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ABSTRACT:

Habitat loss and fragmentation greatly affect biological diversity. Actions to counteract their 

negative effects include increasing the quality, amount and connectivity of semi-natural habitats at 

the landscape scale. However, much of the scientific evidence underpinning landscape restoration 

comes from studies of habitat loss and fragmentation, and it is unclear whether the ecological 

principles derived from habitat removal investigations are applicable to habitat creation. In 

addition, the relative importance of local- (e.g. improving habitat quality) vs. landscape-level (e.g. 

increasing habitat connectivity) actions to restore species is largely unknown, partly because 

studying species responses over sufficiently large spatial and temporal scales is challenging. We 

studied small mammal responses to large scale woodland creation spanning 150 years, and 

assessed the influence of local- and landscape-level characteristics on three small mammal species 

of varying woodland affinity. Woodland specialists, generalists and grassland specialists were 

present in woodlands across a range of ages from 10 to 160 years, demonstrating that these species 

can quickly colonize newly created woodlands. However, we found evidence that woodlands 

become gradually better over time for some species. The responses of individual species 

corresponded to their habitat specificity. A grassland specialist (Microtus agrestis) was influenced 

only by landscape attributes; a woodland generalist (Apodemus sylvaticus) and specialist (Myodes 

glareolus) were primarily influenced by local habitat attributes, and partially by landscape 

characteristics. At the local scale, high structural heterogeneity, large amounts of deadwood and a 

relatively open understory positively influenced woodland species (both generalists and 

specialists); livestock grazing had strong negative effects on woodland species abundance. Actions 

to enhance habitat quality at the patch scale focusing on these attributes would benefit these 

species. Woodland creation in agricultural landscapes is also likely to benefit larger mammals and 

birds of prey feeding on small mammals and increase ecosystem processes such as seed dispersal.

KEYWORDS: ecological networks, forest, habitat creation, habitat restoration, landscape-scale 

conservation, reforestation, woodland creation, WrEN project
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1. INTRODUCTION

Most ecosystems on Earth have been severely affected by habitat loss and fragmentation resulting 

from anthropogenic activities such as conversion to agricultural land (Haddad et al. 2015). The 

ecological consequences of habitat destruction and fragmentation have been extensively studied; 

these include long-term changes to the habitat structure of remaining fragments, disruption of 

ecological processes and biodiversity declines on a global scale (Haddad et al. 2015). Although 

the ecological impacts of habitat fragmentation per se on biodiversity have been debated (e.g. 

Fahrig 2017; Fletcher et al. 2018), there is consensus that habitat loss is one of the main causes of 

the current ecological crisis (IPBES 2019). Conservation efforts to counteract the negative impacts 

of habitat loss and fragmentation on biodiversity and ecosystem functioning are often targeted 

towards protecting remnant areas of natural and semi-natural habitat. In addition, large-scale 

restoration actions to increase the quality, amount and connectivity of semi-natural habitats across 

vast areas of land are increasingly implemented worldwide (e.g. Endangered Landscapes 

Programme in Europe and Yellowstone to Yukon Conservation Initiative in North America). 

However, much of the scientific evidence currently used to underpin landscape restoration 

strategies comes from studies of habitat loss and fragmentation, and it is unclear whether the 

ecological principles derived from habitat removal investigations are applicable to habitat creation 

and restoration processes (e.g. Munro et al. 2007; Naaf & Kolk 2015). This is because some 

species might persist in remnant patches for some time after fragmentation has occurred, 

potentially masking the effects of important factors influencing colonization and establishment 

events (Jackson & Sax 2010). As a result, there is much debate in the scientific and conservation 

communities on how to prioritize alternative restoration actions (e.g. increasing habitat quality vs. 

amount vs. connectivity) to re-build resilient networks of habitats (e.g. Isaac et al. 2018).

We know surprisingly little about the ecological consequences of creating and restoring 

habitats at large spatial and temporal scales, and about the relative value of potential actions to 

restore species and the functions they perform in ecosystems. The lack of empirical studies comes 

partly from the challenges associated with studying landscapes over sufficiently large spatial and 

temporal scales (e.g. to account for time lags in species colonization and capitalization of 

resources in new habitat patches) required to understand the ecological consequences of habitat 

creation and restoration activities. These challenges are more pronounced for habitats with slow 

development rates and of important conservation concern, such as woodlands. A
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Woodland is one of the most biodiverse biomes on Earth and an important habitat for 

many wildlife species (“woodland” is the term commonly used in the United Kingdom (UK) to 

describe any forested area; for convenience, we use this term hereafter in the paper). Historically, 

woodland cover has been drastically reduced, with worldwide deforestation resulting in a 50% 

decrease in woodland cover over the last three centuries (Ramankutty & Foley 1999). As well as 

the reduction in total cover, it has been estimated that 70% of remaining woodland is within 1 km 

of an edge, exposed to the impacts of an anthropogenic matrix (Haddad et al. 2015). Over recent 

decades, deforestation rates have slowed and woodland extent has begun to increase in some 

countries, particularly in temperate regions (Keenan et al. 2015). In the UK, a long history of 

deforestation resulted in woodland cover being reduced from a post-glacial high of 70% to a low 

of 5% at the beginning of the 19th century. Since then, woodland creation has increased this figure 

to approximately 13% of land (Forestry Commission 2019). These historical changes in land use 

have resulted in current landscapes containing many woodland patches that were established on 

former agricultural land over the last ca. 150 years. Increasing woodland cover further is part of 

environmental policy in the UK; for instance, the English Government aims to plant 180,000 ha 

over the next 25 years (Defra 2018), whilst the Scottish Government has a target of planting 

10,000 ha of trees per year (Scottish Government 2018). Large-scale woodland creation programs 

have generally been successful at increasing woodland amount (and sometimes connectivity; e.g. 

Quine & Watts 2009); however, their effectiveness in restoring species and ecosystem processes is 

largely unknown. Addressing this knowledge gap is one of the aims of the Woodland Creation and 

Ecological Networks (WrEN) project, a large-scale natural experiment designed to study the 

effects of 160 years of woodland creation on biodiversity in UK landscapes (Watts et al. 2016); 

WrEN provides a unique opportunity to assess the long-term effects of woodland creation on 

biodiversity and inform landscape-scale conservation.

We have selected small mammals as one of the WrEN study taxa because they are a 

biologically diverse group (e.g. the Order Rodentia represents 40% of all known mammal species) 

inhabiting a wide variety of terrestrial habitats. They are an important component of woodland 

ecosystems, where they are abundant and perform important ecological roles including seed 

dispersal and arthropod predation (e.g. Perea et al. 2011); they are also an important food resource 

for birds of prey (e.g. owls; Askew et al. 2007) and mammals (e.g. foxes; Baker et al. 2006), so 

changes in their populations might have knock-on effects on ecosystems. Small mammals are also A
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useful indicators of environmental change in the countryside (e.g. in arable landscapes; Coda et al. 

2014; Tattersall et al. 2001) and are known to rapidly respond to changes in woodland 

management (e.g. browsing intensity; Bush et al. 2012).

Many small mammal species are well-adapted to live in human-modified environments 

(e.g. agricultural areas; Gentili et al. 2014); however, others have been affected by anthropogenic 

activities such as agricultural intensification, habitat loss and fragmentation (e.g. Fitzgibbon 1997; 

Fischer & Schröder 2014; Melo et al. 2017). Differential responses of small mammals to 

woodland loss and fragmentation resulting from agricultural expansion depend partly on a species’ 

habitat breadth and its ability to move through the non-woodland matrix; in general, whilst 

generalist species can often easily move through agricultural land and capitalize on alternative 

resources (e.g. arable crops surrounding woodland fragments), woodland specialists with stricter 

habitat requirements usually perceive the matrix as hostile and are negatively impacted by the loss, 

fragmentation and degradation of woodlands (Henein et al. 1998; Nupp & Swihart 2000; Vieira et 

al. 2009). Similarly, generalist species are often more abundant in smaller woodland patches (and 

near woodland edges) than woodland specialists which require larger woodland patches and low 

edge-to-interior ratios (e.g. Silva et al. 2005; Pardini et al. 2005; Nupp & Swihart 2000; Telleria et 

al. 1991).

Small mammal population dynamics in fragmented habitats are thus influenced by a 

combination of local- and landscape-level characteristics. Firstly, landscape-level factors, such as 

the degree of connectivity and amount of woodland surrounding a woodland patch, influence 

small mammal abundance most likely through mediating dispersal processes (e.g. Fitzgibbon 

1997; Marsh & Harris 2000; Michel et al. 2006; Nupp & Swihart 2000; Silva et al. 2005). The 

type of matrix surrounding woodland patches can also influence small mammal movements (e.g. 

with intensively cultivated fields being ‘permeable’ for generalist species and mostly avoided by 

woodland specialist which favor semi-natural habitats; Gentili et al. 2014). 

Secondly, local-level attributes are important in determining the suitability of woodland 

patches for small mammals. For instance, small mammal abundance has been linked to vegetation 

characteristics, such as foliage density and stratification (Pardini et al. 2005), understory height 

and amount of fallen logs (Marsh & Harris 2000). Resource availability (e.g. seed crop size and 

food plant abundance) within a patch can also strongly influence small mammal population size 

(e.g. Mallorie & Flowerdew 1994; Tew et al. 2000). Furthermore, the requirements of individuals A
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within populations are often sex-dependent and change over time such that, for example, pregnant 

or lactating females have particularly high energy requirements. This can lead to sex- or age-

biased populations resulting from individual differences in habitat selection (e.g. females selecting 

larger patches or higher quality habitats than males; Diaz et al. 1999; Rosalino et al. 2011) or from 

displacement by more competitive animals (e.g. adults over juveniles, or those defending breeding 

territories over non-breeding animals; Diaz et al. 1999). In addition, intrinsic population factors 

such as density-dependent regulation (e.g. through reduced reproduction or increased mortality 

rates) can also impact population size and result in changes in population structure, for instance 

leading to age-biased populations dominated by older individuals if reproductive rates are low 

(e.g. Montgomery 1989a,b).

While small mammal ecology in relation to woodland loss and fragmentation has been 

extensively studied (e.g. in woodland remnants within agricultural landscapes; Silva et al. 2005; 

Telleria et al. 1991; Vieira et al. 2009), small mammal responses to woodland creation and 

restoration have received relatively little attention. In other systems (e.g. agricultural), small 

mammals have been shown to respond quickly to land management changes, such as the 

implementation of agri-environment schemes and the creation of ‘set aside’ fields (e.g. Macdonald 

et al. 2007; Tattersall et al. 2001). Small mammals have also been shown to capitalize on new 

resources provided by new grassland plots (< 10 years old; Churchfield et al. 1997) and young 

farm woodlands (< 11 years since planting; Moore et al. 2003). Small mammal communities can 

be influenced by natural (e.g. wildfires) and anthropogenic (e.g. clearcutting and burning) 

disturbances which restore forests to early successional stages, but the directionality of these 

effects is often species-specific (e.g. Zwolak 2009). However, these studies have investigated 

small mammal responses to land management changes and habitat creation over short temporal 

scales; this can potentially result in an under- or over-estimation of the longer-term effects of 

habitat creation and restoration (e.g. if a habitat becomes gradually ‘better’ for a species as it 

matures, or if species associated with young and open habitats ‘lose out’ as a habitat matures).

Here, we assessed the effects of a chronosequence of woodland creation spanning 150 years on 

small mammal communities. We surveyed 105 temperate woodland patches (which form part of 

the WrEN project), ranging in age from 10 to 160 years created on former agricultural land across 

England and Scotland, for three small mammal species with different habitat specialization (a A
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grassland specialist, a woodland generalist and a woodland specialist; Appendix S1). We 

addressed the following questions:

1) Are there any time lags in small mammal responses to woodland creation (potentially 

associated with colonization lags driven by landscape factors, or with delayed availability 

of resources driven by slow woodland development)? If so, over what temporal scales?

2) What is the relative importance of a) landscape-level attributes (e.g. woodland amount and 

degree of connectivity; potentially important for dispersal processes), b) local woodland 

characteristics (e.g. patch age and vegetation structure; potentially associated with habitat 

quality, resource availability and species establishment) and c) intrinsic population factors 

for small mammals in historical woodland creation sites?

Species responses to habitat creation and development are likely to depend on life-history traits 

such as habitat specialization (see Appendix S1 for information on the degree of specialization of 

the three study species); therefore, we expected grassland specialists and woodland generalists to 

colonize new woodland patches and capitalize on new resources relatively quickly (e.g. higher 

abundance in younger, more open woodlands in early developmental stages for the grassland 

specialist; null to moderate positive effects of woodland age for the woodland generalist). For 

woodland specialists, we expected a delayed response to woodland creation (e.g. higher 

abundance in older woodlands which have developed an ‘old-growth’ habitat structure). We 

expected other population characteristics (i.e. proportion of females, juveniles, and reproductively 

active individuals) to follow similar trends to those described for abundance above (i.e. with 

increases in these metrics seen as a favorable sign and an indication of higher habitat quality). 

Furthermore, we expected the importance of local- and landscape-level attributes to vary 

according to species habitat specialization (e.g. with woodland specialists being more strongly 

influenced by local woodland habitat quality, amount and connectivity than generalist species).

2. MATERIAL AND METHODS

2.1 Study area and site selection 
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Our study sites (part of the WrEN project) were located in two regions of the United Kingdom 

(central Scotland and central England) dominated (>70%) by agricultural land and representing 

fairly typical lowland landscapes in these countries. We used a systematic site-selection protocol 

to identify 105 secondary, broadleaved woodland patches created over the past 160 years on 

former agricultural land (see Watts et al. 2016 for further details on site selection and Fig. 1 in 

Watts et al. 2016 for a map of sites). Sites ranged in age (10–160 years old), size (0.5–30 ha), 

amount of surrounding broadleaved woodland (0–22% of area within 1 km) and proximity to 

nearest broadleaved woodland (10–1570 m). Study sites were > 1 km from each other (in most 

cases > 3 km). We surveyed woodlands of different character evenly throughout the duration of 

the field seasons and across the study areas, avoiding any seasonal or spatial bias. 

2.2 Landscape attributes

We used digital maps and GIS software (ArcGIS 10.2; ESRI, Redlands, California, USA) to 

quantify the proportion of different land cover types within 1 km of each study site. We measured 

broadleaved woodland using National Forest Inventory (NFI) data (Forestry Commission 2012) 

and other semi-natural habitats (e.g. rough grassland and scrub) using Land Cover Map 2007 data 

(Morton et al. 2011). We also quantified the Euclidean distance to the nearest broadleaved 

woodland (using NFI data) and the density of hedgerows (manually mapped using satellite 

imagery from Google Earth Pro; Google Inc. 2017) within 1 km of each study site. This spatial 

scale of 1 km was selected because it encompasses average home range sizes of small mammal 

species present in the study areas (e.g. Tattersall et al. 2001). 

2.3 Local attributes

We conducted field surveys to characterize the vegetation structure of all woodland patches using 

the point-centered quarter method along an edge-to-interior transect to collect data on tree density, 

tree diameter at breast height (DBH; only trees ≥7 cm DBH were measured), understory cover (%) 

and amount of woody debris (see Table 1 for further details). We also recorded livestock 

presence/absence within each woodland. We determined woodland age (i.e. the time-period when 

each woodland patch ‘appeared’ in maps) using the OS Historic Digimap collection (EDINA 

2013). We quantified woodland patch size using NFI data (Forestry Commission 2012) and GIS 

software (ArcGIS 10.2; ESRI, Redlands, California, USA).

2.4 Small mammal surveysA
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Small mammals were live-trapped between 24th June and 26th August 2013 (Scotland) and 23rd 

June and 1st September 2014 (Scotland and England) using Ugglan traps #2 (multi-catch wire 

mesh traps with roof covers; Grahnab, Sweden). Traps were arranged in a 9x4 grid (i.e. 36 traps 

per night per woodland) with traps spaced 10 m apart in the interior of each woodland (as far from 

the edges as possible), operated for four continuous nights at each site and checked/reset every 

morning. Traps were baited with grain and fresh carrot (to prevent dehydration) and bedding 

material was provided. Traps were fitted with escape holes (12 mm in diameter) to prevent 

mortality in the eventuality of catching shrews (Gurnell & Flowerdew 2006). Individuals captured 

were identified to species and temporarily marked by fur clipping to identify recaptures; we also 

took morphometric measures (total length, tail length and weight) and determined sex, age class 

(juvenile, adult) and reproductive condition (active, inactive) based on characteristics described by 

Gurnell & Flowerdew (2006); animals were released at the site of capture immediately afterwards. 

2.5 Small mammal population metrics (response variables) 

We evaluated the effects of landscape-level attributes and local woodland characteristics (see 

sections 2.2 and 2.3) on small mammal abundance and population structure (i.e. proportion of 

juveniles, females and reproductively active individuals). ‘Abundance’ was estimated as the total 

number of individuals captured in each woodland patch (excluding recaptures and juveniles, as the 

latter presumably do not yet have established territories). We also estimated population size using 

the Lincoln-Petersen method; however, given that the two metrics were strongly correlated 

(Appendix S2), and that we were interested in small mammal relative abundance (i.e. differences 

between sites, and how these relate to site characteristics) rather than in total population size, we 

used the simpler metric of ‘abundance’ for statistical analyses. ‘Juvenile ratio’ was the number of 

juveniles divided by the total number of individuals in a woodland (excluding recaptures). 

‘Female ratio’ was the number of females divided by the total number of individuals in a 

woodland (excluding recaptures and juveniles). ‘Female reproductive ratio’ was the number of 

reproductively active females divided by the total number of females in a woodland (excluding 

recaptures and juveniles); we chose to focus on females because they contribute to reproductive 

productivity more than males. ‘Body condition’ (used as an index of food resource availability) 

was calculated by running linear regressions of body weight and total length of all individuals 

(excluding recaptures, juveniles which have not yet reached their full size/weight, and pregnant 

females which carry additional weight), and then using regression residuals as an index of body A
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condition of each individual (Schulte-Hostedde et al. 2001); we then calculated average body 

condition values for each woodland site and used this as an interim variable to test for resource-

dependency effects on small mammals. We conducted separate analyses for each small mammal 

species.

Preliminary analyses indicated that there were no significant differences in the abundance 

of small mammals (of any species) between 2013 and 2014 (Appendix S3), so data for the two 

survey seasons were pooled for subsequent analyses and the effect of ‘year’ was ignored. 

Preliminary analyses also showed that small mammal abundance differed between England and 

Scotland, so ‘region’ was incorporated as a factor in subsequent analyses. 

2.6 Statistical analyses, model specification and rationale

We used piecewise Structural Equation Models (piecewiseSEMs; Lefcheck 2016) to quantify the 

relative importance of landscape-level attributes and local woodland characteristics on small 

mammal population metrics. SEMs are a multivariate technique that can be used to test whether a 

priori hypothesized direct and indirect causal relationships between variables are supported by 

observed data, and to compare relative effect sizes of predictor variables (e.g. to assess the relative 

importance of local- vs. landscape-level attributes). SEMs also identify relationships between 

variables that were not initially predicted (i.e. ‘missing paths’); these can then be incorporated into 

the models, or otherwise allowed to freely covary if they are not considered causative but are 

strongly correlated. 

We used ecological theory and evidence to guide the construction of a global conceptual 

model (Fig. 1) of hypothesized direct and indirect causal relationships (presented as a series of 

GLMs) between predictor variables described in Table 1 and response variables described in 

section 2.5. Our conceptual model incorporated: 1) landscape-level attributes likely to influence 

dispersal processes (e.g. can small mammals reach woodland patches?); 2) local-level attributes 

likely to determine habitat suitability (i.e. can small mammals use woodland patches?); and 3) 

‘biological’ variables (i.e. abundance and body condition) likely to indicate density- and resource-

dependency effects (Fig. 1). Specifically, we made the following predictions:

At the landscape level, we accounted for the fact that land-use intensity differs between the 

two study areas (e.g. higher proportion of farmland and lower proportion of woodland cover in 

England than in Scotland; Watts et al. 2016). We therefore tested for direct effects of ‘region’ on A
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small mammals (e.g. due to differences in the relative abundance of different small mammal 

species between England and Scotland) and indirect effects mediated through changes in the 

proportion of different land cover types, specifically woodland and other semi-natural habitats 

(e.g. scrub and rough grassland) which were expected to positively influence small mammal 

populations. Preliminary data analyses indicated higher hedgerow densities in England than in 

Scotland, and this was incorporated into the conceptual models. Additionally, woodland isolation 

was expected to be negatively related to proportion of woodland in the landscape, and we tested 

for direct effects of woodland % on small mammals and indirect effects mediated through 

decreased distance to nearest woodland patch in landscapes with a higher proportion of 

surrounding woodland.

At the local level, we expected patch age to influence woodland vegetation structure; 

specifically, that older woodlands have lower tree densities, higher structural complexity 

(quantified as standard deviation of tree diameter), larger amounts of woody debris and a denser 

understory cover (the latter was also hypothesized to be negatively influenced by presence of 

grazing stock). We tested for direct effects of patch age on small mammals (e.g. older woodlands 

having been wooded long enough to allow several colonization events leading to higher 

population abundance) and also for indirect effects of patch age mediated through changes in 

woodland vegetation structure (e.g. older woodlands having higher structural complexity and 

potentially providing more resources for small mammal populations). We predicted the presence 

of grazing stock to have a direct negative effect on small mammal populations (through 

disturbance) and an indirect effect by reducing the amount of understory cover (potentially used as 

shelter). We expected larger woodlands to provide more resources and sustain larger small 

mammal populations.

We also expected density- and resource-dependency effects, for example negative 

associations between abundance and reproductive female ratio, and positive associations between 

female body condition (as an index of food availability) and reproductive female ratio. 

‘Abundance’ and ‘body condition’ were therefore included as interim variables in models for age, 

sex and reproductive condition ratio.

In addition, ‘Date’ (days since first small mammal survey of the season) was included as a 

covariate to account for potential seasonal variations. Models using counts as response variables 

(e.g. abundance) were fitted using a Negative Binomial error distribution to account for A
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overdispersion (function glm.nb in the MASS v7.3-50 package). A Binomial error distribution was 

used for response variables expressed as proportions (e.g. female ratio), which were weighted by 

the value used as the denominator to calculate any given proportion (e.g. female ratio = female 

adults / total adults; weights = total adults). All vegetation and landscape metrics used as response 

variables (most of these log10 or square root transformed to fit a normal distribution), were 

modelled with Gaussian error distributions. All models were validated by visual examination of 

residuals (e.g. plotting residuals vs. fitted values to check for constant variance; Crawley 2013). In 

the Results we present standardized parameter estimates (centered and scaled) to compare relative 

effect sizes of predictor variables and R2 values as a measure of model fit; statistical details are 

presented in Appendix S4. All statistical analyses were conducted in R v3.5 within Rstudio 

v1.1.456 (R Core Team 2018; RStudio Team 2018). 

3. RESULTS

3.1 Effects of patch age, management and regional context on the attributes of woodland 

creation sites

Woodland age had a significant effect on some vegetation attributes; specifically, structural 

heterogeneity (quantified as standard deviation in tree diameter) and amount of woody debris were 

higher in older woodlands, whilst tree density was lower (Figs. 2-4; Appendix S5). Understory 

cover was not influenced by woodland age, but it was significantly lower in sites where grazing 

stock was present (Figs. 2, 3a & 4a; Appendix S5). At the landscape scale, the amount of 

surrounding broadleaved woodland and other semi-natural habitats was significantly higher in 

Scotland than in England, while hedgerow density was lower. Distance to nearest broadleaved 

woodland was lower in landscapes with a higher proportion of broadleaved woodland (Figs. 2-4).

3.2 Small mammal populations in woodland creation sites

We surveyed a total of 38 sites in England and 67 in Scotland for a total of 15,120 trap nights (i.e. 

105 sites x 36 traps x 4 survey nights). We captured small mammals in 93% of sites (i.e. 98 out of 

105) and recorded 1,676 individuals of four species; the most common were Bank voles (Myodes 

glareolus; a woodland specialist) followed by Wood mice (Apodemus sylvaticus; a woodland 

generalist), Field voles (Microtus agrestis; a grassland specialist) and Yellow-necked mice A
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(Apodemus flavicollis; another woodland specialist) (Table 2). Due to small sample size, we 

restricted data analyses for M. agrestis to adult abundance; A. flavicollis was excluded from any 

further analysis. Overall sex ratios (male:female) for M. glareolus and A. sylvaticus were 

0.47:0.53 (n=760 adults) and 0.69:0.31 (n=456 adults) respectively. Fifty-nine percent of M. 

glareolus and 73% of A. sylvaticus adult females were reproductively active at the time of 

trapping. Juveniles comprised 24% of M. glareolus and 20% of A. sylvaticus individuals.

3.2.1 Effects of landscape-level attributes, local woodland characteristics and intrinsic 

population factors on small mammals

Small mammal populations were influenced by both local- and landscape-level woodland 

attributes, but associations with specific variables were species-specific (see Appendix S6 for plots 

of key associations). After accounting for seasonal (positive effect of date) and regional (higher 

abundance in Scotland than England) effects, the abundance of the grassland specialist M. agrestis 

was significantly higher in woodlands surrounded by larger amounts of semi-natural habitat within 

1 km. No other factors significantly influenced the abundance of this species (Fig. 2).

After accounting for seasonal effects (positive effect of date), the abundance of the 

woodland generalist A. sylvaticus was negatively impacted by the presence of grazing stock (direct 

effect) and was higher in woodlands with larger amounts of woody debris and higher structural 

heterogeneity (i.e. older woodlands), located in close proximity to their nearest broadleaved 

woodland and with relatively low proportion of semi-natural habitat within 1 km (marginal effect; 

Fig. 3a). There were proportionally more A. sylvaticus females in smaller woodlands and in 

woodlands where adults were in better body condition (marginal effect); in turn, A. sylvaticus‘s 

body condition was higher in Scotland than in England, and marginally higher in woodlands with 

higher tree densities (i.e. younger woodlands), indicating an indirect negative effect of woodland 

age on female ratio (Fig. 3b). After accounting for regional differences (10% more reproductive 

females in England than Scotland), the proportion of reproductively active females was higher in 

woodlands with relatively little understory cover (i.e. where grazing stock was present), and where 

adult females were in better body condition (Fig. 3c). After accounting for regional differences 

(13% more juveniles in Scotland than in England), there were proportionally more A. sylvaticus 

juveniles in woodland patches surrounded by lower amounts of broadleaved woodland (marginal 

effect) and other semi-natural habitats; the proportion of juveniles was also higher in woodlands 

where adults were in better body condition, indicating an indirect negative effect of woodland age A
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on juvenile ratio (i.e. younger woodlands with higher tree densities result in marginally better 

adult body condition and higher proportions of juveniles; Fig. 3d).

For the woodland specialist M. glareolus, abundance was negatively impacted by the 

presence of grazing stock, and this was a direct effect (i.e. not mediated through changes in the 

vegetation structure; Fig. 4a). There were proportionally more M. glareolus females in woodland 

patches with relatively little understory cover and with higher hedgerow densities in the 

surrounding landscape (marginal effect; Fig. 4b). After accounting for regional differences (8% 

more reproductive females in England than Scotland), the proportion of M. glareolus 

reproductively active females was higher in woodlands with relatively little understory cover and 

of smaller sizes (marginal effect). The proportion of reproductive females was also positively 

associated with female body condition and negatively with adult abundance (Fig. 4c). After 

accounting for regional differences (8% more juveniles in Scotland than England) there were 

proportionally more M. glareolus juveniles in older woodlands (direct effect not mediated through 

changes in vegetation structure) and located in landscapes with lower hedgerow densities within 1 

km (Fig. 4d). Additionally, the proportion of M. glareolus juveniles was negatively associated 

with adult body condition, which was in turn positively influenced by tree density, indirectly 

reinforcing the positive effect of woodland age on M. glareolus juvenile ratio (i.e. older 

woodlands with lower tree densities resulting in lower adult body condition and higher juvenile 

ratio; Fig. 4d). 

4. DISCUSSION

We used an array of historically created woodland sites to examine small mammal responses to 

woodland creation over long temporal (up to 160 years) and large spatial (over 15,000 km square) 

scales. Specifically, we assessed the relative influence of local- and landscape-level attributes of 

secondary woodland sites, and of density- and resource-dependency effects, on three small 

mammal species of varying woodland affinity. In accordance with our expectations, we found 

species-specific responses which correspond to some degree with species’ habitat specificity. For 

example, we detected differences in the relative importance of local- and landscape-level attributes 

for grassland vs. woodland species, and also observed differential responses to woodland age and 

habitat structure.A
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4.1 Time lags in small mammal responses to woodland creation

Woodland age can influence species occurrence and abundance in two ways; firstly, older 

woodlands have been wooded long enough to allow more colonization events by woodland 

species which are often poor dispersers; secondly, older woodlands are often characterized by an 

old-growth habitat structure, such as high structural heterogeneity and large amounts of 

deadwood. Such characteristics influence habitat quality and are often important in determining 

the abundance and diversity of many species groups (Humphrey et al. 2014).

All small mammal species in this study were detected in woodlands across a range of ages, 

even in relatively young sites (ca. 10 years since planting); their presence in these sites 

demonstrates that small mammals are quickly colonizing and capitalizing on new resources in 

secondary woodlands.

Although we did not detect any significant effects of woodland age on the grassland 

specialist M. agrestis, we observed the highest abundance in younger sites < 60 years old. This 

species was present in less than a third of our study sites, and when they occurred it was in 

relatively low abundance (average 3 and maximum 14 individuals per site). In comparison, a 

previous study conducted in young (< 11 years old) farm woodlands reported this species was 

present in the majority of their sites being ‘quite numerous’ (Moore et al. 2003). This suggests 

that, according to our expectations, M. agrestis prefer to use relatively young woodlands; 

however, this grassland specialist can continue to use older woodlands particularly if these are in 

landscapes with high proportions of semi-natural habitats (e.g. unimproved grasslands).

We did not detect any direct effects of woodland age on the woodland generalist A. 

sylvaticus, suggesting that this species is able to reach secondary woodlands regardless of time 

since planting. This woodland generalist was however more abundant in woodlands with larger 

amounts of woody debris and higher structural heterogeneity (i.e. older woodlands), indicating 

that woodlands become more suitable for A. sylvaticus as they mature and develop an ‘old-growth’ 

habitat structure. Previous studies have also found higher overall abundance and number of 

breeding animals in more mature woodlands with larger trees and higher amounts of fallen logs 

(Fitzgibbon et al. 1997; Marsh & Harris 2000). Contrastingly, we detected weaker indirect effects 

of woodland age indicating that adult body condition is marginally better in younger woodlands 
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with relatively high tree densities; this in turn resulted in slightly higher proportions of females 

and juveniles in younger woodlands.

In contrast to our expectations, the abundance of the woodland specialist M. glareolus did 

not increase with woodland age, indicating that this species can colonize woodlands soon after tree 

establishment (i.e. within 10 years), and that habitat quality does not markedly increase over time 

for this species. However, the proportion of juveniles of this species was higher in older 

woodlands, suggesting that these are higher quality habitats for M. glareolus; this effect was only 

partially mediated through habitat structure and resource availability (older woodlands with lower 

tree densities resulting in lower adult body condition and higher juvenile ratios). The weaker 

(positive) direct effect of woodland age on juvenile ratio could potentially be explained by habitat 

characteristics unaccounted for in our analysis. 

4.2 Relative effects of landscape-level attributes and local woodland characteristics on small 

mammal populations in historical woodland creation sites

Animals interact with their environment at multiple spatial scales. For example, whilst landscape-

level attributes are likely to influence dispersal processes, local-level attributes determine the 

suitability of such patches to sustain populations. Understanding the relative and combined effects 

of local habitat and landscape characteristics is crucial for prioritizing alternative actions to restore 

woodland ecosystems (e.g. is improving local habitat quality more important than increasing 

landscape connectivity?). 

We found species-specific responses to local- and landscape-level attributes which 

correspond to some degree with species’ habitat specificity. The grassland specialist M. agrestis 

was influenced only by landscape attributes; the woodland generalist A. sylvaticus and the 

woodland specialist M. glareolus were influenced by both local habitat and landscape 

characteristics. We expected the woodland specialist M. glareolus to be more strongly influenced 

by local woodland habitat quality, amount and connectivity than A. sylvaticus, usually regarded as 

a generalist species. However, local habitat attributes appeared more important than the landscape 

for both species. In addition, and contrary to our expectations, the woodland generalist A. 

sylvaticus was influenced by a larger set of attributes (at both local and landscape scales) than the 

woodland specialist M. glareolus.
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The abundance of M. agrestis was only influenced (positively) by the proportion of semi-

natural habitats within 1 km of focal woodland patches. The lack of association with local-level 

woodland characteristics matches our original hypothesis and is in accordance with this species’ 

ranging behavior and habitat preferences (particularly for ungrazed and set-aside areas; Tattersall 

et al. 2002). However, the relatively low capture rate of this species in our study sites only allowed 

for analysis of adult abundance; therefore, changes in age, sex and reproductive condition ratio in 

relation to local- and landscape-level woodland characteristics might have gone unnoticed.

The woodland generalist A. sylvaticus was influenced by both local- and landscape-level 

attributes; at the local scale, they were more abundant in woodlands with larger amounts of woody 

debris and higher structural heterogeneity (i.e. older woodlands; see section 4.1). We also found 

contrasting effects of the presence of grazing stock on A. sylvaticus. Firstly, adult abundance was 

markedly lower where livestock were present, possibly due to direct disturbance; similar negative 

impacts of deer grazing have been reported for this species before (Putman et al. 1989; Bush et al. 

2012). Secondly, the presence of grazing stock marginally reduced the amount of understory 

vegetation; woodlands with more open understories were in turn associated with a higher 

proportion of reproductively active females. In addition, proportionally more females were present 

in smaller woodlands; even though patch size does not generally influence A. sylvaticus 

abundance (Fitzgibbon 1997; Marsh & Harris 2000; this study; but see Telleria et al. 1991), 

previous work has reported more male-biased sex-ratios, a larger proportion of sexually active 

adults and fewer juveniles of this species in small (<10 ha) than in large (>100 ha) woodland 

remnants (Diaz et al. 1999). 

Landscape attributes influencing A. sylvaticus populations had, in general, smaller effect 

sizes than local-level factors. Wood mice were more abundant in woodlands closer to other 

woodlands (negative association with ‘distance to nearest woodland’) and surrounded by lower 

amounts of semi-natural habitats; there were also proportionally more juveniles in woodlands with 

lower amounts of surrounding semi-natural habitat, including woodland. Previous studies have 

reported negative effects of woodland isolation on the proportion of reproductively active A. 

sylvaticus (Marsh & Harris 2000), whilst others have reported higher proportion of juveniles in 

more isolated woodlands, possibly as a result of limited dispersal opportunities (Fitzgibbon 1997). 

The observed associations with amount of semi-natural and woodland cover could be a result of a 

‘dilution effect’ where instead of being confined to a focal woodland patch, animals disperse A
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towards other suitable habitats in the landscape (Ouin et al. 2000; Fitzgibbon 1997). Alternatively, 

it is also possible that these patterns are driven by the proportion of surrounding agricultural land 

(negatively correlated with proportion of woodland and other semi-natural habitats in our study 

areas), particularly of arable areas which might provide food and shelter and are frequently used 

by generalist species such as A. sylvaticus (Tattersall et al. 2001; Michel et al. 2006; Gentili et al. 

2014).

Myodes glareolus (a woodland specialist) was also influenced by both local- and 

landscape-level habitat characteristics. Of these, the most important factors influencing this 

species were local-level factors; specifically, the presence of grazing stock (reducing M. glareolus 

abundance) and amount of understory cover (negatively associated with the proportion of females 

and reproductively active females present at each site). Strong negative impacts of grazing (by 

deer) have previously been reported for this species (Putman et al. 1989; Bush et al. 2012), 

however, the observed effect of understory cover was unexpected. There were also more juveniles 

in older woodlands (see section 4.1) and marginally fewer reproductively active females in larger 

woodland patches. The only landscape attribute influencing M. glareolus was hedgerow density; 

we found proportionally fewer juveniles and marginally more females in woodlands surrounded 

by a higher density of hedgerows. Bank voles often make use of hedgerows (Tattersall et al. 2002; 

Moore et al. 2003) and previous studies have reported higher abundances of this species in 

woodlands well connected with hedges (Fitzgibbon 1997), although we did not detect this effect. 

It has also been suggested that isolated woods limit juvenile dispersal (Fitzgibbon 1997), which 

could explain the higher proportion of juveniles we observed in woodlands surrounded by lower 

hedgerow densities.

4.3 Effects of population density and resource availability on small mammals in historical 

woodland creation sites

In addition to local habitat quality and landscape characteristics, small mammals can be influenced 

by intrapopulation dynamics (e.g. density dependence) and resource availability (Mallorie & 

Flowerdew 1994; Montgomery 1989a,b), factors which might in turn potentially be driven by 

local- and landscape-level habitat attributes. 

Resource availability (e.g. seed crop size and food plant abundance) has been identified as 

an important factor influencing population size of A. sylvaticus and M. glareolus in woodlands A
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(e.g. Montgomery & Dowie 1993; Mallorie & Flowerdew 1994; Tew et al. 2000). We detected 

resource-dependency effects on population structure parameters of A. sylvaticus and M. glareolus. 

Resource availability was determined by local habitat attributes; specifically, younger woodlands 

with higher tree densities resulted in individuals of both species in better body condition 

(indicating higher resource availability); this led to slight increases in female and juvenile 

proportions for A. sylvaticus and decreases in juvenile ratios for M. glareolus. The proportion of 

reproductive females of both species was also positively influenced by resource availability; 

however, this was not affected by any of the habitat characteristics included in our analyses. 

Females, particularly when reproductively active, have high energy requirements and are likely to 

select higher quality habitats (e.g. with higher resource availability) than non-reproductive females 

and males (e.g. Coda et al. 2014; Diaz et al. 1999; Rosalino et al. 2011). For example, A. 

sylvaticus show sex-based selectivity for areas with high abundances of certain food plants, 

potentially due to differing nutritional and energetic requirements of male and female reproduction 

(Jensen 1993; Tew et al. 2000).

We detected density-dependency effects on the population structure of M. glareolus; 

specifically, woodlands with higher M. glareolus abundance had proportionally fewer 

reproductively active females. Bank voles have been shown to display some density dependence 

(Mallorie & Flowerdew 1994), and curtailment of the breeding season at high population densities 

has been suggested as a possible mechanism (Alibhai & Gipps 1985). Whilst A. sylvaticus usually 

display strong density-dependent population regulation (Montgomery 1989a; Mallorie & 

Flowerdew 1994), we did not detect any such effects here. It is possible that density effects are 

overridden when food resources are abundant (Mallorie & Flowerdew 1994; Macdonald et al. 

2007), or that they only occur at very high population densities, whereas other factors (e.g. habitat 

quality) are more important in controlling abundance and population structure at relatively low 

densities. Additionally, we may have underestimated density/resource dependency effects because 

our analyses used relative abundance rather than overall population sizes (although these two 

metrics were strongly correlated; Appendix S2) and because our measure of resource availability 

(i.e. body condition) was indirect. 

4.4 Conservation and management implications

Historical woodland creation sites are quickly colonized by small mammals (both generalists and 

specialists); even young woodlands are valuable habitats for these animals. However, there is A
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some evidence that woodlands become gradually better over time for some species (e.g. higher A. 

sylvaticus abundance in sites characterized by an old-growth habitat structure).

In general, local habitat characteristics are more important than landscape attributes, 

suggesting that small mammals are not strongly limited by dispersal (but see below), and that 

enhancing habitat quality at the patch scale would benefit these species. Specifically, management 

to reduce grazing pressure, promote an old-growth habitat structure (large amounts of dead wood 

and high structural heterogeneity) and maintain a relatively open understory is likely to be 

beneficial for both woodland generalists and specialists. Local habitat attributes also influence 

resource availability; specifically, younger woodlands with higher tree densities provide more 

food resources for small mammals, which can lead to changes in small mammal population 

structure (e.g. higher proportions of females and juveniles for A. sylvaticus). Maintaining a mosaic 

of woodland patches in the landscape which includes a mixture of relatively young stands and 

older woodlands is likely to benefit small mammal communities, including woodland generalists, 

specialists and non-woodland species.

Landscape characteristics are of lower importance for small mammals in secondary 

woodlands; however, increasing the amount of woodland and other semi-natural habitats in the 

landscape and improving woodland connectivity (e.g. through reducing distance between 

woodland patches and increasing hedgerow densities in the landscape) are likely to increase 

habitat availability, facilitate dispersal and benefit small mammal communities in secondary 

woodlands. 

5. CONCLUSIONS

Restoring woodland patches in agricultural landscapes benefits small mammal communities and 

other wildlife (e.g. birds and invertebrates; Whytock et al. 2018; Fuller et al 2018). It is also likely 

to benefit higher trophic levels (e.g. larger mammals and birds of prey) feeding on small mammals 

and increase ecosystem processes such as seed dispersal (further work is needed to explore these 

processes). However, other species groups might require different conservation strategies (e.g. at 

larger spatial scales) depending on their mobility and habitat specialization (e.g. Fuentes-

Montemayor et al. 2017). In addition, the value of secondary woodlands for biodiversity in 

unlikely to match that of older, larger, undisturbed woodlands (ongoing work by the authors); new A
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woodland plantings should therefore not be regarded as an immediate replacement for higher 

quality habitats such as ancient woodlands.
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TABLES

Table 1. Local and landscape-level attributes measured for all woodland sites.

Variable type Variable Description Obtained from

Local – vegetation structure Patch age Years since woodland patch appeared on historical maps. Historical maps

Tree density Number of trees per hectare. Field surveys

Tree DBH (SD) Tree diameter at breast height (standard deviation; used as 

indicator of structural heterogeneity).

Field surveys

Woody debris Index of woody debris on ground. Ranges from 1–3 where 1 

= leaf litter & small twigs (about 1 cm in diameter), 2 = 

larger branches (<10 cm) and 3 = coarse woody debris >10 

cm diameter (including fallen trees). 

Field surveys

Understory cover Proportion of understory cover in 10x10 m quadrats (average 

value). Uses Domin scale.

Field surveys

Local – management In-site grazing Livestock presence (or indication of, e.g. prints, dung, wool). Field surveys

Local – patch geometry Patch size Area of woodland patch (ha). Digital maps / GIS

Landscape Woodland spatial 

isolation

Distance (m) to nearest broadleaved woodland. Digital maps / GIS

Woodland % a Proportion of landscape covered by broadleaved woodland. Digital maps / GIS

Semi-natural % a Proportion of landscape covered by semi-natural habitats. Digital maps / GIS
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Hedgerow density a Total length of hedgerows within 1 km of each study site. Google Earth Pro / GIS
a Calculated within 1 km buffers. 
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Table 2. Small mammal species detected during field surveys in WrEN woodland sites.

Species Number of 

sites detected a

Total number of         

individuals (% of total)

Average number of         

individuals per site (range)

Bank vole (Myodes glareolus) 80 1006 (60.0 %) 9.58 (0–67)

Wood mouse (Apodemus sylvaticus) 72 571 (34.1 %) 5.44 (0–54)

Field vole (Microtus agrestis) 33 98 (5.8 %) 0.93 (0–14)

Yellow-necked mouse (Apodemus flavicollis) b 1 1 (<0.1 %) 0.03 (0–1)
a Out of 105 sites.
b Species absent from Scotland; average calculated with n = 38 sites in England.
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FIGURE LEGENDS

Figure 1. Conceptual model of hypothesized direct and indirect causal relationships between 

small mammal response variables and predictor variables: 1) landscape-level attributes likely to 

influence colonization and dispersal processes (purple boxes), 2) local-level attributes related to 

habitat quality (green boxes), patch size (blue box) and management (orange box), 3) ‘biological’ 

variables (i.e. abundance and body condition) likely to indicate density- and resource-dependency 

effects (yellow boxes) and environmental variables (i.e. date and region; grey boxes). Arrow color 

indicates directionality of hypothesized associations (black = positive; red = negative; grey = 

variable e.g. species-dependent).

Figure 2. SEM of relationships between Field vole (M. agrestis) abundance and predictor 

variables. Colored boxes indicate variable types: purple = landscape; green = vegetation structure; 

blue = patch geometry; orange = management; yellow = biological; grey = 

environmental/seasonal. Arrow type and color indicate statistical significance (solid black/red = 

significant association, i.e. P<0.05; dashed black/red = marginally significant association; i.e. 

P<0.1; dashed grey = non-significant association, i.e. P>0.1) and directionality of associations 

(black = positive; red = negative). Arrow thickness represents relative effect sizes (thicker arrows 

= larger effect sizes). Effect sizes are shown for all significant associations.

Figure 3. SEM of relationships between Wood mouse (A. sylvaticus) abundance (a), female ratio 

(b), reproductive female ratio (c), juvenile ratio (d) and predictor variables. Colored boxes indicate 

variable types: purple = landscape; green = vegetation structure; blue = patch geometry; orange = 

management; yellow = biological; grey = environmental/seasonal. Arrow type and color indicate 

statistical significance (solid black/red = significant association, i.e. P<0.05; dashed black/red = 

marginally significant association; i.e. P<0.1; dashed grey = non-significant association, i.e. 

P>0.1) and directionality of associations (black = positive; red = negative). Arrow thickness 

represents relative effect sizes (thicker arrows = larger effect sizes). Effect sizes are shown for all 

significant associations.
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Figure 4. SEM of relationships between Bank vole (M. glareolus) abundance (a), female ratio (b), 

reproductive female ratio (c), juvenile ratio (d) and predictor variables. Colored boxes indicate 

variable types: purple = landscape; green = vegetation structure; blue = patch geometry; orange = 

management; yellow = biological; grey = environmental/seasonal. Arrow type and color indicate 

statistical significance (solid black/red = significant association, i.e. P<0.05; dashed black/red = 

marginally significant association; i.e. P<0.1; dashed grey = non-significant association, i.e. 

P>0.1) and directionality of associations (black = positive; red = negative). Arrow thickness 

represents relative effect sizes (thicker arrows = larger effect sizes). Effect sizes are shown for all 

significant associations.
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