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ABSTRACT

ESSAYS IN MARKET EFFICIENCY AND EMPIRICAL ASSET PRICING

Jianan Liu

Robert F. Stambaugh

This dissertation consists of two chapters that address question about market efficiency in

asset pricing.

In the first chapter, “Comovement in Arbitrage Limits”, I document that estimates of mis-

pricing, such as deviations from no-arbitrage relations, strongly comove across five financial

markets. In particular, I find that one common component—the arbitrage gap—explains

the majority of variability in mispricing estimates for futures, Treasury securities, foreign

exchange, and options. Prominent equity anomalies also comove significantly with the ar-

bitrage gap. Existing theories propose that funding constraints faced by arbitrageurs can

impair market efficiency. Consistent with these theories, I find that variables affecting arbi-

trage capital availability, such as the TED spread and hedge-fund flows and returns, explain

two-thirds of the arbitrage gaps variation. During periods of tighter capital constraints, the

comovement in mispricings becomes stronger.

In the second chapter, “Size and Value in China,” joint with Robert F. Stambaugh and Yu

Yuan, we construct size and value factors in China. The size factor excludes the smallest

30% of firms, which are companies valued significantly as potential shells in reverse mergers

that circumvent tight IPO constraints. The value factor is based on the earnings-price

ratio, which subsumes the book-to-market ratio in capturing all Chinese value effects. Our

three-factor model strongly dominates a model formed by just replicating the Fama and

French (1993) procedure in China. Unlike that model, which leaves a 17% annual alpha on

the earnings-price factor, our model explains most reported Chinese anomalies, including

profitability and volatility anomalies.
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CHAPTER 1: Comovement in Arbitrage Limits

1.1. Introduction

In a frictionless world, arbitrage requires no capital, and asset mispricing relative to funda-

mental value should be instantaneously eliminated. Real-life arbitrageurs require capital,

often raised from external sources. When that capital becomes less available, deviations

of prices from no-arbitrage relations—arbitrage spreads—can arise and persist. A shock to

capital availability can cut across arbitrageurs in different markets, resulting in a simulta-

neous widening of arbitrage spreads. For example, during the severe funding freeze of 2008,

spreads widened in multiple markets (Mitchell and Pulvino, 2012).

Do arbitrage spreads, or mispricings more generally, comove across different financial mar-

kets? If so, is the comovement associated with fluctuations in the availability of arbitrage

capital? These are the central questions of this study.

I provide empirical evidence that mispricings comove across five major financial markets:

stock-index futures, stock options, foreign exchange, Treasury securities, and equities. I also

find that this comovement is closely related to variables that proxy for aggregate capital

constraints. When capital limits are looser, arbitrage spreads in all markets are smaller,

are less sensitive to variations in funding variables, and exhibit weaker comovement. When

funding constraints are tighter, arbitrage spreads are wider in all markets, are correlated

more with funding variables, and exhibit strong comovement.

These findings support a growing theoretical literature relating capital constraints and the

limits of arbitrage. The basic arguments advanced by this literature are as follows. Real-life

arbitrageurs have limited wealth shares and are subject to borrowing constraints. Follo-

wing a reduction in their wealth or a tightening of borrowing constraints, arbitrageurs are

less able to correct prices, resulting in nontrivial and persistent mispricings.1 Moreover,

1A non-exhaustive list of related studies includes Detemple and Murthy (1997), Shleifer and Vishny
(1997), Basak and Croitoru (2000), Gromb and Vayanos (2002, 2009, and 2018), Liu and Longstaff (2004),
Brunnermeier and Pedersen (2009), and Gârleanu and Pedersen (2011).
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when arbitrageurs rely on external equity capital, their arbitrage capacities can be further

constrained by a worsening of mispricings. Arbitrageurs betting on price convergence suf-

fer short-run losses if mispricings widen. The resulting losses induce outside financiers to

withdraw money because of information asymmetry. Therefore, arbitrageurs become less

willing to hold positions betting on price convergence as prices diverge further from their

fundamental values (Shleifer and Vishny, 1997).

The above literature provides two empirical predictions about mispricings across different

markets. First, mispricings in different markets “connected” by the same pool of capital

should comove together. In other words, when arbitrage capital is mobile and exploits

arbitrage opportunities across different markets, or when arbitrageurs in different markets

are subject to a common source of funding shocks, one should expect mispricings to rise

and fall in different markets simultaneously (Gromb and Vayanos 2009, 2018, and Gârleanu

and Pedersen, 2011). Second, the comovement is governed by capital constraints. When

funding constraints tighten more, mispricings worsen in all markets, become more sensitive

to variations in funding constraints, and exhibit stronger comovement.

Consistent with those predictions, my empirical findings reveal that mispricings across ma-

jor asset classes have a strong common factor, and the comovement is closely related to

aggregate funding constraints. First, I construct arbitrage spreads as deviations from fa-

miliar no-arbitrage relations in stock-index futures, stock options, foreign exchanges and

Treasury securities. These arbitrage spreads, rather than necessarily reflecting true arbi-

trage opportunities, are better viewed as low-variance estimates of mispricing.2 A single

common component, which I call the arbitrage gap, explains 60% of the total variation in

arbitrage spreads over a sample spanning over three decades. Such commonality is not pu-

rely driven by the recent financial crisis; in the pre-2007 sample, the arbitrage gap explains

51% of the overall variation.

2The four arbitrage spreads in stock-index futures, stock options, foreign exchange, and Treasury securi-
ties are based on the futures-cash parity, put-call parity, the covered interest-rate parity, and the Nelson-Siegel
pricing model. See Section 1.2 for details.
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The variation in the arbitrage gap is closely associated with the tightness of arbitrage capi-

tal constraints. In the literature, four variables are commonly used to capture arbitrageurs’

funding tightness; the TED spread, the hedge-fund flows and returns, and primary dea-

lers’ repo financings growth which captures intermediaries balance sheets’ expansion and

contraction.

These funding variables all exhibit significant explanatory power for the arbitrage gap. In a

multiple regression including all four funding measures, they jointly explain 66% of the va-

riation in the arbitrage gap and all coefficients are statistically significant and economically

large. In a univariate regression, the TED spread accounts for 25% of the variation in the

arbitrage gap in a sample of more than thirty years. Hedge-fund sector flows and returns

explain 22% of the variation when included in the regression. The sign of the coefficients

indicate that the arbitrage gap becomes wider when the TED spread rises, the hedge fund

sector suffers outflows or losses, or the growth in repo financings slows.

As predicted by theoretical studies, the degree of comovement between arbitrage spreads

should be negatively associated with the tightness of funding constraints. I indeed find that

when the TED spread is wide or the hedge-fund sector suffers losses, the comovement is

strong. Particularly, I find both the TED spread and the hedge-fund sector returns exhibit

significant explanatory power for the average pairwise correlation. The economic magnitude

of the effect is quite substantial. A one-standard-deviation spike in the TED spread is

associated with an increase of five percentage points in the average pairwise correlation.

A one-standard-deviation decline in the hedge-fund-sector return is associated with a four-

percent-point increase in the average correlation.

I also include a fifth market, equities, in my investigation. I show that mispricings in the

equity market positively comove with the arbitrage gap. In the equity market, stocks’

fundamental values are unknown and explicit no-arbitrage relations are rare. Mispricings

are simply manifested in relative price differences or return spreads, labeled as anomalies,

that cannot be justified by expected payoffs or risk exposures. Unlike deviations from

3



no-arbitrage relations in derivatives or foreign exchange, estimates of equity mispricings,

subject to the joint hypothesis problem, have much higher variances. In other words, the

payoffs of trades exploiting them can be much more uncertain. So, fundamental risks can

also deter arbitrageurs from correcting mispricings, whereas such risks are less likely to affect

low-variance opportunities (Gromb and Vayanos, 2010). Nevertheless, I find that when ar-

bitrageurs are more financially constrained, equity mispricings become significantly worse.

The arbitrage gap comoves significantly with the magnitudes of three well-documented

equity anomalies: the closed-end fund discount, the merger and acquisition (M&A) spread,

and long-short alpha spreads based on sorts by certain characteristics.3 Trading strategies

exploiting these anomalies represent major strategies used by real-life arbitrageurs (Peder-

sen, 2015).

In particular, I find that a one-standard-deviation increase in the arbitrage gap accompanies

a 0.66-standard-deviation increase in the average closed-end fund discount, defined as the

difference between closed-end funds’ net asset values and their share prices. The same

increase in the arbitrage gap results in a widening difference between offer and traded prices

of M&A target stocks (M&A spread) by 0.53 standard deviations. I also investigate the

relation between the arbitrage gap and the long-short alpha spreads of popular anomalies,

such as value, profitability, investment, and momentum. I find that during periods when the

arbitrage gap is high, the magnitudes of anomalies’ long-short alpha spreads become much

smaller; on average, a one-standard-deviation increase in the arbitrage gap is associated

with around 0.3% decrease in anomalies’ alphas. This is consistent with less price correction

during those periods.

In the final part of my study, I investigate dynamic lead-lag relations between the arbi-

trage gap and the funding measures using vector autoregression (VAR) analysis. The feed-

3The third anomaly concerns the predictability of stocks’ returns based on past prices or earnings that
can be hardly reconciled by risk-return trade-offs (e.g., momentum and profitability anomalies). Behavioral
explanations attribute such predictability to non-instantaneous price correction (Stambaugh, Yu, and Yuan,
2012). Stock prices fail to incorporate news instantaneously, and predictability is realized during the process
of price correction.

4



back mechanisms between mispricings and capital constraints, which have been proposed

in arbitrage-limit theories, such as those by Shleifer and Vishny (1997) and Brunnermeier

and Pedersen (2009), predict a bidirectional linkage. In one direction, insufficient capital

impairs arbitrageurs’ trading capacity and leads to larger arbitrage spreads. In the reverse

direction, widened mispricings produce immediate losses to arbitrageurs who bet on price

correction. Because arbitrageurs primarily invest with external equity and debt capital,

information asymmetry between arbitrageurs and financiers can induce uninformed finan-

ciers to withdraw equity capital and tighten borrowing constraints, further exacerbating

mispricings.

Consistent with these predictions, the VAR results show strong bidirectional links between

the arbitrage gap and the funding variables. In one direction, capital-tightening (loosening)

shocks to the funding variables lead to a wider (narrower) arbitrage gap. A one-standard-

deviation positive shock to the TED spread leads to a 0.4-standard-deviation jump in the

arbitrage gap at the onset of the shock, and the response slowly decays to zero over six

months. Similarly, a one-standard-deviation negative shock to the hedge-fund returns leads

to a significant 0.2-standard-deviation increase in AG, which reverts back to zero after four

months. In the reverse direction, a positive one-standard-deviation shock to the arbitrage

gap leads to significant tightening responses in all four funding variables. In particular,

in the month following the shock, the hedge fund return drops by an annualized three

percentage points, the hedge-fund sector flow declines by 0.3 percent of the total assets

under management, the TED spread increases by 0.05 percentage points, and repo financing

growth slows by one percentage point.

To the best of my knowledge, my study is the first to document (i) strong comovement

across mispricings in five major asset classes over a sample of three decades and (ii) the

role of aggregate arbitrage capital constraints in this comovement. My findings relate to a

number of areas in the literature, in addition to theoretical studies mentioned above.

First, my study relates to a vast empirical literature documenting price anomalies in various

5



markets. A partial list includes MacKinlay and Ramaswamy (1988) and Brennan and

Schwartz (1990) for index futures; Ofek and Richardson (2003) and Battalio and Schultz

(2006) for stock options; Frenkel and Levich (1977) and Du, Tepper, and Verdelhan (2018)

for exchange rates; and Krishnamurthy (2002) and Musto, Nini, and Schwarz (2018) for

fixed income. Barberis and Thaler (2003) and Gromb and Vayanos (2010) provide extended

surveys of prominent price anomalies documented in the equity market.

My study is also related to the limits of arbitrage literature. Early studies in this literature

focus on the “asset side of the balance sheet” (Mitchell and Pulvino, 2012), showing that

transaction costs and holding costs can deter efficient arbitrage activities (e.g., Pontiff, 1996

and Mitchell, Pulvino, and Stafford, 2002). Barberis and Thaler (2003) and Gromb and

Vayanos (2010) also provide comprehensive overviews discussing these frictions.

Recent empirical studies examine the impact of capital constraints on mispricings, but the

majority of these studies document the association between capital constraints and separate

mispricings for convertible bonds (Mitchell, Pedersen, and Pulvino, 2007), covered interest

rate parity (Mancini-Griffoli and Ranaldo, 2010, Gârleanu and Pedersen, 2011, Du et al.,

2018), credit default swaps (Gârleanu and Pedersen, 2011), Treasury securities (Hu, Pan,

and Wang, 2013), and equity anomalies (Asness, Moskowitz, and Pedersen, 2013). Several

notable exceptions examine mispricings across different markets. Mitchell and Pulvino

(2012) provide evidence that various mispricings all worsened in the wake of the 2008 finan-

cial crisis. Fleckenstein, Longstaff, and Lustig (2014) show that TIPS mispricing comoves

with other fixed-income mispricings in a five-year sample surrounding the global financial

crisis. Pasquariello (2014) combines mispricings in the currency market as an indicator for

financial market dislocations and focuses on its pricing ability in global stock and currency

markets. Boyarchenko, Eisenbach, Gupta, Shachar, and van Tassel (2018) show that in

the aftermath of the 2008 financial crisis, stringent bank regulations contribute to incre-

asing mean levels of mispricings in different markets. My work is also related to Rösch,

Subrahmanyam, and van Dijk (2017), who document comovement across different aggre-

6



gate efficiency measures in the equity market and find such comovement is associated with

funding measures.

The remainder of the paper proceeds as follows. Section 1.2 constructs the arbitrage spre-

ads. Section 1.3 explores comovement in the spreads and constructs the arbitrage gap.

Section 1.4 investigates the association between the arbitrage gap and external funding

constraints. Section 1.5 investigates the relation between the arbitrage gap and equity mis-

pricing. Section 1.6 explores the dynamic relations between the arbitrage gap and funding

constraints. Section 1.7 concludes.

1.2. Arbitrage spreads

In this section, I construct four arbitrage spreads, specifically the futures-cash basis for the

S&P 500 index futures, the box spread for individual stock options, the covered interest

rate parity spread for currency pairs, and the Treasury mispricing measure for Treasury

notes/bonds. The reasons for choosing these markets are as follows.

First, for these asset classes, mispricings can be identified with low variances, because either

absolute or relative fundamental values are ascertained, and no-arbitrage parities are known

in the literature. Moreover, they are major financial markets where long historical data are

publicly available. In the remainder of the section, I describe how I construct the spreads in

subsections 1.2.1 to 1.2.4 in more details, and analyze their time-series features in subsection

1.2.5.

1.2.1. The futures-cash basis

The first arbitrage spread is based on the futures-cash parity for index futures, defined as the

difference between an index’s price and its synthetic analog based on its futures contract’s

price. In a frictionless world, the value of an index price should equal to the value of a

replicating portfolio based on its futures contracts with interest rates and expected dividend

yields adjustments. Any difference between the two captures mispricing.

7



I focus on the S&P 500 index because its futures contracts are among the most liquid assets

and have a fairly long history starting from April 1982. The futures-cash parity is defined

as follows:

Ft × e−(rt−δt)(T−t) = St, (1.1)

where Ft denotes the settlement price of contract i on day t. rt and δt denote the interest

rate and index’s dividend yield rate from t up to maturity, T − t. St is the S& P 500 index’s

closing price on day t.

Then, the futures-cash basis is defined as:

Futbasist =

∣∣∣∣∣log
Ft × e−(rt−δt)(T−t)

St

∣∣∣∣∣ (1.2)

I use the front-month contract to compute the futures-cash basis because it is the most

actively traded contract. One issue of using a single contract is that the time series of its

futures price exhibits seasonality. In particular, in expiry months (March, June, Septem-

ber, and December), the basis is substantially lower than in other months. I adjust the

seasonality issue by subtracting the means of corresponding months. In all what follows, I

use only the seasonal-adjusted basis series.

Three concerns are related to the futures-cash basis calculation. First, errors in the dividend

yields’ estimations can contribute to the basis. I find that both realized dividend yields and

expected dividend yields (based on past two years) deliver very similar futures-cash bases.

Also, the correlation between the basis and the dividend yield is very low (0.04). So, the

dividend yield is unlikely to be the driver of the futures-cash basis. Second, specifying

unattainable benchmark riskfree rates can also drive a wedge. In my benchamark analysis,

I use the LIBOR yield curves. The results are almost unchanged if I use the Truasury yield

curve on the GC repo curve instead.

The third potential problem is asynchronous quotes between stocks and futures market.

8



The publicly available end-of-the-day futures prices are recorded at 4:15 p.m. EST, whereas

stock market close prices are taped at 4:00 p.m. EST at the end of regular trading sessions.

A fifteen-minute time-stamp mismatch can give rise to fictitious wedge between futures

prices and index prices. However, I find that all the results are robust to using calendar

speads as the mispricing measure. Calendar spread is defined as the difference between the

left-hand-side values of the equation (1.1) for futures with different maturities but same

underlying. Construction of calendar spreads avoids using stock index price completely

and thus circumvent the timestamp mismatch issue.4 The average calendar spread has a

correlation of 63% with the futures-cash basis.

Futures contracts’ end-of-day prices come from Bloomberg. The zero-coupon yields used in

the calculation are interpolated from the LIBOR zero curves provided by OptionMetrics.

The OptionMetrics database starts in 1996; before 1996, I use zero-coupon yield curves

inferred from Treasury bills. Index dividend yields are calculated as value-weighted averages

of individual stocks’ realized dividend yields.

1.2.2. The box spread

The second arbitrage spread is derived from the put-call parity. The put-call parity, one

of the classic laws of financial economics, states that for a non-dividend-paying stock, the

prices of European call and put options with the same maturities and strikes (i.e., a put-call

pair) should satisfy the following relation:

Ct − Pt + PVt,T (K) = St, (1.3)

where Ct and Pt are the time t prices of the call and put options maturing at time T ;

PVt,T (K) is the present value of the strike K at t; and St is the stock price at time t.

However, two issues can arise if Equation (1.3) is directly used to construct put-call pa-

rity violations. First, identifying the gap between the two sides of Equation (1.3) requires

4An earlier version of this paper uses the calendar spread to do main analysis.
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synchronized quotes on options and stocks. Battalio and Schultz (2006) find that asynchro-

nous quotes in the U.S. stock and option markets are responsible for a majority of detected

put-call violations. Second, all stock options traded on the U.S. exchanges are American

options. So gaps between synthetic and real stock prices may be due to early exercise

premia.

To deal with early exercise value, I only consider options whose underlying stocks do not

pay out any dividends during these options’ life cycles. For nondividend payers, American

and European call options have the same prices. As for American put options, I estimate

early exercise premia following Ofek, Richardson, and Whitelaw (2004) and Battalio and

Schultz (2006). In particular, I obtain implied volatilities for American puts and then use

them to back out the prices of European puts. Early exercise premia (EEP ) are calculated

as the price differences of derived European puts and observed American puts. Similar to

the literature, I find that EEP are negligible relative to put prices.

To address asynchronous quotes across the two markets, I use the box spread to capture

put-call parity violations (Ronn and Ronn, 1989). Consider a stock i that has two put-call

pairs (m,n) with both pairs sharing the same maturity but having different strikes. The

log difference between the corresponding synthetic stock prices is

∣∣∣∣∣log
S∗i,m,t
S∗i,n,t

∣∣∣∣∣ =

∣∣∣∣∣log
Ci,m,t − PEi,m,t + PVt,T (Ki,m)

Ci,n,t − PEi,n,t + PVt,T (Ki,n)

∣∣∣∣∣ . (1.4)

Here, PEi,m,t is the implied European put price defined as the difference between the American

put price and the corresponding EEP . Then stock i’s average box spread is calculated as

Boxi,t =
1

NI

∑
(m,n)∈I

∣∣∣∣∣log
S∗i,m,t
S∗i,n,t

∣∣∣∣∣ , (1.5)

where I denotes a set containing all possible box pairs, and NI,i denotes the number of

pairs.
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The aggregate box spread is a simple average across all Nt stocks:

Boxt =
1

Nt

Nt∑
i=1

Boxi,t. (1.6)

Monthly box spread is defined as an average of daily values of Boxt. Option data come from

OptionMetrics, starting from 1996. Interest rates are interpolated from the zero-coupon

curves based on LIBOR from OptionMetrics.

1.2.3. The covered interest rate parity spread

The third arbitrage spread is based on covered interest rate parity (CIP) in the foreign

exchange. Consider the following scenario. An investor borrows one unit of currency A at

an interest rate rt,A for time T , exchanges it to currency B at an exchange rate SA→Bt , and

then lends it in currency B at interest rate rt,B for the same time period. Define a synthetic

forward exchange rate from A to B as

F̂A→Bt,T =
SA→Bt (1 + rt,B)

(1 + rt,A)
. (1.7)

In the absence of arbitrage, the observed forward rate FA→Bt,T should be equal to F̂A→Bt,T .

Any deviation manifests a potential mispricing.

I examine CIPs for the eleven most liquid major currency pairs, with the U.S. dollar, Euro,

and British pound as bases. The list Ω of pairs includes EUR/USD, GBP/USD, JPY/USD,

CHF/USD, AUD/USD, CAD/USD, GBP/EUR, CHF/EUR, JPY/EUR, CHF/GBP, and

JPY/GBP. One-, three-, and six-month synthetic forward rates are derived for each ex-

change rate pair using the LIBORs with corresponding maturities.

I calculate log deviations between synthetic and observed forward exchange rates for 33

pair-maturity combinations. The aggregate CIP spread is computed as an average of all
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individual deviations:

CIPt =
1

33

∑
T∈{1,3,6}

∑
A/B∈Ω

∣∣∣∣∣log
F̂A→Bt,T

FA→Bt,T

∣∣∣∣∣ . (1.8)

Monthly CIP spread is computed as an average of daily values of CIPt. All the data, which

include exchange spot and forward rates and LIBORs, come from Bloomberg. I include

months in which at least three currency pairs’ data are available. The sample then starts

in January 1987. One caveat with the Bloomberg’s exchange spot and forward rates is that

they are not executable. The results remain unchanged if I instead rely on the Thompson

Reuters’ (TR) data. The TRs rates are based on tradable quotes taken from several trading

platforms at 4:00 p.m. GMT, so they are not subject to this issue. However, the sample

covered by the TR’s data is almost 10-year shorter.

1.2.4. The Treasury mispricing measure

To identify low-variance mispricings for the Treasury securities, I construct the aggregate

Treasury mispricing measure following a popular approach in the literature (e.g., Hu et al.,

2013). Particularly, for a given individual note/bond, its mispricing measure is defined as

the difference between the observed price and the one implied by a term structure model.

As in the classic model of Nelson and Siegel (1987), I assume the following functional form

for the continuous discount factor Z(t, Ti, bt) on day t for a zero-coupon bond with maturity

Ti:
5

− 1

Ti
logZ(t, Ti, bt) = θ0,t + (θ1,t + θ2,t)

1− e−
Ti−t
λt

Ti−t
λt

− θ2,te
−Ti−t

λt . (1.9)

5Hu et al. (2013) use the continuous discoutn factor implied by an extended model proposed by Svensson
(1994). The mispricing measure based on the extended Nelson-Siegel model yields very similar results.
However, the parameter estimates from the extended Nelson-Siegel model are less stable than those from
the Nelson-Siegel model.
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On day t, the parameter vector bt = {θ0,t, θ1,t, θ2,t, λt} is estimated to minimize

Nt∑
j=1

[
P (t, Tnj , cj)− PNS(t, Tnj , cj , bt)

]2
, (1.10)

where P (t, Tnj , cj) is the observed day t price of bond j that pays $100 at its maturity Tnj

and has a coupon rate of cj . The sum is taken with respect to day t Treasury notes/bonds

with maturities from 1 month to 10 years. PNS(t, Tnj , cj , bt) is the fair value computed

based on discount rates of zero-coupon bonds,

PNS(t, Tnj , cj , bt) = 100× cj
nj∑
i=1

Z(t, Ti, bt) + 100× Z(t, Tnj , bt). (1.11)

Here, nj is the number of periods before expiration.

The Treasury mispricing measure for note/bond j is then defined as

TrMisprj,t =

∣∣∣∣∣log
P (t, Tnj , cj)

PNS(t, Tnj , cj , b̂t)

∣∣∣∣∣ , (1.12)

where b̂t denotes the day t estimated value of the underlying parameters vector. The

market-wide Treasury mispricing measure is a simple average of individual measures across

all notes/bonds available:

TrMisprt =
1

Nt

Nt∑
j=1

TrMisprj,t. (1.13)

Monthly Treasury mispricing measure is computed as an average of daily values of TrMisprt.

The Treasury securities data come from the CRSP Treasury Database.

1.2.5. Time variation in arbitrage spreads

Figure 1 displays time-series plots for the four arbitrage spreads. The time-series for the

futures-cash basis and the Treasury mispricing spans from 1985 to 2017, while the CIP

spread and box spread become available only starting from 1987 and 1996, respectively. As
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seen from the four time series plots, all of them show significant time variation. Through

casual eyeballing, one can see that all four series trace anecdotal stressful events in financial

markets well. For example, the three spreads that are available before 1990 (Futbasis, CIP ,

and TrMispr) spike up around the 1987. All series rise sharply around Asian and Russian

crises in 1997 and 1998, the burst of the dot-com bubble around 2000, and, especially, the

global financial crisis from 2008 to 2009.

At the same time, the four spreads display distinct asset-specific features. As seen in Table

1, the means and standard deviations differ across the four asset classes. For example,

CIP has much lower mean (3 basis points) than Box (25 basis points). Market-specific

features, such as different margin requirements for long-short trades, can generate the he-

terogeneity in the mean levels of spreads. As shown in Gârleanu and Pedersen (2011),

when arbitrageurs are financially constrained, mean levels of arbitrage spreads in the cross-

section are positively correlated with the margin requirements for trading each asset class.

Though the heterogeneity in the mean levels is interesting by itself, this paper abstracts

from it and focuses only on the time-series variations. I therefore standardize the spreads

by subtracting corresponding means and dividing by standard deviations estimated based

on five-year rolling windows. In what follows, I use these standardized series for my ana-

lyses. Meanwhile, standardized futures-cash basis, box spread, CIP spread and Treasury

mispricings are denoted as: Futbasisst , Box
s
t , CIP

s
t , and TrMisprst .

1.3. Comovement in arbitrage spreads

In this section, I investigate the comovement structure between the four standardized spre-

ads. In the main analysis of the comovement structure, individual arbitrage spreads have

different sample sizes. I require all series to have at least three-year history (36 months)

for the standardization purpose. As a result, the samples of Futbasisst and TrMisprst are

from April 1985 to December 2017. The sample of CIP st spans from January 1990 to De-

cember 2017, and the sample of Boxst is from January 1999 to December 2017. Subsection

1.3.1 analyzes the comovement structure of the four. In subsection 1.3.2, I describe the
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time-series features of their common component.

1.3.1. Comovement structure

Panels A and B of Table 1 report pairwise correlation matrices for the spreads in the whole

sample and in the pre-global-financial-crisis sample, respectively. As shown in Panel A, over

a sample of more than 30 years, the average pairwise correlation is 46%. The lowest one

is 22% which is between TrMisprst and Boxst while the highest is 59% which is between

CIP st and Boxst . All of them are positive and significant at the 5% level. Importantly, as

seen in Panel B, the comovement is not purely driven by the most recent financial crisis. In

the precrisis sample from April 1985 to December 2007, all the pairwise correlations remain

significantly positive and have an average of 34%.

As a robustness check, I also use a regression approach to examine the comovement struc-

ture. In particular, I regress each arbitrage spread on a simple average (AGct) of the other

three spreads. Table 3 reports the coefficients, t-statistics and adjusted R-squareds from

the regressions. Because the arbitrage spreads are standardized using rolling windows, a

positive serial correlation in error terms can be introduced and inflates the t-statistics. So,

I use Newey-West adjusted standard errors with 12 lags for t-statistics construction.

The regression results deliver a similar message. AGct exhibits significant explanatory power

for each individual arbitrage spread, with t-statistics ranging from 4.11 to 11.01. However,

the magnitudes of the coefficients differ for different arbitrage spreads, with 0.59 the lowest

for Treasury mispricing and 1.17 the highest for CIP violations. Economically, the sensitivity

of arbitrage spreads (mispricings) in different assets to the variation in funding constraints

can be different. Exploring what asset-specific features give rise to such heterogeneity is

out of the scope of this paper but can be another interesting direction for future research.

Principal component analysis also suggests strong comovement between arbitrage spreads.

From 1985 to 2017, the first principal component of the four spreads accounts for 60% of

the total variation (this number should be 25% for four independent series). In the precrisis
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sample from 1985 to 2007, the first principal component explains 51% of the total variation.

Furthermore, monthly innovations to the arbitrage spreads also display positive correlations,

albeit being smaller in magnitude. I obtain monthly innovations to individual arbitrage

spreads as the residuals from AR(1) regressions. The average pairwise correlation between

the four innovation series is 29%. I find that all the correlation coefficients are significant

at the 5% level.

1.3.2. The common component

Mispricings in the four markets comove strongly together. The first principal component

explains the majority of the total variability, reflecting systematic component in price

(in)efficiencies across distinct markets. In this subsection, I describe the time-series fea-

tures of this common component in more details. To avoid forward-looking bias, I use a

simple average of the spreads to compute the common component. It has a correlation

of 99.9% with the first principal component. In what follows, this common component is

referred to as the arbitrage gap and denoted by AG.

Panel A of Figure 2 plots the monthly arbitrage gap. Not surprisingly, the series traces

anecdotal stress periods pretty well. It spikes up in 1987, 1998, and 2009 and remains high

in the late 1980s, in the late 1990s, and in the aftermath of the global financial crisis. In

the early 2009, it rises as high as eight standard deviations above its mean, reaching its

in-sample maximum, and drops as low as two standard deviations below the mean right

after the dot-com bubble burst.

Panel B of Figure 2 plots the series of innovations to the arbitrage gap, computed as AR(1)

residuals. The stressful periods around 1987, 1998, and 2009 are consistently marked by

large shocks to AG. However, during tranquil periods, such as the early 1990s and mid-2000s

(2004 to 2006), the series is much less volatile.
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1.4. The arbitrage gap and funding constraints

The arbitrage spreads in different markets capture the marginal profits of raising one ad-

ditional unit of arbitrage capital. In equilibrium, the marginal profit should equal to the

marginal cost of raising additional capital. Thus, the common variations in the shadow

cost of funding can give rise to a common component in the arbitrage spreads. In practice,

arbitrageurs are exposed to common funding shocks. Different hedge funds borrow from the

same prime brokers at similar financing rates and also face correlated in/outflows. In this

section, I empirically examine the association between the arbitrage gap and the variables

that are used to measure the cost of raising capital.

First, I find that the arbitrage gap covaries strongly with traditional funding-constraint

measures, such as TED, hedge fund sector flows and returns, and prime brokers’ repo

growth. Consistent with the intuition, the variation in the arbitrage gap reflects the overall

funding constraints faced by arbitrageurs. Second, I find that when funding constraints

are tighter, arbitrage spreads in different markets become more correlated. That is, the

degree of the comovement among arbitrage spreads is time-varying. In the periods when

arbitrageurs face loose funding constraints (the shadow cost of capital drops to zero), the

arbitrage spreads in different markets are small, and their variations are dominated by the

idiosyncratic components (e.g. measurement errors) and thus exhibit significantly lower

degree of comovement.

Subsection 1.4.1 describes the traditional funding variables used to proxy for overall funding

tightness. In subsection 1.4.2, I investigate the abilities of the funding variables to explain

the arbitrage gap. Subsection 1.4.3 shows that comovement between arbitrage spreads is

time-varying and becomes stronger during the periods when funding constraints are tight.

1.4.1. Funding measures

Four variables are commonly used in the literature to capture the funding constraints faced

by arbitrageurs. They are, the TED spread, aggregate hedge-fund flows and returns, and
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primary dealers’ repo financings growth. In this subsection, I describe the intuition behind

choosing these variables and describe the construction of these measures in details.

The TED spread, defined as the difference between the 3-month LIBOR and Treasury-bill

rates, is the most widely used measure to capture the overall funding condition (e.g. Frazzini

and Pedersen, 2014, and Rösch et al., 2017). In a theoretical frame work by Gârleanu and

Pedersen (2011), the TED spread directly measures the shadow cost of raising external

capital faced by constrained arbitrageurs. The TED spread series is downloaded from

FRED website.

Hedge funds are among the most sophisticated investors who are actively involved in cor-

recting mispricings in the capital market (e.g., Akbas, Armstrong, Sorescu, and Subrah-

manyam, 2015 and Cao, Liang, Lo, and Petrasek, 2017). The aggregate hedge-fund flows

and returns result in direct changes in the equity capital available to hedge-fund sector

and in turn affects their funding-constraint tightness (e.g. He and Krishnamurthy, 2013).

Moreover, returns of the hedge funds can lead to future changes in the funding tightness

due to agency issues (Shleifer and Vishny, 1997). For example, hedge funds’ investors can

interpret their short-term losses as signals of lack of skills and thus pull capital further out

of the fund.

The aggregate flow to the hedge-fund sector is defined as

HFFLt =

∑Nt
i=1[AUMi,t −AUMi,t−1 × (1 +Ri,t)]∑Nt

i=1AUMi,t−1

, (1.14)

where AUMi,t denotes assets under management (AUM) for fund i at the end of month t;

Ri,t is its return from the end of month t − 1 to the end of month t; and Nt is the total

number of funds in month t.

The monthly aggregate return to the hedge-fund sector is calculated as the weighted average
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of individual funds’ monthly returns with lagged month-end AUMs as weights.

HFRt =

∑Nt
i=1[AUMi,t−1 × (1 +Ri,t)]∑Nt

i=1AUMi,t−1

− 1, (1.15)

The funds’ data come from TASS.6 I include all available hedge funds, except funds of

funds. Because the TASS database provides data on dissolved funds starting from 1994, I

only consider observations after January 2004 to mitigate the survival bias concern. The

sample spans from January 1994 to December 2017.

The forth funding variable is the growth of aggregate primary dealers’ repo financings.

Fluctuations in this variable capture contractions and expansions of financial intermediaries’

balance sheets. A growing literature argues that healthiness of intermediaries’ balance sheets

is closely associated with arbitraguers’ cost of funding (e.g. Adrian, Etula, and Muir, 2014,

Du et al., 2018, Boyarchenko et al., 2018). For example, hedge funds rely heavily on

financing from intermediaries, and shocks to intermediaries balance sheets can therefore

affect the supply of arbitrage capital.

Balance-sheet quantities, such as the leverage ratios and asset growths, have been used in

the literature to capture the healthiness of intermediaries’ balance sheets (e.g. Adrian et al.,

2014, He, Kelly, and Manela, 2017). However, such measures are available only at quarterly

frequency. In this paper, I instead use weekly data on primary dealers’ repo financing growth

from NY Fed as my main measure of intermediaries’ balance sheet activities. Repo is an

important instrument through which intermediaries adjust their balance sheets. Adrian and

Shin (2010) provide evidence that intermediaries’ repo financing growth is significantly and

positively related to total asset growth or leverage growth. In this sense, the weekly data on

repo financings can capture primary dealers’ balance-sheet changes at higher frequency. The

repo growth is constructed as the sum of all repo contracts oustanding across all maturities

and security types. Monthly changes in aggregate primary dealers’ repo financings are

6TASS and HFR are the two largest databases for hedge funds information. Liang (2000) shows that
TASS offers a more complete coverage of dissolved funds.
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calculated as the first differences of the log month-end aggregate repo financings.

1.4.2. Funding measures and the arbitrage gap

In this subsection, I investigate the abilities of the four funding measures to explain the

variation in the arbitrage gap. Specifically, I conduct a battery of regressions of AG onto

different groups of the funding measures. I find that all funding variables exhibit economi-

cally and statistically significant explanatory powers for AG when included separately or

jointly.

I conduct regressions over three different samples due to data availability.7 Table 4 reports

coefficients and adjusted R-squareds from monthly regressions of AGt onto different sets of

funding variables. As shown in column (5), in a twenty-year sample from 1998 to 2017, four

funding variables jointly can explain 66% of the variation in AGt and all of them exhibit

significant explanatory power with the absolute values of t-statistics ranging from 2.77 to

6.30. The economic magnitudes are also big. A one-standard-deviation increase in TEDt

is accompanied by a 0.75-standard-deviation increase in AGt. A one-standard-deviation

hedge-fund sector’s outflow or loss in returns are associated with a 0.20-to 0.25-standard-

deviation increase in AGt. A one-standard-deviation slowdown in primary dealers’ repo

financing growth is associated with a 0.one-standard-deviation increase of AGt.

In the longer samples, the three funding variables for which data is available, TEDt, HFFLt

and HFRt, continue to exhibit strong explanatory power for AGt. As reported in column

(1), TEDt explains 25% of variations in AGt over a sample from 1986 to 2017 with a

t-statistic of 2.34. The economic magnitude is big; a one-standard-deviation increase in

TED is accompanied by a 0.5-standard-deviation increase in AGt. Column (3) reports

the results when aggregate hedge-fund flows and returns are added into the regression in

addition to TEDt in the sample from 1994 to 2017. The three jointly can explain 60% of

the variation in AGt and the coefficients of these three have very similar magnitudes and

7In particular, the three sets of regressions start from January 1986, January 1994 and February 1998
respectively, and include funding variables that are available at the beginning of the sample.
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statistical significance to those discussed in column (5).

Consistent with the hypothesis, the common mispricing component indeed comoves signi-

ficantly with traditional funding variables with two thirds of its variation been explained

by them. Moreover, the signs of the coefficients indicate that when the funding constraints

become tighter, captured by widening TED spread, outflows and losses to the hedge-fund

sector, or slower primary dealers’ repo financing growth, the arbitrage gap increases signi-

ficantly.

As robustness checks, I also control for bond and equity risk factors.8 Bond and equity risks

may factor in for the following reasons. First, arbitrage spreads may load on interest rate

risks, because arbitrageurs may unwind the corresponding positions before their maturities.

I use the term spread (TERM), defined as the difference between the yields of 10-year

Treasury bonds and 3-month Treasury bills, as the interest rate factor. Moreover, arbitrage

spreads may also load on default risk factors, since the implied profits from the spreads are

no longer ascertained if arbitrageurs face counterparty risks. I use the difference between

the yields of BAA- and AAA-graded corporate bonds as the default risk factor (DEF ).

Both factors are standard in the literature (Fama and French, 1993).

I also control for equity market factors, such as market volatility and returns. Market

volatility may affect the margin requirements that arbitrageurs are subject to, given that

value-at-risk, an indicator often used to set margins, increases with volatility. I include the

implied volatility of the S&P 100 index (V XO).9 Finally, I include aggregate stock market’s

excess returns (MKT ) to control for general market conditions.

Columns (2), (4), and (6) report the regression results when these controls are included in

addition to the funding measures. The presence of the controls barely change the coefficients

and t-statistics of the funding variables and the controls exhibit little explanatory powers

8In the Appendix, I also control for variables capturing liquidity demand, such as the FED-fund rate and
Tbill-over-GDP ratio (Nagel, 2016). The results are barely changed.

9Alternative measures for market volatility, such as monthly standard deviation of daily market returns,
monthly average idiosyncratic-volatility series proposed by Herskovic, Kelly, Lustig, and Van Nieuwerburgh
(2016) deliver similar results.
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for AGt.

A popular alternative measure used to capture intermediaries’ intermediation capacity is

the leverage ratio, for example, the leverage ratio factor of Adrian et al. (2014). In column

(7), I include the leverage ratio by Adrian et al. (2014) in the quarterly regression along with

other funding variables. It has no significant explanatory power for AGt in the multiple

regression. A potential reason can be the low testing power due to lower frequency. In

a univariate regression over the entire sample from 1985 to 2017, the coefficient of Levt

has a t-statistic of −2.17, which suggests an association in the correct direction. When

intermediaries’ balance sheets shrink, their intermediation capacity shrinks and results in a

wider arbitrage gap.

Because AG is quite persistent, with a first-order autocorrelation of 78%, I also test the

abilities of shocks to the funding measures to explain variation in shocks to AGt. Shocks

are obtained as the residuals from the AR(1) regressions. I then conduct regressions with

shocks using the similar specifications as those with levels.

Table 5 reports the results in the same manner as Table 4 does. The overall patterns are

quite similar. Shocks to HFFLt, HFRt, TEDt, and Repot, denoted as ∆HFRt, ∆HFFLt,

∆TEDt and ∆Repot, display significant abilities to explain variation in the shocks of AGt

(∆AGt). As shown in column (5), the four jointly explain 40% of the variation in ∆AGt, and

coefficients on ∆HFRt and ∆TEDt are statistically significant with t-statistics of −2.68 and

5.09. In the univariate regression, ∆TEDt can explain 29% of the variation in ∆AGt over

a sample from 1986 to 2017. However, ∆HFFLt no long exhibits significant explanatory

power. One interesting observation is that shocks to V XOt (∆V XOt) exhibit significant

explanatory power for ∆AGt contrary to the relations between level series. The effect of

uncertainty as limits of arbitrage might be temporary; a sudden increase in uncertainty

level results in an increase in the arbitrage gap which is then corrected quickly.

22



1.4.3. Time varying comovement

In this subsection, I test the hypothesis that the degree of comovement between the arbitrage

spreads is time-varying and negatively associated with the aggregate funding tightness. The

basic intuition behind this hypothesis is as follows. The common variation in the arbitrage

spreads in different markets comes from the variation in the shadow cost of raising capital.

When the funding constraints are loose, the shadow cost is close to zero, and idiosyncratic

components dominate the individual spreads’ variation (e.g. due to measurement errors).

Thus, they exhibit weak comovement. This basic intuition has been formalized in the

theoretical frameworks by Gârleanu and Pedersen (2011) and Gromb and Vayanos (2018).

Using weekly arbitrage spreads data, I calculate the average pairwise correlation between

the four spreads in each quarter t, denoted as Corrt. Then, I regress Corrt onto the

four funding variables,10 which are converted into quarterly frequency. Table 6 reports the

regression results. Overall, when the funding variables change in the tightening directions,

Corrt becomes larger. In particular, TEDt and HFRt exhibit significant association with

Corrt. The coefficients and t-statistics of these two are significant in both economic and

statistic sense. In a univariate regression, the coefficient on TEDt is 0.13 with a t-statistic of

1.89 as reported in column (1). The economic magnitude is big: a one-standard-deviation

increase in TEDt, amounting to a 0.42-percentage-point increase, is associated with an

increase of five percentage points in the average pairwise correlation.

The other variable significantly associated with Corrt is HFRt. When the hedge-fund

flows and returns are included in the regressions, as shown in column (2), the coefficient

on HFRt is −1.21×10−2 with a t-statistic of −1.96. A one-standard-deviation decrease in

HFRt, amounting to a decrease of 3.6 percentage points, is associated with an increase in

the average correlation of more than four percentage points. At the same time, HFFLt

and Repot do not have significant explanatory power for Corrt.

10In robustness checks, I also include the same set of controls as in the previous subsection, and all results
remain unchanged.
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1.5. Mispricings in the equity market

Arbitrageurs, such as hedge funds, are active players in the equity market, using strategies

that aim to exploit mispricings. Capital constraints that limit their ability to take on

aggressive arbitrage position should affect the magnitudes of the equity market’s anomalies,

provided that mispricings contribute at least partially to the anomalous return spreads. In

this section, I examine the association between the arbitrage gap and three prominent equity

anomalies. They are closed-end fund discount, M&A spread and long-short risk-adjusted

alpha spreads based on sorts by certain characteristics.

These anomalies concern either the anomalous price differences of assets or the predictability

of stocks’ returns based on past prices and earning information. They can hardly be justified

by expected cash flows or risk exposures, and studies have shown that they are at least

partially related to mispricings.11 In practice, strategies that exploit these three anomalies

represent three major strategy categories in the equity market (Pedersen, 2015).

However, these strategies are far from riskless, privided that mispricings may only partially

account for the return/price differences. The payoffs from these strategies are uncertain and

risky, and the trading horizons are also uncertain. Therefore, because of the risky nature

of these strategies, arbitrage impediments can also arise from other sources in addition

to capital constraints. Nevertheless, I show that all three anomalies exhibit significant

association with the arbitrage gap, indicating that aggregate funding availability still has

significant impact on the magnitudes of equity mispricings.

In subsections 1.5.1 and 1.5.2, I investigate the relation between AG and closed-end fund

discounts and M&A spreads. Subsection 1.5.3 studies the relation between AG and long-

short spreads included in the Fama-French five-factor model (Fama and French, 2015).

11Lee, Shleifer, and Thaler (1991) show that closed-end fund discount can reflect retail investors’ sentiment.
Mitchell and Pulvino (2001) and Baker and Wurgler (2006) find that M&A spread can hardly be reconciled
by traditional risk-factor models, and is positively related to limits-of-arbitrage measures. Stambaugh et al.
(2012) provide empirical evidence that long-short alpha spreads based on characteristics-sorts are all affected
by investors’ sentiment.
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1.5.1. Closed-end fund discount

Closed-end fund discount is a classic example of the law of one price violation in the equity

market. It arises when closed-end funds’ shares and securities constituting their portfolios

(funds’ net asset values, or NAVs) are traded at different prices. Such discrepancies are

referred to as discounts since most funds are traded below their NAVs.

One of the prominent explanations of the closed-end fund discount relies on excessive noise

traders’ demand for closed-end funds’ shares (Lee et al., 1991). Arbitrage trades that

exploit corresponding mispricings are capital-intensive and risky. A straightforward passive

arbitrage strategy is to buy shares of funds.12 However, such arbitrage trades are costly

and risky for arbitrageurs (Pontiff, 1996). Without a direct channel to redeem funds’ shares

at NAVs, the discounts may take a long time to converge. Arbitrage capital can be locked

in those positions for a long time, and the payoffs are uncertain.13 Nevertheless, a strategy

that buys and holds a portfolio of closed-end funds that are traded below their NAVs earns

significant risk-adjusted alphas. In my sample, a monthly-rebalanced strategy can earn an

alpha of 0.35% per month with respect to Fama-French three factors.

Intuitively, during the periods when AG is high and arbitrageurs are financially constrained,

closed-end fund discount is expected to become wider. To formally test this intuition,

I regress the level of aggregate closed-end discount onto AG at monthly frequency. In

particular, in each month, discounts for all individual funds are calculated as log difference

between their NAVs and funds’ share prices. I then take a simple average of individual

discounts across all funds traded below their NAVs as the aggregate closed-end discount

measure (CEFD). Similar to individual arbitrage spreads, I standardize CEFD using

means and standard deviations estimated based on 5-year rolling windows.

12Ideally, the passive investment strategy also involves hedging with underlying portfolios. However, the
underlying assets held by the funds at each point of time are not publicly available.

13An alternative active strategy is to open-end funds through capital-intensive activism campaign. Bradley,
Brav, Goldstein, and Jiang (2010) show that arbitrageurs actively use this approach, and discounts are
significantly reduced upon such campaigns.
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Table 7 reports the results of the regressions. Consistent with the hypothesis, a one-

standard-deviation increase in AG is associated with a significant 0.66-standard-deviation

increase in the average closed-end discount, as shown in column (1). Moreover, this strong

association is not purely driven by the most recent financial crisis. In the subsample exclu-

ding 2008 and 2009, the coefficient of AG is barely changed, as reported in column (4). To

control for equity market risks, I also include implied volatility (V XOt) and market excess

returns (MKTt) as controls.

Interestingly, when other four funding variables, TED, HFFL, HFR, and Repo are in-

cluded in the regression as shown in columns (2) and (3), the coefficient on AG is almost

unaffected and exhibits dominating explanatory power for the closed-end funds discount.

None of the four funding variables, except hedge-fund flows, exhibits significant explanatory

ability. Although the four funding variables explain almost two thirds of the variation in

AG, they are imperfect measures of the shadow cost of funding faced by arbitrageurs and

thus underperform AG in capturing the common variation in mispricings across different

markets. Finally, controlling for implied volatility (V XO), term (TERM) and default spre-

ads (DEF ), and market returns (MKT ) in the regressions does not affect the results in

any important way.

1.5.2. M&A spread

In this subsection, I examine the association between M&A spread and the arbitrage gap.

M&A arbitrage is a popular strategy pursued by hedge funds and other Wall Street pro-

prietary trading desks (e.g., Mitchell and Pulvino, 2001 and Pedersen, 2015). After an

M&A deal announcement, target firms’ stocks are typically traded at a small discount to

acquirers’ offers. A strategy to buy shares of target firms (and hedge by shorting acquiring

firms’ shares in case of stock deals) and wait until deals completion can earn significantly

positive risk-adjusted alphas (Baker and Wurgler, 2006 and Mitchell and Pulvino, 2001).

Consistent with their findings, I find that an equal-weighted portfolio of all target stocks

traded at the discounts by the end of previous month indeed earns significant abnormal
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alphas of 1.08% per month relative to Fama-French three factors.

However, M&A arbitrage is risky. The timing of price convergence and the mere completion

of deals are uncertain. Arbitrage capital can be easily locked up for a long period of time.

Therefore, when arbitrageurs are financially constrained, they are not able or willing to put

on such capital-intensive trades, resulting in larger uncorrected M&A spreads.

This intuition predicts that M&A spreads should become wider when AG is higher. I

formally examine whether the level of M&A spreads exhibit strong and positive association

with AG. Consistent with this intuition, the level of M&A spread comoves significantly and

positively with AG across all regression specifications as shown in Table 8.

In particular, in month t, I take a simple average of individual deal spreads across all ongoing

cash deals in that month and denote it as MAspreadt. An individual deal spread is simply

the log difference between the offer price and the price at which the target is traded at,

adjusted for share splits. Similar to the previous exercise with the closed-end fund discount,

I standardize MAspreadt using means and standard deviations estimated based on 5-year

rolling windows. Then, I regress the standardized MAspreadt onto AGt along with other

funding variables and controls.

As shown in column (1) of Table 8, AGt exhibits significant association with MAspreadt

with a t-statistics of 6.24. The economic magnitude is also significant; a one-standard-

deviation increase in AGt is associated with a 0.53-standard-deviation increase in the level

of MAspreadt. When the other four funding variables are include as shown in column

(3), only TEDt exhibits significant explanatory power for MAspreadt with a t-statistic of

2.52. However, TEDt’s explanatory power is mainly driven by the most recent financial

crisis. In the subsample excluding 2008 and 2009, TEDt as well as the other three funding

variables no longer have significant explanatory power for MAspreadt as shown in column

(6). The coefficient on TEDt drops to 0.49 with a t-statistic of 1.26. Meanwhile, AG’s

ability to explain MAspreadt remains almost unchanged in the subsample. Adding other
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controls, such as V XOt, TERMt, DEFt, and MKTt have little impact on the coefficients

and t-statistics of AGt for MAspreadt.

1.5.3. Characteristics-sorted portfolios

In this subsection, I investigate the association between AG and long-short return spreads

based on characteristics-sorts. Anomalous expected return predictability based on book-to-

market, earnings, investment and past prices is well known to the literature and challenges

standard asset-pricing models (Gromb and Vayanos, 2010). The long-short spreads based

on these four characteristics are not only widely studied in academia but also actively traded

by practitioners. Although the literature have included them in the factor models,14 many

studies also provide evidence that mispricing at least partially contribute to the risk-adjusted

alphas of these anomalies.15 At the same time, mispricings are unlikely to contribute to

the size premium.16 In what follows, I investigate the association between AG and value,

profitability, investment and momentum return spreads, while the size and market factors

are used to control for risk.

Accroding to the mispricing explanation of equity anomalies, stocks in the long-leg portfolios

(e.g., past winners when sorted by momentum or profitable firms when sorted by profitabi-

lity) are likely to be underpriced. During gradual price correction by arbitrageurs, positive

risk-adjusted returns are observed. Similarly, stocks in the short-leg portfolios are likely to

be overpriced (e.g., past losers or unprofitable firms), and thus generate significantly nega-

tive risk-adjusted alphas during the process of non-instantaneous price correction. When ca-

pital constraints tighten, arbitrageurs’ capacity to correct mispricings is jeopardized. With

less price correction, we should expect smaller magnitudes of risk-adjusted returns of long-

14Fama and French (2015) include value, investment, and profitability factors in a five-factor model and
Carhart (1997) includes momentum in the Carhart-four-factor model.

15For example, Skinner and Sloan, 2002, Ali, Hwang, and Trombley, 2003 and Ball, Gerakos, Linnainmaa,
and Nikolaev (2017) find evidence consistent with that BM captures mispricings. Stambaugh et al. (2012)
show that profitability, investment, and momentum can be predicted by the investor sentiment measure in
a manner consistent with mispricing story.

16Stambaugh and Yuan (2016) and Asness, Frazzini, Israel, Moskowitz, and Pedersen (2018) find evidence
that small stocks are more likely to be overpriced and thus should underperform large stocks, which goes in
the wrong direction relative to size premium.
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short spreads. Overall, the findings described in this subsection support this hypothesis. I

find that for all four anomalies the magnitudes of long-short risk-adjusted return spreads

are much smaller when the expected AG level is high.

Table 9 reports the results of regressions of long-short return spreads of value (HMLt),

profitability (RMWt), investment (CMAt), momentum (MOMt) as well as their average

(Avgt) onto AGt. All factors are downloaded from Ken French’s website. To investigate

whether association between AG and anomalies’ returns is contemporaneous or exhibit some

lead-lag patterns, I decompose AG into expected and unexpected parts (ÂGt and ∆AGt)

by fitting an AR(1) model and include both parts in the regressions.

All four factors load negatively on ÂGt. The economic magnitudes are big. As shown in

Table 9, a one-standard-deviation increase in ÂGt for period t is associated with a 0.59-

percentage-point decrease in HMLt, a 0.47-percentage-point decrease in CMAt, a 0.28-

percentage-point decrease in MOMt, although the last one is not statistically significant.

On average, a one-standard-deviation increase in ÂGt is associated with a 0.35-standard-

deviation decrease in alpha across the four factors with a t-statistic of −3.00. Note that the

literature commonly uses the TED spread as the funding liquidity proxy to test the funding

constraints’ impact on equity anomalies (e.g. Frazzini and Pedersen, 2014 and Asness et al.,

2013). However, I find that both expected and unexpected parts of the TED spread have

virtually no explanatory power for the long-short return spreads in the presence of AG.

These results echo the findings in Asness et al. (2013) but with several differences. They

examine the loadings of value and momentum strategies on the traditional funding variables

such as TED and find value and momentum load oppositely on it. They therefore suggest

that different exposure to funding liquidity risks can provide an explanation for the negative

correlation between value and momentum. Using AG, a funding constraint measure based

on equilibrium prices, I find that both value and momentum load negatively on expected

level of AG. Thus, value and momentum’s exposures to the aggregate funding condition

are unlikely explanations for their negative correlation structure. On the other hand, their
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negative exposures to AG is consistent with that the price-correction process is weakened

when arbitrageurs face tighter funding constraints.

1.6. Arbitrage-limit dynamics

In this section, I explore the dynamic relations between AG and the funding measures using

VAR analysis. Feedback mechanisms between mispricings and capital constraints arise as

an important feature of many theoretical studies about arbitrage under capital constraints.

In one direction, tightened capital constraints limit arbitrageurs’ trading capacity, resulting

in widening mispricings (e.g., Shleifer and Vishny, 1997, Brunnermeier and Pedersen, 2009,

and Kondor, 2009).

In the reverse direction, worsening mispricings can further exacerbate funding conditions

in following ways. First, arbitrageurs who hold positions betting on price correction would

experience losses when mispricings continue widening. Because arbitrageurs, such as hedge

funds, invest with delegated money, losses can induce uninformed outside investors to wit-

hdraw their money, depleting funds’ equity capital (Shleifer and Vishny, 1997). Moreover,

uninformed lenders (e.g., prime brokers), being uncertain about arbitrageurs’ expected pa-

yoffs, are likely to increase margin requirements and to reduce overall lending activity

(Brunnermeier and Pedersen, 2009). Meanwhile, because prime dealers can repledge arbi-

trageurs’ assets, losses to arbitrageurs and worsening mispricings reduce the amount and

quality of collateral available to prime dealers. In turn, this leads to a higher interbank rate

and deleveraging by intermediaries.

In subsection 1.6.1, I investigate the dynamic relations between AG and the four funding

variables that exhibit a substantial contemporaneous association with AG (Section 1.3).

VAR analysis reveals strong bidirectional relations between the arbitrage gap and the level of

capital availability. Such relations provide empirical evidence for the feedback mechanisms.
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1.6.1. Bidirectional links between AG and funding measures

I use the VAR(2) specification to investigate the dynamic links between AG and the funding

measures. The number of lags is chosen according to the Bayesian information criterion

(Schwarz, 1978).

Ỹt = B0 + B1Ỹt−1 + B2Ỹt−2 + Ṽt, (1.16)

Ỹt =



TEDt

HFRt

HFFLt

Repot

AGt


.

Here, vector Ỹt includes the four funding measures, namely, the TED spread (TEDt),

hedge-fund returns (HFRt), hedge-fund flow (HFFLt), and changes in the primary dealers’

repo financings (Repot), as well as the aggregate aribtrage gap AGt. The VAR system is

estimated over the sample from 1998 to 2017 on a monthly frequency.

I consider orthogonalized impulse responses to shocks hitting the elements of the Ỹt vector.

I use the inverse of the Cholesky decomposition of the residual covariance matrix to ortho-

gonalize the shocks. Variables are ordered as in Ỹt vector, shown in equation (1.16). The

impulse responses remain similar to different variable orderings, or if generalized impulse

responses (Pesaran and Shin, 1998) are considered.

First, I examine how widening arbitrage spreads affect funding measures. Figure 3 plots

orthogonalized impulse responses of AG and four funding measures to a one-standard-

deviation positive AG shock traced forward over 12 months.17 Bootstrap 1.96-standard-

error bands are provided. As shown in Panel A, the shock increases AG by a half-standard-

deviation. The jump of AG slowly decays and becomes insignificant after 5 months.

17The one-standard-deviation shock is with respect to AG’s residuals from VAR system.
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As shown in Panel B of Figure 3, the shock to AG increases the TED by 0.05 percentage

points in the following month, which reverts back to insignificant level in the second month.

Panels C and D show that the shock to AG has a lasting and significantly negative effect

on both aggregate hedge-fund sector flows and returns. The hedge-fund sector suffers a

drop in monthly returns of 0.23 percentage points in the following month, and reverts back

to insignificant level in month 2. In addition, the hedge-fund sector experiences a decrease

in flows of 0.3% of the total AUM in month 1, which stays significantly negative up to 7

months.

Panel E of Figure 3 plots the responses of primary dealers’ repo growth to the AG shock. In

the month following the shock, the repo growth slows down significantly by 1.2 percentage

points. The effect reverts back to insignificant level in the month 2.

A shock widening AG increases the marginal profit of arbitrage capital immediately. Howe-

ver, instead of being eliminated instantaneously, the shock in AG leads to future increase

in the cost of raising arbitrage capital. This pattern is consistent with the model predicti-

ons from theoretical literature including Shleifer and Vishny (1997) and Brunnermeier and

Pedersen (2009).

Next, I explore the effects in the reverse direction, namely the responses of AG to positive

shocks to funding variables. Figure 4 plots the orthogonalized IRFs of AG to a one-standard-

deviation positive shock to a funding variable X ∈ {TED,HFR,HFFL,Repo}. Note that

a positive shock to TED is a tightening shock whereas positive shocks to hedge funds’ flows

and returns (HFFL and HFR) and primary dealers’ repo growth Repo are shocks easing

the funding constraints.

As seen from Panels A and B of Figures 4, A one-standard-deviation positive shock to TED

triggers AG to jump up by 0.4 standard-deviation, and the positive response of AG remains

significant for around 7 months. On the other side, a positive one-standard-deviation shock

to the hedge fund returns leads to a 0.22-standard-deviation drop in AG in the following
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month and the negative effect remains significant for almost four months. Positive shocks

to hedge-fund flows and primary dealers’ repo growth have no significant impact on AG.

Consistent with the theoretical prediction, shocks that increase (decrease) the shadow cost

of raising arbitrage capital are accompanied by an increase (decrease) in the required rate

of returns for arbitrage—wider (narrower) arbitrage spreads.

1.7. Conclusion

In this paper, I document that mispricings comove strongly across five major financial mar-

kets. Arbitrage spreads—deviations from familiar no-arbitrage relations—in stock-index

futures, stock options, foreign exchange, and Treasury securities comove strongly in a sam-

ple spanning over three decades. Prominent equity anomalies, such as closed-end fund

discount, M&A spread, and positive long-short alpha spreads of portfolios sorted by certain

characteristics, share this commonality.

The common component in arbitrage spreads across distinct markets—the arbitrage gap—is

closely associated with the tightness of arbitrage capital constraints. A few funding-related

variables, such as the hedge-fund returns and flows, the TED spread and the primary

dealers’ repo financing growth, can explain the lion’s share of variation in the arbitrage

gap. Moreover, when capital become scarcer, the comovement in mispricings strengthens.

Furthermore, I also provide empirical evidence supporting feedback mechanisms between

the arbitrage gap and the funding variables. VAR analysis reveals significant bidirectional

lead-lag relations between the two. In one direction, shocks to the arbitrage gap lead to

worsening funding conditions. In the reverse direction, capital-tightening shocks to the

funding variables lead to widening arbitrage gap. Such bidirectional links are consistent

with a feedback loop between mispricing and capital constraints (e.g., Shleifer and Vishny,

1997 and Brunnermeier and Pedersen, 2009).
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Figure 1 Time series of four arbitrage spreads.

Spreads and their sample spans are: the futures-cash basis (Futbasis) for the S&P 500

index is from April 1985 to December 2017; the box spread (Box) for stock options is from

January 1996 to December 2017; the covered interest rate parity spread (CIP) for currency

pairs is from January 1987 to December 2017; the Treasury mispricing measure (Tr Mispr.)

for Treasury notes/bonds is from January 1985 to December 2017.
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Panel A: The aggregate arbitrage gap

Panel B: Shocks to the arbitrage gap

Figure 2 Time-series of the arbitrage gap: levels and shocks

Panel A: The arbitrage gap. The arbitrage gap is calculated as an average of four standar-

dized arbitrage spreads. The four arbitrage spreads are: the futures-cash basis for the S&P

500 index, the box spread for stock options, the CIP spread for currency pairs, and the
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Treasury mispricing measure for Treasury notes/bonds. Each series is standardized using

means and standard deviations estimated based on 5-year rolling windows. Panel B: Shocks

to the arbitrage gap. Shocks are defined as AR(1) residuals. The sample period is from

January 1985 to December 2017.
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Figure 3 Impulse response functions to a one-standard-deviation positive shock to the
arbitrage gap (AGt).

Solid lines represent orthogonalized impulse response functions of AGt, the TED spread

(TEDt), the hedge-fund sector returns (HFRt) and flows (HFFLt), and the primary de-

alers’ repo financing growth (Repot) to a positive one-standard-deviation shock to AGt.

Dashed lines represent 95% bootstrap confidence intervals. Impulse response functions are

based on the VAR(2) model with five variables: TEDt, HFRt, HFFLt, Repot, and AGt.

The same variables ordering is used to orthogonalize the impulses. The sample period is

from January 1998 to December 2017.
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Figure 4 Impulse response functions of AG to shocks to four funding variables.

Solid lines from panels A to D represent orthogonalized impulse responses of AGt to a

positive one-standard-deviation shock to TEDt, HFRt, HFFLt and Repot, respectively.

Dashed lines represent 95% bootstrap confidence intervals. Impulse responses are based

on the VAR(2) model with five variables: TEDt, HFRt, HFFLt, Repot, and AGt. The

same variables ordering is utilized to orthogonalize the impulses. The sample period is from

January 1998 to December 2017.
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Futbasist Boxt CIPt TrMisprt

Panel A: April 1985 – December 2017

No.mo. 393 264 372 393

Mean 0.16 0.25 0.03 0.08

SD 0.12 0.11 0.03 0.04

Min 0.04 0.11 0.01 0.03

Median 0.13 0.21 0.02 0.07

Max 0.96 0.62 0.20 0.31

Panel B: April 1985 – December 2007

No.mo. 273 144 252 273

Mean 0.17 0.28 0.02 0.09

SD 0.13 0.13 0.01 0.04

Min 0.04 0.12 0.01 0.03

Median 0.15 0.26 0.02 0.08

Max 0.96 0.62 0.08 0.31

Table 1 Summary statistics for four arbitrage spreads.

The table reports the numbers of observations, means, standard deviations, minimum,

median, and maximum values for four arbitrage spreads: the futures-cash basis (Futbasist)

for the S&P 500 index; the box spread (Boxt) for stock options; the covered interest rate

parity spread (CIPt) for currency pairs; the Treasury mispricing measures (TrMisprt) for

Treasury notes/bonds. Panel A reports summary statistics from January 1985 to December

2017. Panel B reports summary statistics over the pre-financial crisis sample from January

1985 to December 2007. The sample for Futbasist and TrMisprt start from April 1985.

The sample for Boxt starts from January 1996 and CIPt starts from January 1987.
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Pearson Correlations: p-values:
Futbasisst Boxst CIP st TrMisprst Futbasisst Boxst CIP st TrMisprst

Panel A: April 1985 - December 2017

Futbasisst — 0.51 0.57 0.44 — < 0.0001 < 0.0001 < 0.0001

Boxst — 0.59 0.22 — < 0.0001 0.0007

CIP st 0.44 — < 0.0001

TrMisprst — —

Panel B: April 1985 - December 2007

Futbasisst — 0.49 0.30 0.31 — < 0.0001 < 0.0001 < 0.0001

Boxst — 0.52 0.18 — < 0.0001 0.0380

CIP st — 0.23 — 0.0006

TrMisprst — —

Table 2 Pairwise correlations for four arbitrage spreads.

The table reports pairwise correlations for four standardized arbitrage spreads. The four

arbitrage spreads are: the futures-cash basis for the S&P 500 index; the box spread for stock

options; the covered interest rate parity spread for currency pairs; the Treasury mispricing

measure for Treasury notes/bonds. Each series is standardized using means and standard

deviations estimated based on 5-year rolling windows. The standardized series are denoted

as {Futbasisst , Boxst , CIP st , TrMisprst }. Panel A reports the pairwise correlation matrix

and p-values for the four standardized arbitrage spreads from April 1985 to December 2017.

Panel B reports the same statistics over the pre-financial crisis sample from April 1985 to

December 2007.
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Futbasisst Boxst CIP s
t TrMisprst

AGc
t 0.69 0.75 1.17 0.59

(6.26) (10.20) (4.11) (11.01)

Adj. R2 0.36 0.38 0.53 0.31

Table 3 Ability of the arbitrage gap to explain the individual spreads

The table reports coefficient estimates, t-statistics, and adjusted R-squareds from the re-

gressions of four standardized arbitrage spreads on AGct , where AGct is constructed as a

simple average of three arbitrage spreads other than the left-hand-side one. The four arbi-

trage spreads are: the futures-cash basis for the S&P 500 index; the box spread for stock

options; the covered interest rate parity spread for currency pairs; the Treasury mispricing

measure for Treasury notes/bonds. Each series is standardized using means and standard

deviations estimated based on 5-year rolling windows. The standardized series are denoted

as: {Futbasisst , Boxst , CIP st , TrMisprst }. Heteroscedasticity- and autocorrelation-adjusted

t-statistics (Newey and West, 1987) with 12-month lags are reported in parentheses. The

sample period for Futbasisst and TrMisprst are from April 1985 to December 2017. The

sample periods for Boxst is from January 1999 to December 2017, and the sample for CIP st

is from January 1990 to December 2017.
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Dependent variable: AGt

(1) (2) (3) (4) (5) (6) (7)

TEDt 1.22 1.13 1.94 2.21 1.78 2.12 1.90

(2.34) (2.10) (6.44) (6.28) (6.30) (6.84) (9.65)

HFFLt −0.11 −0.14 −0.14 −0.16 −0.07

(−2.12) (−3.42) (−2.77) (−3.56) (−3.82)

HFRt −0.10 −0.11 −0.14 −0.17 −0.09

(−2.78) (−3.25) (−3.51) (−4.23) (−3.91)

Repot −1.63 −1.32 −1.28

(−3.01) (−2.12) (−2.57)

Levt 0.00

(0.46)

V XOt 0.02 −0.00 −0.01 −0.00

(1.31) (−0.14) (−1.03) (−0.57)

TERMt 0.12 0.17 0.22 0.16

(0.82) (1.56) (2.16) (2.17)

DEFt −0.14 −0.38 −0.21 −0.25

(−0.46) (−1.84) (−1.01) (−1.19)

MKTt −2.04 0.96 1.35 1.80

(−1.05) (0.86) (1.14) (2.12)

Adj. R2 0.25 0.29 0.60 0.62 0.66 0.68 0.78

Table 4 Abilities of funding variables to explain the arbitrage gap

The table reports coefficient estimates, t-statistics, and adjusted R-squareds from regres-

sions of the arbitrage gap (AGt) onto funding variables and control variables. Funding

variables include: the TED spread (TEDt), the hedge-fund sector returns (HFRt) and

flows (HFFLt), the primary dealers’ repo financing growth (Repot), and the broker-dealer

leverage factor (Adrian et al., 2014). Control variables are: the implied volatility of the

S&P 100 index (V XOt); bond term spread (TERMt), defined as the difference between

the 10-year Treasury yield and the 2-year Treasury yield; the bond default factor (DEFt),

defined as the spread between the BAA-graded bond yield and the AAA-graded bond yield;

the stock market excess return (MKTt). Heteroscedasticity- and autocorrelation-adjusted

t-statistics (Newey and West, 1987) with 12-month lags are reported in parentheses. Co-

lumns (1) and (2) are monthly regressions from January 1986 to December 2017, Columns

(3) and (4) are monthly regressions from January 1994 to December 2017, and Columns
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(5) and (6) are monthly regressions from February 1998 to December 2017. Column (7) is

a quarterly regression from 1998-Q1 to 2017-Q4.
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Dependent variable:∆AGt

(1) (2) (3) (4) (5) (6)

∆TEDt 1.89 1.68 1.76 1.75 1.89 1.90

(5.10) (6.45) (4.87) (5.75) (5.09) (6.01)

∆HFFLt 0.02 0.01 0.02 0.01

(0.66) (0.42) (0.57) (0.40)

∆HFRt −0.10 −0.12 −0.10 −0.13

(−3.56) (−3.51) (−2.68) (−2.85)

∆Repot −0.68 −1.20

(−0.89) (−1.87)

∆V XOt 0.05 0.05 0.05

(3.10) (2.29) (2.00)

∆TERMt 0.00 −0.07 −0.04

(0.01) (−0.26) (−0.14)

∆DEFt −0.29 −0.55 −0.76

(−1.45) (−2.12) (−2.35)

MKTt 1.14 4.34 4.45

(1.10) (2.22) (1.96)

Adj. R2 0.29 0.36 0.34 0.38 0.40 0.44

Table 5 Abilities of shocks to funding variables to explain shocks to the arbitrage gap

The table reports coefficient estimates, t-statistics, and adjusted R-squareds from regressi-

ons of shocks to the arbitrage gap (∆AGt) onto shocks to funding variables and shocks to

control variables. Shocks to funding variables include: shocks to the TED spread (∆TEDt),

shocks to the hedge-fund sector returns (∆HFRt) and flows (∆HFFLt), and shocks to

the primary dealers’ repo financing growth (∆Repot). Control variables are: shocks to

bond term spread (∆TERMt), where TERMt is defined as the difference between the

10-year Treasury yield and the 2-year Treasury yield; shocks to the bond default factor

(∆DEFt), where DEFt is defined as the spread between the BAA-graded bond yield and

the AAA-graded bond yield; shocks to the implied volatility of S&P 100 index (∆V XOt);

the stock market return (MKTt). Shocks to all variables are defined as AR(1) residuals.

Heteroscedasticity-adjusted t-statistics (White, 1980) are reported in parentheses. Columns

(1) and (2) are monthly regressions from February 1986 to December 2017, Columns (3)

and (4) are monthly regressions from February 1994 to December 2017, and Columns (5)

and (6) are monthly regressions from March 1998 to December 2017.
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Corrt
(1) (2) (3)

TEDt 0.13 0.26 0.28
(1.89) (5.93) (6.22)

HFFLt 0.57×10−2 0.80×10−2

(1.10) (1.41)

HFRt −1.21×10−2 −1.10×10−2

(−1.96) (−1.40)

Repot −0.11
(−0.66)

Adj. R2 0.05 0.22 0.28

Table 6 Time-varying comovement between arbitrage spreads

The table reports coefficient estimates, t-statistics, and adjusted R-squareds from regressi-

ons of quarterly average pairwise correlation (Corrt) of four standardized arbitrage spreads

onto four funding variables. Corrt is computed as the average of pairwise correlations be-

tween four weekly arbitrage spreads in each quarter t. Four arbitrage spreads are: the

futures-cash basis for the S&P 500 index; the box spread for stock options; the covered

interest rate parity spread for currency pairs; the Treasury mispricing measure for Treasury

notes/bonds. Each series is standardized using means and standard deviations estimated

based on 5-year rolling windows. Funding variables are: the TED spread (TEDt), the hedge-

fund sector returns (HFRt) and flows (HFFLt), and the primary dealers’ repo financing

growth (Repot). Heteroscedasticity- and autocorrelation-adjusted t-statistics (Newey and

West, 1987) with 4-quarter lags are reported in parentheses. The sample for column (1),

(2), and (3) start in 1986-Q1, 1994-Q1, and 1998-Q1 respectively, and end in December,

2017.
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Dependent variable: CEFDt

Panel A: Whole sample Panel B: Subsample
excluding 2008−2009

(1) (2) (3) (4) (5) (6)

AGt 0.66 0.58 0.50 0.68 0.49 0.40
(6.18) (3.12) (2.64) (5.46) (2.58) (2.11)

TEDt 0.22 0.31 0.71 0.77
(0.39) (0.56) (1.46) (1.59)

HFFLt −0.14 − 0.20
(−1.92) (−2.75)

HFRt −0.01 0.03
(−0.14) (0.31)

Repot −0.56 −0.72
(−0.48) (−0.63)

V XOt 0.01 0.01 0.01 −0.00 − 0.00 0.00
(0.81) (0.52) (0.60) (−0.05) (−0.12) (0.07)

TERMt −0.16 −0.13 − 0.05 − 0.03
(−1.16) (−0.89) (−0.33) (−0.19)

DEFt 0.21 −0.12 −0.46 −0.79
(0.69) (−0.29) (−0.82) (−1.35)

MKTt −2.74 −2.88 −2.81 − 4.82 − 5.03 − 6.18
(−1.15) (−1.24) (−0.75) (−2.00) (−2.26) (−1.79)

Adj. R2 0.39 0.40 0.41 0.24 0.28 0.30

Table 7 Closed-end funds discount and the arbitrage gap

The table reports coefficient estimates, t-statistics, and adjusted R-squareds of regressions

of the aggregate closed-end funds discount onto AG and other variables. Panel A reports

the results from the regressions in the sample from January 1995 to December 2017, while

Panel B reports the results in the sample excluding 2008 and 2009. The dependent varia-

ble is standardized average closed-end funds discount (CEFDt) and independent variables

include AG, four funding variables {TEDt, HFRt, HFFL, and Repot}, and control varia-

bles. Individual closed-end fund discount is calculated as log(NAVt/Pricet), where NAVt

is fund’s net asset value and Pricet is fund’s share price. The average closed-end funds dis-

count is average of all individual closed-end fund discounts for those funds whose discounts

are below zero. The average closed-end funds discount is standardized using means and

standard deviations estimated based on 5-year rolling windows. Control variables are: the

implied volatility of the S&P 100 index (V XOt); the bond term spread (TERMt), defined

as the difference between the 10-year Treasury yield and the 2-year Treasury yield; the
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bond default factor (DEFt), defined as the spread between the BAA-graded bond yield and

the AAA-graded bond yield; the stock market excess return (MKTt). Heteroscedasticity-

and autocorrelation-adjusted t-statistics (Newey and West, 1987) with 12-month lags are

reported in parentheses. Note that the sample for columns (3) and (6) starts from February

1998.
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Dependent variable: MAspreadt

Panel A: Whole sample Panel B: Subsample
excluding 2008−2009

(1) (2) (3) (4) (5) (6)

AGt 0.53 0.31 0.29 0.45 0.36 0.38
(6.24) (2.18) (2.26) (2.68) (2.13) (3.41)

TEDt 1.00 0.91 0.65 0.49
(2.41) (2.52) (1.52) (1.26)

HFFLt −0.12 −0.07
(−1.57) (−0.95)

HFRt −0.12 −0.18
(−1.11) (−1.51)

Repot −1.39 −1.02
(−1.55) (−1.35)

V XOt 0.01 −0.00 0.00 0.01 0.01 0.01
(0.87) (−0.01) (0.18) (0.41) (0.24) (0.58)

TERMt 0.17 0.11 0.15 0.07
(1.53) (1.04) (1.39) (0.66)

DEFt 0.06 −0.33 −0.30 −0.94
(0.15) (−0.89) (−0.79) (−2.05)

MKTt 0.87 0.16 3.09 1.93 1.42 6.34
(0.49) (0.07) (0.83) (1.12) (0.78) (1.77)

Adj. R2 0.29 0.32 0.38 0.12 0.13 0.24

Table 8 M&A anomaly and the arbitrage gap

The table reports coefficient estimates, t-statistics, and adjusted R-squareds of regressions of

the standardized average M&A spread (MAspreadt) onto AG, funding variables and control

variables. Panel A reports the results from the regressions in the sample from January 1985

to December 2017, while Panel B reports the results in the sample excluding 2008 and 2009.

The dependent variable is standardized average M&A spread and independent variables in-

clude AG, four funding variables {TEDt, HFRt, HFFL, and Repot}, and control variables.

For each ongoing M&A cash deal, M&A spread is calculated as log(Offert/Pricet), where

Offert is target’s offer price and Pricet is target’s trading price. The average M&A spread

is an average of all individual M&A spreads. The average M&A spread is standardized

using means and standard deviations estimated based on 5-year rolling windows. Control

variables are: Control variables are: the implied volatility of the S&P 100 index (V XOt);

the bond term spread (TERMt), defined as the difference between the 10-year Treasury
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yield and the 2-year Treasury yield; the bond default factor (DEFt), defined as the spread

between the BAA-graded bond yield and the AAA-graded bond yield; the stock market ex-

cess return (MKTt). Heteroscedasticity- and autocorrelation-adjusted t-statistics (Newey

and West, 1987) with 12-month lags are reported in parentheses. Note that the sample for

columns (3) and (6) starts from February 1998.
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HMLt (%) RMWt(%) CMAt(%) MOMt (%) Avg.(%)

(1) (2) (3) (4) (5)

Const. 0.50 0.51 0.23 0.44 0.42
(1.80) (2.66) (1.28) (1.09) (2.99)

ÂGt −0.59 −0.05 −0.47 −0.28 −0.35
(−3.01) (−0.38) (−3.51) (−0.81) (−3.00)

∆AGt 0.53 −0.02 0.26 −0.67 0.03
(1.91) (−0.09) (1.45) (−1.30) (0.14)

T̂EDt −0.40 0.01 0.21 0.33 0.04
(−0.89) (0.02) (0.83) (0.48) (0.18)

∆TEDt −1.36 −0.59 −1.20 1.95 −0.30
(−1.24) (−1.02) (−2.07) (1.15) (−0.53)

MKTt −13.30 −17.42 −17.97 −21.06 −17.44
(−2.80) (−4.45) (−5.90) (−2.66) (−5.70)

SMBt −0.09 −0.33 0.00 0.07 −0.08
(−1.06) (−3.80) (0.11) (0.49) (−2.47)

Adj.R2 0.08 0.27 0.16 0.03 0.22

Table 9 Long-short equity factors and the aggregate arbitragae gap

The table reports coefficient estimates, t-statistics, and adjusted R-squareds of regressions

of long-short equity factors onto AG, TED as well as market (MKTt) and size (SMBt)

factors. The long-short equity factors include value (HMLt), profitability (RMWt), inves-

tment (CMAt), momentum factor (MOMt) as well as a simple average of the four factors.

AGt and TEDt are decomposed into expected part and unexpected part based on an AR(1)

process. Expected parts of AG and TED are denoted as: ÂGt and T̂EDt, and unexpected

parts are denoted as ∆AGt and ∆TEDt. MKTt and SMBt are included in the regressi-

ons as benchmarks. Heteroscedasticity-adjusted t-statistics (White, 1980) are reported in

parentheses. The sample period is from January 1985 to December 2017.
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CHAPTER 2: Size and Value in China

2.1. Introduction

China has the world’s second-largest stock market, helping to finance an economy that

some predict will be the world’s largest within a decade.1 China also has political and

economic environments quite different from those in the US and other developed economies.

Moreover, China’s market and investors are separated from the rest of the world. China

largely prohibits participation by foreign investors in its domestic stock market as well as

participation by its domestic investors in foreign markets.2

Factor models provide a cornerstone for investigating financial asset pricing and for de-

veloping investment strategies. Many studies of China’s stock market use a three-factor

model constructed by following the Fama and French (1993) procedure for US factors.3

The advisability of simply replicating a US model in China is questionable, however, given

China’s separation and the many differences in economic and financial systems. We explore

and develop factor models in China, allowing its unique environment to dictate alternative

approaches.

We start by examining size and value effects in the Chinese market. These two effects have

long been recognized elsewhere as important characteristics associated with expected return:

Banz (1981) reports a firm-size effect, and Basu (1983) finds an effect for the earnings-price

ratio, a popular value metric. Size and value are the most prominent characteristics used

by many institutions to classify investment styles. The most widely used nonmarket factors

in academic research are also size and value, following the influential study by Fama and

1According to the World Bank, the 2016 equity values of listed domestic companies, in trillions of US dol-
lars, are 27.4 in the US and 7.3 in China, followed by 5.0 in Japan. For a forecast that China’s gross domestic
product will reach that of the US by 2028, see Bloomberg ( https://www.bloomberg.com/graphics/2016-us-
vs-china-economy/).

2At the end of 2016, 197 foreign institutions were authorized to invest in A-shares, China’s domestically
traded stocks, but with a quota of just 0.6% of total market value (and even less in earlier years). Chinese
domestic investors can invest in international financial markets only through a limited authorized channel.

3Examples of such studies include include Yang and Chen (2003), Fan and Shan (2004), Wang and Chin
(2004), Chen et al. (2010), Cheung, Hoguet, and Ng (2015), and Hu et al. (2019).
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French (1993). Our study reveals that size and value effects are important in China but

with properties different from the US. We construct size and value factors for China.

The size factor is intended to capture size-related differences in stock risk and return that

arise from size-related differences in the underlying businesses. In China, however, the stock

of a small listed firm is typically priced to reflect a substantial component of value related

not to the firm’s underlying business but instead to the Chinese initial public offering (IPO)

process. In China, the IPO market is strictly regulated, and a growing demand for public

listing confronts the low processing capacity of the regulatory bureau to approve IPOs.

As a consequence, private firms seek an alternative approach, a reverse merger, to become

public in a timely manner. In a reverse merger, a private firm targets a publicly traded

company, a so-called shell, and gains control rights by acquiring its shares. The shell then

buys the private firm’s assets in exchange for newly issued shares. While reverse mergers

occur elsewhere, IPO constraints are sufficiently tight in China such that the smallest firms

on the major exchanges become attractive shell targets, unlike in the US, for example.

The smallest listed firms are the most likely shells. In fact, 83% of the reverse mergers in

China involve shells coming from the smallest 30% of stocks. For a typical stock in the

bottom 30%, we estimate that roughly 30% of its market value reflects its potential shell

value in a reverse merger. Our estimate combines the empirical probability of being targeted

in a reverse merger with the average return accompanying that event. Consistent with the

contamination of small-firm stock prices by shell value, we also find that when compared to

other firms, the smallest 30% have returns less related to operating fundamentals, proxied

by earnings surprises, but more related to IPO activity. Therefore, to avoid shell-value

contamination when constructing any of our factors, we delete the bottom 30% of stocks,

which account for 7% of the stock market’s total capitalization.

The value effect in China is best captured by the earnings-price (EP ) ratio, versus other

valuation ratios. Following Fama and French (1992), we treat the choice among alternative

valuation ratios as an empirical question, asking which variable best captures the cross-
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sectional variation in average stock returns. As in that study, we run a horse race among

all candidate valuation ratios, including EP , book-to-market (BM), asset-to-market, and

cash-flow-to-price ratios. In a Fama-MacBeth regression including those four ratios, EP

dominates all others, just as Fama and French (1992) find BM dominates in the US market.

Relying on the latter US result, Fama and French (1993) use BM to construct their value

factor. Relying on our result for China, we use EP to construct our value factor.

Size and value are important factors in China, as revealed by their average premiums as

well as their contributions to return variance. Our size and value factors both have average

premiums exceeding 1% per month over our 2000–2016 sample period. For the typical

stock in China, size and value jointly explain an additional 15% of monthly return variance

beyond what the market factor explains. In comparison, size and value explain less than

10% of additional return variance for the typical US stock during the same period.

Our three-factor model, CH-3, includes the market factor as well as size and value factors

incorporating the above China-specific elements. For comparison, we construct an alterna-

tive three-factor model, FF-3, by simply replicating the Fama and French (1993) procedure.

We find that CH-3 strongly dominates FF-3. Specifically, FF-3 cannot price the CH-3 size

and value factors, which have (significant) FF-3 annualized alphas of 5.6% and 16.7%. In

contrast, CH-3 prices the FF-3 size and value factors, which have (insignificant) CH-3 an-

nualized alphas of just −0.5% and 4.1%. A Gibbons, Ross, and Shanken (1989) test of one

model’s ability to price the other’s factors gives a p-value of 0.41 for CH-3’s pricing ability

but less than 10−12 for FF-3’s ability.

We also investigate the ability of CH-3 to explain previously reported return anomalies

in China. A survey of the literature reveals anomalies in nine categories: size, value,

profitability, volatility, return reversal, turnover, investment, accruals, and illiquidity. We

find each of the first six categories contains one or more anomalies that produce significant

long-short alphas with respect to the single-factor capital asset pricing model (CAPM). CH-

3 accommodates all anomalies in the first four of those six categories, including profitability
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and volatility, whose anomalies fail FF-3 explanations in the US. CH-3 fails only with some

of the reversal and turnover anomalies. In contrast, FF-3 leaves significant anomalies in

five of the six categories. A total of ten anomalies are unexplained by the CAPM; CH-3

explains eight of them, while FF-3 explains three. The average absolute CH-3 alpha for the

ten anomalies is 5.4% annualized, compared to 10.8% for FF-3 (average absolute t-statistics:

1.12 versus 2.70).

Hou, Xue, and Zhang (2015) and Fama and French (2015) add two factors based on inves-

tment and profitability measures in their recently proposed factor models, Q-4 and FF-5.

Investment does not produce a significant CAPM alpha in China, and profitability is fully

explained by CH-3. In an analysis reported in the Appendix, we find that a replication of

FF-5 in China is dominated by CH-3.

Overall, CH-3 performs well as a factor model in China, and it captures most documented

anomalies. In US studies, researchers often supplement the usual three factors (market,

size, and value) with a fourth factor, such as the momentum factor of Carhart (1997) or the

liquidity factor of Pástor and Stambaugh (2003). We also add a fourth factor, motivated

by a phenomenon rather unique to China: a stock market dominated by individuals rather

than institutions. Over 101 million individuals have stock trading accounts in China, and

individuals own 88% of the market’s free-floating shares. This heavy presence of individuals

makes Chinese stocks especially susceptible to investor sentiment. To capture sentiment

effects, we base our fourth factor on turnover, which previous research identifies as a gauge

of both market-wide and stock-specific investor sentiment (e.g., Baker and Stein, 2004;

Baker and Wurgler, 2006; Lee, 2013). The resulting four-factor model, CH-4, explains the

turnover and reversal anomalies in addition to the anomalies explained by CH-3, thereby

handling all of China’s reported anomalies.

The remainder of the paper proceeds as follows. Section 2 discusses data sources and

sample construction. Section 3 addresses the interplay between firm size and China’s IPO

constraints and explores the importance of shell-value distortions in small-stock returns.
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Section 4 investigates value effects in China. In Section 5, we construct CH-3 and FF-3

and compare their abilities to price each other’s factors. In Section 6, we compare the

abilities of those three-factor models to price anomalies. In Section 7, we construct CH-4

by including a turnover factor and then analyze the model’s additional pricing abilities.

Section 8 summarizes our conclusions.

2.2. Data source and samples

The data we use, which include data on returns, trading, financial statements, and mergers

and acquisitions, are from Wind Information Inc. (WIND), the largest and most prominent

financial data provider in China. WIND serves 90% of China’s financial institutions and

70% of the Qualified Foreign Institutional Investors (QFII) operating in China.

The period for our main analysis is from January 1, 2000, through December 31, 2016.

China’s domestic stock market, the A-share market, began in 1990 with the establishment

of the Shanghai and Shenzhen exchanges. We focus on the post-2000 period for two reasons.

The first is to assure uniformity in accounting data. The implementation of rules and

regulations governing various aspects of financial reporting in China did not largely take

shape until about 1999. Although 1993 saw the origination of principles for fair trade and

financial disclosure, firms received little guidance in meeting them. Companies took liberties

and imposed their own standards, limiting the comparability of accounting data across firms.

Not until 1998 and 1999 were laws and regulations governing trading and financial reporting

more thoroughly designed and implemented. For example, detailed guidelines for corporate

operating revenue disclosure were issued in December 1998 and implemented in January

1999. Securities laws were passed in December 1998 and implemented in July 1999. Only

by 1999 did uniformity in accounting standards become widely accomplished. Because

portfolios formed in 2000 use accounting data for 1999, our post-2000 sample for portfolio

returns relies on accounting data more comparable across firms than in earlier years.

The second reason for beginning our sample in 2000 is to ensure sufficient numbers of
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observations. Portfolios are used in our study to construct factors and conduct many of

the tests. To enable reasonable precision and power, we require at least 50 stocks in all

portfolios after imposing our filters, which include eliminating stocks (i) in the bottom 30%

of firm size, (ii) listed less than six months, and (iii) having less than 120 trading records in

the past year or less than 15 trading records in the past month. This last pair of conditions

is intended to prevent our results from being influenced by returns that follow long trading

suspensions. Only by 1999 do the numbers of stocks in the market allow these criteria to

be met.

WIND’s data on reverse mergers begin in 2007, when the China Securities Regulatory

Commission identified the criteria of a merger and acquisition (M&A) proposal that classify

it as a reverse merger, making such deals easier to trace. In Section 3.2, we use reverse

merger data to estimate shell values. Additional details about the data and the construction

of empirical measures are provided in the Appendix.

2.3. Small stocks and IPO constraints

Numerous studies in finance address China’s unique characteristics. For example, Allen,

Qian, and Qian (2003, 2005) compare China to other developed countries along various

political, economic, and financial dimensions. Brunnermeier, Sockin, and Xiong (2017)

study China’s government interventions in its trading environment. Bian et al. (2018) show

the special nature of leveraged investors in China’s stock market. Song and Xiong (2018)

emphasize the necessity of accounting for the economy’s uniqueness when analyzing risks in

China’s financial system. Allen et al. (2009) and Carpenter and Whitelaw (2017) provide

broader overviews of China’s financial environment.

One aspect of the Chinese market especially relevant for our study is the challenge faced by

firms wishing to become publicly traded. As discussed earlier, market values of the smallest

firms in China include a significant component reflecting the firms’ potential to be shells

in reverse mergers. Private firms often employ reverse mergers to become publicly traded
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rather than pursue the constrained IPO process. Section 3.1 describes that IPO process,

while Section 3.2 describes reverse mergers and presents a notable example of one in China.

In Section 3.3, we compute a simple estimate of the fraction of firm value associated with

being a shell for a potential reverse merger, and we find the fraction to be substantial for

the smallest stocks. Consistent with that result, we show in Section 3.4 that the returns on

those stocks exhibit significantly less association with their underlying firms’ fundamentals.

Our evidence demonstrating the importance of the shell component of small-firm values

is buttressed by contemporaneous research on this topic, conducted independently from

ours. In a study whose principal focus is the importance of shell values in China, Lee,

Qu, and Shen (2017) also show that the shell component is a substantial fraction of small-

firm values and that, as a result, the returns on small-firm stocks exhibit less sensitivity

to fundamentals but greater sensitivity to IPO activity. Lee, Qu, and Shen (2017) explore

models for pricing the shell-value firms, whereas we focus on models for pricing the “regular”

stocks constituting the other 93% of the stock market’s value.

2.3.1. The IPO process

In China, the IPO market is controlled by the China Securities Regulatory Commission

(CSRC). As a central planner, the CSRC constrains the IPO process to macro-manage the

total number of listed firms (e.g., Allen et al., 2014). Unlike the US, where an IPO can

clear regulatory scrutiny in a matter of weeks, undertaking an IPO in China is long and

tedious, easily taking three years and presenting an uncertain outcome. As detailed in the

Appendix, the process involves seven administrative steps, three bureau departments, and a

select 25-member committee that votes on each application. The committee meets for both

an initial review and a final vote, with those meetings separated by years. As of November

2017, the CSRC reported 538 firms being processed, with just 31 having cleared the initial

review. The IPOs approved in early 2017 all entered the process in 2015.

The long waiting time can impose significant costs. During the review process, firms are

57



discouraged from any sort of expansion and must produce consistent quarterly earnings.

Any change in operations can induce additional scrutiny and further delay. A firm under-

taking an IPO may thus forgo substantial investment opportunities during the multi-year

approval process. Moreover, policy changes can prolong the process even more. In 2013,

the CSRC halted all reviews for nearly a year to cool down the secondary market.

2.3.2. Reverse mergers

Facing the lengthy IPO process, private firms wishing to become public often opt for an

alternative: reverse merger. A reverse merger, which is regulated as an M&A, involves

fewer administrative steps and is much faster. We illustrate the process via a real-life case

involving the largest delivery company in China, SF Express (SF).

In 2016, SF decided to become public through a reverse merger. To be its shell firm, SF

targeted the small public company, DT Material (DT), with market value of about $380

million. SF and DT agreed on merger terms, and in May 2016, DT officially announced the

deal to its shareholders. At the same time, DT submitted a detailed M&A proposal to the

CSRC. The plan had DT issuing more than three billion shares to SF in exchange for all of

SF’s assets. The intent was clear: three billion shares would account for 97% of DT’s stock

upon the shares’ issuance. With those shares, SF would effectively be the sole owner of DT,

which would in turn be holding all of SF’s assets. DT would become essentially the same

old SF company but with publicly traded status. The M&A authorization went smoothly.

By October 2016, five months after the application, the CSRC gave its conditional approval,

and final authorization came two months later. The merged company was trading as SF on

the Shenzhen Stock Exchange by February 2017. That same month, IPO applicants in the

2015 cohort had just begun their initial reviews.

The entire SF-DT process took less than a year, fairly typical for a reverse merger. The

greater speed of a reverse merger comes with a price tag, however. In addition to regular

investment banking and auditing fees, the private firm bears the cost of acquiring control of
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the public shell firm. In the SF-DT case, DT kept 3% of the new public SF’s shares, worth

about $938 million. In the course of the deal, DT’s original shareholders made about 150%.

Reverse mergers also occur in the US. As in China, they have long been recognized as an IPO

alternative. From 2000 through 2008, the US averaged 148 reverse mergers annually (Floros

and Sapp, 2011). There is, however, a fundamental difference between reverse mergers in

the US versus China: because IPOs are less constrained in the US, the value of being a

potential shell is much lower. In the US, the median shell’s equity market value is only

$2 million (Floros and Sapp, 2011), versus an average of $200 million in China. Nearly

all shell companies in the US have minimal operations and few noncash assets. Their

Chinese counterparts are typically much more expensive operating businesses. As a result,

while small stocks on China’s major exchanges are attractive shell targets, small stocks on

the major US exchanges are not. Consistent with this difference, Floros and Sapp (2011)

observe that their US reverse-merger sample includes almost no shell targets listed on the

three major exchanges.

2.3.3. Small stocks with large shell values

A private firm’s price tag for acquiring a reverse-merger shell depends essentially on the

shell’s market value. Not surprisingly, shells are most often small firms. Fig. 1 displays

the size distribution of public shells in our sample of reverse mergers covering the 2007–

2016 period. Of the 133 reverse mergers, 83% come from the bottom 30%, and more

than half come from the bottom 10%. Given this evidence, we eliminate the bottom 30%

when constructing factors to avoid much of the contamination of stock prices reflecting

the potential to be targeted as shells. Although the 30% cutoff is somewhat arbitrary, our

results are robust to using 25% and 35% as cutoffs.

What fraction of a firm’s market value owes to the firm potentially becoming a reverse-

merger shell? A back-of-the-envelope calculation suggests the fraction equals roughly 30%

for the stocks we eliminate (the bottom 30%). Let p denote the probability of such a stock
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becoming a reverse-merger shell in any given period, and let G denote the stock’s gain in

value if it does become a shell. We can then compute the current value of this potential

lottery-like payoff on the stock as

S =
pG+ (1− p)S

1 + r
=

pG

r + p
, (2.1)

where r is the discount rate. We take p to be the annual rate at which stocks in the bottom

30% become reverse-merger shells, and we take G to be the average accompanying increase

in stock value. Both quantities are estimated over a two-year rolling window. The annual

discount rate, r, is set to 3%, the average one-year deposit rate from 2007 to 2016.

Panel A of Fig. 2 plots the estimated daily ratio of shell value to market value, S/V , with V

equal to the median market value of stocks in the bottom 30%. Over the 2009–2016 sample

period, the average value of S/V is 29.5%, while the series fluctuates between 10% and

60%. Eq. (2.1) implicitly assumes the stock remains a potential shell in perpetuity, until

becoming a shell. In other words, the role of small stocks in reverse mergers is assumed to

be rather permanent in China, as the IPO regulatory environment shows no overall trend

toward loosening. Even if we reduce the horizon to 20 years, the average S/V remains

about half as large as the series plotted.

Panel B of Fig. 2 plots the estimated shell value, S, expressed in renminbi (RMB). This

value exhibits a fivefold increase over the eight-year sample period, in comparison to barely

a twofold increase for the Shanghai-Shenzhen 300 index over the same period. The rise

in S is consistent with the significant premium earned over the period by stocks in the

bottom 30% of the size distribution. Recall, however, that these stocks account for just 7%

of the stock market’s total capitalization. As we demonstrate later, constructing factors

that include these stocks, whose returns are distorted by the shell component, impairs the

ability of those factors to price the regular stocks that constitute the other 93% of stock

market value.
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2.3.4. Return variation of small stocks

Given that the shell component contributes heavily to the market values and average returns

of the smallest stocks, we ask whether this component also contributes to variation in their

returns. If it does, then when compared to other stocks, returns on the smallest stocks

should be explained less by shocks to underlying fundamentals but more by shocks to shell

values. We explore both implications.

To compare responses to fundamentals, we analyze returns accompanying earnings announ-

cements. We divide the entire stock universe into three groups, using the 30th and 70th

size percentiles. Within each group, we estimate a panel regression of earnings-window

abnormal return on standardized unexpected earnings (SUE),

Ri,t−k,t+k = a+ b SUEi,t + ei,t, (2.2)

in which earnings are announced on day t, and Ri,t−k,t+k is the cumulative return on stock i,

in excess of the market return, over the surrounding trading days from t− k through t+ k.

We compute SUEi,t using a seasonal random walk, in which SUEi,t = ∆i,t/σ(∆i), ∆i,t

equals the year-over-year change in stock i’s quarterly earnings, and σ(∆i) is the standard

deviation of ∆i,t for the last eight quarters.

Under the hypothesis that the shell component is a significant source of return variation for

the smallest stocks, we expect those stocks to have a lower b in Eq. (2.2) and a lower regres-

sion R2 than the other groups. The first three columns of Table 10 report the regression

results, which confirm our hypothesis. Panel A contains results for k = 0 in Eq. (2.2), and

Panel B has results for k = 3. In both panels, the smallest stocks have the lowest values of

b and R2. For comparison, we conduct the same analysis in the US and report the results

in the last three columns of Table 10. The US sample period is 1/1/1980–12/31/2016,

before which the quality of quarterly data is lower. In contrast to the results for China, the

smallest stocks in the US have the highest values of b and R2.
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We also compare stocks’ return responses to shell-value shocks, using two proxies for such

shocks. One is the average return that public stocks experience upon becoming shells in

reverse mergers. Our rationale is that the higher the return, the greater is the potential

value of becoming a shell. The other proxy is the log of the total number of IPOs, with the

rationale that a greater frequency of IPOs could be interpreted by the market as a relaxing

of IPO constraints. Consistent with the importance of the shell component for the smallest

stocks, only that group’s returns covary both positively with the reverse-merger premium

and negatively with the log of the IPO number. The results are presented in the Appendix.

2.4. Value effects in China

A value effect is a relation between expected return and a valuation metric that scales

the firm’s equity price by an accounting-based fundamental. The long-standing intuition

for value effects (e.g., Basu, 1983; Ball, 1992) is that a scaled price is essentially a catchall

proxy for expected return: a higher (lower) expected return implies a lower (higher) current

price, other things equal.

Our approach to creating a value factor in China follows the same path established by the

two-study sequence of Fama and French (1992, 1993). Following Fama and French (1992),

the first step is to select the valuation ratio exhibiting the strongest value effect among a

set of candidate ratios. The valuation ratios Fama and French (1992) consider include EP ,

BM , and assets-to-market (AM). The authors find BM exhibits the strongest value effect,

subsuming the other candidates. Based on that result, the subsequent study by Fama and

French (1993) uses BM to construct the value factor (HML).

In this section, we conduct the same horse race among valuation ratios. Our entrants are

the same as in Fama and French (1992), plus cash-flow-to-price (CP ). As in that study,

we estimate cross-sectional Fama and MacBeth (1973) regressions of individual monthly

stock returns on the valuation ratios, with a stock’s market capitalization and estimated

CAPM beta (β) included in the regression. For the latter variable we use the beta estimated
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from the past year’s daily returns, applying a five-lag Dimson (1979) correction. Following

Fama and French (1992), we use EP to construct both EP+ and a dummy variable, with

EP+ equal to EP when EP is positive, and zero otherwise, and with the dummy variable,

D(EP < 0), equal to one when EP is negative, and zero otherwise. In the same manner, we

construct CP+ and D(CP < 0) from CP . Due to the shell-value contamination of returns

discussed earlier, we exclude the smallest 30% of stocks.

Table 11 reports average slopes from the month-by-month Fama-MacBeth regressions. Si-

milar to results in the US market, we see from column (1) that β does not enter significantly.

Also as in the US, the size variable, logME, enters with a significantly negative coefficient

that is insensitive to including β: in columns (2) and (3), without and with β beta included,

the size slopes are −0.0049 and −0.0046 with t-statistics of −2.91 and −2.69. These results

confirm a significant size effect in China.

Columns (4) through (7) of Table 11 report results when each valuation ratio is included

individually in its own regression. All four valuation ratios exhibit significant explanatory

power for returns. When the four valuation ratios are included in the regression simultane-

ously, as reported in column (8), EP dominates the others. The t-statistic for the coefficient

on EP+ is 4.38, while the t-statistics for logBM , logAM , and CP+ are just 1.31, 0.99, and

1.35. In fact, the coefficient and t-statistic for EP+ in column (8) are very similar to those

in column (6), in which EP is the only valuation ratio in the regression. The estimated EP

effect in column (8) is also economically significant. A one standard-deviation difference in

EP+ implies a difference in expected monthly return of 0.52%.

Because BM likely enters the horse race as a favorite, we also report in column (9) the

results when BM and EP are the only valuation ratios included. The results are very

similar, with the coefficient and t-statistic for EP+ quite close to those in column (8) and

with the coefficient on logBM only marginally significant.

Fama and French (1992) exclude financial firms, whereas we include them in Table 11. We
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do so because we also include financial firms when constructing our factors, as do Fama and

French (1993) when constructing their factors. If we instead omit financial firms (including

real estate firms) when constructing Table 2, the results (reported in the Appendix) are

virtually unchanged.

In sum, we see that EP emerges as the most effective valuation ratio, subsuming the other

candidates in a head-to-head contest. Therefore, in the next section, we construct our value

factor for China using EP . The dominance of EP over BM is further demonstrated in the

next section, where we show that our CH-3 model with the EP -based value factor prices a

BM -based value factor, whereas the BM -based model, FF-3, cannot price the EP -based

value factor.

2.5. A three-factor model in China

In this section, we present our three-factor model, CH-3, with factors for size, value, and

the market. Our approach incorporates the features of size and value in China discussed

in the previous sections. Section 5.1 provides details of the factor construction. We then

compare our approach to one that ignores the China-specific insights. Section 5.2 illustrates

the problems with including the smallest 30% of stocks, while Section 5.3 shows that using

EP to construct the value factor dominates using BM .

2.5.1. Size and value factors

Our model has two distinct features tailored to China. First, we eliminate the smallest

30% of stocks, to avoid their shell-value contamination, and we use the remaining stocks

to form factors. Second, we construct our value factor based on EP . Otherwise, we follow

the procedure used by Fama and French (1993). Specifically, each month we separate the

remaining 70% of stocks into two size groups, small (S) and big (B), split at the median

market value of that universe. We also break that universe into three EP groups: top

30% (value, V), middle 40% (middle, M), and bottom 30% (growth, G). We then use the

intersections of those groups to form value-weighted portfolios for the six resulting size-
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EP combinations: S/V, S/M, S/G, B/V, B/M, and B/G. When forming value-weighted

portfolios, here and throughout the study, we weight each stock by the market capitalization

of all its outstanding A shares, including nontradable shares. Our size and value factors,

denoted as SMB (small-minus-big) and VMG (value-minus-growth), combine the returns

on these six portfolios as follows:

SMB =
1

3
(S/V + S/M + S/G)− 1

3
(B/V +B/M +B/G),

V MG =
1

2
(S/V +B/V )− 1

2
(S/G+B/G).

The market factor, MKT , is the return on the value-weighted portfolio of our universe, the

top 70% of stocks, in excess of the one-year deposit interest rate.

Table 12 reports summary statistics for the three factors in our 204-month sample period.

The monthly standard deviations of SMB and VMG are 4.52% and 3.75%, each roughly

half of the market’s standard deviation of 8.09%. The averages of SMB and VMG are

1.03% and 1.14% per month, with t-statistics of 3.25 and 4.34. In contrast, the market

factor has a 0.66% mean with a t-statistic of just 1.16. Clearly, size and value command

substantial premiums in China over our sample period. All three factors are important

for pricing, however, in that each factor has a significantly positive alpha with respect to

the other two factors. Specifically, those two-factor monthly alphas for MKT , SMB, and

VMG are 1.57%, 1.91%, and 1.71%, with t-statistics of 2.30, 6.92, and 7.94. Each factor’s

two-factor alpha exceeds its corresponding simple average essentially due to the negative

correlations of VMG with both MKT and SMB (−0.27 and −0.62). In China, smaller

stocks tend to be growth stocks, making the negative correlation between size and value

stronger than it is in the US. Fama-Macbeth regressions also reveal a substantial negative

correlation between China’s size and value premiums. For example, the correlation between

the coefficients on logME and EP+ underlying the results reported in column (6) of Table

11 equals 0.42. Note that a positive correlation there is consistent with a negative correlation

between the premiums on (small) size and value.
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As Ross (2017) argues, explaining average return is one of two desiderata for a parsimonious

factor model. Explaining return variance is the other. Table 13 reports the average R-

squared values in regressions of individual stock returns on one or more of the CH-3 factors.

Panel A includes all listed stocks in China, while Panel B omits the smallest 30%. For

comparison with the US, over the same period from January 2000 through December 2016,

Panel C reports results when regressing NYSE/Amex/Nasdaq stocks on one or more of the

three factors of Fama and French (1993). All regressions are run over rolling three-year

windows, and the R-squared values are then averaged over time and across stocks.

We see from Table 13 that our size and value factors explain substantial fractions of return

variance beyond what the market factor explains. Across all Chinese stocks, for example,

the three CH-3 factors jointly explain 53.6% of the typical stock’s return variance, versus

38.5% explained by just the market factor. The difference between these values, 15.1%, is

actually higher than the corresponding 9.6% difference for the US (27.3% minus 17.7%). Size

and value individually explain substantial additional variance, again with each adding more

R-squared in China than in the US. We also see that the explanatory power of the CH-3

factors, which are constructed using the largest 70% of stocks, improves when averaging just

over that universe (Panel B versus Panel A). The improvement is rather modest, however,

indicating that our factors explain substantial variance even for the shell stocks.

A striking China-US difference is that the market factor in China explains more than twice

as large a fraction of the typical stock’s variance than the market factor explains in the

US: 38.5% versus 17.7%. The high average R-squared in China is more typical of earlier

decades in US history. For example, Campbell et al. (2001) report average R-squared

values exceeding 30% in the US during the 1960s. Exploring potential sources of the higher

explanatory power of the market factor in China seems an interesting direction for future

research.

Naturally, diversification allows the CH-3 factors to explain larger fractions of return vari-

ance for portfolios than for individual stocks. For example, we form value-weighted portfo-
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lios within each of 37 industries, using classifications provided by Shenyin-Wanguo Security

Co., the leading source of industry classifications in China. On average across industries,

the CH-3 factors explain 82% of the variance of an industry’s return, versus 72% explained

by the market factor. For the anomalies we analyze later, the CH-3 factors typically explain

90% of the return variance for a portfolio formed within a decile of an anomaly ranking

variable, versus 85% explained by the market.

We keep negative-EP stocks in our sample and categorize them as growth stocks, observing

that negative-EP stocks comove with growth stocks. Returns on the negative-EP stocks

load negatively on a value factor constructed using just the positive-EP sample, with a

slope coefficient of −0.28 and a t-statistic of −3.31. As a robustness check, we exclude

negative-EP stocks and find all our results hold. On average across months, negative-EP

stocks account for 15% of the stocks in our universe.

In sum, size and value, as captured by our model’s SMB and VMG, are important factors

in China. This conclusion is supported by the factors’ average premiums as well as their

ability to explain return variances.

2.5.2. Including shell stocks

If we construct our three factors without eliminating the smallest 30% of stocks, the monthly

size premium increases to 1.36%, while the value premium shrinks to 0.87%. As observed

earlier, the value of being a potential reverse-merger shell has grown significantly over time,

creating a shell premium that accounts for a substantial portion of the smallest stocks’

average returns. Consequently, a size premium that includes shell stocks is distorted up-

ward by the shell premium. At the same time, the shell premium distorts the value premium

downward. Market values of small firms with persistently poor or negative earnings nevert-

heless include significant shell value, so those firms’ resulting low EP ratios classify them as

growth firms. Misidentifying shell firms as growth firms then understates the value premium

due to the shell premium in returns on those “growth” firms.
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High realized returns on shell stocks during our sample period should not necessarily be in-

terpreted as evidence of high expected returns. The high returns could reflect unanticipated

increases in rationally priced shells, or they could reflect overpricing of shells in the later

years (implying low expected subsequent returns). With rational pricing, an increase in

shell value could either raise or lower expected return on the shell firms’ stocks, depending

on the extent to which shell values contain systematic risks. We do not attempt to explain

expected returns on shell stocks. Lee, Qu, and Shen (2017) link expected returns on these

stocks to systematic risk related to regulatory shocks.

Including shell stocks also impairs the resulting factor model’s explanatory power. When

the three factors include the bottom 30% of stocks, they fail to price SMB and VMG

from CH-3, which excludes shells: shell-free SMB produces an alpha of −23 basis points

(bps) per month (t-statistic: −3.30), and VMG produces an alpha of 27 bps (t-statistic:

3.32). These results further confirm that the smallest 30% of stocks are rather different

animals. Although they account for just 7% of the market’s total capitalization, including

them significantly distorts the size and value premiums and impairs the resulting model’s

explanatory ability. Therefore, excluding shells is important if the goal is to build a model

that prices regular stocks.

2.5.3. Comparing size and value factors

The obvious contender to CH-3 is FF-3, which follows Fama and French (1993) in using

BM instead of EP as the value metric. In this section, we compare CH-3 to FF-3, asking

whether one model’s factors can explain the other’s. Using the same stock universe as

CH-3, we construct the FF-3 model’s size and value factors, combining the six size-BM

value-weighted portfolios (S/H, S/M, S/L, B/H, B/M, B/L). The size groups are again

split at the median market value, and the three BM groups are the top 30% (H), middle

40% (M), and bottom 30% (L). The returns on the resulting six portfolios are combined to
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form the FF-3 size and value factors as follows:

FFSMB =
1

3
(S/H + S/M + S/L)− 1

3
(B/H +B/M +B/L),

FFHML =
1

2
(S/H +B/H)− 1

2
(S/L+B/L).

The market factor is the same as in the CH-3 model.

Our CH-3 model outperforms FF-3 in China by a large margin. Panel A of Table 14 reports

the alphas and corresponding t-statistics of each model’s size and value factors with respect

to the other model. CH-3 prices the FF-3 size and value factors quite well. The CH-3

alpha of FFSMB is just −4 bps per month, with a t-statistic of −0.66, while the alpha of

FFHML is 34 bps, with a t-statistic of 0.97. In contrast, FF-3 prices neither the size nor

the value factor of CH-3. FF-3 removes less than half of our model’s 103 bps size premium,

leaving an SMB alpha of 47 bps with a t-statistic of 7.03. Most strikingly, the alpha of our

value factor, VMG, is 139 bps per month (16.68% annually), with a t-statistic of 7.93.

Panel B of Table 14 reports Gibbons-Ross-Shanken (GRS) tests of whether both of a model’s

size and value factors jointly have zero alphas with respect to the other model. The results

tell a similar story as above. The test of zero CH-3 alphas for both FFSMB and FFHML

fails to reject that null, with a p-value of 0.41. In contrast, the test strongly rejects jointly

zero FF-3 alphas for SMB and VMG, with a p-value less than 10−12. The Appendix

reports additional details of the regressions underlying the results in Table 14.

The above analysis takes a frequentist approach in comparing the abilities of models to ex-

plain each other’s factors. Another approach to making this model comparison is Bayesian,

proposed by Barillas and Shanken (2018) and also applied by Stambaugh and Yuan (2017).

This approach compares factor models in terms of posterior model probabilities across a

range of prior distributions. Consistent with the above results, this Bayesian comparison

of FF-3 to CH-3 also heavily favors the latter. Details of the analysis are presented in the

Appendix.
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In the US, two additional factors, profitability and investment, appear in recently proposed

models by Hou, Xue, and Zhang (2015) and Fama and French (2015). Guo et al. (2017)

construct the Fama-French five-factor model in China (FF-5) and find that, when bench-

marked against the CAPM, the investment factor is very weak, while the profitability factor

is significant. We also find that the investment effect is weak in China, yielding no signifi-

cant excess return spread or CAPM alpha. A profitability spread has a significant CAPM

alpha but does not survive CH-3. Accordingly, in the same tests as above, CH-3 again

dominates. The CH-3 alphas for the nonmarket factors in FF-5 produce a GRS p-value of

0.88, whereas the FF-5 alphas for the SMB and VMG factors of CH-3 produce a GRS

p-value of 0.0003. Details are presented in the Appendix.

2.6. Anomalies and factors

A factor model is often judged by its ability not only to price another model’s factors

but also to explain return anomalies. In this section, we explore the latter ability for CH-

3 versus FF-3. We start by compiling a set of anomalies in China that are reported in

the literature. For each of those anomalies, we compute a long-short return spread in our

sample, and we find ten anomalies that produce significant alphas with respect to a CAPM

benchmark. Our CH-3 model explains eight of the ten, while FF-3 explains three.

2.6.1. Anomalies in China

Our survey of the literature reveals 14 anomalies reported for China. The anomalies fall into

nine categories: size, value, profitability, volatility, reversal, turnover, investment, accruals,

and illiquidity. The literature documenting Chinese anomalies is rather heterogeneous with

respect to sample periods, data sources, and choice of benchmarking model (e.g., one factor,

three factors, or no factors). Our first step is to reexamine all of the anomalies using our

data and sample period. As discussed earlier, our reliance on post-2000 data and our choice

of WIND as the data provider offer the most reliable inferences. We also use one model,

the CAPM, to classify all the anomalies as being significant or not. Unlike the previous
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literature, we also evaluate the anomalies within our stock universe that eliminates the

smallest 30% so that shell values do not contaminate anomaly effects. For the 14 anomalies

we find in the literature, the Appendix reports their CAPM alphas as well as the conclusions

of each previous study examining one or more of the anomalies.

For our later analysis of the pricing abilities of the three-factor models, we retain only the

anomalies that generate significant CAPM alphas for long-short spreads between portfolios

of stocks in the extreme deciles. This nonparametric approach of comparing the extreme

deciles, as is common in the anomalies literature, is robust to any monotonic relation but

relies on having a sufficiently large sample to achieve power. After imposing our filters, the

number of stocks grows from 610 in 2000 to 1872 in 2016, so each portfolio contains at least

60 stocks even early in the sample period. Nevertheless, our 17-year period is somewhat

shorter than is typical of US studies, so any of our statements about statistical insignificance

of an anomaly must be tempered by this power consideration.

We compute alphas for both unconditional and size-neutral sorts. We conduct the latter sort

because correlation between an anomaly variable and size could obscure an anomaly’s effect

in an unconditional sort, given China’s large size premium of 12.36% annually. For each of

the 14 anomalies, the two sorting methods are implemented as follows. The unconditional

sort forms deciles by sorting on the anomaly variable. (For EP and CP, we sort only the

positive values.) We then construct a long-short strategy using deciles one and ten, forming

value-weighted portfolios within each decile. The long leg is the higher-performing one, as

reported by previous studies and confirmed in our sample. For the size-neutral version, we

first form size deciles by sorting on the previous month’s market value. Within each size

decile, we then create ten deciles formed by sorting on the anomaly variable. Finally, we

form the anomaly decile portfolios used in our tests. We pool all stocks that fall within

a given anomaly decile for any size decile. The returns on those stocks are then value-

weighted, using the individual stocks’ market capitalizations, to form the portfolio return

for that anomaly decile. As with the unconditional sort, the long-short strategy again uses
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deciles one and ten.

Our procedure reveals significant anomalies in six categories: size, value, profitability, vo-

latility, reversal, and turnover. Almost all of the anomalies in these categories produce

significant CAPM-adjusted return spreads from both unconditional and size-neutral sorts.

Although the investment, accrual, and illiquidity anomalies produce significant CAPM al-

phas in the US, they do not in China, for either unconditional or size-neutral sorts. The

estimated monthly alphas for investment are small, at 0.22% or less per month, and the

accrual alphas are fairly modest as well, at 0.42% or less. The estimated illiquidity alphas,

while not quite significant at conventional levels, are nevertheless economically substantial,

as high as 0.83% per month. This latter result raises the power issue mentioned earlier.

Also unlike the US, there is no momentum effect in China. There is, however, a reversal

effect, as past losers significantly outperform past winners.

Reversal effects in China are especially strong. Past performance over any length window

tends to reverse in the future. In contrast, past returns in the US correlate in different

directions with future returns, depending on the length of the past-return window. That is,

past one-month returns correlate negatively with future returns, past two-to-twelve-month

returns correlate positively (the well-documented momentum effect), and past three-to-five-

year returns correlate negatively. In China, past returns over various windows all predict

future reversals. In untabulated results, we find that past returns over windows of one,

three, six, and twelve months, as well as five years, all negatively predict future returns, in

monotonically weakening magnitudes. For a one-month window of past return, the decile

of biggest losers outperforms the biggest winners with a CAPM alpha of 18% annually (t-

statistic: 2.96). The alpha drops to 6% and becomes insignificant (t-statistic: 0.90) when

sorting by past one-year return.

We choose one-month reversal for the anomaly in the reversal category. One potential

source of short-run reversals that does not appear to be related to this anomaly is bid-ask

bounce, e.g., Niederhoffer and Osborne (1966). The WIND data beginning in 2012 allow
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us to average each stock’s best bid and ask prices at the day’s close of trading. Using

the resulting mid-price returns to compute the one-month reversal anomaly gives a result

virtually identical to (even slightly higher than) that obtained using closing price returns:

2.21% versus 2.15% for the average long-short monthly return over the 2012–2016 subperiod.

Altogether we find ten significant anomalies. Table 15 reports their average excess returns

along with their CAPM alphas and betas. The results for the unconditional sorts appear in

Panel A. The monthly CAPM alphas range from 0.53%, for 12-month turnover, to 1.49%,

for one-month reversal, and most display significant t-statistics. The average alpha for the

ten anomalies is 1.02%, and the average t-statistic is 2.21.

Panel B of Table 15 reports the corresponding results for the size-neutral sorts. Two diffe-

rences from Panel A emerge. First, size-neutralization substantially increases the alphas of

several anomalies. For example, the ROE monthly alpha increases by 0.57%, the EP alpha

increases by 0.52%, and the alpha for 12 month turnover increases by 0.21% bps. Second,

for almost all of the long-short spreads, standard deviations decrease and thus t-statistics

increase. The decrease in standard deviations confirms that size is an important risk fac-

tor. The size-neutral sorting essentially gives the long-short spreads a zero SMB loading

and thus smaller residual variance in the single-factor CAPM regression. Panel B conveys

a similar message as Panel A, just more strongly: all ten anomalies generate significant

CAPM-adjusted return spreads. The average monthly CAPM alpha for the size-neutral

sorts is 1.17%, and the average t-statistic is 2.91.

2.6.2. Factor model explanations of anomalies

Table 16 reports CH-3 alphas and factor loadings for the ten anomalies that survive the

CAPM, the same anomalies as in Table 16. For the most part, our CH-3 model explains

the anomalies well. Panel A of Table 16 reports results for the unconditional sorts. Not

surprisingly, CH-3 explains the size anomaly. More noteworthy is that the model explains

all the value anomalies (EP, BM, and CP), each of which loads positively on our value
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factor. The monthly CH-3 alphas of the three value anomalies are 0.64% or less, and the

highest t-statistic is just 1.02. These findings echo the earlier Fama-MacBeth regression

results, in which EP subsumes both BM and CP in terms of cross-sectional abilities to

explain average returns.

Perhaps unexpectedly, given the US evidence, CH-3 fully explains the profitability anomaly,

return on equity (ROE). In the US, profitability’s strong positive relation to average return

earns it a position as a factor in the models recently advanced by Hou, Xue, and Zhang

(2015) and Fama and French (2015). In China, however, profitability is captured by our

three-factor model. The ROE spread loads heavily on the value factor (t-statistic: 9.43),

and the CH-3 monthly alpha is −0.36%, with a t-statistic of just −0.88.

CH-3 also performs well on the volatility anomalies. It produces insignificant alphas for

return spreads based on the past month’s daily volatility and the past month’s maximum

daily return (MAX). The CH-3 monthly alphas for both anomalies are 0.27% or less, with

t-statistics no higher than 0.65. We also see that both of the anomalies load significantly

on the value factor. That is, low (high) volatility stocks behave similarly to value (growth)

stocks.

Recall from the previous section that the estimated CAPM alpha for the illiquidity anomaly,

while not quite clearing the statistical-significance hurdle, is as high as 0.83% per month.

In contrast, we find that the corresponding CH-3 alpha is just 0.23%, with at t-statistic

of 1.14. That is, if we were to add the illiquidity anomaly to our set of ten, given its

substantial estimated CAPM alpha, we see that illiquidity would also be included in the

list of anomalies that CH-3 explains.

To say for short that our CH-3 model “explains” an anomaly, as in several instances above,

must prompt a nod to the power issue mentioned earlier. Of course, more accurate would be

to say that the test presented by the anomaly merely fails to reject the model. In general,

however, the anomalies for which we can make this statement produce not only insignificant
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t-statistics but also fairly small estimated CH-3 alphas. Across the eight anomalies that

the CH-3 model explains, the average absolute estimated monthly alpha is 0.30% in the

unconditional sorts and 0.26% in size-neutral sorts. In contrast, the same anomalies produce

average absolute FF-3 alphas of 0.84% and 0.90% in the unconditional and size-neutral sorts.

CH-3 encounters its limitations with anomalies in the reversal and turnover categories.

While the reversal spread loads significantly on SMB, its monthly alpha is nevertheless

0.93% (t-statistic:1.70). In the turnover category, CH-3 accommodates 12 month turnover

well but has no success with abnormal 1 month turnover. The latter anomaly’s return

spread has small and insignificant loadings on SMB and VMG, and its CH-3 monthly

alpha is 1.28%, nearly identical to its CAPM alpha (t-statistic: 2.86).

The size-neutral sorts, reported in Panel B of Table 16, deliver the same conclusions as the

unconditional sorts in Panel A. CH-3 again explains all anomalies in the value, profitability,

and volatility categories. The monthly alphas for those anomalies have absolute values of

0.61% or less, with t-statistics less than 0.98 in magnitude. For the reversal and turnover

categories, CH-3 displays the same limitations as in Panel A. The CH-3 monthly alpha for

reversal is 1.13%, with a t-statistic of 2.12. Abnormal turnover has an alpha of 1.24%, with

a t-statistic of 3.04.

In the same format as Table 16, Table 17 reports the corresponding results for the FF-

3 model. These results clearly demonstrate that FF-3 performs substantially worse than

CH-3, leaving significant anomalies in five of the six categories—all categories except size.

Consider the results in Panel A, for example. Similar to FF-3’s inability to price our EP-

based value factor, FF-3 fails miserably with the EP anomaly, leaving a monthly alpha of

1.54% (t-statistic: 5.57). Moreover, as in the US, FF-3 cannot accommodate profitability.

The ROE anomaly leaves a monthly alpha of 1.75% (t-statistic: 5.67). Finally, for all

anomalies in the volatility, reversal, and turnover categories, FF-3 leaves both economically

and statistically significant alphas.
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Table 18 compares the abilities of models to explain anomalies by reporting the average

absolute alphas for the anomaly long-short spreads, the corresponding average absolute

t-statistics, and GRS tests of whether a given model produces jointly zero alphas across

anomalies. The competing models include unconditional means (i.e., zero factors), the

single-factor CAPM, and both of the three-factor models, CH-3 and FF-3. As in Tables

16 and 17, Panel A reports results for the unconditional sorts, and Panel B reports the

size-neutral sorts. First, in both panels, observe that CH-3 produces much smaller absolute

alphas than do the other models: 0.45% for CH-3 versus at least 0.9% for the other models.

In Panel A, for the unconditional sorts, the GRS p-value of 0.15 for CH-3 fails to reject

the joint hypothesis that all ten anomalies produce zero CH-3 alphas. In contrast, the

corresponding p-values for the other models are all less than 10−4. For the size-neutral

sorts (Panel B), a similar disparity occurs for a test of jointly zero alphas on nine anomalies

(size is omitted). The CH-3 p-value is 0.05 versus p-values less than 10−4 for the other

models. Because size, EP , and BM are used to construct factors, we also eliminate those

three anomalies and conduct the GRS test using the remaining seven. As shown in the last

two rows of each panel, the results barely change—CH-3 again dominates.

2.7. A four-factor model in China

Notwithstanding the impressive performance of CH-3, the model does leave significant

alphas for reversal and turnover anomalies, as noted earlier. Of course, we see above that

these anomalies are not troublesome enough to cause the larger set that includes them to

reject CH-3 when accounting for the multiple comparisons inherent in the GRS test. At

the same time, however, the latter test confronts the same power issue discussed earlier.

Moreover, the reversal and turnover anomalies both produce alpha estimates that are not

only statistically significant but also economically large, over 1% per month in the size-

neutral sorts reported in Panel B of Table 16. We therefore explore the addition of a

fourth factor based on turnover. In Section 7.1, we discuss this turnover factor’s sentiment-

based motivation, describe the factor’s construction, and explain how we also modify the
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size factor when building the four-factor model, CH-4. Section 7.2 then documents CH-4’s

ability to explain all of China’s reported anomalies.

2.7.1. A turnover factor

A potential source of high trading intensity in a stock is heightened optimism toward the

stock by sentiment-driven investors. This argument is advanced by Baker and Stein (2004),

for example, and Lee (2013) uses turnover empirically as a sentiment measure at the indi-

vidual stock level. High sentiment toward a stock can affect its price, driving it higher than

justified by fundamentals and thereby lowering its expected future return. Two assump-

tions underly such a scenario. One is a substantial presence in the market of irrational,

sentiment-driven traders. The other is the presence of short-sale impediments.

China’s stock market is especially suited to both assumptions. First, individual retail

investors are the most likely sentiment traders, and individual investors are the major

participants in China’s stock market. As of year-end 2015, over 101 million individuals

had trading accounts, and individuals held 88% of all free-floating shares (Jiang, Qian, and

Gong, 2016). Second, shorting is extremely costly in China.4

Shorting constraints not only impede the correction of overpricing. They also sign the likely

relation between sentiment and turnover. As Baker and Stein (2004) argue, when pessimism

about a stock prevails among sentiment-driven investors, those who do not already own the

stock simply do not participate in the market, as short-sale constraints prevent them from

acting on their pessimistic views. In contrast, when optimism prevails, sentiment-driven

investors can participate broadly in buying the stock. Thus, shorting constraints make high

turnover (greater liquidity) more likely to accompany strong optimism as opposed to strong

pessimism.

Given this sentiment-based motivation, to construct our fourth factor we use abnormal tur-

nover, which is the past month’s share turnover divided by the past year’s turnover. We

4Costs of short selling in China are discussed, for example, in the CSRC publication, Chinese Capital
Market Development Report (translated from Mandarin).
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construct this turnover factor in precisely the same manner as our value factor, again neu-

tralizing with respect to size. That is, abnormal turnover simply replaces EP , except the

factor goes long the low-turnover stocks, about which investors are relatively pessimistic,

and goes short the high-turnover stocks, for which greater optimism prevails. We denote

the resulting factor PMO (pessimistic minus optimistic). We also construct a new SMB,

taking a simple average of the EP -neutralized version of SMB from CH-3 and the cor-

responding turnover-neutralized version. The latter procedure for modifying SMB when

adding additional factors essentially follows Fama and French (2015). The new size and

turnover factors have annualized averages of 11% and 12%. The market and value factors

in CH-4 are the same as in CH-3.

2.7.2. Explaining all anomalies with four factors

For model CH-4, Table 19 reports results of the same analyses conducted for models CH-3

and FF-3 and reported in Tables 16 and 17. Adding the fourth factor produces insignificant

alphas not just for the abnormal turnover anomaly but also for reversal. In Panel A,

for the unconditional sorts, the CH-4 monthly alphas for those anomalies are 0.00% and

0.49%, with t-statistics of −0.01 and 0.87. The size-neutral sorts in Panel B produce similar

results. Adding the turnover factor essentially halves the reversal anomaly’s unconditional

alpha relative to its CH-3 value in Table 16, even though the rank correlation across stocks

between the sorting variables for the turnover and reversal anomalies is just 0.3, on average.

CH-4 accommodates the above two anomalies, thus now explaining all ten, while also lo-

wering the average magnitude of all the alphas. For the unconditional sorts, the average

absolute alpha drops to 0.30%, versus 0.45% for CH-3, and the average absolute t-statistic

drops to 0.69, versus 1.12 for CH-3. The GRS test of jointly zero alphas for all ten anomalies

produces a p-value of 0.41, versus 0.15 for CH-3, thereby moving even farther from rejecting

the null. Similar improvements occur for the size-neutral sorts.
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2.8. Conclusion

Size and value are important factors in the Chinese stock market, with both having average

premiums exceeding 12% per year. Capturing these factors well, however, requires that one

not simply replicate the Fama and French (1993) procedure developed for the US.

Unlike small listed stocks in the US, China’s tight IPO constraints cause returns on the

smallest stocks in China to be significantly contaminated by fluctuations in the value of

becoming corporate shells in reverse mergers. To avoid this contamination, before con-

structing factors we eliminate the smallest 30% of stocks, which account for just 7% of the

market’s total capitalization. Eliminating these stocks yields factors that perform substan-

tially better than using all listed stocks to construct factors, whereas the Fama and French

(1993) procedure essentially does the latter in the US.

Value effects in China are captured much better by EP than by BM , used in the US

by Fama and French (1993). The superiority of EP in China is demonstrated at least

two ways. First, in an investigation paralleling Fama and French (1992), cross-sectional

regressions reveal that EP subsumes other valuation ratios, including BM , in explaining

average stock returns. Second, our three-factor model, CH-3, with its EP -based value

factor, dominates the alternative FF-3 model, with its BM -based value factor. In a head-

to-head model comparison, CH-3 prices both the size and value factors in FF-3, whereas

FF-3 prices neither of the size and value factors in CH-3. In particular, FF-3 leaves a 17%

annual alpha for our value factor.

We also survey the literature that documents return anomalies in China, and we find ten

anomalies with significant CAPM alphas in our sample. Our CH-3 model explains eight

of the anomalies, including not just all value anomalies but also profitability and volatility

anomalies not explained in the US by the three-factor Fama-French model. In contrast, the

only two anomalies in China that FF-3 explains are size and BM. The two anomalies for

which CH-3 fails, return reversal and abnormal turnover, are both explained by a four-factor
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model that adds a sentiment-motivated turnover factor.
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Figure 5 Size distribution of firms acquired in reverse-merger deals

The figure displays the size distribution of firms acquired in reverse-merger deals from

January 2007 through December 2016. A total of 133 reverse-merger deals occurred, and

the fraction of those deals falling into a given firm size decile is displayed in the bar chart.

Size deciles reflect month-end market values three months before the deal month.
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Figure 6 Shell values over time.

Panel A displays the time series of the ratio of estimated shell value to firm market capitali-

zation. Panel B displays the time series of the estimated shell value (in RMB). The sample

period is January 2009 through December 2016.
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China US

Quantity Smallest Middle Largest Smallest Middle Largest

Panel A: k = 0

b 0.14 0.17 0.24 0.19 0.07 0.05

(6.34) (12.42) (17.28) (7.51) (6.99) (9.90)

R2 0.003 0.010 0.017 0.005 0.003 0.002

Panel B: k = 3

b 0.43 0.58 0.59 0.52 0.20 0.13

(9.74) (17.91) (17.60) (7.84) (6.03) (10.68)

R2 0.006 0.016 0.021 0.012 0.005 0.003

Table 10 Return reactions to earnings surprises across different size groups in China and
the US

The table reports slope estimates and R-squares in a panel regression of earnings-window

returns on earnings surprises,

Ri,t−k,t+k = a+ b SUEi,t + ei,t,

in which earnings are announced on day t; Ri,t−k,t+k is the cumulative return on stock

i, in excess of the market return, over the surrounding trading days from t − k through

t + k; SUEi,t = ∆i,t/σ(∆i); ∆i,t equals the year-over-year change in stock i’s quarterly

earnings; and σ(∆i) is the standard deviation of ∆i,t for the last eight quarters. Panel A

contains results for k = 0; Panel B contains results for k = 3. The regression is estimated

within each of three size groups in both the China and US markets. The groups are formed

based on the top 30%, middle 40%, and bottom 30% of the previous month’s market

capitalizations. The sample periods are January 2000 through December 2016 for China

and January 1980 through December 2016 for the US. The US returns data are from the

Center for Research in Security Prices (CRSP) and the earnings data are from Compustat.

White (1980) heteroskedasticity-consistent t-statistics are reported in parentheses. The

estimates of b are multiplied by 100.
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The table reports average slope coefficients from month-by-month Fama-MacBeth regres-

sions. Individual stock returns are regressed cross-sectionally on stock characteristics as of

the previous month. The columns correspond to different regression specifications, with no-

nempty rows indicating the included regressors. The regressors include preranking CAPM

βt estimated using the past 12 months of daily returns with a five-lag Dimson (1979) cor-

rection; the log of month-end market cap (logM); the log of book-to-market (logBM); the

log of assets-to-market (logAM); EP+, which equals the positive values of earnings-to-

price, and zero otherwise; D(EP < 0), which equals one if earnings are negative, and zero

otherwise; CP+; and D(CP < 0) (with the last two similarly defined). The last row reports

the average adjusted R-squared for each specification. The sample period is January 2000

through December 2016. The t-statistics based on Newey and West (1987) standard errors

with four lags are reported in parentheses.
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Correlations

Factor Mean Std. dev. t-stat. MKT SMB VMG

MKT 0.66 8.09 1.16 1.00 0.12 −0.27
SMB 1.03 4.52 3.25 0.12 1.00 −0.62
VMG 1.14 3.75 4.34 −0.27 −0.62 1.00

Table 12 Summary statistics for the CH-3 factors

This table reports the means, standard deviations, t-statistics, and pairwise correlations for

the three factors in the CH-3 model. The means and standard deviations are expressed

in percent per month. The sample period is January 2000 through December 2016 (204

months).
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Factors Avg. R-square

Panel A: All individual stocks in China

MKT 0.385
MKT , SMB 0.507
MKT , VMG 0.471
MKT , SMB, VMG 0.536

Panel B: All but the smallest 30% of stocks in China

MKT 0.417
MKT , SMB 0.528
MKT , VMG 0.501
MKT , SMB, VMG 0.562

Panel C: All individual stocks in the US

MKT 0.177
MKT , SMB 0.231
MKT , HML 0.226
MKT , SMB, HML 0.273

Table 13 Average R-squares for individual stocks in China and the US

The table compares the average R-squares in regressions of monthly individual stocks’

returns on factors in China’s and the US stock markets. Regressions are estimated for

four models: one with just the excess market return (MKT ); one with MKT plus the size

factor; one with MKT plus value factor; and the three-factor model with market plus size

and value factors. In China’s stock market, we use our CH-3 model’s market (MKT ), size

(SMB), and value (VMG) factors, while in the US market, we use FF-3’s three factors:

market, SMB and BM -based HML. For each stock, we run rolling-window regressions of

each stock’s monthly returns on factors over the past three years (36 months). We average

the R-square across time for each stock and then compute the mean of these averages across

all stocks. Panel A reports average R-squares across all individual stocks on China’s main

boards and the Growth Enterprise Market (GEM), including the bottom 30% of stocks.

Panel B reports average R-squares of all but the smallest 30% of stocks. Panel C reports

average R-squares of all common stocks from the NYSE, Amex, and Nasdaq for the US.

The sample periods for both China and the US are from January 2000 through December

2016 (204 months).
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Alphas with respect to:

Factors CH-3 FF-3

Panel A: Alpha (t-statistic)

FFSMB -0.04 -
(-0.66) -

FFHML 0.34 -
(0.97) -

SMB - 0.47
- (7.03)

VMG - 1.39
- (7.93)

Panel B: GRS F -statistics (p-value)

FFSMB, FFHML 0.88 -

(0.41) -

SMB, VMG - 33.90
- (2.14× 10−13)

Table 14 Abilities of models CH-3 and FF-3 to explain each other’s size and value factors

Panel A reports a factor’s estimated monthly alpha (in percent) with respect to the other

model (with White, 1980, heteroskedasticity-consistent t-statistics in parentheses). Panel

B computes the Gibbons-Ross-Shanken (1989) F -test of whether a given model produces

zero alphas for the factors of the other model (p-value in parentheses). The sample period

is January 2000 through December 2016.
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Category Anomaly R̄ α β t(R̄) t(α) t(β)

Panel A: Unconditional sorts

Size Market cap 1.09 0.97 0.18 1.92 1.81 1.90
Value EP 1.27 1.37 −0.16 2.58 2.93 −2.15
Value BM 1.14 1.14 0.01 2.08 2.13 0.06
Value CP 0.73 0.70 0.04 1.67 1.69 0.55
Profitability ROE 0.83 0.93 −0.15 1.77 2.11 −2.09
Volatility 1-Month vol. 0.81 1.03 −0.34 1.64 2.31 −5.55
Volatility MAX 0.57 0.81 −0.36 1.26 2.02 −6.39
Reversal 1-Month return 1.47 1.49 −0.02 2.96 3.06 −0.22
Reversal 12-Month turn. 0.33 0.53 −0.29 0.63 1.09 −3.46
Turnover 1-Mo. abn. turn. 1.14 1.27 −0.19 2.44 2.92 −2.66

Panel B: Size-neutral sorts

Value EP 1.80 1.89 −0.14 4.32 4.72 −2.25
Value BM 1.14 1.10 0.05 2.23 2.22 0.64
Value CP 0.78 0.76 0.04 2.27 2.25 0.71
Profitability ROE 1.45 1.50 −0.07 3.90 4.11 −1.30
Volatility 1-Month Vol. 0.66 0.90 −0.37 1.41 2.19 −6.20
Volatility MAX 0.39 0.60 −0.32 0.93 1.61 −6.14
Reversal 1-Month return 1.67 1.65 0.02 3.65 3.68 0.32
Reversal 12-Month turn. 0.51 0.74 −0.34 1.06 1.74 −4.94
Turnover 1-Mo. abn. turn. 1.29 1.39 −0.15 3.19 3.68 −2.56

Table 15 CAPM alphas and betas for anomalies

For each of ten anomalies, the table reports the monthly long-short return spreads, average

(R̄), CAPM alpha (α), and CAPM beta (β). In Panel A, for the unconditional sorts,

the long leg of an anomaly is the value-weighted portfolio of stocks in the lowest decile of

the anomaly measure, and the short leg contains the stocks in the highest decile, with a

high value of the measure being associated with lower return. In Panel B, long/short legs

are neutralized with respect to size. That is, we first form size deciles by sorting on the

previous month’s market value. Within each size decile, we then create ten deciles formed

by sorting on the anomaly variable. Finally, we form the anomaly’s decile portfolios, with

each portfolio pooling the stocks in a given anomaly decile across the size groups, again with

value weighting. Panel B omits the size anomaly, whose alpha equals zero by construction

with size-neutral sorts. Our sample period is January 2000 through December 2016 (204

months). All t-statistics are based on the heteroskedasticity-consistent standard errors of

White (1980).
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Category Anomaly α βMKT βSMB βV MG t(α) t(βMKT ) t(βSMB) t(βV MG)

Panel A: Unconditional sorts

Size Market cap 0.21 0.01 1.45 −0.54 1.71 0.77 40.88 −11.70
Value EP 0.04 0.04 −0.38 1.40 0.16 1.31 −4.73 14.75
Value BM 0.64 0.06 −0.03 0.43 1.02 0.65 −0.14 1.64
Value CP 0.20 0.14 −0.28 0.64 0.45 2.10 −1.95 4.00
Profitability ROE −0.36 0.03 −0.29 1.28 −0.88 0.70 −2.35 9.43
Volatility 1-Month vol. 0.23 −0.23 −0.12 0.75 0.44 −3.81 −0.67 3.86
Volatility MAX 0.27 −0.30 −0.05 0.48 0.65 −4.57 −0.30 2.55
Reversal 1-Month return 0.93 −0.06 0.56 0.01 1.70 −0.69 3.15 0.03
Turnover 12-Month turn. 0.42 −0.14 −0.85 0.77 1.30 −3.69 −9.33 7.90
Turnover 1-Mo. abn. turn. 1.28 −0.22 0.18 −0.16 2.86 −2.78 0.93 −0.76

Panel B: Size-neutral sorts

Value EP 0.23 0.02 0.05 1.32 0.82 0.47 0.57 11.97
Value BM 0.61 0.13 −0.15 0.53 0.98 1.60 −0.80 2.19
Value CP 0.18 0.11 −0.06 0.52 0.54 1.98 −0.50 3.84
Profitability ROE −0.37 0.05 0.41 1.20 −1.04 1.23 4.14 9.66
Volatility 1-Month vol. 0.20 −0.28 −0.08 0.64 0.42 −4.96 −0.49 3.34
Volatility MAX 0.00 −0.26 0.05 0.45 0.00 −4.38 0.30 2.50
Reversal 1-Month return 1.13 0.01 0.41 0.10 2.12 0.11 2.59 0.55
Turnover 12-Month turn. 0.25 −0.22 −0.43 0.74 0.69 −4.94 −3.91 5.74
Turnover 1-Mo. abn. turn. 1.24 −0.18 0.25 −0.08 3.04 −2.79 1.55 −0.43

Table 16 CH-3 alphas and factor loadings for anomalies

For each of ten anomalies, the table reports the monthly long-short return spread’s CH-3

alpha and factor loadings. For each anomaly, the regression estimated is

Rt = α+ βMKTMKTt + βSMBSMBt + βVMGVMGt + εt,

where Rt is the anomaly’s long-short return spread in month t, MKTt is the excess market

return, SMBt is CH-3’s size factor, and VMGt is the EP -based value factor. In Panel A,

for the unconditional sorts, the long leg of an anomaly is the value-weighted portfolio of

stocks in the lowest decile of the anomaly measure, and the short leg contains the stocks

in the highest decile, with a high value of the measure being associated with lower return.

In Panel B, long/short legs are neutralized with respect to size. That is, we first form

size deciles by sorting on the previous month’s market value. Within each size decile, we

then create ten deciles formed by sorting on the anomaly variable. Finally, we form the

anomaly’s decile portfolios, with each portfolio pooling the stocks in a given anomaly decile

across the size groups, again with value weighting. Panel B omits the size anomaly, whose

alpha equals zero by construction with size-neutral sorts. Our sample period is January

2000 through December 2016. All t-statistics are based on the heteroskedasticity-consistent

standard errors of White (1980).
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Category Anomaly α βMKT βSMB βHML t(α) t(βMKT ) t(βSMB) t(βHML)

Panel A: Unconditional sorts

Size Market cap 0.16 0.04 1.55 −0.11 1.36 1.86 34.29 −2.43
Value EP 1.54 −0.07 −0.98 0.48 5.57 −1.63 −13.29 6.54
Value BM −0.28 0.00 0.12 1.60 −1.25 0.09 1.48 30.61
Value CP 0.63 0.08 −0.49 0.43 1.40 1.31 −3.84 2.31
Profitability ROE 1.75 −0.06 −1.01 −0.28 5.67 −1.36 −12.74 −3.08
Volatility 1-Month vol. 0.83 −0.30 −0.40 0.52 2.11 −5.41 −3.07 4.18
Volatility MAX 0.74 −0.33 −0.28 0.28 1.85 −5.70 −1.79 1.96
Reversal 1-Month return 0.94 −0.06 0.53 0.28 1.97 −0.83 3.50 1.58
Turnover 12-Month turn. 0.83 −0.19 −1.08 0.38 2.96 −4.97 −13.10 3.72
Turnover 1-Mo. abn. turn. 1.34 −0.21 0.16 −0.20 2.86 −2.76 0.95 −0.99

Panel B: Size-neutral sorts

Value EP 1.76 −0.09 −0.53 0.52 5.49 −1.79 −6.52 6.17
Value BM −0.01 0.07 −0.10 1.39 −0.04 1.75 −1.36 20.12
Value CP 0.52 0.06 −0.23 0.44 1.73 1.33 −2.33 4.05
Profitability ROE 2.01 −0.04 −0.36 −0.35 5.72 −0.71 −3.75 −3.38
Volatility 1-Month vol. 0.76 −0.33 −0.33 0.40 2.06 −6.04 −2.64 3.47
Volatility MAX 0.43 −0.30 −0.16 0.31 1.14 −5.67 −1.10 2.60
Reversal 1-Month return 1.21 −0.01 0.35 0.29 2.55 −0.09 2.63 1.78
Turnover 12-Month turn. 0.80 −0.28 −0.68 0.39 2.46 −5.89 −6.37 3.74
Turnover 1-Mo. abn. turn. 1.37 −0.17 0.21 −0.12 3.26 −2.82 1.43 −0.68

Table 17 FF-3 alphas and factor loadings for anomalies

For each of ten anomalies, the table reports the monthly long-short return spread’s CH-3

alpha and factor loadings. For each anomaly, the regression estimated is

Rt = α+ βMKTMKTt + βSMBFFSMBt + βHMLFFHMLt + εt,

where Rt is the anomaly’s long-short return spread in month t, MKTt is the excess market

return, SMBt is FF-3’s size factor, and FFHMLt is the BM -based value factor. In Panel

A, for the unconditional sorts, the long leg of an anomaly is the value-weighted portfolio of

stocks in the lowest decile of the anomaly measure, and the short leg contains the stocks

in the highest decile, with a high value of the measure being associated with lower return.

In Panel B, long/short legs are neutralized with respect to size. That is, we first form

size deciles by sorting on the previous month’s market value. Within each size decile, we

then create ten deciles formed by sorting on the anomaly variable. Finally, we form the

anomaly’s decile portfolios, with each portfolio pooling the stocks in a given anomaly decile

across the size groups, again with value weighting. Panel B omits the size anomaly, whose

alpha equals zero by construction with size-neutral sorts. Our sample period is January

2000 through December 2016. All t-statistics are based on the heteroskedasticity-consistent

standard errors of White (1980).
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Measure Unadjusted CAPM FF-3 CH-3

Panel A: Unconditional sorts

Average |α| 0.94 1.02 0.90 0.45
Average |t| 1.89 2.21 2.70 1.12

GRS10 7.30 7.31 6.00 1.49
p10 <0.0001 <0.0001 <0.0001 0.15

GRS7 4.40 4.45 6.86 1.74
p7 0.0002 0.0001 0.0001 0.10

Panel B: Size-neutral sorts

Average |α| 1.08 1.17 0.99 0.47
Average |t| 2.55 2.91 2.72 1.07

GRS9 8.24 8.08 7.97 1.97
p9 <0.0001 <0.0001 <0.0001 0.05

GRS7 8.15 8.10 9.11 2.33
p7 <0.0001 <0.0001 <0.0001 0.03

Table 18 Comparing the abilities of models to explain anomalies

The table reports measures summarizing the degree to which anomalies produce alphas

under three different factor models: CAPM, FF-3, and CH-3. Also reported are measures

for “unadjusted” return spreads (i.e., for a model with no factors). For each model, the

table reports the average absolute monthly alpha (in percent), average absolute t-statistic,

the Gibbons, Ross, and Shanken (1989) “GRS” F -statistic with associated p-value, and the

number of anomalies for which the model produces the smallest absolute alpha among the

four models. In Panel A, for the unconditional sorts, the long leg of an anomaly is the value-

weighted portfolio of stocks in the lowest decile of the anomaly measure, and the short leg

contains the stocks in the highest decile, with a high value of the measure being associated

with lower return. In Panel B, long/short legs are neutralized with respect to size. That

is, we first form size deciles by sorting on the previous month’s market value. Within each

size decile, we then create ten deciles formed by sorting on the anomaly variable. Finally,

we form the anomaly’s decile portfolios, with each portfolio pooling the stocks in a given

anomaly decile across the size groups, again with value weighting. Two versions of the

GRS test are reported. In Panel A, GRS10 uses all ten anomalies, while GRS7 excludes the

anomalies for size, BM , and EP , which are variables used to construct factors. Panel B

92



omits the size anomaly, whose alpha equals zero by construction with size-neutral sorts. All

t-statistics are based on the heteroskedasticity-consistent standard errors of White (1980).

The sample period is from January 2000 through December 2016 (204 months).
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For each of ten anomalies, the table reports the monthly long-short return spread’s CH-4

alpha and factor loadings. For each anomaly, the regression estimated is

Rt = α+ βMKTMKTt + βSMBSMBt + βVMGVMGt + βPMOPMOt + εt,

in which Rt is the anomaly’s long-short return spread in month t, MKTt is the excess

market return, SMBt is CH-3’s size factor, VMGt is the EP -based value factor, and

PMOt (pessimistic minus optimistic) is the sentiment factor based on abnormal turnover.

In Panel A, for the unconditional sorts, the long leg of an anomaly is the value-weighted

portfolio of stocks in the lowest decile of the anomaly measure, and the short leg contains

the stocks in the highest decile, with a high value of the measure being associated with lower

return. In Panel B, long/short legs are neutralized with respect to size. That is, we first

form size deciles by sorting on the previous month’s market value. Within each size decile,

we then create ten deciles formed by sorting on the anomaly variable. Finally, we form the

anomaly’s decile portfolios, with each portfolio pooling the stocks in a given anomaly decile

across the size groups, again with value weighting. Panel B omits the size anomaly, whose

alpha equals zero by construction with size-neutral sorts. Our sample period is January

2000 through December 2016. All t-statistics are based on the heteroskedasticity-consistent

standard errors of White (1980).
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