

Our formal definitions of fairness all measure how similarly a model treats two similarly

labeled instances, one from group 1 and one from group 2. In particular, all of our definitions

have a term for each “cross-group” pair of instances/labels, weighted as a function of |yi−yj |

and also by |w>xi−w>xj |. For shorthand, we will refer to pairs of instances (one from each

group) as cross pairs, and cross pairs with similar labels as similar cross pairs. Each of the

below fairness definitions differs in precisely which cross pair disparities can counteract one

another. In one extreme (individual fairness in Equation (5.1)), every cross pair disparity

increases the fairness penalty of a model. In the other (group fairness in Equation (5.2)),

making higher predictions for the group 1 instance of a similar cross pair can be somewhat

counterbalanced by making a higher prediction for the group 2 instance of a different similar

cross pair. Our notions of fairness for regression align closely to individual and group fairness

definitions for classification, both common threads in the fairness literature.

Remark 1. We assume the sensitive feature Xd+1 is available to the learning procedure in

one of two ways. In the first setting, which we call the “single model” setting, we assume

the algorithm builds a single linear model w for all of X (over all but the sensitive features),

but can measure the empirical fairness loss of w using the sensitive feature. In the second

setting, which we call the “separate models” setting, we allow the algorithm to build two

distinct linear models w1,w2 for the two groups, wg based on Sg, thus directly observing

the sensitive feature when building these models.

We specialize our fairness penalties for the single model setting, but we extend them to the

separate models setting, by replacing w with wg when applied to a member of group g.

Individual Fairness The first fairness penalty we propose is the following:

f1(w, S) =
1

n1n2

∑
(xi,yi)∈S1

(xj ,yj)∈S2

d(yi, yj)
(
w>xi −w>xj

)2
, (5.1)
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for some fixed non-negative function d, which we assume is decreasing in |yi − yj | (see

Section 5.4 for more details). Since d(yi, yj) does not depend upon the decision variables

(w), one can treat these values as constants in an optimization procedure for selecting w.

The penalty f1 corresponds to individual fairness; for every cross pair (x, y) ∈ S1, (x
′, y′) ∈

S2, a model w is penalized for how differently it treats x and x′ (weighted by a function

of |y − y′|). No cancellation occurs: the penalty for overestimating several of one group’s

labels cannot be mitigated by overestimating several of the other group’s labels.

Group Fairness The second fairness penalty we propose is the following:

f2(w, S) =
( 1

n1n2

∑
(xi,yi)∈S1

(xj ,yj)∈S2

d(yi, yj)
(
w>xi −w>xj

))2
. (5.2)

The penalty f2 corresponds to group fairness: on average, the two groups’ instances should

have similar labels (weighted by the nearness of the labels of the instances). Unlike f1,

the penalty f2 allows for compensation: informally, if the model over-values some instances

of group 1 relative to group 2 in similar cross pairs, it can compensate on other similar

cross-pairs by over-valuing those instances from group 2 relative to group 1.

In both of the above formulations, for any cross pair (xi, yi) ∈ S1 and (xj , yj) ∈ S2,

any regressor w will have penalty that increases as
∣∣w>xi −w>xj

∣∣ increases, weighted by

d(yi, yj). If the cross pair is similar (yi is close to yj and d(yi, yj) is large), a regressor which

makes very different predictions for xi and xj will incur large loss. If the cross pair is less

similar (yi is far from yj and d(yi, yj) is smaller), there is less penalty for having a regressor

for which
∣∣w>xi −w>xj

∣∣ is large.

Hybrid notions of fairness Note that group and individual fairness correspond to two

extremes: in one extreme the fairness penalty considers each cross pair separately and in

the other one the fairness penalty considers all the cross pairs together. Mathematically one
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could define different notions of fairness by grouping the cross pairs in different manners

or even restrict the fairness penalty only on a subset of cross pairs (called bucketing). In

particular, for binary labeled data (where Y = {−1, 1}) one natural choice is to group the

cross pairs based on their labels. This would result in the following definition of fairness

which we call hybrid fairness:

f3(w, S) =
( ∑

(xi,yi)∈S1

(xj ,yj)∈S2

yi=yj=1

d(yi, yj)
(
w>xi −w>xj

)
n1,1n2,1

)2
+
( ∑

(xi,yi)∈S1

(xj ,yj)∈S2

yi=yj=−1

d(yi, yj)
(
w>xi −w>xj

)
n1,−1n2,−1

)2
,

(5.3)

where ng,t denotes the size of group g ∈ {1, 2} with label t ∈ {−1, 1} in the sample.

Intuitively, hybrid fairness requires both positive and both negatively labeled cross pairs

to be treated similarly in average over the two groups. Some compensation might occur,

but only amongst instances with the same label: over-valuing positive instances from group

1 can mitigate over-valuing positive instances from group 2, but does not mitigate under-

valuing negative instances from group 1. These two terms can be weighted differently for

applications where the treatment of positive (or negative) instances are more important.

See Sections 5.3 and 5.4 for more details.

5.2.2. Discussion of Our Notions of Fairness

We now discuss several salient features of our fairness notions.

Why are these fairness notion different from accuracy? All of our fairness penalties

are small for any perfect regressor (any w such that w>x = y for all (x, y) ∼ P): for a

similar cross pair, yi ≈ yj and also w>xi ≈ w>xj for a perfect regressor w. Our fairness

regularizers might then be interpreted as an unusual proxy for standard accuracy rather than

as fairness notions. However, perfect regressors almost never exist in practice; and between

two models with similar accuracy, these definitions bias a learning procedure towards those

which have similar treatment of similarly labeled instances from different groups.
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What minimizes these penalties? We note that any constant regressor (any w such

that w>x = c for all x ∈ X and some c ∈ R) exactly minimizes all of our fairness reg-

ularizers. As we seen empirically, this implies that as the fairness regularization factor λ

increases, we transition from an unfair model with minimum accuracy loss to a constant and

perfectly fair model, whose accuracy is trivially the best any constant model can achieve.

5.3. Related Work

Recent work has shown that different fairness notions are often mutually exclusive [24, 37,

62]. Unsurprisingly then, different fairness notions have corresponded to different algorithms

and optimization frameworks. Previously introduced fairness notions have generally split

along several axis: classification vs. regression and individual vs. group fairness and dis-

parate treatment. Most of previous work has focused on classification, despite the ubiquity

of regression in real world applications with fairness concerns.

In classification, one line of work aims to achieve the group fairness notion known as sta-

tistical parity, i.e. to avoid disparate impact (see e.g. [1, 19, 35, 36, 44, 53–56, 73, 78]).

Statistical parity requires a predictor to predict each label at similar rates across differ-

ent groups. This definition can be at odds with accuracy especially when the two groups

are inherently different. Hardt et al. [45] introduced a new notion of group fairness called

equality of odds, partially to alleviate this friction, and partially arguing that equality of

odds more accurately captured what it would mean for a classifier to be equally “good”

for two groups. Equality of odds has a very intuitive interpretation for classification: it

requires similarity of misclassification rates across groups (rather than forcing the marginal

classification rates in the two groups to coincide). Optimizing for accuracy subject to an

equality of odds constraint was recently shown to be NP-hard [88]; work following this re-

sult presented efficient heuristics for the problem [88, 90]. We also study fairness definitions

which we can implement efficiently but our interest is in studying the trade-off between

fairness and accuracy and the relationship between different notions of fairness.
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Although equality of odds is also defined for regression, it is very difficult to determine em-

pirically whether a regressor’s output is conditionally independent of the protected attribute

(conditioned on the true label), as each true label may be seen only once.

Calders et al. [20] introduced the study of statistical parity’s analog in regression settings,

(called equal means and balanced residuals). Johnson et al. [51] also studied fairness for

regression problems and formalized several notions for impartial estimates based on the

causal relationship between sensitive attributes, legitimate attributes, suspect attributes and

the label. Both groups consider group fairness; our group fairness notion differs from these

as we incorporate the similarity of pairs (through the function d) in our definition though

the specific choice of d(y, y′) = c for some c ∈ R and all y and y′ would recover equal means.

To achieve any of these fairness notions, one needs to decide whether or not to allow

for disparate treatment (allowing for different treatment or models for different groups),

and where in the learning process to enforce fairness: preprocessing of data (e.g. [53]);

inprocessing, during the training of a model as either a constraint or incorporated into the

objective function (e.g. [36, 56]); or postprocessing, where data is labeled by some black-box

model and then relabeled as a function only of the original labels (e.g. [45]). Our approach

in this paper falls into the in-processing category, by encoding fairness as a regularizer

(an approach previously studied in e.g. [56, 90]). We differ from previous work in several

aspects by primarily focusing on regression, and that our family of fairness measures draws

inspiration from the idea that similar instances should be treated similarly [30, 91].

5.4. A Comparative Empirical Case Study

We now describe an empirical case study in which we apply our regularization framework

to six different datasets in which fairness is a central concern. These datasets include cases

in which the observed labels are real-valued, and cases in which they are binary-valued.

For the real-valued datasets, we apply standard linear regression with our various fairness

regularizers. For the binary-valued datasets, we apply logistic regression, again along with
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fairness regularizers. For datasets with real-valued targets we normalized the inputs and

outputs to be zero mean and unit variance, and we set the cross-group fairness weights as

d(yi, yj) = e−(yi−yj)2
; for datasets with binary targets we set d(yi, yj) = 1[yi = yj ].

For each dataset S, our framework requires that we solve optimization problems of the

form minw `(w, S) + λf(w, S) + γ||w||2 for variable values of λ, where `(w, S) is either

MSE (linear regression) or the logistic regression loss. For each λ we picked γ as a function

of this λ by cross validation. All optimization problems are solved using the CVX solver in

Matlab (for real-valued datasets) or python (for binary-valued datasets). Furthermore, all

the results are reported using 10-fold cross validation.

The datasets themselves are summarized in Table 1, where we specify the size and dimen-

sionality of each, along with the “protected” feature (race or gender) that thus defines the

subgroups across which we apply our fairness criteria. The datasets vary considerably in the

number of observations, their dimensionality, and the relative size of the minority subgroup.

The Adult dataset [66, 69] from the UC Irvine Repository contains 1994 Census data, and

the goal is to predict whether the income of an individual in the dataset is more than 50K

per year or not. The sensitive or protected attribute is gender. The Communities and

Crime dataset [69] includes features relevant to per capita violent crime rates in different

communities in the United States, and the goal is to predict this crime rate; race is the

protected variable. The COMPAS dataset contains data from Broward County, Florida,

originally compiled by ProPublica [6], in which the goal is to predict whether a convicted

individual would commit a violent crime in the following two years or not. The protected

attribute is race, and the data was filtered in a fashion similar to that of Corbett-Davies

et al. [25]. The Default dataset [69, 89] contains data from Taiwanese credit card users,

and the goal is to predict whether an individual will default on payments. The protected

attribute is gender. The Law School dataset consists of the records of law students who

went on to take the bar exam. The goal is to predict whether a student will pass the exam

based on features such as LSAT score and undergraduate GPA. The protected attribute is
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gender. The Sentencing dataset contains information from a state department of corrections

regarding inmates in 2010. The goal is to predict the sentence length given by the judge

based on factors such as previous criminal records and the crimes for which the conviction

was obtained. The protected attribute is gender.

Data Set Type n d Minority n Protected

Adult logistic regression 32561 14 10771 gender

Communities and Crime linear 1994 128 227 race

COMPAS logistic regression 3373 19 1455 race

Default logistic regression 30000 24 11888 gender

Law School logistic regression 27478 36 12079 gender

Sentencing linear 5969 17 385 gender

Table 1: Summary of datasets. Type indicates whether regression is logistic or linear; n is
total number of data points; d is dimensionality; Minority n is the number of data points in
the smaller population; Protected indicates which feature is protected or fairness-sensitive.

5.4.1. Accuracy-Fairness Efficient Frontiers

We begin by examining the efficient frontier of accuracy vs. fairness for the six datasets.

These curves are shown in Figure 11, and are obtained by varying the weight λ on the

fairness regularizer, and for each value of λ finding the model which minimizes the asso-

ciated regularized loss function. For the logistic regression cases, we extract probabilities

from the learned model w as Pr[yi = 1] = exp(w>xi)/(1 + exp(w>xi)) and evaluate these

probabilities as predictions for the binary labels using MSE. In all datasets, as λ increases,

the models converge to the best constant predictor, which minimizes the fairness penalties.

Perhaps the most striking aspect of Figure 11 is the great diversity of tradeoffs across differ-

ent datasets and different fairness regularizers. For instance, if we examine the individual

fairness regularizer, on four of the datasets (Adult, Communities and Crime, Law School

and Sentencing), the curvature is relatively mild and constant — there is an approximately

fixed rate at which fairness can be traded for accuracy. In contrast, on COMPAS and

Default, fairness loss can be reduced almost for “free” until some small threshold value,

at which point the accuracy cost increases dramatically. Similar comments can be made
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regarding hybrid fairness in the logistic regression cases.

Individual fairness appears to be strictly more costly than group fairness for the entire

regime between the extremes of λ = 0 and λ→∞ for a majority of these datasets (with the

exception of COMPAS and Default datasets). In COMPAS and Default, for small amounts

of unfairness, group unfairness may be more costly than individual unfairness.

Perhaps surprisingly, building separate models for each population barely improves the

tradeoff (and in some cases, hurts the tradeoff for some values of λ) across almost all datasets

and fairness regularizers. This suggests that the academic discussion about whether to allow

disparate treatment (as explicitly allowed in e.g. [30, 52]) – i.e. whether sensitive attributes

such as race and gender should be “forbidden” vs. used in building more accurate models for

each subpopulation, is perhaps less consequential than expected (at least on these datasets

and using linear or logistic regression models).

Note that in theory group fairness is strictly less costly than individual fairness for any

particular model w (by Jensen’s inequality), and using separate models (one for each group)

should strictly improve the fairness/accuracy trade-off for any of these notions of fairness.

However, both group fairness and separate models are more prone to overfitting (than

individual fairness and single model), and hence a larger `2-regularization parameter γ tends

to be selected in cross validation in these settings. This is a surprising interaction between

the strength of the fairness penalty and the generalization ability of the model, and results

in group fairness sometimes having a more severe tradeoff with accuracy when compared to

individual fairness, and separate models having little benefit out of sample, although they

can appear to have a large effect in-sample (because of the effects of over-fitting).

5.4.2. Price of Fairness

The efficient fairness/accuracy frontiers pictured in Figure 11 can be compared across data

sets in a qualitative sense — e.g. to see that in some datasets, the fairness penalty can be

substantially decreased with little cost to accuracy. However, they are difficult to compare
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Figure 11: Efficient frontiers of accuracy vs. fairness for each dataset. For datasets with
binary-valued targets (logistic regression), we consider three fairness notions (group, indi-
vidual and hybrid), and for each examine building a single model or separate models for
each group, yielding a total of six curves. For real-valued targets (linear regression), we
consider two fairness notions (group and individual), and again single or separate models,
yielding a total of four curves.

quantitatively as the scale of the fairness loss differs substantially from data set to data set.

We next give a cross-dataset comparison using a measure we call Price of Fairness which

has the effect of normalizing the fairness loss across data sets to lie on the same scale.
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For a given data set and regression type (linear or logistic), let w∗ be the optimal model ab-

sent any fairness penalty (i.e. the empirical risk minimizer when the fairness “regularization”

weight λ = 0). This model will suffer some fairness penalty: it represents the “maximally

unfair” point on the fairness/accuracy frontiers from Figure 11. For each dataset, we will

fix a normalization such that this fairness penalty is rescaled to be 1, and ask for the cost

(in terms of the relative increase in mean squared error) of constraining our predictor to

have fairness penalty α ≤ 1. Equivalently, this is measuring the relative increase in MSE

that results from constraining a predictor to have fairness penalty that is no more than an

α fraction of the fairness penalty of the unconstrained optimal predictor.

More formally, let w∗ = arg minw `P(w). For any value of α ∈ [0, 1] we define the price of

fairness (PoF) as follows:

PoF(α) =
minw `P(w) subject to fP(w) ≤ αfP(w∗)

`P(w∗)
.

Note that by definition, PoF (α) ≥ 1, PoF (1) = 1, and that PoF (α) increases monotonically

as α decreases. Larger values represent more severe costs for imposing fairness constraints

that ask that the measure of unfairness be small relative to the unconstrained optimum. It is

important to note that because this measure asks for the cost of relative improvements over

the unconstrained optimum, it can be, for example, that the PoF for one fairness penalty

case is larger than for another, even if the absolute fairness loss for both the numerator and

the denominator is smaller in the second case. With this observation in mind, we can move

to the empirical findings.

Figure 12 displays the PoF on each of the 6 datasets we study, for each fairness regularizer

(individual, hybrid, and group), and for the single and separate model case. Even when

normalized on a common scale, we continue to see the diversity across datasets that was

apparent in Figure 11. For some datasets (e.g. COMPAS and Sentencing), increasing the

fairness constraint by decreasing α has only a mild cost in terms of error. For others (e.g.
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Communities and Crime, and Law School), the cost increases steadily as we decrease α.

Next, we observe that with this normalization, although the difference between separate and

single models remains small on most datasets, on two datasets, differences emerge. In the

Law School dataset, restricting to a single model leads to a significantly higher PoF when

considering the group fairness metric, compared to allowing separate models. In contrast,

on the Adult dataset, restricting to a single model substantially reduces the PoF when

considering the individual fairness metric.

Finally, this normalization allows us to observe variation across fairness penalties in the rate

of change in the PoF as α is decreased. In some datasets (e.g. Communities and Crime,

and Sentencing), the PoF changes in lock-step across all measures of unfairness. However,

for others (e.g. Default), the PoF increases substantially with α when we consider group or

hybrid fairness measures, but is much more stable for individual fairness.

5.5. Conclusions

The use of a complexity regularizer to control overfitting is both standard and well-understood

in machine learning. While the use of such a regularizer introduces a trade-off — goodness

of fit vs. model complexity — it does not introduce a tension, because regularization is

always in service of improving generalization, and not a goal in its own right.

In contrast, in this work we have studied a variety of fairness regularizers for regression

problems, and applied them to data sets in which fairness is not subservient to generaliza-

tion, but is instead a first-order consideration. Our empirical study has demonstrated that

the choice of fairness regularizer (group, individual, hybrid, or other) and the particular

data set can have qualitative effects on the trade-off between accuracy and fairness. Com-

bined with recent theoretical results [24, 37, 62] that also highlight the incompatibility of

various fairness measures, our results highlight the care that must be taken by practition-

ers in defining the type of fairness they care about for their particular application, and in

determining the appropriate balance between predictive accuracy and fairness.
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Figure 12: The PoF across data sets, for each type of fairness regularizer, in both the single
and separate model case.
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Chapter 6

Fairness in Allocations Problems

6.1. Introduction

The bulk of the literature on algorithmic fairness has focused on classification and regression

problems (see e.g. [12, 13, 20, 23, 25, 29, 30, 45, 48, 52, 63, 71, 88, 90, 91] for a collection

of recent work), but fairness concerns also arise naturally in many resource allocation set-

tings. Informally, a resource allocation problem is one in which there is a limited supply

of some resource to be distributed across multiple groups with differing needs. Resource

allocation problems arise in financial applications (e.g. allocating loans), disaster response

(allocating aid), and many other domains — but the primary example that we will focus on

in this paper is policing. In the predictive policing problem, the resource to be distributed

is police officers, which can be dispatched to different districts. Each district has a differ-

ent crime distribution, and the goal (absent additional fairness constraints) might be to

maximize the number of crimes caught. We understand that policing has many goals be-

sides simply apprehending criminals, including preventing crimes in the first place, fostering

healthy community relations, and generally promoting public safety. But for concreteness

and simplicity we consider the limited objective of apprehending criminals.

Of course, fairness concerns abound in this setting, and recent work (see e.g. [32, 33, 72]) has

highlighted the extent to which algorithmic allocation might exacerbate those concerns. For

example, Lum and Isaac [72] show that if predictive policing algorithms such as PredPol are

trained using past arrest data to predict future crime, then pernicious feedback loops can

arise, which misestimate the true crime rates in certain districts, leading to an overallocation

of police. Since the communities that Lum and Isaac [72] showed to be overpoliced on a

relative basis were primarily poor and minority, this is especially concerning from a fairness

perspective. In this work, we study algorithms that avoid this kind of under-exploration
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and incorporate quantitative fairness constraints.

In the predictive policing setting, Ensign et al. [32] implicitly consider an allocation to be

fair if police are allocated across districts in direct proportion to the district’s crime rate;

generally extended, this definition asks that units of a resource are allocated according to

the group’s share of the total candidates for that resource. In our work, we study a different

notion of allocative fairness that has a similar motivation to the notion of equality of oppor-

tunity proposed by Hardt et al. [45] in classification settings. Informally speaking, it asks

that the probability that a candidate for a resource be allocated a resource be independent

of his group membership. In the predictive policing setting, it asks that conditional on

committing a crime, the probability that someone is apprehended should not depend on the

district in which they commit the crime.

To illustrate that our notions of fairness do not depend on whether individuals would prefer

to receive or not receive the resource, we highlight another setting in which allocative

fairness is a natural concern: hiring. Suppose a company wishes to recruit machine learning

programmers by advertising on a social media platform. Many such platforms offer the

ability to advertise to different demographics of users and charge by the number of times

the advertisement is shown to different users (i.e., the number of impressions); a fixed

advertising budget can then be viewed as a number of impressions to allocate. Depending

on how well the platform can identify programmers within each demographic, the ad may

be shown to a higher or lower number of programmers. In this setting, our notion of

allocative fairness asks that the probability a programmer is exposed to the hiring ad (and

thus, receives the opportunity to apply for a job) does not depend on the programmer’s

demographic, and the allocation problem is to maximize the number of programmers reached

via the choice of impressions across each demographic, subject to fairness constraints.

78



6.1.1. Our Results

To define the extent to which an allocation satisfies our fairness constraint, we must model

the specific mechanism by which resources deployed to a particular group reach their in-

tended targets. We study two such discovery models, and we view the explicit framing of

this modeling step as one of the contributions of our work; the implications of a fairness

constraint depend strongly on the details of the discovery model, and specifying such a

model is an important step in making one’s assumptions transparent.

We study two discovery models, which capture two extremes of targeting ability. In the

random discovery model, regardless of the number of units allocated to a given group, all

individuals within that group are equally likely to be assigned a unit, regardless of whether

they are a candidate for the resource or not. In other words, the probability that a candidate

receives a resource is equal to the ratio of the number of units of the resource assigned to

his group to the size of his group (independent of the number of candidates in the group).

At the other extreme, in the precision discovery model, units of the resource are given only

to candidates within a group, as long as there is sufficient supply of the resource. That is,

the probability that a candidate receives a resource is equal to the ratio of the number of

units of the resource assigned to his group to the number of candidates in his group.

In the policing setting, these models can be viewed as two extremes of police targeting

ability for an intervention like stop-and-frisk. In the random model, police are viewed as

stopping people uniformly at random. In the precision model, police have the omniscient

ability to identify individuals with contraband, and stop only them.

These discovery models have different implications for fairness. In the random model, fair-

ness constrains resources to be distributed in amounts proportional to group sizes, regardless

of the distribution of candidates, and so is uninteresting from a learning perspective. On

the other hand, the precision model yields an interesting fairness-constrained learning prob-
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lem when the distribution of the number of candidates in each group must be learned via

observation, and what counts as a ‘fair’ allocation depends greatly on these distributions.

We study learning in a censored feedback setting: each round, the algorithm can choose

a feasible deployment of resources across groups. Then the number of candidates for the

current round in each group is drawn from a fixed, but unknown group-dependent distri-

bution (which might be not be independent from the distributions in other groups). The

algorithm does not observe the number of candidates present in each group, but only the

number of candidates that received the resource. In the policing setting, this corresponds

to the algorithm being able to observe the number of arrests, but not the actual number

of crimes. Thus, the extent to which the algorithm can learn about the distribution in a

particular group is limited by the number of resources it deploys there. The goal of the

algorithm is to converge to an optimal fairness-constrained allocation, where here both the

objective value and the constraints imposed on it depend on the unknown distributions.

One trivial solution to the learning problem is to sequentially deploy all resources to each

group in turn for a sufficient amount of time to accurately learn the candidate distributions.

This would reduce the learning problem to an offline constrained optimization problem,

which we show can be efficiently solved by a greedy algorithm. But this algorithm is unrea-

sonable: it has a large exploration phase in which it uses nonsensical deployments, vastly

overallocating to some groups and underallocating to others. A more natural approach is a

greedy-style algorithm which at each round uses its current best-guess estimate for the dis-

tribution in each group and deploys an optimal fairness-constrained allocation according to

these estimates. Unfortunately, as we show, if one makes no assumptions on the underlying

distributions, any algorithm that has a guarantee of converging to a fair allocation must

behave like the trivial one, deploying vast numbers of resources to each group in turn.

This impossibility result motivates us to consider the learning problem in which the unknown

distributions are from a known parametric family. The natural greedy algorithm uses an

optimal fair deployment at each round given the maximum likelihood estimates of candidate
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distributions given its (censored) observations so far; for concreteness, we consider the case

of the Poisson distribution, and show that it converges to an optimal fair allocation, but our

analysis generalizes for any single-parameter Lipschitz-continuous family of distributions.

Finally, we conduct an empirical evaluation of our algorithm on the Philadelphia Crime

Incidents dataset, which records all crimes reported to the Philadelphia Police Department’s

INCT system between 2006 and 2016. We verify that the crime distributions in each

district are in fact well-approximated by Poisson distributions, and that our algorithm

converges quickly to an optimal fair allocation (as measured according to the empirical

crime distributions in the dataset). We also systematically evaluate the Price of Fairness,

and plot the Pareto curves that trade off the number of crimes caught versus the slack

allowed in our fairness constraint, for different sizes of police force, on this dataset. For the

random discovery model, we prove worst-case bounds on the Price of Fairness.

6.1.2. Further Related Work

Our precision discovery model is inspired by and has technical connections to Ganchev et al.

[39], which models the dark pool problem from quantitative finance, in which a trader wishes

to execute a specified number of trades across a set of exchanges of unknown but indepen-

dently distributed liquidity. In Ganchev et al. [39], the authors design an optimal allocation

algorithm under the censored feedback of the precision model. It is straightforward to map

their setting onto ours, but they assume independence between different exchanges, while

the candidate distributions in our setting need not be independent. Regardless, we show

that their allocation algorithm can be used to compute an optimal allocation (ignoring

fairness) even when the independence assumption is relaxed (see Remark 1). Later, Agar-

wal et al. [2] extend the dark pool problem to an adversarial (rather than distributional)

setting. This is quite closely related to the work of Ensign et al. [33] who also consider

the precision model (under a different name) in an adversarial predictive policing setting.

They provide no-regret algorithms for this setting by reducing the problem to learning in a

partial monitoring environment. Since their setting is equivalent to that of Agarwal et al.
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[2], the algorithms in Agarwal et al. [2] can be directly applied to their problem.

Our desire to study the natural greedy algorithm rather than an algorithm which uses “un-

reasonable” allocations during an exploration phase is an instance of a general concern about

exploration in fairness-related problems [14]. Recent works have studied the performance

of greedy algorithms in different settings for this reason [11, 57, 80].

Lastly, the term fair allocation appears in the fair division literature (see e.g. [79]), but

that body of work is technically quite distinct from the problem we study here.

6.2. Setting

We study an allocator who has V units of a resource and is tasked with distributing them

across a population partitioned into G groups. Each group is divided into candidates, who

are the individuals the allocator would like to receive the resource, and non-candidates,

who are the remaining individuals. We let mi denote the total number of individuals in

group i. The number of candidates ci in group i is a random variable drawn from a fixed

but unknown distribution Ci called the (marginal) candidate distribution. We do not make

any assumptions about the relationship between the candidate distributions across different

groups and in particular these distributions need not be independent. We use M to denote

the total size of all groups. An allocation v = (v1, . . . , vG) is a partitioning of these V units,

where vi ∈ {0, . . . ,V} denotes the units of resources allocated to group i. Every allocation

is bound by a feasibility constraint which requires that Σi∈[G]vi ≤ V.

A discovery model disc(vi, ci) is a (possibly randomized) function mapping the number of

units vi allocated to group i and the number of candidates ci in group i to the number of

candidates discovered in group i. In the learning setting, upon fixing an allocation v, the

learner will get to observe (a realization of) disc(vi, ci) for the realized value of ci for each

group i. Fixing an allocation v, a discovery model disc(·) and candidate distributions for

all groups C = {Ci : i ∈ [G]}, we define the total expected number of discovered candidates,
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χ(v, disc(·), C), as

χ (v, disc(·), C) =
∑
i∈[G]

Eci∼Ci
[

disc(vi, ci)
]
, (6.1)

where the expectation is taken over Ci and any randomization in the discovery model disc(·).

When the discovery model and the candidate distributions are fixed, we will simply write

χ(v) for brevity. We also use the total expected number of discovered candidates and

(expected) utility exchangeably. We refer to an allocation that maximizes the expected

utility over all feasible allocations as an optimal allocation and denote it by w∗.

6.2.1. Allocative Fairness

For the purposes of this paper, we say that an allocation is fair if it satisfies approximate

equality of candidate discovery probability across groups. We call this discovery probability

for brevity. This formalizes the intuition that it is unfair if candidates in one group have an

inherently higher probability of receiving the resource than candidates in another. Formally,

we define our notion of allocative fairness as follows.

Definition 15. Fix a discovery model disc(·) and the candidate distributions C. For an

allocation v, let

fi (vi,disc(·), Ci) = Eci∼Ci

[
disc (vi, ci)

ci

]
,

denote the expected probability that a random candidate from group i receives a unit of the

resource at allocation v (i.e. the discovery probability in group i). Then for any α ∈ [0, 1],

v is α-fair if for all pairs of groups i and j we have that

∣∣∣fi (vi, disc(·), Ci)− fj (vj ,disc(·), Cj)
∣∣∣ ≤ α.

When it is clear from the context, for brevity, we write fi(vi) for the discovery probability

in group i. We emphasize that this definition (1) depends crucially on the chosen discovery

model, and (2) requires nothing about the treatment of non-candidates. We think of this as

a minimal definition of fairness, in that one might want to further constrain the treatment
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of non-candidates — but we do not consider that extension.

Since discovery probabilities fi(vi) and fj(vj) are in [0, 1], the absolute value of their dif-

ference is in [0, 1]. By setting α = 1 we impose no fairness constraints whatsoever on the

allocations, and by setting α = 0 we require exact fairness.

We refer to an allocation v that maximizes χ(v) subject to α-fairness and the feasibility

constraint as an optimal α-fair allocation and denote it by wα. χ(wα) is a non-increasing

in α, since as α diminishes, the utility maximization problem becomes more constrained.

Remark 1. We note that both the utility and discovery probabilities can be written solely

in terms of the marginal candidate distributions in each of the groups, even when these

distributions are not independent. This is because we have (implicitly) assumed that the

number of candidates discovered in a group depends only on the number of candidates in

the group and the allocation to that group, regardless of the allocations to and the number

of candidates in other groups. This assumption together with the linearity of expectation

allows us to write the expected utility as in the right hand side of Equation 6.1.

6.3. The Precision Discovery Model

We begin by describing the precision model of discovery. Allocating vi units to group i in

the precision model results in the discovery of disc(ci, vi) , min(ci, vi) candidates. This

models the ability to perfectly discover and reach candidates in a group with resources

deployed to that group, limited only by the number of deployed resources and the number

of candidates present.

The precision model results in censored observations that have a particularly intuitive form.

Recall that in general, a learning algorithm at each round gets to choose an allocation v

and then observes disc(vi, ci) for each group i. In the precision model, this results in the

following kind of observation: when vi is larger than ci, the allocator learns the number

of candidates ci present on that day exactly. We refer to this kind of feedback as an

uncensored observation. When vi is smaller than ci, all the allocator learns is that the
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number of candidates is at least vi. We call this a censored observation.

The rest of this section is organized as follows. In Sections 6.3.1 and 6.3.2 we characterize

optimal and optimal fair allocations for the precision model when the candidate distribu-

tions are known. In Section 6.3.3 we focus on learning an optimal fair allocation when these

distributions are unknown. We show that any learning algorithm that is guaranteed to find

a fair allocation in the worst case over candidate distributions must have the undesirable

property that at some point, it must allocate a vast number of its resources to each group

individually. To bypass this hurdle, in Section 6.3.4 we show that when the candidate dis-

tributions have a parametric form, a natural greedy algorithm which always uses an optimal

fair allocation for the current maximum likelihood estimates of the candidate distributions

converges to an optimal fair allocation.

6.3.1. Optimal Allocation

We first describe how an optimal allocation (absent fairness constraints) can be computed

efficiently when the candidate distributions Ci are known. In Ganchev et al. [39], the authors

provide an algorithm for computing an optimal allocation when the distributions over the

number of shares present in each dark pool are known and the trader wishes to maximize

the expected number of traded shares. They assume that the distributions of shares across

different dark pools are independent, but our formulation does not require this assumption

of independence. Still, we can use the same algorithm as in Ganchev et al. [39] to compute

an optimal allocation in our setting; this is because, as stated in Remark 1, the utility in

both settings can be written solely in terms of the (marginal) candidate distributions even

when the candidate distributions are not independent across groups. Here, we present the

high level ideas of their algorithm in the language of our model.

Let Ti(c) = Prci∼Ci [ci ≥ c] denote the probability that there are at least c candidates in

group i. We refer to Ti(c) as the tail probability of Ci at c. Recall that the value of the
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cumulative distribution function (CDF) of Ci at c is defined to be

Fi(c) =
∑
c′≤c

Prci∼Ci
[
ci = c′

]
.

So Ti(c) can be written in terms of CDF values as Ti(c) = 1−Fi(c− 1).

The expected total number of candidates discovered by an allocation in the precision model

can be written in terms of the tail probabilities of the candidate distributions i.e.

χ(v,disc(·), C) =
∑
i∈[G]

Eci∼Ci [min (vi, ci)] =
∑
i∈[G]

vi∑
c=1

Ti(c).

Since the objective function is concave (as Ti(c) is a non-increasing function in c for all i),

a greedy algorithm which iteratively allocates the next unit of the resource to a group in

argmaxi∈[G]

(
Ti
(
vti + 1

)
− Ti

(
vti
))
,

where vti is the current allocation to group i in the tth round achieves an optimal allocation.

6.3.2. Optimal Fair Allocation

We next show how to compute an optimal α-fair allocation in the precision model when the

candidate distributions are known and do not need to be learned.

To build intuition for how the algorithm works, imagine that the group i has the highest

discovery probability in wα, and the allocation wαi to that group is somehow known to the

algorithm ahead of time. The constraint of α-fairness then implies that the discovery prob-

ability for each other group j in wα must satisfy fj ∈ [fi−α, fi]. This in turn implies upper

and lower bounds on the feasible allocations wαj to group j. The algorithm is then simply a

constrained greedy algorithm: subject to these implied constraints, it iteratively allocates

units so as to maximize their marginal probability of reaching another candidate. Since the

group i maximizing the discovery probability in wα and the corresponding allocation wαi
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are not known ahead of time, the algorithm simply iterates through each possible choice of

i. Pseudocode is given in Algorithm 1.

Algorithm 1 Computing an optimal fair allocation in the precision model

Input: α, C and V.
Output: An optimal α-fair allocation wα.

wα ← ~0. . Initialize the output.
χmax ← 0. . Keep track of the utility of the output.
for i ∈ [G] do . Guess for group with the highest probability of discovery.

v← ~0.
for vi ∈ {0, . . .V} do . Guess for the allocation to that group.

Set vi in v and compute fi(vi).
ubi ← vi. . Upper bound on allocation to group i.
lbi ← vi. . Lower bound on allocation to group i.
for j 6= i, j ∈ [G] do . Upper and lower bounds for other groups.

Update lbj and ubj using fi(vi), α and Cj .
vj ← lbj . . Assign the lower bound allocation to group j.

if Σi∈[G]vi > V then
continue. . Allocation is not feasible.

Vr = V − Σi∈[G]vi
for t = 1, . . . ,Vr do . Allocate the remaining resources greedily while obeying

fairness.
j∗ ∈ argmaxj∈[G] (Tj(vj + 1)− Tj(vj)) s.t. vj < ubj .
vj∗ ← vj∗ + 1.

χ(v) = Σi∈[G]Σ
vi
c=1Ti(c). . Compute the utility of v.

if χ(v) > χmax then . Update the best α-fair allocation found so far.
χmax ← χ(v).
wα ← v.

return wα.

We prove that Algorithm 1 returns an optimal α-fair allocation in Theorem 10.

Theorem 10. Algorithm 1 computes an optimal α-fair allocation for the precision model

in time O(GV(GV +M)).

6.3.3. Learning Fair Allocations Generally Requires Brute-Force Exploration

In Sections 6.3.1 and 6.3.2 we assumed the candidate distributions were known. When the

candidate distributions are unknown, learning algorithms intending to converge to optimal

α-fair allocations must learn a sufficient amount about the distributions in question to
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certify the fairness of the allocation they finally output. Because learners must deal with

feedback in the censored observation model, this places constraints on how they can proceed.

As we show in Theorem 11, if candidate distributions are allowed to be worst-case, this will

force a learner to engage in “brute-force exploration” — the iterative deployment of a large

fraction of the resources to each subgroup in turn.

Theorem 11. Define m∗ = maxi∈[G]mi to be the size of the largest group and assume

mi > 6 for all i and G ≥ 2. Let α ∈ [0, 1/(2m∗)), δ ∈ (0, 1/2), and A be any learning

algorithm for the precision model which runs for a finite number of rounds and outputs an

allocation. Suppose that there is some group i for which A has not allocated at least mi/2

units for at least k ln(1/δ)/(αmi) rounds upon termination, where k is an absolute constant.

Then there exists a candidate distribution such that, with probability at least δ, A outputs

an allocation that is not α-fair.

Recall that we used m∗ to denote the size of the largest group. When m∗ > 2V, then

Theorem 11 implies that no algorithm can guarantee α-fairness for sufficiently small α.

Moreover, even when m∗ ≤ 2V, Theorem 11 shows that in general, if we want algorithms

that have provable guarantees for arbitrary candidate distributions, it is impossible to avoid

something akin to brute-force search (recall that there is a trivial algorithm which simply

allocates all resources to each group in turn, for sufficiently many rounds to approximately

learn the CDF of the candidate distribution, and then solves the offline problem). In the

next section, we circumvent this by giving an algorithm with provable guarantees, assuming

that the candidate distributions have a known parametric form.

6.3.4. Poisson Distributions and Convergence of the MLE

In this section, we assume that all the candidate distributions have a particular and known

parametric form but that the parameters of the these distributions are not known to the

allocator. Concretely, we assume that the candidate distribution for each group is Pois-

son (denoted by C(λ)) and write λ∗ = (λ∗1, . . . , λ
∗
G) for the true underlying parameters of

the candidate distributions; this choice appears justified, at least in the predictive policing
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application, as the candidate distributions in the Philadelphia Crime Incidents dataset are

well-approximated by Poisson distributions (see Section 6.4 for further discussion). This

assumption allows an algorithm to learn the tails of these distributions without needing

to rely on brute-force search, thus circumventing the limitation given in Theorem 11. In-

deed, we show that (a small variant of) the natural greedy algorithm incorporating these

distributional assumptions converges to an optimal fair allocation.

For simplicity, we assume a parametric form on the marginal candidate distribution in each

of the groups. We could have equivalently assumed that the candidates across groups are

drawn from a multivariate Poisson distribution to highlight the (potential) correlation be-

tween candidates distributions. However, since for a given multivariate Poisson distribution

the marginal distribution on each group is itself a Poisson distribution [46], we made our

parametric assumption directly on these marginal distributions.

At a high level, in each round, our algorithm uses Algorithm 1 to calculate an optimal fair

allocation with respect to the current maximum likelihood estimates of the group distri-

butions; then, it uses the new observations it obtains from this allocation to refine these

estimates for the next round. This is summarized in Algorithm 2. The algorithm differs

from this pure greedy strategy in one respect, to overcome the following subtlety: there is

a possibility that Algorithm 1, when operating on a preliminary estimate for the candidate

distributions, will suggest sending zero units to some group, even when the optimal alloca-

tion for the true distributions sends some units to every group. Such a deployment would

result in the algorithm receiving no feedback for the zero-allocated group that round. If this

suggestion is followed and a lack of feedback is allowed to persist indefinitely, the algorithm’s

parameter estimate for the zero-allocated group will also stop updating — potentially at an

incorrect value. In order to avoid this problem and continue making progress in learning,

our algorithm chooses another allocation in this case. As we show, any allocation that

allocates positive resources to all groups will suffice; in particular, our algorithm simply

repeats the allocation from the previous round.
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Algorithm 2 Learning an optimal fair allocation

Input: α, V and T (total number of rounds).
Output: An allocation vT+1 and estimates to parameters {λTi }.

v1 ← (b(V/G)c, . . . , b(V/G)c). . Allocate uniformly.
for rounds t = 1, . . . , T do

if ∃i such that vti == 0 then . Check whether every group is allocated a resource.
vt ← vt−1.

Observe oti = min{vti , cti} for each group.
for i = 1, . . . ,G do

Update history ht+1
i with oti and vti .

λ̂ti ← argmaxλ∈[λmin,λmax]L̂(ht+1
i , λ). . Solve the MLE.

vt+1 ← Algorithm 1(α, {C(λ̂ti)},V). . Compute an allocation for the next round.

return vT+1 and {λTi }.

Algorithm 2 chooses an allocation at every round which is fair with respect to its estimates of

the parameters of the candidate distributions; hence, asymptotic convergence of its output

to an optimal α-fair allocation follows directly from the convergence of the estimates to

true parameters. However, we seek a finite sample guarantee, as stated in Theorem 12.

Theorem 12. Let ε, δ > 0. Suppose that the candidate distributions are Poisson distri-

butions with unknown parameters in the vector λ∗, where λ∗ lies in the known interval

[λmin, λmax]G. Suppose we run Algorithm 2 for t > Õ(ln(G/δ)/(η(ε))2) , Tmax rounds,

where η(·) is some distribution specific function to get an allocation v̂ and estimated param-

eters λ̂i for all groups i. Then with probability at least 1− δ

1. For all i in [G], |λ̂i − λ∗i | ≤ ε.

2. Let D = maxi∈[G]DTV (C(λ∗i ), C(λ̂i)) where DTV denotes the total variation distance

between two distributions. Then v̂

• is (α+ 4D)-fair.

• has utility at most 4DGV smaller than the utility of an optimal (α − 4D)-fair

allocation i.e. χ(v̂) ≥ χ(wα−4D)− 4DGV.

Remark 2. Theorem 12 implies that in the limit, the allocation from Algorithm 2 will

converge to an optimal α-fair allocation. As t→∞, λ̂i
p→ λ∗i for all i, meaning D → 0 and
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more importantly, v̂ will be α-fair and optimal.

To prove Theorem 12, we first show that any sequence of allocations selected by Algorithm 2

will eventually recover the true parameters. There are two difficulties here: the first is that

standard convergence results typically leverage the assumption of independence, which does

not hold in this case as Algorithm 2 computes adaptive allocations which depend on the

allocations in previous rounds; the second is the censoring of the observations. Despite

these difficulties, we give quantifiable rates with which the estimates converge to the true

parameters. Next, we show that computing an optimal α-fair allocation using the estimated

parameters will result in an allocation that is (α+4D)-fair with respect to the true candidate

distributions where D denotes the maximum total variation distance between the true and

estimated Poisson distributions across all groups. Finally, we show that this allocation also

achieves a utility that is comparable to the utility of an optimal (α−4D)-fair allocation.

Remark 3. Although we assumed Poisson distributions in this section, all our results hold

for any single-parameter Lipschitz-continuous distribution whose parameter is drawn from

a compact set. However, the convergence rate of Theorem 12 depends on the quantity η(ε)

which depends on the family of distributions used to model the candidate distributions.

6.4. Experiments

We next apply our allocation and learning algorithms for the precision model to the Philadel-

phia Crime Incidents dataset, and complement the theoretical convergence guarantee of Al-

gorithm 2 to an optimal fair allocation with empirical evidence suggesting fast convergence

in practice. We also study the trade-off between fairness and utility in the dataset.

6.4.1. Experimental Design

The Philadelphia Crime Incidents dataset (https://www.opendataphilly.org/dataset/

crime-incidents accessed 2018-05-16) contains all the crimes reported to the Police De-

partment’s INCT system between 2006 and 2016. The crimes are divided into two types.

Type I crimes include violent offenses such as aggravated assault, rape, and arson among
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others. Type II crimes include simple assault, prostitution, gambling and fraud. For sim-

plicity, we aggregate all crime of both types, but in practice, a police department would of

course treat different categories of crime differently. We note as a caveat that these crimes

are reported and may not represent the entirety of committed crimes.

Figure 13: Frequencies of the number of reported crimes in each district in the Philadelphia
Crime Incidents dataset. The red curves display the best Poisson fit to the data.

To create daily crime frequencies in Figure 13, we first calculate the daily counts of criminal

incidents in each of the 21 geographical police districts in Philadelphia by grouping together

all the crime reports with the same date; we then normalize these counts to get frequencies.

Each subfigure in Figure 13 represents a police district. The horizontal axis of the subfigure

corresponds to the number of reported incidents in a day and the vertical axis represents

the frequency of each number on the horizontal axis. These frequencies approximate the

true (marginal) distributions of the number of reported crimes in each of the districts in

Philadelphia. Therefore, throughout this section we take these frequencies as the ground

truth candidate distributions for the number of reported incidents in each of the districts.
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Figure 13 shows that crime distributions in different districts can be quite different; e.g.,

the average number of daily reported incidents in District 15 is 43.5, which is much higher

than the average of 11.35 in District 1. Despite these differences, each of the crime dis-

tributions can be approximated well by a Poisson distribution. The red curves overlayed

in each subfigure correspond to the Poisson distribution obtained via maximum likelihood

estimation on data from that district. Throughout, we refer to such distributions as the

best Poisson fit to the data. districts as the resource to be distributed, the ground truth

crime frequencies as candidate distributions, and aim to maximize the sum of the number

of crimes discovered under the precision model of discovery.

6.4.2. Results

We can quantify the extent to which fairness degrades utility in the dataset through a

notion we call Price of Fairness (PoF henceforth). In particular, given the ground truth

crime distributions and the precision model of discovery, for a fairness level α, we define

PoF(α) = χ(w∗)/χ(wα). The PoF is simply the ratio of the expected number of crimes

discovered by an optimal allocation to the expected number of crimes discovered by an

optimal α-fair allocation. Since χ(w∗) ≥ χ(wα) for all α, the PoF is at least one. Further-

more, the PoF is monotonically non-increasing in α. We can apply the algorithms given

in Sections 6.3.1 and 6.3.2 respectively for computing optimal unconstrained, and optimal

fair allocations with the with ground truth distributions as input and numerically compute

the PoF. This is illustrated in Figure 14. The x axis corresponds to different α values and

the y axis displays 1/PoF(α). Each curve corresponds to a different number of total police

officers denoted by V. Because feasible allocations must be integral, there can sometimes be

no feasible α-fair allocation for small α. Since the PoF in these cases is infinite we instead

opt to display the inverse, 1/PoF, which is always bounded in [0, 1]. Higher values of inverse

PoF are more desirable (see [27] for a theoretical study of PoF in the precision model).

Figure 14 shows a diverse set of utility/fairness trade-offs depending on the number of avail-

able police officers. It also illustrates that the cost of fairness is rather low in most regimes.
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Figure 14: Inverse PoF plots for the Philadelphia Crime Incidents dataset. Smaller values
indicate greater sacrifice in utility to meet the fairness constraint.

For example, in the worst case, with only 50 police officers (the black curve) (which is much

smaller than the average number of daily reported crimes: 563.88), the inverse PoF is 1

for α ≥ 0.1, which corresponds to a 10% difference in the discovery probability across dis-

tricts. When we increase the number of available police officers to 400 (the magenta curve),

tolerating only a 4% difference in the discovery probability across districts is sufficient to

guarantee no loss in the utility. Figure 14 also shows that for any fixed α, the inverse PoF(α)

tends to increase as the number of police increases (i.e. the cost of fairness decreases). This

captures the intuition that fairness becomes a less costly constraint when resources are in

greater supply. Finally, we observe a thresholding phenomenon in Figure 14; in each curve,

increasing α beyond a threshold will significantly increase the inverse PoF. This is due to

discretization effects, since only integral allocations are feasible.

We next turn into analyzing the performance of Algorithm 2 in practice. We run the

algorithm instantiated to fit Poisson distributions, but use observations from the ground
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truth distribution at each round. As we have shown in Figure 13,the ground truth is well

approximated by a Poisson distribution.

We measure the performance of Algorithm 2 as follows. First, we fix a police budget V and

unfairness budget α and run Algorithm 2 for 2000 rounds using the dataset as the ground

truth. That is, we simulate each round’s crime count realizations in each of the districts as

being sampled from the ground truth distributions, and return censored observations under

the precision model to Algorithm 2 according to the algorithm’s allocations and the drawn

realizations. The algorithm returns an allocation after termination and we can measure

the expected number of crimes discovered and fairness violation (the maximum difference

in discovery probabilities over all pairs of districts) of the returned allocation using the

ground truth distributions. Varying α while fixing V allows us to trace out the Pareto

frontier of the utility/fairness trade-off for a fixed police budget. Similarly, for any fixed

V and α, we can run Algorithm 1 (the offline algorithm for computing an optimal fair

allocation) with the ground truth distributions as input and trace out a Pareto curve by

varying α. We refer to these two Pareto curves by the learned and optimal Pareto curves,

respectively. To measure the performance of Algorithm 2, we can compare these curves.

In Figure 15, each curve corresponds to a police budget. The x and y axes represent the

expected number of crimes discovered and fairness violation for allocations on the Pareto

frontier, respectively. In our simulations we varied α between 0 and 0.15. For each police

budget V, the ‘x’ s connected by the dashed lines show the learning Pareto frontier. Sim-

ilarly, the circles connected by solid lines show the optimal Pareto frontier. We point out

that while it is possible for the fairness violations in the learned Pareto curves to be higher

than the level of α set as an input to Algorithm 2, the fairness violations in the optimal

Pareto curves are always bounded by α.

The disparity between the optimal and learned Pareto curves are due to the fact that the

learning algorithm has not yet fully converged. This can be attributed to the large number of

censored observations received by Algorithm 2, which are significantly less informative than
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Figure 15: Pareto frontier of expected crimes discovered versus fairness violation.

uncensored observations. Censoring happens frequently because the number of police used

in every case plotted is less than the daily average of 563.88 crimes across all the districts in

the dataset — so it is unavoidable that in any allocation, there will be significant censoring

in at least some districts.

Figure 15 shows that while the learning curves are dominated by the optimal curves, the

performance of the learning algorithm approaches the performance of the offline optimal

allocation as V increases. Again, this is because increasing V generally decreases the fre-

quency of censoring. We study the V = 500 regime in more detail, to explore the empirical

rate of convergence. In Figure 16, we study the round by round performance of the allo-

cation computed by Algorithm 2 in a single run with the choice of V = 500 and α = 0.05.

In Figure 16, the x axis labels progression of rounds of the algorithm. The y axis measures

the fairness violation (left) and expected number of crimes discovered (right) of the alloca-
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Figure 16: The per round expected number of crimes discovered and fairness violation of
Algorithm 2. V = 500 and α = 0.05.

tion deployed by the algorithm, as measured with respect to the ground truth distributions.

The black curves represent Algorithm 2. For comparison we also show the same quantities

for an offline optimal fair allocation as computed with respect to the ground truth (red

line), and an offline optimal fair allocation as computed with respect to the best Poisson

fit to the ground truth (blue line). Note that in the limit, the allocations chosen by Al-

gorithm 2 are guaranteed to converge to the blue baselines — but not the red baseline,

because the algorithm is itself learning a Poisson approximation to the ground truth. The

disparity between the red and blue lines quantifies the degradation in performance due to

using Poisson approximations, rather than due to non-convergence of the learning process.

Figure 16 shows that Algorithm 2 converges to the Poisson approximation baseline well

before the termination time of 2000, and substantially before the convergence bound guar-

anteed by our theory. Examining the estimated Poisson parameters used internally by
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Algorithm 2 reveals that although the allocation has converged to an optimal fair alloca-

tion, the estimated parameters have not yet converged to the parameters of the best Poisson

fit in any of the districts. In particular, Algorithm 2 systematically underestimates the pa-

rameters in all of the districts: the correlation coefficient between the true and estimated

parameters is 0.9975.

We see also in Figure 16 that convergence to the optimum expected number of discovered

crimes occurs more quickly than convergence to the target fairness violation level. This

is also apparent in Figure 15 where the learning and optimal Pareto curves are generally

similar in terms of the maximum number of crimes discovered, while the fairness violations

are higher in the learning curves.

6.5. The Random Discovery Model

Finally, we consider the random model of discovery. In the random model, when vi units are

allocated to a group with ci candidates, the number of discovered candidates is a random

variable corresponding to the number of candidates that appear in a uniformly random

sample of vi individuals from a group of size mi. Equivalently, when vi units are allocated

to a group of size mi with ci candidates, the number of candidates discovered by disc(·) is

a random variable disc(vi, ci) , oi, where oi is drawn from the hypergeometric distribution

with parameters mi, ci and vi. Furthermore, the expected number of candidates discovered

when allocating vi units to group i is E[disc(vi, ci)] = viE[ci]/mi.

For simplicity, throughout this section, we assume mi ≥ V for all i. This assumption

can be completely relaxed. Moreover, let µi = E[ci]/mi denote the expected fraction of

candidates in group i. Without loss of generality, for the rest of this section, we assume

µ1 ≥ µ2 ≥ . . . ≥ µG .
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6.5.1. Optimal Allocation

In this section, we characterize optimal allocations. Note that the expected number of

candidates discovered by the allocation choice vi ≤ mi in group i is simply viµi. This

suggests a simple algorithm to compute w∗: allocating every unit of the resource to group

1. More generally, let G∗ = {i | µi = µ1} denote the subset of groups with the highest

expected number of candidates. An allocation is optimal if and only if it only allocates all

resources to groups in G∗.

6.5.2. Properties of Fair Allocations

We next discuss the properties of fair allocations in the random discovery model. First, we

point out that the discovery probability can be simplified as

fi(vi) = Eci∼Ci

[
civi/mi

ci

]
=

vi
mi
.

So an allocation is α-fair in the random model if |vi/mi − vj/mj | ≤ α for all groups i and

j. Therefore, fair allocations (roughly) distribute resources in proportion to the size of the

groups, essentially ignoring the candidate distributions within each group.

6.5.3. Price of Fairness

Recall that PoF quantifies the extent to which constraining the allocation to satisfy α-

fairness degrades utility. While in Section 6.4 we study the PoF on the Philadelphia Crime

Incidents dataset, we can define a worst-case variant as follows.

Definition 16. Fix the random model of crime discovery and let α ∈ [0, 1]. We define the

PoF as

PoF(α) = max
C

χ(w∗, C)
χ(wα, C)

.

where C ranges over all possible candidate distributions.

We can fully characterize this worst-case PoF in the random discovery model.
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Theorem 13. The PoF in the random discovery model is

PoF(α) =


1, V

m1
≤ α,

M
m1+α(M−m1) ,

V
m1

> α.

The PoF in the random model can be as high as M/m1 in the worst case. If all groups are

identically sized, this grows linearly with the number of groups.

6.6. Conclusion and Future Directions

Our presentation of allocative fairness provides a family of fairness definitions, modularly

parameterized by a “discovery model”. What counts as “fair” depends a great deal on

the choice of discovery model, which makes explicit what would otherwise be unstated

assumptions about the process of tasks like policing. The random and precision models

of discovery studied in this paper represent two extreme points of a spectrum. In the

predictive policing setting, the random model of discovery assumes that officers have no

advantage over random guessing when stopping individuals for further inspection. The

precision model assumes they can oracularly determine offenders, and stop only them. An

interesting direction for future work is to study discovery models in between these two.

We have also made a number of simplifying assumptions e.g. we assumed the candidate

distributions are stationary — fixed independently of the actions of the algorithm. Of

course, the deployment of police officers can change crime distributions. Modeling this kind

of dynamics, and designing learning algorithms that perform well in such dynamics would

be interesting. Finally, we assumed that the same discovery model applies to all groups.

One friction to fairness that one might reasonably conjecture is that the discovery model

may differ between groups — being closer to the precision model for one group, and closer

to the random model for another. We leave the study of these extensions to future work.
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