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RANGKAP-KESELAMATAN STRUKTUR UNTUK ANGGOTA KONKRIT 

BERTETULANG TERHADAP GEMPA BUMI BERULANG 

 

ABSTRAK 

 

Matlamat utama dalam kod rekabentuk seismik adalah untuk melindungi nyawa 

dan keselamatan penghuni bangunan semasa gempa bumi yang teruk. Mencapai 

matlamat ini memerlukan bahawa risiko keruntuhan struktur adalah diparas yang 

rendah. Keselamatan keruntuhan disediakan oleh kod seismik semasa cabaran berikutan 

kemungkinan beban berlebih (gempa bumi mis berulang) dan keadaan system struktur 

yang tidak sewajarnya yang mustahil untuk meramalkan. Kajian ini mengatasi masalah 

ini dengan konsep inovatif untuk mencapai sistem struktur baru untuk membaik pulih 

selepas hasil kekukuhan untuk memohon di dalam anggota rasuk julur biasa bertetulang 

(RC) yang dianggap sebagai “Single Of sistem Freedom” (SDOF). 

Kajian ini dikategorikan kepada tiga langkah utama mengikut tiga objektif 

kajian. Pertama, kesan pelbagai parameter seperti nisbah kemuluran kekukuhan dan 

kapasiti putaran plastik kepada sambutan keruntuhan seismik sistem SDOF bersamaan, 

di bawah gempa bumi berulang, dinilai. Ia telah mendapati bahawa nisbah kekukuhan 

adalah parameter yang paling berpengaruh yang mempengaruhi tindak balas keruntuhan 

seismik sistem mulur (sistem SDOF bersamaan dengan kapasiti putaran plastik tinggi) 

apabila dikenakan semasa gempa bumi berulang. 

Kedua, satu mekanisme untuk mencapai sistem struktur baru dengan baikpulih 

selepas kemuluran kekukuhan telah dibangunkan. Konsep rangkap keselamatan struktur 



xxiii 

 

(SSC) dicadangkan, yang menyediakan potensi menggunakan peranti SSC (sebagai 

sistem menengah) dalam sistem kemuluran (sebagai sistem utama) untuk pencegahan 

keruntuhan semasa gempa bumi berulang. Tujuan utama konsep SSC adalah untuk 

melindungi nyawa dan keselamatan penghuni bangunan semasa gempa bumi yang teruk 

dengan menyediakan masa tambahan untuk melarikan diri, untuk penghuni. Peranti SSC 

telah direkabentuk menggunakan mekanikal, di mana lenturan kekakuan menengah 

disediakan dengan menutup jurang, untuk memasang dalam sistem utama apabila 

memasuki ke dalam julat tidak boleh berubah. Sistem rendah dan menengah bersama-

sama membentuk sistem struktur baru melalui konsep SSC yang dicadangkan yang 

dikenali sebagai sistem peranti Struktur-SSC (S-SSC).  

Ketiga, keluli slotted tiub bulat, sebagai alat SSC (atau sistem menengah), 

terletak di zon engsel plastik anggota RC julur biasa (sebagai sistem utama) untuk 

mengelakkan mekanisme runtuh menggunakan sistem S-SSC. Perbandingan dibuat 

antara anggota RC julur biasa seperti asal anggota RC (RC-O) dan anggota RC julur 

biasa yang sama dipasang oleh peranti SSC dicadangkan (ahli RC-SSC) itu. Sambutan 

beban-pesongan anggota RC-SSC mendedahkan pemulihan prestasi selepas hasil, 

berbanding dengan anggota RC-O, yang mengesahkan kecekapan sistem S-SSC. 

Tambahan pula, aplikasi dalaman keluli slotted tiub bulat mempunyai kelebihan 

tambahan melindungi teras anggota itu, dan peningkatan kedua-dua kekukuhan selepas 

hasil dan kapasiti kemuluran anggota julur RC pada masa yang sama. Engsel plastik 

juga dipindahkan jauh dari hujung yang tetap (atau dari sendi) bersama-sama panjang 

anggota untuk di mana jurang keluli dalaman tiub bulat terbentuk. Keputusan ini 

menunjukkan bahawa kapasiti keruntuhan seismik anggota RC julur biasa telah 

bertambah baik disebabkan oleh penggunaan peranti SSC dicadangkan. 
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STRUCTURAL SAFETY-CATCH OF REINFORCED CONCRETE MEMBER 

SUBJECTED TO REPEATED EARTHQUAKES 

 

ABSTRACT 

 

The primary goal of requirements in seismic design codes is to protect the life 

and safety of building occupants during severe earthquakes. Meeting this objective 

requires that the risk of structural collapse be acceptably low. The collapse safety 

provided by current seismic codes sometimes may be challenging due to possibility of 

over loading condition (e.g. repeated earthquakes) and improper performance of 

structural system, which are impossible to predict. The present study overcomes the 

problem by an innovative concept to achieve a new structural system with quickly 

recovering post-yield stiffness to apply in a typical cantilever Reinforced Concrete (RC) 

member that considered as an equivalent Single Degree Of Freedom system (SDOF).  

This investigation is categorized into three main steps according to the three 

objectives of the study. First, the effect of various parameters such as post-yielding 

stiffness ratio and plastic rotation capacity on the seismic collapse response of the 

equivalent SDOF systems, under repeated earthquakes, is evaluated. It was found that 

the post-yielding stiffness ratio is the most influential parameter affecting the seismic 

collapse response of the ductile systems (the equivalent SDOF systems with high plastic 

rotation capacity) when subjected to repeated earthquakes. 

Second, a mechanism for achieving the new structural system with quickly 

recovering lateral post-yield stiffness is developed. The Structural Safety-Catch (SSC) 

concept is proposed, which provides the potential of utilizing a SSC device (as a 
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