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Abstract 
The multiple antibiotic resistance (mar) operon in Escherichia coli is responsible for resistance 

to a broad range of antibacterial drugs. The mar operon is normally transcriptionally silent, but 

a faulty mar repressor (MarR) leads to constitutive expression of MarA (the mar activator). 

MarA transcriptionally regulates downstream targets leading to a mar phenotype of widespread 

resistance to antibiotics and other environmental stresses (e.g. oxidative stress, organic solvents 

and disinfectants). As the mar operon is conserved across a number of human pathogens, 

understanding the mechanisms through which it mediates antibiotic tolerance is essential.  

 

A recent ChIP-seq analysis unveiled 33 targets of MarA, many of which were previously 

unknown. This work has characterised the regulation of one of these targets, ycgZ-ymgABC. 

The promoter upstream of ycgZ-ymgABC was found to be both σ70 and σ38-dependent. 

However, MarA activates transcription from this promoter in a σ70-dependent manner only, and 

was shown to act as a Class I activator. Furthermore, activation of ycgZ-ymgABC expression 

by MarA was shown to result in a reduction in biofilm formation, which may offer the cell 

alternative short-term survival strategies during antibiotic attack. 

 

The requirements for activation of transcription at the regulatory region upstream of 

mlaFEDCB were investigated. Strict spacing and orientation requirements for MarA binding 

were observed; the MarA binding site (the marbox) only functions in the forward orientation, 

and cannot be moved more than 1 bp without loss of activation. Additionally, MarA was shown 

to require an UP element and contact with the C-terminal domain of RNAP for activation at 

this target. 
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Finally, the ChIP-seq targets, and a set of SoxS ChIP-exo targets from a separate study, were 

examined for binding by MarA and two related regulators, Rob and SoxS. These three proteins 

have an identical consensus site for DNA binding but bind non-consensus sites with hugely 

different affinities. It was noticed that SoxS requires a much closer match to the consensus site 

than MarA for optimal binding. We hypothesise here that this is due to a loss of amino acid side 

chains in SoxS that are key for hydrogen bonding interactions with the DNA backbone. To 

confirm this, we have shown here that MarA binds to the ycgZ promoter at a higher affinity 

than SoxS in high salt conditions only. At low salt conditions, hydrogen bonding is inhibited, 

significantly reducing MarA binding but not SoxS. This effect is dependent on residues E31 

and Q58 of MarA, which make hydrogen bonding contacts with the DNA backbone; these 

contacts are lost in SoxS. Thus, this work predicts that intracellular salt conditions may 

influence the target preferences of these regulators.  
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1.1 Bacterial transcription 

1.1.1 The central dogma of molecular biology 

The central dogma of molecular biology is the flow of information between the 

biopolymers DNA, RNA, and protein (Figure 1.1). The enzyme RNA polymerase 

(RNAP) copies information from the genes within DNA into mRNA via transcription. 

mRNA is then translated by ribosomes into proteins. This process allows for stable 

storage of information in DNA, with two levels of regulation (at the transcription and 

translation stage) before production of proteins. Thus, protein expression can be tightly 

controlled in response to environmental and genetic triggers. 

 

1.1.2 The process of bacterial transcription 

In Escherichia coli transcription is catalysed by a DNA-dependent RNA polymerase, 

which comprises a core enzyme in complex with a sigma factor to form the RNAP 

holoenzyme. Transcription comprises three stages: initiation, elongation and termination 

(Figure 1.2). During initiation, the RNAP holoenzyme recognises promoter DNA 

sequences upstream of the gene (Busby and Ebright 1994, deHaseth, Zupancic and 

Record 1998). Binding of RNAP to these sequences forms the ‘closed complex’; 

unwinding of the DNA duplex at the region of the transcription start site then forms what 

is known as the ‘open complex’ (Tsujikawa, Tsodikov and deHaseth 2002, Hook-Barnard 

and Hinton 2009). NTPs are added to form an initiating complex, in which the 

downstream template DNA is ‘scrunched’ into the enzyme as an RNA molecule is 

synthesised (Kapanidis et al. 2006, Revyakin et al. 2006). At this stage, the RNAP 

complex is trapped at the promoter and may go through a number of abortive initiation 

cycles, in which small RNA transcripts are produced and released. This stressed  
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Figure 1.1 Flow of molecular information 
 
The figure shows the flow of information between the biopolymers. Grey double helices 

show DNA. Wavy grey lines show mRNA. Coloured circles show amino acids, connected 

by straight grey lines (peptide bonds) to form a protein. Coloured T-shapes show tRNA. 

The orange oval shape shows RNAP, and pink ovals show the ribosome subunits.  
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intermediate results in free energy build-up, eventually allowing contacts with the 

promoter to be broken (Straney and Crothers 1987). This drives RNAP escape from the 

scrunched complex in order to enter elongation phase (Kapanidis et al. 2006, Henderson 

et al. 2017).  At this point, polymerase dissociates from the sigma factor.  

 

During elongation, NTPs (nucleoside triphosphates) are added to extend the RNA 

transcript. Firstly, a complementary NTP binds the active site. The cofactor Mg2+ then 

catalyses a chemical reaction forming a phosphodiester bond between the 3’ OH of the 

nascent RNA and the α-PO4 of the NTP, with the help of the Gre elongation factors 

(Laptenko et al. 2003). The 3’ end of the nascent RNA is then translocated away from 

the active site to place the next template base in the centre. The elongation process is 

controlled by additional elongation factors, such as NusA and NusG, which control 

transcriptional pausing to allow the rate of elongation to be regulated (Schmidt and 

Chamberlin 1987, Burova et al. 1995) 

 

Elongation continues until RNAP encounters a GC-rich hairpin in the transcript known 

as an intrinsic terminator, or until a termination factor such as Rho or Mfd binds the 

complex (Yarnell and Roberts 1999, Park, Marr and Roberts 2002, Ciampi 2006). The 

mRNA transcript is then released, and RNAP dissociates from the DNA in order to begin 

the cycle again. Termination is regulated by host and phage-generated antiterminators, 

which allow the complex to bypass termination signals and continue with elongation 

(Santangelo and Artsimovitch 2011).  
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Figure 1.2 Transcription in Escherichia coli 
 

Schematic showing initiation, elongation and termination of transcription. The subunits 

of RNAP are shown by orange ovals (β), dark orange ovals (β'), grey ovals (σ), black 

circles (ω) and dark grey circles (α). DNA is shown by a grey double helix. mRNA is 

shown as a red line. Binding to the -35 and -10 elements of the promoter is shown by blue 

rectangles. 
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1.1.3 RNA polymerase 

The 400 kDA RNAP core enzyme is made up of five subunits: β, β’, the small ω subunit, 

and two α subunits (Figure 1.3). The enzyme forms a ‘crab-claw’ structure, with two 

‘pincers’ between which the template DNA is passed (Zhang et al. 1999, Murakami, 

Masuda and Darst 2002). 

 

The β and β’ subunits form the ‘pincer’, known as the β clamp, and bind the N-terminal 

domains of the α subunits to surround a cleft, on the back wall of which the active site is 

located (Zhang et al. 1999). The clamp can switch from an open conformation to a closed 

with the action of a hinge region located at the base of the clamp (Landick 2001, Darst et 

al. 2002, Chakraborty et al. 2012). This allows the clamp to open to allow DNA loading, 

with the clamp then able to close upon initiation of transcription. Within the active site, 

an essential Mg2+ co-factor is held in position by three Asp residues (Murakami and Darst 

2003). The active site also contains the F bridge, the conformation of which is controlled 

by the G-trigger loop; the F-bridge and the substrate DNA act as ‘ratchet’ devices to drive 

elongation by RNAP (Bar-Nahum et al. 2005). These ‘ratchets’ move the four mobile 

modules of RNAP: the clamp, the β flap, and the β1 and β2 lobes, which all surround the 

active site channel (Murakami and Darst 2003). 

 

Association of the β’ subunit during polymerase assembly is aided by a chaperone, the 

91 amino acid ω subunit, which contacts the N and C-terminal domains of β’ (Zhang et 

al. 1999, Ghosh, Ishihama and Chatterji 2001). Additionally, the ω subunit is recognised 

by ppGpp, a nucleotide which accumulates during starvation and binds at the interface 

between the β’ and the ω subunit to alter the transcriptional profile of the cell (Potrykus 
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and Cashel 2008, Mechold et al. 2013, Zuo, Wang and Steitz 2013). Further functions of 

the ω subunit are not fully understood and deletion studies have shown it to be a non-

essential subunit (Gentry and Burgess 1989). However, loss of the ω subunit shows an 

increase in DNA relaxation, and has been shown to impact genome-wide expression in 

E. coli and cyanobacteria through increased binding of alternative sigma factors (Geertz 

et al. 2011, Gunnelius et al. 2014). 

 

The α subunits are each 37 kDa and 329 amino acids long, and comprise two domains, 

the C-terminal domain (α-CTD, residues 249-329) and the N-terminal domain (α-NTD, 

residues 8-235), joined by a flexible linker 13 amino acids in length (Jeon et al. 1997). 

The α-NTD is key for polymerase assembly, with the α-NTDs of the two α subunits 

interacting to form a dimer; the other RNAP subunits can then assemble around them 

(Igarashi, Fujita and Ishihama 1991). Both the α-NTD and the α-CTD can interact with 

transcriptional regulators, with the α-CTD, which also dimerises, also able to recognise 

promoter UP elements by binding of residue R265 to the minor groove of the DNA (Ross 

et al. 1993, Blatter et al. 1994). 

 

Although the α subunits are involved in promoter recognition, the core RNAP enzyme is 

only capable of synthesising RNA from DNA and cannot independently recognise 

promoters. Thus, the core enzyme cannot initiate transcription alone and requires 

association with a sigma factor in order to recognise bacterial promoters; this complex is 

known as the RNAP holoenzyme. 
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Figure 1.3 The subunits of Escherichia coli RNAP holoenzyme 
 

Panel A shows a diagram of the crystal structure of RNAP in complex with σ70. The 

diagram was constructed in PyMOL using the structural data from Murakami (2013). 

Panel B is a simple schematic showing the subunits of RNAP holoenzyme. The β and β’ 

subunits of RNAP are shown in orange and brown, respectively. The σ70 subunit is shown 

in red, with the domains indicated. The α subunits are in dark grey. The ω subunit is 

shown in black.  

 

σ4 σ3 σ2 σ1

β
β’

ω

α-NTD

α-CTD

Secondary channel

β clamp

α-CTD

σ4

β flap

σ2

A

B

Active site
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1.1.4 Sigma factors 

Bacteria possess a range of sigma factors to allow RNAP to be directed towards a specific 

set of promoters (Feklístov et al. 2014). The predominant sigma factor within a bacterium 

is known as the housekeeping sigma factor. This is responsible for the recognition of the 

majority of promoters within the genome. 

 

RNAP can be redirected towards a different set of genes by alternative sigma factors 

(Gruber and Gross 2003, Feklístov et al. 2014). These sigma factors bind a smaller set of 

promoters than housekeeping sigma factors, due to greater stringency in their promoter 

sequence requirements, and their association with fewer transcription factors (Koo et al. 

2009, Campagne et al. 2014). Thus, alternative sigmas are commonly used as a stress-

response switch, modulating the promoter specificity of RNAP in response to 

environmental triggers (Rhodius et al. 2013). Most alternative sigma factors are related 

to the housekeeping sigma factor, with conservation of 2 or more of the domains.  

 

1.1.5 The housekeeping sigma factor, σ70 

In Escherichia coli the housekeeping sigma factor is σ70, also known as RpoD. Its 

structure comprises four domains, connected by flexible linkers; when σ70 is bound to 

RNAP core enzyme, these subunits are optimally positioned for interaction of each 

domain with a specific promoter element, as shown in Figure 1.4 (Campbell et al. 2002). 

Domains 3 and 4 are involved in initial positioning of RNAP through interaction with the 

-10 and extended -35 promoter elements, respectively. Domains 1 and 2 interact with the 

discriminator region (domain 1) and the -10 promoter element (domain 2) and induce 

open complex formation (Mekler et al. 2002, Murakami 2013).  
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Figure 1.4 Bacterial promoter elements 
 

The figure shows the consensus motifs of the bacterial promoter elements, as well as their 

locations relative to the transcription start site (TSS) at +1. The interactions of the 

promoter elements with RNAP are also shown. The two α C-terminal domains (CTD) of 

RNAP are shown in dark grey, interacting with the UP element. Domains of the σ RNAP 

subunit are shown in light grey, with domains 4, 3, 2 and 1 interacting with the -35 

element, extended -10 element, -10 element and discriminator region respectively.  
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RNAP associates with σ70 via contacts with all four σ70 domains. A key feature of RNAP-

σ70 binding is the contact formed by a hydrophobic pocket of σ4 with the α-helix of the β 

flap (Campbell et al. 2002, Murakami and Darst 2003). As σ4 is connected by a flexible 

linker, this provides flexibility to the promoter recognition region of the RNAP 

holoenzyme, allowing promoter bending during initiation of transcription (Murakami, 

Masuda and Darst 2002, Campbell, Westblade and Darst 2008). Additionally, σ2 forms a 

well conserved interaction with the coiled-coil of the β subunit (Campbell et al. 2002). 

Domain 1 is also key in preventing DNA from accessing the active site of RNAP prior to 

polymerase-promoter binding; this domain induces a conformational change in the 

holoenzyme after promoter recognition which allows DNA to then enter the active site 

(Mekler et al. 2002).  

 

1.1.6 The alternative sigma factors, σ38 and σ54 

There are two main families of alternative sigma factors in Escherichia coli: the σ70 

family, which comprises sigma factors related to the housekeeping sigma factor, and the 

σ54 family which is uniquely unrelated to other sigma factors (Merrick 1993). The σ70 

family is grouped phylogenetically and according to the domains they possess (Gruber 

and Gross 2003, Paget and Helmann 2003, Österberg, Peso-Santos and Shingler 2011). 

Group 1 comprises housekeeping sigma factors, whilst Groups 2 and 3 are highly related 

to Group 1 (possessing all four conserved domains: σ2, σ3, σ4, and region 1.1 of σ1). Group 

2 includes stationary and stress response sigma factors such as σ38, whilst Group 3 

includes developmental and heat shock sigma factors. Group 4 sigma factors only possess 

two of the conserved domains (σ2 and σ4) and typically respond to extracytoplasmic 
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signals, such as metal transport, periplasmic stress, and infection of a host (Helmann 

2002, Manganelli et al. 2004, Lane and Darst 2006). 

 

There are two key alternative sigma factors present in Escherichia coli: σ38, also known 

as RpoS, and σ54, known as RpoN. σ38 responds to environmental stresses such as 

starvation, or entry into stationary phase growth (Lange and Hengge-Aronis 1994, 

Mandel and Silhavy 2005). Upon initiation of these triggers, σ38 increases in abundance 

due to interaction with Crl, whilst σ70 levels reduce due to the anti-sigma factor Rsd (Pratt 

and Silhavy 1998). Thus, environmental stress induces a pathway by which σ38 displaces 

σ70 and redirects RNAP towards key stress response genes (Battesti, Majdalani and 

Gottesman 2011). Microarray studies have estimated that over 10 % of the genome is 

regulated by σ38; recent ChIP-seq and RNA-seq studies have increased this estimate to 

23% (Patten et al. 2004, Weber et al. 2005, Wong et al. 2017). 

 

The σ54 class of sigma factors recognise different promoter elements at the -12 and -24 

positions (Wigneshweraraj et al. 2008). However, the σ54-RNAP holoenzyme cannot 

form an open complex due to σ54 blocking the site of open complex formation (Yang et 

al. 2015). An additional ATP-dependent activator is thus required. As σ 54 levels appear 

constant and unregulated, control at σ54-dependent promoters is likely reliant on 

regulation of these activators, rather than on regulation of σ54 levels. 

 

1.1.7 The bacterial promoter 

RNAP holoenzyme recognises promoters upstream of transcription start sites (TSSs). 

Bacterial promoters contain a number of motifs for recognition by RNAP and its cognate 
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sigma factors, which allows RNAP to be directed to the adjacent TSS (Feklístov et al. 

2014). The promoter elements are denoted relative to the TSS at the +1 position, and are 

shown in Figure 1.4 with their respective interactions with the various RNAP subunits. 

 

RNAP in complex with σ70 recognises two core promoter elements, the -10 hexamer (5’-

TATAAT-3’) and the -35 hexamer (5’-TTGACA-3’). The core promoter elements are 

optimally spaced 17 bp (base pairs) apart, with the -10 hexamer optimally 7 bp from the 

transcription start site (Walker and Osuna 2002). The sequence of the spacer region 

between the -10 and the -35 hexamer is also important; spacer sequence influences sigma 

factor specificity due to contacts made by side chain R451 of σ70 with position -18 of the 

DNA, and a more AT-rich spacer region inhibits open complex formation (Typas and 

Hengge 2006, Hook-Barnard and Hinton 2009, Singh et al. 2011). Additionally, the β’ 

zipper is proposed to make interactions with the spacer region, with promotion of either 

open or closed complex formation dependent on spacer sequence (Murakami, Masuda 

and Darst 2002, Nechaev and Geiduschek 2006, Yuzenkova et al. 2011). 

 

Additional promoter elements may be recognised to enhance promoter strength, for 

example to compensate for a -35 or -10 element with a poor match to the consensus or 

with suboptimal spacing. The extended -10 element (5’-TG-3’) immediately upstream of 

the -10 element can stabilise RNAP:DNA interactions (Barne et al. 1997). The UP 

element, meanwhile, is the only promoter element recognised by core RNAP, making 

contact with the α subunit C-terminal domain (α-CTD) to increase promoter activity 20-

30 fold (Ross et al. 1993). The UP element consists of two subsites which independently 

interact with a copy of the α subunit (Murakami et al. 1997, Estrem et al. 1999). The α-
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CTD is attached by a flexible linker, allowing recognition of additional nonspecific 

sequences up to 90 bp upstream of the transcription start site (Davis et al. 2005, Ross and 

Gourse 2005). 

 

1.2  Regulation of transcription initiation 

Transcription by RNAP can be regulated either directly through changes in RNAP 

holoenzyme formation or activity, or in a promoter-centric mechanism through 

modulation of promoter affinity or accessibility (Browning and Busby 2016). Direct 

regulation of holoenzyme activity occurs mostly at the elongation and termination stages 

of transcription, as seen with Nus factors which control N-utilisation (Washburn and 

Gottesman 2015). At the initiation stage, polymerase-centric systems vary across 

different bacterial species. For example, within the Enterobacteriaceae, DksA is a key 

regulator allowing for sigma factor independent switching of the transcriptome. DksA, 

along with ppGpp, inserts into the secondary channel of RNAP. This results in an 

interaction with the active site of RNAP which either stabilises or destabilises the 

complex in a promoter dependent manner (Doniselli et al. 2015). Thus, the transcriptome 

can be rapidly altered in response to ppGpp levels. 

 

RNAP activity is altered predominantly via sigma factors, which direct the specificity of 

RNAP, as discussed earlier. Sigma factor regulation can be manipulated by additional 

regulators. For example, the global stress regulator 6S RNA mimics σ70 targets to bind 

σ70 and sequester away RNAP-σ70 holoenzyme, thus allowing the functional σ38 

concentration to increase (Cavanagh and Wassarman 2014). Additionally, promoter 

preferences of RNAP can be adjusted by appropriators, which act similarly to sigma 
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factors by redirecting promoter specificity. For example, the T4-bacteriophage encoded 

AsiA binds and remodels σ70 to inhibit transcription from host promoters and redeploying 

E. coli RNAP towards T4 promoters (Colland et al. 1998, Baxter et al. 2006). Likewise, 

the E. coli oxidative stress regulator SoxS activates by prerecruitment: SoxS binds 

directly to RNAP to form a complex which recognises soxboxes instead of UP elements, 

allowing rapid activation of SoxS targets (Griffith et al. 2002, Zafar, Sanchez-Alberola 

and Wolf 2011). 

 

RNAP activity is also responsive to levels of its substrates, nucleoside triphosphates 

(NTPs). Addition of the initiating nucleotide has the highest Michaelis constant, meaning 

this NTP is required in higher concentrations (Mangel and Chamberlin 1974). This can 

be seen for rRNA promoters in E. coli; the initiating nucleotide for these promoters is 

ATP, and thus ATP levels regulate rRNA synthesis (Schneider, Gaal and Gourse 2002, 

Murray, Schneider and Gourse 2003).  

 

1.2.1 Transcription factors 

Many regulators control transcription initiation through targeting of the promoter DNA, 

rather than RNAP itself. These proteins, known as transcription factors, bind a specific 

sequence within the promoter, known as the ‘operator’. In E. coli, the operator is on 

average 24.5 bp in length, and may be repeated multiple times to improve specificity; as 

a result, many transcription factors bind as multimers (Robison, McGuire and Church 

1998). Transcription factors provide an essential link between environmental conditions 

and transcriptional output; many contain a ligand-binding domain, or are bound and 

activated by other proteins, modifying the transcription factor to allow it to bind DNA 
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(Madan Babu and Teichmann 2003). Alternatively, transcription factors may be encoded 

from a transcription factor-regulated gene, or their levels may be controlled solely by 

protein turnover and sequestration. Thus, transcription factors can form complex 

regulatory networks, allowing fine-tuned activation of genes in response to environmental 

signals. 

 

Transcription factors have been proposed to have evolved from nucleoid associated 

proteins (NAPs), which bind the DNA to organise and compact the bacterial chromosome 

(Visweswariah and Busby 2015). It is suggested that the acquisition of domains for RNAP 

and ligand binding, in conjunction with evolution of promoters, provided the first 

transcription factors and thus allowed for improved efficiency of transcription. Most 

transcription factors can be grouped into families based on phylogeny and function. Major 

families include: 

 

LuxR/UhpA family:  These regulators are part of the TetR protein superfamily, and 

possess a conserved HTH in the C-terminal of the DNA binding domain, and a conserved 

N-terminal signal-binding region (Zeng and Xie 2011). Most LuxR members are 

controlled by signal molecules called N-acyl-homoserine lactones, known as ‘bacterial 

pheromones’, synthesised by LuxI-type synthases (Tsai and Winans 2010). As such, 

many LuxR members are involved in quorum sensing. 

 

OmpR family: Most family members are part of a two component signal transduction 

system, with phosphorylation of a conserved N-terminal regulatory domain controlling 

the activity of a conserved C-terminal DNA binding domain (Martı́nez-Hackert and Stock 
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1997). The best known family member is OmpR, which regulates the production of outer 

membrane porins.  

 

LacI/GalR family: Characterised by the lac repressor, LacI. These regulators are bound 

by specific effector ligands which alter DNA binding affinity of the protein, which binds 

as a dimer to inverted repeat sequences of DNA (Swint-Kruse and Matthews 2009). Thus, 

LacI family proteins typically possess a HTH DNA binding domain linked to a regulatory 

domain with regions for effector binding.  

 

LysR family: The LysR family regulators are the most abundant prokaryotic transcription 

factors. They possess a conserved N-terminal DNA binding HTH motif, and a C-terminal 

domain which binds a co-inducer (Maddocks and Oyston 2008). These co-inducers are 

usually the product of a pathway activated by that LysR member.  

 

AraC/XylS family: Members of the AraC family are characterised by a conserved 100 

amino acid DNA binding domain, and tend to be involved in carbon metabolism, stress 

response, and pathogenesis. In E. coli this family includes AraC, MelR, SoxS, Rob, and 

MarA. The DNA binding domain comprises two HTH motifs; for some family members, 

such as MarA, both HTH motifs have been shown to engage in DNA binding, which is 

unique amongst prokaryotic transcription factors (Gallegos et al. 1997, Rhee et al. 1998). 

These two HTH motifs have different amino acid sequences, and as such these regulators 

bind non-symmetrical sites. Most AraC family regulators also have a dimerisation 

domain at the N-terminal, for oligomerisation and binding of cofactors (Soisson et al. 

1997, Kaldalu et al. 2000).  
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CRP family: The key member of the CRP family is CRP (cyclic-AMP receptor protein) 

itself, but the family also includes Fnr (fumurate and nitrate reductase regulator protein). 

Most family members respond to intracellular or extracellular stress signals (eg carbon 

monoxide, temperature, and oxidative stress) and respond with control of metabolic 

pathways, such as respiration and nitrogen fixation. Family members are characterised by 

their C-terminal HTH DNA-binding motif, and an N-terminal domain for binding effector 

molecules (Korner, Sofia and Zumft 2003). 

 

1.2.2 Transcriptional activation 

Transcriptional activators typically target promoters with a low basal level of activity. 

There are four key ways in which transcriptional activators function to increase RNAP 

binding, shown in Figure 1.5. These are Class I and Class II activation, remodelling of 

the promoter DNA, and action as anti-repressors, which interact with transcriptional 

repressors to lift repression (Browning and Busby 2016). 

 

Class I activation targets operators located upstream of the -35 element. A surface-

exposed patch of the activator makes contact with the α-CTD of RNAP; as a result, for 

some transcriptional activators, such as CRP, it has been shown that activation is optimal 

when the activator is bound on the same face of the DNA as polymerase (Kolb 1995, 

Benoff et al. 2002, Zhou et al. 2014).  

 

Class II activation meanwhile targets operators overlapping the -35 element. This 

prevents the α-CTD of RNAP from binding in its usual location, and thus results in  
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Figure 1.5 Mechanisms for the regulation of transcription by 
transcriptional activators 
Activator proteins are shown by green circles, with repressor proteins shown in red. The 

thick black line indicates the DNA, with the -35 and -10 elements indicated by grey boxes. 

Black T-shapes indicate inhibition. 
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binding of α-CTD further upstream (Lee, Minchin and Busby 2012). The key contacts 

formed with RNAP during Class II activation are typically with either σ4 or the α-NTD. 

 

Finally, as discussed previously, non-optimal spacing between the -35 and -10 element 

can lead to inefficient transcription. Some transcription factors can bind between these 

two elements and remodel the DNA to recruit RNAP from a more favourable position. 

This can be seen with the MerR regulator family (Brown et al. 2003). 

 

1.2.3 Transcriptional repression 

The mechanisms of transcriptional repression are shown in Figure 1.6. Transcriptional 

repression occurs predominantly by steric hindrance, in which the repressor binds over 

the -10 or -35 elements to block access by RNAP, as seen by the LacI repressor (Lewis 

1996). Multiple operators located next to each other increases the strength of repression. 

Likewise, a repressor may bind two operators at distal sites, causing a loop in the DNA 

to prevent access for RNAP, or use a combination of both steric hindrance and DNA 

looping to further increase repression (Swint-Kruse and Matthews 2009). Access of 

RNAP to genes may also be inhibited by large-scale compaction of the chromosome. For 

example, nucleoid associated proteins (NAPs) can bend, wrap, or loop the DNA, often in 

a promiscuous manner (Luijsterburg et al. 2006, Dillon and Dorman 2010). Some NAPs, 

however, such as Fis and IHF, show specificity in the sequences they bind, with IHF 

displaying 1000-fold greater selectivity for certain sites over random DNA, despite its 

known sites showing poor sequence conservation (Wang et al. 1995, Browning, Grainger 

and Busby 2010). 
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Figure 1.6 Mechanisms for repression of transcription by transcriptional 
repressors 
 

Activator proteins are shown by green circles, with repressor proteins shown in red. The 

thick black line indicates the DNA, with the -35 and -10 elements indicated by grey boxes. 

Black T-shapes indicate inhibition. 
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Alternatively, a repressor may bind other components of transcription. Direct interaction 

with RNAP can prevent transcription, for example by preventing promoter clearance 

(Valentin-Hansen, Sogaard-Andersen and Pedersen 1996). For example, protein p4 of 

phage φ29 binds the α subunit of RNAP, and the DNA at position -71 (Monsalve et al. 

1996, Monsalve et al. 1998). This excessively stabilises the initiating complex and traps 

RNAP, which is now unable to escape abortive transcription (Monsalve et al. 1996). This 

prevents transcription from an early-stage viral promoter, A2c; p4 simultaneously 

activates transcription from a late-stage viral promoter, A3, allowing a switch from early 

to late transcription in the virus’ life cycle (Monsalve et al. 1996). 

 

Transcriptional repressors show surprising versatility with the mechanisms of repression; 

for example, movement of the LacI operator to 3’ of the transcription start site can switch 

repression from steric hindrance to inhibition of promoter escape (Lopez et al. 1998). 

Finally, repressors may inhibit transcription through anti-activation by binding a 

transcriptional activator. At transcription factor-dependent promoters, this may be enough 

to repress transcription; at others, additional mechanisms may be required (Valentin-

Hansen, Sogaard-Andersen and Pedersen 1996). 

 

 
1.3 Regulation of antibiotic resistance in E. coli 

1.3.1 Challenges and development of antibiotic resistance 

Overuse of antibiotics in agriculture and healthcare, and a slowdown in novel 

antimicrobial development, has lead to increasing rates of antimicrobial resistance 

(Goossens et al. 2005). This has created a worldwide health crisis, causing unnecessary 
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deaths, increased risks during routine medical procedures, and an economic burden on 

healthcare systems. By 2050, 10 million deaths per year will be attributable to 

antimicrobial resistance, along with a reduction in GDP of up to 3.5 % (O'Neill 2014). 

Multidrug resistance presents particular challenges, with strains of hospital ‘superdrugs’ 

arising which are resistant to all lines of treatment (Hampton 2013). Due to selective 

pressure, resistance is inevitable, however understanding the mechanisms of how bacteria 

acquire resistance can help inform prescribing practices and future drug development. 

 

Antibiotic resistance occurs through three main mechanisms (Blair et al. 2015, Munita 

and Arias 2016). Firstly, the antibiotic’s cellular target may be modified or protected. For 

example, Tet(M) in Streptococcus species provides protection for the cell against 

tetracycline toxicity, by interacting directly with the ribosome to remove tetracycline 

from its target site (Donhofer et al. 2012). The conformation of the ribosome is then 

altered by Tet(M) to prevent further binding of tetracycline.   

 

Secondly, the antibiotic itself can be inactivated. Bacteria can produce enzymes which 

either destroy the drug itself or alter its structure to prevent interaction with the cellular 

target. This can be seen with chloramphenicol resistance; chloramphenicol 

acetyltransferases (CATs) provide the key resistance mechanism, inactivating the drug 

by acetylation (Schwarz et al. 2006). In other examples, inactivation may occur through 

phosphorylation, adenylation, dehalogenation, or glucuronidation of the compound.  

  

Finally, reduced penetration or increased efflux of the antibiotic can result in reduced 

intracellular antibiotic concentrations. This mechanism would, of course, only be 
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appropriate for antibiotics with intracellular targets. Gram-negative bacteria have an 

additional advantage here; the increased selectivity of the outer membrane prevents 

antibiotics such as vancomycin from entering the cell. E. coli produces a number of porins 

which regulate entry into the cell, the main porins being OmpF, OmpC and PhoE. Porins 

form water-filled pores in cell membranes, through which small hydrophilic molecules 

can diffuse but large and lipophilic molecules cannot (Nikaido 1994). Thus, they can be 

a route of entry for some antibiotics and therefore also a route for resistance; loss of OmpF 

porin, for example, results in resistance to β-lactam antibiotics (Harder, Nikaido and 

Matsuhashi 1981). 

 

Likewise, efflux pumps can pump compounds out of the cell via active transport to reduce 

intracellular antibiotic concentrations. These pumps may be associated with the efflux of 

just one compound, or have broad specificity (Webber and Piddock 2003). There are five 

major families of efflux pumps allowing for efflux of a range of compounds from the cell: 

ATP binding cassette (ATP), major facilitator (MF), multidrug and toxic efflux (MATE), 

resistance-nodulation-division (RND) and small multidrug resistance (SMR). Efflux 

pumps provide a certain amount of intrinsic resistance for the cell, with mutation resulting 

in overexpression of pumps allowing reduced susceptibility. Efflux pumps alone may not 

result in a clinical level of resistance; however, they may reduce susceptibility enough to 

allow for acquisition of additional mutations in a ‘stepwise’ manner (Kern et al. 2000, 

May, Ito and Okabe 2009). A key example of this is at the mar (multiple antibiotic 

resistance) locus found in Escherichia coli, which is a regulator of efflux. Mutation or 

overexpression of the mar operon can provide sufficient changes in tolerance and 

survivability to allow the cell to acquire further mutations leading to clinical resistance 
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(Cohen et al. 1989, Randall and Woodward 2002, Marcusson, Frimodt-Moller and 

Hughes 2009, Tavio et al. 2010). Likewise, the mar operon can be mutated subsequent 

to mutation of other genes implicated in antibiotic susceptibility, such as gyrA 

topoisomerase (Huseby et al. 2017). 

 

1.3.2 Emerging antibiotic resistance challenges in Escherichia coli 

Pathogenic E. coli strains are a major causative agent of gastroenteritis, urinary tract 

infections (UTIs), septicaemia, and meningitis. Antibiotic resistance is an current 

challenge within pathogenic E.coli strains; in 2015, the level of ciprofloxacin resistance 

in bloodborne E. coli infections was reported to be 18.8 %, with > 10 % resistance also 

seen to piperacillin, cefotaxime, ceftazidime, and gentamicin (Guy et al. 2016, Ukah et 

al. 2018). Resistance is also a major concern in UTIs, with Extended-Spectrum-Beta-

Lactamase (ESBL)-producing E. coli on the increase, causing a rise of both resistant 

infections and complications such as sepsis (Briongos-Figuero et al. 2012, Picozzi et al. 

2014, Ukah et al. 2018).  

 

Worldwide, challenges can be seen with enterotoxigenic Escherichia coli (ETEC), which 

the primary cause of infant and traveller’s diarrhoea in developing countries, resulting in 

over 700,000 deaths in children under the age of 5 every year (Gupta et al. 2008, 

Gonzales-Siles and Sjöling 2016). It is also a major pathogen of pigs, calves and small 

ruminants, causing farming losses of $100 million annually (Harvey et al. 2005). 

However, although childhood diarrhoea has a number of bacterial and viral aetiological 

agents, antibiotics are often dispensed without a prescription in countries where ETEC is 

endemic (Chuc and Tomson 1999). As a result, resistance to multiple antibiotics is 
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common; one study in Vietnam found multiple antibiotic resistance in 78.6 % of clinical 

ETEC samples (Nguyen et al. 2005). This is concerning, as antibiotic resistant ETEC is 

a threat not only to local populations, but also globally due to the advent of international 

travel.  

 
 
1.3.3 Mar mediated multiple antibiotic resistance 

Escherichia coli may possess mutations in the mar locus which cause constitutive 

activation. This has been reported in association with fluoroquinolone resistance in a 

number of human and animal clinical E. coli and Salmonella clinical isolates, including 

enterotoxigenic E. coli (ETEC) strain H10407 (Maneewannakul and Levy 1996, 

Oethinger et al. 1998, Webber and Piddock 2001, Crossman et al. 2010, Praski Alzrigat 

et al. 2017). Strains showing clinical fluoroquinolone resistance often display a 

phenotype consistent with mar overexpression; in one study, 21/57 clinical isolates 

showing high-level fluoroquinolone resistance also displayed cyclohexane tolerance, a 

phenotype highly associated with  the mar genes, with 6 of these strains found to possess 

mar mutations resulting in constitutive expression (Oethinger et al. 1998). Additionally, 

90 % of high-level fluoroquinolone-resistant isolates show AcrA overexpression, a key 

gene regulated by the mar sysyem (Mazzariol et al. 2000). As resistance to 

fluoroquinolones, a first-line antibiotic for treatment of E. coli infection, have risen from 

1-3 % in 2008 to over 50 % in certain countries in recent years, mar mutations may 

therefore be presenting a very real clinical challenge (Spellberg and Doi 2015).  

 

Strains containing mar mutations alone generally do not cross the threshold for clinical 

resistance for any antibiotics bar tetracycline, nalidixic acid and rifampicin (Alekshun 
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and Levy 1997, Randall and Woodward 2002). However, mar mutants show reduced 

sensitivity to a large number of unrelated antibiotics and can act both as a stepping stone 

to the development of further changes in antibiotic tolerance or as an add-on to existing 

susceptibility mutations (Cohen et al. 1989, Randall and Woodward 2002, Marcusson, 

Frimodt-Moller and Hughes 2009, Tavio et al. 2010). For example, mar mutants have 

been shown to develop high-level fluoroquinolone resistance at a higher rate than 

wildtype strains, and cross-resistance to fluoroquinolones can develop during selection  

with tetracycline and chloramphenicol (Cohen et al. 1989).  The mar locus is therefore 

considered to play a much larger role in the development of clinical antibiotic resistance 

than previously thought (Randall and Woodward 2002). 

 

Activation of the locus induces drug efflux via membrane transporters, as well as 

decreased uptake of antibiotic by porins (Cohen, McMurry and Levy 1988, Cohen et al. 

1989, George 1996). This non-specific mechanism results in reduced susceptibility not 

only to a large number of unrelated antibiotics but also to other stress agents including 

oxygen radicals, weak acids, disinfectants and organic solvents (George and Levy 1983, 

Ariza et al. 1994, Rosner and Slonczewski 1994, White et al. 1997, McMurry, Oethinger 

and Levy 1998). This is known as the mar phenotype, a general stress response phenotype 

of both multiple antibiotic resistance and adaptational responses (Alekshun and Levy 

1999). 

 

The mar locus is usually transcriptionally silent due to inhibition by the mar repressor, 

MarR. However, the wildtype mar locus can be upregulated in response to stress and 

other environmental triggers, with a number of compounds including salicylate, 2,4-
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dinitrophenol, paracetamol, chloramphenicol, tetracycline, and sodium benzoate shown 

to be inducers of mar (Hachler, Cohen and Levy 1991, Cohen, Hachler and Levy 1993, 

Seoane and Levy 1995). Interestingly, upregulation of the mar system has also been 

shown during adherence of ETEC to epithelial cells (Kansal et al. 2013). Induction of the 

wildtype mar genes therefore raises questions on the clinical role of the mar system as 

challenging the view of the mar locus as one which is only clinically relevant when 

mutated. It is therefore vital to understand not only mar mutants, but also how the 

wildtype mar response may contribute to changes in antibiotic tolerance. 

 

 
1.4 The marRAB operon 

The mar locus comprises two divergent transcriptional units, marRAB and marC (Figure 

1.7) (Alekshun and Levy 1997). Between the two is a central operator, marO, which 

controls operon expression via the promoters PmarI and PmarII (Cohen, Hachler and Levy 

1993). Regulation of the operon is mediated at this operator region, by binding of the 

transcription factors MarR and MarA, the first two proteins encoded by marRAB, with 

the former inducing repression and the latter activation (Seoane and Levy 1995, Martin 

et al. 1996).  

 

MarR binds as a dimer to two 21 bp palindromic sites in marO, shown in Figure 1.7, 

Panel A. Site I overlaps the -35 and -10 elements, whilst Site II is immediately upstream 

of marR (Martin, Nyantakyi and Rosner 1995). This binding is relieved in the presence 

of phenolic compounds such as salicylate, benzoate, and redox-cycling agents, which 

bind directly to MarR and inactivate it (Seoane and Levy 1995, Alekshun and Levy 1999). 

MarA binds upstream of marO to its binding site, the marbox, and thus activates  
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Figure 1.7 The mar locus. 
 

White block arrows indicate genes; rectangles indicate marO. Coloured circles indicate 

the proteins MarR (red), MarA (green) and Fis (blue). Two divergent transcriptional units, 

marRAB and marC, are both controlled from a central operator region marO. MarR, 

encoded by marR, autorepresses marRAB at the central operator region marO. Mutations 

in either marR or marO lift this repression to allow MarA, encoded by marA, to bind to 

marO and induce transcription of marRAB. Efficient expression of MarA can then occur, 

allowing it to bind to downstream targets to induce the mar phenotype. 
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transcription from marRAB. Fis (factor for inversion stimulation protein) acts as an 

accessory transcription factor upstream of the marbox, bending the DNA to increase 

marRAB transcription twofold (Martin and Rosner 1997). Further regulation of MarA 

occurs post-translationally. Lon protease degrades MarA rapidly, resulting in a MarA 

half-life of 3 minutes; this ensures that the mar phenotype ends rapidly after stress signals 

are removed. As a result, MarA levels within the cell are very low (Griffith, Shah and 

Wolf 2004). 

 

Mutation in either marR or marO leads to a loss of repression by MarR, allowing the mar 

genes to be constitutively expressed (Cohen, Hachler and Levy 1993, Ariza et al. 1994). 

The mar activator, MarA, can then bind downstream targets to mediate the mar stress 

phenotype. Mutations in MarR homologs in other bacteria result in a similar phenotype, 

such as Ms6508 in mycobacterium and MexR in Pseudomonas aeruginosa (Srikumar, 

Paul and Poole 2000, Zhang et al. 2014).  

 

MarB, the third protein encoded by marRAB, is a small periplasmic protein but has no 

known function (Martin, Nyantakyi and Rosner 1995, Vinué, McMurry and Levy 2013). 

However it appears to indirectly repress marRAB; gene knockout results in increased 

antibiotic and stress resistance similar to that seen in ΔmarR strains (Nichols et al. 2011, 

Vinué, McMurry and Levy 2013). MarC, which is encoded by marC divergent to 

marRAB, is putative inner membrane protein of unknown function which is not required 

for the mar phenotype (McDermott et al. 2008).  
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1.4.1 MarA, the activator of multiple antibiotic resistance 

MarA is an AraC type transcriptional regulator (Rhee et al. 1998). They possess a 

conserved 100 amino acid C-terminal region which is predicted to form two helix-turn-

helix DNA binding motifs (Gallegos et al. 1997). The two motifs have different amino 

acid sequences and therefore different binding specificities, meaning MarA binding is 

non-symmetrical and orientation specific. 

 

The X-ray structure of MarA and its binding site (the marbox) is shown in Figure 1.8 

(Rhee et al. 1998). MarA binds as a monomer, with the two helix-turn-helix DNA binding 

motifs inserting into two adjacent sections of the major groove of the DNA, bending the 

DNA by 35 degrees and making 15 contacts with the marbox (Gillette, Martin and Rosner 

2000). Unlike other AraC members, MarA does not have a characteristic N-terminal 

dimerisation domain (Rhee et al. 1998); instead, the N-terminus (around helix 1) is key 

in DNA-binding. Two arginine residues (residue 5/6) in this region form crucial hydrogen 

bonds and potentially allow different conformations of MarA through their electrostatic 

contacts with the DNA backbone, facilitating MarA’s ability to bind to divergent 

sequences (Dangi et al. 2001). 

 

1.4.2 The marbox 

MarA binds to its 20 bp marbox upstream of the RNAP binding site to activate 

transcription. The marbox can also be bound by two highly related proteins, SoxS and 

Rob (Martin et al. 1999). The marbox is non-palindromic; inversion of the marbox results 

in complete loss of regulation (Jair et al. 1995). Additionally, the marbox is highly 

degenerate, and as such defining the marbox presents a challenge; Figure 1.9 shows the  



 32 

 

 

Diagram of the structure of MarA in complex with the marbox, made using PyMOL from 

crystal structure data (Rhee et al. 1998). The DNA double helix is shown in black; MarA 

is shown in green. Helix 2 and 3 form the N-terminal helix-turn-helix motif, whilst helix 

5 and helix 6 form the C-terminal motif; helix 4 connects them. Helix 3 and helix 6 are 

the major DNA binding elements, and can be seen binding two adjacent major grooves 

to cause bending of the DNA.    

 

 

 

 

 

 

 

 

Figure 1.8 Crystal structure of MarA in complex with the marbox 
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The marbox consensus generated by a recent ChIP-seq experiment (Sharma et al. 2017). 

Numbering of the bases is shown; base positions referred to throughout will be in 

reference to the positions shown here. 
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Figure 1.9 The marbox consensus sequence 
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published consensus from a MarA ChIP-seq (chromatin immunoprecipitation with 

sequencing) experiment by Sharma et al. (2017). The marbox is characterised by a 

conserved 5’ GCA motif and 3’ AAA motif; much of the sequence between is highly 

degenerate. 

 

Location of the marbox is variable in relation to the -10 and -35 elements, but generally 

the marbox is found in one of three specific configurations (Martin et al. 1999): 

 

Class I promoters - The activator binding site starts 38-40 or 50bp upstream of the -10 

promoter element, in the backward orientation. The N-terminal helix-turn-helix therefore 

binds the downstream half of the target. Interaction with the α-CTD of RNAP is required 

(Jair et al. 1996, Jair et al. 1996). 

 

Class I* promoters - The activator binding site is located 30bp upstream of the -10 

promoter element, in the forward orientation, with the N-terminal helix-turn-helix 

therefore bound to the upstream half of the DNA target. This is seen only for zwf.  

 

Class II promoters - The activator binding site overlaps the -35 promoter element, and is 

separated from the -10 promoter element by 18-19 bp. The binding site is orientated in 

forward direction, with the N-terminal helix-turn-helix motif bound to the upstream 

half of the target. In this location, activation involves interaction with region 4 of the σ70 

subunit of RNAP (Zafar, Sanchez-Alberola and Wolf 2011). 
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1.4.3 Regulation of antibiotic resistance by MarA 

As well as binding to marO to initiate expression of marRAB, MarA binds the marbox 

upstream of its target genes to induce the mar phenotype. This is characterised by 

increased tolerance to multiple antibiotics as well as to a range of environmental stresses 

including oxidative stress (Ariza et al. 1994), weak acids (Rosner and Slonczewski 1994), 

organic solvents (White et al. 1997, Aono 1998) and disinfectants (McMurry, Oethinger 

and Levy 1998). 

 

The broad specificity of the mar phenotype is largely due to upregulation of membrane 

transporters, enabling non-specific drug efflux (George 1996). MarA binds upstream of 

acrAB, which encodes the AcrAB, which makes up part of the AcrAB-TolC efflux pump 

(Okusu, Ma and Nikaido 1996). AcrB is a channel protein connecting the cytoplasm and 

periplasm. AcrA is its adaptor protein, allowing AcrB to interact with TolC, which further 

continues the channel into the extracellular space. MarA also targets tolC, as well as acrZ, 

which controls the specificity of the pump (Hobbs et al. 2012). The AcrAB-TolC efflux 

pump plays a crucial role in antibiotic resistance and also in the efflux of lipophilic 

compounds (Nikaido and Takatsuka 2009). 

 

An alternative mechanism for reduced antibiotic susceptibility in mar mutants is by 

decreased antibiotic uptake (Cohen et al. 1989). The MarA target micF is responsible for 

downregulation of the outer membrane general diffusion porin OmpF, reducing antibiotic 

accumulation in the cell (Cohen, McMurry and Levy 1988, Ziervogel and Roux 2013).  
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Additional experimentally confirmed MarA targets include ybjC, zwf, fpr, fumC, sodA 

and inaA ((Rosner and Slonczewski 1994, Jair et al. 1995, Martin et al. 2002). The total 

number of genes in the MarA regulon is unclear; differential expression studies indicate 

that MarA regulates up to 100 genes, but roughly 13,000 sequences matching the marbox 

can be found in the E. coli genome (Barbosa and Levy 2000, Griffith et al. 2002).  A 

recent ChIP-seq experiment identified 33 targets, of which many were previously 

uncharacterised (Sharma et al. 2017). 

 

1.4.4 Prerecruitment of RNAP by MarA 

It is usually agreed that assembly of the activator-DNA-RNAP tertiary complex occurs 

first by formation of an activator-DNA complex, which then recruits RNAP (reviewed 

by Browning and Busby (2004)). However, activation of transcription by MarA occurs 

via pre-recruitment (Martin et al. 2002). This has also been described for the MarA 

homolog SoxS (Griffith et al. 2002). The activator-RNAP complex forms independently, 

then scans the DNA to specifically recognise activator binding sites. This activator-

RNAP complex will only bind to genuine sites which are in the correct orientation and 

position for transcriptional activation. This complex is therefore able to scan and bind 

promoters more efficiently than the individual constituents as it has three ‘reading heads’ 

(one for the marbox, one for the -35, and one for the -10). This allows MarA and SoxS to 

respond rapidly under stress conditions (Griffith et al. 2002). 

 

Pre-recruitment is thought to be necessary as there is a large abundance of marboxes per 

cell relative to the number of MarA molecules; approximately 65,000 possible binding 

sites would be present in rapidly dividing cells, of which only a small number are in the 
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correct position and orientation to be genuine targets (Griffith et al. 2002). A comparative 

number of MarA molecules would therefore be needed to activate transcription by 

classical recruitment of RNAP, which would be unfeasible. The pre-recruitment model 

allows for rapid activation of the mar phenotype without high concentrations of MarA in 

the cell. 

 

1.4.5 Repression of transcription by MarA 

Whilst MarA is an activator at the majority of its targets, it has been shown to act as a 

repressor at the hdeA, purA and rob promoters (Schneiders et al. 2004, Schneiders and 

Levy 2006). At the hdeA and purA promoters, MarA binds in the backward orientation 

overlapping the -35 element, in contrast to Class II activation in which MarA binds over 

the -35 in the forward orientation (Schneiders et al. 2004). This likely results in either 

differences in DNA bending, or different interactions being formed with RNAP which 

prevent the initiation of transcription, although no MarA-RNAP contacts have been 

identified which are specifically involved in repression (Schneiders and Levy 2006, 

McMurry and Levy 2010).   

 

At the rob promoter however MarA binds in the backward orientation partly overlapping 

both the -10 and the -35 elements (Schneiders et al. 2004, Schneiders and Levy 2006). 

Here, MarA is thought to repress transcription by steric hindrance, binding the DNA prior 

to open complex formation to prevent access to the promoter elements by RNAP 

(Schneiders and Levy 2006, McMurry and Levy 2010). This mechanism however would 

not work with the prerecruitment theory, and raises questions on how MarA is able to 

effectively locate repressor sites within the cell, although it has been suggested that 
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disassociation of the MarA-RNAP complex could occur immediately prior to promoter 

binding in the case of repression (Schneiders and Levy 2006). 

 

1.5  Rob and SoxS 

1.5.1 SoxS, the regulator of oxidative stress 

Two MarA homologs are present in Escherichia coli: Rob and SoxS. These co-regulators 

share MarA’s degenerate binding site, allowing for overlapping control of the 

MarA/Rob/SoxS regulons. However, the three regulators respond to different stimuli and 

activate their targets to varying extents. This allows a highly adaptive response to cellular 

stresses, with small adjustments in the transcriptome possible. 

 

SoxS promotes superoxide resistance within the cell, in response to oxidative stress 

agents such as paraquat. In the absence of oxidative stress SoxS exists at low basal levels 

in the cell due to repression by SoxR, a MerR family protein encoded divergently to SoxS, 

which binds as a homodimer to the soxS promoter (Wu and Weiss 1991). However, when 

the cell is under oxidative stress, SoxR is oxidised by redox cycling drugs; this converts 

SoxR into an activator of SoxS transcription (Figure 1.10) (Wu and Weiss 1992). 

Structurally, SoxS has 41 % identity and 67 % similarity with MarA, binding as a 

monomer via two helix-turn-helix motifs into two adjacent major grooves of the DNA 

(Li and Demple 1994). 25 SoxS targets have been identified by ChIP-exo (Seo et al. 

2015). These include zwf, which encodes glucose-6-phosphate-dehydrogenase, fpr, which 

encodes ferredoxin NADP+ reductase, and fumC, which encodes fumarase C (Liochev 

and Fridovich 1992, Giro, Carrillo and Krapp 2006). Of these 25 targets, 7 were also  
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Figure 1.10 Activation of SoxS in response to oxidative stress 
 

Adapted from Duval and Lister (2013). White arrows indicate genes. Coloured circles 

indicate proteins (purple = SoxR, blue = SoxS). Navy squares represent redox-cycling 

drugs. 

A – In the absence of oxidative stress, SoxR binds as a homodimer to the soxS promoter 

to repress SoxS. Protease degradation ensures that SoxS levels remain low. 

B – Under oxidative stress, the [2Fe-2S] cluster of SoxR is oxidised by redox-cycling 

drugs. SoxR repression is lifted; SoxR instead binds the same site to activate the soxS 

promoter (Hidalgo et al., 1998). SoxS then acts back upon the PsoxS mar/soxbox to 

repress its own transcription. 
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found to be regulated by MarA in our recent ChIP-seq study, highlighting the overlap 

between these two regulons (Sharma et al. 2017). 

 

1.5.3 Rob 

Rob shares 51 % identity and 71 % similarity with MarA. As with MarA and SoxS, Rob 

possesses two HTH motifs, however it is debated whether one or both motifs interact with 

the major groove of the DNA; the second is reported to interact with the DNA backbone 

instead and thus provide greater degeneracy in Rob’s DNA binding properties (Kwon et 

al. 2000, Taliaferro et al. 2012). Rob also possesses the C-terminal domain lacking in 

MarA and SoxS (Kwon et al. 2000). This domain is responsible for sequestration of Rob 

in intracellular foci, as well as protection from Lon protease degradation (Griffith et al. 

2009). Thus, Rob is constitutively expressed and abundant within the cell. However, due 

to sequestration, it mostly exists in an inactive state within the cell (Jair et al. 1996). 

Compounds such as dipyridyl, bile salts and fatty acids interact with the C-terminal to 

relieve Rob aggregation, freeing it from its intracellular clusters and allowing it to access 

the transcriptional machinery so that it may act upon downstream targets (Rosner et al. 

2002, Griffith et al. 2009). Thus, activation of Rob occurs post-transcriptionally via a 

proposed ‘sequestration-dispersal’ mechanism. It is unclear, however, whether Rob is 

then re-sequestered after the inducing stress has been alleviated (Griffith et al. 2009). 

 

 
1.5.4 Co-regulation by MarA, Rob and SoxS 

Due to their shared binding site the MarA, Rob and SoxS regulons, and thus their resultant 

phenotypes, overlap. MarA and SoxS are equally effective at enhancing antibiotic 

resistance; SoxS has been shown to activate all known MarA targets to varying extents, 
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botb in vivo and in vitro (Greenberg et al. 1990, Martin, Gillette and Rosner 2000). MarA 

meanwhile is half as effective as SoxS at enhancing superoxide resistance (Martin et al., 

2000). 

 

Many known MarA targets are shared with SoxS, such as inaA, micF, fpr and fumC, 

although the extent of binding and activation differs (Rosner and Slonczewski 1994, 

Martin, Gillette and Rosner 2000). Rob, however, shows less involvement in the MarA 

and SoxS co-regulons; although it is capable of binding to known MarA targets, at basal 

levels, it has been shown to activate only mar and micF (Martin, Gillette and Rosner 

2000). However, overexpression of Rob results in a superoxide and antibiotic resistance 

phenotype similar to that seen for SoxS and MarA (Ariza et al. 1995). Intracellular 

concentration (or availability in the case of Rob) may therefore be key in allowing varied 

responses for these transcription factors. 

 

As well sharing their targets, MarA, Rob and SoxS are also capable of regulating each 

other. Rob and SoxS are both transcriptionally repressed by all three transcription factors, 

whilst MarA is activated by all three (Martin and Rosner 1997, Michán, Manchado and 

Pueyo 2002, Schneiders and Levy 2006, Chubiz, Glekas and Rao 2012). Interestingly, 

autoregulation is only important at PmarRAB; at PsoxS and Prob, repression by their co-

regulators is predominant over autoregulation (Chubiz, Glekas and Rao 2012). 

Transcriptional crosstalk between the regulons thus makes it impossible to consider these 

regulons in isolation.  
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1.6 Objectives of this project 

Until recently, the full MarA regulon has remained a mystery, due to the challenges 

presented by MarA’s uniquely degenerate binding site and the overlap with Rob and 

SoxS. Recent ChIP-seq analysis has unveiled novel targets which have previously 

remained uncharacterised (Sharma et al. 2017). Thus, this work aims to characterise the 

role of MarA regulation at some of these targets to elucidate novel mechanisms by which 

MarA can respond to cellular stress. 

 

Secondly, the ChIP-seq targets may also be regulated by Rob and SoxS, due to a shared 

binding site. Above, we have discussed the importance of the regulatory overlap between 

these systems. Thus, in this work we have aimed to verify not only the presence of the 

MarA targets within the Rob and SoxS regulons, but also the nature by which these 

regulators discriminate between their targets. 
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2.1 Materials 

2.1.1 General buffers, reagents and solutions 

Unless otherwise stated, all solutions were made with deionised and distilled water 

(ddH2O) and autoclaved for 20 minutes at 121 °C prior to use. Where a pH is stated, 

solutions were pH adjusted at room temperature prior to autoclaving. 

 

Polymerase chain reaction: 

• 100 mM dNTP mix (Bioline): 25mM each of dATP, dGTP, dCTP and dTTP. 

This mix was diluted 1 in 10 with ddH2O. 

• Phusion DNA polymerase (New England Biolabs) 

• Velocity DNA polymerase (Bioline) 

• 5 x Phusion HF Buffer (New England Biolabs): PCR reaction buffer for use 

with Phusion DNA polymerase. 

• 5 x Hi-Fi Buffer (Bioline): contains 10 mM Mg2+. PCR reaction buffer for use 

with Velocity DNA polymerase. 

 

Agarose gel electrophoresis:  

• Agarose, powdered (Bioline) 

• 6 x gel loading dye (New England Biolabs): 10 mM EDTA 

(diaminoethanetetra-acetic acid), 3.3 mM Tris-HCl, 0.02 % pink/red dye, 0.001 

% blue dye, 2.5 % Ficoll®-400, pH 8 

• 1 x TBE: diluted in ddH2O from a 5 X stock from Fisher Scientific (0.445 M 

Tris borate pH 8.3, 10 mM Na2EDTA) 
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Restriction digests 

• 10 x CutSmart® buffer (New England Biolabs): 50 mM potassium acetate, 20 

mM Tris-acetate, 10 mM magnesium acetate, 100 μg/ml BSA, pH 7.9 

 

Phenol-chloroform extraction and ethanol precipitation 

• Phenol/chloroform/isoamyl alcohol, pH 8.0 (25:25:1) 

• 3 M sodium acetate (CH3COONa), pH 5.2 

• 100 % (v/v) ethanol 

• 70 % (v/v) ethanol 

 

Ligation of DNA fragments 

• 10 x T4 DNA ligase buffer (New England Biolabs): 50 mM Tris-HCl, 10 mM 

MgCl2, 1 mM ATP, 10 mM DTT, pH 7.5 

• T4 DNA ligase (New England Biolabs) 

 

Gene doctoring 

• 20 % (w/v) arabinose solution: 1 g L(+) arabinose powder in 5 ml ddH2O. The 

solution was sterilised using a 0.22 μM filter before use.  

 

Preparation of chemically competent cells 

• 100 mM calcium chloride  

• 50 % (v/v) glycerol 
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End-labelling of fragments 

• G-50 sephadex beads: these were resuspended with Tris-EDTA (TE) and 

washed three times before resuspension in TE to form a 12 % (w/v) slurry. 

• Tris-EDTA: 10 mM Tris-HCl, 1 mM EDTA, pH 8.0 

• T4 polynucleotide kinase (New England Biolabs) 

• 10 x T4 polynucleotide kinase buffer (New England Biolabs): 70 mM Tris-HCl, 

10mM MgCl2, 5 mM DTT, pH 7.6 

• [γ-32P]-ATP (Perkin Elmer): 10 μCi/μl 

 

Electrophoretic mobility shift assay (EMSA) 

• 10 x TNSC buffer: 400 mM Tris acetate (pH 7.9), 10 mM MgCl2, 1 M KCl, 10 

mM DTT 

 

In vitro transcription 

• STOP solution: 97.5 % (w/v) deionised formamide, 10 mM EDTA, 0.3 % (w/v) 

bromophenol blue, 0.3 % (w/v) xylene cyanol 

• NTP mix: 1 mM ATP/GTP/CTP, 50  μM UTP. Final concentrations in assay 

200  μM ATP/GTP/CTP and 10  μM UTP 

• 1 mg/ml bovine serum albumin (BSA). Final concentration in assay 100 μg/ml 

• [α-32P]-UTP (Perkin Elmer): 10 μCi/μl 

• E. coli RNA polymerase core enzyme (New England Biolabs) 
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6 % denaturing sequencing gel and 7.5 % acrylamide gel electrophoresis 

• UreaGel Concentrate (National Diagnostics): per 1 litre, contains 237.5 g 

acrylamide, 12.5 g methylene bisacrylamide, and 7.5 M urea. 

• UreaGel Diluent (National Diagnostics): 7.5 M urea 

• UreaGel Buffer (National Diagnostics): 0.89M Tris-Borate – 20 mM EDTA pH 

8.3, 7.5 M urea 

• 10 % (w/v) ammonium persulfate (APS) solution: 100 mg APS (Sigma-Aldrich) 

in 1 ml ddH2O. Made fresh for use without autoclaving. 

• TEMED (N, N, N’, N’-tetramethylethylenediamine; ) 

• ProtoGel (National Diagnostics): 37.5:1 acrylamide:bisacrylamide 

 

Beta galactosidase assays 

• 1 % (w/v) sodium deoxycholate (C24H39O4Na) 

• 100 % (v/v) toluene (C7H8) 

• Z-buffer: 8.53 g Na2HPO4, 4.87 g NaH2PO4.2H2O, 0.75 g KCl, 0.25 g MgSO4, 

made to 1 litre with ddH2O. 

• ONPG solution: 100 mg 2-nitrophenyl β-D-galactopyranoside (ONPG, 

C12H14NO8; Sigma-Aldrich) and 677 μl β-mercaptoethanol (C2H6OS) dissolved 

in 250 ml Z-buffer, to make a final ONPG concentration of 13 mM. This was 

made fresh on the day without autoclaving.  

• 1 M sodium carbonate (Na2CO3) 
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Crystal violet assay 

• 0.1 % (w/v) crystal violet (C25H30N3Cl) solution; 50 mg crystal violet powder 

dissolved in 50 ml ddH2O. 

 

Bradford assay 

• Bradford reagent (Bio-Rad) 

 

SDS-PAGE  

• Protein ladder 

• 5 x SDS loading dye: 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 20 % glycerol, 

0.025 % bromophenol blue, 0.025 % xylene cyanol 

• NuPAGE™ 4-12 % Bis-Tris protein gel (Invitrogen) 

• 10X NuPAGE™ MES SDS Running Buffer (Invitrogen): 500 mM MES, 500 

mM Tris base, 10 % SDS, 10 mM EDTA, pH 7.3. Diluted to 1 x in ddH2O. 

• Staining solution: 50 % (v/v) methanol, 10 % (v/v) acetic acid, 2 g Brilliant Blue 

R, made to 1 litre with ddH2O. 

• Fast Destain solution: 40 % (v/v) methanol + 10 % (v/v) acetic acid, made to 1 

litre with ddH2O. 

  



49 
 

Purification of MarA and SoxS 

• 1 M IPTG solution 

• Lysis buffer: 50 mM Tris-HCl (pH 7.5)-1 mM EDTA-1 M NaCl 

• Wash buffer: 4 M urea-50 mM Tris-HCl (pH 8.5) 

• Denaturing buffer: 50 mM Tris-HCl (pH 8.5)-6 M guanidinium-HCl 

• Buffer A: 1 M NaCl-50 mM Tris-HCl (pH 8.5) 

• Buffer B: Buffer A + 1 M imidazole 

• Buffer X: 1 M NaCl - 50 mM HEPES [N-2-hydroxyethylpiperazine-N’-2-

ethanesulfonic acid, pH 8.0] - 1 mM dithiothreitol - 5 mM EDTA - 0.1 mM 

Triton X-100 

• Thrombin sepharose beads (BioVision): 6 % cross linked sepharose beads in a 

50 % slurry with glycerol. 

 

2.1.2 Bacterial strains and plasmid vectors 

All bacterial strains used in this study are shown in Table 2.1. All plasmid vectors used 

in this study are shown in Table 2.2. 

 

2.1.3 Oligonucleotides 

Oligonucleotides were obtained from Life Technologies. All oligonucleotides used in 

this study are shown in Table 2.3. 
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Table 2.1 Escherichia coli strains used in this study 

 

 

 

 

 

  

Strain 
 

Description Source 

JCB387 
 

ΔnirB Δlac Typas and Hengge 
(2006) 

JCB387  
ΔycgZ-ymgA-ariR-
ymgC 

ΔnirB Δlac ΔycgZ-ymgA-ariR-
ymgC 

This work 

NCTC 10418  Reference strain for antimicrobial 
susceptibility testing 

London, 1965 

ATCC 25922 
 

Reference strain for antimicrobial 
susceptibility testing 

Human clinical sample, 
Seattle, 1946 (Minogue 
et al. 2014) 

T7 Express 
 

fhuA2 lacZ::T7 gene1 [lon] 
ompT gal sulA11 
R(mcr73::miniTn10--TetS)2 
[dcm] R(zgb-210::Tn10--TetS) 
endA1 Δ(mcrCmrr)114::IS10 

New England Biolabs 
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Table 2.2 Plasmids vectors used in this study 
 
Plasmid Size Description Source 

pRW50 16 kb Encodes TetR. Features a cloning site 
upstream of a lacZ fusion. Used for β-
galactosidase assays. 

Lodge et al. 
(1992) 

pSR 4 kb Encodes AmpR, derived from pBR322. 
Features a cloning site upstream of a λoop 
terminator site. Used for in vitro 
transcription. 

Kolb (1995) 

pDOC-C 5.8 kb Encodes AmpR, derived from pEX100T. 
Used as a cloning vector for gene doctoring. 
Features a cloning region flanked by two I-
SceI recognition sites. 

Lee et al. (2009) 

pDOC-K 7.2 kb Encodes AmpR, derived from pEX100T. 
Template for gene doctoring; features a 
kanamycin resistance cassette between two 
Flp recombinase recognition sites.  

Lee et al. (2009) 

pACBSR 7.3 kb Encodes CamR. Recombination plasmid for 
gene doctoring; carries arabinose inducible 
λ-Red and I-SceI endonuclease genes. 

Herring et al. 
(2003) 

pCP20 9.4 kb Encodes CamR and AmpR. Encodes yeast 
FLP recombinase gene. Used to remove the 
kanamycin cassette in gene doctoring. 

Cherepanov and 
Wackernagel 
(1995) 

pBR322 4.4 kb Encodes TetR and AmpR. Bolivar et al. 
(1977) 

pBR322 
Δbla 
 

3.6 kb Encodes TetR. Cloning vector used for 
complementation of ycgZ-ymgA-ariR-ymgC; 
the beta lactamase gene has been excised. 

This study 

pET28a 5.4 kb Encodes KanR. Protein overexpression 
vector using the T7lac promoter; features 
both C-terminal and N-terminal His tags, an 
internal T7 tag, and a thrombin cleavage 
site. 

Novagen 
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Table 2.3 Oligonucleotides used in this study 
 

Name 
(F – forward;  
R – reverse) 

Sequence (5’ à 3’) 
Restriction sites are underlined 

 
Oligonucleotides for amplification of ycgZ regulatory region derivatives 

ycgZ.1-F, ycgZ.2-F, and ycgZ.1M-F were used with ycgZ-R to generate derivatives of the 
regulatory region upstream of ycgZ, and with ycgZ-ymgABC-R to amplify the ycgZ-ymgABC 

operon under the control of the regulatory region derivatives. 

ycgZ.1-F GCTGCTGAATTCATATGCATTAGCACTAATTGCA 

ycgZ.2-F GGTGTCGAATTCAATTTATCATTCTGTACACATATTTCG 

ycgZ.1M-F GCTGCTGAATTCATATGCATTACGTCTAATTCGAAAAAATTAATT
TATCATTCTGTACACATATTTCG 

ycgZ-R AGTAGTAAGCTTCATGCTACGCCTCTGTTA 

ycgZ-ymgABC-R GCATTGGACGTCCTAAGAGAGCACGGATTC 

 
Oligonucleotides for creation of the pBR322Δbla linker 

Δbla-F GCATCTATTAATCCAGCACTAACTACGATGCGCAGCGATAAGCA
GGTAGGTCAACGTGCGATGCGTCATTCGGATTGCGATTTAGC 

Δbla-R GCATGAGACGTCAAGTAACGATGCTCTGACTCGAAGATAGACTT
GTGTTCTCTAAGCTAAATCGCAATCCGAATGACGCATCGCAC 

 
Oligonucleotides for deletion of the ycgZ-ymgABC operon by gene doctoring 

ycgZ-ymgABC.GD-F GCTGCTGAATTCTTCACTTAACATTGATTAACATTTTTAACAGAG
GCGTAGCGACCGGTCAATTGGCTGGAG 

ycgZ-ymgABC.GD-R AGTAGTAAGCTTGTGATACAGCTGATGTTTATTCTAAAACCTTAC
TCAAGTTAATATCCTCCTTAGTTCC 

 
Oligonucleotides for amplification of the mlaF regulatory region derivatives 

All oligonucleotides were used with mlaF-R to generate derivatives of the mlaF.1 fragment 

mlaF.1-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAAC 

mlaF.1.inv-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCAAT
CGCTTTCGACCCACGGCGGGTAATATTCTG 
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mlaF.upE-F GGCTGCGAATTCGCCAGCTTTCGCTAACCACG 

mlaF.1.P1-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACCACGGCGGGTAAGGTTCTGTAAATATGTTGG 

mlaF.1.U1-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACGCACGGCGGGTAATATTCT 

mlaF.1.U2-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACCGCACGGCGGGTAATATTCT 

mlaF.1.U3-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACACGCACGGCGGGTAATATTCT 

mlaF.1.U4-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACGACGCACGGCGGGTAATATTCT 

mlaF.1.U5-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACTGACGCACGGCGGGTAATATTCT 

mlaF.1.U6-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACCTGACGCACGGCGGGTAATATTCT 

mlaF.1.U7-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACACTGACGCACGGCGGGTAATATTCT 

mlaF.1.U8-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACGACTGACGCACGGCGGGTAATATTCT 

mlaF.1.U9-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACTGACTGACGCACGGCGGGTAATATTCT 

mlaF.1.U10-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACCTGACTGACGCACGGCGGGTAATATTCT 

mlaF.1.D1-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACACGGCGGGTAATATTCTG 

mlaF.1.D2-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAACAAATGCCAG
CTTTCGCTAACCGGCGGGTAATATTCTG 

mlaF-R GCCCGAAGCTTCATAATTCACCCTTCGTCTTGC 

 
Oligonucleotides for amplification of the MarA ChIP-seq targets for EMSAs 

thrL-F GGCTGCGAATTCGCTTTTCATTCTGACTGCAATG 

thrL-R CGCCCGAAGCTTCATGGATGTTGTGTACTCTG 

leuL<>leuO-F GGCTGCGAATTCGAAAAGCGTCGGTAGTTAAGCAG 

leuL<>leuO-R CGCCCGAAGCTTCATTAAATCAGCTCCAGATG 
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degP-F GGCTGCGAATTCCTATAAAACGAATCTGAAGAACAC  

degP-R GCCCGAAGCTTCAGAGAGCGGAGATAACGCCAAAC  

lacZ-F GGCTGCGAATTCGGAAAGCGGGCAGTGAGCG  

lacZ-R CGCCCGAAGCTTCATAGCTGTTTCCTGTGTGAAATTG  

ybaO-F GGCTGCGAATTCTAACGAGATCCCTTCCAGCACCG  

ybaO-R CGCCCGAAGCTTCATAGCCCTTCCACAGAGAATTTTTTTCTC  

pheP-F GGCTGCGAATTCGGCGTATAAGCTGATGTGGCTG  

pheP-R CGCCCGAAGCTTCACGCCTTTCCCCTGTGTGTCTTTTTTGTTGA
G 

modE<>acrZ-F GGCTGCGAATTCGTCTTATTGTGACGGAAAACGAACG  

modE<>acrZ-R  GCCCGAAGCTTAATAACTCTAACATGGTCAACTCC  

ybiV-F GGCTGCGAATTCCGTCGTTAAGAAAAGTACCGTCCAT  

ybiV-R CGCCCGAAGCTTATTCGAAATATAATTTGTGCTCTGC  

grxA<>ybjC-F GGCTGCGAATTCGCGCGCATACGCTTCCCTCTG 

grxA<>ybjC-R CGCCCGAAGCTTCATTATTTCTCTCCTCATAG 

ycgZ<>bluF-F GGCTGCGAATTCTTGAACACTAGTTGGCGAAAAATCTTG 

ycgZ<>bluF-R CGCCCGAAGCTTCATGCTACGCCTCTGTTAAAAATG 

fnr-F GGCTGCGAATTCAGGTTATCTTTTGCTGTAAACATTAAACAATTT
GTG 

fnr-R CGCCCGAAGCTTCATAGGTCTGCTCAAGCCGTAATTG 

yneO-F GGCTGCGAATTCGAAAACTGTTTCTTTCAATAGGA 

yneO-R GCCCGAAGCTTGCATTAAGCACAACCCTTATTTTATA 

marC<>marR-R GGCTGCGAATTCTTCCGCTTCGGGGTGAAATAGTAG 

marC<>marR-R CGCCCGAAGCTTCATTAGTTGCCCTGGCAAGTAATTAG 

yeeF-F GGCTGCGAATTCCATAATAATTTTTCTTTAAATGGC 

yeeF-R  GCCCGAAGCTTGGACTTGCCAGTGGCTGGTGGCGG 

ompC<>micF-F GGCTGCGAATTCGGTTAAAATCAATAACTTATTCT 

ompC<>micF-R  GCCCGAAGCTTATTCAGAAATGAATGACGGTAATA 
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ypeC-F GGCTGCGAATTCATCGTCCGAAGCAACAGCCCC 

ypeC-R  CGCCCGAAGCTTCATTGTTATTCTCCTTCACGATCG  

yfeS><cysM-F  GGCTGCGAATTCCGGCGTTTCCTCACGAAAATTAA  

yfeS><cysM-R  GCCCGAAGCTTTGCAATATATTGAATTAGCACGAT  

guaB<>xseA-F GGCTGCGAATTCGTAACCGATTGCATCTACCCCTTTTTGC 

guaB<>xseA-R GCCCGAAGCTTCATGTGAGCGAGATCAAATTCTAAATCAG 

ETEC_3200-F  GGCTGCGAATTCGCCGCCAGACAACAACCCATACTTT  

ETEC_3200-R  CGCCCGAAGCTTTGACTATCTCGCGAAAGAGTACACCA  

nudF<>tolC-F  GGCTGCGAATTCGACTGCCGTTTGAGCAGTCATGTG  

nudF<>tolC-R GCCCGAAGCTTTTCTAGCAGAAGCCGCTACCGCAA 

yhbV-F GGCTGCGAATTCCTGGCTGGAGATGGCAAAATCGCT 

yhbV-R  GCCCGAAGCTTTCAATCAGAAACTCACCGTTCTC  

mlaF<>yrbG-F GGCTGCGAATTCTTTATGCGGCTAAAAAGTAAAAC 

mlaF<>yrbG-R GCCCGAAGCTTCATAATTCACCCTTCGTCTTGCG 

ibpA<>yidQ-F  GGCTGCGAATTCCCCTCAGTCTATGCAATAGACCATAAACTG  

ibpA<>yidQ-R  CGCCCGAAGCTTCATAATCAATAGCTCCTGAAATCAG 

yihT-F  GGCTGCGAATTCGATATGGTCATTCAGACGTTGTGA  

yihT-R GCCCGAAGCTTAAATTCGATCGCGAACAAGCGATC  

ETEC4304-F GGCTGCGAATTCGTAAGCCTATAGACCTGAAAGAA 

ETEC4304-R GCCCGAAGCTTGTTCCTTTCCTGTATGGCTGATA 

ETEC4307-F GGCTGCGAATTCATGGTGGGAATATATACCATAGC 

ETEC4307-R GCCCGAAGCTTAATAGCTTTCTGGCAAAAACACC 

ETEC4702-F  GGCTGCGAATTCGACAGATGATAATTATTTCATGA  

ETEC4702-R GCCCGAAGCTTGACCGCTAATGCTGTTGTCAGCC 

deoB-F GGCTGCGAATTCCGAAAGACGAAAACAGCTGGCA 

deoB-R GCCCGAAGCTTCAGTATACCGTTATTCACTGATA 

ETEC p9480770-F GGCTGCGAATTCGCAGATTCGAGATTAATTTTGGGTC 
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ETEC p9480770-R GCCCGAAGCTTTAAAGGATTAGGCAAAAATAGCG 

estA-F GGCTGCGAATTCTAACATGATGCAACTCACAAAAAAAAT 
AAAAAAATTGCAAAATCCGTTTAACTAATCT 

estA-R GCCCGAAGCTTCATGTTACCTCCCGTCATGTTGTTTCACGGATA
TTTGAGATTAGTTAAACGGATTTTG 

 
Oligonucleotides for amplification of the SoxS ChIP-exo targets for EMSAs 

lpxC-F TCTACTGAATTCGCATTCCTGCGTAAGCAAGC 

lpxC-R TCTACTAAGCTTTGTAAACCGACACCCGTCGC 

acrAB-F TCTACTGAATTCAGCTGCTTTTGCAATCTCGC 

acrAB-R TCGACGAAGCTTGTTAATAAACCCATTGCTGC 

uof-fur-F TCTACTGAATTCACAGATTTCTGAAGAGTTGC 

uof-fur-R TCTACTAAGCTTTTACATTTACAACGGCAAGG 

acnA-F TCTACTGAATTCCTCTGTCGATGCTCTTCTGG 

acnA-R TCGACGAAGCTTCATAGCTCCTCCTTAATGAC  

ribA-F TCTACTGAATTCGTACGTCTGGCAATCGAACG 

ribA-R TCGACGAAGCTTCATGAAATTCTCCAGATAATGC 

ydbK-F TCTACTGAATTCAATAATAGGCAGCACAGAGG 

ydbK-R TCTACTAAGCTTCATATGACACCCTTACATTGC 

nhoA-F TCGACGGAATTCAACGAAATTAACGGGATTGG 

nhoA-R TCTACTAAGCTTTGTTTCAGGTGCAATGCACG 

fumC-F TCTACGGAATTCAGGAAATGACTTCTTCCAGCAG 

fumC-R TCTACTAAGCTTCATGACCTGCTCCTCACCTG 

zwf-F TCGACTGAATTCCATAACATGATCAGTGTCAG 

zwf-R TCTACTAAGCTTAACTAACCCGGTACTTAAGC 

nfo-F TCTACTGAATTCGGCGAAACCTCTGCTGATGG 

nfo-R TCTACTAAGCTTCATGCGAGGACTCCTGTTAAACC 

aroF-tyrA-F TCTACTGAATTCCAGAGGTAAGGGTTGAAAGC 
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aroF-tyrA-R TCGACTAAGCTTGAGTCATTAAAACCTGTTCG 

yrbL-F TCTACTGAATTCGTCATTTGTACATTTTGTGC 

yrbL-R TCTACTAAGCTTGTAGACAATCTTGATACAGC 

nepI-F TCTACTGAATTCCTTTGCCCTGTTCCGTTTCG 

nepI-R TCGACTAAGCTTAAAACGCCACCGAGAAAACG 

sodA-F TCTACTGAATTCTCGATTTACTGGCAATCACG 

sodA-R TCGACTAAGCTTCATATTCATCTCCAGTATTGTCG 

fpr-F TCTACTGAATTCGGCAAGTCACGCACCATTCG 

fpr-R TCGACGAAGCTTTTGCCTGTTACCCAATCAGC 

soxS-F TCTACTGAATTCGGTTAGCAGCGCTTTAATGC 

soxS-R TCGACGAAGCTTCGACTACATCAATGTTAAGC 

 
Oligonucleotides for generation of constructs for MarA and SoxS overexpression 

MarA.OE-F/R generate the WT MarA fragment. E31D-R and MarA.Q58D-R primers were 
used with MarA.OE-F to create a megaprimer for a second round of PCR with MarA-OE.R, 
to generate the E31D and Q58D mutants. SoxS.OE-F/R generate the WT SoxS fragment. 

MarA.OE-F CCCAATTCCATATGTCCAGACGCAATACTGACGC 

MarA.E31D-R CACTTTGTCCAGTGACAGTGGCGATTCCAGG 

MarA.Q58D-R GCGGATGTAATCGCCTAATGAATGACCGGTTTC 

MarA.OE-R GGCGGATCCCTACGACTTATCACTGCCAGTACC 

SoxS.OE-F CGCAGGTGCATATGTCCCATCAGAAAATTATTCAGG 

SoxS.OE-R AATAATGGATCCTTACAGGCGGTGGCGATAATCG 

 
Oligonucleotides for sequencing of candidate plasmid constructs 

pRW50-F GTTCTCGCAAGGACGAGAATTTC 

pRW50-R AATCTTCACGCTTGAGATAC 

pSR-F CCATATATCAGGGTTATTGTCTC 

pSR-R CATCACCGAAACGCGCGAGG 

pBR322-F GGCTGCGTGCCACCTGACGTCTAAGAAACC 
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pBR322-R GCCCGCAGCATCCAGGGTGACGGTGCCGAG 

pET-F GATTATGCGGCCGTGTAC 

pET-R ATGCGTCCGGCGTAG 
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2.1.4 Media for bacterial growth 

The following media were used for bacterial growth: 

 

• LB broth (Sigma-Aldrich): 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl 

• LB agar (Sigma-Aldrich): 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 15 

g/L agar 

• MacConkey agar (Oxoid): 20 g/L peptone, 10 g/L lactose, 5 g/L bile salts, 5 g/L 

sodium chloride, 0.075 g/L neutral red, 12 g/L agar, pH 7.4 

 

All media were dissolved in ddH2O and autoclaved at 121 °C for 20 minutes to sterilise. 

Agar plates were dried for 20 minutes in a flow hood prior to use.  

 

2.1.5 Antibiotics 

Antibiotics were added to media as appropriate for the plasmid and strain to be selected 

(Table 2.1 and Table 2.2), at the following concentrations: 

 

Ampicillin: 100 μg/ml (stock 100 mg/ml, dissolved in ddH2O) 

Chloramphenicol: 35 μg/ml (stock 35 mg/ml, dissolved in ethanol) 

Kanamycin: 50 μg/ml (stock 50 mg/ml, dissolved in ddH2O) 

Tetracycline: 35 μg/ml (stock 35 mg/ml, dissolved in methanol) 

 

All antibiotic stocks were stored at -20 °C. 
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2.2 Methods 

2.2.1 Polymerase chain reaction 

PCR reactions were done in a 50 μl volume containing 0.5 mM deoxynucleotide 

triphosphates (dNTPs), 1 μl of Phusion (Bioline) or Velocity (New England Biolabs) 

DNA polymerase, and 10 μl of corresponding reaction buffer. 20 pmol of each 

oligonucleotide primer (Table 2.3) and 1 μl of template DNA (derived from either a 

plasmid miniprep or from a bacterial boilprep) was used per reaction. Typical cycling 

parameters are shown in Table 2.4. Annealing temperatures varied and were calculated 

as 5 °C below the Tm of the primers. For generation of DNA fragments larger than 1 

kb, an elongation time of 45 seconds was used.  

 

2.2.2 Megaprimer polymerase chain reaction 

Megaprimer PCR was used to generate mutations in DNA fragments lacking an 

appropriately position restriction site. The method is outlined in Figure 2.1. An initial 

round of PCR was used to generate the megaprimer containing the mutation. This 

megaprimer was purified by gel extraction, then used as a primer for a second round of 

PCR to generate the full-length mutated product. 

 

2.2.3 Agarose gel electrophoresis 

Gel electrophoresis was used to check DNA fragment sizes and for purification of 

specific DNA bands. 1 % (w/v) agarose gels were made by the addition of 1 g agarose 

per 100 ml of 1 X TBE. The solution was microwaved at full power for one minute 

until agarose was dissolved, and 10 μl (1 % v/v) of ethidium bromide or SYBR® Safe 

was then added before the gel was left to set.  After loading of DNA samples in 1 x  
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Table 2.4 Typical PCR cycling conditions used 
 

Stage Description Number of 
cycles Temperature Time 

1 Initial denaturation 1 95 °C 5 min 

2 Denaturation 35 95 °C 30 sec 

Annealing 50 °C – 65 °C 30 sec 

Elongation 72 °C 30 sec 

3 Final elongation 1 72 °C 10 min 
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Figure 2.1 Megaprimer PCR 
 

The figure shows a schematic of the megaprimer PCR procedure. Double stranded 

DNA is shown by pairs of black lines, with oligonucleotide primers shown by grey 

arrows. Introduced mutations are shown in red. 

 

 

 

 

 

  

First round of
PCR with primer 

containing 
mutation binding 
in the middle of 

the fragment

Megaprimer 
containing 
mutation 

generated

Second round of 
PCR using 
megaprimer

5’

Final product 
containing 
mutation 

generated

5’

5’
3’

3’

5’

5’
5’

5’

5’
3’

3’

3’
3’

3’
3’



63 
 

loading dye, gels were run at 110 V for 45 minutes in 1 x TBE running buffer before 

visualisation using a UV transilluminator. 

 

2.2.4 PCR purification using the Qiagen PCR Purification Kit 

PCR products were purified using the Qiagen PCR Purification Kit according to the 

manufacturer’s instructions, removing unwanted contaminants such as primers, 

enzymes and salts. DNA fragments under 100 bp, or larger than 10 kb, are removed by 

the kit.  

 

2.2.5 Restriction digests 

Restriction digests were done using enzymes supplied by New England Biolabs. For 

single digestion of fragments, 43.5 μl of DNA solution was digested using 1.5 µl of 

restriction enzyme in a 50 μl reaction; double digestions were done using 42 μl of DNA 

solution and 1.5 µl of each enzyme, again in a 50 μl reaction. Double digestions of 

plasmid DNA maxipreps were done in a 90 μl reaction using the same ratios. All 

restriction digests were done in 1 x CutSmart® buffer at 37 °C for 3 hours. For plasmid 

vectors, 4 μl of Calf Intestinal Alkaline Phosphatase (New England Biolabs) was added 

for the last 30 minutes of the restriction digest, to prevent self-ligation of the plasmid. 

 

2.2.6 Gel extraction using the Qiagen Gel Extraction Kit 

Gel extraction was used to further purify DNA, such as to remove enzymes after 

restriction digestion or PCR. After separation of DNA bands on a 1.5 % agarose gel, 

the correct band was excised using a razor blade and DNA extracted from the gel slice 

using the kit, according to the manufacturer’s instructions. 
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2.2.7 Phenol-chloroform extraction 

For plasmid vectors larger than 10 kb (such as pRW50), phenol chloroform extraction 

was used to purify the vector after restriction. Equal volumes of DNA solution and 

phenol-chloroform were vortexed for 15 seconds before centrifugation at 17,000 x g 

for 3 minutes. The aqueous phase was transferred to a fresh tube containing a 3 x 

volume of ice-cold 100 % ethanol and a 0.1 x volume of 3 M sodium acetate. The 

sample was incubated at -80 °C for at least 30 minutes, prior to centrifugation at 17,000 

x g for 30 minutes at 4 °C. The supernatant was removed and the pellet washed with 

ice-cold 70 % ethanol, before centrifugation as before for 20 minutes. The supernatant 

was removed again and the pellet dried using a vacuum before resuspension in ddH2O. 

 

2.2.8 Ligation of DNA fragments into cloning vectors 

DNA fragments were ligated with plasmid vectors with complementary 5’ and 3’ 

overhangs. Ligations were done in a 20 μl reaction comprising 2 μl 10 x T4 DNA ligase 

buffer, 1 μl T4 DNA ligase (New England Biolabs) and a typical vector:insert ratio of 

1:3. A vector-only reaction was included as a negative control. Reactions were left at 

room temperature for 2 hours, or overnight at 17 °C. 

 

2.2.9 Plasmid DNA extraction 

Minipreps and maxipreps were done with the relevant Qiagen kits, according to the 

manufacturer’s instructions. 5 ml overnight cultures were used for miniprep extraction, 

whilst 100 ml (high copy number plasmids such as pSR and pBR322) or 250 ml (low 

copy number plasmids such as pRW50) cultures were used for the maxiprep extraction. 
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2.2.10 Sequencing of plasmids and DNA fragments 

Sequencing was done by the Functional Genomics and Proteomics Facility at the 

University of Birmingham. 10 μl reactions contained 3.2 pmol of primer and variable 

amounts of DNA template, according to the facility guidelines. Typically, sequencing 

of a miniprep required 200 ng of DNA; sequencing of PCR products varied from 1-100 

ng, depending on size.  

 

2.2.11 Gene deletion using gene doctoring 

Genes were deleted from E. coli strains using the method outlined by Lee et al. (2009), 

shown in  

Figure 2.2. The kanamycin cassette was amplified from the pDOC-K plasmid, using 

primers complementary to the K-FWD and P-REV regions flanked by homology to the 

regions directly upstream and downstream of the gene to be deleted. This fragment was 

cloned via the EcoRI/HindIII sites into the pDOC-C plasmid, which along with the 

pACBSR plasmid was used to co-transform the strain of choice.  

 

Strains were treated with 0.4 % arabinose, shaking at 37 °C for 2.5 hours. This induces 

I-SceI, encoded on pACBSR, to cleave the donor plasmid, providing linear DNA for λ-

Red to recombine with the recipient chromosome. Recombinants were screened on LB 

+ 5 % sucrose + 50 mg/ml kanamycin plates grown at room temperature for 72 hours. 

Successful recombinants were screened for loss of the pDOC-C and pACBSR 

plasmids, and recombination was verified by colony PCR and subsequent sequencing. 

 

The kanamycin cassette was removed from verified recombinant strains. Strains were 

transformed by the pCP20 plasmid, using a recovery and overnight growth temperature  
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Figure 2.2 Deletion of genes by gene doctoring 
 

The schematic shows the gene doctoring protocol developed by Lee et al. (2009). Genes 

are shown as block arrows, with KanR in red and the gene to be deleted in grey. Thick 

black lines indicate DNA; the bacterial genome is shown as a tangled mass of DNA. 

Regions of homology upstream and downstream of the target gene are shown in green 

(H1, upstream) and orange (H2, downstream). Recombination is shown by dotted lines. 

Cleavage by I-SceI is shown by yellow stars. 
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of 30 °C. The pCP20 FLP recombinase genes were then induced by streaking onto non- 

selective LB plates and growing overnight at 37 °C. Excision of the kanamycin cassette 

was checked by colony PCR and sequencing.  

 

2.2.12 Growth of bacterial cultures 

Bacterial strains used in this study are listed in Table 2.1. Unless stated otherwise, all 

cultures were grown at 37 °C, shaking at 200 rpm. Typically, LB was used, with the 

exception of MacConkey agar for screening of promoter-lacZ fusions. 

 

2.2.13 Preparation of chemically competent cells 

1 ml of an overnight bacterial culture was used to inoculate 50 ml of fresh media and 

grown to an OD600 of 0.3-0.6. The culture was then chilled on ice for 10 minutes before 

centrifugation at 1,600 x g for 5 minutes at 4 °C. Cells were resuspended in 25 ml ice-

cold calcium chloride and incubated on ice for 20 minutes, before centrifugation again 

at 1,600 x g for 5 minutes at 4 °C. The cells were resuspended in 3.3 ml ice-cold calcium 

chloride and incubated overnight on ice. Cells were then stored at -80 °C in 15 % 

glycerol. 

 

2.2.14 Transformation of chemically competent bacterial cells 

100 μl of competent cells were mixed with either 100 ng of plasmid DNA or an entire 

ligation reaction and left to incubate on ice for one hour. Cells were then heat shocked 

at 42 °C for 2 minutes, before the addition of 900 μl of LB media. The reaction was 

incubated at 37 °C for 45 minutes, shaking at 200 rpm. Cells were then pelleted by 

centrifugation at 2,400 x g for 3 minutes, and the resulting pellet resuspended in 100 μl 

LB and plated on selective agar (as outlined in Table 2.2). Exceptions were made for 
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the temperature-sensitive plasmid pCP20; where recovery and growth on agar were 

done at 30 °C. 

 

2.2.15 End-labelling of fragments for EMSA with T4 polynucleotide kinase 

DNA fragments were prepared for 5’ end labelling by PCR amplification, clean up 

(Qiagen PCR Purification Kit), digestion with EcoRI, and gel extraction. To label, 

fragments were incubated for 30 minutes at 37 °C in a 20 μl reaction comprising 16 μl 

of DNA digested by EcoRI, 1 μl T4 polynucleotide kinase, 2 μl of the supplied 10x T4 

polynucleotide kinase buffer, and 1 μl [γ-32P]-ATP. Labelled DNA was passed through 

a G-50 column for 3 minutes at 2,400 g to remove unincorporated radioactivity; the 

eluate was then collected and passed again through a fresh column, under the same 

conditions. 

 

2.2.16 Electrophoretic mobility shift assay (EMSA) 

[γ-32P]-ATP labelled DNA was used for electrophoretic mobility shift assays (EMSAs). 

For each reaction, 20-30 counts of labelled DNA was mixed with 1 x TNSC buffer and 

12.5 μg/ml Herring sperm DNA (as a non-specific competitor), to a final volume of 10 

μl. The labelled DNA mix was incubated with 10 μl of protein/1 x TNSC mix at 37 °C 

for 20 minutes. The reactions were loaded on a 7.5 % polyacrylamide gel (10 ml 5 x 

TBE, 16 ml ProtoGel, plus 1 ml 10 % APS and 200 ul TEMED, made to 100 ml with 

ddH2O). This was run at 150 V for approximately 1.5 hours in 0.5 x TBE running 

buffer. The gel was then vacuum dried and exposed overnight to a phosphor screen 

before visualisation using a Biorad FX® phosphoimager. 
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2.2.17 In vitro transcription assays 

pSR derivatives with promoter fragments fused upstream of oriT were used for in vitro 

transcription experiments (Figure 2.3. For each reaction, 335 ng of a pSR maxiprep was 

mixed with 1 x TNSC buffer, as well as 100 μg/ml BSA, NTP mix (providing 200 μM 

ATP/GTP/CTP and 10  μM UTP), and 4 μCi [α-32P]-UTP. ddH2O was added to make 

a final reaction volume of 11 μl. This mix was then incubated with 5 μl of diluted 

transcription factor at 37 °C for 10 minutes. RNAP core enzyme and σ70 cofactor were 

incubated at 37 °C for 5 minutes, then 4 μl of the mixture was added at timed intervals 

to each DNA-protein mix. After incubation at 37 °C for 10 minutes, 20 μl STOP 

solution was added at timed intervals. Reactions were loaded onto a 6 % denaturing 

sequencing gel, which consisted of 24 ml UreaGel Concentrate, 10 ml UreaGel Buffer, 

66 ml UreaGel Diluent, plus 800 μl 10 % APS and 40 μl TEMED. Electrophoresis was 

done at 60 W for approximately 1 hour in 1 x TBE running buffer. The gel was dried 

by vacuum and exposed to a phosphor screen overnight. Images were then scanned 

using a Bio-Rad FX® phosphoimager. 

 

2.2.18 β-galactosidase assay 

Promoter fragments were introduced upstream of lacZ in pRW50 and confirmed by 

sequencing (Figure 2.4). Resulting plasmids were used to transform E. coli JCB387. 

Three overnight cultures were set up for each construct, with each replicate made from 

a separate colony. 200 μl of each was then used the following day to inoculate a fresh 

5 ml culture, and cultures were grown to an OD650 of 0.3-0.5. Cells were lysed with 1 

drop each of toluene and 1 % sodium deoxycholate and incubated at 37 °C for 20 

minutes to allow for toluene evaporation. 100 μl of lysate was then assayed for β-

galactosidase activity; 2.5 ml ONPG solution was added at timed intervals, and tubes  
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Figure 2.3 The pSR plasmid 
 

A schematic of the pSR plasmid. This is a high copy number plasmid derived from 

pBR322 which can be used as a template for in vitro transcription assays. The 

ampicillin resistance gene is shown in red. Short transcripts can be derived from 

promoter fragments cloned between the EcoRI and HindIII sites, due to the presence of 

an λoop transcription terminator. RNA I functions as an internal control. 
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Figure 2.4 The pRW50 plasmid 
 
The tetracycline resistance gene is shown by a red arrow; the lacZYA operon is shown 

by black arrows; all other genes are shown in grey. Promoter DNA fragments can be 

cloned using the multiple cloning region upstream of lacZ to place these genes under 

the control of the selected promoter fragment, allowing quantification of promoter 

activity in β-galactosidase assays. 
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were incubated at 37 °C for 10-20 minutes until a yellow colour had formed. The 

reactions were stopped at timed intervals by adding 1 ml of 1 M sodium carbonate, and 

the absorbance at OD420 was measured. The following formula was used to calculate 

promoter activity in Miller units: 

 

𝑃𝑟𝑜𝑚𝑜𝑡𝑒𝑟	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 = 1000	 ×	
𝐴𝑏𝑠456 × 	total	reaction	volume

𝐴𝑏𝑠CD6 × 	volume	lysate	 × 	reaction	time
 

 

A media-only control was included as a blank, and empty pRW50 was used as a control 

for background β-galactosidase activity. 

 

2.2.19 Crystal violet biofilm staining assay 

The crystal violet assay described in Baugh et al. (2014) was used to quantify biofilm 

production. Two overnight cultures (set up from individual colonies) per strain were 

diluted in LB to an OD600 of 0.1. 200 μl of this was aliquoted into a flat-bottomed 96-

well polystyrene microtitre plate, with four replicate wells per culture. The plate was 

incubated at 30 °C for 48 hours. Wells were washed with water to remove unattached 

cells, and 200 μl of 0.1 % crystal violet added for 15 minutes. Wells were washed with 

water again to remove unbound crystal violet, and 200 μl of 70 % ethanol was added 

to solubilise the remaining dye. The OD600 was measured using a CLARIOstar® to give 

a quantitative measure of biofilm formation. 

 

2.2.20 Determination of minimum inhibitory concentration (MIC) 

Four overnight cultures were set up per strain, from individual colonies. The next day, 

these were diluted to an OD650 of 0.05 in sterile distilled water, and further diluted 1 in 
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20 in LB. A 96-well round bottomed microtitre plate was set up using the double 

dilution method as advised in Andrews (2001). Each well contained 50 μl of diluted 

culture in a final volume of 100 μl per well with antibiotic and LB. An LB + culture 

well was included as a growth control, and an LB only well as a sterility control. The 

plate was incubated for 24 hours at 37 °C, and the lowest antibiotic concentration which 

prevented bacterial growth recorded. The E. coli strains NCTC 10418 and ATCC 25922 

were included as controls; results were rejected if the MIC was not within one double 

dilution of the expected for these strains. 

 

2.2.21 Growth curves at pH 7 and pH 4 

Three overnight cultures were set up per strain in LB (pH 7) from individual colonies. 

The following day, these were used to inoculate 10 ml of LB (pH 7) and LB (pH 4), to 

a starting OD650 of 0.05. These were incubated at 37 °C shaking for 7 hours. Each hour, 

a 1 ml sample was taken and the OD650 measured. Once an OD650 of 0.8 was reached, 

samples were diluted 1 in 10 with sterile LB to account for spectrophotometer 

inaccuracy.  

 

2.2.22 Analysis of proteins by SDS-PAGE 

SDS-PAGE was used to check the sizes and presence of proteins. 8 μl of protein sample 

was mixed with 2 μl of 5x SDS loading dye and boiled at 100 °C for ten minutes. 

Samples were then loaded onto a NuPAGE™ 4-12 % Bis-Tris protein gel (Invitrogen) 

in 1X NuPAGE™ MES SDS Running Buffer (Invitrogen) for 1 hour at 150V. Gels were 

then treated with staining solution for 1 minute in a microwave, then destained with 

Fast Destain solution for 1 hour.  
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2.2.23 Bradford assay 

Bradford assays were used to determine protein concentration using the Bio-Rad Quick 

Start™ Bradford Protein Assay, according to the manufacturer’s instructions for the 

2ml cuvette microassay protocol (Bio-Rad). In brief, 1 ml of 1x Bradford dye reagent 

was mixed with 1 ml sample or standard protein, incubated at room temperature for 5 

minutes before measurement of OD595 using a spectrophotometer. BSA was used as a 

standard, with a linear range of 1.25-10 μg/ml. 

 

2.2.24 Purification of recombinant proteins 

MarA, SoxS, and MarA derivatives were all purified using a protocol adapted from Jair 

et al. (1995). The coding sequence for the gene was amplified by PCR and digested 

with NdeI and BamHI before ligation with pET28a downstream of the IPTG-inducible 

T7lac promoter. After verification by sequencing, constructs were used to transform 

the Escherichia coli strain T7 Express. To overexpress recombinant protein, strains 

were grown in 2 litres of LB + 1 % glucose to an OD600 of 0.8. 0.4 mM IPTG was then 

added and the culture grown for a further 3 hours, before harvesting of cells by 

centrifugation at 1,600 x g for 10 minutes at 4 °C. The pellet was washed with 25 ml of 

lysis buffer and frozen overnight at -80 °C. 

 

All subsequent steps were done at 4 °C, unless specified otherwise. The frozen pellet 

was thawed and resuspended into 40 ml of the same buffer; cells were then lysed using 

an Avestin Emulsiflex C3 high pressure motorised homogeniser. The cells were then 

collected by centrifugation at 75,000 x g for 30 minutes; the supernatant was discarded 

and the pellet resuspended in 40 ml of wash buffer prior to further centrifugation. 



75 
 

Again, the supernatant was discarded, and the pellet resuspended in 40 ml of denaturing 

buffer before centrifugation as before.  

 

The supernatant from the final centrifugation step was loaded onto a HisTrap™ 1 ml 

precharged Ni Sepharose High Performance column. Unbound protein was washed 

from the column with Buffer A. Bound protein was then eluted with a linear gradient 

of Buffer B. An elution peak was seen at approximately 0.22 M imidazole; fractions 

were checked by SDS-PAGE and desired fractions dialysed against Buffer X overnight. 

 

After dialysis, protein was concentrated to 1 mg/ml using a 5,000 MWCO (molecular 

weight cut-off) Vivaspin 20 column. Protein was then digested, to remove the His tag, 

using 15 μl of thrombin sepharose beads per mg protein, gently rocking at room 

temperature for 5 hours. Digestion was confirmed by SDS-PAGE. Thrombin beads 

were removed by centrifugation at 1,600 x g for 5 minutes, 3 times; digested His tags 

were then removed using the HisTrap™ column with flow-through retained and 

dialysed against Buffer X + 20 % glycerol overnight. Purified protein was stored at -80 

°C until required. 
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Chapter 3  
Regulation of the ycgZ-ymgABC 

Operon by MarA 
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3.1 Introduction 

The complexity of the MarA regulon creates challenges in developing a comprehensive 

list of targets. There are 12 experimentally confirmed targets listed in Ecocyc, despite 

estimates of the regulon comprising up to 100 genes (Barbosa and Levy 2000, Keseler 

et al. 2013). Experimental validation is essential; Martin and Rosner (2002) found that, 

of 19 putative MarA targets identified by microarray analysis, only seven showed 

regulation by MarA in lacZ fusions.  

 

A recent ChIP-seq experiment identified 33 MarA targets, of which only three were 

previously confirmed (Sharma et al. 2017). These new targets may unveil novel 

antibiotic resistance mechanisms. This chapter investigates one such target upstream of 

the ycgZ-ymgABC operon (Figure 3.1). Inactivation of these genes show small but 

significant changes in antibiotic tolerance (Nichols et al. 2011). However, the ycgZ-

ymgABC operon is best known to be involved in the control of biofilm formation.  

 

Biofilms are surface-attached communities of microorganisms, which display increased 

resistance to antibiotics, invasion by immune cells, and environmental stress (Rabin et 

al. 2015). Biofilm formation occurs in three stages: attachment, maturation, and 

dispersion. Attachment is mediated by components such as flagella, type IV pili, and 

curli fibres (O'Toole and Kolter 1998, Barnhart and Chapman 2006). Once attached, an 

extracellular polymeric substance (EPS) matrix is produced. The EPS matrix is made 

up of a scaffold of exopolysaccharides which supports the adherence of other 

macromolecules. In E. coli, this EPS is colonic acid, the production of which is induced 

by stress response (Prigent-Combaret et al. 1999, Danese, Pratt and Kolter 2000). The 

EPS matrix also includes extracellular proteins which can provide stability or  
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Figure 3.1 The MarA binding peak upstream of biofilm regulators ycgZ-
ymgABC. 
 

The MarA binding peak, from the Sharma et al. (2017) ChIP-seq experiment, is shown 

in green. The ycgZ-ymgABC operon is shown by white block arrows and a divergent 

gene, bluF, shown a grey block arrow. The thick black line indicates intergenic DNA. 

Black arrows signify activation of downstream genes/processes; black T-shapes 

indicate repression. 
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enzymatic functions, and extracellular DNA, which can facilitate adherence to surfaces 

(Zhang et al. 1999, Das et al. 2010). Further maturation of the biofilm involves growth 

of additional layers to form a ‘mushroom’ shape structure, with different communities 

of bacteria existing throughout the biofilm in accordance with their lifestyle 

requirements. Finally, dispersal of the biofilm may occur in response to nutritional 

stress or competition. 

 

Regulation of biofilm formation by the ycgZ-ymgABC operon appears to be via 

components key in the early stages of the biofilm life cycle. YmgA and YmgB activate 

the RcsC/RcsD/RcsB two-component phosphorelay system (Lee et al. 2007, Majdalani 

and Gottesman 2007, Tschowri, Busse and Hengge 2009). In this system, the inner-

membrane sensor kinase RcsC phosphorylates RcsD, a phosphotransferase, which in 

turn phosphorylates RcsB. RcsB then activates RprA, an sRNA which represses CsgD, 

an activator of curli production (Mika et al. 2012). Thus, YmgA and YmgB inhibit 

biofilm formation via this pathway. However, previous studies have only examined 

these genes individually and their roles appear contradictory; for example, YcgZ 

counteracts the action of YmgA and YmgB in an unknown manner (Tschowri, Busse 

and Hengge 2009). The overall effect of the entire operon on biofilm formation has not 

been studied and would elucidate the exact roles of this system. 

 

The ycgZ-ymgABC operon has been linked with a number of other cellular functions. 

YcgZ has been shown to transcriptionally repress OmpF porin, which is key in the 

uptake of small hydrophilic molecules, including ß-lactam antibiotics (Duval et al. 

2017). YmgB is likely a transcription factor; it has shown DNA-binding capabilities, 

and has structural similarity to Hha, another transcriptional regulator. A key role of 
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YmgB appears to be in downregulation of cellular motility and upregulation of acid 

tolerance; it is also known as AriR due to the latter role (Lee et al. 2007).  

 

The ycgZ-ymgABC promoter is repressed by BluR at 37° C; BluR is in turn repressed 

by BluF which is activated by low temperature and blue light irradiation (Tschowri, 

Busse and Hengge 2009). This therefore leads to expression of the ycgZ-ymgABC 

operon in response to cold and blue light; the operon is also known to be triggered by 

starvation conditions (Duval et al. 2017). Additionally, ycgZ-ymgABC may be 

positively regulated by fur during iron depletion (Seo et al. 2014). Thus far, however, 

regulation of this operon by MarA has not been shown. 

 

3.2 Binding and regulation of ycgZ-ymgA-ariR-ymgC by MarA 

3.2.1 MarA recognises a marbox upstream of ycgZ 

The DNA sequence of the regulatory region upstream of ycgZ is shown in Figure 3.2 

(Panel A), alongside a schematic of the regulatory region. A putative marbox sequence 

occurs 60 bp upstream of the ycgZ transcription start site. To verify binding of MarA, 

derivatives of the regulatory region were prepared (Figure 3.2, Panel B). The 5’ ends 

of the different fragments are shown by inverted triangles (Figure 3.2, Panel A). The 

derivatives were the full 119 bp DNA sequence containing the marbox (ycgZ.1), a 

truncated 90 bp sequence without the marbox (ycgZ.2), or the full sequence with a 

mutated marbox (ycgZ.1M). Due to the degenerate nature of the marbox, the ycgZ.1M 

mutations were introduced at four key residues. Within the marbox, the GCA motif at 

positions 1-3 (using the numbering system outlined in Figure 1.9) and the G at position 

10 are well conserved, due to contacts made with amino acids R96 and T93 of MarA 

for the former and R46 for the latter (Rhee et al. 1998). Thus, mutations were  
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Figure 3.2 The PycgZ regulatory region and derivatives. 
 

Genes are shown as block arrows; white for the ycgZ-ymgABC operon, grey for the 

divergent gene bluF. The thick black line represents non-coding DNA regions. The 

sequence of the regulatory region upstream of ycgZ is shown; the dotted line indicates 

the location of this region. The marbox is indicated in green, with the direction of the 

green arrow indicating orientation. The ycgZ promoter -10 and -35 elements are shown 

in orange and underlined; the transcription start site is shown in black underline, with 

the right-angled arrow indicates the ycgZ transcription start site. The ycgZ start codon 

is shown in blue. Black triangles in Panel A indicate the 5’ end of the promoter 

fragments generated in this study, shown in Panel B. Mutated bases of the marbox are 

indicated in red. 
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introduced at these positions. The ycgZ promoter derivatives were radiolabelled with [γ 

32P]-ATP and incubated with increasing concentrations of MarA, before separation of 

complexes on a 6 % polyacrylamide gel in an electrophoretic mobility shift assay 

(EMSA).  

 

A DNA-protein complex was formed in experiments with the wildtype ycgZ.1 fragment 

(Figure 3.3, Panel i). More than 50 % of the free DNA was bound at the lowest 

concentration of MarA (0.4  μM), and no free DNA was observed with 1.2  μM MarA. 

However, for the ycgZ.2 fragment (Figure 3.3, Panel ii), complex formation was lost, 

with no reduction in free DNA even at the highest MarA concentration. The same is 

seen for ycgZ.1M (Figure 3.3, Panel iii), indicating that the absence of DNA-protein 

complexes was specifically due to loss of binding in the region of the putative marbox. 

 

3.2.2 MarA activates transcription from the ycgZ promoter in vivo 

To examine the impact of the marbox on expression of ycgZ-ymgABC, the PycgZ 

derivatives outlined in Figure 3.2 were fused to lacZ in the reporter plasmid pRW50. 

E. coli strain JCB387 was transformed with the pRW50 derivatives and assayed for β-

galactosidase activity (Figure 3.4). Briefly, the cleavage of o-nitrophenyl-β-D-

galactosidase (ONPG) by LacZ is measured to quantify promoter activity. A reduction 

in promoter activity was seen when the marbox was absent or mutated (p < 0.01). This 

suggests that MarA activates the ycgZ-ymgABC operon and is required for optimal lacZ 

expression from PycgZ.  
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Figure 3.3 Binding of MarA to the PycgZ marbox in an EMSA. 
 

Images of 6 % polyacrylamide gels used to separate MarA:DNA complexes are shown. 

The panels show experiments for EMSA assays done with i) the ycgZ.1 promoter 

derivative with the wildtype marbox present, ii) the ycgZ.2 truncated derivative with 

the marbox absent, and iii) the ycgZ.1M derivative with the marbox mutated. Increasing 

concentrations of MarA (0.4  μM – 1.2  μM - 2  μM) are shown by green triangles. 

Bands formed by free DNA and MarA-DNA complexes are indicated by dashed lines. 
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Figure 3.4 In vivo promoter activity from the ycgZ regulatory region 
derivatives at mid-log phase. 
 
Expression of lacZ driven by various ycgZ regulatory region derivatives was assessed 

by β-galactosidase assay. Assays were done using lysates of E. coli JCB387 mid-log 

phase cultures. Cells containing empty pRW50 were used as a control (data not shown). 

Activities shown are from assays done on three separate days, with each assay 

comprising three biological replicates. The mean ± standard deviation relative to the 

average wildtype (ycgZ.1) promoter activity is shown. A one-way analysis of variance 

(ANOVA) was calculated with the promoter activities for the three constructs; the 

analysis was significant (p < 0.00001, F (2, 24) = 245.51). A post-hoc Tukey’s HSD 

test showed that all groups were significantly different from each other, with a p < 0.01 

for each comparison pair. 
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MarA-specific activation of PycgZ was further validated by measuring β-galactosidase 

activity with and without the addition of 5 mM salicylate to the growth media (Figure 

3.5). Salicylate is a known inducer of MarA expression. Induction is mediated through 

binding of salicylate ions to MarR. This causes a conformational change in 

MarR,reducing DNA binding, and relieving repression of marRAB (Alekshun and Levy 

1999). In the presence of salicylate, ycgZ promoter activity increased 1.75-fold when 

the marbox was present but less when the marbox was absent or mutated, although due 

to inconsistent induction by salicylate this was not significant.  

 

3.2.3 MarA activates transcription from the ycgZ promoter in vitro 

Activation of PycgZ by MarA was also tested using in vitro transcription. The ycgZ.1, 

ycgZ.2, and ycgZ.1M promoter derivatives were cloned upstream of λoop in the plasmid 

pSR, which is a phage-derived transcription terminator. Therefore, when RNAP is 

added, transcription will initiate at PycgZ, then terminate prematurely upon 

encountering λoop, thus producing short transcripts. A plasmid-encoded transcription 

factor-independent promoter acts as an internal control and produces the RNAI 

transcript. Transcripts were generated in the presence of increasing concentrations of 

MarA and the incorporation of [α 32P]-UTP analysed on a denaturing gel (Figure 3.6). 

An increase in the intensity of a 140 nt transcript corresponding to that originating from 

PycgZ was seen when MarA is added to ycgZ.1 (lanes 1-4). However, no increase was 

seen when MarA was added to ycgZ.2 (lanes 5-8) and ycgZ.1M (lanes 9-12). Thus, 

MarA transcriptionally activates PycgZ via the marbox -60 bp upstream of the 

transcription start site. 
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Figure 3.5 Effect of salicylate on in vivo promoter activity from ycgZ 
regulatory region derivatives. 
 
Expression of lacZ driven by various ycgZ promoter derivatives was assessed using β-

galactosidase assays, with and without the addition of 5 mM salicylate to LB media. 

Salicylate was added to fresh media after overnight growth, and E. coli JCB387 cultures 

grown to mid-log phase. Cells containing empty pRW50 were used as a control (data 

not shown). Activities shown are from assays done on three separate days, with each 

assay comprising three biological replicates. The mean ± standard deviation relative to 

the average wildtype (ycgZ.1 in LB only) promoter activity is shown. A one-way 

analysis of variance (ANOVA) was calculated with the fold-change between +/- 

salicylate for the three constructs; however, the analysis was not significant (p > 0.05) 

due to the variable expression seen in the + salicylate group. 
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Figure 3.6 MarA activation of σ70-dependent transcription from PycgZ, 
modelled in vitro. 
 

Images of denaturing sequencing gels used to separate transcripts generated in vitro 

using the ycgZ.1, ycgZ.2 and ycgZ.1M fragments as templates. All assays were done 

with RNAP-σ70. Green triangles show increasing concentrations of MarA (0.2 μM to 1 

μM). Bands formed by transcripts originating from PycgZ and RNAI are indicated by 

dashed lines. The image shown is from two different experiments, however the RNAI 

transcript shown allows for comparison between experiments. The ratio of transcript of 

PycgZ:RNAI is shown. 
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3.3 The ycgZ-ymgABC promoter is recognised by σ70 and σ38 

Most genes in Escherichia coli are under the control of the housekeeping sigma factor, 

σ70 (Feklístov et al. 2014). However, the ycgZ promoter is predicted to be dependent on 

both σ70 and σ38, although dependence has not been shown directly (Weber et al. 2005, 

Gama-Castro et al. 2008, White-Ziegler et al. 2008). This σ38 factor is triggered by 

environmental stress or entry into stationary phase growth (Lange and Hengge-Aronis 

1991). Hence, an in vitro transcription experiment was done comparing the addition of 

RNAP in complex with σ70 or σ38. Transcripts were generated using ycgZ.1 cloned in 

pSR as a template. Transcripts were then separated on a denaturing gel ( 

Figure 3.7, Panel A). 140 nt transcripts from PycgZ were generated under the direction 

of both σ70 and σ38. However, the σ38-dependent transcript is significantly more intense 

than that generated by σ70. The ycgZ-ymgABC operon is thus induced by the stationary 

phase regulator σ38. 

 

Figure 3.6 showed that MarA activates transcription of PycgZ when RNAP is in 

complex with σ70. In vitro transcription experiments, using ycgZ.1 as a template with 

increasing concentrations of MarA, were repeated using RNAP in complex with σ38 ( 

Figure 3.7, Panel B). Note that no increase in PycgZ-derived transcript was seen when 

MarA was added, suggesting that MarA activates PycgZ in a σ70-dependent manner 

only. This effect can also be seen in vivo. Stationary phase cultures carrying pRW50 

containing the ycgZ regulatory region derivatives were assayed for β-galactosidase 

activity (Figure 3.8). Whilst reduced activity was seen for the truncated ycgZ.2 (p < 

0.001) fragment, no reduction was seen when the marbox was mutated (ycgZ.1M, p > 

0.05). This was in contrast to assays done at mid-log phase (Figure 3.4). Thus, MarA  
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Figure 3.7 σ38-dependent transcription from PycgZ 
 

Images of denaturing sequencing gels used to separate transcripts generated in vitro using the 

ycgZ.1 fragment as a template. Panel A shows an experiment comparing transcription with 

RNAP-σ70 (Lane 1) to RNAP-σ38 (Lane 2). Panel B shows an experiment with RNAP-σ38 and 

increasing concentrations of MarA (0.2 μM – 1 μM), shown by a green triangle. Bands formed 

by transcripts originating from PycgZ and RNAI are indicated by dashed lines. Lanes in Panel 

A are from a single image, which has been rearranged for clarity. The ratio of transcript of 

PycgZ:RNAI is shown. 
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Figure 3.8 In vivo promoter activity of ycgZ regulatory region derivatives at 
stationary phase. 
 

Expression of lacZ driven by the various ycgZ regulatory region derivatives was assessed using 

β-galactosidase assays. Assays were done using lysates of E. coli JCB387 grown overnight to 

stationary phase, otherwise known as the point at which no further increases in cell number 

are seen; here, this was typically an OD600 of 4, after 18 hours of growth. Cells containing 

empty pRW50 were used as a control (data not shown). Activities shown are from assays done 

on three separate days, with each assay comprising three biological replicates. The mean ± 

standard deviation relative to the average wildtype (ycgZ.1) promoter activity is shown. A one-

way analysis of variance (ANOVA) was calculated with the promoter activities for the three 

constructs; the analysis was significant (p < 0.00001, F (2, 24) = 18.36). A post-hoc Tukey’s 

HSD test showed a significant difference between ycgZ.1 and ycgZ.2 (p < 0.001), and between 

ycgZ.2 and ycgZ.1M (p < 0.01) but not between ycgZ.1 and ycgZ.1M (p > 0.05). 
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regulates the ycgZ promoter via σ70-dependent transcription at mid-log, but does not regulate 

via σ38-dependent transcription at stationary phase. 

 

3.4 MarA activation of PycgZ requires a contact with the alpha 

subunit of RNAP 

The location of the PycgZ marbox indicates that MarA activates this promoter in a Class I 

manner, requiring MarA to make contact with the α-CTD of RNAP (Jair et al. 1996, Dangi et 

al. 2004). To investigate this, residue W19 of MarA was mutated to an alanine, disrupting 

proposed the α-CTD surface contact (Dangi et al. 2004). The W19A mutant was purified and 

used in an in vitro transcription assay with ycgZ.1 (Figure 3.9). W19A was incapable of 

activating transcription by RNAP-σ70 (Panel A, lanes 5-7) or RNAP-σ38 (Panel B, lanes 5-7); 

no increase in the intensity of the PycgZ transcript is seen. Thus, MarA requires the W19 

contact with the α-CTD of RNAP to activate transcription, as would be expected of a Class I 

activator.  

 

3.5 Activation of ycgZ-ymgABC controls biofilm formation 

To elucidate the phenotypic effects of ycgZ-ymgABC activation by MarA, the ycgZ-ymgABC 

operon was deleted from E. coli JCB387 genome using gene doctoring. We intended to clone 

the ycgZ-ymgABC operon in plasmid pBR322 for complementation experiments. However, 

we noticed the presence of pBR322 alone reduced biofilm formation (Figure 3.10, Panel B). 

This was likely due to the presence of a β-lactamase (bla) gene in the pBR322 plasmid. β-

lactamases may reduce biofilm formation by interfering with peptidoglycan remodelling and 

thus adhesion to surfaces (Gallant et al. 2005). To counteract this, an alternative plasmid was 

generated. Hence, the pBR322 bla gene was excised by digestion with AatII and VspI and a  
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Figure 3.9 Activation of transcription by MarA-W19A. 
 

Images of denaturing sequencing gels used to separate transcripts generated in vitro 

from the ycgZ.1 fragment. Increasing concentrations (0.2 μM – 1 μM) of wildtype 

(green triangles) and W19A (red triangles) MarA were used. Panels A and B show 

transcription with RNAP-σ70 and RNAP-σ38, respectively. Bands formed by transcripts 

originating from PycgZ and RNAI are indicated by dashed lines. The ratio of transcript 

of PycgZ:RNAI is shown. 
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Figure 3.10 Disruption of biofilm formation by pBR322  
 

Panel A shows the plasmid pBR322. Black arrows indicate genes. Positions of key 

restriction sites are shown by black dotted lines. The tetracycline and ampicillin 

resistance genes are shown by red arrows. Panel B shows wildtype and ΔycgZ-ymgABC 

strains with and without the pBR322 plasmid, grown in a 96-well polystyrene plate for 

48 hours and assayed for biofilm formation using the crystal violet assay. OD600 is 

shown as the mean ± standard deviation of 8 replicates (2 biological, 4 technical). 
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small linker cloned into the region, making pBR322Δbla (Figure 3.11, Panel A). 

Reduction of biofilm formation was no longer seen when using this amended plasmid 

(Figure 3.11, Panel B).  

 

The ycgZ-ymgABC operon was cloned into pBR322Δbla under the control of the 

wildtype promoter or the ycgZ promoter derivates, via the EcoRI/AatII sites (to prevent 

disruption of the TetR promoter). The complementation fragments are shown in Figure 

3.12, Panel A. The new constructs were used to transform E. coli JCB387 and JCB387 

ΔycgZ-ymgABC and assayed for biofilm formation (Figure 3.12, Panel B). Knockout 

of the ycgZ-ymgABC operon caused an increase in biofilm formation, due to loss of 

negative biofilm regulation by these genes. Upon complementation with the ycgZ-

ymgABC.1 fragment, crystal violet binding decreased, due to induction of the operon 

by MarA (p < 0.01). This decrease was then recovered with deletion (ycgZ-ymgABC.2) 

or mutation (ycgZ-ymgABC.1M) of the marbox (p < 0.01 for both). This effect was seen 

both for wildtype JCB387 and JCB387 ΔycgZ-ymgABC. Thus, MarA inhibits biofilm 

formation through the activation of the ycgZ-ymgABC operon. 

 

3.6 Role of the ycgZ-ymgABC operon in acid tolerance and 

antibiotic resistance 

Unlike biofilm formation, acid tolerance is a well characterised mar phenotype (Rosner 

and Slonczewski 1994, Ruiz, McMurry and Levy 2008). YmgB is a known regulator 

of acid resistance, binding the DNA of downstream genes in response to indole (Lee et 

al. 2007). To investigate this, growth of wildtype and ΔycgZ-ymgABC JCB387 was 

measured at pH 4 and pH 7 (Figure 3.13). We selected pH 4 as it was the lowest pH at 

which growth could still be observed. At pH 7, the wildtype and ΔycgZ-ymgABC  
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Figure 3.11 The pBR322Δbla plasmid 
 

Panel A shows the plasmid pBR322Δbla. Black arrows indicate genes. Positions of key 

restriction sites are shown by black dotted lines. The tetracycline resistance gene is 

shown by a red arrow; all other genes are shown by black arrows. Key restriction sites 

are shown by black dotted lines. The bla gene of pBR322 has been excised by digestion 

with VspI and AatII, and a 117 bp linker with terminal VspI and AatII sites cloned into 

the region. Panel B shows wildtype and ΔycgZ-ymgABC strains with and without the 

pBR322Δbla plasmid, grown in a 96-well polystyrene plate for 48 hours and assayed 

for biofilm formation using the crystal violet assay. OD600 is shown as the mean ± 

standard deviation of 8 replicates (2 biological, 4 technical). 
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Figure 3.12 Regulation of biofilm formation by MarA-dependent 
activation of ycgZ-ymgABC. 
 
Panel A is a schematic showing the ycgZ-ymgABC complementation fragments. White 

block arrows show the genes; thick black lines represents non-coding DNA regions. 

The marbox is indicated in green, with the direction of the green arrow indicating 

orientation. Right-angled arrows indicate the ycgZ transcription start site. Panel B 

shows biofilm formation by wildtype and ΔycgZ-ymgABC strains containing the ycgZ 

regulatory region derivatives fused to the ycgZ-ymgABC operon. Cells were grown in 

a 96-well polystyrene plate for 48 hours and assayed for biofilm formation using the 

crystal violet assay. OD600 is shown as the mean ± standard deviation of 8 replicates (2 

biological, 4 technical). A one-way analysis of variance (ANOVA) followed by a post-

hoc Tukey’s HSD test showed significant differences between all constructs within 

each strain (p < 0.01 for all), except between pBR322 and ycgZ-ymgABC.1M (p > 0.05). 
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Figure 3.13 Growth of wildtype and ΔycgZ-ymgABC JCB387 at pH 4 and 
pH 7. 
 

Growth was assessed using a standard growth curve assay in LB adjusted to pH 7 and 

pH 4. Samples were taken hourly and the OD650 measured. Blue lines represent 

wildtype JCB387, whilst red lines represent JCB387 ΔycgZ-ymgABC. Dashed lines and 

solid lines show growth curves done at pH 7 and pH 4, respectively. Points on the curve 

shown are the mean of three replicate flasks ± the standard deviation. 
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appeared similar. However at pH 4 a slight growth defect was seen for ΔycgZ-ymgABC, 

emerging after approximately 3 hours. Unexpectedly however, this deficiency was 

small, questioning the role of the ycgZ-ymgA-ariR-ymgC operon in acid resistance. 

Further study is required to determine the function of MarA regulation on ycgZ-

ymgABC mediated acid tolerance. 

 

Finally, wildtype and ΔycgZ-ymgABC JCB387 were investigated for sensitivity to 

seven unrelated antibiotics (Table 3.1). Novobiocin and nalidixic acid were expected 

to show changes in MIC, as single knockout of ycgZ shows reduced fitness in the 

presence of these drugs, with scores of -2.68 and -2.13, respectively (Nichols et al. 

2011). However no changes in MIC were seen for ΔycgZ-ymgABC across all antibiotics 

tested. This does not necessarily mean that ΔycgZ-ymgABC has no involvement in 

antibiotic tolerance, as changes may be below the level detectable in this assay. Growth 

curves in sub-lethal concentrations of antibiotic may be more appropriate, as this will 

highlight additional parameters in the bacteria-antibiotic relationship.  
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Table 3.1 Minimum inhibitory concentration of 7 antibiotics for JCB387 
and JCB387 ΔycgZ-ymgABC. 
 
96-well MIC assays were done for E. coli strains JCB387 and JCB387 ΔycgZ-ymgABC 

across seven antibiotics, using the method outlined by Andrews (2001). MIC is shown 

as the minimum concentration of antibiotic (mg/L) required to inhibit growth of the 

strain. Assays were done in quadruplicate and repeated on three separate days. Results 

were rejected if not in line with the control strains ATCC 25922 and NCTC 10418. 

Assays were also carried out with the addition of 5 mM salicylate, but showed no 

changes (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Antibiotic 
MIC (mg/L) 

WT ΔycgZ-ymgABC 

Ampicillin 4 4 

Tetracycline 1 1 

Doxycycline 4 4 

Sulfamonomethoxine 2 2 

Nalidixic acid 8 8 

Novobiocin 128 128 

Kanamycin 16 16 
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3.7 Discussion 

The aim of this chapter was to characterise control of the ycgZ-ymgABC operon by 

MarA. Previous work identified a putative marbox upstream of ycgZ by ChIP-seq 

analysis, but did not investigate regulation by MarA (Sharma et al. 2017). The data here 

confirm that MarA activates transcription from PycgZ via a marbox 60 bp upstream of 

the transcription start site. This explains a report of unknown regulation within the 

literature in which ycgZ-ymgABC was reported to accumulate in Lon- strains (Duval et 

al. 2017). Lon protease is known to rapidly degrade MarA (Griffith, Shah and Wolf 

2004). Increased levels of MarA in Lon- strains would thus explain the results seen by 

Duval et al. (2017). 

 

Activation of PycgZ by MarA appears to be Class I, requiring residue W19 of MarA to 

make contact with the C-terminal domain of the α subunit of RNAP. Interestingly, the 

ycgZ marbox is in the forward orientation (Figure 3.2), positioning MarA incorrectly 

for Class I activation (Martin et al. 1999). The flexible linker joining the two α subunits 

may allow for non-traditional orientation of the marbox, but this relationship of MarA 

with the promoter has only been reported in the literature for zwf. This chapter has 

confirmed predictions that the ycgZ promoter is both σ70 and σ38 dependent, with strong 

induction by RpoS upon entry to stationary phase (Gama-Castro et al. 2008). However, 

MarA appears to activate transcription in a σ70-dependent manner only and does not 

activate via σ38. This is unsurprising, as MarA has never been shown to activate via σ38 

dependent promoters. Regulation via only one σ factor at promoters controlled by both 

σ38 and σ70 has been reported for other transcription factors, notably Fis and H-NS at 

the dps promoter (Grainger et al. 2008). However, it has not been demonstrated for 

MarA or other transcriptional regulators of the AraC family. 
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This chapter describes how activation of ycgZ-ymgABC by MarA results in inhibition 

of biofilm formation. The mar inducer, salicylate, has previously been reported to 

repress biofilm formation in uropathogenic E. coli via inhibition of type I fimbriae 

expression (Vila and Soto 2012). The authors speculated that this was through 

repression of fimB by MarA. However as there is no marbox sequence present in the 

fimB promoter, this cannot be via direct regulation. Instead, changes in type I fimbriae 

expression may be an additional consequence of MarA activation of the ycgZ-ymgABC 

operon.  

 

Biofilm inhibition appears counterintuitive for an antibiotic stress regulator, as the 

biofilm environment provides a number of advantages: reduced antibiotic penetration, 

cell dormancy, and an increased level of mutations (Hoiby et al. 2010). However, 

certain environmental conditions may make the biofilm environment suboptimal. For 

planktonic cells which have not yet established a biofilm, forming a biofilm provides a 

long-term survival strategy but will not offer immediate protection against antibiotic 

challenge. Repression of biofilm formation may allow cellular resources to be focused 

on other mechanisms of antibiotic resistance, such as drug efflux and metabolic 

changes.  

 

Additional regulators may also be involved in regulation of this pathway. ß-

galactosidase assays showed a 4-fold drop in promoter activity for ycgZ.2, but only a 

2-fold drop for ycgZ.1M (Figure 3.4). The upstream location of the marbox and the high 

activity of the ycgZ.2 fragment relative to the pRW50 control indicate that loss of the 

core promoter elements did not occur. Partial binding to the mutated fragment may have 

occurred, although this was not demonstrable at the MarA concentrations used in 
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EMSAs (Figure 3.3). Thus, binding sites for other regulators may be present between 

positions -50 and -78 relative to the transcription start site. 

 

Unusually, ß-galactosidase assays shown here suggest that the normally 

transcriptionally silent mar operon is expressed at high levels in E. coli JCB387. One 

would expect, in the absence of mar induction by salicylate, to see no effect of marbox 

deletion or mutation on promoter activity; however, a marked difference was seen 

between ycgZ.1 and ycgZ.1M/ycgZ.2. Testing of MarA levels in E. coli JCB387 would 

be required to explain the unusual MarA-dependent results seen here. Additionally, 

experiments in marA, rob, and soxS knockout strains could serve to further verify the 

dependence of regulation in vivo on MarA rather than its close relatives. 

 

Conflicting results were also seen here regarding the interplay between ycgZ-ymgABC 

and MarA in acid tolerance (Lee et al. 2007). YmgB is known to upregulate acid 

resistance via activation of the gadABCE and hdeAB operons. However, our ycgZ-

ymgABC knockout created here showed minimal changes in acid sensitivity. 

Additionally, the inclusion of ycgZ-ymgABC within the MarA regulon is somewhat 

unusual given that MarA is a known repressor of hdeAB (Schneiders et al. 2004). 

However, repression of hdeAB by MarA has been shown to be highly dependent on 

growth phase and other regulators; opposing regulation of hdeAB by MarA and YmgB 

could therefore allow for varied expression of hdeAB under different cellular conditions 

(Ruiz, McMurry and Levy 2008). Further experiments with both ycgZ-ymgABC and 

marRAB knockouts could elucidate the points within the E. coli life cycle at which these 

two systems regulate hdeAB. 
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In summary, this chapter has identified a new mechanism for MarA in the regulation of 

biofilm formation and has elucidated an unexpected role of biofilms within an antibiotic 

resistance context. As a global stress regulator, this provides MarA with an additional 

route to manage challenges within the cell. 
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Chapter 4  
Spacing Requirements for 

Transcriptional Activation by MarA at 
the mlaF Intergenic Region 
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4.1 Introduction 

Previously, MarA had been thought to control antibiotic resistance primarily through 

OmpF porin and the AcrAB-TolC efflux pump (Cohen, McMurry and Levy 1988, 

Cohen et al. 1989, Ma et al. 1996, Okusu, Ma and Nikaido 1996). However, ChIP-seq 

experiments identified novel mechanisms utilised by MarA to tolerate antibiotic stress 

(Sharma et al. 2017). One target identified was the mlaFEDCB operon. MarA activates 

transcription of the operon, which encodes a lipid trafficking ABC transport system. 

Hence, by regulating encoded the mlaFEDCB operon, MarA controls outer membrane 

permeability and sensitivity to antibiotics such as tetracyclines (Sharma et al. 2017).  

 

The mlaFEDCB operon is under the control of three promoters (P1, P2 and P3) with 

overlapping -35 and -10 elements and a putative UP element sequence (Figure 4.2, 

Panel A). The promoters produce transcripts of 128, 148, and 157 nucleotides in length, 

respectively. As transcription can be modelled in vitro from this region without the need 

for any additional transcription factors, it is a good candidate for examining the 

mechanisms of MarA activation. 

 

The aim of this chapter is to understand the spacing and orientation requirements for 

the different promoter elements and the marbox at the mlaF intergenic region. The mlaF 

marbox is correctly positioned and orientated for Class II activation by MarA, which 

would require contact with region 4 of the σ70 subunit of RNAP. In MarA, the residue 

forming this contact (Y81) diverges from the equivalent residue in Rob and SoxS, 

which are known to contact region 4 of σ70 in order to occlude its binding to the -35 

element at Class II promoters (Gallegos et al. 1997, Zafar, Sanchez-Alberola and Wolf 

2011, Taliaferro et al. 2012). Thus, Class II promoters regulated by MarA may show 
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flexibility in spacing requirements. Orientation, meanwhile, may not be fixed; as seen 

with ycgZ and zwf, MarA can still activate at these promoters despite the marbox being 

incorrectly orientated for Class I activation (Martin et al. 1999). Thus, orientation 

requirements may not be fixed at Class II promoters such as that seen upstream of mlaF. 

 

4.2 Activation of P2mlaF by MarA 

A derivative of the 135 bp region immediately upstream of mlaF was prepared. This 

fragment, named mlaF.1, was cloned in pSR and used as a template for in vitro 

transcription (Figure 4.2). MarA induces activation of transcription from P2mlaF. 

 

4.3 Activation of P2mlaF by MarA is orientation specific 

The marbox upstream of PmlaF is correctly positioned for Class II activation by MarA, 

with the marbox in the forward orientation immediately adjacent to the P2 -35 element 

(Figure 4.2). Activation of transcription by MarA is reported to be orientation specific, 

with inversion of the marbox resulting in total loss of activation (Jair et al. 1996, Martin 

et al. 1999, Gillette, Martin and Rosner 2000). However, Chapter 3 highlighted how 

MarA is able to activate transcription from PycgZ despite the non-traditional orientation 

of the marbox. Thus, specific marbox orientation may not be essential at all promoters. 

 

To investigate this, a derivative of the mlaF.1 fragment with the marbox inverted was 

cloned in pSR and named mlaF.1.inv (Figure 4.3, Panel A). Transcripts originating 

from this region were compared to mlaF.1 in an in vitro transcription experiment, with 

the addition of 2 μM MarA (Figure 4.3, Panel B). Activation of the transcript initiating 

from mlaF P2 no longer occurred when the marbox is inverted (lanes 3-4). Thus, the 

forward orientation of the marbox is essential at the mlaF promoter. 
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Figure 4.1 The regulatory region upstream of mlaF 
 

The diagram shows the mlaFEDCB operon and its upstream regulatory region. -10 and 

-35 elements are indicated in underline for P1 (orange), P2 (red) and P3 (yellow). 

Transcription start sites are shown by right-angled arrows. The start codon is shown in 

blue. The UP element is indicated by a dotted black line, and the marbox by a green 

arrow. The black triangle indicates the beginning of the mlaF.1 derivative. 

 

 

  

TTTATGCGGCTAAAAAGTAAAACAAATGCCAGCTTTCGCTAACCACGGC

GGGTAATATTCTGTAAATATGTTGGGTTCAAGGTTAAATTGAGCGCCATG
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Figure 4.2 Activation of P2mlaF by MarA. 
 

Panel A shows the mlaF.1 fragment schematically; the beginning of the fragment is 

labelled in Figure 4.1. Coloured rectangles represent the P1 (orange), P2 (red) and P3 

(yellow) -10 and -35 elements, with coloured right-angled arrows indicating the 

transcription start sites. The marbox is shown by a green arrow and the UP element by 

a grey dotted line. Panel B shows a gel image from an in vitro transcription experiment, 

using mlaF.1 cloned in pSR as a template. Transcripts initiating from P1, P2 and P3 

and indicated by dashed lines, as is the RNAI internal control. The green rectangle 

represents addition of 2 μM MarA. Transcriptions were done with RNAP-σ70. Ratios 

of transcript to RNAI are shown.  
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Figure 4.3   Effect of marbox inversion on MarA activation of 
transcription at PmlaF. 
 

Panel A is a diagram of the mlaF.1 and mlaF.1.inv DNA fragments. Orange, red and 

yellow rectangles represent the -10 and -35 elements for P1, P2, and P3 respectively. 

Right-angled arrows show transcription start sites. Start codons are indicated in blue. 

UP elements are displayed as grey dotted lines, and the marbox is shown by green 

arrows. Panel B shows an image of a denaturing sequencing gel on which transcripts 

from an in vitro transcription experiment were compared. Transcripts were generated 

with the addition of RNAP-σ70 holoenzyme to the mlaF.1 and mlaF.1.inv fragments 

cloned in pSR. Transcription was done with and without the addition of 2 μM MarA, 

shown by green rectangles. Dashed lines indicate positions of transcripts originating 

from the mlaF promoters and from RNAI, an internal control. Ratios of transcript to 

RNAI are shown.
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4.4 MarA activation of PmlaF requires contact with the alpha 

subunit of RNAP 

MarA, Rob and SoxS are described as ‘ambidextrous’ transcriptional activators, 

requiring contact with the α-CTD of RNAP at certain promoters only (Jair et al. 1995, 

Jair et al. 1996, Jair et al. 1996). The α-CTD binds the UP element upstream of the -35 

element to interact with activator proteins (Igarashi et al. 1991, Blatter et al. 1994, 

Estrem et al. 1998). An AT-rich region upstream of the mlaF marbox was identified as 

a putative UP element (Figure 4.2, Panel A). 

 

A derivative of mlaF.1 was created with the UP element removed and named mlaF.upE 

(Figure 4.4, Panel A). This was cloned in pSR and used as a template for in vitro 

transcription assays in comparison to mlaF.1 (Figure 4.4, Panel B). In the absence of 

MarA, mlaF.upE showed reduced transcription from P1 (lane 3 vs lane 1). With the 

addition of 2 μM MarA, activation of P2 was present but reduced (lane 4 vs lane 2).  

 

In vitro transcription assays were also done with the addition of the MarA W19A 

mutant, which has residue W19 mutated to an alanine to disrupt the α-CTD contact 

(Figure 4.5). Activation of the P2mlaF was not seen when the W19A mutant is added 

(lane 3 vs lane 1), confirming the role of the MarA α-CTD interaction. Thus, MarA 

requires an UP element and interaction with the α-CTD of RNAP for full activation of 

P2mlaF. 
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Figure 4.4 Role of the UP element in activation of PmlaF by MarA. 
 

Panel A is a diagram of the mlaF.1 and mlaF.upE DNA fragments. Rectangles represent 

the -10 and -35 elements for P1 (orange), P2 (red), and P3 (yellow). Right-angled 

arrows show transcription start sites. Start codons are indicated in blue. The UP element 

is displayed as a grey dotted line, and the marbox is shown by green arrows. Panel B 

shows a gel image of transcripts generated in an in vitro transcription experiment. 

RNAP-σ70 holoenzyme was added to the mlaF.1 and mlaF.upE fragments cloned in 

pSR, with and without the addition of 2 μM MarA, shown by green rectangles. Dashed 

lines indicate positions of transcripts originating from P1, P2, P3 and the RNAI control. 

Ratios of transcript to RNAI are shown.
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Figure 4.5 Requirement of the RNAP alpha contact for activation of PmlaF 
by MarA 
 

The figure shows a sequencing gel image of transcripts generated in an in vitro 

transcription experiment. RNAP-σ70 holoenzyme was added to the mlaF.1 fragment 

cloned in pSR. 2 μM MarA (green rectangle) or W19A mutant (red rectangle) was then 

added. Dashed lines indicate positions of transcripts originating from P1, P2, and P3, and 

from the RNAI internal control. Ratios of transcript to RNAI are shown.
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4.5 Activation of P2mlaF by Mar is highly specific relative to the 

-35 hexamer and transcription start site 

The location of a transcription factor binding site positions the transcription factor to form 

specific interactions with RNAP. MarA is unusual however in its ability to activate 

transcription by binding marboxes at variable locations relative to the core promoter 

elements (Martin et al. 1999). We have shown though that MarA requires an UP element 

and contact with α-CTD of RNAP for full activation at PmlaF, and thus MarA may have 

strong location preferences at this locus. 

 

Derivatives of mlaF.1 with insertions between the marbox and the P2 -35 element were 

created (Figure 4.6, Panel A). These fragments, named mlaF.1.U1-10 (the number 

referring to the number of nucleotides inserted) were cloned in pSR for use as templates 

for in vitro transcription experiments (Figure 4.6, Panel B). In the absence of MarA, 

movement of the marbox showed no effect on transcription initiating from P1 and P3 

(lanes 1-10). When the marbox was moved 1 bp further from the -35 element, activation 

of P2 by MarA was reduced (compare lanes 11 and 12). Further than 1 bp, activation 

could not be seen (lanes 13-20 vs lane 11), even at 10 bp (lane 20) with MarA returned 

to the same face of the DNA. Assays were repeated for derivatives with the marbox 

moved 1-2 bp closer to the -35 element (Figure 4.7). Again, these derivatives (named 

mlaF.1.D1-2) showed partial loss of activation of the P2 transcript when the marbox was 

moved 1 bp (lanes 3-4), and total loss when moved 2 bp (lanes 5-6). These results indicate 

that movement of the marbox 1 bp in either direction allows MarA to maintain contacts 

with RNAP, but further than this contacts cannot be maintained due to MarA and RNAP 

residing on separate faces of the DNA.  
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Figure 4.6 In vitro transcription from PmlaF with increasing distance of the 
marbox from the P2 -35 element 
Panel A is a diagram of the mlaF.1 and mlaF.1.U1-U0 fragments. Rectangles represent 

the -10 and -35 elements for P1 (orange), P2 (red), and P3 (yellow). Right-angled arrows 

show transcription start sites; start codons are indicated in blue. The UP element is 

displayed as a grey dotted line, and the marbox is shown by green block arrows. Panel B 

shows sequencing gel images comparing transcripts generated in an in vitro transcription 

experiment. RNAP-σ70 holoenzyme was added to the mlaF.1 and mlaF.1.U1-10 

fragments cloned in pSR, with and without the addition of 2  μM MarA, shown by a green 

rectangle. Dashed lines indicate positions of transcripts originating from P1, P2, P3 and 

the RNAI control. White triangles indicate the increasing number of nucleotides inserted 

between the marbox and the -35 element; the exact number are listed above each lane. 

Ratios of transcript to RNAI are shown. 
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Figure 4.7 In vitro transcription from PmlaF with reduced distance 
between the marbox and the P2 -35 element 
 

Panel A is a diagram of the mlaF.1 and mlaF.1.D1-2 fragments. Rectangles represent the 

-10 and -35 elements for P1 (orange), P2 (red), and P3 (yellow). Right-angled arrows 

show transcription start sites; start codons are indicated in blue. The UP element is 

displayed as a grey dotted line, and the marbox is shown by green block arrows. Panel B 

shows sequencing gel images comparing transcripts generated in an in vitro transcription 

assay. RNAP-σ70 holoenzyme was added to the mlaF.1 and mlaF.1.D1-10 fragments 

cloned in pSR, with and without the addition of 2  μM MarA, shown by green rectangles. 

Dashed lines indicate positions of transcripts originating from P1, P2, P3 and the RNAI 

control. Ratios of transcripts to RNAI are shown. 
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To further confirm this, the mlaF.1, mlaF.1.U1-10 and mlaF.1.D1-2 fragments were 

cloned  upstream of lacZ in pRW50. Constructs were used to transform E. coli JCB387, 

grown to mid-log phase, and assayed for β-galactosidase activity (Figure 4.8). Reduced 

expression was seen regardless of how far the marbox was moved (p < 0.01). Thus, both 

in vivo and in vitro assays show that the marbox is highly location specific and cannot 

activate transcription when the marbox is moved. 

 

4.6 Activation of P2mlaF by MarA is less efficient when P1 is 

mutated 

MarA control of the mlaF regulatory region has been shown to be via activation of 

transcription from P2 (Sharma et al. 2017). However, two further mlaF promoters are 

located immediately adjacent to P2 with overlapping -10 or -35 elements. The P1 

promoter is also well positioned for interaction with MarA in a Class II manner, as the 

P1mlaF -35 element is embedded within the marbox. Consequently, movement of the 

marbox in Figure 4.6 also results in movement of the P1 -35 element. Interestingly, 

transcription originating from P1mlaF is still apparent when the marbox is moved, with 

no reduction. Therefore, P1mlaF cannot require a -35 hexamer. Presumably, this is 

because this element is a very poor match to the consensus; TTTCGC opposed to the 

consensus TTGACA, giving a 2/6 match. 

 

To assess the dependence of P1mlaF on its -10 element, a derivative of mlaF.1 was 

created with the P1 -10 element mutated from TATTCT to GGTTCT, and named 

mlaF.1.P1 (Figure 4.9, Panel A). This was cloned in pSR and used as a template for in 

vitro transcription experiments (Figure 4.9, Panel B). Mutation of the P1 -10 element  
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Figure 4.8 In vivo effect of moving the marbox on mlaF expression 
 
The graph shows the β-galactosidase activity of pRW50 constructs containing the mlaF.1, 

mlaF.1.U1-10, and mlaF.1.D1-2 promoter derivatives. The green bar shows the wildtype 

mlaF.1 fragment; red bars show mutant fragments with the marbox moved closer or 

further from the P2 -35 element. All assays were done in JCB387 at mid-log phase, with 

cells containing empty pRW50 used as a control (data not shown). Activities shown are 

from assays done on three separate days, with each assay comprising three biological 

replicates. The mean ± standard deviation relative to the average wildtype (ycgZ.1) 

promoter activity is shown A one-way analysis of variance (ANOVA) was calculated 

with the promoter activities for the constructs; the analysis was significant (p < 1 x 10-15, 

F (12, 116) = 60.442). A post-hoc Tukey’s HSD test showed that all mutants were 

significantly different from the mlaF wildtype promoter, with a p < 0.01 for each 

comparison pair. 
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Figure 4.9 Effect of P1 mutation on in vitro transcription from the mlaF 
regulatory region 
 
Panel A is a diagram of mlaF.1 and the mlaF.1.P1 derivative. Rectangles represent the -

10 and -35 elements for P1 (orange), P2 (red), and P3 (yellow). Right-angled arrows show 

transcription start sites. Start codons are indicated in blue. The UP element is displayed 

as a grey dotted line, and the marbox is shown by green arrows. Panel B is an image of a 

sequencing gel used to analyse transcripts generated in an in vitro transcription 

experiment. RNAP-σ70 holoenzyme was added to the mlaF.1 and mlaF.1.P1 fragments 

cloned in pSR, ± 2  μM MarA (green rectangles). Dashed lines indicate positions of 

transcripts originating from P1, P2, P3 and the RNAI control. Ratios of transcript to RNAI 

are shown. 
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resulted in total loss of the P1 transcript (lane 3); P1mlaF is therefore presumably 

dependent on its -10 element. Consequently, loss of P1 resulted in increased transcription 

from P3 compared to mlaF.1 (compare lane 3 to lane 1). With the addition of MarA, 

activation of P2 was still seen for the mlaF.1.P1 fragment, but to a lesser extent (lane 4 

vs lane 2). The P1 -10 element is therefore required for full activation of transcription 

from P2 by MarA. 

 

4.7 Discussion 

The work of Sharma et al. (2017) identified mlaFEDCB as a target of MarA in a ChIP-

seq experiment, and verified that MarA activates this operon via the second of three 

overlapping promoters. This chapter aimed to characterise the spacing requirements for 

activation of the mlaF P2 promoter by MarA. The mlaF P2 marbox is positioned for Class 

II activation, and we have shown here that MarA requires an UP element and contact with 

α-CTD of RNAP for full activation of P2.  

 

There are strict requirements in regards to orientation of the marbox, as MarA binds as a 

monomer to a non-palindromic site (Gillette, Martin and Rosner 2000). Previous studies 

have shown complete loss of activation when the marbox is inverted (Martin et al. 1999, 

Gillette, Martin and Rosner 2000). Unsurprisingly, the marbox upstream of mlaF 

functioned only in the forward orientation.  

 

This study showed that MarA activation is stringent in regards to marbox location; whilst 

it could be moved 1 bp relative to the -35 element with only partial loss of activation, any 

further completely eliminated activation. The contacts made by MarA with α-CTD of 
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RNAP at the mlaF promoter may restrict its ability to activate at non-traditional locations. 

This is seen for the cyclic-AMP receptor protein-cAMP complex (CRP-cAMP), which 

requires positioning on the same face of the DNA helix as RNAP in order to interact with 

the α-CTD (Gaston et al. 1990). Movement of the CRP site results in a sharp reduction 

in activation, but this is restored when the site is moved a full turn of the DNA helix (10 

bp) as this places CRP on the same face as RNAP. These stringent spacing requirements 

are relaxed if an UP element is present (Zhou et al. 2014). Interestingly, activation by 

MarA was not restored for the 10 bp insertion mutant. As mlaF does not appear to be a 

classic Class I promoter, there may be other contacts, such as with region 4 of the σ70 

subunit of RNAP, which further restrict marbox movement. 

 

Martin et al. (1999) described the possible locations and orientations marbox, indicating 

that the MarA-DNA-RNAP ternary complex can exist in a number of conformations. This 

chapter has characterised marbox orientation and spacing requirements relative to the -35 

hexamer and has identified how these requirements are critical to activation, confirming 

that whilst a number of orientations are possible, MarA-DNA-RNAP interactions have 

limited flexibility.  
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Chapter 5  
Differential Marbox Binding by MarA, 

Rob and SoxS 
 

 

 

 

 

 

 

 

 



122 
 

5.1 Introduction 

Although MarA, Rob, and SoxS are all capable of binding the marbox, and share many 

of their targets, the extent to which they activate target promoters differs. This is due to 

way the factors bind the marbox. In general, Rob is better able to bind degenerate 

sequences, whilst MarA is the most specific (Martin, Gillette and Rosner 2000). Martin 

and Rosner (2011) suggest, based on crystal structures, that differences in the flexibility 

of the two helix-turn-helix motif regions between the proteins may partially account for 

this. 

 

Several bases within the marbox confer discrimination between MarA and SoxS. 

Mutation of residues at positions 1, 3, 9, 10 and 11 (positioning as defined in Figure 1.9) 

alters SoxS specificity, and MarA specificity is altered by mutations at positions 1 and 9. 

In particular, a thymine at position 9 is thought to form Van der Waals interactions with 

Arg-96 of MarA, improving MarA specificity (Martin, Gillette and Rosner 2000). 

Mutation of amino acids within MarA, Rob and SoxS also impacts specificity. For 

instance, alanine substitution of Glu89 causes MarA to behave more like SoxS, showing 

improved binding and activation at a number of Class I superoxide responsive promoters 

(Martin and Rosner 2011).  

 

The different abilities of MarA, Rob and SoxS to recruit RNAP may also result in regulon 

variation; MarA and SoxS activate by prerecruitment, whilst Rob activates by traditional 

recruitment (Gillette, Martin and Rosner 2000). Differences in transcription factor-RNAP 

are also key. For example, SoxS and Rob occlude binding of domain 4 of σ70 at Class II 

promoters, whilst this has not been reported for MarA (Zafar, Sanchez-Alberola and Wolf 
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2011). SoxS and Rob have also been shown to differ in the contacts they require with the 

α-CTD of RNAP (Taliaferro et al. 2012). Thus, polymerase contacts, in combination with 

varying binding affinities for the marbox, and vastly different protein concentrations 

within the cell, are key for these similar transcription factors to show phenotypic 

variation, as is seen by the reduced abilities of Rob and SoxS to activate the mar 

phenotype, and vice-versa (Jair et al. 1996). 

 

5.2 Affinity of MarA, Rob and SoxS for the marbox correlates to 

strength of activation at P2mlaF 

The intergenic region upstream of mlaFEDCB contains three promoters, with overlapping 

-35 and -10 elements. MarA is known to bind a marbox upstream of the mlaF operon to 

activate transcription from P2mlaF promoter (Sharma et al. 2017). The mlaF operon is 

also likely targeted by Rob and SoxS that can bind the marbox (Ariza et al. 1995). To test 

this, an in vitro transcription experiment was done with increasing concentrations of 

MarA, Rob or SoxS (Figure 5.1, Panel A). The DNA template was the mlaF.1 DNA 

fragment cloned in the pSR plasmid. In the absence of any transcription factor, two 

transcripts were seen corresponding to those originating from P1mlaF (157 nt) and 

P3mlaF (128 nt). Upon the addition of MarA (lanes 2-5), P1mlaF and P3mlaF reduced 

in intensity, whilst transcription from P2mlaF (148 nt) is also observed. The reduction in 

P1 and P3 is likely due to transcriptional interference between P1/P3 and P2. Addition of 

Rob (lanes 7-10) activated P2mlaF more efficiently than MarA, and also blocked 

transcription from P1mlaF and P3mlaF. Conversely, SoxS activated P2mlaF poorly and 

the P1mlaF and P3mlaF transcripts do not disappear. 
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Figure 5.1 In vitro binding and activation of the regulatory region 
upstream of mlaF by MarA, Rob and SoxS 
Panel A shows an image of a denaturing sequencing gels used to separate transcripts 

generated in vitro using the mlaF.1 fragment as a template.  All assays were done with 

RNAP-σ70. Triangles show increasing concentrations (0.4 μM to 2 μM) of MarA (green), 

Rob (pink) and SoxS (blue). Bands formed by transcripts originating from P1mlaF, 

P2mlaF, P3mlaF and RNAI are indicated by dashed lines. Ratios of transcripts to RNAI 

are shown. Panel B shows an image of a 6 % polyacrylamide gel used to separate 

protein:mlaF.1 complexes. Coloured triangles show increasing protein concentrations 

(0.4 μM – 1.2 μM - 2 μM), as for Panel A. Bands formed by free DNA are indicated by 

a black arrow. Protein-DNA complexes are indicated by coloured arrows (MarA – green; 

Rob – pink).  
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Binding of MarA, Rob and SoxS to mlaF.1 was assessed by EMSA (Figure 5.1, Panel 

B). Addition of MarA resulted in the formation of a single DNA-protein complex (green 

arrow, lanes 2-4). At low concentrations Rob formed a complex of similar mobility to 

that formed by MarA (pink arrow, lane 6). At higher concentrations Rob formed very low 

mobility complexes (lanes 7-8). This is probably because Rob can bind DNA as a dimer 

(Gallegos et al. 1997). Rob also bound more tightly than MarA, with over 50 % of the 

DNA bound at the lowest concentration of Rob. SoxS was unable to form complexes with 

the mlaF.1 fragment in this assay (lanes 10-12). Thus, the affinity of the regulators for 

the mlaF marbox is SoxS < MarA < Rob. This correlates with the activation of P2mlaF 

(Figure 5.1, Panel A). 

 

5.3 Binding of MarA, Rob and SoxS to MarA ChIP-seq and SoxS 

ChIP-exo targets in vitro 

As evaluated by the mlaF regulatory region (Figure 5.1), MarA, Rob and SoxS bind 

targets with different affinities (Martin, Gillette and Rosner 2000, Martin and Rosner 

2011, Chubiz, Glekas and Rao 2012). To better understand these differences, binding of 

MarA, SoxS and Rob to a larger number of sites was tested. The sites to be tested were 

gathered from genome-wide assays of MarA or SoxS binding (Seo et al. 2015, Sharma et 

al. 2017). Briefly, the Sharma et al. (2017) MarA ChIP-seq identified targets for MarA 

and targets for SoxS were identified by the Seo et al. (2015) ChIP-exo. 

 

The binding of MarA, Rob and SoxS to 29 of the targets identified in the MarA ChIP-seq 

experiment was assessed by EMSA. The data are shown in Appendix 1 and a summary 

is shown in Table 5.1. Analysis of MarA, Rob and SoxS binding to 16 SoxS sites  
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Table 5.1 Summary of binding of MarA, Rob and SoxS to MarA ChIP-seq 
targets 
 

29 targets from the Sharma et al. (2017) ChIP-seq were assessed for MarA, Rob and SoxS 

binding by EMSA (images shown in Appendix 1). ‘+++’ indicates binding observed at 

0.4uM. ‘++’ indicates binding observed at 1.2uM. ‘+’ indicates binding observed at 2uM 

only. ‘-‘ indicates no clear binding seen even at 2uM. estA is a negative control fragment 

containing no marbox. ETECp9480770 is a gene found on the ETEC p948 plasmid. 

 

Number Target Marbox sequence MarA 
binding 

Rob 
binding 

SoxS 
binding 

1 thrL gcacagacagataaa +++ +++ +++ 
2 leuL<>leuO gcacaattagctaat +++ +++ ++ 
3 degP gcgttatctgttaat ++ +++ - 
4 lacZ gcataaagtgtaaag ++ +++ - 
5 ybaO gcacaaaatgacaaa +++ +++ +++ 
6 pheP gcactaaatgttaaa +++ +++ +++ 
7 modE<>acrZ ccacgcaaagctgac +++ +++ ++ 
8 ybiV cctatgagcgtaaaa ++ +++ - 
9 grxA/ybjC gcattaattgctaaa +++ +++ ++ 
10 ycgF<>ycgZ gcactaattgcaaaa +++ +++ +++ 
11 fnr gcacaaattgtttaa +++ +++ - 
12 yneO gcactaattgctaaa +++ +++ +++ 
13 marC<>marR ccacgttttgctaaa +++ +++ +++ 
14 yeeF gcactatttgctaaa +++ +++ - 
15 ompC<>micF gcactgaatgtcaaa +++ +++ ++ 
16 ypeC gcattttttgctaaa +++ +++ +++ 
17 yfeS><cysM gcaacaactgttaaa ++ +++ + 
18 guaB<>xseA gcattttttgcaaaa +++ +++ + 
19 ETEC3200 ccaatatccggcaaa - ++ - 
20 nudF<>tolC gcacgtaacgccaac +++ +++ - 
21 yhbV gcacaatctgcttac +++ +++ + 
22 mlaF<>yrbG ccagctttcgctaac +++ +++ - 
23 ibpA<>yidQ gcacgaaacgttaaa ++ +++ - 
24 yihT ccgctttacggtaaa +++ +++ - 
25 ETEC4304 aggctaatcgtataa + +++ - 
26 ETEC4307 ccaaaaacaggtaaa ++ +++ - 
27 ETEC4702 ccgataaatgcgaaa +++ +++ + 
28 deoB gcaggaagcggcgaa +++ +++ ++ 
29 ETECp9480770 gcattttctgtcaaa +++ +++ ++ 
30 estA No marbox (negative 

control) 
- ++ - 
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identified by ChIP-exo is shown in Appendix 2 and summarised in Table 5.2 Note that 

Rob was used at 5-fold lower concentrations than MarA and SoxS, due to the strong non-

specific binding of this protein.  

 

At all targets, Rob bound with the highest affinity and required less than 0.24 μM of 

protein for complex formation. MarA bound to 28 of the MarA targets and all of the SoxS 

targets. SoxS bound poorest, to 17 of the MarA targets and 11 of the SoxS targets. The 

lack of binding seen by SoxS to the ChIP-exo targets is surprising. Seo et al. (2015) did 

not confirm their targets experimentally, which could explain this, although binding by 

MarA suggests that these marboxes are genuine. 

 

5.4 SoxS poorly tolerates deviations from the consensus 

marbox 

Although MarA and SoxS bind the same consensus DNA site, SoxS is not capable of 

binding all MarA targets; Table 5.1 showed that SoxS was not capable of binding all 

MarA targets. Analysis of the marbox sequences at differentially recognised targets could 

identify residues which are key for SoxS binding but not for MarA. Hence, the MarA 

ChIP-seq targets were grouped according to their ability to be bound by MarA and SoxS. 

Group I comprised targets which bind both MarA and SoxS tightly; Group II targets 

which bind MarA tightly but SoxS poorly; and Group III targets which bind MarA but 

not SoxS. Marboxes from each group aligned and the overall sequence properties of the 

group were visualised using WebLogo (Figure 5.2).  
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Table 5.2 Summary of binding of MarA, Rob and SoxS to SoxS ChIP-exo 
targets 
 

16 targets from the Seo et al. (2015) ChIP-exo were assessed for MarA, Rob and SoxS 

binding by EMSA (images shown in Appendix 1). ‘+++’ indicates clear binding observed 

at 0.4uM. ‘++’ indicates binding observed at 1.2uM. ‘+’ indicates binding observed at 

2uM only. ‘-‘ indicates no binding seen even at 2uM.  

 

  Number Target MarA 
binding 

Rob 
binding 

SoxS 
binding 

1 lpxC +++ +++ +++ 
2 acrAB +++ +++ +++ 
3 uof-fur ++ +++ - 
4 acnA +++ +++ - 
5 ribA +++ +++ ++ 
6 ydbK +++ +++ +++ 
7 nhoA +++ +++ ++ 
8 fumC +++ +++ ++ 
9 zwf ++ +++ ++ 
10 nfo + ++ - 
11 aroF-tyrA ++ +++ + 
12 yrbL +++ +++ ++ 
13 nepI + ++ - 
14 sodA ++ ++ - 
15 fpr ++ +++ +++ 
16 soxS ++ +++ - 
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Figure 5.2 Grouping of the MarA ChIP-seq targets according to their ability 
to be bound by MarA and SoxS 
 

MarA ChIP-seq targets were grouped according to their binding by MarA and SoxS, as 

assessed in Table 5.1. Group I comprised targets bound tightly by both MarA and SoxS; 

Group II was those bound tightly by MarA and poorly by SoxS; and Group III consisted 

of targets bound MarA but not SoxS. Marboxes for the targets were assembled using 

WebLogo (https://weblogo.berkeley.edu/logo.cgi) to generate a consensus motif. The 

MarA consensus motif generated from the Sharma et al. (2017) ChIP-seq is shown below 

for comparison. 
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No specific bases within the marbox appear key for SoxS binding. Instead, marboxes 

bound well by SoxS appear to have a closer overall match to the consensus marbox than 

those not bound by SoxS. MarA on the other hand binds well to marboxes across all 

groups. MarA is thus more able to tolerate deviations from the marbox consensus.  

 

5.5 MarA and SoxS differ in their ability to form hydrogen 

bonding contacts with the DNA backbone 

The crystal structure of MarA bound to DNA identified contacts made by MarA between 

the protein, marbox and the DNA backbone (Rhee et al. 1998). Contacts with bases utilise 

mainly van der Waals interactions, and contacts with the DNA backbone are all hydrogen 

bonds. The base specific contacts are shown in Figure 5.3, Panel A (i). All but one of the 

MarA residues forming base-specific contacts with the marbox are conserved in SoxS 

(Panel A (ii)). Figure 5.3 Panel B (i) shows MarA amino acid residues that form contacts 

with the DNA backbone, the majority of which are hydrogen bonds; 9 of these are lost in 

SoxS. This may explain why deviations from the consensus marbox are better tolerated 

by MarA relative to SoxS, as MarA utilise non-specific contacts with the DNA backbone 

to stabilise binding. 

 

5.5.1 MarA is less able than SoxS to bind marboxes in low salt conditions 

To test this model, binding of MarA and SoxS to the ycgZ.1 fragment was assessed. This 

target was selected as it binds MarA tightly and SoxS weakly in vitro (Appendix 1, Panel 

10). To better understand the role of hydrogen bonding in favouring the binding of MarA, 

we tested different buffer conditions. Salts promote hydrogen bond interactions due to 

their ionic charge and the effects this has on solvation (Nucci and Vanderkooi 2008).  
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Figure 5.3 Contacts formed by MarA and SoxS with the marbox 
 

Diagram of the base-specific and non-specific contacts formed by MarA and SoxS with 

the marbox, adapted from Rhee et al. (1998). Coloured squares represent bases OF THE 

DNA. Grey lines represent the sugar-phosphate backbone, with black circles representing 

the phosphates. Parallelograms represent amino acid residues, with purple indicating 

residues present in MarA and maroon indicating residues mutated in SoxS. Solid lines 

represent van der Waals interactions, whilst dashed represent hydrogen bonds. 
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Furthermore, it is more difficult for van der Waals interactions to overcome the energetic 

barrier to DNA binding, posed by association of water and salt ions with the DNA, at 

high salt concentrations (Misra et al. 1994). 

 

To achieve a reduced-salt EMSA, the standard reaction buffer was replaced with ddH2O. 

MarA and SoxS were also dialysed into the same storage buffer and diluted to the same 

concentration. DNA-protein complexes were loaded under tension (to prevent complex 

formation due to the salts provided by the gel running buffer) and separated on a 6 % 

polyacrylamide gel (Figure 5.4). In standard buffer, containing salt, the ycgZ.1 fragment 

is bound well by MarA (green arrow, lanes 2-4) and weakly by SoxS (blue arrow, lanes 

5-7). In reduced salt buffer, the DNA migrates differently (black arrow, lane 8). 

Presumably this results from changes in DNA topology. No MarA-DNA complexes are 

formed in reduced-salt conditions (lanes 9-11). However, SoxS-DNA complexes do form 

(lanes 12-14). These complexes have the same mobility as SoxS:DNA complexes formed 

in the standard conditions. Thus, SoxS is more able than MarA to bind marboxes in very 

low salt conditions. 

 

5.5.2 Relative binding affinities of MarA and SoxS can be changed in 

response to salt conditions 

EMSAs were repeated in the reduced salt buffer with increasing concentrations of KCl 

(Figure 5.5). As expected, addition of KCl had no effect on DNA migration (lanes 1-5). 

At low KCl concentrations, SoxS is able to form a complex with ycgZ.1 (lanes 11-14), 

whilst MarA is not (lanes 6-10). At the highest KCl concentration the preference reverses 

and MarA binds more of the free DNA than SoxS (compare lanes 10 and 15).  
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Figure 5.4 Binding of MarA and SoxS to PycgZ in low salt conditions 
 

An image of a 6 % polyacrylamide gel used to separate protein:DNA complexes is shown. 

[γ 32P]-ATP labelled ycgZ.1 fragment was incubated with increasing concentrations (0.4 

μM – 1.2 μM - 2 μM) of MarA (green triangles) and SoxS (blue triangles), in standard 

buffer or reduced salt buffer. Standard buffer comprised 1 x TNSC buffer (40 mM Tris 

acetate (pH 7.9), 1 mM MgCl2, 100 mM KCl, 1 mM DTT) and 12.5 μg/ml Herring sperm 

DNA. Reduced salt buffer comprised 12.5 μg/ml Herring sperm DNA in ddH2O only. 

Bands formed by free DNA are indicated by black arrows. MarA:DNA Complexes are 

indicated by green arrows, and SoxS:DNA complexes by blue arrows. 
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Figure 5.5 Binding of MarA and SoxS to ycgZ.1 with increasing 
concentrations of KCl 
 

An image of a 6 % polyacrylamide gel used to separate protein:DNA complexes is shown. 

[γ 32P]-ATP labelled ycgZ.1 fragment was incubated with 1.2 μM of MarA (green 

rectangle) or SoxS (blue rectangle), in the presence or absence of salts. Increasing 

concentrations (2 – 20 mM) KCl was added, shown by grey triangles. Bands formed by 

free DNA are indicated by black arrows. MarA-DNA complexes are indicated by green 

arrows, and SoxS-DNA complexes by blue arrows. 
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Binding of MarA and SoxS to ycgZ.1 was also assessed with increasing concentrations 

of potassium glutamate (KGlu). KGlu is the primary cytoplasmic salt in Escherichia coli 

(Richey et al. 1987, Cayley et al. 1991). Within the Hofmeister series it is placed above 

KCl, meaning it contributes more to protein stability and solubility (Cheng et al. 2016, 

Sengupta et al. 2016). Figure 5.6 shows that MarA is unable to form complexes with the 

DNA even at the highest KGlu concentration (lanes 6-10), whilst SoxS complex 

formation increases substantially with KGlu addition (lanes 11-15). Thus, changes in salt 

conditions can change relative binding affinities of MarA and SoxS and therefore alter 

target preference. 

 

5.5.3 Impact of molecular crowding agents on DNA binding by MarA and 

SoxS 

Reduced-salt EMSAs were repeated with the addition of molecular crowding agents. 

Crowding agents occupy a large amount of space and reduce solvent availability, thus 

increasing the effective concentration of local macromolecules (Minton 2001). They have 

been shown to stabilise DNA-protein interactions (Ganji et al. 2016). EMSAs were 

repeated with increasing concentrations of PEG, a crowding agent (Figure 5.7). At low 

PEG concentrations, SoxS forms a faint complex with the DNA (lanes 11-13), whilst 

MarA is unable (lanes 6-7). At high PEG concentrations, complex formation by MarA 

and SoxS is similar (lanes 9-10 vs lanes 14-15. Thus, molecular crowding agents can also 

alter target preference of MarA and SoxS. 
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Figure 5.6 Effect of increasing KGlu concentration on MarA and SoxS 
binding to ycgZ.1 
 

An image of a 6 % polyacrylamide gel used to separate protein:DNA complexes is shown. 

[γ 32P]-ATP labelled ycgZ.1 fragment was incubated with 1.2 μM of MarA (green 

rectangle) or SoxS (blue rectangle), in the presence or absence of salts. Increasing 

concentrations (2 – 20 mM) KGlu was added, shown by grey triangles. Bands formed by 

free DNA are indicated by black arrows. MarA-DNA complexes are indicated by green 

arrows, and SoxS-DNA complexes by blue arrows. 
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Figure 5.7 Binding of MarA and SoxS to ycgZ.1 with increasing 
concentrations of PEG 
 

An image of a 6 % polyacrylamide gel used to separate protein:DNA complexes is shown. 

[γ 32P]-ATP labelled ycgZ.1 fragment was incubated with 1.2 μM of MarA (green 

rectangle) or SoxS (blue rectangle), in the presence or absence of salts. Increasing 

concentrations (1 – 10 %) PEG was added, shown by grey triangles. Bands formed by 

free DNA are indicated by black arrows. MarA-DNA complexes are indicated by green 

arrows, and SoxS-DNA complexes by blue arrows. 
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5.6 Residues E31 and Q58 of MarA are key for MarA:marbox 

hydrogen bond formation 

To further investigate differences between MarA and SoxS, with respect to DNA 

backbone contacts, key MarA residues were replaced with equivalent residues from SoxS. 

Thus, the Glu at position 31 of MarA was replaced with the Asp of SoxS, resulting in a  

predicted loss of a hydrogen bond. Additionally, the Gln at position 58 of MarA was 

replaced with the Asp seen in SoxS. This is predicted to result in a clash between the side 

chains of Asp and the backbone of the DNA. 

 

MarA derivatives were assessed for binding to ycgZ.1 in an EMSA in standard buffer 

conditions (Figure 5.8). Both mutations reduced the affinity of MarA for the DNA, but 

the impact of the Q58D mutation was much more pronounced. Binding of the various 

proteins was then assessed in reduced-salt buffer with titration of KCl (Figure 5.9, Panel 

A), and in 7.5 mM KCl with titration of protein (Figure 5.9, Panel B). Panel A shows that, 

as expected, MarA did not bind the DNA target in reduced-salt buffer and only weakly 

upon addition of KCl (lanes 4-6). Conversely, SoxS binding was observed (lanes 7-9). 

MarA E31D and MarA Q58D behaved more like SoxS than MarA and bound the DNA 

fragment (lanes 10-15). Panel B shows that in reduced-salt buffer + 7.5 mM KCl, MarA  

binds ycgZ.1 at a similar affinity to standard buffer (compare lanes 15-17 with lanes 2-4). 

SoxS however shows improved binding in the reduced salt + 7.5 mM KCl buffer (lanes 

5-7 versus lanes 18-20). MarA E31D and MarA Q58D again behave more like SoxS, 

showing improved binding in the reduced salt + 7.5 mM KCl conditions (lanes 8-10 and 

21-23, and lanes 11-13 and 24-26, respectively). These data show thus show that the 

binding defects seen for E31D and Q58D under normal salt conditions are not prominent  
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Figure 5.8 Binding of MarA mutants to ycgZ.1 
 

An image of a 6 % polyacrylamide gel used to separate protein:DNA complexes is shown. 

[γ 32P]-ATP labelled ycgZ.1 fragment was incubated with 0.4 - 2 μM of MarA (green 

triangle), SoxS (blue), E31D (yellow) or Q58D (red), under normal salt conditions. Bands 

formed by free DNA are indicated by black arrows. Protein-DNA complexes are 

indicated by coloured arrows. 

[MarA] [SoxS] [E31D] [Q58D]
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Figure 5.9 Binding of MarA mutants under different salt conditions 
 

Image of 6 % polyacrylamide gels used to separate protein:DNA complexes are shown. 

Panel A shows an experiment in which [γ 32P]-ATP labelled ycgZ.1 fragment was 

incubated with 1.2 μM of MarA (green rectangle), SoxS (blue), E31D (yellow) or 

(Q58D), in the presence or absence of salts, with increasing KCl concentrations (5 – 10 

mM) shown by grey triangles. In panel B [γ 32P]-ATP labelled ycgZ.1 fragment was 

incubated with 0.4 - 2 μM of MarA (green triangle), SoxS (blue), E31D (yellow) or Q58D 

(red), under normal or minimal + 7.5 mM KCl conditions. Bands formed by free DNA 

are indicated by black arrows. Protein-DNA complexes are indicated by coloured arrows. 

The images in Panel B are from two separate gels, run concurrently and pasted together 

for clarity. 
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in low salt conditions, and these mutants are affected in a manner more similar to SoxS 

by changes in salt levels. Thus, E31 and Q58 are important for binding of the marbox 

under regular salt conditions but not under low salt conditions. 

 

5.7 Discussion 

MarA, Rob, and SoxS control overlapping but distinct phenotypes, through the binding 

of shared sites (Chubiz, Glekas and Rao 2012, Duval and Lister 2013). This chapter aimed 

to identify how these regulators are able to show preferential binding for certain targets. 

Extent of transcription factor binding usually, but not always, correlates to the degree of 

transcriptional activation (Nuzhdin, Rychkova and Hahn 2010, Gao and Stock 2015). 

Binding of MarA to the marbox has been shown to not correlate with the extent of 

promoter stimulation (Martin, Gillette and Rosner 2000, Wall et al. 2009). However, the 

relative binding of MarA, Rob and SoxS to a marbox does correlate with activation 

(Martin, Gillette and Rosner 2000, Martin and Rosner 2011). Here, we showed that the 

mlaF promoter is bound by the MarA/Rob/SoxS proteins in the order SoxS < MarA < 

Rob. The same order is seen when looking at the extent of activation in vitro.  

 

We have shown here that MarA, Rob, and SoxS bind at different affinities to 45 targets 

studied. For all targets, Rob bound at the highest affinity, generally requiring less than a 

fifth of the concentration of MarA or SoxS to achieve similar binding of free DNA. This 

creates an interesting paradox however; as Rob is constitutively expressed at high levels 

within the cell, binding of all MarA targets at high affinity would lead to a permanent 

mar phenotype. However, in vitro Rob has only been reported to activate marRAB and 

micF (Martin, Gillette and Rosner 2000). This is likely due to the traditional recruitment 
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of RNAP by Rob, as opposed to the prerecruitment model proposed for MarA and SoxS 

(Martin et al. 2002). MarA and SoxS are capable of forming stable complexes with RNAP 

without DNA present, allowing them to form a ‘promoter scanning’ machinery which 

efficiently locates viable marboxes amongst the >10,000 marboxes within the cell 

(Griffith et al. 2002). Therefore in vivo, Rob is less able to activate transcription despite 

binding at higher affinity. Sequestration also means that much of the Rob within the cell 

is inactive (Griffith et al. 2009). Rob is thus incapable of outcompeting MarA and SoxS 

for their targets, despite binding with a higher affinity. 

 

Of the MarA targets studied here, roughly half (17/29) were bound by SoxS. Previous 

studies have indicated that the increased flexibility of the SoxS helix-turn-helix enables 

binding of more degenerate sequences than MarA (Gillette, Martin and Rosner 2000). 

The data here show the opposite: SoxS displays a reduced tolerance to deviations from 

the marbox due to loss of non-specific contacts with the DNA backbone, which remain 

present in MarA. Under regular salt conditions MarA binds PycgZ at a higher affinity 

than SoxS, due to the ability of MarA to form additional non-specific interactions with 

the DNA backbone. In low salt conditions, the binding preference is reversed. SoxS, 

being dependent almost solely on base-specific contacts, is minimally affected by low-

salt conditions, whilst MarA binding is eliminated.  

 

We have identified two residues in MarA key for these interactions: E31 and Q58. 

Mutation of these residues results in significant decrease in binding under regular salt 

conditions, but minimal effect in low-salt conditions. Thus, E31 and Q58 are key residues 

for stabilisation of the MarA:marbox complex and allow MarA to tolerate deviations from 
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the marbox consensus. These residues are mutated in SoxS (D31 and D58, respectively) 

and thus their contacts disrupted. This results in increased dependence on the marbox 

sequence by SoxS, but also allows SoxS to respond differently to MarA in response to 

changes in salt conditions. However, it should be considered that in all low-salt assays 

shown here, the effects seen may also be due to MarA, SoxS and the MarA mutants 

precipitating out of solution at different salt concentrations. Whilst differences in 

solvability could be interesting and also provide grounds for differential regulatory 

properties of MarA and SoxS, further study is needed to determine exactly how these 

proteins behave in low salt conditions. Thus, these results should be taken with a ‘pinch 

of salt’. 

 

Transcription factors provide an essential link between cellular conditions and gene 

expression to allow a variable phenotypic response to environmental triggers. Control of 

transcription factors can occur through ligand binding, covalent modification, changes in 

abundance and availability, or control by additional transcription factors (Martı́nez-

Antonio and Collado-Vides 2003, Martinez-Antonio et al. 2006). MarA is controlled by 

MarR, which can be inactivated through direct binding by salicylate; SoxS 

transcriptionally regulated by SoxR, which is converted into an activator through 

oxidation by redox-cycling drugs (Hidalgo, Leautaud and Demple 1998, Alekshun and 

Levy 1999). Here we have identified how two highly similar transcription factors can 

show vastly different preferences for the same binding site and have proposed a theory 

that differences in hydrogen bonding contacts may allow this. In combination with the 

existing mechanisms of regulation of MarA and SoxS, this may provide an additional 

mechanism for these proteins to fine-tune the transcriptional output of the cell. 
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Regulation of gene expression allows the cell to respond appropriately to external signals, 

improving cell fitness during environmental challenge. The majority of this regulation 

occurs at the level of transcription initiation; transcriptional regulators respond to external 

cues and modulate recruitment of RNAP to the promoter, thus providing the link between 

the environment and transcriptional output (Browning and Busby 2016). 

 

Here, we have investigated multiple aspects of the role of transcription in linking 

extracellular and intracellular cues to phenotypic output, specifically looking at MarA, 

the activator of multiple antibiotic resistance. MarA binds a marbox upstream of ycgZ-

ymgABC, activating transcription from PycgZ in a σ70-dependent manner. Expression of 

ycgZ-ymgABC results in reduction of biofilm formation. This may provide protection to 

cells in the advent of antibiotic attack; biofilm formation can be considered a long-term 

survival strategy, and cells which are not already within a biofilm may find better use of 

cellular resources. The most well characterised target of MarA is acrAB, which encodes 

the AcrAB-TolC efflux pump (Okusu, Ma and Nikaido 1996). MarA could be considered 

as a short-term regulator, due to its use of pre-recruitment to activate transcription and its 

rapid degradation by Lon protease; thus, under short-term antibiotic stress, cellular 

resources may be better spent on the resource-heavy AcrAB-TolC pump than on a long-

term biofilm survival strategy (Griffith et al. 2002, Griffith, Shah and Wolf 2004). 

 

Further work would be required to further characterise the need for biofilm inhibition by 

MarA via the ycgZ-ymgABC operon. Interestingly, uropathogenic E. coli (UPEC) strains 

lacking marA, soxS and rob show a significant loss of virulence in murine models of 

ascending pyelonephritis; virulence is restored upon complementation of the genes 
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(Casaz et al. 2006). A key feature of UPEC pathogenesis is the formation of biofilms on 

the mucosal lining of the bladder (Costerton, Stewart and Greenberg 1999). It is therefore 

surprising that MarA induces increased virulence in these strains, given the inhibition of 

biofilm formation shown via ycgZ-ymgABC. Further studies are needed to identify if 

regulation of biofilm formation by MarA is solely via ycgZ-ymgABC, and indeed whether 

biofilm formation is a key feature of upregulation of UPEC pathogenesis by MarA. 

 

This work has also identified the requirements for transcriptional activation by MarA at 

another target, upstream of the mlaFEDCB operon, which encodes a lipid trafficking 

ABC transport system (Sharma et al. 2017). The marbox at this site shows strict spacing 

and orientation requirements, functioning only in the forward direction and when moved 

no more than 1 bp from its original site. Although orientation specificity has been 

characterised for the marbox previously, spacing requirements have not. Here, we have 

shown the spacing requirements for the mlaF marbox which is positioned for Class II 

activation; whether the same requirements are necessary for other Class II marboxes, or 

for Class I, would be a question for future work. Additionally, orientation requirements 

may not be maintained at all marboxes; the marbox upstream of ycgZ is positioned for 

Class I activation, but orientated for Class II (Martin et al. 1999). This has previously 

been seen only for the marbox upstream of zwf, but is perhaps more common than 

previously thought and indicates a need for further study into the mechanisms of 

activation by MarA at these promoters. 

 

Whilst this work has predominantly focused on role of MarA as an activator, MarA can 

also act as a repressor at the hdeA, purA and rob promoters (Schneiders et al. 2004, 
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Schneiders and Levy 2006, McMurry and Levy 2010). Interactions between MarA, the 

marbox, and RNAP are thus different at these promoters, with the marbox in the reverse 

orientation overlapping either the -35 element alone (hdeA and purA) or both the -35 and 

the -10 (rob). Spacing and orientation requirements of the marbox relative to the -35 

hexamer may not be the same at these promoters, and therefore require further study. 

Given that repression at the rob promoter is thought to be via steric hindrance rather than 

by specific contacts with RNAP, promoters which are repressed by MarA may show 

much greater flexibility in spacing of the marbox (McMurry and Levy 2010). Orientation 

requirements may stand however, as changes in the marbox orientation at hdeA and purA 

would position the marbox correctly for Class II activation (Schneiders et al. 2004). 

 

Finally, this work examined the regulatory overlap between MarA and two similar 

regulators, Rob and SoxS. These regulators respond to different signals (salicylate, 

decanoate, and paraquat, respectively) and activate distinct phenotypes, yet share a 

binding site and many of their targets (Duval and Lister 2013). They can thus be 

considered a single system, allowing for a fine-tuned transcriptional response by binding 

different subsets of genes in response to their respective environmental triggers. The work 

here has found another potential variable of control in this system. MarA, Rob and SoxS 

were shown to bind differentially to 45 known targets, verifying the ‘distinct yet 

overlapping’ nature of their respective regulons. SoxS was found to require a much closer 

match to the marbox consensus than MarA, which we have hypothesised here to be due 

to the presence of residues in MarA which form hydrogen bonding contacts with the DNA 

backbone, allowing MarA to tolerate divergences from the consensus. We have shown 

here how these differences in how MarA and SoxS interact with DNA can be exploited 
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to change relative binding affinities under different salt conditions. If this were to translate 

in vivo, this could allow the target preferences of MarA and SoxS to be altered according 

to intracellular salt conditions. Thus, changes in osmotic stress could regulate MarA and 

SoxS independently of induction by compounds such as salicylate and paraquat. 
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Appendix 1 Binding of MarA, Rob and SoxS to MarA ChIP-seq 

targets 

Images show EMSAs to assess the binding of MarA, Rob and SoxS to 29 MarA ChIP-

seq targets, from Sharma et al. (2017). Increasing MarA, Rob and SoxS concentrations 

(0.4 – 2 μM for MarA and SoxS; 0.08 – 0.4 μM for Rob) are shown by green, pink and 

blue triangles, respectively. Arrows indicate free DNA (black), MarA:DNA complexes 

(green), Rob:DNA complexes (pink) and SoxS:DNA complexes (blue).  
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Appendix 2 Binding of MarA, Rob and SoxS to SoxS ChIP-exo 

targets 

Images show EMSAs to assess the binding of MarA, Rob and SoxS to 16 SoxS ChIP-exo 

targets, from Seo et al. (2015), Sharma et al. (2017). Increasing MarA, Rob and SoxS 

concentrations (0.4 – 2 μM for MarA and SoxS; 0.08 – 0.4 μM for Rob) are shown by 

green, pink and blue triangles, respectively. Arrows indicate free DNA (black), 

MarA:DNA complexes (green), Rob:DNA complexes (pink) and SoxS:DNA complexes 

(blue).  
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