STRUCTURAL SAFETY-CATCH OF REINFORCED CONCRETE MEMBER SUBJECTED TO REPEATED EARTHQUAKES

by

OMID HASSANSHAHI

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

April 2017

"Dedicated to those who lost their lives in the past earthquakes and wishes for a future where no one in the world loses their life to the earthquakes."

ACKNOWLEDGMENTS

First, I wish to thank God. Without God's help and grace, I would not have finished my PhD research work. I would like to express my sincere thanks to Prof. Dr. Taksiah Abdul Majid, my main supervisor, whose great advice, warm concern, valuable suggestions, and endless support helped me complete this dissertation. I would also like to thank Assoc. Prof. Dr. Lau Tze Liang, my co-supervisor, whose knowledge and expertise associated with the fulfilment of this research work. I wish to show my special gratitude to the Universiti Sains Malaysia for giving me this great opportunity to carry out my PhD research work. I am also grateful to all those who helped me to reach this goal.

My special thanks go to my lovely family who have always stood beside me. Without their prayers, support, and encouragement, I would never have been able to finish my dissertation. I owe them more than I could ever repay. I would like to extend my sincere and deepest gratitude to all my adored friends for helping me maintain perspective. Finaly, I would like to extend my sincere appreciation to Malaysian for all their kindness and hospitality during my study. I owe you all a great deal of time and kindness, which I intend to give you.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	XX
ABSTRAK	xxii
ABSTRACT	xxiv

CHAPTER ONE : INTRODUCTION

Backgr	ound	1
Repeat	ed Earthquakes	4
Structu	ral Fuse (SF) System	11
Structu	re-SSC device (S-SSC) System	12
Probler	n Statement	14
1.4.1	The Effect of Repeated Earthquakes on the Collapse	14
	Response of Typical Cantilever RC members	
1.4.2	Limitations of Common Structural Systems to Withstand	16
	Repeated Earthquakes	
1.4.3	Limitation of Increasing Post-Yield Stiffness for Typical	20
	Cantilever RC members	
	Repeat Structu Structu Probler 1.4.1 1.4.2	 Response of Typical Cantilever RC members 1.4.2 Limitations of Common Structural Systems to Withstand Repeated Earthquakes 1.4.3 Limitation of Increasing Post-Yield Stiffness for Typical

1.5 Objectives

22

1.6	Novelties of Study	23
1.7	Scope of Work	24
1.8	Thesis Outline	26

CHAPTER TWO : LITERATURE REVIEW

2.0	Introduct	tion	29
2.1	The Effe	ct of Repeated Earthquakes	29
2.2	Commor	n Structural Systems	36
	2.2.1	Seismic Energy-Dissipative Structural Systems	36
	2.2.2	Structural Systems with Positive Post-Yield Stiffness	57

CHAPTER THREE : METHODOLGY

3.0	Introdu	ction			66
3.1	Descrip	otion of Expe	erimental Speci	men and Modeling	68
3.2	Evaluat	tion of Seisr	nic Collapse C	Capacity of the Typical Cantilever	72
	RC mer	mbers Subje	cted to Repeate	ed Earthquakes	
	3.2.1	Developm	ent of Numeric	cal Simulation Model and Analysis	75
		3.2.1(a)	Ruaumoko A	Analysis Program	75
		3.2.1(b)	Member Det	ails	76
		3.2.1(c)	Inelastic Beh	naviour of Member Hinges	79
		3.2.1(d)	Seismic Inpu	t	81
			3.2.1(d) (i)	Selection of Ground Motion	82
				Records	
			3.2.1(d) (ii)	Assembling Synthetic Repeated	86
				Ground Motion	
	3.2.2	Effects of	Repeated Eart	hquakes on the Collapse Response	88

of Typical Cantilever RC members

- 3.2.3 Evaluation of Significant Parameters that Affecting the 89 Seismic Collapse Response of Typical RC members Subjected to Repeated Earthquakes
 - 3.2.3(a)Effect of Plastic Rotation Capacity90

- 3.3 Development of a Mechanism for Achieving a New Structural 92System with Quickly Recovering Post-yield Stiffness
 - 3.3.1 Definition and Investigation of Structural Safety-Catch 94 (SSC) Concept
 - 3.3.2 Proposal of Novel Technique to Design Structural Safety- 94Catch (SSC) device
- 3.4 Enhancement of Seismic Collapse Capacity of the Typical Cantilever 97
 RC member
 - 3.4.1 Development of Finite Element (FE) Simulation Model and 99 Analysis
 - 3.4.1(a) Element Types 99
 - 3.4.1(a) (i) Steel Reinforcement 99
 - 3.4.1(a) (ii) Concrete 100
 - 3.4.1(a) (iii) Steel Plates and Steel Circular 101 Tube
 - 3.4.1(a) (iv) Bond-Slip of Concrete and Steel 102 Reinforcements
 - 3.4.1(a) (vi) Contact Element (GAP) 103
 - 3.4.1(b) Material Properties 104

		3.4.1(b) (ii)	Steel Reinforcement	109
		3.4.1(b) (iii)	Steel Plates and Steel Circular	110
			Tube	
	3.4.1(c)	Boundary Cor	nditions and Loading	111
		3.4.1(c) (i)	Symmetric Method	111
		3.4.1(c) (ii)	Mesh Generation	112
		3.4.1(c) (iii)	Simulating the Bond-Slip	113
			Relation at the Bar-Concrete	
			Interface	
		3.4.1(c) (iv)	Loading Procedure	115
3.4.2	Applicati	on of Structural	Safety-Catch (SSC) device to the	116
	Typical R	C member		
	3.4.2(a)	Nonlinear Sta	tic Monotonic Analysis	120

CHAPTER FOUR : RESULTS AND DISCUSSION

4.0	Introduct	ion		121
4.1	Evaluation of Seismic Performance of the Typical Cantilever RC			
	members Subjected to Repeated Earthquakes			
	4.1.1	Developm	ent of Numerical Simulation Model	124
		4.1.1(a)	Joint Flexibility Effects	124
		4.1.1(b)	Numerical Model Verification	129
		4.1.1(c)	Eigenvalue Analysis	133
	4.1.2	Effects of	Repeated Earthquakes on Collapse Response of	134
		the Typic	al RC member	
		4.1.2(a)	Assessment of Ductility Demand	135
		4.1.2(b)	Assessment of PGA Capacity	139

4.1.2(c)	Assessment of Residual Displacement	140
----------	-------------------------------------	-----

- 4.1.3 Evaluation of Significant Parameters Affecting the 143 Collapse Response of Typical Cantilever RC members subjected to Repeated Earthquakes
- 4.2 Development of a Mechanism for Achieving a New Structural 151System with Quickly Recovering Post-yield Stiffness

- 4.1.2(a) Description of Structural Safety-Catch (SSC) 152 Concept
- 4.1.2(b) Idealized Load-Deformation Model of 153 Structure-SSC Device (S-SSC) System
- 4.1.2(c) Idealized Load-Deformation Model of SSC 157 Device
- 4.1.2(d) Quickly Recovery Post-Yield Stiffness of 159 Structure-SSC Device (S-SSC) System
- 4.2.2 A Novel Technique to Design Structural Safety-Catch 161 (SSC) Device
- 4.3 Enhancement of Seismic Collapse Capacity of the Typical RC 165 member
 - 4.3.1 Finite Element Model Verification 166
 - 4.3.2 Application of Structural Safety-Catch (SSC) Device to the 174 Typical RC member
 - 4.3.2(a) Load–Deflection Curves 174
 - 4.3.2(b) Development of Stress in Concrete 177
 - 4.3.2(c) Development of Strain in Concrete 179
 - 4.3.2(d) Development of Stress in Steel Circular Tube 180

CHAPTER FIVE : CONCLUSIONS AND RECOMMENDATIONS

5.0	Summary	185
5.1	Evaluation of Seismic Performance of the Typical Cantilever RC	186
	members Subjected to Repeated Earthquakes	
	5.1.1 Effects of Repeated Earthquakes on Seismic Collapse	186
	Response of the Typical Cantilever RC member	
	5.1.2 Evaluation of Significant Parameters that Affect the	187
	Seismic Collapse Response of Typical Cantilever RC	
	members Subjected to Repeated Earthquakes	
5.2	Development a Mechanism for Achieving a New Structural System	188
	with Quickly Recovering Post-yield Stiffness	
5.3	Enhancement of Seismic Collapse Capacity of the Typical RC	192
	member	
5.4	Recommendations for Future Studies	193

REFERENCES

195

181

APPENDICES

Appendix A	Model Verification (RUAUMOKO)
Appendix B	Model Verification (ANSYS)
Appendix C	Joint Felexibility Effect

ix

LIST OF TABLES

Table 1.1	Examples of repeated earthquake events around the world	7
Table 2.1	Summary of seismic response due to repeated earthquakes	33
Table 2.2	Summary of several researches on Structures with Energy- Dissipating Fuses	37
Table 2.3	Summary of several research on Structures with Self-Centering Systems	43
Table 2.4	Summary of several research on Structures with Rocking and Energy-Dissipating Fuses	46
Table 2.5	Summary of few researches on Structures with Self-Centering and Energy-Dissipating Fuses	49
Table 2.6	Summary of several research on Structures with Rocking, Self- Centering and Energy-Dissipating Fuses	52
Table 3.1	Material properties of experimental specimen (CSC1)	71
Table 3.2	Geometrical properties of experimental specimen (CSC1)	72
Table 3.3	Characteristics of the selected records set	83
Table 3.4	Material properties of the concrete used for all FE models	109
Table 3.5	Compressive axial stress-strain curve used for concrete in this study	109
Table 3.6	Material properties of the steel reinforcements used for all FE models	110
Table 3.7	The related parameters for calculating the bond-slip relationship	114
Table 3.8	Parameters for the COMBIN40 element and slotted steel circular tube	119
Table 4.1	The parameters used in Equations to determine the amount of joint flexibility	128
Table 4.2	Comparison between experimental and numerical values of the hysteresis rule parameters (consideration of cycles 7 to 14 only)	132
Table 4.3	Dynamic properties of verified models	134

- Table 4.4Comparison between experimental and FE pushover analysis168values of the backbone envelope curve parameters
- Table 4.5Comparison of the simplified FE results versus the analytical173and validated FE results for inelastic response region

LIST OF FIGURES

		Page
Figure 1.1	Collapsed buildings in Taiwan on 21 September 1999 during Chi-Chi Earthquake	3
Figure 1.2	Example of fore-, main-, and aftershocks definition in a repeated earthquake	5
Figure 1.3	Foreshocks and aftershocks (first 8 days) associated with the Tohuku (Mw 9, 2011), Japan earthquake	6
Figure 1.4	Example of repeated earthquake ground motions recorded from Norcera Umbra Station, Italy	6
Fihure 1.5	Epicentral locations of Kocaeli and Duzce independent earthquakes and their aftershocks	8
Figure 1.6	Collapsed building in Duzce that had already been damaged during the Kocaeli event	9
Figure 1.7	(a) Damaged building after the main-shock of Gediz earthquake in March 28, 1970; (b) the same building after a smaller aftershock	10
Figure 1.8	House collapsed in Sendai after the April 11 aftershock of Tohoku earthquake	10
Figure 1.9	(a) Sample model of a SDOF system (primary system) with structural fuse device (secondary system); (b) lateral load- deformation representation of individual primary- and secondary systems and total target system response	12
Figure 1.10	Lateral load-deformation representation of primary system and secondary system responses (device response) for previous and present research study	19
Figure 1.11	Soft story partial collapse due to inadequate lateral load (shear strength) capacity at ground level of Marina building during the California's Loma Prieta event	20
Figure 1.12	Limitation of increasing post-yield stiffness ratio (r) on ductility capacity for typical cantilever RC member using; (a) previous techniques (Takahashi, 2002); (b) proposed technique in this study	21

Figure 2.1The effect of repeated earthquakes on the structures30

Figure 2.2	The proposed dual CBF-MRF, 3D FEM model	62
Figure 3.1	The experimental specimen of CSC1	69
Figure 3.2	Details of test set-up	70
Figure 3.3	The beam element of the RC beam–column joint, which is selected as a typical cantilever RC member used in this study	71
Figure 3.4	Evaluation of seismic collapse capacity of the typical cantilever RC members subjected to repeated earthquakes (Step 1)	74
Figure 3.5	Member element layout used in this study	77
Figure 3.6	The stiffness and strength degradation models: a) Fukada flexural hysteresis model with stiffness degradation, b) Flexural strength degradation model	80
Figure 3.7	All 20 ground motion records which are employed in this study	84
Figure 3.8	Example of repeated earthquake assembled from the scaled earthquake No. 5 (Montenegro)	87
Figure 3.9	The four ranges of plastic rotation capacity (Θ_P) employed in this study for equivalent SDOF systems	91
Figure 3.10	The ranges of post-yield stiffness ratios (r) employed in this study for equivalent SDOF systems	92
Figure 3.11	Development a mechanism for achieving a new structural system with quickly recovering post-yield stiffness (Step 2)	93
Figure 3.12	An Aircraft wing demonstrates contact nonlinearity	95
Figure 3.13	A fishing rod demonstrates geometric nonlinearity	96
Figure 3.14	Enhancement of seismic collapse capacity of the typical cantilever RC members (Step 3)	98
Figure 3.15	Link180 element used to model the steel reinforcements	100
Figure 3.16	Solid65 element used to model the concrete	101
Figure 3.17	Solid185 element used to model the steel plates and steel circular tube	102
Figure 3.18	COMBIN39 element defined by a tension-compression force- deflection curve	103
Figure 3.19	The configuration of COMBIN40 element	104

Figure 3.20	Typical uniaxial compressive and tensile stress-strain curve for concrete	105
Figure 3.21	Simplified compressive axial stress-strain curve for concrete	108
Figure 3.22	Compressive axial stress-strain curve used for concrete in this study	108
Figure 3.23	Stress-Strain Curve for Steel Reinforcement	110
Figure 3.24	The half of member in the 'Z' direction used for the FE models	111
Figure 3.25	Connecting dissimilar mesh sizes by Constraint Equations (CEs)	112
Figure 3.26	The force-slip relationship of the bonding element (spring element of Combin39) at the bar-concrete interface along the longitudinal direction used in this study	114
Figure 3.27	The end support and load application location	116
Figure 3.28	The slotted steel circular tube used as SSC device: a) the RC-O member, b) the RC-SSC member, c) the SSC device	117
Figure 3.29	The FE model retrofitted using the slotted steel circular tube, used as the RC-SSC member, with the geometric details and boundary conditions	118
Figure 4.1	The generated IDA curves (PGA vs. drift plots) for all 20 earthquakes	123
Figure 4.2	The effect of joint flexibility on initial stiffness of member	127
Figure 4.3	The history of cyclic loading pattern	129
Figure 4.4	Comparison between full hysteretic curves obtained from the numerical (RUAUMOKO) and experimental results	130
Figure 4.5	Comparison between each plastic hysteretic curves (from cycle 7 to 14) obtained from the numerical (Ruaumoko) and experimental results	131
Figure 4.6	The comparison of IDA curves (PGA vs. ductility plots) for single (C1) and repeated earthquake cases (C2, C3)	136
Figure 4.7	The comparison of PGA capacity for the equivalent SDOF system subjected to single (C1) and repeated earthquake cases (C2, C3)	140
Figure 4.8	The comparison of maximum residual displacement (RDs) for the equivalent SDOF system subjected to single (C1) and repeated earthquake cases (C2, C3)	141

Figure 4.9	The additional ductility demand on the equivalent SDOF systems subjected to repeated GM case of C2	146
Figure 4.10	The additional ductility demand on the equivalent SDOF systems subjected to repeated GM case of C3	148
Figure 4.11	The ductility demand reduction induced due to increasing post- yield stiffness ratio	150
Figure 4.12	The idealized load-deformation model of proposed S-SSC system	155
Figure 4.13	The expected load-deformation response curve of secondary system as the SSC device	158
Figure 4.14	The lateral bending stiffness (EI)-moment (M) relationship of secondary, primary and S-SSC systems	160
Figure 4.15	The schematic view of proposed SSC device (a) in the case of unloaded; and (b) loaded	163
Figure 4.16	The schematic mechanism of S-SSC system (a) in the case of unloaded; and (b) loaded	164
Figure 4.17	Boundary conditions and load application location of ANSYS model	166
Figure 4.18	Comparison of experimental and numerical (ANSYS) load- displacement curves	167
Figure 4.19	Failure pattern of (a) experimental specimen of CSC1; and (b) FE model (ANSYS)	169
Figure 4.20	The simplified FE model with the geometric details and boundary conditions	170
Figure 4.21	Comparison of the monotonic pushover curves obtained from the simplified (cantilevered RC member) and validated FE (RC external beam-column joint) models	171
Figure 4.22	Verification of simplified FE model with analytical backbone envelope curve	172
Figure 4.23	Different lateral load capacities under the same member tip displacement demand	176
Figure 4.24	Comparison of the inelastic performance of RC-O member and RC-SSC member	177
Figure 4.25	Comparison of principal stress distribution at the last step of loading between (a) RC-O member; and (b) RC-SSC member	178
Figure 4.26	Comparison of principal strain distribution at the last step of	179

loading between (a) RC-O member; and (b) RC-SSC member

Figure 4.27	Stress contours in SSC device at maximum resistance	181
Figure 4.28	Illustration of axial force of reinforcement at the last step of loading (a) RC-O member; and (b) RC-SSC member	182
Figure 4.29	Plastic hinge location in (a) RC-O member; and (b) RC-SSC member	183
Figure 5.1	The idealized load-deformation model for the performance levels of the developed S-SSC system	189
Figure 5.2	The schematic mechanism for the performance levels of the developed S-SSC system	190

LIST OF SYMBOLS

EI	Lateral bending stiffness
EI1	Initial bending stiffness
EI ₂	Secondary bending stiffness
μ_{Θ}	Member (rotation) ductility
$\mu_{\Theta u}$	Ultimate (Failure) rotation ductility
$\mu_{\Theta Y}$	Yield rotation ductility
А	Cross-sectional area
b	Width of the section
c	Thickness of the cover layer
d	Diameter of reinforcement
d _{cr}	Crack displacement
d_y	Yield displacement
E	Modulus of elasticity of the material
Ec	Modulus of elasticity of the concrete
F	Bond force
f'c	Uniaxial compressive strength of concrete
\mathbf{f}_{J}	Amount of joint flexibility
fr	Modulus of rupture
$f_{t,s}$	Concrete's splitting tensile strength
G	Shear modulus of Material
g	Gravity (9.81 m/s ²)
h	Depth of the section

Ι	Moment of inertia of section
I_{g}	Gross moment of inertia
K _{cr}	Crack (Initial) stiffness
K _d	Degraded stiffness due to joint flexibility effect
K _{eff}	Effective (Yield) Stiffness
K _m	Total initial elastic stiffness of member (the influence of joint flexibility is included)
Ko	Elastic (Initial) stiffness of member
K _{py}	Post-yield stiffness
1	Distance between two adjacent spring elements
L	Length of member
L _p	Plastic hinge Length of member
m	Lumped mass of member
Μ	Moment
M _{cr}	Crack moment
$M_{\rm w}$	Magnitude of the earthquake acceleration
M_y	Yield moment
P_{cr}/F_{cr}	Crack Force
Py	Yield Force
R	Distance/ radius of the earthquake from center
r	Post-yield stiffness ratio
S	Slip value
T _n	Natural (elastic vibration) period of SDOF system
υ	Poission's ratio
W	Total weight of member

α	Bi-linear factor (cracking to yield)
$\alpha_{\rm g}$	Peak ground acceleration (PGA)
β	Unloading stiffness parameter
βc	Shear transfer coefficient for a closed crack
βt	Shear transfer coefficient for a open crack
δp	Plastic displacement capacity
٤ _°	Strain at maximum stress of concrete
ε _{cu}	Ultimate strain of concrete
σ_{cu}	Maximum/peak compressive strength(stress) of concrete
σ_{tu}	Maximum tensile strength(stress) of concrete
τ(s)	Local bond stress at the bar-concrete interface
ω _n	Natural vibration frequency of SDOF system
Θ_{cr}	Crack rotation
Θ_{jf}	Crack rotation of member due to joint flexibility
$\Theta_{\rm p}$	Plastic rotation capacity
Θ_{u}	Ultimate (Failure) rotation
$\Theta_{\rm y}$	Yield rotation

LIST OF ABBREVIATIONS

ANSYS Parametric Design Language
Buckling-Restrained Braced Frames
Buckling-restrained braces
Single ground motion (GM) case
Double ground motion (GM) case
Triple ground motion (GM) case
Concentrically braced frames
Constraint Equations
Test specimen
Dead load
Seismic energy-Dissipating system
Engineering Demand Parameter
European Strong Motion Database
Finite Element
Fiber Reinforced Polymers
Ground Motion
High-yield-drift
Incremental Dynamic Analysis
Intensity measures
Immediate Occupancy level
Live load
Life safety level

MCE	Maximum considered earthquake
MDOF	Multi Degree Of Freedom system
NTHA	Non-linear inelastic Time History Analysis
OMRF	Ordinary Moment Resisting Frame
OSBs	Ordinary steel bars
PED	Passive energy dissipation devices
PGA	Peak Ground Acceleration
POA	pushover analysis
PSDA	Probabilistic Seismic Demand Analysis
РТ	Post-tensioning tendon
q-factor	Seismic force reduction factor
RC	Reinforced Concrete
RC-O	Typical cantilever RC member
RC-SSC	Typical cantilever RC member retrofitted by proposed SSC device
RDs	Residual displacements
SC	Self-centering system
SC-WB	Strong Column-Weak Beam philosophy
SDOF	Single Degree Of Freedom system
SF	Structural Fuse
SFCBs	Steel Fiber Composite Bars
SSC	Structural Safety-Catch
S-SSC	Composite Structure-Structural Safety-Catch device
UBRC	Unbonded Bar Reinforced Concrete

RANGKAP-KESELAMATAN STRUKTUR UNTUK ANGGOTA KONKRIT BERTETULANG TERHADAP GEMPA BUMI BERULANG

ABSTRAK

Matlamat utama dalam kod rekabentuk seismik adalah untuk melindungi nyawa dan keselamatan penghuni bangunan semasa gempa bumi yang teruk. Mencapai matlamat ini memerlukan bahawa risiko keruntuhan struktur adalah diparas yang rendah. Keselamatan keruntuhan disediakan oleh kod seismik semasa cabaran berikutan kemungkinan beban berlebih (gempa bumi mis berulang) dan keadaan system struktur yang tidak sewajarnya yang mustahil untuk meramalkan. Kajian ini mengatasi masalah ini dengan konsep inovatif untuk mencapai sistem struktur baru untuk membaik pulih selepas hasil kekukuhan untuk memohon di dalam anggota rasuk julur biasa bertetulang (RC) yang dianggap sebagai "Single Of sistem Freedom" (SDOF).

Kajian ini dikategorikan kepada tiga langkah utama mengikut tiga objektif kajian. Pertama, kesan pelbagai parameter seperti nisbah kemuluran kekukuhan dan kapasiti putaran plastik kepada sambutan keruntuhan seismik sistem SDOF bersamaan, di bawah gempa bumi berulang, dinilai. Ia telah mendapati bahawa nisbah kekukuhan adalah parameter yang paling berpengaruh yang mempengaruhi tindak balas keruntuhan seismik sistem mulur (sistem SDOF bersamaan dengan kapasiti putaran plastik tinggi) apabila dikenakan semasa gempa bumi berulang.

Kedua, satu mekanisme untuk mencapai sistem struktur baru dengan baikpulih selepas kemuluran kekukuhan telah dibangunkan. Konsep rangkap keselamatan struktur (SSC) dicadangkan, yang menyediakan potensi menggunakan peranti SSC (sebagai sistem menengah) dalam sistem kemuluran (sebagai sistem utama) untuk pencegahan keruntuhan semasa gempa bumi berulang. Tujuan utama konsep SSC adalah untuk melindungi nyawa dan keselamatan penghuni bangunan semasa gempa bumi yang teruk dengan menyediakan masa tambahan untuk melarikan diri, untuk penghuni. Peranti SSC telah direkabentuk menggunakan mekanikal, di mana lenturan kekakuan menengah disediakan dengan menutup jurang, untuk memasang dalam sistem utama apabila memasuki ke dalam julat tidak boleh berubah. Sistem rendah dan menengah bersamasama membentuk sistem struktur baru melalui konsep SSC yang dicadangkan yang dikenali sebagai sistem peranti Struktur-SSC (S-SSC).

Ketiga, keluli slotted tiub bulat, sebagai alat SSC (atau sistem menengah), terletak di zon engsel plastik anggota RC julur biasa (sebagai sistem utama) untuk mengelakkan mekanisme runtuh menggunakan sistem S-SSC. Perbandingan dibuat antara anggota RC julur biasa seperti asal anggota RC (RC-O) dan anggota RC julur biasa yang sama dipasang oleh peranti SSC dicadangkan (ahli RC-SSC) itu. Sambutan beban-pesongan anggota RC-SSC mendedahkan pemulihan prestasi selepas hasil, berbanding dengan anggota RC-O, yang mengesahkan kecekapan sistem S-SSC. Tambahan pula, aplikasi dalaman keluli slotted tiub bulat mempunyai kelebihan tambahan melindungi teras anggota itu, dan peningkatan kedua-dua kekukuhan selepas hasil dan kapasiti kemuluran anggota julur RC pada masa yang sama. Engsel plastik juga dipindahkan jauh dari hujung yang tetap (atau dari sendi) bersama-sama panjang anggota untuk di mana jurang keluli dalaman tiub bulat terbentuk. Keputusan ini menunjukkan bahawa kapasiti keruntuhan seismik anggota RC julur biasa telah bertambah baik disebabkan oleh penggunaan peranti SSC dicadangkan.

STRUCTURAL SAFETY-CATCH OF REINFORCED CONCRETE MEMBER SUBJECTED TO REPEATED EARTHQUAKES

ABSTRACT

The primary goal of requirements in seismic design codes is to protect the life and safety of building occupants during severe earthquakes. Meeting this objective requires that the risk of structural collapse be acceptably low. The collapse safety provided by current seismic codes sometimes may be challenging due to possibility of over loading condition (e.g. repeated earthquakes) and improper performance of structural system, which are impossible to predict. The present study overcomes the problem by an innovative concept to achieve a new structural system with quickly recovering post-yield stiffness to apply in a typical cantilever Reinforced Concrete (RC) member that considered as an equivalent Single Degree Of Freedom system (SDOF).

This investigation is categorized into three main steps according to the three objectives of the study. First, the effect of various parameters such as post-yielding stiffness ratio and plastic rotation capacity on the seismic collapse response of the equivalent SDOF systems, under repeated earthquakes, is evaluated. It was found that the post-yielding stiffness ratio is the most influential parameter affecting the seismic collapse response of the ductile systems (the equivalent SDOF systems with high plastic rotation capacity) when subjected to repeated earthquakes.

Second, a mechanism for achieving the new structural system with quickly recovering lateral post-yield stiffness is developed. The Structural Safety-Catch (SSC) concept is proposed, which provides the potential of utilizing a SSC device (as a