ANALYTICAL AND NUMERICAL STUDY ON

CARBUNCLE PHENOMENON

NADIHAH WAHI

UNIVERSITI SAINS MALAYSIA

2016

ANALYTICAL AND NUMERICAL STUDY ON CARBUNCLE

PHENOMENON

by

NADIHAH WAHI

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philospohy

December 2016

ACKNOWLEDGEMENT

Praise be to Allah. I am grateful and thankful to Almighty God for His Mercy and Guidance that I am able to finish this thesis. First, I would like to thank Ministry of Higher Education (MOHE) and Universiti Putra Malaysia (UPM) for giving me financial support without which I am unable to carry this research. Second, I am thankful to my supervisor Dr. Farzad Ismail whose relentless support and guidance from the first year to the end of my research. He is always being helpful whenever I asked questions. I am very happy and content that I have chosen him as my supervisor. Moreover, his other students were also being a great help in the first year on the C + + coding and debugging. I would also like to mention several people that helped me in the preamble years regarding the field and the direction of my topic of study; Dr. Daniel Zaide from Michigan Ann Arbor, who I firstly met in a close seminar in USM and later we discussed through email, Dr. Nor Azwadi from Universiti Teknologi Malaysia (UTM) for giving his unpublished textbook on Lattice-Bolztmann Method (LBM) but due to time constraint I could not applied it. Furthermore, Prof. van Leer who gave his notes that I could not find from the subscribed journals and I initially thought that he would not reply. I really appericate their help. Then, the staff from CATIA lab who helped me with Maple which is unstable to use in the first place because it kept faulting on the server and they have to reinstall the software several times until it stabilize. My utmost grateful goes to my two elder sisters, who even though they themselves do not pursue graduate study, their motivation keeping me headstrong. A special thanks and appreciation goes to my mother, who seflessly love, support and believe in me throughout my life. Finally, dad, how I wish that you would still be here.

TABLE OF CONTENTS

Acknowledgement	ii
Table of Contents	iii
List of Figures	vii
List of Abbreviations	xx
List of Symbols	xxi
Abstrak	xxii
Abstract	xxiii

CHAPTER 1 – INTRODUCTION

1.1	Overview: Shock Waves in Engineering Applications	
	1.1.1 High Speed Flow Over a Blunt-body	2
1.2	Problem Statement	5
1.3	Research Objectives	6
1.4	Research Scope	6
1.5	Thesis Overview	7

CHAPTER 2 – LITERATURE REVIEWS

2.1 Instability in Shock Wave		8	
	2.1.1	Shock Instability Preamble	8
	2.1.2	Evolution of Shock Instability	10
2.2	Shock	Anomalies: The Early Prognoses	11
	2.2.1	Slowly Moving Shocks	11
	2.2.2	Hypersonic Heating Problem	13
	2.2.3	Carbuncle Phenomenon	14

CHAPTER 3 – METHODOLOGY PART I: ANALYTICAL ANALYSIS

3.1	Gover	ning Equa	ations	17	
3.2	Analy	tical Patho	cal Pathology Analysis 1		
	3.2.1	.1 One-Dimensional			
		3.2.1.1	Burgers' Equation	21	
		3.2.1.2	Isothermal Equations	21	
		3.2.1.3	Full 1D Euler Equations	23	
	3.2.2	Full 2D	Euler Equations	26	
	3.2.3	Analysis	s on the Eigenvalues	30	

CHAPTER 4 – METHODOLOGY PART II: COMPUTATIONAL TESTS

4.1	Proble	em Setup .		32
	4.1.1	Initial C	onditions and Boundary Conditions	33
	4.1.2	Grid Co	nfiguration	35
4.2	Comp	utational l	Procedures	36
	4.2.1	One-Dir	nensional	37
		4.2.1.1	Burgers' Equation	37
		4.2.1.2	Isothermal Equations	39
	4.2.2	Full 1D	Euler Equations	41
		4.2.2.1	Roe's flux	43
		4.2.2.2	AUSM-Family Flux	44
		4.2.2.3	EC's flux	46
	4.2.3	Individu	al Perturbation	47
		4.2.3.1	Roe's flux	47
		4.2.3.2	AUSM-Family Flux	51
		4.2.3.3	EC Flux	57
4.3	2D Fu	ll Euler E	quations	60

4.3.1	1.5D		60
	4.3.1.1	Roe's Flux	62
	4.3.1.2	AUSM-Family Flux	67
	4.3.1.3	EC Flux	68
4.3.2	Individu	al Perturbation	68
	4.3.2.1	Roe's Flux	69
	4.3.2.2	AUSM-Family Flux	71
	4.3.2.3	EC's Flux	75

CHAPTER 5 – SOLUTION TO THE CARBUNCLE PROBLEM

5.1	A Pro	posed Cur	e: The Final Prognosis	77
5.2	Fluctu	ation Ren	noval	78
	5.2.1	One-Dir	nensional	79
		5.2.1.1	Roe's Flux	79
		5.2.1.2	AUSM-Family Flux	83
		5.2.1.3	EC's Flux	87
5.3	Other	Variables		89
	5.3.1	Moment	um Dissipation	90
		5.3.1.1	Roe's Flux	90
		5.3.1.2	AUSM-Family Flux	92
		5.3.1.3	EC's Flux	94
	5.3.2	Energy l	Dissipation	95
		5.3.2.1	Roe's Flux	95
		5.3.2.2	AUSM-Family Flux	96
		5.3.2.3	EC's Flux	98
5.4	Fluctu	ation Ren	noval for 1.5D Full Euler	99
	5.4.1	Density	Dissipation	99

		5.4.1.1	Roe's Flux	99
		5.4.1.2	AUSM-Family Flux	101
		5.4.1.3	EC's Flux	103
5.5	Other	Variables	Dissipation	105
	5.5.1	Moment	um Dissipation	105
		5.5.1.1	Roe's Flux	105
		5.5.1.2	AUSM-Family Flux	107
		5.5.1.3	EC's Flux	110
	5.5.2	Energy I	Dissipation	111
		5.5.2.1	Roe's Flux	111
		5.5.2.2	AUSM-Family Flux	113
		5.5.2.3	EC's Flux	115
5.6	Concl	usion on tl	he Instability Removal	116

CHAPTER 6 – CONCLUSION AND FUTURE RESEARCH

6.1	Final Denouement	117
6.2	Closing Remarks	118
6.3	Future Research	119

eferences	20
-----------	----

APPENDICES

APPENDIX A –	2D JACOBIANS FOR PERTURBED CONSERVATIVE
	VARIABLES

APPENDIX B – 2D DERIVATION FOR EIGENVALUES AND EIGENVECTORS

LIST OF FIGURES

Page

Figure 1.1	In 1887 Vienna, Ernst Mach presented his picture of shock wave formed when a bullet is fired. Scanned from [1].	2
Figure 1.2	Normal Shock formed in a 1D duct. The shock is described by the double thin lines of discontinuity	3
Figure 1.3	An example of oblique shock wave formed when a low angled wedged body is inserted to the stream	3
Figure 1.4	A blunt body is subjected to highspeed flow forming a detached shock and bow like shape	4
Figure 4.1	1D grid computation.	35
Figure 4.2	Grid setup for 1.5D case	36
Figure 4.3	Initial profile for stationary shock in Burger's equation	37
Figure 4.4	Solutions for Burgers' equation at three different perturbation values. The residual is showing no evidence of instability.	38
Figure 4.4(a)	Results	38
Figure 4.4(b)	Residual	38
Figure 4.5	Initial profile for isothermal equations.	39
Figure 4.5(a)	Density	39
Figure 4.5(b)	Momentum	39
Figure 4.6	The solution of conservative variables at timesteps= 5000 when perturbed at $\delta = 0.9$	40
Figure 4.6(a)	Density	40
Figure 4.6(b)	Momentum	40
Figure 4.7	Residual error resulted from the perturbation	41
Figure 4.8	Initial configuration for conservative variables in full Euler equations for Mach= 3.0	42
Figure 4.8(a)	Density	42
Figure 4.8(b)	Momentum	42

Figure 4.8(c)	Energy	42
Figure 4.9	Computational solutions for all conservative variables when they were perturbed simultaneously using Roe's flux scheme for $\delta = 0.8$.	43
Figure 4.9(a)	Density	43
Figure 4.9(b)	Momentum	43
Figure 4.9(c)	Energy	43
Figure 4.9(d)	Residual Error	43
Figure 4.10	Computational solutions for all conservative variables when they were perturbed simultaneously using AUSM ⁺ flux scheme.	44
Figure 4.10(a)	Density	44
Figure 4.10(b)	Momentum	44
Figure 4.10(c)	Energy	44
Figure 4.10(d)	Residual Error	44
Figure 4.11	Computational solutions for all conservative variables when they were perturbed simultaneously using AUSM ⁺ -up flux scheme.	45
Figure 4.11(a)	Density	45
Figure 4.11(b)	Momentum	45
Figure 4.11(c)	Energy	45
Figure 4.11(d)	Residual Error	45
Figure 4.12	Computational solutions for all conservative variables when they were perturbed simultaneously using <i>EC</i> flux scheme	46
Figure 4.12(a)	Density	46
Figure 4.12(b)	Momentum	46
Figure 4.12(c)	Energy	46
Figure 4.12(d)	Residual Error	46
Figure 4.13	Solutions for conservative variables when only the density was perturbed which excercised similar results when all varibles were perturbed.	48

Figure 4.13(a)	Density	48
Figure 4.13(b)	Momentum	48
Figure 4.13(c)	Energy	48
Figure 4.13(d)	Residual Error	48
Figure 4.14	Solutions for all variables and residual error when only the momentum variable was perturbed.	49
Figure 4.14(a)	Density	49
Figure 4.14(b)	Momentum	49
Figure 4.14(c)	Energy	49
Figure 4.14(d)	Residual Error	49
Figure 4.15	Solutions for all variables and residual error when only the energy variable was perturbed.	50
Figure 4.15(a)	Density	50
Figure 4.15(b)	Momentum	50
Figure 4.15(c)	Energy	50
Figure 4.15(d)	Residual Error	50
Figure 4.16	When density only was perturbed in AUSM ⁺ scheme.	51
Figure 4.16(a)	Density	51
Figure 4.16(b)	Momentum	51
Figure 4.16(c)	Energy	51
Figure 4.16(d)	Residual Error	51
Figure 4.17	Solutions for momentum only perturbation for AUSM ⁺ .	52
Figure 4.17(a)	Density	52
Figure 4.17(b)	Momentum	52
Figure 4.17(c)	Energy	52
Figure 4.17(d)	Residual Error	52
Figure 4.18	Solutions for AUSM ⁺ when energy only was perturbed.	53

Figure 4.18(a)	Density	53
Figure 4.18(b)	Momentum	53
Figure 4.18(c)	Energy	53
Figure 4.18(d)	Residual Error	53
Figure 4.19	AUSM ⁺ -up scheme for density only perturbation.	54
Figure 4.19(a)	Density	54
Figure 4.19(b)	Momentum	54
Figure 4.19(c)	Energy	54
Figure 4.19(d)	Residual Error	54
Figure 4.20	Solutions for AUSM ⁺ -up when momentum was perturbed.	55
Figure 4.20(a)	Density	55
Figure 4.20(b)	Momentum	55
Figure 4.20(c)	Energy	55
Figure 4.20(d)	Residual Error	55
Figure 4.21	Solutions for AUSM ⁺ -up when energy only was perturbed.	56
Figure 4.21(a)	Density	56
Figure 4.21(b)	Momentum	56
Figure 4.21(c)	Energy	56
Figure 4.21(d)	Residual Error	56
Figure 4.22	Behavior of EC's flux when the only the density was perturbed.	57
Figure 4.22(a)	Density	57
Figure 4.22(b)	Momentum	57
Figure 4.22(c)	Energy	57
Figure 4.22(d)	Residual Error	57
Figure 4.23	Behavior of EC's flux when only the momentum was perturbed.	58
Figure 4.23(a)	Density	58
Figure 4.23(b)	Momentum	58

Figure 4.23(c)	Energy	58
Figure 4.23(d)	Residual Error	58
Figure 4.24	Behavior of EC's flux when the only the energy was perturbed.	59
Figure 4.24(a)	Density	59
Figure 4.24(b)	Momentum	59
Figure 4.24(c)	Energy	59
Figure 4.24(d)	Residual Error	59
Figure 4.25	The initial conditions for conservative variables and initial shock profile for Mach number	61
Figure 4.25(a)	Density	61
Figure 4.25(b)	X-Momentum	61
Figure 4.25(c)	Y-Momentum	61
Figure 4.25(d)	Energy	61
Figure 4.25(e)	Mach	61
Figure 4.26	The pimple	63
Figure 4.27	The bleeding	64
Figure 4.28	The carbuncle	65
Figure 4.29	Residual error for Roe's flux scheme in 1.5D	66
Figure 4.30	Mach's profile for two AUSM's family fluxes depicted at the bleeding stage of 1.5D carbuncle.	67
Figure 4.30(a)	AUSM ⁺	67
Figure 4.30(b)	AUSM ⁺ -up	67
Figure 4.30(c)	Residual error of AUSM ⁺	67
Figure 4.30(d)	Residual error of AUSM ⁺ -up	67
Figure 4.31	Mach's contour for EC flux scheme.	68
Figure 4.31(a)	Mach contour	68
Figure 4.31(b)	Residual Error	68

Figure 4.32	Comparing the Mach solutions resulting from separate perturbation on conservative variables using Roe's flux.	69
Figure 4.32(a)	Density only	69
Figure 4.32(b)	X-momentum only	69
Figure 4.32(c)	Y-momentum only	69
Figure 4.32(d)	Energy only	69
Figure 4.33	The corresponding residual error for separate perturbation.	70
Figure 4.33(a)	Residual for density only	70
Figure 4.33(b)	Residual for x-momentum only	70
Figure 4.33(c)	Residual for y-momentum only	70
Figure 4.33(d)	Residual for energy only	70
Figure 4.34	Comparing the solutions resulting from separate perturbation on conservative variables using AUSM ⁺ .	71
Figure 4.34(a)	Density only	71
Figure 4.34(b)	X-momentum only	71
Figure 4.34(c)	Y-momentum only	71
Figure 4.34(d)	Energy only	71
Figure 4.35	Comparing the residual error for separate perturbation using AUSM ⁺ .	72
Figure 4.35(a)	Residual for density only	72
Figure 4.35(b)	Residual for x-momentum only	72
Figure 4.35(c)	Residual for y-momentum only	72
Figure 4.35(d)	Residual for energy only	72
Figure 4.36	Comparing the solutions resulting from separate perturbation on conservative variables using AUSM ⁺ -up.	73
Figure 4.36(a)	Density only	73
Figure 4.36(b)	X-momentum only	73
Figure 4.36(c)	Y-momentum only	73

Figure 4.36(d) H	Energy only
------------------	-------------

Figure 4.36(d)	Energy only	73
Figure 4.37	Comparing the residual error resulting from separate perturbation on conservative variables using AUSM ⁺ -up.	74
Figure 4.37(a)	Residual for density only	74
Figure 4.37(b)	Residual for x-momentum only	74
Figure 4.37(c)	Residual for y-momentum only	74
Figure 4.37(d)	Residual for energy only	74
Figure 4.38	Mach's profile from EC's flux on individual perturbation.	75
Figure 4.38(a)	Density only	75
Figure 4.38(b)	X-momentum only	75
Figure 4.38(c)	Y-momentum only	75
Figure 4.38(d)	Energy only	75
Figure 4.39	Residual error comparison for each conservative variables disturbance.	76
Figure 4.39(a)	Residual for density only	76
Figure 4.39(b)	Residual for x-momentum only	76
Figure 4.39(c)	Residual for y-momentum only	76
Figure 4.39(d)	Residual for energy only	76
Figure 5.1	The difference of before (left column) and after (right column) the dissipative insertion on density variable in isothermal equations using Roe's flux.	80
Figure 5.1(a)	Density-before	80
Figure 5.1(b)	Density-after	80
Figure 5.1(c)	Momentum-before	80
Figure 5.1(d)	Momentum-after	80
Figure 5.1(e)	Residual Error-before	80
Figure 5.1(f)	Residual Error-after	80

Figure 5.2	The difference of before (left column) and after (right column) the dissipative insertion on density variable in full Euler equations on Roe's flux	82
Figure 5.2(a)	Density-before	82
Figure 5.2(b)	Density-after	82
Figure 5.2(c)	Momentum-before	82
Figure 5.2(d)	Momentum-after	82
Figure 5.2(e)	Energy-before	82
Figure 5.2(f)	Energy-after	82
Figure 5.3	Comparing the residual error after the addition of dissipative coefficient on full Euler equations	83
Figure 5.3(a)	Residual Error-before	83
Figure 5.3(b)	Residual Error-after	83
Figure 5.4	The difference of before (left column) and after (right column) the dissipative insertion on density variable in full Euler equations from AUSM ⁺ flux	84
Figure 5.4(a)	Density-before	84
Figure 5.4(b)	Density-after	84
Figure 5.4(c)	Momentum-before	84
Figure 5.4(d)	Momentum-after	84
Figure 5.4(e)	Energy-before	84
Figure 5.4(f)	Energy-after	84
Figure 5.5	Comparison of the residual errors before and after the dissipative measure for AUSM ⁺ scheme.	85
Figure 5.5(a)	Residual before	85
Figure 5.5(b)	Residual after	85
Figure 5.6	The difference of before (left column) and after (right column) the dissipative insertion in full Euler equations from AUSM ⁺ -up flux	86
Figure 5.6(a)	Density-before	86

Figure 5.6(b)	Density-after	86
Figure 5.6(c)	Momentum-before	86
Figure 5.6(d)	Momentum-after	86
Figure 5.6(e)	Energy-before	86
Figure 5.6(f)	Energy-after	86
Figure 5.7	Residual errors comparison from AUSM ⁺ -up for density dissipation.	87
Figure 5.7(a)	Residual before	87
Figure 5.7(b)	Residual after	87
Figure 5.8	The difference of before (left column) and after (right column) the dissipative insertion on density variable in full Euler equations from EC flux	88
Figure 5.8(a)	Density-before	88
Figure 5.8(b)	Density-after	88
Figure 5.8(c)	Momentum-before	88
Figure 5.8(d)	Momentum-after	88
Figure 5.8(e)	Energy-before	88
Figure 5.8(f)	Energy-after	88
Figure 5.9	The residual error before and after inserting the ς	89
Figure 5.9(a)	Residual before	89
Figure 5.9(b)	Residual after	89
Figure 5.10	Mach profiles and the resulting residual error comparison when inserting the dissipation from momentum variable.	91
Figure 5.10(a)	Mach before	91
Figure 5.10(b)	Mach after	91
Figure 5.10(c)	Residual before	91
Figure 5.10(d)	Residual after	91
Figure 5.11	Momentum dissipative insertion in AUSM ⁺ .	92

Figure 5.11(a)	Mach before	92
Figure 5.11(b)	Mach after	92
Figure 5.11(c)	Residual before	92
Figure 5.11(d)	Residual after	92
Figure 5.12	Similarly results were obtained using the momentum treatment on AUSM ⁺ -up.	93
Figure 5.12(a)	Mach before	93
Figure 5.12(b)	Mach after	93
Figure 5.12(c)	Residual before	93
Figure 5.12(d)	Residual after	93
Figure 5.13	Momentum treatment was added to EC's flux.	94
Figure 5.13(a)	Mach before	94
Figure 5.13(b)	Mach after	94
Figure 5.13(c)	Residual before	94
Figure 5.13(d)	Residual after	94
Figure 5.14	Mach profile when non-density dissipation is addded to the Roe's flux.	95
Figure 5.14(a)	Mach before	95
Figure 5.14(b)	Mach after	95
Figure 5.14(c)	Residual before	95
Figure 5.14(d)	Residual after	95
Figure 5.15	Mach profiles and residual errors comparison when energy only dissipation is added for AUSM ⁺ .	96
Figure 5.15(a)	Mach before	96
Figure 5.15(b)	Mach after	96
Figure 5.15(c)	Residual before	96
Figure 5.15(d)	Residual after	96

Figure 5.16	Mach profiles and residual errors comparison when energy only dissipation is added for AUSM ⁺ -up.	97
Figure 5.16(a)	Mach before	97
Figure 5.16(b)	Mach after	97
Figure 5.16(c)	Residual before	97
Figure 5.16(d)	Residual after	97
Figure 5.17	Mach profiles and residual errors comparison when energy only dissipation is added for EC flux.	98
Figure 5.17(a)	Mach before	98
Figure 5.17(b)	Mach after	98
Figure 5.17(c)	Residual before	98
Figure 5.17(d)	Residual after	98
Figure 5.18	The Mach contour's profile and its associated residual error comparison before (left column) and after (right column) the insertion of dissipation in density equation	100
Figure 5.18(a)	Mach-before	100
Figure 5.18(b)	Mach-after	100
Figure 5.18(c)	Residual Error-before	100
Figure 5.18(d)	Residual Error-after	100
Figure 5.19	Mach profiles and residual errors obtained when density dissipation is added to the AUSM ⁺ flux	101
Figure 5.19(a)	Mach-before	101
Figure 5.19(b)	Mach-after	101
Figure 5.19(c)	Residual Error-before	101
Figure 5.19(d)	Residual Error-after	101
Figure 5.20	Mach profiles and residual errors obtained when density dissipation is added to the AUSM ⁺ -up flux	102
Figure 5.20(a)	Mach-before	102
Figure 5.20(b)	Mach-after	102

Figure 5.20(c)	Residual Error-before	102
Figure 5.20(d)	Residual Error-after	102
Figure 5.21	Mach profiles and residual errors obtained when density dissipation is added to the EC flux	104
Figure 5.21(a)	Mach-before	104
Figure 5.21(b)	Mach-after	104
Figure 5.21(c)	Residual Error-before	104
Figure 5.21(d)	Residual Error-after	104
Figure 5.22	Mach profiles and residual errors obtained when momentum in x- and y-direction dissipation are added to the Roe's flux. Each Mach profile and residual errors corresponded to the respective dissipation.	106
Figure 5.22(a)	ρu dissipation	106
Figure 5.22(b)	ρv dissipation	106
Figure 5.22(c)	Residual error of ρ u dissipation	106
Figure 5.22(d)	Residual error of ρv dissipation	106
Figure 5.23	Mach profiles and residual errors obtained when momentum in x- and y-direction dissipation are added to the AUSM ⁺ flux	108
Figure 5.23(a)	ρu dissipation	108
Figure 5.23(b)	ρv dissipation	108
Figure 5.23(c)	Residual error of ρ u dissipation	108
Figure 5.23(d)	Residual error of ρv dissipation	108
Figure 5.24	Mach profiles and residual errors obtained when momentum in x- and y-direction dissipation are added to the AUMS ⁺ -up flux.	109
Figure 5.24(a)	ρ u dissipation	109
Figure 5.24(b)	ρv dissipation	109
Figure 5.24(c)	Residual error of ρ u dissipation	109
Figure 5.24(d)	Residual error of ρv dissipation	109
Figure 5.25	Mach profiles and residual errors obtained when momentum in x- and y-direction dissipation are added to the EC flux.	110

Figure 5.25(a)	hou dissipation	110
Figure 5.25(b)	ρv dissipation	110
Figure 5.25(c)	Residual error of ρ u dissipation	110
Figure 5.25(d)	Residual error of ρv dissipation	110
Figure 5.26	The effect of energy dissipation on Roe's scheme on Mach profile and residual errors.	112
Figure 5.26(a)	Mach before	112
Figure 5.26(b)	Mach after	112
Figure 5.26(c)	Residual before	112
Figure 5.26(d)	Residual after	112
Figure 5.27	The effect of energy dissipation on AUSM ⁺ scheme on Mach profile and residual errors.	113
Figure 5.27(a)	Mach before	113
Figure 5.27(b)	Mach after	113
Figure 5.27(c)	Residual before	113
Figure 5.27(d)	Residual after	113
Figure 5.28	The effect of energy dissipation on AUSM ⁺ -up scheme on Mach profile and residual errors.	114
Figure 5.28(a)	Mach before	114
Figure 5.28(b)	Mach after	114
Figure 5.28(c)	Residual before	114
Figure 5.28(d)	Residual after	114
Figure 5.29	The effect of energy dissipation on EC scheme on Mach profile and residual errors.	115
Figure 5.29(a)	Mach before	115
Figure 5.29(b)	Mach after	115
Figure 5.29(c)	Residual before	115
Figure 5.29(d)	Residual after	115

LIST OF ABBREVIATIONS

ARS	Approximate Riemann Solvers
AUSM	Advection Upstream Splitting Method
CFD	Computational Fluid Dynamics
CFL	Courant-Friedrichs-Lewy
EC	Entropy-Consistent
EOS	Equation of State
FDS	Flux Difference Splitting
FVS	Flux Vector Splitting
HLL	Harten-Lax-van Leer
KHI	Kevin-Helmholtz Instability
RH	Rankine-Hugoniot
RHS	Right Hand Side
RMI	Richtmeyer-Meshkov Instability
RTI	Rayleigh-Taylor Instability
vNR	von Neumann and Richtmyer

LIST OF SYMBOLS

δ	intermediate perturbation
γ	specific heat ratio
ω	eigenvalues
ρ	density or mass
ς	dissipation coefficient
a	speed of sound
<i>j</i> e	the ratio of pertubed total energy to mass
j_h	the ratio of perturbed total enthalpy to mass
<i>j</i> u	the ratio of perturbed x-momentum to mass
j_v	the ratio of perturbed y-momentum to mass
<i>j</i> r	the ratio of perturbed mass to mass
j_w^2	total of j_u^2 and j_v^2
k	latitudinal wave number
1	longitudinal wave number
Ε	total energy
Н	total enthalpy
Μ	Mach number
S	entropy
р	pressure
R	right eigenvectors
U	conservative variables matrix

KAJIAN ANALITIKAL DAN BERANGKA KE ATAS FENOMENA INAS

ABSTRAK

Kebanyakan kaedah terbaru didalam literatur bagi menyelesaikan ketidakstabilan kejutan bagi persamaan konservasi hiperbolik lebih tertumpu kepada penambahan faktor penyebaran tanpa mendalami tunjang masalah tersebut. Salah satu contoh ketidakstabilan kejutan adalah fenomena inas yang terbentuk apabila simulasi aliran berkelajuan tinggi ke atas badan tumpul dijalankan dimana gelombang kejutan yang terbentuk adalah tidak menepati ketentuan fizikal. Oleh itu, objektif kajian ini adalah untuk mencari sekurang-kurangnya satu punca masalah dan memulihkan ketidakstabilan melalui punca yang ditemui tersebut. Pencarian punca masalah dijalankan melalui proses penyisihan dengan mengurangkan penglibatan pembolehubah konservatif dalam setiap persamaan yang digunakan bermula dari persamaan Burgers diikuti persamaan isoterma dan persamaan Euler. Kemudian, definisi gangguan digunakan untuk melinearisasikan persamaan yang akan diuji. Analisa menggunakan kaedah normal mod bagi melihat faktor-faktor ketidakstabilan dan salah satu darinya adalah berpunca dari gangguan pada ketumpatan. Ujian pengkomputeran dijalankan bagi mengesahkan penemuan ini dan hasilnya adalah sama dengan jangkaan analisa. Akhir sekali, kaedah penyebaran dikenakan keatas persamaan ketumpatan sahaja dengan meletakkan satu pekali yang boleh diubah. Ujian telah mendapati bahawa julat pekali pada 0.02 - 0.09 memadai untuk menstabilkan kesemua skema serta tidak terlalu menyebar pada lokasi kejutan.

ANALYTICAL AND NUMERICAL STUDY ON CARBUNCLE PHENOMENON

ABSTRACT

Most newly developed schemes in the literatures to solve the shock instability in hyperbolic conservation laws mainly focused on adding ad hoc diffusion factor without properly indulging into the sources of the problem. An example of shock instabilities is the carbuncle phenomenon which occurs when simulating a blunt body subjected to a high speed flow. The shock formed ahead of the body is unphysical. Therefore, the goals of this study are to find at least one possible cause of the problem and to fix the instability from that cause. Extruding a possible source of the problem, herein the elimination process was applied to reduce the number of conservative variables involve, starting from the Burgers' equation followed by isothermal equations to the full Euler equations. Then, a small perturbation definition to the hyperbolic conservation equations was used as a mean to ease the nonlinearity from the equations. After that, the method of normal mode was used to analytically analyze the instability mechanism. The cause was found to be the perturbation from density which seeding into the instability. Numerical tests were then used to check the validity of the analytical result and they gave a good agreement with the analysis. Finally, a tunable dissipative coefficient was inserted only to the density equation and a range value of 0.02 - 0.09was found to stabilize all the involved schemes without smearing the shock too much.