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Introduction

The analysis of the inherent structure of time-dependent data is crucial for the selection

of a suitable model. This thesis is comprised of three self-contained essays on time series

models and the identification of their stability properties. Hypothesis tests are particularly

useful in this context. While the first chapter presents a unit root test that is robust against

an unknown nonparametric trend, the second chapter deals with testing for structural

change in linear regression models. The third chapter is devoted to the analysis of the

functional dependence structure of bond yields with different maturities, and discusses

the identification and estimation of a functional factor model for yield curves from the

perspective of functional data analysis. A more detailed description of each chapter is

given in the remainder of the introduction.

While the first chapter is based on a single-author paper (see Otto 2019), the latter

two chapters are joint works with Jörg Breitung (see Otto and Breitung 2019) and Nazarii

Salish (see Otto and Salish 2019) respectively.

Chapter 1 The literature on unit root testing is large and comprehensive, beginning

with the seminal works of Dickey and Fuller (1979), Said and Dickey (1984), Phillips

(1987), and Phillips and Perron (1988). Elliott et al. (1996) presented a unit root test

that exhibits optimality properties. These conventional unit root tests include the assump-

tion that the deterministic component is either constant or linear. Since a misspecified

trend model leads to power losses, many studies focused on unit root testing under a

more flexible parametric structure for the trend component, such as structural break and

smooth transition models with unknown breakpoint and magnitude, and approximations

by Chebyshev polynomials and Fourier series. However, little attention has been devoted

to the nonparametric treatment of deterministic trends.

The testing approach presented in this chapter is based on the idea that in a window

every smooth trend can be approximated well by a constant if the window size is small

enough. The time series is proposed to be divided into overlapping blocks, and the unit

root hypothesis is tested based on a pooled regression across all these blocks. Since the
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trend is estimated for each block separately, the pooled OLS estimator filters out the trend

component, asymptotically. Both fixed-b and small-b block asymptotics are considered,

and the limiting distributions of the t-statistics for the unit root hypothesis are derived. A

nuisance parameter correction under heteroskedasticity provides heteroskedasticity-robust

tests, and serial correlation is accounted for by a pre-whitening scheme. Furthermore, the

limiting distributions under local alternatives are derived. An extensive Monte Carlo study

shows that the proposed tests yield improved power results under both slowly varying

trends and sharp breaks when compared to conventional unit root tests. Moreover, the

tests are well sized and comparable to the conventional tests in terms of power if the trend

is constant.

Chapter 2 The CUSUM test of Brown et al. (1975) for detecting changes in the coef-

ficients of a linear regression and the corresponding monitoring procedure of Chu et al.

(1996) suffer from low power and large detection delay. Therefore, two alternative detec-

tor statistics are proposed. The backward CUSUM detector sequentially cumulates the

recursive residuals in reverse chronological order, whereas the stacked backward CUSUM

detector considers a triangular array of backward cumulated residuals. While both the

backward CUSUM detector and the stacked backward CUSUM detector are suitable for

retrospective testing, only the stacked backward CUSUM detector can be monitored on-

line. The limiting distributions of the maximum statistics under suitable sequences of

alternatives are derived for retrospective testing and fixed endpoint monitoring. In the

retrospective testing context, the local power of the tests is shown to be substantially

higher than that for the conventional CUSUM test if a single break occurs after one third

of the sample size. When applied to monitoring schemes, the detection delay of the stacked

backward CUSUM is shown to be much shorter than that of the conventional monitor-

ing CUSUM procedure. Moreover, an infinite horizon monitoring procedure and critical

values are presented.

Chapter 3 The problem of yield curve modeling and forecasting from a functional time

series perspective is discussed. In the fashion of the vector-valued factor models of Stock

and Watson (2002) and Bai (2003), a functional factor model for yield curves is studied,

in which the factors follow some linear autoregressive process. The model is identified by

imposing suitable orthogonality conditions on the factors and the loading functions, while

both factors and loadings are unknown. The model can be seen as an extension of the yield

curve models by Nelson and Siegel (1987) and Diebold and Li (2006), in which the loadings

are fixed and predefined. By applying the least squares principle, a functional principal
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components based estimator is obtained, which is shown to be consistent. Furthermore,

the minimum mean squared error forecast from the dynamic functional factor model is

derived. By imposing normality of the factors and the errors, pointwise and simultaneous

prediction bands are obtained from the forecast error curve distribution. The accuracy

of the predictions and prediction bands is discussed in an out-of-sample experiment with

monthly yield curves of U.S. Treasuries.
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Chapter 1

Unit Root Testing with Slowly

Varying Trends

1.1 Introduction

It is widely debated in the time series literature whether macroeconomic variables such as

GDP, inflation, and interest rates are I(1) or I(0) around a deterministic trend. Dickey-

Fuller-type unit root tests often fail to reject the null hypothesis for these time series. The

trend component of a time series yt is typically treated as known up to some parameter

vector. The most commonly applied unit root tests, such as those developed by Dickey

and Fuller (1979), Said and Dickey (1984), Phillips (1987), Phillips and Perron (1988),

and Elliott et al. (1996), impose either a constant or a linear trend model. If, however, the

deterministic trend component is nonlinear, highly persistent trend-stationary processes

can be hardly distinguishable from unit root processes.

It is not only a misspecified trend model that may lead to high power losses, as an

overparameterized model can also reduce the power of unit root tests. Therefore, many

authors have suggested applying trend models that seem more suitable for macro data.

Broken trend models with one-time changes in mean or slope with known breakpoint were

first studied by Perron (1989) and Rappoport and Reichlin (1989). Christiano (1992)

demonstrated that a broken trend model with an unknown breakpoint is more adequate,

and Zivot and Andrews (1992), as well as Banerjee et al. (1992), proposed unit root

tests for this framework. Structural changes in innovation variances were studied by

Hamori and Tokihisa (1997), Kim et al. (2002), and Cavaliere (2005), while Cavaliere

et al. (2011) considered unit root testing under broken trends together with nonstationary

volatility. Leybourne et al. (1998), Kapetanios et al. (2003), and Kılıç (2011) allowed
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for exponential smooth transitions from one trend regime to another. Bierens (1997)

approximated a nonlinear mean function with Chebyshev polynomials, and Enders and

Lee (2012) proposed a Fourier series approximation of the trend, which are approaches

that can be used when the exact form and date of structural changes are unknown.

Dickey-Fuller-type tests are based on the t-statistic of the first-order autoregressive

parameter. In case of a constant trend, the estimator is derived from a regression of ∆yt

on (yt−1 − y), where y is the sample mean. Schmidt and Phillips (1992) estimated the

constant by the initial observation, which results in a regression of ∆yt on (yt−1 − y1).

Whereas a constant is often not a good approximation, in a small block, a moderately

varying trend can be approximated quite closely by a constant. To exploit this fact,

we divide the series into T − B overlapping blocks of length B. As the blocks can be

considered as units of a panel, we follow the panel unit root tests proposed by Breitung

(2000) and Levin et al. (2002) and consider a pooled regression of ∆yj+t on (yj+t−1 − yj)
for 2 ≤ t ≤ T and 1 ≤ j ≤ T −B. The deterministic function is approximated locally by

a constant. Under a general class of piecewise continuous nonparametric trend functions,

the resulting pooled estimator is consistent as B, T → ∞. The limiting null distribution

of the t-statistic is a functional of Brownian motions under fixed-b asymptotics. Under

small-b asymptotics, a normal distribution is obtained.

The chapter is organized as follows: In Section 1.2 the autoregressive model with

independent and homoskedastic errors is analyzed together with the asymptotic behavior

of the pooled least squares estimator in the presence of a general nonparametric trend

model. For both fixed-b and small-b block asymptotics, the limiting distributions are

derived under both the unit root hypothesis and under local alternatives. Section 1.3

considers pseudo t-statistics for unit root testing, while Section 1.4 demonstrates that,

under heteroskedasticity, nuisance parameters appear in the limiting distributions. The

estimation of these parameters is discussed, and heteroskedasticity-robust test statistics

are provided. In Section 1.5, a pre-whitening procedure is proposed in order to account

for short-run dynamics, while Section 1.6 reports on Monte Carlo simulations. The tests

are found to have only minor size distortions in small samples and are sized correctly in

larger samples. It is shown that in the presence of slowly varying trends, pooled tests tend

to yield higher power than conventional unit root tests. In Section 1.7, these tests are

applied to the monthly inflation rates of 25 countries. The results provide some evidence

in favor of inflation rates being trend-stationary around a slowly varying deterministic

component. Finally, Section 1.8 presents the conclusion.
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1.2 The pooled estimator

We are interested in inference concerning the autoregressive parameter ρ in the model

yt = dt + xt, xt = ρxt−1 + ut, t = 1, . . . , T,

where ρ is close or equal to one. The deterministic trend component dt is treated as

nonstochastic and fixed in repeated samples, where its functional form is nonparametric

and unknown.

Assumption 1.1 (trend component). The trend component is given by dt = d(t/T ),

where d(r) is a piecewise Lipschitz continuous function.

Note that any continuously differentiable function is Lipschitz continuous. Lipschitz

functions are locally close to a constant value in the sense that there exists some C <∞
such that |d(r)−d(s)| ≤ C|r−s| for all r, s ∈ R. The piecewise Lipschitz condition allows

for a partition with a finite number of intervals, such that d(r) is Lipschitz continuous on

each interval. This includes both smooth changes as well as abrupt breaks in the trend

function. For the initial value, it is assumed that E[x2
0] < ∞. We introduce the pooled

estimator and the unit root test statistics under the following simplified assumptions on

the error term, which are relaxed in the subsequent sections:

Assumption 1.2 (i.i.d. errors). The process {ut}t∈N is independently distributed, where

E[ut] = 0, E[u2
t ] = σ2 and E[u4

t ] <∞.

The principal approach to dealing with a nonparametric, slowly varying trend is to

approximate the unknown trend locally by a constant. Let B be some blocklength that

satisfies 2 ≤ B < T . We divide the time series into T − B overlapping blocks of length

B and then block-wise estimate ρ via OLS under a constant trend specification. In the

fashion of Schmidt and Phillips (1992), as well as Breitung and Meyer (1994), the constant

trend is approximated by the first observation in each block. Thereafter, by pooling the

T −B individual block regressions, we obtain the following regression equation:

∆yt+j = φ(yt+j−1 − yj) + ut+j, t = 2, . . . , B, j = 1, . . . , T −B,

where φ = ρ− 1. The pooled OLS estimator is formulated as

φ̂ = ρ̂− 1 =

∑T−B
j=1

∑B
t=2 ∆yt+j(yt+j−1 − yj)∑T−B

j=1

∑B
t=2(yt+j−1 − yj)2

.
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In the following, we derive the asymptotic properties for the numerator and the denomi-

nator separately. The numerator and denominator statistics are defined as

Y1,T =
1

B3/2T 1/2

T−B∑
j=1

B∑
t=2

∆yt+j(yt+j−1 − yj), Y2,T =
1

B2T

T−B∑
j=1

B∑
t=2

(yt+j−1 − yj)2,

such that
√
BT (ρ̂ − 1) = Y1,T/Y2,T . Their counterparts for a zero trend component are

given by

X1,T =
1

B3/2T 1/2

T−B∑
j=1

B∑
t=2

∆xt+j(xt+j−1 − xj), X2,T =
1

B2T

T−B∑
j=1

B∑
t=2

(xt+j−1 − xj)2.

In what follows, we show that, under the block procedure, the trend component can be

ignored asymptotically. All asymptotic results are jointly derived for B, T → ∞. While

the statistics X1,T and X2,T are infeasible if dt is unknown, they can be well approximated

by Y1,T and Y2,T in the following sense:

Lemma 1.1. Let ρ = 1 − c/
√
BT with c ≥ 0, let dt satisfy Assumption 1.1, and let

ut satisfy Assumption 1.2. Then, |Y1,T − X1,T | = oP (1), and |Y2,T − X2,T | = oP (1) as

B, T →∞.

The block procedure filters out the trend component in the numerator and the denom-

inator asymptotically. Hence, applying Slutsky’s theorem, we can write

√
BT (ρ̂− 1) =

Y1,T

Y2,T

=
X1,T

X2,T

+ oP (1).

In order to obtain the limiting distribution, we formulate the following properties for the

numerator and denominator statistics:

Lemma 1.2. Let ρ = 1 − c/
√
BT with c ≥ 0, and let ut satisfy Assumption 1.2. Then,

as B, T →∞, it follows that

(a) X1,T =
∑T

j=1 qj,T − c · (σ2/2 + oP (1)), where {qj,T}j≤T,T∈N is a martingale difference

array with

V ar

[ T∑
j=1

qj,T

]
= σ4 (B − 1)((T −B)(2B − 1)− 2(B − 2))

6B2T
,

(b) E[X2,T ] = σ2 (T −B)(B − 1)

2BT
+ c ·O(B1/2T−1/2), and V ar[X2,T ] = O(BT−1).
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Lemmas 1.1 and 1.2 imply that V ar[Y2,T ] = O(1) if B = O(T ), whereas V ar[Y2,T ] =

o(1) if B = o(T ). This suggests distinguishing between these fundamentally different

types of blocklength asymptotics. The fixed-b approach denotes the case where the relative

blocklength B/T converges to some value b with 0 < b < 1, such that B and T grow at

the same rate. In the small-b approach, we consider a relative blocklength that converges

to zero, while B, T → ∞.1 As the blocks are overlapping, the error terms in the pooled

regression equation are correlated, but, fortunately, the correlation structure is known by

construction. Lemmas 1.1 and 1.2 imply that V ar[Y1,T ] → σ4/3 and E[Y2,T ] → σ2/2

as B/T → 0 and B, T → ∞. Together with the central limit theorem for martingale

difference arrays, the following asymptotic result can be stated:

Theorem 1.1 (small-b asymptotics). Let ρ = 1 − c/
√
BT with c ≥ 0, let dt satisfy

Assumption 1.1, and let ut satisfy Assumption 1.2. Let B/T → 0 as B, T →∞. Then,

Y1,T
D−→ N

(
− cσ2

2
,
σ4

3

)
, and Y2,T

p−→ σ2

2
.

As a direct consequence, the pooled estimator is asymptotically normally distributed

under small-b asymptotics. Together with Slutsky’s theorem, it follows that

√
BT (ρ̂− 1)

D−→ N (0, 4/3)

under the unit root hypothesis, which is given by ρ = 1 or equivalently by c = 0. Under

fixed-b asymptotics, the numerator and denominator statistics can be represented as a

partial sum process of the innovations. The functional central limit theorem then yields

the following asymptotic result:

Theorem 1.2 (fixed-b asymptotics). Let ρ = 1 − c/
√
BT with c ≥ 0, let dt satisfy

Assumption 1.1, and let ut satisfy Assumption 1.2. Let 0 < b < 1, and let B/T → b as

B, T →∞. Then(
Y1,T

Y2,T

)
D−→

(
σ2

2b3/2
(
∫ 1−b

0
(Jc/b(b+ r)− Jc/b(r))2 − b(1− b))

σ2

b2

∫ 1−b
0

∫ b+r
r

(Jc/b(s)− Jc/b(r))2 ds dr

)
,

where Jc(r) is an Ornstein-Uhlenbeck process.

1Note that the terminology “fixed-b and small-b asymptotics” has also been used in the context of
long-run variance estimation. Whereas Kiefer and Vogelsang (2005) use this wording for the asymptotics
of the ratio of the truncation point to the sample size, we consider the ratio of the blocklength to the
sample size.
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Consequently, the pooled estimator is asymptotically represented as a functional of a

standard Brownian motion W (r) under the unit root hypothesis. If ρ = 1, then Theorem

1.2, together with the continuous mapping theorem, implies that

√
BT (ρ̂− 1)

D−→
b1/2

∫ 1−b
0

(W (b+ r)−W (r))2 dr + b3/2(1− b)
2
∫ 1−b

0

∫ b+r
r

(W (s)−W (r))2 ds dr

under fixed-b asymptotics. In comparison to the limiting distribution of the ρ-statistic in

the Dickey-Fuller framework, the functional includes an additional integral, which results

from pooling the block regressions.

1.3 Pseudo t-statistics for unit root testing

The principal concept of Dickey-Fuller-type unit root tests is to consider a t-test for the

null hypothesis H0 : ρ = 1. Following this approach in the pooled regression framework,

the numerator of the t-statistic can be represented as ρ̂ − 1 = Y1,T (Y2,T

√
BT )−1. The

standard error is obtained from the conditional variance of ρ̂. Let

s2
ρ̂ = σ̂2

( T−B∑
j=1

B∑
t=2

(yt+j−1 − yj)2
)−1

=
σ̂2

Y2,TB2T
,

where σ̂2 denotes some consistent estimator for the error variance σ2. The conventional

t-statistic is then represented as (ρ̂−1)/sρ̂ =
√
BY1,T/

√
σ̂2Y2,T and diverges in probability

under H0. Accordingly, we consider a pseudo t-statistic of the form

τ =
ρ̂− 1

sρ̂
√
B

=
Y1,T

σ̂
√
Y2,T

,

which is OP (1) under both small-b and fixed-b asymptotics. We consider the residuals

ût = yt − ρ̂yt−1 for t = 2, . . . , T and their sample mean û = T−1
∑T

j=1 ûj. For the error

variance estimation, we distinguish between fixed-b and small-b block asymptotics and

define

σ̂2
sb =

∑T−B
j=1

∑B
t=1

(
ûj+t − 1

B

∑B
k=1 ûj+k

)2

(T −B)(B − 1)
, σ̂2

fb =
1

T

T∑
j=2

(ûj − û)2.

The following consistency result can then be obtained:
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Lemma 1.3. Let ρ = 1 − c/
√
BT with c ≥ 0, let dt satisfy Assumption 1.1, and let ut

satisfy Assumption 1.2.

(a) Let B/T → 0 as B, T →∞. Then, σ̂2
sb

p−→ σ2.

(b) Let 0 < b < 1, and let B/T → b as B, T →∞. Then, σ̂2
fb

p−→ σ2.

In what follows, the pseudo t-tests are defined. For the small-b pseudo t-statistic, we

scale Y1,T and Y2,T by their finite sample variance and their expectation from Lemma 1.2

in order to avoid small-sample size distortions. Let

v2
T =

(T −B)(2B − 1)− 2(B − 2)

3B(T −B)
,

which is equal to σ−2V ar[X1,T ]/E[X2,T ] under the unit root hypothesis. The small-b

pseudo t-statistic is then defined as

τ -SB =
Y1,T

vT σ̂sb

√
Y2,T

=

∑T−B
j=1

∑B
t=2 ∆yt+j(yt+j−1 − yj)

σ̂sb

√
(T−B)(2B−1)−2(B−2)

3(T−B)

∑T−B
j=1

∑B
t=2(yt+j−1 − yj)2

.

For the fixed-b statistic, we consider the unscaled versions and define

τ -FB =
Y1,T

σ̂fb

√
Y2,T

=

∑T−B
j=1

∑B
t=2 ∆yt+j(yt+j−1 − yj)

σ̂fb

√
B
∑T−B

j=1

∑B
t=2(yt+j−1 − yj)2

.

The unit root hypothesis is rejected in favor of stationarity if the test statistic is smaller

than the α-quantile of the limiting distribution under H0, where α is the significance

level. From Theorems 1.1 and 1.2 and Lemma 1.3, together with the continuous mapping

theorem and Slutsky’s theorem, the following limiting result can be stated:

Corollary 1.1. Let ρ = 1, let dt satisfy Assumption 1.1, and let ut satisfy Assumption

1.2.

(a) Let B/T → 0 as B, T →∞. Then, τ -SB
D−→ N (0, 1).

(b) Let 0 < b < 1, and let B/T → b as B, T →∞. Then,

τ -FB
D−→
∫ 1−b

0
(W (b+ r)−W (r))2 dr − b(1− b)

2
√
b
∫ 1−b

0

∫ b+r
r

(W (s)−W (r))2 ds dr
,

where W (r) is a standard Brownian motion.
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Table 1.1: Asymptotic critical values for the fixed-b test

α B/T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 -0.788 -0.812 -0.815 -0.799 -0.761 -0.701 -0.623 -0.520 -0.377
0.1 -1.126 -1.128 -1.104 -1.055 -0.987 -0.903 -0.798 -0.664 -0.486
0.05 -1.403 -1.375 -1.327 -1.257 -1.169 -1.067 -0.939 -0.781 -0.573
0.04 -1.486 -1.446 -1.391 -1.318 -1.222 -1.113 -0.978 -0.814 -0.600
0.03 -1.582 -1.534 -1.471 -1.394 -1.291 -1.169 -1.025 -0.855 -0.630
0.02 -1.709 -1.650 -1.579 -1.489 -1.374 -1.246 -1.094 -0.909 -0.669
0.01 -1.904 -1.830 -1.745 -1.639 -1.511 -1.361 -1.191 -0.995 -0.729
0.001 -2.431 -2.320 -2.203 -2.042 -1.882 -1.692 -1.480 -1.226 -0.905

Note: The sample paths of the standard Brownian motions contained in the asymptotic null distribution of τ -FB are
simulated by a discretized version of W (r) on a grid of 50,000 equidistant points. The empirical quantiles are obtained from
100,000 Monte Carlo repetitions.

For τ -SB we can rely on standard normal quantiles as critical values. However, the

limiting distribution of τ -FB is nonstandard. Table 1.1 presents simulated left-tailed

quantiles of the null distribution for various relative blocklengths B/T and significance

levels.

From Theorems 1.1 and 1.2, it follows that the tests have power against alternatives

of the form ρ = 1− c/
√
BT , where c > 0.

1.4 Testing under heteroskedasticity

While stationary time-varying conditional variances such as ARCH and GARCH pro-

cesses do not affect unit root testing, Hamori and Tokihisa (1997) showed that per-

manent changes in volatility, in contrast, dramatically alter the limiting distributions

of unit root tests. Kim et al. (2002) reported that an abrupt break in the innovation

variance can produce spurious rejections, while Cavaliere (2005) showed that nonsta-

tionary volatility induces a time-shift in the right-hand-side process of the functional

central limit theorem. A variance-transformed Brownian process Wη(r) appears in the

limiting distributions of Dickey-Fuller-type unit root tests. Given the variance profile

η(s) = (
∫ 1

0
σ(r)2dr)−1

∫ s
0
σ(r)2dr, the transformed process is defined as Wη(r) = W (η(r)),

where 0 ≤ r ≤ 1. In what follows, we relax Assumption 1.2 and allow for heteroskedastic

errors.

Assumption 1.3 (heteroskedastic errors). The process {ut}t∈N is independently distrib-

uted with E[ut] = 0, E[u2
t ] = σ2

t and E[u4
t ] <∞, where σt = σ(t/T ). The function σ(r) is

càdlàg, non-stochastic, strictly positive, and bounded.

Notice that the approximation result of Lemma 1.1 is not affected by Assumption 1.3
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and can be formulated under heteroskedasticity as follows:

Lemma 1.4. Let ρ = 1 − c/
√
BT with c ≥ 0, let dt satisfy Assumption 1.1, and let

ut satisfy Assumption 1.3. Then, |Y1,T − X1,T | = oP (1), and |Y2,T − X2,T | = oP (1) as

B, T →∞.

However, nuisance parameters then appear in the limiting distributions of the numer-

ator and denominator statistics.

Theorem 1.3. Let ρ = 1− c/
√
BT with c ≥ 0, let dt satisfy Assumption 1.1, and let ut

satisfy Assumption 1.3.

(a) Let B/T → 0 as B, T →∞. Then,

Y1,T
D−→ N

(
− c

2

∫ 1

0

σ2(r) dr,
1

3

∫ 1

0

σ4(r) dr

)
, and Y2,T

p−→ 1

2

∫ 1

0

σ2(r) dr.

(b) Let 0 < b < 1, and let B/T → b as B, T →∞. Then,(
Y1,T

Y2,T

)
D−→

(∫ 1
0 σ

2(r) dr

2b3/2
(
∫ 1−b

0
(Jc,b,η(b+ r)− Jc,b,η(r))2 − b(1− b))∫ 1

0 σ
2(r) dr

b2

∫ 1−b
0

∫ b+r
r

(Jc,b,η(s)− Jc,b,η(r))2 ds dr

)
,

where Jc,b,η(r) is a variance-transformed Ornstein-Uhlenbeck process, which is defined

as Jc,b,η(r) =
∫ r

0
e−(r−s)c/bdWη(s).

In order to correct for the additional nuisance terms, we consider the following esti-

mators. Let

κ̂2 =

∑T−B
j=1

∑B
t=1

(
ûj − û

)2
(
ûj+t − 1

B

∑B
k=1 ûj+k

)2

(T −B)(B − 1)

and let

η̂(s) =

∑bsT c
j=1

(
ûj − 1

bsT c
∑bsT c

k=1 ûk

)2

+ (sT − bsT c)
(
ûbsT c+1 − 1

bsT c+1

∑bsT c+1
k=1 ûk

)2

∑T
j=1(ûj − û)2

,

where s ∈ [0, 1]. The robust small-b statistic is then defined as

τ -SBH =
Y1,T

vT κ̂σ̂
−1
sb

√
Y2,T

=

∑T−B
j=1

∑B
t=2 ∆yt+j(yt+j−1 − yj)

κ̂σ̂−1
sb

√
(T−B)(2B−1)−2(B−2)

3(T−B)

∑T−B
j=1

∑B
t=2(yt+j−1 − yj)2

.
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Under fixed-b asymptotics, the nuisance term appears in the Gaussian process itself.

By means of transforming the data with its inverse variance profile, Cavaliere and Taylor

(2007) showed that the time-transformation in the Gaussian limiting processes can be

inverted. Accordingly, we fix some auxiliary sample size T̃ ≥ T and consider the time-

transformed series ỹt = ybη̂−1(t/T̃ )T̃ c for t = 1, . . . , T̃ , where η̂−1(s) is the inverse function

of η̂(s). In practice, the observed time series is transformed in such a way that copies of

adjacent observations between the sample points are inserted in highly volatilie periods.

Since T̃ can be set arbitrarily high, we do not need to discard any observations. We replace

the original series in the test statistic by the time-transformed series and define

Ỹ1,T =
1

B3/2T̃ 1/2

T̃−B∑
j=1

B∑
t=2

∆ỹt+j(ỹt+j−1 − ỹj), Ỹ2,T =
1

B2T̃

T̃−B∑
j=1

B∑
t=2

(ỹt+j−1 − ỹj)2,

which yields the fixed-b heteroskedasticity-robust statistic

τ -FBH =
Ỹ1,T

σ̂fb

√
Ỹ2,T

=

∑T̃−B
j=1

∑B
t=2 ∆ỹt+j(ỹt+j−1 − ỹj)

σ̂fb

√
B
∑T̃−B

j=1

∑B
t=2(ỹt+j−1 − ỹj)2

.

Theorem 1.4. Let ρ = 1, let dt satisfy Assumption 1.1, and let ut satisfy Assumption

1.3.

(a) Let B/T → 0 as B, T → ∞. Then, σ̂2
sb

p−→
∫ 1

0
σ2(r) dr, κ̂2 p−→

∫ 1

0
σ4(r) dr, and

τ -SBH D−→ N (0, 1).

(b) Let 0 < b < 1, and let B/T̃ → b as B, T̃ → ∞. Then, σ̂2
fb

p−→
∫ 1

0
σ2(r) dr,

η̂(s)
p−→ η(s) uniformly for all s ∈ [0, 1], and

τ -FBH D−→
∫ 1−b

0
(W (b+ r)−W (r))2 dr + b(1− b)

2
√
b
∫ 1−b

0

∫ b+r
r

(W (s)−W (r))2 ds dr
.

The limiting distributions under the unit root hypothesis of the heteroskedasticity-

robust test statistics coincide with those obtained in Section 1.3 under homoskedasticity.

Hence, the critical values from those tests can be retained. For τ -SBH, we consider stan-

dard normal quantiles, and, for τ -FBH, we can apply the values from Table 1.1.
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1.5 Testing under short-run dynamics

A more realistic scenario for macroeconomic variables is that error terms are serially

correlated. We impose the following assumption on the error process:

Assumption 1.4 (serially correlated errors). The process {ut}t∈N possesses the station-

ary AR(p) representation ut =
∑p

i=1 θiut−i + εt. The process {εt}t∈Z is independently

distributed with E[εt] = 0, E[ε2t ] = σ2
t and E[ε4t ] < ∞, where σt = σ(t/T ). The function

σ(r) is càdlàg, non-stochastic, strictly positive, and bounded. The lag order p satisfies

T−1/4p→ 0.

In the fashion of Said and Dickey (1984), we allow the lag order to grow with the sample

size. Asymptotically, this allows for fairly general forms of serially correlated errors, such

as stationary and invertible ARMA processes. In order to correct for the effect of short-

run dynamics, we follow Breitung and Das (2005) and consider the pre-whitened series

y∗t = yt −
∑p

i=1 θiyt−i. The series decomposes into y∗t = d∗t + x∗t , where the deterministic

and the stochastic parts are given by d∗t = dt −
∑p

i=1 θidt−i and x∗t = xt −
∑p

i=1 θixt−i

respectively. Note that x∗t − ρx∗t−1 = εt, where εt satisfies the same conditions as ut under

Assumption 1.3. Consequently, if the unit root statistics are defined in terms of

X ∗1,T =
1

B3/2T 1/2

T−B∑
j=1

B∑
t=2

∆x∗t+j(x
∗
t+j−1 − x∗j), X ∗2,T =

1

B2T

T−B∑
j=1

B∑
t=2

(x∗t+j−1 − x∗j)2

instead of X1,T and X2,T , their limiting distributions then coincide with those presented

in the previous sections.

Since the autoregressive parameters of the error process are unknown, they need to

be estimated. We augment the regression equation with lagged values of the differenced

series, such that

∆yt = ϕyt−1 +

p∑
i=1

βi∆yt−i + et, (1.1)

for t = p + 1, . . . , T , where et is a mean-zero error term. Let ϕ̂ and β̂1, . . . , β̂p denote

the OLS estimators of the parameters. In the following, we show that (β̂1, . . . , β̂p)
′ is

consistent for (θ1, . . . , θp)
′ under the unit root hypothesis:

Lemma 1.5. Let ρ = 1, let dt satisfy Assumption 1.1, and let ut satisfy Assumption 1.4.

Then max1≤i≤p p|β̂i − θi| = oP (1) as B, T →∞.
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The estimated pre-whitened series is defined as ŷ∗t = yt −
∑p

i=1 β̂iyt−i, and the corre-

sponding numerator and denominator statistics are given by

Ŷ∗1,T =
1

B3/2T 1/2

T−B∑
j=1

B∑
t=2

∆ŷ∗t+j(ŷ
∗
t+j−1 − ŷ∗j ), Ŷ∗2,T =

1

B2T

T−B∑
j=1

B∑
t=2

(ŷ∗t+j−1 − ŷ∗j )2.

Lemma 1.6. Let ρ = 1, let dt satisfy Assumption 1.1, and let ut satisfy Assumption 1.4.

Then, |Ŷ∗1,T −X ∗1,T | = oP (1), and |Ŷ∗2,T −X ∗2,T | = oP (1) as B, T →∞.

The estimators σ̂∗2sb , σ̂∗2fb , κ̂∗2, and η̂∗(s) are defined as their counterparts in Sections 1.3

and 1.4, except that the residuals are now defined as ût = ŷ∗t − ρ̂∗ŷ∗t−1, where ρ̂∗ is given by√
BT (ρ̂∗ − 1) = Ŷ∗1,T/Ŷ∗2,T . Analogously to Section 1.4, we consider the time-transformed

pre-whitened series ỹ∗t = ŷ∗bη̂−1(t/T̃ )T̃ c for t = 1, . . . , T̃ , where T̃ ≥ T , and we define

Ỹ∗1,T =
1

B3/2T̃ 1/2

T̃−B∑
j=1

B∑
t=2

∆ỹ∗t+j(ỹ
∗
t+j−1 − ỹ∗j ), Ỹ∗2,T =

1

B2T̃

T̃−B∑
j=1

B∑
t=2

(ỹ∗t+j−1 − ỹ∗j )2.

The pre-whitened versions of the test statistics are then given by

τ -SBPW =
Ŷ∗1,T

vT σ̂∗sb

√
Ŷ∗2,T

, τ -SBH-PW =
Ŷ∗1,T

vT κ̂∗σ̂
∗−1
sb

√
Ŷ∗2,T

,

τ -FBPW =
Ŷ∗1,T

σ̂∗fb

√
Ŷ∗2,T

, τ -FBH-PW =
Ỹ∗1,T

σ̂∗fb

√
Ỹ∗2,T

.

Theorem 1.5. Let ρ = 1, let dt satisfy Assumption 1.1, and let ut satisfy Assumption

1.4.

(a) Let B/T → 0 as B, T → ∞. Then, σ̂∗2sb
p−→
∫ 1

0
σ2(r) dr, κ̂∗2

p−→
∫ 1

0
σ4(r) dr, and

τ -SBH-PW D−→ N (0, 1). Furthermore, τ -SBPW D−→ N (0, 1) if σ2
t = σ2 for all t.

(b) Let 0 < b < 1, and let B/T̃ → b as B, T̃ → ∞. Then, σ̂∗2fb
p−→
∫ 1

0
σ2(r) dr,

η̂(s)
p−→ η(s) uniformly for all s ∈ [0, 1], and

τ -FBH-PW D−→
∫ 1−b

0
(W (b+ r)−W (r))2 dr + b(1− b)

2
√
b
∫ 1−b

0

∫ b+r
r

(W (s)−W (r))2 ds dr
.
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Furthermore, if σ2
t = σ2 for all t ∈ N, then

τ -FBPW D−→
∫ 1−b

0
(W (b+ r)−W (r))2 dr + b(1− b)

2
√
b
∫ 1−b

0

∫ b+r
r

(W (s)−W (r))2 ds dr
.

The lag order p is typically unknown in practice and can be chosen using conventional

lag order selection methods, such as the Bayesian information criterion (BIC) or by the

general-to-specific methodology in the fashion of Ng and Perron (1995). The maximum

lag order is inspired by the rule of thumb provided by Schwert (1989) and is fixed as

p∗ = b4 · (T/100)1/5c or as p∗ = b12 · (T/100)1/5c.

1.6 Simulations

In this section, the finite sample performance of the unit root tests is evaluated by means

of Monte Carlo simulations. The analysis includes several specifications for both the

deterministic part dt and the stochastic part xt.

While the zero-trend dt = 0 is the main benchmark, we consider several other trends

including sharp breaks and smooth changes of different shapes. The trend specifications

are presented in Table 1.2 and Figure 1.1. The parameter λ determines the size of the

break. Similar trend functions are also considered in Jones and Enders (2014) in order to

evaluate the performance of the unit root test by Enders and Lee (2012).

Table 1.2: Trend functions

type of the trend functional form
1 sharp break d(r) = λ · 1{r≤2/3}
2 u-shaped break d(r) = λ · 1{r≤1/4} + λ · 1{r>3/4}
3 continuous break d(r) = λ · (4r · 1{r>2/3} − 8/3)
4 u-shaped break in intercept d(r) = λ · (r1{r≤1/4} + (r − 1)1{1/4<r≤3/4} + r1{t>3/4})
5 LSTAR break d(r) = λ · (1 + exp(20(r − 0.75)))−1

6 offsetting LSTAR break d(r) = λ/(1 + exp(20(r − 0.2)))− 0.5λ/(1 + exp(20(r − 0.75)))
7 triangular break d(r) = λ · (2r1{r≤1/2} + 2(1− r)1{r>1/2})
8 Fourier break d(r) = λ · 0.5 cos(2πr)

Note: The functional form of the trend functions, which are considered in the Monte Carlo simulations, are presented. The
parameter λ determines the size of the trend.

The stochastic part xt is simulated both under the null hypothesis ρ = 1 and the

alternative hypothesis ρ = 0.9. For the errors ut, we consider an independent process as

well as the AR(1) process ut = 0.5ut−1+εt with standard normal innovations. Furthermore,

results with heteroskedastic innovations using the variance function σ2(r) = λ ·1{r≤2/3} are

presented. As noted by Müller and Elliott (2003), the power of a unit root test depends
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Figure 1.1: Plots of the trend functions
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Note: The plots of the of the trend functions from Table 1.2, which are considered in the Monte Carlo simulations, are
presented. The trend size is λ = 3.

on the initial condition. Thus, we consider both the zero initial condition x0 = 0 as well

as a random initial condition, where x0 =
∑T

k=1 ρ
T−k ε̃k is simulated from i.i.d. standard

normal innovations ε̃k.

For the small-b tests, we consider blocklengths of the form B = T γ with parameters

γ ∈ {0.5, 0.6, 0.7, 0.8}, and, for the fixed-b versions, we implement B = b · T with rela-

tive blocklengths b ∈ {0.2, 0.3, 0.4, 0.5}. Size and power results are presented for τ -SB

and τ -FB as well as for their pre-whitened and heteroskedasticity-robust versions. Both

fixed lag augmentation as well as a flexible lag augmentation determined by the BIC are

implemented. All empirical size levels are presented for a significance level of 5%, while

the power results are size-adjusted. The models are simulated with 100,000 repetitions

for sample sizes of T = 100 and T = 300.

In order to demonstrate the advantage of the fixed-b and small-b unit root tests, their

finite sample results are compared to those obtained by conventional unit root tests. As

the main benchmark, we consider the augmented Dickey-Fuller test by Said and Dickey

(1984) with constant trend specification (ADF henceforth), which is the t-test for the

hypothesis ϕ = 0 in the regression

∆yt = ϕyt−1 + β0 +

p∑
i=1

ξi∆yt−i + et.

Elliott et al. (1996) proposed detrending the series locally in the ADF regression. Let
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the deterministic trend function be given by the vector zt, and let c ∈ R. Furthermore,

let yc,t = yt − cyt−1 and Zc,t = zt − czt−1 for t ≥ 2, and let yc,1 = y1 and Zc,1 = z1. The

Dickey-Fuller GLS test is then the t-test for the hypothesis ϕ = 0 in the regression

∆ydt = ϕydt−1 +

p∑
i=1

ξi∆y
d
t−i + et,

where ydt = yt − β̂′zt and where β̂ is the OLS estimator from a regression of yc,t on Zc,t.

For the constant trend specification (DF-GLS henceforth), let zt = 1 and c = 7, and, for

the linear trend specification (DF-GLS-trend henceforth), zt = (1, t)′ and c = 13.5 are

considered. Elliott et al. (1996) showed that the Dickey-Fuller GLS test is optimal for the

zero initial condition x0 = 0.

An approach that does not assume a precise model for the trend component is that

developed by Enders and Lee (2012) (EL henceforth). A flexible Fourier form is used to

approximate smooth breaks in the trend function. Structural changes can be captured by

the low frequency components of a series. In its simplest form, Enders and Lee (2012)

considered the parametric trend model d(r) = α0 + γr + α1 sin(2πr) + β1 cos(2πr). More

frequencies could be included, but doing so could lead to an over-fitting problem. The

test works as follows: First, the auxiliary regression

∆yt = δ0 + δ1∆ sin(2πt/T ) + δ2∆ cos(2πt/T ) + vt

is considered with OLS estimates δ̂0, δ̂1, and δ̂2. This yields the detrended series

S̃t = yt − (y1 − δ̂0 − δ̂1 sin(2π
T

)− δ̂2 cos(2π
T

))− δ̂0t− (δ̂1 sin(2πt
T

) + δ̂2 cos(2πt
T

)).

Finally, the test statistic is given by the t-statistic for the null hypothesis ϕ = 0 in the

regression

∆yt = ϕS̃t−1 + β0 + β1∆ sin(2πt/T ) + β2∆ cos(2πt/T ) +

p∑
i=1

ξi∆S̃t−i + et.

For all tests, the lag augmentation order p is either fixed or flexibly determined by the

BIC with a maximum lag order of p∗ = b4 · (T/100)1/5c.
The results presented in Tables 1.3–1.5 indicate that the pooled tests are slightly

undersized for smaller sample sizes, where the size distortions become larger as the break

gets larger. However, for larger sample sizes, the size distortions decline. Overall, the size

levels are similar to those obtained from using the conventional unit root tests.
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Table 1.3: Size and size-adjusted powers under the zero-trend specification

zero initial condition random initial condition
T = 100 T = 300 T = 100 T = 300

ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9
i.i.d. errors – no lag augmentation (p=0)
τ -SB, B = T 0.5 0.057 0.294 0.056 0.845 0.056 0.281 0.058 0.838
τ -SB, B = T 0.6 0.057 0.351 0.057 0.952 0.057 0.334 0.058 0.948
τ -SB, B = T 0.7 0.054 0.409 0.056 0.989 0.052 0.394 0.057 0.987
τ -SB, B = T 0.8 0.040 0.445 0.045 0.997 0.039 0.420 0.046 0.996
τ -FB, B = 0.2T 0.049 0.390 0.049 0.991 0.047 0.378 0.051 0.989
τ -FB, B = 0.3T 0.051 0.428 0.049 0.996 0.050 0.410 0.050 0.995
τ -FB, B = 0.4T 0.053 0.443 0.050 0.997 0.051 0.421 0.051 0.996
τ -FB, B = 0.5T 0.053 0.452 0.050 0.997 0.052 0.422 0.051 0.997
ADF 0.054 0.310 0.052 0.995 0.053 0.334 0.052 0.996
DF-GLS 0.078 0.661 0.058 1.000 0.076 0.490 0.059 0.931
DF-GLS-trend 0.069 0.294 0.053 0.993 0.069 0.255 0.054 0.945
EL 0.061 0.117 0.054 0.761 0.061 0.113 0.054 0.736
AR(1) errors – fixed lag augmentation (p=1)

τ -SBPW, B = T 0.5 0.010 0.309 0.020 0.805 0.008 0.331 0.018 0.819
τ -SBPW, B = T 0.6 0.021 0.335 0.036 0.908 0.017 0.357 0.033 0.913
τ -SBPW, B = T 0.7 0.031 0.368 0.044 0.963 0.027 0.387 0.043 0.964
τ -SBPW, B = T 0.8 0.026 0.381 0.040 0.981 0.021 0.408 0.038 0.982
τ -FBPW, B = 0.2T 0.024 0.355 0.040 0.968 0.020 0.374 0.038 0.969
τ -FBPW, B = 0.3T 0.032 0.375 0.043 0.980 0.028 0.393 0.042 0.981
τ -FBPW, B = 0.4T 0.037 0.379 0.045 0.983 0.031 0.403 0.044 0.985
τ -FBPW, B = 0.5T 0.039 0.379 0.046 0.985 0.033 0.407 0.044 0.986
ADF 0.056 0.242 0.051 0.969 0.055 0.244 0.052 0.969
DF-GLS 0.077 0.589 0.058 1.000 0.079 0.522 0.059 0.990
DF-GLS-trend 0.071 0.239 0.052 0.968 0.069 0.229 0.053 0.951
EL 0.067 0.095 0.056 0.609 0.067 0.094 0.057 0.595
AR(1) errors – flexible lag augmentation where p is determined by BIC

τ -SBPW, B = T 0.5 0.004 0.357 0.015 0.837 0.003 0.397 0.013 0.850
τ -SBPW, B = T 0.6 0.015 0.366 0.032 0.913 0.011 0.395 0.029 0.921
τ -SBPW, B = T 0.7 0.026 0.387 0.042 0.960 0.020 0.414 0.040 0.962
τ -SBPW, B = T 0.8 0.023 0.394 0.039 0.978 0.017 0.425 0.037 0.979
τ -FBPW, B = 0.2T 0.019 0.377 0.039 0.964 0.014 0.406 0.036 0.967
τ -FBPW, B = 0.3T 0.028 0.389 0.043 0.976 0.023 0.415 0.040 0.978
τ -FBPW, B = 0.4T 0.034 0.389 0.044 0.980 0.027 0.423 0.043 0.982
τ -FBPW, B = 0.5T 0.036 0.385 0.046 0.981 0.029 0.421 0.043 0.983
ADF 0.058 0.240 0.051 0.967 0.057 0.242 0.052 0.967
DF-GLS 0.085 0.542 0.060 0.999 0.086 0.480 0.061 0.986
DF-GLS-trend 0.082 0.219 0.054 0.955 0.080 0.206 0.056 0.932
EL 0.106 0.089 0.066 0.573 0.107 0.087 0.066 0.559

Note: Simulation results are reported for 100,000 replications. The zero-trend dt = 0 is considered for all t = 1, . . . , T .
The AR(1) process is given by ut = 0.5ut−1 + εt. All innovations are simulated independently as standard normal random
variables. For the small-b and fixed-b tests, the lag order p refers to the pre-whitening scheme, and, for the conventional
tests, p is equal to the augmentation order. The random initial condition is simulated from T lagged innovations. For ρ = 1,
the rejection frequencies are based on the asymptotic critical values for a significance level of 5%, while, for ρ = 0.9, the
values are size-adjusted.

19



Table 1.4: Size and size-adjusted powers under different trends and i.i.d. errors (1/2)

T = 100, ρ = 1 T = 100, ρ = 0.9 T = 300, ρ = 1 T = 300, ρ = 0.9
λ = 3 λ = 9 λ = 3 λ = 6 λ = 9 λ = 3 λ = 9 λ = 3 λ = 6 λ = 9

sharp break
τ -SB, B = T 0.5 0.056 0.039 0.248 0.162 0.104 0.056 0.053 0.816 0.725 0.586
τ -SB, B = T 0.6 0.056 0.039 0.281 0.159 0.085 0.058 0.054 0.928 0.834 0.656
τ -SB, B = T 0.7 0.053 0.038 0.296 0.124 0.043 0.056 0.054 0.970 0.856 0.566
τ -SB, B = T 0.8 0.044 0.048 0.281 0.075 0.014 0.047 0.052 0.969 0.688 0.173
τ -FB, B = 0.2T 0.051 0.042 0.293 0.142 0.061 0.051 0.054 0.972 0.845 0.511
τ -FB, B = 0.3T 0.056 0.056 0.284 0.093 0.024 0.053 0.063 0.970 0.720 0.224
τ -FB, B = 0.4T 0.062 0.081 0.280 0.077 0.013 0.054 0.074 0.968 0.666 0.146
τ -FB, B = 0.5T 0.062 0.085 0.292 0.088 0.016 0.053 0.073 0.972 0.690 0.162
ADF 0.050 0.023 0.158 0.027 0.002 0.051 0.040 0.887 0.255 0.006
DF-GLS 0.078 0.065 0.364 0.056 0.003 0.058 0.058 0.983 0.630 0.063
DF-GLS-trend 0.069 0.057 0.238 0.134 0.060 0.053 0.053 0.965 0.793 0.414
EL 0.060 0.044 0.110 0.088 0.071 0.053 0.050 0.710 0.569 0.397
u-shaped break
τ -SB, B = T 0.5 0.055 0.022 0.213 0.113 0.069 0.057 0.046 0.785 0.615 0.413
τ -SB, B = T 0.6 0.056 0.022 0.231 0.098 0.049 0.058 0.047 0.898 0.694 0.397
τ -SB, B = T 0.7 0.057 0.025 0.209 0.052 0.016 0.055 0.048 0.945 0.630 0.197
τ -SB, B = T 0.8 0.040 0.018 0.252 0.065 0.017 0.046 0.044 0.941 0.443 0.046
τ -FB, B = 0.2T 0.053 0.026 0.232 0.080 0.031 0.050 0.050 0.946 0.587 0.147
τ -FB, B = 0.3T 0.056 0.033 0.231 0.059 0.017 0.051 0.054 0.940 0.442 0.048
τ -FB, B = 0.4T 0.052 0.025 0.252 0.066 0.018 0.050 0.046 0.929 0.418 0.040
τ -FB, B = 0.5T 0.045 0.010 0.243 0.061 0.018 0.047 0.031 0.922 0.377 0.032
ADF 0.046 0.011 0.178 0.056 0.019 0.049 0.030 0.911 0.381 0.045
DF-GLS 0.077 0.049 0.374 0.092 0.021 0.058 0.056 0.985 0.658 0.105
DF-GLS-trend 0.063 0.016 0.126 0.018 0.003 0.050 0.036 0.819 0.133 0.002
EL 0.064 0.053 0.108 0.090 0.076 0.055 0.057 0.703 0.547 0.377
continuous break
τ -SB, B = T 0.5 0.049 0.015 0.264 0.188 0.115 0.053 0.037 0.839 0.818 0.782
τ -SB, B = T 0.6 0.049 0.014 0.299 0.185 0.093 0.054 0.036 0.944 0.916 0.853
τ -SB, B = T 0.7 0.046 0.012 0.327 0.165 0.063 0.053 0.035 0.981 0.937 0.783
τ -SB, B = T 0.8 0.035 0.011 0.355 0.175 0.059 0.043 0.029 0.989 0.919 0.640
τ -FB, B = 0.2T 0.042 0.011 0.315 0.172 0.074 0.046 0.030 0.983 0.932 0.745
τ -FB, B = 0.3T 0.043 0.012 0.331 0.160 0.055 0.046 0.031 0.988 0.914 0.631
τ -FB, B = 0.4T 0.045 0.015 0.351 0.174 0.058 0.047 0.032 0.991 0.934 0.685
τ -FB, B = 0.5T 0.046 0.016 0.360 0.184 0.062 0.047 0.033 0.992 0.941 0.704
ADF 0.046 0.011 0.149 0.019 0.001 0.047 0.029 0.891 0.273 0.007
DF-GLS 0.064 0.016 0.381 0.064 0.004 0.055 0.035 0.984 0.663 0.088
DF-GLS-trend 0.061 0.022 0.215 0.091 0.026 0.050 0.036 0.956 0.712 0.260
EL 0.059 0.048 0.116 0.111 0.104 0.053 0.049 0.754 0.725 0.678
u-shaped break in intercept
τ -SB, B = T 0.5 0.053 0.018 0.209 0.108 0.063 0.056 0.043 0.784 0.607 0.403
τ -SB, B = T 0.6 0.054 0.018 0.221 0.088 0.042 0.057 0.043 0.897 0.680 0.373
τ -SB, B = T 0.7 0.055 0.019 0.194 0.042 0.012 0.054 0.043 0.940 0.592 0.158
τ -SB, B = T 0.8 0.039 0.015 0.238 0.054 0.013 0.045 0.040 0.933 0.381 0.027
τ -FB, B = 0.2T 0.052 0.021 0.214 0.065 0.025 0.049 0.045 0.941 0.538 0.108
τ -FB, B = 0.3T 0.054 0.026 0.214 0.046 0.012 0.051 0.050 0.931 0.382 0.027
τ -FB, B = 0.4T 0.051 0.020 0.238 0.054 0.012 0.049 0.042 0.923 0.364 0.024
τ -FB, B = 0.5T 0.043 0.008 0.237 0.057 0.014 0.047 0.029 0.919 0.340 0.022
ADF 0.043 0.007 0.118 0.012 0.001 0.047 0.026 0.785 0.075 0.000
DF-GLS 0.075 0.037 0.345 0.067 0.011 0.058 0.049 0.990 0.681 0.098
DF-GLS-trend 0.063 0.016 0.126 0.018 0.003 0.050 0.036 0.819 0.133 0.002
EL 0.064 0.053 0.108 0.090 0.076 0.055 0.057 0.703 0.547 0.377

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated independently as standard normal
random variables. The series are not pre-whitened. For ρ = 1, the rejection frequencies are based on the asymptotic critical
values for a significance level of 5%, while, for ρ = 0.9, the values are size-adjusted.
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Table 1.5: Size and size-adjusted powers under different trends and i.i.d. errors (2/2)

T = 100, ρ = 1 T = 100, ρ = 0.9 T = 300, ρ = 1 T = 300, ρ = 0.9
λ = 3 λ = 9 λ = 3 λ = 6 λ = 9 λ = 3 λ = 9 λ = 3 λ = 6 λ = 9

LSTAR break
τ -SB, B = T 0.5 0.052 0.022 0.269 0.211 0.145 0.055 0.043 0.840 0.826 0.800
τ -SB, B = T 0.6 0.051 0.020 0.308 0.209 0.115 0.056 0.042 0.945 0.926 0.883
τ -SB, B = T 0.7 0.047 0.017 0.332 0.171 0.063 0.053 0.038 0.983 0.949 0.835
τ -SB, B = T 0.8 0.036 0.014 0.348 0.161 0.048 0.044 0.032 0.988 0.907 0.598
τ -FB, B = 0.2T 0.043 0.016 0.325 0.189 0.086 0.048 0.034 0.984 0.944 0.795
τ -FB, B = 0.3T 0.045 0.016 0.334 0.160 0.053 0.047 0.034 0.987 0.908 0.612
τ -FB, B = 0.4T 0.047 0.018 0.346 0.163 0.048 0.048 0.036 0.988 0.904 0.571
τ -FB, B = 0.5T 0.048 0.020 0.355 0.171 0.051 0.049 0.037 0.989 0.907 0.574
ADF 0.049 0.019 0.179 0.037 0.004 0.050 0.037 0.926 0.416 0.030
DF-GLS 0.070 0.029 0.425 0.104 0.010 0.055 0.042 0.990 0.797 0.215
DF-GLS-trend 0.063 0.033 0.248 0.147 0.068 0.052 0.040 0.972 0.854 0.549
EL 0.059 0.046 0.115 0.112 0.106 0.053 0.050 0.751 0.716 0.666
offsetting LSTAR break
τ -SB, B = T 0.5 0.050 0.018 0.267 0.196 0.125 0.053 0.040 0.841 0.822 0.786
τ -SB, B = T 0.6 0.050 0.016 0.297 0.188 0.097 0.055 0.038 0.945 0.919 0.859
τ -SB, B = T 0.7 0.046 0.014 0.324 0.165 0.064 0.053 0.035 0.981 0.935 0.770
τ -SB, B = T 0.8 0.035 0.011 0.338 0.153 0.053 0.043 0.029 0.985 0.877 0.506
τ -FB, B = 0.2T 0.042 0.013 0.319 0.179 0.078 0.046 0.031 0.983 0.928 0.727
τ -FB, B = 0.3T 0.044 0.014 0.334 0.159 0.059 0.047 0.031 0.985 0.882 0.530
τ -FB, B = 0.4T 0.045 0.014 0.336 0.154 0.054 0.047 0.032 0.980 0.832 0.421
τ -FB, B = 0.5T 0.046 0.014 0.326 0.137 0.043 0.047 0.032 0.979 0.798 0.336
ADF 0.052 0.048 0.239 0.121 0.046 0.050 0.044 0.978 0.838 0.476
DF-GLS 0.068 0.023 0.385 0.079 0.008 0.055 0.039 0.969 0.532 0.049
DF-GLS-trend 0.061 0.018 0.191 0.061 0.011 0.049 0.033 0.932 0.532 0.088
EL 0.060 0.050 0.116 0.114 0.109 0.053 0.050 0.755 0.736 0.704
triangular break
τ -SB, B = T 0.5 0.051 0.020 0.267 0.204 0.136 0.055 0.042 0.840 0.822 0.793
τ -SB, B = T 0.6 0.050 0.019 0.308 0.205 0.114 0.056 0.041 0.945 0.924 0.879
τ -SB, B = T 0.7 0.047 0.016 0.339 0.191 0.083 0.054 0.039 0.983 0.951 0.829
τ -SB, B = T 0.8 0.036 0.012 0.346 0.172 0.065 0.045 0.032 0.983 0.871 0.526
τ -FB, B = 0.2T 0.043 0.015 0.331 0.200 0.097 0.048 0.034 0.984 0.945 0.788
τ -FB, B = 0.3T 0.046 0.016 0.343 0.184 0.075 0.048 0.035 0.983 0.880 0.555
τ -FB, B = 0.4T 0.046 0.016 0.347 0.171 0.065 0.048 0.034 0.977 0.817 0.418
τ -FB, B = 0.5T 0.047 0.016 0.349 0.170 0.063 0.048 0.034 0.982 0.838 0.441
ADF 0.052 0.043 0.231 0.098 0.025 0.051 0.046 0.971 0.768 0.331
DF-GLS 0.069 0.023 0.470 0.179 0.051 0.056 0.039 0.990 0.823 0.326
DF-GLS-trend 0.059 0.018 0.193 0.053 0.009 0.051 0.033 0.919 0.467 0.057
EL 0.060 0.055 0.116 0.113 0.113 0.053 0.050 0.760 0.755 0.746
Fourier break
τ -SB, B = T 0.5 0.048 0.014 0.258 0.176 0.098 0.053 0.037 0.841 0.820 0.779
τ -SB, B = T 0.6 0.048 0.012 0.284 0.160 0.071 0.054 0.035 0.944 0.914 0.839
τ -SB, B = T 0.7 0.044 0.010 0.301 0.130 0.043 0.052 0.032 0.980 0.914 0.658
τ -SB, B = T 0.8 0.033 0.007 0.310 0.115 0.033 0.042 0.026 0.974 0.743 0.250
τ -FB, B = 0.2T 0.041 0.009 0.299 0.144 0.054 0.046 0.028 0.981 0.895 0.578
τ -FB, B = 0.3T 0.042 0.009 0.304 0.120 0.037 0.046 0.027 0.974 0.762 0.279
τ -FB, B = 0.4T 0.043 0.009 0.309 0.114 0.033 0.046 0.028 0.963 0.673 0.185
τ -FB, B = 0.5T 0.044 0.009 0.308 0.113 0.032 0.046 0.028 0.968 0.690 0.187
ADF 0.049 0.027 0.203 0.065 0.010 0.049 0.037 0.955 0.623 0.140
DF-GLS 0.064 0.015 0.430 0.140 0.041 0.054 0.034 0.989 0.784 0.235
DF-GLS-trend 0.058 0.011 0.160 0.032 0.004 0.049 0.028 0.891 0.318 0.016
EL 0.061 0.061 0.117 0.117 0.117 0.054 0.054 0.761 0.761 0.761

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated independently as standard normal
random variables. The series are not pre-whitened. For ρ = 1, the rejection frequencies are based on the asymptotic critical
values for a significance level of 5%, while, for ρ = 0.9, the values are size-adjusted.
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Table 1.6: Size and size-adjusted powers under different trends and AR(1) errors

T = 100, ρ = 1 T = 100, ρ = 0.9 T = 300, ρ = 1 T = 300, ρ = 0.9
λ = 3 λ = 9 λ = 3 λ = 9 λ = 3 λ = 9 λ = 3 λ = 9

sharp break

τ -SBPW, B = T 0.5 0.004 0.004 0.296 0.150 0.015 0.011 0.797 0.643
τ -SBPW, B = T 0.6 0.015 0.013 0.310 0.152 0.031 0.028 0.888 0.759
τ -SBPW, B = T 0.7 0.027 0.027 0.323 0.131 0.042 0.041 0.943 0.798
τ -SBPW, B = T 0.8 0.026 0.038 0.320 0.092 0.040 0.046 0.958 0.674
τ -FBPW, B = 0.2T 0.021 0.024 0.320 0.143 0.039 0.043 0.947 0.787
τ -FBPW, B = 0.3T 0.035 0.051 0.322 0.109 0.045 0.059 0.956 0.692
τ -FBPW, B = 0.4T 0.042 0.075 0.319 0.094 0.047 0.064 0.958 0.657
τ -FBPW, B = 0.5T 0.043 0.075 0.323 0.109 0.048 0.061 0.960 0.672
u-shaped break

τ -SBPW, B = T 0.5 0.005 0.004 0.304 0.149 0.014 0.010 0.801 0.600
τ -SBPW, B = T 0.6 0.015 0.013 0.310 0.134 0.031 0.026 0.886 0.676
τ -SBPW, B = T 0.7 0.030 0.033 0.308 0.084 0.042 0.041 0.936 0.646
τ -SBPW, B = T 0.8 0.022 0.017 0.331 0.112 0.039 0.038 0.948 0.521
τ -FBPW, B = 0.2T 0.023 0.026 0.313 0.116 0.039 0.046 0.939 0.616
τ -FBPW, B = 0.3T 0.032 0.036 0.321 0.099 0.043 0.050 0.947 0.517
τ -FBPW, B = 0.4T 0.032 0.025 0.329 0.113 0.043 0.039 0.946 0.504
τ -FBPW, B = 0.5T 0.029 0.011 0.326 0.105 0.042 0.031 0.947 0.474
continuous break

τ -SBPW, B = T 0.5 0.004 0.003 0.332 0.180 0.015 0.013 0.825 0.737
τ -SBPW, B = T 0.6 0.014 0.010 0.340 0.182 0.031 0.029 0.904 0.830
τ -SBPW, B = T 0.7 0.025 0.018 0.350 0.170 0.042 0.038 0.952 0.862
τ -SBPW, B = T 0.8 0.022 0.016 0.359 0.174 0.038 0.036 0.970 0.847
τ -FBPW, B = 0.2T 0.018 0.013 0.348 0.176 0.038 0.034 0.956 0.858
τ -FBPW, B = 0.3T 0.027 0.020 0.355 0.164 0.042 0.039 0.968 0.841
τ -FBPW, B = 0.4T 0.032 0.025 0.357 0.174 0.044 0.041 0.972 0.859
τ -FBPW, B = 0.5T 0.034 0.027 0.357 0.181 0.046 0.042 0.973 0.868
LSTAR break

τ -SBPW, B = T 0.5 0.004 0.002 0.292 0.145 0.015 0.013 0.797 0.669
τ -SBPW, B = T 0.6 0.013 0.007 0.305 0.157 0.031 0.028 0.893 0.803
τ -SBPW, B = T 0.7 0.024 0.014 0.323 0.142 0.041 0.037 0.948 0.854
τ -SBPW, B = T 0.8 0.020 0.012 0.333 0.136 0.039 0.034 0.965 0.816
τ -FBPW, B = 0.2T 0.017 0.010 0.320 0.153 0.038 0.033 0.952 0.847
τ -FBPW, B = 0.3T 0.026 0.015 0.328 0.136 0.042 0.037 0.964 0.817
τ -FBPW, B = 0.4T 0.031 0.019 0.331 0.138 0.044 0.040 0.966 0.813
τ -FBPW, B = 0.5T 0.034 0.021 0.331 0.144 0.045 0.041 0.968 0.810
Fourier break

τ -SBPW, B = T 0.5 0.004 0.003 0.335 0.217 0.015 0.013 0.826 0.755
τ -SBPW, B = T 0.6 0.013 0.009 0.342 0.205 0.032 0.028 0.905 0.839
τ -SBPW, B = T 0.7 0.025 0.015 0.349 0.180 0.041 0.036 0.951 0.846
τ -SBPW, B = T 0.8 0.021 0.013 0.353 0.171 0.038 0.034 0.961 0.729
τ -FBPW, B = 0.2T 0.018 0.011 0.348 0.192 0.038 0.033 0.954 0.830
τ -FBPW, B = 0.3T 0.027 0.017 0.352 0.173 0.042 0.037 0.960 0.738
τ -FBPW, B = 0.4T 0.032 0.020 0.349 0.170 0.044 0.039 0.959 0.681
τ -FBPW, B = 0.5T 0.034 0.021 0.348 0.167 0.045 0.039 0.962 0.695

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated from ut = 0.5ut−1 + εt with
independent standard normal innovations, and the series are pre-whitened with a lag order that is determined from the
BIC. For ρ = 1, the rejection frequencies are based on the asymptotic critical values for a significance level of 5%, while, for
ρ = 0.9, the values are size-adjusted.
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Table 1.7: Size and size-adjusted powers of robust tests under constant trend and variance

iid errors, p = 0 AR(1) errors, p is chosen by BIC
T = 100 T = 300 T = 100 T = 300

ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9

τ -SBH, B = T 0.5 0.063 0.298 0.057 0.849 0.006 0.356 0.016 0.838
τ -SBH, B = T 0.6 0.064 0.355 0.059 0.953 0.018 0.365 0.033 0.913
τ -SBH, B = T 0.7 0.062 0.408 0.058 0.988 0.032 0.381 0.044 0.960
τ -SBH, B = T 0.8 0.049 0.434 0.048 0.996 0.032 0.380 0.042 0.976
τ -FBH, B = 0.2T 0.044 0.348 0.046 0.979 0.020 0.315 0.037 0.942
τ -FBH, B = 0.3T 0.046 0.386 0.047 0.989 0.028 0.331 0.042 0.960
τ -FBH, B = 0.4T 0.047 0.400 0.048 0.992 0.033 0.337 0.043 0.966
τ -FBH, B = 0.5T 0.049 0.402 0.048 0.993 0.034 0.337 0.044 0.970

Note: Simulation results are reported for 100,000 replications. All innovations are simulated independently as standard
normal random variables, and the initial condition is x0 = 0. The AR(1) process is given by ut = 0.5ut−1 + εt. For ρ = 1,
the rejection frequencies are based on the asymptotic critical values for a significance level of 5%, while, for ρ = 0.9, the
values are size-adjusted.

The power of the pooled tests depends on the blocklength. In case of no break, a larger

blocklength implies higher power results, which is in line with the theoretical findings

that those tests have power in a 1/
√
BT neighborhood of the unit root hypothesis. For

blocklengths of B = T 0.8 in the small-b case and B = 0.5T in the fixed-b case, the

power results are higher than for the ADF test and also larger than those obtained when

performing the Dickey-Fuller GLS test under a random initial condition. Hence, we do not

lose power under these small-sample specifications (although, asymptotically, those tests

have power in a 1/T neighborhood of the unit root hypothesis). Furthermore, smaller

sample sizes, such as T 0.6 in the small-b context and 0.3T in the fixed-b context, still yield

reasonably high power. In particular, the EL test performs much worse in all cases. The

size and power results obtained under the AR(1) error specification with both fixed and

flexible lag augmentation for the pre-whitening scheme are similar to those produced by

i.i.d. errors.

As the tests are designed to yield higher power in the presence of slowly varying trends

and breaks, we compare the size-adjusted powers of the tests under the trend specifications

presented in Table 1.2 and Figure 1.1. For large break sizes λ, it is shown that the smaller

the blocklength, the greater the power results. In most cases, the pooled tests have greater

power than the ADF, the DF-GLS, the DF-GLS-trend, and the EL test. Furthermore,

the power results of the pooled tests are quite uniform across different trend specifications

when compared to those of the conventional tests.

Table 1.6 shows that the pooled tests have reasonable size and power properties under

the presence of AR(1) errors and different trend specifications. Furthermore, from Tables

1.7 and 1.8, we can conclude that the heteroskedasticity-robust tests are sized correctly

and have good power properties in the presence of a break in the variance and in the trend

function.
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Table 1.8: Size and size-adjusted power of robust tests under breaks in trend and variance

T = 100 T = 300
ρ = 1 ρ = 0.9 ρ = 1 ρ = 0.9

λ = 2 λ = 3 λ = 2 λ = 3 λ = 2 λ = 3 λ = 2 λ = 3
sharp break in variance

τ -SBH, B = T 0.5 0.066 0.068 0.301 0.291 0.058 0.058 0.829 0.788
τ -SBH, B = T 0.6 0.072 0.075 0.358 0.347 0.062 0.062 0.941 0.916
τ -SBH, B = T 0.7 0.082 0.096 0.414 0.406 0.068 0.073 0.986 0.977
τ -SBH, B = T 0.8 0.085 0.124 0.443 0.433 0.082 0.116 0.997 0.996
τ -FBH, B = 0.2T 0.043 0.042 0.346 0.318 0.045 0.045 0.958 0.900
τ -FBH, B = 0.3T 0.044 0.043 0.384 0.350 0.047 0.045 0.977 0.930
τ -FBH, B = 0.4T 0.044 0.043 0.408 0.366 0.048 0.046 0.987 0.944
τ -FBH, B = 0.5T 0.043 0.042 0.417 0.379 0.046 0.047 0.993 0.968
sharp break in trend

τ -SBH, B = T 0.5 0.063 0.063 0.275 0.251 0.058 0.058 0.837 0.820
τ -SBH, B = T 0.6 0.063 0.064 0.322 0.281 0.060 0.060 0.942 0.928
τ -SBH, B = T 0.7 0.061 0.061 0.353 0.294 0.058 0.058 0.981 0.969
τ -SBH, B = T 0.8 0.058 0.068 0.347 0.267 0.049 0.050 0.988 0.967
τ -FBH, B = 0.2T 0.043 0.043 0.308 0.270 0.046 0.046 0.967 0.950
τ -FBH, B = 0.3T 0.045 0.045 0.320 0.264 0.048 0.048 0.974 0.949
τ -FBH, B = 0.4T 0.047 0.045 0.332 0.270 0.048 0.048 0.978 0.951
τ -FBH, B = 0.5T 0.047 0.044 0.341 0.286 0.048 0.048 0.981 0.957
sharp break in trend and variance

τ -SBH, B = T 0.5 0.067 0.068 0.283 0.256 0.059 0.058 0.816 0.767
τ -SBH, B = T 0.6 0.070 0.073 0.331 0.297 0.062 0.062 0.933 0.897
τ -SBH, B = T 0.7 0.080 0.091 0.372 0.334 0.068 0.072 0.979 0.959
τ -SBH, B = T 0.8 0.095 0.144 0.368 0.315 0.081 0.112 0.989 0.970
τ -FBH, B = 0.2T 0.043 0.042 0.316 0.278 0.046 0.045 0.947 0.875
τ -FBH, B = 0.3T 0.044 0.042 0.341 0.287 0.048 0.046 0.962 0.893
τ -FBH, B = 0.4T 0.044 0.042 0.350 0.290 0.048 0.047 0.967 0.889
τ -FBH, B = 0.5T 0.044 0.044 0.351 0.281 0.048 0.048 0.964 0.886

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated independently as standard normal
random variables, and the series are not pre-whitened. The sharp break specification is defined by a break in the variance
at 2/3 of the sample. For ρ = 1, the rejection frequencies are based on the asymptotic critical values for a significance level
of 5%, while, for ρ = 0.9, the values are size-adjusted.

The blocklength B is a tuning parameter that needs to be chosen carefully, and any

optimality result would depend on the actual trend model. In practice, however, the

trend model is unknown, which makes it hard to derive an optimal blocklength. Although

theoretical recommendations cannot be formulated based on the current analysis, the

small-b tests with B = T 0.7 and the fixed-b tests with T = 0.2B yield very promising

results for all trend functions studied in this paper and are therefore recommended as the

default settings. Moreover, the empirical power of τ -SB does not exceed the empirical

power of its heteroskedasticity-robust counterpart in the case of homoskedasticity. Hence,

the τ -SBH statistic can always be used in favor of τ -SB. The fixed-b statistic τ -FB has

slightly better power results than τ -FBH in the simulations.
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1.7 Empirical illustrations

In order to illustrate the application of the test procedures, we apply the unit root tests

to monthly annualized growth rates of the consumer price index. For monetary policy it

is crucial to know whether shocks to the inflation rate will have a permanent or transitory

effect. From an econometric point of view, the integrational properties of inflation rates

affect the choice of an appropriate model. It has been widely debated in the literature

whether inflation rates are I(1) or I(0). Early studies, such as that of MacDonald and

Murphy (1989), have shown that conventional Dickey-Fuller tests are often unable to reject

the unit root hypothesis for quarterly inflation rates. Evans and Lewis (1995), as well as

Ng and Perron (2001), also find strong evidence that inflation rates are nonstationary.

The work of Hassler and Wolters (1995), in which the authors used ARFIMA models for

monthly data, produces mixed results. In contrast, Rose (1988) finds that for 18 countries,

quarterly inflation rates are stationary. Using panel unit root tests, Lee and Wu (2001)

provide evidence that the inflation rates of 13 OECD countries do not contain a unit root.

Allowing for multiple breaks, Narayan and Narayan (2010) also find strong evidence for

stationarity.

Our dataset includes 25 countries with 576 observations covering the period from

1971:1 to 2018:12.2 The series is pre-whitened, where p is determined by the BIC using a

maximal lag order of p∗ = b4 · (T/100)1/5c. The small-b and fixed-b tests are then applied

using different blocklengths. The results of both the pooled tests and some benchmark

tests are presented in Table 1.9. For the conventional statistics, the augmented versions

are applied with the same value for p.

At a 10% significance level, the τ -SB test with B = T 0.7 rejects the unit root hypothesis

for 17 of 25 countries, and the τ -FB test with B = 0.2T does so for 14 countries, whereas

DF-GLS rejects H0 for 12 countries, and ADF rejects H0 only for five countries in the

dataset. Tests that are more robust to changes in the deterministic component reject the

hypothesis of a unit root more frequently than tests that assume a constant trend. Hence,

inflation rates might be stationary around a slowly varying trend that reflects different

regimes of monetary policy rather than a constant trend.

1.8 Conclusion

We have presented two variants of a unit root test under an unknown trend specification

that are robust under both heteroskedasticity and autocorrelation. When applied to finite

2Source: https://data.oecd.org/
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Table 1.9: Unit root tests applied to inflation rates

τ -SBPW τ -SBPW τ -FBPW τ -FBPW ADF DF-GLS EL
B = T 0.6 B = T 0.7 B = 0.2T B = 0.3T

AUT −0.37 −1.36∗ −1.12 −0.76 −1.81 −1.60 −2.84
BEL −1.62∗ −2.52∗∗∗ −1.95∗∗∗ −1.51∗∗ −2.67∗ −2.67∗∗∗ −3.67
CAN −0.13 −0.96 −0.58 −0.55 −1.72 −1.24 −2.41
CHE −0.23 −1.48∗ −1.37∗ −0.96 −2.38 −1.14 −3.19
DEU 0.13 −0.93 −1.05 −0.82 −2.03 −1.55 −2.80
DNK −2.31∗∗ −2.12∗∗ −1.15∗ −0.73 −1.95 −1.56 −3.92∗

ESP −0.12 −0.37 −0.06 0.07 −1.19 −1.15 −2.45
FIN 0.13 −1.14 −0.57 −0.33 −1.46 −1.47 −2.44

FRA 0.04 −0.37 −0.16 −0.15 −1.24 −1.20 −2.31
GBR −1.53∗ −1.92∗∗ −1.46∗∗ −1.03 −2.32 −1.96∗∗ −3.82∗

GRC −2.12∗∗ −1.96∗∗ −1.15∗ −0.78 −2.13 −1.90∗ −4.44∗∗

IDN −3.19∗∗∗ −3.12∗∗∗ −2.18∗∗∗ −1.99∗∗∗ −5.49∗∗∗ −4.75∗∗∗ −5.68∗∗∗

IND −3.11∗∗∗ −3.47∗∗∗ −2.73∗∗∗ −2.46∗∗∗ −6.03∗∗∗ −4.76∗∗∗ −6.05∗∗∗

ITA −0.95 −1.13 −0.60 −0.38 −1.56 −1.57 −3.24
JPN −1.13 −1.31∗ −0.73 −0.58 −2.13 −1.46 −3.20

KOR −2.02∗∗ −2.11∗∗ −1.57∗∗ −1.31∗ −2.89∗∗ −1.78∗ −4.56∗∗

LUX 1.42 −0.99 −0.71 −0.52 −1.85 −1.80∗ −2.60
MEX −2.05∗∗ −1.93∗∗ −1.76∗∗ −1.71∗∗ −3.14∗∗ −2.75∗∗∗ −4.21∗∗

NLD 0.66 −0.26 −0.24 −0.02 −1.55 −0.76 −2.28
NOR −1.39∗ −1.99∗∗ −1.27∗ −0.96 −2.10 −1.53 −4.07∗∗

PRT −1.70∗∗ −2.04∗∗ −0.93 −0.47 −1.83 −1.82∗ −3.75
SWE −1.61∗ −1.74∗∗ −1.40∗∗ −1.04 −2.04 −1.18 −4.38∗∗

TUR −1.76∗∗ −1.45∗ −1.29∗ −1.11∗ −2.34 −1.71∗ −3.74
USA −1.06 −1.57∗ −1.38∗∗ −1.24∗ −2.37 −2.13∗∗ −3.42
ZAF −2.37∗∗∗ −2.25∗∗ −1.52∗∗ −1.18∗ −2.26 −2.11∗∗ −5.03∗∗∗

Note: Unit root test statistics for 25 countries using data from 1971:1 until 2018:12 are reported. ADF is the augmented
Dickey-Fuller test with constant trend specification, DFGLS is the test developed by Elliott et al. (1996) with constant trend
specification, and EL is the test by Enders and Lee (2012). The asterisks *, **, and *** denote the significance at the 10%,
5%, and 1% level, respectively. The lag order p is determined by the BIC.

samples, the tests show good size properties. The fixed-b pooled test statistic converges

to a functional of a Brownian motion under the unit root hypothesis, while the small-b

variant shows a standard normal distribution in the limit. Both heteroskedasticity- and

autocorrelation-robust versions of the tests were introduced. Monte Carlo simulations

indicate that, while under the zero-trend specification, the fixed-b and small-b tests perform

similar to the conventional tests in terms of size and power, under sharp breaks as well as

smooth changes in the trend, their power is much higher. In terms of power, the small-b

tests with a blocklength of B = T 0.7 and the fixed-b tests with B = 0.2 · T perform well

for moderately varying trends.

From the point of view of a practitioner, the τ -SBH test has a number of advantages:

First, the distribution is standard normal; thus, there is no need to resort to new tables,

and p-values are easy to implement. Second, for the sample sizes used in the Monte Carlo

simulation, the power tends to be higher than for conventional unit root tests under many

trend specifications. Finally, the test is robust to heteroskedasticity.
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Appendix to Chapter 1

Proof of Lemma 1.1

Since d(r) is piecewise Lipschitz continuous on the unit interval, there are a finite number

of points where d(r) is not continuous. Let those points be given by {π1, . . . , πL}, where

0 < π1 < . . . < πL < 1, and L < ∞. We can represent d(r) by some function δ(r)

that is Lipschitz continuous on the entire domain. Then, for any r ∈ [0, 1], we obtain

d(r) = δ(r) +
∑L

l=1 λl1{r≥πl}, with
∑L

l=1 |λl| <∞. Let tl = bπlT c for l = 1, . . . , L, and let

δt = δ(t/T ) for t = 1, . . . , T . Then, dt = δt +
∑L

l=1 λl1{t≤tl}, and consequently,

∆dt+j = ∆δt +
L∑
l=1

λl1{t+j=tl}, dt+j−1 − dj = δt+j−1 − δj +
t−1∑
k=1

L∑
l=1

λl1{k+j=tl}.

Due to the Lipschitz continuity of δ(r), there exists a constant C1 <∞, such that

|∆dt+j| ≤ C1T
−1 +

L∑
l=1

|λl|1{t+j=tl}, |dt+j−1 − dj| ≤ C1BT
−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j=tl}.

There also exists a constant C2 < ∞, such that
∑L

l=1 |λl| ≤ C2. Furthermore, the error

variance is bounded with E[u2
t ] = σ2 <∞ for all t = 1, . . . , T . We then define the common

constant C = max{C1, C2, σ, 1} <∞.

Rearranging the model equation yields ∆xt = (ρ − 1)xt−1 + ut. For the numerator

statistic Y1,T , note that

∆yt+j(yt+j−1 − yj)−∆xt+j(xt+j−1 − xj)

= ∆dt+j(dt+j−1 − dj) + ∆dt+j(xt+j−1 − xj) + ∆xt+j(dt+j−1 − dj),

such that Y1,T −X1,T = S1 + S2 + S3, where

S1 =

∑T−B
j=1

∑B
t=2 ∆dt+j(dt+j−1 − dj)
B3/2T 1/2

, S2 =

∑T−B
j=1

∑B
t=2 ∆dt+j(xt+j−1 − xj)
B3/2T 1/2

,

S3 =

∑T−B
j=1

∑B
t=2 ∆xt+j(dt+j−1 − dj)
B3/2T 1/2

.

In what follows, we show that S1, S2, and S3 converge to zero in probability. For the first
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term, we obtain

|S1| ≤
1

B3/2T 1/2

T−B∑
j=1

B∑
t=2

(
CT−1 +

L∑
l=1

|λl|1{t+j=tl}
)(
CBT−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j=tl}

)
≤ 4C2B2T−1

B3/2T 1/2
= o(1).

For the second term, note that xt+j−1 − xj =
∑t−1

k=1 uk+j + (ρ − 1)xk+j−1. With the

MA-representation xt =
∑t−1

m=0 ρ
mut−m + x0, we then decompose S2 = S2,1 + S2,2, where

S2,1 =

∑T−B
j=1

∑B
t=2

∑t−1
k=1 ∆dt+juk+j

B3/2T 1/2
,

S2,2 =
(ρ− 1)

∑T−B
j=1

∑B
t=2

∑t−1
k=1

(∑k+j−2
m=0 ρmuk+j−1−m + x0

)
∆dt+j

B3/2T 1/2
.

Jensen’s inequality implies that

E[|S2,1|] ≤
∑B

t=2

∑t−1
k=1E[|

∑T−B
j=1 ∆dt+juk+j|]

B3/2T 1/2
≤

∑B
t=2

∑t−1
k=1

√
E[(
∑T−B

j=1 ∆dt+juk+j)2]

B3/2T 1/2

≤
C
∑B

t=2

∑t−1
k=1

√∑T−B
j=1 |∆dt+j|2

B3/2T 1/2
≤
C
∑B

t=2

√∑T−B
j=1

(
CT−1 +

∑L
l=1 |λl|1{t+j=tl}

)2

B1/2T 1/2

≤ 4C2

T 1/2
= o(1)

and

E[|S2,2|] ≤
(ρ− 1)

∑B
t=2

∑t−1
k=1E[|

∑T−B
j=1

∑k+j−2
m=0 ρm∆dt+juk+j−1−m|]

B3/2T 1/2
+
cC

T
E[|x0|]

≤
C(ρ− 1)

∑B
t=2

∑t−1
k=1

√∑T−B
j=1 ( 1

1−ρ)2|∆dt+j|2

B3/2T 1/2
+ o(1)

≤
C
∑B

t=2

√∑T−B
j=1 |∆dt+j|2

B1/2T 1/2
+ o(1) ≤ 2C2

T 1/2
+ o(1) = o(1).

Analogously, from ∆xt+j = ut+j + (ρ− 1)xt+j−1, we decompose S3 = S3,1 + S3,2, where

S3,1 =

∑T−B
j=1

∑B
t=2 ut+j(dt+j−1 − dj)
B3/2T 1/2

,

S3,2 =
(ρ− 1)

∑T−B
j=1

∑B
t=2

(∑t+j−2
m=0 ρmut+j−1−m + x0

)
(dt+j−1 − dj)

B3/2T 1/2
.
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Jensen’s inequality yields

E[|S3,1|] ≤

∑B
t=2

∑t−1
k=1

√
E[(
∑T−B

j=1 ut+j∆dk+j)2]

B3/2T 1/2
≤
C
∑B

t=2

∑t−1
k=1

∑T−B
j=1 |∆dk+j|2

B3/2T 1/2

≤
C
∑B

t=2

∑t−1
k=1

√∑T−B
j=1 (CT−1 +

∑L
l=1 |λl|1{k+j=tl})

2

B3/2T 1/2
≤ 4C2

T 1/2

as well as

E[|S3,2|] ≤
(ρ− 1)

∑B
t=2 E[|

∑T−B
j=1

∑t+j−2
m=0 ρmut+j−1−m(dt+j−1 − dj)|]

B3/2T 1/2
+

4cC2

T
E[|x0|]

≤
(ρ− 1)

∑B
t=2

√
E[(
∑T−B

j=1

∑t+j−2
m=0 ρmut+j−1−m(dt+j−1 − dj))2]

B3/2T 1/2
+ o(1)

≤
(ρ− 1)

∑B
t=2

√
4C4B
(1−ρ)2

B3/2T 1/2
+ o(1) ≤ 2C2

T 1/2
+ o(1) = o(1).

Consequently, E[|Y1,T −X1,T |] ≤ |S1|+ |S2|+ |S3| = o(1), and, by Markov’s inequality, it

follows that |Y1,T −X1,T | = oP (1). To show the second result, we analogously rewrite

(yt+j−1 − yj)2 − (xt+j−1 − xj)2 = (dt+j−1 − dj)2 + 2(xt+j−1 − xj)(dt+j−1 − dj)

and define

S4 =

∑T−B
j=1

∑B
t=2(dt+j−1 − dj)2

B2T
, S5 =

∑T−B
j=1

∑B
t=2 2(xt+j−1 − xj)(dt+j−1 − dj)

B2T
,

where Y2,T −X2,T = S4 + S5. For the first term, note that

|S4| ≤
1

B2T

T−B∑
j=1

B∑
t=2

(
CBT−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j=tl}

)2

≤ 4C2T−1 = o(1).

From (xt+j−1−xj) =
∑t−1

k=1 uk+j + (ρ− 1)xk+j−1 the second term is then decomposed into

S5 = S5,1 + S5,2, where

S5,1 =

∑T−B
j=1

∑B
t=2

∑t−1
k=1 2uk+j(dt+j−1 − dj)
B2T

,

S5,2 =
2(ρ− 1)

∑T−B
j=1

∑B
t=2

∑t−1
k=1(

∑k+j−2
m=0 ρmuk+j−1−m + x0)(dt+j−1 − dj)
B2T

.
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Jensen’s inequality yields

E[|S5,1|] ≤
2
∑B

t=2

∑t−1
k=1E[|

∑T−B
j=1 uk+j(dt+j−1 − dj)|]
B2T

≤
2
∑B

t=2

∑t−1
k=1

√
E[(
∑T−B

j=1 uk+j(dt+j−1 − dj))2]

B2T
≤

2C
∑B

t=2

√∑T−B
j=1 |dt+j−1 − dj|2

BT

≤
2C
∑B

t=2

√∑T−B
j=1 (CBT−1 +

∑t−1
k=1

∑L
l=1 |λl|1{k+j=tl})

2

BT
≤ 7C2

B1/2
= o(1)

and

E[|S5,2|] ≤
2(ρ− 1)

B2T

B∑
t=2

t−1∑
k=1

E
[∣∣∣ T−B∑

j=1

k+j−2∑
m=0

ρmuk+j−1−m(dt+j−1 − dj)
∣∣∣]+

4E[|x0|]cC
B

≤
2(ρ− 1)

∑B
t=2

∑t−1
k=1

√
E[(
∑T−B

j=1

∑k+j−2
m=0 ρmuk+j−1−m(dt+j−1 − dj))2]

B2T

≤
2(ρ− 1)

∑B
t=2

∑t−1
k=1

√
4C4B
(1−ρ)2

B2T
+ o(1) ≤ 2C2

B1/2
+ o(1) = o(1).

Hence, E[|Y2,T −X2,T |] ≤ |S4|+ |S5| = o(1), and, from Markov’s inequality, it follows that

|Y2,T −X2,T | = oP (1).

Proof of Lemma 1.2

From the representation ∆xt+j = ut+j + (ρ − 1)xt+j−1, we decompose the numerator

statistic into X1,T = S1 + S2 + S3 + S4, where

S1 =
T−B∑
j=1

B∑
t=2

t−1∑
k=1

ut+juk+j

B3/2T 1/2
, S2 =

T−B∑
j=1

B∑
t=2

t−1∑
k=1

(ρ− 1)ut+jxk+j−1

B3/2T 1/2
,

S3 =
T−B∑
j=1

B∑
t=2

t−1∑
k=1

(ρ− 1)uk+jxt+j−1

B3/2T 1/2
, S4 =

T−B∑
j=1

B∑
t=2

t−1∑
k=1

(ρ− 1)2xt+j−1xk+j−1

B3/2T 1/2
.

Note that S2 + S3 + S4 = 0 if c = 0. First, we show that S1 is the sum of the elements of

a martingale difference array. We rearrange

S1 =
B∑
t=1

t+T−B∑
j=t+1

t−1∑
k=1

ujuk+j−t

B3/2T 1/2
=

T∑
j=1

∑
t∈Ij

t−1∑
k=1

ujuj−k
B3/2T 1/2

=
T∑
j=1

qj,T ,
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where Ij = {t ∈ N : 1 ≤ t ≤ B, j + B − T ≤ t ≤ j − 1}. The elements of the

sum qj,T =
∑

t∈Ij

∑t−1
k=1

ujuj−k
B3/2T 1/2 form a martingale difference sequence for j ≤ T and

T ∈ N. Hence, we have E[S1] = 0 and V ar[S1] =
∑T

j=1E[q2
j,T ] = 1

B3T

∑T
j=1 E[q̃2

j,T ], where

q̃j,T = B3/2T 1/2qj,T . The index set can be expressed as

Ij =


{t ∈ N : 2 ≤ t ≤ j − 1} if j ∈ [1, B],

{t ∈ N : 2 ≤ t ≤ B} if j ∈ [B + 1, T −B],

{t ∈ N : j +B − T ≤ t ≤ B} if j ∈ [T −B + 1, T ].

Note that by mathematical induction on n, the identity

n∑
t=2

t−1∑
k=1

ak =
n−1∑
k=1

(n− k)ak (1.2)

holds true for any sequence (at)t∈N. For j ∈ [1, B], it follows that

q̃j,T =

j−1∑
t=2

t−1∑
k=1

ujuj−k =

j−1∑
k=1

(j − 1− k)uj−k =

j−2∑
k=1

kujuk+1, E[q̃2
j,T ] = σ4

j−2∑
k=1

k2.

Analogously, if j ∈ [B + 1, T −B], we obtain

q̃j,T =
B∑
t=2

t−1∑
k=1

ujuj−k =
B∑
k=1

(B − k)uj−k =
B−1∑
k=1

kujuj−B+k, E[q̃2
j,T ] = σ4

B−1∑
k=1

k2. (1.3)

If j ∈ [T −B + 1, T ], or, equivalently, if i ∈ [1, B] for i = j +B − T , we have

q̃2
i,T =

( B∑
t=i

t−1∑
k=1

ujuj−k

)2

=
( B∑
t=2

t−1∑
k=1

ujuj−k −
i−1∑
t=2

t−1∑
k=1

ujuj−k

)2

=
( B∑
k=1

(B − k)ujuj−k −
i−1∑
k=1

(i− 1− k)ujuj−k

)2

=
( B−1∑
k=1

kujuj−B+k

)2

+
( i−2∑
k=1

kujuT−B+k+1

)2

− 2
i−1∑
k=1

B∑
l=1

(i− 1− k)(B − l)u2
juj−kuj−l
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such that E[q̃2
i,T ] = σ4[

∑B−1
k=1 k

2 +
∑i−2

k=1[k2 − 2k(B − k)]]. Combining all cases yields

T∑
j=1

E[q̃2
j,T ] = σ4

[
(T −B)

B−1∑
k=1

k2 +
B∑
j=1

j−2∑
k=1

[4k2 − 2Bk]
]

=
σ4B(B − 1)

6
[(T −B)(2B − 1)− 2(B − 2)]

by the Gaussian summation formulas, and, consequently,

V ar[S1] = σ4 (T −B)(B − 1)(2B − 1)− 2(B − 1)(B − 2)

6B2T
.

It remains to show that S2 +S3 +S4 = c · (σ2/2 + oP (1)). Let C be the constant given by

C = max{E[u4
j ], σ

2, c, 1} <∞. Note that

T∑
m=0

|ρ|m =
1− |ρ|T+1

1− ρ
= (1− |ρ|T+1)

√
BT

c
= o(
√
BT ).

The second term then satisfies

E[|S2|] ≤
(ρ− 1)

∑B
t=2

∑t−1
k=1E[|

∑T−B
j=1

∑k+j−2
m=0 ρmuk+j−1−mut+j|]

B3/2T 1/2

≤
C2
∑B

t=2

∑t−1
k=1

√∑T−B
j=1

∑k+j−2
m=0 ρ2m

B2T
= o(1)

and, for the fourth term, we obtain

E[|S4|] ≤
(ρ− 1)2

∑B
t=2

∑t−1
k=1 E[|

∑T−B
j=1

∑t+j−2
m=0

∑k+j−2
l=0 ρmρlut+j−1−muk+j−1−l|]

B3/2T 1/2

≤
C3B2T

√
(
∑T

m=0 |ρ|m)2

B5/2T 3/2
= o(1).

Hence, by Markov’s inequality, S2 + S4 = oP (1). For the third term, we obtain

E[S3] = −
c
∑T−B

j=1

∑B
t=2

∑t−1
k=1

∑t+j−2
m=0 ρmE[uk+jut+j−1−m]

B2T

= −cσ
2(T −B)

∑B
t=2

∑t−1
k=1 ρ

k−1

B2T
= −cσ

2

2
+ o(1)
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and

E[S2
3 ] =

c2E[(
∑T−B

j=1

∑B
t=2

∑t−1
k=1

∑t+j−2
m=0 ρmuk+jut+j−1−m)2]

B4T 2

=
c2σ4(

∑B
t=2

∑t−1
k=1 ρ

k−1)2

B4
+ o(1) =

c2σ4

4
+ o(1).

Hence V ar[S3] = o(1), and, by Chebyshev’s inequality, it follows that S3 = cσ2/2 + oP (1).

To show (b), we decompose the denominator statistic into X2,T = S5 + S6 + S7, where

S5 =
1

B2T

T−B∑
j=1

B∑
t=2

( t−1∑
k=1

uj+k

)2

, S6 =
2(ρ− 1)

B2T

T−B∑
j=1

B∑
t=2

t−1∑
k=1

t−1∑
l=1

xj+k−1uj+l,

S7 =
(ρ− 1)2

B2T

T−B∑
j=1

B∑
t=2

( t−1∑
k=1

xj+k−1

)2

.

The first term satisfies E[S5] = 1
B2T

∑T−B
j=1

∑B
t=2

∑t−1
k=1 σ

2 = σ2 (T−B)(B−1)
2BT

and

V ar[S5] =
1

B4T 2
E

[( T−B∑
j=1

B∑
t=2

( t−1∑
k=1

uj+k
)2
)2
]

= O(BT−1).

Analogously to S2 and S4, we obtain

E[|S6|] ≤
2c
∑B

t=2

∑t−1
k=1

∑t−1
l=1 E[|

∑T−B
j=1

∑j+k−2
m=0 ρmuj+k−1−muj+l|]

B5/2T 3/2

≤ 2cB1/2

T 3/2
·O(T ) = O(B1/2T−1/2)

and

E[|S7|] ≤
c2
∑B

j=2

∑t−1
k,l=1E[|

∑T−B
j=1

∑j+k−2
m=0

∑j+l−2
n=0 ρm+nuj+k−1−muj+k−1−n|]

B3T 2

≤ c2

T 2
o(T 5/4B1/4) = o(1).

Since S6 = S7 = 0 if c = 0, the assertion follows.

Proof of Theorem 1.1

From the proof of Lemma 1.2, it follows that max1≤j≤T E[q2
j,T ] = O(T−1). Then, by

Jensen’s inequality, max1≤j≤T E[|qj,T |] = O(T−1/2) and therefore max1≤j≤T |qj,T |
p−→ 0.
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Furthermore, Lemma 1.2 yields E[X1,T ] = − cσ2

2
+ o(1) and

VT = V ar
[ T∑
j=1

qj,T

]
=
σ4

3
+ o(1).

The first result then follows from Lemmas 1.1 and 1.8. Furthermore, Lemma 1.2 implies

that E[X2,T ] = σ2/2+o(1) and that V ar[X2,T ] = o(1). By Chebyshev’s inequality together

with Lemma 1.1, the second result follows.

Proof of Theorem 1.2

We rewrite

∆xt+jxt+j−1 =
∆xt+j(xt+j−1 + xt+j −∆xt+j)

2

=
(xt+j − xt+j−1)(xt+j + xt+j−1)− (∆xt+j)

2

2
=
x2
t+j − x2

t+j−1 − (∆xt+j)
2

2

such that

B∑
t=2

∆xt+j(xt+j−1 − xj) =
B∑
t=1

x2
t+j − x2

t+j−1 − (∆xt+j)
2

2
−∆xt+jxj

=
1

2
(x2

j+B − x2
j)− (xj+Bxj − x2

j)−
1

2

B∑
t=1

(∆xt+j)
2 =

(xj+B − xj)2

2
− 1

2

B∑
t=1

(∆xt+j)
2.

Let YT (r) = T−1/2xbrT c for r ≥ 0. Then, with Lemma 1.1,

Y1,T = X1,T + oP (1) =

∑T−B
j=1 (xB+j − xj)2 −

∑T−B
j=1

∑B
t=1(∆xt+j)

2

2B3/2T 1/2

=

∫ 1−b
0

(YT (b+ r)− YT (r))2 dr − 1
T 2

∑T−B
j=1

∑B
t=1(∆xt+j)

2

2b3/2
+ oP (1).

From ∆xt = ut, it follows that

E

[
1

T 2

T−B∑
j=1

B∑
t=1

(∆xt+j)
2

]
=

1

T 2

T−B∑
j=1

B∑
t=1

E[u2
t+j] =

B(T −B)σ2

T 2
= b(1− b)σ2 + o(1),
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which implies that

Y1,T =

∫ 1−b
0

(YT (b+ r)− YT (r))2 dr − b(1− b)σ2

2b3/2
+ oP (1). (1.4)

Furthermore, Lemma 1.1 yields

Y2,T = X2,T + oP (1) =
1

b2

∫ 1−b

0

∫ b+r

r

(YT (s)− YT (r))2 ds dr + oP (1). (1.5)

The assertion follows from Lemma 1.7, together with the continuous mapping theorem.

Proof of Lemma 1.3

Since (1− ρ̂) = OP (B−1/2T−1/2) and xt = OP (T 1/2), the residuals satisfy

ût = yt − ρ̂yt−1 = ∆yt + (1− ρ̂)yt−1 = ∆dt + ut + (ρ− 1)xt−1 + (1− ρ̂)yt−1

= ut + ∆dt +OP (B−1/2).

Let uj = 1
B

∑B
k=1 uj+k and ∆dj = 1

B

∑B
k=1 ∆dj+k. Then, for t = 1, . . . , B,

T−B∑
j=1

(
ûj+t −

1

B

B∑
k=1

ûj+k

)2

=
T−B∑
j=1

(uj+t − uj + ∆dt+j −∆dj)
2 +OP (TB−1/2).

Then
∑T−B

j=1 (ûj+t− 1
B

∑B
k=1 ûj+k)

2 =
∑T−B

j=1 u2
j+t+oP (T ), where

∑T
j=1(∆dt)

2 = o(T ) holds

true due to the piecewise Lipschitz continuity of d(r). Consequently,

1

(T −B)(B − 1)

T−B∑
j=1

B∑
t=1

(
ûj+t −

1

B

B∑
k=1

ûj+k

)2

=
1

T

T−B∑
j=1

u2
j+t + oP (1) = σ2 + oP (1)

as B, T →∞ and B/T → 0. Under fixed-b asymptotics, we obtain

1

T

T∑
j=1

(ûj − û)2 =
1

T

T∑
j=1

u2
j + oP (1) = σ2 + oP (1),

as B/T → b, 0 < b < 1 and B, T →∞. The assertion follows from Slutsky’s theorem.
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Proof of Lemma 1.4

We follow the proof of Lemma 1.1, except that the variance is time-varying and bounded

with E[u2
t ] = σ2(t/T ) < C2

3 for some constant C3 < ∞. The common constant is given

by C = max{C1, C2, C3, 1} <∞, and the remaining steps follow analogously to the proof

of Lemma 1.1.

Proof of Theorem 1.3

We follow the proof of Lemma 1.2 and obtain S2 + S4 = oP (1), as well as

E[S3] = − c

B2T

T−B∑
j=1

B∑
t=2

t−1∑
k=1

ρt−k−1E[u2
k+j] = −

c
∫ 1

0
σ2(r) dr

B2

B∑
t=2

t−1∑
k=1

ρt−k−1 + o(1)

= − c
2

∫ 1

0

σ2(r) dr + o(1)

and V ar[S3] = o(1). Furthermore,

V ar[S1] =

∑T
j=1 E[q̃2

j,T ]

B3T
=

∑T−B
j=B+1

∑B−1
k=1 k

2E[u2
j ]E[u2

j−B+k]

B3T
+ o(1)

=

∫ T−B
T

B
T

∫ 1

0

s2σ2(r)σ2( j−b(1−s)Bc
T

) ds dr + o(1) =

∫ 1

0

∫ 1

0

s2σ4(r) ds dr + o(1)

=
1

3

∫ 1

0

σ4(r) dr + o(1).

Lemma 1.8 yields X1,T
d−→ N (− c

2

∫ 1

0
σ2(r) dr, 1

3

∫ 1

0
σ4(r) dr). For the denominator statis-

tic, we obtain S6 + S7 = oP (1) and

E[S5] =
1

B2T

T−B∑
j=1

B∑
t=2

t−1∑
k=1

σ2( j+k
T

) =
1

B2T

T−B∑
j=1

B−1∑
k=1

(B − k)σ2( j+k
T

)

=

∫ T−B
T

0

∫ 1

0

(1− s)σ2(r + sB
T

) ds dr + o(1) =

∫ 1

0

∫ 1

0

(1− s)σ2(r) ds dr + o(1)

=
1

2

∫ 1

0

σ2(r) dr + o(1),

while V ar[S5] = o(1). Then, following the proof of Theorem 1.1, result (a) follows with

Lemma 1.4.
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To show (b), we consider equation (1.4) under heteroskedasticity, which is given by

Y1,T =

∫ 1−b
0

(YT (b+ r)− YT (r))2 dr − b(1− b)σ2

2b3/2
+ oP (1),

where σ2 =
∫ 1

0
σ2(r) dr. Together with equation (1.5) and Lemma 1.7, the assertion

follows according to Slutsky’s theorem and the continuous mapping theorem.

Proof of Theorem 1.4

From the proof of Lemma 1.3, we have
∑T−B

j=1 (ûj+t− 1
B

∑B
k=1 ûj+k)

2 =
∑T−B

j=1 u2
j+t+oP (T )

and
∑bsT c

j=1 (ûj − û)2 =
∑bsT c

j=1 u
2
j + oP (T ), where s ∈ [0, 1]. Then, as B, T → ∞ and

B/T → 0, we obtain σ̂2
sb =

∫ 1

0
σ2(r) dr + oP (1) and κ̂2 =

∫ 1

0
σ4(r) dr + oP (1). Then, (a)

follows from the proof of Theorem 1.1. For (b), note that fixed-b asymptotics yield

1

T

bsT c∑
j=1

(
ûj −

1

bsT c

bsT c∑
k=1

ûk

)2

=

∫ s

0

σ2(r) dr + oP (1), s ∈ [0, 1],

as B/T → b, 0 < b < 1 and B, T → ∞. Then, σ̂2
fb =

∫ 1

0
σ2(r) dr + oP (1) follows with

s = 1. Furthermore, Slutsky’s theorem implies that η̂(s) = η(s) + oP (1) holds pointwise

for all s ∈ [0, 1]. Uniform convergence then follows by Dini’s theorem since both η̂(s)

and η(s) are continuous, monotone, and bounded. Following the notation of Lemma 1.7,

the statistic τ -FBH is a continuous functional of ỸT (r), and, analogously to the proof of

Theorem 1.2, the assertion follows with the continuous mapping theorem and Slutsky’s

theorem.

Proof of Lemma 1.5

Equation (1.1) can be rewritten as ∆yt = z′tβ + et, where zt = (∆yt−1, . . . ,∆yt−p, yt−1)′

and β = (β1, . . . , βp, ϕ)′ for t = p + 1, . . . , T . The least squares estimator for β is then

given by β̂ = (
∑T

t=p+1 ztz
′
t)
−1
∑T

t=p+1 zt∆yt. We derive a consistent estimator for the

coefficients (θ1, . . . , θp)
′ that is asymptotically equal to (β̂1, . . . , β̂p)

′. From Assumption

1.4, it follows that ∆yt = ∆dt + ∆xt = ∆dt + φxt−1 +
∑p

i=1 θiut−i + εt. Then, from ρ = 1,

we obtain ∆yt −∆d∗t = φyt−1 +
∑p

i=1 θi∆yt−i + εt, which can be equivalently rewritten as

∆yt − δt = z′tϑ + εt for t = p + 1, . . . , T , where ϑ = (θ1, . . . , θp, φ)′. The OLS estimator

is given by ϑ̂ = (
∑T

t=p+1 ztz
′
t)
−1
∑T

t=p+1 zt(∆yt − ∆d∗t ). Note that the estimator satisfies

p‖ϑ̂ − ϑ‖V = oP (1), where ‖ · ‖V is an arbitrary vector norm on Rp+1. In the following,

we show that p‖β̂ − ϑ̂‖V = oP (1). Note that β̂ − ϑ̂ = (
∑T

t=p+1 ztz
′
t)
−1
∑T

t=p+1 zt∆d
∗
t . For
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notational convenience, let θ0 = −1. Then, ∆d∗t = −
∑p

i=1 θi∆dt−i. Following the proof

of Lemma 1.1, there exists a constant C < ∞ such that the deterministic part satisfies

|∆d∗t | ≤
∑p

i=1 |θi|(CT−1 +
∑L

l=1 |λl|1{t−i=tl}), where
∑L

l=1 |λl| < C,
∑p

i=0 |θi| < pC and

0 ≤ tl ≤ 1 for l = 1, . . . , L. Then,

∥∥∥ p
T

T∑
t=p+1

zt∆d
∗
t

∥∥∥
V
≤ p

T

T∑
t=p+1

|∆d∗t |‖zt‖V

≤ p

T

T∑
t=p+1

p∑
i=0

|θi|
(
CT−1 +

L∑
l=1

|λl|1{t−i=tl}
)
‖zt‖V

≤ p

T 1/2

( C2

T 3/2

T∑
t=p+1

‖zt‖V +
1

pT 1/2

p∑
i=0

L∑
l=1

|θi||λl|‖ztl+i‖V
)

= OP (p2T−1/2) = oP (1).

Let ‖ · ‖M be the matrix norm induced by ‖ · ‖V . Then, ‖( 1
T

∑T
t=p+1 ztz

′
t)
−1‖M = OP (1)

and consequently p‖β̂ − ϑ̂‖V ≤ ‖( 1
T

∑T
t=p+1 ztz

′
t)
−1‖M ‖ pT

∑T
t=p+1 zt∆d

∗
t‖V = oP (1). The

triangle inequality then yields p‖β̂−ϑ‖ ≤ p‖β̂−ϑ̂‖V +‖ϑ̂−ϑ‖V = oP (1), and the assertion

follows by setting ‖ · ‖V equal to the maximum norm.

Proof of Lemma 1.6

For notational convenience, we define θ̂i = β̂i for i = 1, . . . , p and θ0 = θ̂0 = −1. The

pre-whitened series satisfy y∗t = −
∑p

i=0 θiyt−i, d
∗
t = −

∑p
i=0 θidt−i, x

∗
t = −

∑p
i=0 θixt−i,

and the estimated pre-whitened series are given by ŷ∗t = −
∑p

i=0 θ̂iyt−i, d̂
∗
t = −

∑p
i=0 θ̂idt−i,

and x̂∗t = −
∑p

i=0 θ̂ixt−i. From Lemma 1.5, it follows that (θ̂0, . . . , θ̂p)
′ p−→ (θ0, . . . , θp)

′.

Furthermore, the estimated pre-whitened series satisfies x̂∗t = x∗t +
∑p

i=0(θi − θ̂i)xt−i, and

ρ = 1 yields ∆x∗t = εt, as well as ∆x̂∗t = −
∑p

i=0 θ̂iut−i = εt +
∑p

i=0(θi− θ̂i)ut−i. Following

the proof of Lemma 1.1, there exists a common constant C ∈ [1,∞) such that

|∆d∗t+j| ≤
p∑
i=0

|θi||∆dt+j−i| ≤
p∑
i=0

|θi|
(
CT−1 +

L∑
l=1

|λl|1{t+j−i=tl}
)
,

|d∗t+j−1 − d∗j | ≤
p∑
i=0

|θi||dt+j−1−i − dj−i| ≤
p∑
i=0

|θi|
(
CBT−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j−i=tl}

)
,

where the discontinuity points are given by tl ∈ [0, 1] for l = 1, . . . , L. Furthermore, the

constant satisfies
∑L

l=1 |λl| < C and
∑p

i=0 |θi| < pC. The stationary error term has an MA

representation ut =
∑∞

m=0 ψmεt−m, where
∑∞

m=0 |ψm| ≤ C. The variance of εt is bounded
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with σ2(r) ≤ C2 for all r ≤ 1. Let

X̂ ∗1,T =
1

B3/2T 1/2

T−B∑
j=1

B∑
t=2

∆x̂∗t+j(x̂
∗
t+j−1 − x̂∗j), X̂ ∗2,T =

1

B2T

T−B∑
j=1

B∑
t=2

(x̂∗t+j−1 − x̂∗j)2.

In the first part of the proof, we show that |Ŷ∗1,T −X̂ ∗1,T | = oP (1) and |Ŷ∗2,T −X̂ ∗2,T | = oP (1).

We decompose Ŷ∗1,T − X̂ ∗1,T = S1 + S2 + S3 and Ŷ∗2,T − X̂ ∗2,T = S4 + S5, where

S1 =

∑T−B
j=1

∑B
t=2 ∆d̂∗t+j(d̂

∗
t+j−1 − d̂∗j)

B3/2T 1/2
, S2 =

∑T−B
j=1

∑B
t=2 ∆d̂∗t+j(x̂

∗
t+j−1 − x̂∗j)

B3/2T 1/2
,

S3 =

∑T−B
j=1

∑B
t=2 ∆x̂∗t+j(d̂

∗
t+j−1 − d̂∗j)

B3/2T 1/2

and

S4 =

∑T−B
j=1

∑B
t=2(d̂∗t+j−1 − d̂∗j)2

B2T
, S5 =

∑T−B
j=1

∑B
t=2 2(x̂∗t+j−1 − x̂∗j)(d̂∗t+j−1 − d̂∗j)

B2T
.

For S1, note that

T−B∑
j=1

B∑
t=2

|∆d̂∗t+j(d̂∗t+j−1 − d̂∗j)| ≤
p∑

i1,i2=0

T−B∑
j=1

B∑
t=2

|θ̂i1||θ̂i2||Ai1,i2,j,t|,

where Ai1,i2,j,t = (CT−1 +
∑L

l=1 |λl|1{t+j−i=tl})(CBT−1 +
∑t−1

k=1

∑L
l=1 |λl|1{k+j−i=tl}). From∑T−B

j=1

∑B
t=2 |Ai1,i2,j,t| ≤ 4C2B, it follows that |S1| ≤ 4C2

B1/2T 1/2 (
∑p

i=0 |θ̂i|)2 and that

E[|S1|] ≤
4C2

B1/2T 1/2

( p∑
i=0

|θi|
)2

+ o(1) = O(p2B−1/2T−1/2) = o(1).

For S2, note that

∣∣∣ T−B∑
j=1

B∑
t=2

∆d̂∗t+j(x̂
∗
t+j−1 − x̂∗j)

∣∣∣ =
∣∣∣ T−B∑
j=1

B∑
t=2

t−1∑
k=1

∆d̂∗t+j∆x̂
∗
k+j

∣∣∣
=
∣∣∣ T−B∑
j=1

B∑
t=2

t−1∑
k=1

p∑
i1,i2=0

θ̂i1 θ̂i2∆dt+j−i1uk+j−i2

∣∣∣
≤

B∑
t=2

t−1∑
k=1

p∑
i1,i2=0

∞∑
m=0

∣∣∣ψmθ̂i1 θ̂i2 T−B∑
j=1

∆dt+j−i1εk+j−i2−m

∣∣∣.
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Then,

E[|S2|] ≤
1

B3/2T 1/2

∞∑
m=0

p∑
i1,i2=0

B∑
t=2

t−1∑
k=1

|ψm|E
[∣∣∣θ̂i1 θ̂i2 T−B∑

j=1

∆dt+j−i1εk+j−i2−m

∣∣∣].
From the Cauchy-Schwarz inequality, it follows that

B∑
t=2

t−1∑
k=1

E
[∣∣∣θ̂i1 θ̂i2 T−B∑

j=1

∆dt+j−i1εk+j−i2−m

∣∣∣]

≤
√
E[θ̂2

i1
θ̂2
i2

]
B∑
t=2

t−1∑
k=1

√√√√E
[( T−B∑

j=1

∆dt+j−i1εk+j−i2−m

)2]

≤ |θi1θi2 + o(1)|
B∑
t=2

t−1∑
k=1

√√√√T−B∑
j=1

|∆dt+j−i1|2σ2
k+j−i2−m

≤ CB|θi1θi2 + o(1)|
B∑
t=2

√√√√T−B∑
j=1

(
CT−1 +

L∑
l=1

|λl|1{t+j−i1=tl}

)2

≤ 2C2B3/2|θi1θi2 + o(1)|.

Consequently, E[|S2|] ≤ 2C5p2

T 1/2 + o(1) = O(p2T−1/2) = o(1). For S3, note that

∣∣∣ T−B∑
j=1

∆x̂∗t+j(d̂
∗
t+j−1 − d̂∗j)

∣∣∣ =
∣∣∣ p∑
i1,i2=0

T−B∑
j=1

θ̂i1 θ̂i2ut+j−i1(dt+j−1−i2 − dj−i2)
∣∣∣

≤
p∑

i1,i2=0

∞∑
m=0

∣∣∣ψmθ̂i1 θ̂i2 T−B∑
j=1

εt+j−i1−m(dt+j−1−i2 − dj−i2)
∣∣∣.

Furthermore,

E
[( T−B∑

j=1

εt+j−i1−m(dt+j−1−i2 − dj−i2)
)2]

=
T−B∑
j=1

|dt+j−1−i2 − dj−i2|2σ2
t+j−i1−m

≤ C

T−B∑
j=1

(
CBT−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j−i2=tl}

)2

≤ 4C3B.
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From the Cauchy-Schwarz inequality, it follows that

E
[∣∣∣θ̂i1 θ̂i2 T−B∑

j=1

εt+j−i1−m(dt+j−1−i2 − dj−i2)
∣∣∣]

≤
√
E[θ̂2

i1
θ̂2
i2

]

√√√√E
[( T−B∑

j=1

εt+j−i1−m(dt+j−1−i2 − dj−i2)
)2]
≤ 2C3/2B|θi1θi2 + o(1)|.

Consequently,

E[|S3|] ≤
1

B3/2T 1/2

B∑
t=2

p∑
i1,i2=0

∞∑
m=0

|ψm|E
[∣∣∣θ̂i1 θ̂i2 T−B∑

j=1

εt+j−i1−m(dt+j−1−i2 − dj−i2)
∣∣∣]

≤ 2C3/2B

B3/2T 1/2

( p∑
i=0

|θi + o(1)|
)2

∞∑
m=0

|ψm| = O(p2B−1/2T−1/2) = o(1).

For S4, we obtain

|S4| ≤
1

B2T

B∑
t=2

T−B∑
j=1

( p∑
i=0

|θ̂i|
(
C2BT−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j−i=tl}

))2

≤ 4C4

T

( p∑
i=0

|θ̂i|
)2

,

which implies that E[|S4|] ≤ 4C4

T

(∑p
i=0 |θi|

)2

+ o(1) = O(p2T−1) = o(1). For the fifth

term, we obtain

|S5| ≤
2

B2T

p∑
i=0

B∑
t=2

t−1∑
k=1

∣∣∣ T−B∑
j=1

θ̂iuk+j−i(d̂
∗
t+j−1 − d̂∗j)

∣∣∣
≤ 2

B2T

p∑
i1,i2=0

∞∑
m=0

B∑
t=2

t−1∑
k=1

∣∣∣ T−B∑
j=1

ψmθ̂i1 θ̂i2εk+j−m−i1(dt+j−1−i2 − dj−i2)
∣∣∣.

Note that E[θ̂2
i1

] = θ2
i1

+ o(1) and E[θ̂2
i2

] = θ2
i2

+ o(1) and that

E
[( T−B∑

j=1

εk+j−m−i1(dt+j−1−i2 − dj−i2)
)2]

=
T−B∑
j=1

σ2
k+j−m−i1|dt+j−1−i2 − dj−i2|2

≤ C2

T−B∑
j=1

(
CBT−1 +

t−1∑
k=1

L∑
l=1

|λl|1{k+j−i2=tl}

)2

≤ 4C4B.
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Then, by the Cauchy-Schwarz inequality,

E[|S5|] ≤
4C2B1/2

B2T

p∑
i1,i2=0

∞∑
m=0

B∑
t=2

t−1∑
k=1

|ψm||θi1θi2 + o(1)| ≤ 4C5

B1/2
+ o(1) = o(1).

By Markov’s inequality, it follows that S1 +S2 +S3 = oP (1) and that S4 +S5 = oP (1). In

the second part of the proof, we show that |X̂ ∗1,T −X ∗1,T | = oP (1) and |X̂ ∗2,T −X ∗2,T | = oP (1).

Note that the estimated pre-whitened series satisfies x̂∗t = x∗t +
∑p

i=0(θi− θ̂i)xt−i such that

∆x̂∗t+j = ∆x∗t+j +
∑p

i=0(θi − θ̂i)∆xt+j−i as well as

x̂∗t+j−1 − x̂∗j = x∗t+j−1 − x∗j +

p∑
i=1

(θi − θ̂i)(xt+j−1−i − xj−1).

Then,

∆x̂∗t+j(x̂
∗
t+j−1 − x̂∗j)−∆x∗t+j(x

∗
t+j−1 − x∗j)

= (∆x̂∗t+j −∆x∗t+j)(x̂
∗
t+j−1 − x̂∗j) + ∆x∗t+j[(x̂

∗
t+j−1 − x̂∗j)− (x∗t+j−1 − x∗j)]

=

p∑
i=0

(θi − θ̂i)∆xt+j−i(x̂∗t+j−1 − x̂∗j) +

p∑
i=1

(θi − θ̂i)∆x∗t+j(xt+j−1−i − xj−1)

and

(x̂∗t+j−1 − x̂∗j)2 − (x∗t+j−1 − x∗j)2

=
( p∑
i=0

(θi − θ̂i)xt+j−1−i − xj−i
)2

− 2

p∑
i=0

(θi − θ̂i)(x∗t+j−1 − x∗j)(xt+j−1−i − xj−i).

Hence, we can decompose X̂ ∗1,T −X ∗1,T = S6 + S7, where

S6 =

∑T−B
j=1

∑B
t=2

∑p
i=0(θi − θ̂i)∆xt+j−i(x̂∗t+j−1 − x̂∗j)

B3/2T 1/2
,

S7 =

∑T−B
j=1

∑B
t=2

∑p
i=1(θi − θ̂i)∆x∗t+j(xt+j−1−i − xj−1)

B3/2T 1/2
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and X̂ ∗2,T −X ∗2,T = S8 + S9, where

S8 =

∑T−B
j=1

∑B
t=2(
∑p

i=0(θi − θ̂i)(xt+j−1−i − xj−i)2

B2T
,

S9 =

∑T−B
j=1

∑B
t=2

∑p
i=0 2(θi − θ̂i)(x∗t+j−1 − x∗j)(xt+j−1−i − xj−i)

B2T
.

Let Ai = p(θi − θ̂i). From Lemma 1.5, it follows that max1≤i≤pAi = oP (1). We then

rearrange the terms such that

S6 =
1

p

p∑
i=1

AiS6,i, S7 =
1

p

p∑
i=1

AiS7,i, S8 =
1

p2

p∑
i1,i2=1

Ai1Ai2S8,i1,i2 , S9 =
1

p

p∑
i=1

AiS9,i,

where

S6,i =

∑T−B
j=1

∑B
t=2(x̂∗t+j−1 − x̂∗j)ut+j−i
B3/2T 1/2

, S7,i =

∑T−B
j=1

∑B
t=2(xt+j−1 − xj)εt+j
B3/2T 1/2

,

S8,i1,i2 =

∑T−B
j=1

∑B
t=2

∑t−1
k1,k2=1 uk1+j−i1uk2+j−i2

B2T
,

S9,i =

∑T−B
j=1

∑B
t=2

∑t−1
k1,k2=1 εk1+juk2+j−i

B2T

with 0 ≤ i, i1, i2 ≤ p. From the Cauchy-Schwarz inequality, it follows that

E[|S6,i|] ≤
p∑

i2=0

∞∑
m1,m2=0

B∑
t=2

ψm1ψm2

|θi2 + o(1)|
B3/2T 1/2

√√√√( T−B∑
j=1

t−1∑
k=1

εt+j−i1−m1εk+j−i2−m2

)2

≤ 1

B3/2T 1/2
C3B
√
TBC4 = O(1)

and Jensen’s inequality yields

E[|S7,i|] ≤
1

B3/2T 1/2

∞∑
m=0

B∑
t=2

ψm

√√√√E
[( T−B∑

j=1

t−1∑
k=1

εt+jεk+j−m

)2]
≤ 1

B3/2T 1/2
CB
√
TBC4 = O(1).
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From E[(
∑T−B

j=1

∑t−1
k2=1 εk1+j−i1−m1εk2+j−i2−m2)

2] ≤ TBC4 and from Jensen’s inequality, it

follows that

E[|S8,i1,i2|] ≤
1

B2T

B∑
t=2

t−1∑
k1=1

∞∑
m1,m2=0

E
[∣∣∣ T−B∑

j=1

t−1∑
k2=1

ψm1ψm2εk1+j−i1−m1εk2+j−i2−m2

∣∣∣]
≤ C4 = O(1).

Finally, for the last term, we obtain

E[|S9,i|] ≤
2

B2T

B∑
t=2

t−1∑
k1=1

∞∑
m=0

E
[∣∣∣ T−B∑

j=1

t−1∑
k2=1

ψmεk1+jεk2+j−i−m

∣∣∣]

≤ 2

B2T

B∑
t=2

t−1∑
k1=1

∞∑
m=0

|ψm|

√√√√T−B∑
j=1

t−1∑
k2=1

σ2
k1+jσ

2
k2+j−i−m ≤ 2C3 = O(1).

Then, for any 0 ≤ i, i1, i2 ≤ p, we have S6,i = OP (1), S7,i = OP (1), S8,i1,i2 = OP (1),

and S9,i = OP (1), which follows from Markov’s inequality. By the law of large numbers,

it then follows that S6 + S7 = oP (1) and S8 + S9 = oP (1) Consequently, the triangle

inequality implies that |Ŷ∗1,T − X ∗1,T | ≤ |Ŷ∗1,T − X̂ ∗1,T | + |X̂ ∗1,T − X ∗1,T | = oP (1) as well as

|Ŷ∗2,T −X ∗2,T | ≤ |Ŷ∗2,T − X̂ ∗2,T |+ |X̂ ∗2,T −X ∗2,T | = oP (1).

Proof of Theorem 1.5

First, note that

ût = ŷ∗t − ρ̂∗ŷt−1 = ∆ŷ∗t + (1− ρ̂∗)ŷ∗t−1 = ∆d̂∗t + ∆x̂∗t + (1− ρ̂∗)ŷ∗t−1,

where ∆x̂∗t = εt + (ρ− 1)x∗t−1 +
∑p

i=1(θi − β̂i)xt−i. Then, for all s ∈ [0, 1],

ûbsT c = εbsT c + ∆d̂∗bsT c + (ρ− 1)x∗bsT c−1 +

p∑
i=1

(θi − β̂i)xbsT c−i + (1− ρ̂∗)ŷ∗bsT c−1

= εbsT c + oP (1),

which follows from the fact that p = o(T 1/4), ∆dbsT c = O(T ), (ρ − 1) = O(B−1/2T−1/2)

as well as ∆xbsT c = OP (1), max1≤i≤p p|β̂i − θi| = oP (1), (ρ̂∗ − 1) = OP (B−1/2T−1/2), and
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ŷbsT c = O(T 1/2). Let εj = 1
B

∑B
k=1 εj+k. Then, for any t = 1, . . . , B, we have

B∑
j=1

(
ût+j −

1

B

B∑
k=1

ûj+k

)2

=
T−B∑
j=1

(εt+j − εj)2 + oP (T ) =
T−B∑
j=1

ε2t+j + oP (T ).

Analogously,
∑bsT c

j=1 (ûj − û)2 =
∑bsT c

j=1 ε
2
j + oP (T ) for all s ∈ [0, 1]. Then, as B, T → ∞

and B/T → 0, we obtain

1

(T −B)(B − 1)

T−B∑
j=1

B∑
t=1

(
ûj+t −

1

B

B∑
k=1

ûj+k

)2

=

∫ 1

0

σ2(r) dr + oP (1),

1

(T −B)(B − 1)

T−B∑
j=1

B∑
t=1

(ûj − û)2
(
ûj+t −

1

B

B∑
k=1

ûj+k

)2

=

∫ 1

0

σ4(r) dr + oP (1)

and the consistency of σ̂∗2sb and κ̂∗2 follows by Slutsky’s theorem. For (b), note that fixed-b

asymptotics yields

1

T

bsT c∑
j=1

(
ûj −

1

bsT c

bsT c∑
k=1

ûk

)2

=

∫ s

0

σ2(r) dr + oP (1), s ∈ [0, 1],

as B/T → b, 0 < b < 1 and B, T → ∞. The consistency of σ̂∗2fb then follows with s = 1.

Furthermore, Slutsky’s theorem implies that (ii) holds pointwise. The uniform convergence

then follows by Dini’s theorem since both η̂(s) and η(s) are continuous, monotone, and

bounded.

Finally, since the pre-whitened numerator and denominator statistics (X ∗1,T ,X ∗2,T ) un-

der Assumption 1.4 have the same properties as (X1,T ,X2,T ) under Assumption 1.3, the

assertion follows with Lemma 1.6.

Central Limit Theorems

Lemma 1.7 (FCLTs). Let {ut}t∈N be independently distributed with E[ut] = 0, E[u2
t ] = σ2

t

and E[u4
t ] < ∞, and let σt = σ(t/T ), where the function σ(r) is càdlàg, non-stochastic,

strictly positive, and bounded. Let ρ = 1 − c/
√
BT with c ≥ 0. Let η̂(r) be a consistent

estimator for the variance profile η(r), and let x̃brT c = xbη̂−1(r)T c and ũbrT c = ubη̂−1(r)T c.

Let W (r) be a standard Brownian motion, and let Wη(r) = W (η(r)) be its variance-

transformed counterpart (see Davidson 1994, p.486). An Ornstein-Uhlenbeck process is

defined by Jc(r) =
∫ r

0
e−(r−s)cdW (s), and the variance-transformed Ornstein-Uhlenbeck
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process is defined by Jc,η(r) =
∫ r

0
e−(r−s)cdWη(s). Furthermore, let

XT (r) =

brT c∑
k=1

uk√
T
, YT (r) =

xbrT c√
T
, X̃T (r) =

brT c∑
k=1

ũk√
T
, ỸT (r) =

x̃brT c√
T
.

Let B/T → b, where 0 < b < 1. Then, (a) XT ⇒ σWη, (b) YT ⇒ σJc/b,η, (c) X̃T ⇒ σW ,

and (d) ỸT ⇒ σJc/b, as B, T → ∞, where σ2 =
∫ 1

0
σ2(r) dr is the average variance, and

where “ ⇒” denotes weak convergence on the càdlàg space D[0, 1] together with a suitable

norm.

Proof. Result (a) follows from Lemmas 1 and 2 in Cavaliere (2005). To show (b), we set

u0 = x0 for convenience. Note that a Taylor expansion around 0 yields e−x = 1−x+o(x),

which implies that ρ = 1 − c/
√
BT = exp(−c/

√
BT ) + o(1/

√
BT ). Then, with the

continuous mapping theorem, we obtain

1

σ
√
T
xbrT c =

brT c∑
k=0

ρbrT c−k
uk

σ
√
T

=

brT c∑
k=0

e−(brT c−k)c/
√
BT uk

σ
√
T

+ oP (1)

=

∫ r

0

e−(r−s)c/bdXT (s) + oP (1)⇒
∫ r

0

e−(r−s)c/bdWη(s) = Jc/b,η(r).

Result (c) follows by Theorem 1 in Cavaliere and Taylor (2008), and (d) follows analogously

to the proof of (b).

Lemma 1.8 (CLT for md-arrays). Let {{qj,T}1≤j≤T}T∈N be a martingale difference array

with VT = V ar[
∑T

j=1 qj,T ] <∞ and max1≤j≤T |qj,T |
p−→ 0. Then, as T →∞,

1√
VT

T∑
j=1

qj,T
d−→ N (0, 1).

Proof. The result follows from Theorem 24.3 in Davidson (1994).
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Chapter 2

Backward CUSUM for Testing and

Monitoring Structural Change

2.1 Introduction

Cumulative sums have become a standard statistical tool for testing and monitoring struc-

tural changes in time series models. The CUSUM test was introduced by Brown et al.

(1975) as a structural break test for the coefficient vector in the linear regression model

yt = x′tβt + ut with time index t. Under the null hypothesis, there is no structural

change, such that βt = β0 for all t = 1, . . . , T , while, under the alternative hypothesis,

the coefficient vector changes at unknown time T ∗, where 1 < T ∗ ≤ T .

Sequential tests, such as the CUSUM test, consist of a detector statistic and a critical

boundary function. The CUSUM detector sequentially cumulates standardized one-step

ahead forecast errors, which are also referred to as recursive residuals. The detector

is evaluated for each time point within the testing period, and, if its path crosses the

boundary function at least once, the null hypothesis is rejected.

A variety of retrospective structural break tests have been proposed in the literature.

Krämer et al. (1988) investigated the CUSUM test of Brown et al. (1975) under a more

general setting. The MOSUM tests by Bauer and Hackl (1978) and Chu et al. (1995) are

based on a moving time window of fixed length. A CUSUM test statistic that cumulates

OLS residuals was proposed by Ploberger and Krämer (1992), and Ploberger et al. (1989)

presented a fluctuation test based on a sequence of OLS estimates. Kuan and Hornik

(1995) studied generalized fluctuation tests. Andrews (1993) and Andrews and Ploberger

(1994) proposed a sup-Wald test, and the tests by Nyblom (1989) and Hansen (1992)

consider maximum likelihood scores instead of residuals.
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Since the seminal work of Chu et al. (1996), increasing interest has been focused on

monitoring structural stability in real time. Sequential monitoring procedures consist

of a detector statistic and a boundary function that are evaluated for periods beyond

some historical time span {1, 2, . . . , T}. It is assumed that there is no structural change

within the historical time period. The monitoring time span with t > T can either have

a fixed endpoint M < ∞ or an infinite horizon (see Figure 2.1). In the fixed endpoint

setting, the monitoring period starts at T +1 and ends at M , while the boundary function

depends on the ratio m = M/T . This setting is suitable if the length of the monitoring

period is known in advance. In case of an infinite horizon, the monitoring time span does

not need to be specified before the monitoring procedure starts. The null hypothesis of

no structural change is rejected whenever the path of the detector crosses some critical

boundary function for the first time. Leisch et al. (2000), Zeileis et al. (2005), and Wied

and Galeano (2013) proposed CUSUM-based monitoring procedures for a fixed endpoint,

whereas Chu et al. (1996), Horváth et al. (2004), and Aue et al. (2006) considered an

infinite monitoring horizon.

Figure 2.1: Retrospective testing and monitoring

0 T M

(You are here)•

retrospective fixed endpoint monitoring

infinite horizon monitoring

A drawback of the conventional retrospective CUSUM test is its low power, whereas the

conventional monitoring CUSUM procedure exhibits large detection delays. This is due

to the fact that the pre-break recursive residuals are uninformative, as their expectation is

equal to zero up to the break date, while the recursive residuals have a non-zero expectation

after the break. Hence, the cumulative sums of the recursive residuals typically contain a

large number of uninformative residuals that only add noise to the statistic. In contrast,

if one cumulates the recursive residuals backwards from the end of the sample to the

beginning, the cumulative sum collects the informative residuals first, and the likelihood

of exceeding the critical boundary will typically be larger than when cumulating residuals

from the beginning onwards. In this paper, we show that such backward CUSUM tests

may indeed have a much higher power and lower detection delay than the conventional
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forward CUSUM tests.

Another way of motivating the backward CUSUM testing approach is to consider

the simplest possible situation, where, under the null hypothesis, it is assumed that the

process is generated as yt = β + ut, with β and σ2 = V ar(ut) assumed to be known. We

are interested in testing the hypothesis, that at some time period T ∗, the mean changes

to some unknown value β∗ > 0. To test this hypothesis, we introduce the dummy variable

D∗t , which is unity for t ≥ T ∗ and zero elsewhere. For this one-sided testing problem,

there exists a uniform most powerful (UMP) test statistic, which is the t-statistic of the

hypothesis δ = 0 in the regression (yt − β) = δD∗t + ut:

τT ∗ =
1

σ
√
T − T ∗ − 1

T∑
t=T ∗

(yt − β).

If β is unknown, we may replace it by the full sample mean y, resulting in the backward

cumulative sum of the OLS residuals from period T through T ∗. Note that if T ∗ is

unknown, the test statistic is computed for all possible values of T ∗, whereas the starting

point of the backward cumulative sum T remains constant. Since the sum of the OLS

residuals is zero, it follows that the test is equivalent to a test based on the forward

cumulative sum of the OLS residuals. In contrast, if we replace β with the recursive mean

µt−1 = (t − 1)−1
∑t−1

i=1 yt, we obtain a test statistic based on the backward cumulative

sum of the recursive residuals (henceforth, backward CUSUM). In this case, however,

the test is different from a test based on the forward cumulative sum of the recursive

residuals (henceforth, forward CUSUM). This is due to the fact that the sum of the

recursive residuals is an unrestricted random variable. Accordingly, the two versions of

the test may have quite different properties. In particular, it turns out that the backward

CUSUM is much more powerful than the standard forward CUSUM at the end of the

sample. Accordingly, this version of the CUSUM test procedure is better suited for the

purpose of real-time monitoring, where it is crucial to be powerful at the end of the sample.

Furthermore, the conventional CUSUM test has no power against alternatives that do

not affect the unconditional mean of yt. In order to obtain tests that have power against

breaks of this kind, we extend the existing invariance principle for recursive residuals

to a multivariate version and consider a vector-valued CUSUM process instead of the

univariate CUSUM detector. For both retrospective testing and monitoring, we propose a

vector-valued sequential statistic in the fashion of the score-based cumulative sum statistic

of Nyblom (1989) and Hansen (1992). The application of a vector norm then yields a

detector and a sequential test, that has power against a much larger class of structural

49



breaks.

In Section 2.2, the limiting distribution of the multivariate CUSUM process is derived

under both the null hypothesis and local alternatives. Section 2.3 introduces the for-

ward CUSUM, the backward CUSUM, and the stacked backward CUSUM tests for both

retrospective testing and monitoring. While the backward CUSUM is only defined for

t ≤ T and can thus be implemented only for retrospective testing, the stacked backward

CUSUM cumulates recursive residuals backwardly in a triangular scheme and is therefore

suitable for real-time monitoring. In Section 2.4, the local powers of the tests are com-

pared. In the retrospective setting, the powers of the backward CUSUM and the stacked

backward CUSUM tests are substantially higher than that of the the conventional forward

CUSUM test if a single break occurs after one third of the sample size. In the case of

monitoring, the detection delay of the stacked backward CUSUM under local alternatives

is shown to be much lower than that of the monitoring CUSUM detector by Chu et al.

(1996). Furthermore, simulated critical values as well as Monte Carlo simulation results

are presented. Finally, Section 2.5 concludes.

2.2 The multivariate CUSUM process

We consider the multiple linear regression model

yt = x′tβt + ut, t ∈ N,

where xt = (1, xt2, . . . , xtk)
′ is the vector of regressor variables, and yt is the dependent

variable. The k×1 vector of regression coefficients βt depends on the time index t, and ut

is an error term. Let {(yt,x′t)′, 1 ≤ t ≤ T} be the set of historical observations, such that

the time point T divides the time horizon into the retrospective time period 1 ≤ t ≤ T

and the monitoring period t > T . We impose the following assumptions on the regressors

and the error term, which are common in the literature on CUSUM statistics and also

include the case of lagged dependent variables (see e.g. Krämer et al. 1988):

Assumption 2.1. (a) Let CT = T−1
∑T

t=1 xtx
′
t be the empirical covariance matrix,

and let ‖ · ‖M denote some matrix norm. Then, plimT→∞ ‖CT −C‖M = 0, where C

is a positive definite k × k matrix. Furthermore, there exists some δ > 0 such that

limT→∞ T
−1
∑T

t=1 E|xtj|2+δ <∞ for all j = 2, . . . , k.

(b) Let Ft be the σ-algebra generated by {(x′i+1, ui)
′, i ≤ t}. The error process {ut}

is a martingale difference sequence with respect to Ft, where E[ut|Ft−1] = 0 and
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E[u2
t |Ft−1] = σ2 with 0 < σ2 <∞.

Recursive residuals for linear regression models were introduced by Brown et al. (1975)

as standardized one-step ahead forecast errors. Let β̂t−1 =
(∑t−1

i=1 xix
′
i

)−1(∑t−1
i=1 xiyi

)
be

the OLS estimator at time t− 1. The recursive residuals are given by

wt =
yt − x′tβ̂t−1√

1 + x′t(
∑t−1

i=1 xix
′
i)
−1xt

, t ≥ k + 1,

and wt = 0 for t = 1, . . . , k.

For testing against structural changes in the regression coefficient vector, Brown et al.

(1975) introduced the sequential statistic Qt = (σ̂2T )−1/2
∑t

j=1 wj for t = 1, . . . , T , where

σ̂2 is a consistent estimator for σ2. In the monitoring context, Chu et al. (1996) considered

the detector statistic Qt−QT for t > T . The limiting behavior of the underlying empirical

process has been thoroughly analyzed in the literature. Under H0 : βt = β0 for all t ∈ N,

Sen (1982) showed that QbrT c = (σ̂2T )−1/2
∑brT c

j=1 wj converges weakly and uniformly to

a standard Brownian motion W (r) for r ∈ [0, 1], while Horváth et al. (2004) proved the

same result for r ≥ 1. Ploberger and Krämer (1990) studied local alternatives of the

form H1 : βt = β0 + T−1/2g(t/T ), where g(r) is piecewise constant and bounded. Let

µ = limT→∞(x1, . . . ,xk)
′ be the mean regressor, where xj is the sample mean of the j-th

component of the regressors, and let

h(r) =
1

σ

∫ r

0

g(z) dz − 1

σ

∫ r

0

∫ z

0

1

z
g(v) dv dz. (2.1)

The authors showed that QbrT c converges weakly and uniformly to W (r) + µ′h(r) for

r ∈ [0, 1]. As noted by Krämer et al. (1988), if the break vector g(r) is orthogonal to µ,

the limiting distributions under H0 and H1 coincide. Hence, if a break in the coefficient

vector does not affect the unconditional mean of yt, then the CUSUM tests of Brown et al.

(1975) and Chu et al. (1996) have no power against such an alternative.

Accordingly, for any fixed relative endpoint m <∞, we consider a multivariate cumu-

lative sum process of recursive residuals, which is defined as

QT (r) =
1

σ̂
√
T
C
−1/2
T

brT c∑
t=1

xtwt, r ∈ [0,m].

Following Krämer et al. (1988), the consistent estimator σ̂2 = (T −k−1)−1
∑T

j=1(wj−w)2

is considered. Note that QT (r) is a vector of piecewise constant processes, where its
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domain can be divided into the retrospective time period r ∈ [0, 1] and the monitoring

period r ∈ (1,m]. Hence, each component of QT (r) is in the space D([0,m]) of càdlàg

functions on the domain [0,m], and QT (r) is an element of the k-fold product space

D([0,m])k = D([0,m])× . . .×D([0,m]). The space is equipped with the Skorokhod metric

(see Billingsley 1999, p.166 and p.244), and the symbol “⇒” denotes weak convergence

with respect to this metric. The result presented below summarizes the limiting behavior

of QT (r) for both the retrospective and the monitoring time period under both H0 and

H1:

Theorem 2.1. Let {(xt, ut)}t∈N satisfy Assumption 2.1, let g(r) be piecewise constant and

bounded, and let βt = β0 + T−1/2g(t/T ) for all t ∈ N. Then, for any fixed and positive

m <∞,

QT (r)⇒W(r) +C1/2h(r), r ∈ [0,m],

as T → ∞, where W(r) is a vector of k independent standard Brownian motions and

h(r) is defined as in (2.1).

Note that the function g(r) is constant if and only if βt = β0 for all t ∈ N. Under

H0, we then obtain C1/2h(r) = 0, and thus QT (r) ⇒ W(r). By contrast, under a

local alternative with a non-constant break function g(r), it follows that h(r) is non-

zero, and, consequently, C1/2h(r) is non-zero, since C1/2 is positive definite. The limiting

distributions of QT (r) under both H0 and H1 thus coincide only for the trivial case where

g(r) is constant. Therefore, tests that are based on QT (r) have power against a larger

class of alternatives than the tests of Brown et al. (1975) and Chu et al. (1996).

2.3 CUSUM detectors

In this section, we consider sequential tests for both retrospective testing and monitoring

that are based on the multivariate CUSUM processes QT (r). The null hypothesis of no

structural change in the regression coefficient vector is formulated as H0 : βt = β0 for all

t ∈ T , where the testing period is given by

T =

{t ∈ N : 1 ≤ t ≤ T} in the retrospective context,

{t ∈ N : T < t ≤ bmT c} in the monitoring context.

The sequential tests consist of a detector statistic and a critical boundary function, in

which the detector is evaluated for each time point within the testing period, and, if its
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path crosses the boundary function at least once, the null hypothesis is rejected. While

m <∞ is fixed in advance when using the fixed endpoint monitoring scheme, in the infinite

horizon monitoring context, m can be set arbitrarily high and can be even increased during

the monitoring process. Furthermore, the non-contamination assumption βt = β0 for the

historical time period t = 1, . . . , T is imposed in the monitoring context. While the forward

CUSUM detectors for retrospective testing and monitoring are discussed in Section 2.3.1,

we introduce the backward CUSUM detector in Section 2.3.2 and the stacked backward

CUSUM detectors in Section 2.3.3. We make the following assumption on the boundary

function:

Assumption 2.2. The boundary function is of the form b(r) = λα ·d(r), where λα denotes

the critical value, which depends on the significance level α, and d(r) is a continuous

function that satisfies d(r) > C > 0 for some constant C for all r ≥ 0. Furthermore,

limr→∞
√
r ln(ln(r))/d(r) = 0.

While continuity and positivity of the boundary ensures the applicability of the con-

tinuous mapping theorem, the latter condition is motivated by the law of the iterated

logarithm and ensures, that the test statistics and its limits are bounded in probability.

2.3.1 Forward CUSUM

As an extension of the univariate CUSUM detector by Brown et al. (1975) we consider

the multivariate retrospective CUSUM detector

Qt,T = QT

(
t
T

)
=

1

σ̂
√
T
C
−1/2
T

t∑
j=1

xtwj, 1 ≤ t ≤ T.

The vector-valued detector is inspired by Hansen (1992)’s score-based cumulative sum

statistic. While Hansen (1992) considered OLS residuals and proposed averaging all entries

of the vector-valued cumulative sum, we consider recursive residuals and the maximum

vector entry. Let ‖a‖ = maxi=1,...,k |ai|, a = (a1, . . . , ak)
′ ∈ Rk, be the maximum norm.

The null hypothesis is rejected if the path of ‖Qt,T‖ exceeds the critical boundary function

bt = λα · d
(
t/T
)

for at least some time index within the retrospective testing period. The

critical value λα determines the significance level α such that

lim
T→∞

P
(
‖Qt,T‖ ≥ λα · d

(
t
T

)
for at least one index t = 1, . . . , T

∣∣H0

)
= α.
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Let Mret
Q = max1≤t≤T ‖Qt,T‖/d

(
t/T
)

denote the maximum statistic representation of the

CUSUM detector. The above condition can be equivalently expressed as

lim
T→∞

P (Mret
Q ≥ λα|H0) = α.

Hence, λα is the (1 − α) quantile of the limiting null distribution of Mret
Q . Note that

Mret
Q together with the critical value λα defines a one-shot test that is equivalent to the

sequential CUSUM test.

For real-time monitoring, we follow Chu et al. (1996) and define the multivariate

retrospective CUSUM detector as

Qmon
t,T = QT

(
t
T

)
−QT (1) =

1

σ̂
√
T

t∑
j=T+1

xtwj, t > T,

andH0 is rejected if its maximum norm ‖Qmon
t,T ‖ exceeds the boundary bt = λα·d

(
(t−T )/T

)
at least once for some t > T . For a fixed endpoint M = bmT c, where 1 < m < ∞,

let Mmon
Q,m = maxT<t≤mT ‖Qmon

t,T ‖/d
(
(t − T )/T

)
be the corresponding maximum statistic.

Under the null hypothesis of no structural change, the following limiting results can be

stated:

Theorem 2.2. Under Assumptions 2.1 and 2.2, and under H0 : βt = β0 for all t ∈ N, it

follows that

(a) Mret
Q

D−→ sup
r∈(0,1)

‖W(r)‖
d(r)

,

(b) Mmon
Q,m

D−→ sup
r∈(0,m−1)

‖W(r)‖
d(r)

D
= sup

r∈(0,m−1
m

)

‖B(r)‖
(1− r)d

(
r

1−r

) , 1 < m <∞,

(c) lim
m→∞

lim
T→∞

P
(
Mmon

Q,m ≤ λ
)

= P

(
sup
r∈(0,1)

‖B(r)‖
(1− r)d

(
r

1−r

) ≤ λ

)
, λ ∈ R,

as T → ∞, where W (r) is a vector of k independent standard Brownian motions and

B(r) is a vector of k independent standard Brownian bridges.

Remark 2.1. Note that Theorem 2.2(c) does not provide a uniform convergence result

for m,T → ∞. Since the typical proof strategy using a functional central limit theorem

together with the continuous mapping theorem cannot be applied in this case due to the

unboundedness of the test statistic for m = ∞, Aue et al. (2006), Fremdt (2015), and

Gösmann et al. (2019) imposed additional stochastic approximation conditions. Horváth
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et al. (2004) showed that under the assumption that the errors and the regressors are

independent across all leads and lags, the univariate CUSUM statistic of recursive residuals

satisfies these stochastic approximation conditions. However, in practice, Theorem 2.2(c)

is sufficient to define a conservative infinite horizon monitoring scheme for any arbitrary

large but fixed m < ∞, so that its type I error does not exceed the significance level α

asymptotically as T →∞. Let λα be the asymptotic critical value defined by

P

(
sup
r∈(0,1)

‖B(r)‖
(1− r)d

(
r

1−r

) ≥ λα

)
= α.

Then, under the null hypothesis, it follows that limT→∞ P (Mmon
Q,m ≥ λα) ≤ α, for any

m ∈ (1,∞), and limm→∞ limT→∞ P (Mmon
Q,m ≥ λα) = α. 4

While, for one-shot tests, the critical value determines the type I error, for sequen-

tial tests, the critical boundary involves two degrees of freedom. Besides the test size,

which is controlled asymptotically by an appropriately chosen value for λα, the shape of

the boundary determines the distribution of the first boundary crossing under the null

hypothesis, which is also referred to as the “distribution of the size” (see Anatolyev and

Kosenok 2018). Brown et al. (1975) suggested the linear boundary function

b(r) = λα(1 + 2r), (2.2)

which is our main benchmark. In this case, the retrospective maximum statistic satisfies

max
1≤t≤T

‖Qt,T‖
1 + 2

(
t
T

) D−→ sup
r∈(0,1)

‖W(r)‖
1 + 2r

under H0, as T →∞, whereas, for the monitoring maximum statistic, we obtain

max
T+1≤t≤mT

‖Qt,T‖
1 + 2

(
t
T

) D−→ sup
r∈(0,m−1

m
)

‖B(r)‖
1 + r

≤ sup
r∈(0,1)

‖B(r)‖
1 + r

. (2.3)

The linear boundary is widely applied in practice, but, as already noted by Brown

et al. (1975), the crossing probabilities cannot be constant for all potential relative crossing

time points r. The authors argued that it is more natural to consider a boundary that

is proportional to the standard deviation of the limiting process. Such a boundary is

given by the radical function b(r) = λα
√
r. As noted by Zeileis (2004), if there is a single

break in the middle or at the end of the retrospective sample, there is no power gain

using the radical boundary when compared to the linear boundary. Only in cases where

a break occurs at the beginning of the sample, some increased power may be observed.
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Another problem associated with the radical boundary is that it is not bounded away

from zero. In order to obtain critical values and avoid size distortions, some trimming

at the beginning of the sample in the fashion of the sup-Wald test by Andrews (1993) is

necessary. For infinite horizon monitoring, Chu et al. (1996) also considered a boundary

function of radical type, which is given by

b(r) =
√

(r + 1) ln
(
r+1
α2

)
. (2.4)

The boundary is based on a result on boundary crossing probabilities for the path of

Brownian motions. Robbins and Siegmund (1970) showed that

P
(
|W (r)| ≥

√
(r + 1) ln

(
r+1
α2

)
for some r ≥ 0

)
= α,

and the univariate monitoring CUSUM detector together with the radical boundary by

Chu et al. (1996) thus yields a sequential test that has size α, as m→∞. Anatolyev and

Kosenok (2018) derived a theoretical boundary that yields a uniformly distributed size.

However, their boundary has no closed form solution and is only valid for the univariate

retrospective and fixed endpoint monitoring cases. Furthermore, simulations, which are

omitted here, indicate that their approximative boundary does indeed yield a uniform

size distribution, but that the CUSUM test performs uniformly worse in terms of power

compared to the test when using the linear boundary of Brown et al. (1975). Note that

in the context of infinite horizon monitoring the size cannot be uniformly distributed.

2.3.2 Backward CUSUM

An alternative approach is to cumulate the recursive residuals in reversed order. Suppose

there is a single break point at time T ∗. Then, {wt, t < T ∗} are the residuals from

the pre-break period, and {wt, t ≥ T ∗} are those from the post-break period. The pre-

break residuals do not contain any information about the break and have mean zero. The

partial sum process T−1/2
∑t

j=1 wj has a random walk behavior for the pre-break period

t < T ∗, and cumulating those residuals brings nothing but noise to the detector statistic.

In contrast, under a structural break, the post-break residuals have nonzero mean and

reveal relevant information about a possible break. In order to focus on the post-break

residuals, we consider backwardly cumulated partial sums of the form T−1/2
∑t−1

j=0wT−j.
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Figure 2.2: Illustrative example for the backward CUSUM with a break in the mean
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Note: The process yt = µt + ut, t = 1, . . . , T , is simulated for T = 100 with µt = 0 for t < 75, µt = 1 for t ≥ 75, and i.i.d.
standard normal innovations ut. Since k = 1, the detectors are univariate, and the vector norm is simply the absolute value.
The bold solid line paths are the trajectories of |Qt,T | and |BQt,T |. In the background, the recursive residuals are plotted.
The dotted lines shows the linear boundary (2.2) with α = 5% and λα = 0.948.

We define the retrospective backward CUSUM detector as

BQt,T = QT (1)−QT

(
t−1
T

)
=

1

σ̂
√
T
C
−1/2
T

T∑
j=t

xtwj,

where 1 ≤ t ≤ T . The null hypothesis is rejected if the path of ‖BQt,T‖ exceeds the

boundary bt = λα · d
(
(T − t− 1)/T

)
for at least some time index t.

Theorem 2.3. Under Assumptions 2.1 and 2.2, and under H0 : βt = β0 for all t ∈ N, it

follows that

Mret
BQ = max

1≤t≤T

‖BQt,T‖
d
(
T−t+1
T

) D−→ sup
r∈(0,1)

‖W(r)‖
d(r)

as T →∞, where W (r) is a vector of k independent standard Brownian motions.

Using the same boundary as for the retrospective CUSUM, the limiting null distribu-

tions of their maximum statistics coincide. A simple illustrative example of the detector

paths together with the linear boundary of Brown et al. (1975) are depicted in Figure 2.2,

in which a process with k = 1 and a single break in the mean at 3/4 of the sample is

simulated.

Unlike the forward CUSUM detector, the backward CUSUM detector is not measurable

with respect to the filtration of available information at time t and is therefore not suitable

for a monitoring procedure. The path of ‖BQt,T‖ is only defined for t ≤ T , as its endpoint
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T is fixed.

2.3.3 Stacked backward CUSUM

In order to combine the advantages of the backward CUSUM with the measurability prop-

erties of the forward CUSUM for monitoring, we propose the stacked backward CUSUM

detector. Let

Mret
BQ(t) = max

1≤s≤t

‖QT

(
t
T

)
−QT

(
s−1
T

)
‖

d
(
t−s+1
T

)
be the backward CUSUM statistic with endpoint t. The idea is to compute this statistic

sequentially for each time point t = 1, . . . , T , yielding Mret
BQ(1), Mret

BQ(2), . . . ,Mret
BQ(T ).

The stacked backward CUSUM statistic is the maximum among this sequence of backward

CUSUM statistics. An important feature of this sequence is that it is measurable with

respect to the filtration of information at time t and Mret
BQ(t) can thus be adapted for

real-time monitoring.

The stacked backward CUSUM detector can be defined as

SBQs,t,T = QT

(
t
T

)
−QT

(
s−1
T

)
=

1

σ̂
√
T
C
−1/2
T

t∑
j=s

xtwj, 1 ≤ s ≤ t <∞.

Since the upper and the lower summation index of SBQs,t,T are both flexible with s ≤ t,

this induces a triangular scheme. H0 is rejected if ‖SBQs,t,T‖ exceeds the two-dimensional

boundary bs,t = λα ·d
(
(t−s+1)/T

)
for some s and t with 1 ≤ s ≤ t ≤ T , or, equivalently,

if the double maximum statistic

Mret
SBQ = max

1≤t≤T
Mret

BQ(t) = max
1≤t≤T

max
1≤s≤t

‖SBQs,t,T‖
d
(
t−s+1
T

)
exceeds λα.

The backward CUSUM maximum statistic Mret
BQ(t) is itself a sequential statistic.

Stacking all those maximum statistics on one another leads to an additional maximum

and a double supremum in the limiting distribution. The stacked backward CUSUM uses

the recursive residuals in a multiple way such that the set over which the maximum is

taken has many more elements than the forward CUSUM and the backward CUSUM. For

t = 1 only w1 is cumulated, for t = 2 the residuals w2 and w1 are cumulated, for t = 3 we

consider w3, w2, and w1, and so forth. A similar procedure was proposed by Dette and

Gösmann (2019) in the context of likelihood ratio (LR) tests for change point detection.
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Their detector is given by the maximum of a triangular array of LR statistics, which also

leads to a double maximum statistic.

The triangular detector can also be monitored on-line across all the time points t > T .

The null hypothesis is rejected if ‖SBQs,t,T‖ exceeds bs,t = λα · d
(
(t− s + 1)/T

)
at least

once for some s and t with T < s ≤ t. Analogously to the retrospective case, let

Mmon
BQ (t) = max

T<s≤t

‖SBQs,t,T‖
d
(
t−s+1
T

)
be the sequence of backward CUSUM maximum statistics for t > T , and let

Mmon
SBQ,m = max

T<t≤bmT c
Mmon

BQ (t) = max
T<t≤bmT c

max
T<s≤t

‖SBQs,t,T‖
d
(
t−s+1
T

)
be its maximum statistic for some fixed endpoint m ∈ (1,∞).

Theorem 2.4. Under Assumptions 2.1 and 2.2, and under H0 : βt = β0 for all t ∈ N, it

follows that

(a) Mret
SBQ

D−→ sup
r∈(0,1)

sup
s∈(0,r)

‖W(r)−W(s)‖
d(r − s)

,

(b) Mmon
SBQ,m

D−→ sup
r∈(0,m−1)

sup
s∈(0,r)

‖W(r)−W(s)‖
d(r − s)

D
= sup

r∈(0,m−1
m

)

sup
s∈(0,r)

‖(1− s)B(r)− (1− r)B(s)‖
(1− r)(1− s)d

(
r−s

(1−r)(1−s)

) , 1 < m <∞,

(c) lim
m→∞

lim
T→∞

P
(
Mmon

SBQ,m ≤ λ
)

= P

(
sup
r∈(0,1)

sup
s∈(0,r)

‖(1− s)B(r)− (1− r)B(s)‖
(1− r)(1− s)d

(
r−s

(1−r)(1−s)

) ≤ λ

)
,

λ ∈ R,

as T → ∞, where W (r) is a vector of k independent standard Brownian motions and

B(r) is a vector of k independent standard Brownian bridges.

Analogously to the forward CUSUM, for the linear boundary of Brown et al. (1975),

it follows that, for any m ∈ (1,∞),

max
T+1≤t<mT

max
T≤s≤t−1

‖SBQmon
s,t,T‖

1 + 2( t−s
T

)

D−→ sup
r∈(0,m−1

m
)

sup
s∈(0,r)

‖(1− s)B(r)− (1− r)B(s)‖
(1− r)(1− s) + 2(r − s)

≤ sup
r∈(0,1)

sup
s∈(0,r)

‖(1− s)B(r)− (1− r)B(s)‖
(1− r)(1− s) + 2(r − s)

(2.5)

under H0, as T →∞.
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2.4 Simulations

In this section, we compare both the asymptotic and finite sample properties of the tests.

While in Section 2.4.1 local asymptotic power an local asymptotic mean delay curves are

simulated, we present simulation results on the finite sample size and power in Section

2.4.2. Furthermore, asymptotic critical values for the tests are provided.

2.4.1 Local asymptotic power and delay

In order to illustrate the advantages of the backward CUSUM and the stacked backward

CUSUM tests, we consider the simple model yt = βt + ut with a local break in the mean.

Let the mean be given by βt = β0 + T−1/2g(t/T ), where g(r) is a piecewise constant and

bounded function. Note that in this case the multivariate CUSUM process coincides with

the univariate CUSUM process QbrT c. Furthermore, note that the covariance matrix C is

equal to unity, and the vector norm for k = 1 is simply the absolute value. Theorem 2.1

yields QT (r)⇒ W (r) + h(r), where

h(r) =
1

σ

∫ r

0

g(z) dz − 1

σ

∫ r

0

∫ z

0

1

z
g(v) dv dz,

and together with the continuous mapping theorem, it follows that

Mret
Q

D−→ sup
r∈(0,1)

|W (r) + h(r)|
d(r)

,

Mret
BQ

D−→ sup
r∈(0,1)

|W (r) + h(1)− h(1− r)|
d(r)

,

Mret
SBQ

D−→ sup
r∈(0,1)

sup
s∈(0,r)

|W (r)−W (s) + h(r)− h(s)|
d(r − s)

,

as T → ∞. While, under H0, the limiting distributions for the retrospective forward

CUSUM and the retrospective backward CUSUM coincide, they differ from each other

under the alternative. The maximum statistics in the fixed endpoint monitoring case

satisfy

Mmon
Q,m

D−→ sup
r∈(0,m−1)

|W (r) + h(r + 1)− h(1)|
d(r)

,

Mmon
SBQ,m

D−→ sup
r∈(0,m−1)

sup
s∈(0,r)

|W (r)−W (s) + h(r + 1)− h(s+ 1)|
d(r − s)

,

as T →∞.
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Figure 2.3: Asymptotic local power curves for retrospective testing
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Note: The plots show simulated local power curves. While, for the plots at the top and the first two plots at the bottom, the
break location is fixed with r∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and local break sizes c/σ are shown on the x-axis, for the last plot,
the local break size is fixed with c/σ = 10, and the breakpoint locations r∗ are given on the x-axis. The linear boundary
(2.2) is implemented for a significance level of α = 5%.

Generally, none of the tests can be shown to be uniformly more powerful in comparison

to the other tests. However, we can compare the tests under particular alternatives. We

consider a single break in the mean, where the break function is given by g(r) = c · 1{r≥r∗}
and r∗ denotes the break location. Then,

h(r) =
c

σ

∫ r

r∗
dz − c

σ

∫ r

0

∫ z

r∗

1

z
dv dz =

cr∗

σ

∫ r

r∗

1

z
dz =

cr∗(ln(r)− ln(r∗))1{r≥r∗}
σ

.

Simulated asymptotic local power curves under the limiting distribution at a 5% sig-

nificance level are presented in Figure 2.3 for the retrospective case. The Brownian mo-

tions are approximated on a grid of 1,000 equidistant points, and the linear boundary

d(r) = 1 + 2r is implemented. The size-adjusted rejection rates are obtained from 100,000

Monte Carlo repetitions for different break locations. The plots show that for a sin-

gle break that is located after 15% of the sample size, the backward CUSUM and the

stacked backward CUSUM clearly outperform the forward CUSUM in terms of power.
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The backward CUSUM performs best for r∗ > 0.3, while the stacked backward CUSUM

outperforms the other two tests if the break is located at around 1/5 of the sample size.

For the monitoring case with fixed endpoint m = 2, the local power curves of the

forward CUSUM test and the stacked backward CUSUM test have exactly the same

shape as in the retrospective case. The monitoring local power curve for a break at

r∗ ∈ (1, 2) then coincides with the corresponding retrospective curve in Figure 2.3 with

a single break at r∗ − 1. Hence, the power of the stacked backward CUSUM is always

higher than that of the forward CUSUM if r∗ ≥ 1.15. However, the delay between the

actual break and the detection time point is a much more important performance measure

for monitoring detectors than the power itself, since every fixed nontrivial alternative will

be detected if the monitoring horizon is long enough. Let τ be the stopping time of the

time point of the first boundary crossing, and let the mean local relative delay be given

by E
[
τ/T |r∗ ≤ τ/T ≤ m

]
− r∗.

Figure 2.4 presents the simulated mean local relative delay curves for the fixed endpoint

m = 4 for Mmon
SBQ,4 with the linear boundary, for Mmon

Q,4 with the linear boundary, and

for Mmon
Q,4 with the radical boundary by Chu et al. (1996). The mean local relative

delay of the stacked backward CUSUM is much lower than that of the forward CUSUM.

Furthermore, the mean local relative delay is constant across different break locations,

with the exception of breaks that are located at r∗ < 1.15.

Moreover, we compare the asymptotic distributions of the size, which is the distribution

of the time point of the first boundary crossing under H0. Figure 2.5 presents histograms

of the asymptotic size distributions for retrospective testing under the linear boundary.

For the forward CUSUM, the highest rejection rates under H0 are obtained at relative

locations between 0.15 and 0.4 of the sample. For the backward CUSUM, the picture is

mirror-inverted, such that most weight is put on rejections at relative locations between

0.6 and 0.85. The distribution for the forward CUSUM is right-skewed, whereas, for the

backward CUSUM, it is left-skewed. For the stacked backward CUSUM, the distribution

is much closer to a uniform distribution, although it is slightly left-skewed. Note that

the size distributions provide information about the location of false rejections, but, when

comparing Figure 2.3 with Figure 2.5, it is reasonable to assume that this is also related to

the distribution of the power across different time points. There is no consensus on which

distribution should be preferred, as whether one wishes to put more weight on particular

regions of time points of rejection depends on the particular application. However, Zeileis

et al. (2005) and Anatolyev and Kosenok (2018) argue that if no further information is

available, one might prefer a uniform distribution to a skewed one. Figure 2.6 presents the

distributions of the size for the fixed monitoring horizon with m = 10. The distribution
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Figure 2.4: Asymptotic local mean delay curves for monitoring with m = 4
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Note: The plots show simulated local mean delay curves, where the relative mean delays are given on the y-axis. While, for
the first two plots, the break locations are fixed with r∗ ∈ {1.5, 3} and local break sizes c/σ are given on the x-axis, for the
last plot, the local break size is fixed with c/σ = 20, and the breakpoint locations r∗ are given on the x-axis. The linear
boundary (2.2) is considered for α = 5%.

Figure 2.5: Size distributions of the retrospective detectors
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Note: The plots show the frequencies of the location of the first boundary exceedance under the null hypothesis. The
frequencies are based on random draws under the limiting distribution of the maximum statistics of the forward CUSUM,
the backward CUSUM, and the stacked backward CUSUM detector using the linear boundary in (2.2) with a significance
level of 5% under a model with k = 1.

Figure 2.6: Size distributions of the monitoring detectors with m = 10
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Note: The plots show the frequencies of the location of the first boundary exceedance under the null hypothesis. The
frequencies are based on random draws under the limiting distribution of the monitoring maximum statistics with m = 10.
The stacked backward CUSUM detector using the linear boundary, the forward CUSUM detector using the linear boundary,
and the forward CUSUM detector using the radical boundary by Chu et al. (1996) are considered at a significance level of
5% under a model with k = 1.
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Table 2.1: Asymptotic critical values for the retrospective tests

Mret
Q and Mret

BQ Mret
SBQ

k 20% 10% 5% 2.5% 1% 20% 10% 5% 2.5% 1%
1 0.734 0.847 0.945 1.034 1.143 1.018 1.113 1.198 1.278 1.374
2 0.839 0.941 1.032 1.115 1.219 1.107 1.196 1.277 1.352 1.442
3 0.895 0.993 1.081 1.163 1.260 1.156 1.244 1.321 1.392 1.481
4 0.933 1.029 1.114 1.192 1.287 1.190 1.275 1.350 1.419 1.506
5 0.962 1.056 1.139 1.216 1.307 1.216 1.299 1.372 1.441 1.526
6 0.985 1.077 1.160 1.235 1.323 1.237 1.317 1.388 1.457 1.541
7 1.005 1.095 1.176 1.249 1.338 1.253 1.333 1.404 1.471 1.556
8 1.021 1.110 1.189 1.261 1.349 1.268 1.347 1.418 1.483 1.566

Note: Critical values λα are reported for the linear boundary in (2.2) from 100,000 Monte Carlo repetitions. The Gaussian
processes in the limiting distributions are simulated on a grid of 10,000 equidistant points.

Table 2.2: Empirical sizes of the retrospective tests

k = 1 k = 2 k = 3 k = 4
T 100 200 500 100 200 500 100 200 500 100 200 500

Mret
Q 3.8 4.2 4.6 4.0 4.4 4.5 4.0 4.4 4.5 4.1 4.3 4.5

Mret
BQ 4.1 4.2 4.6 4.8 4.7 4.6 5.4 4.9 4.6 6.0 5.3 4.7

Mret
SBQ 2.8 3.5 4.2 3.9 4.0 4.2 4.7 4.5 4.2 5.7 4.9 4.4

Note: Simulated rejection rates under H0 are presented in percentage points. The values are obtained from 100,000
Monte Carlo repetitions using the critical values from Table 2.1 at a significance level of 5% for the linear boundary (2.2).
The cases k = 1, . . . , 4 represent the models yt = β1 + ut, yt = β1 + β2xt2 + ut, yt = β1 + β2xt2 + β3xt3 + ut, and
yt = β1 + β2xt2 + β3xt3 + ut, respectively, where xt2, xt3, xt4, and ut are simulated independently as standard normal
random variables for all t = 1, . . . , T .

for the stacked backward CUSUM is much closer to a uniform distribution compared to

those of the forward CUSUM variants.

2.4.2 Critical values and finite sample performance

Table 2.1 presents critical values for the retrospective case using the linear boundary, while

the empirical size results for a significance level of 5% are shown in Table 2.2. The tests

have only minor size distortions in finite samples.

The empirical powers of the retrospective tests are compared with that of the sup-Wald

test of Andrews (1993). The sup-Wald statistic is given by

max
r∈[r0,1−r0]

T · S0 − S1(r)− S2(r)

r(1− r)
,

where S0 is the OLS residual sum of squares using observations {1, . . . , T}, S1(r) is the OLS

residual sum of squares using observations {1, . . . , brT c}, and S2(r) is the OLS residual

sum of squares using observations {brT c+ 1, . . . , T}. The parameter r0 defines the lower

and upper trimming parameters. In the subsequent simulations, we consider r0 = 0.15,
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Table 2.3: Size-adjusted powers of the retrospective tests

Model (2.6) (k = 1) Model (2.7) (k = 2)
Mret

Q Mret
BQ Mret

SBQ supW Mret
Q Mret

BQ Mret
SBQ supW

r∗ = 0.1 46.9 28.3 40.7 26.3 32.5 19.0 25.9 21.5
r∗ = 0.2 63.5 65.0 71.2 73.9 47.2 47.4 51.7 59.3
r∗ = 0.3 67.1 84.0 83.9 86.8 50.8 70.3 68.1 75.3
r∗ = 0.4 63.5 91.5 88.7 91.4 47.1 81.9 75.9 82.3
r∗ = 0.5 54.0 93.8 89.4 92.5 38.2 85.7 77.0 84.3
r∗ = 0.6 39.4 93.3 86.6 91.4 26.6 84.1 72.0 82.2
r∗ = 0.7 23.4 89.0 77.0 86.9 15.6 75.5 58.9 75.3
r∗ = 0.8 11.0 74.2 51.6 74.1 8.2 56.0 37.0 59.5
r∗ = 0.9 5.5 31.4 12.9 26.2 5.1 24.6 13.3 21.4

Note: Simulated size-adjusted rejection rates under models (2.6) and (2.7) are presented in percentage points for a significance
level of 5% and a sample size of T = 100, where supW denotes the sup-Wald test with r0 = 0.15. The values are obtained
from 100,000 Monte Carlo repetitions for a sample size of T = 100, while the linear boundary (2.2) is implemented.

which is the default setting suggested by Andrews (1993). The limiting distribution is

given by supr∈[r0,1−r0]B(r)′B(r)/(r(1 − r)), and critical values for different values of r0

and k are tabulated in Andrews (1993). The author showed that the sup-Wald test has

weak optimality properties in the sense that, in the case of a single structural break, its

local power curve approaches the power curve from the infeasible point optimal maximum

likelihood test asymptotically, as the significance level tends to zero. Note that the sup-

Wald statistic is not suitable for monitoring, since its numerator statistic T (S0−S1(t/T )−
S2(t/T )) is not measurable with respect to the filtration of information at time t.

We illustrate the finite sample performance for a simple model with k = 1 and a break

in the mean, which is given by

yt = µt + ut, µt = 2 + 0.8 · 1{ t
T
≥r∗}, ut

iid∼ N (0, 1), (2.6)

and for a univariate linear regression model with a break in the slope coefficient, which is

given by

yt = µt + βtxt + ut, µt = 2, βt = 1 + 0.8 · 1{ t
T
≥r∗}, xt, ut

iid∼ N (0, 1), (2.7)

where t = 1, . . . , T . Table 2.3 presents the size-adjusted power results.

First, we observe that the backward CUSUM and the stacked backward CUSUM out-

perform the forward CUSUM, except for the case r∗ = 0.1. Second, while the forward

CUSUM test has much lower power than the sup-Wald test, the reversed order cumulation

structure in the backward CUSUM seems to compensate for this weakness of the forward

CUSUM test. The backward CUSUM performs equally well than the sup-Wald test, which

is remarkable since, as discussed previously, the latter test has weak optimality proper-
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Table 2.4: Asymptotic critical values for the stacked backward CUSUM monitoring

k = 1 k = 2 k = 3 k = 4
m 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
1.2 0.782 0.859 1.024 0.859 0.935 1.092 0.902 0.975 1.129 0.932 1.003 1.152
1.4 0.941 1.030 1.208 1.028 1.111 1.277 1.076 1.156 1.320 1.108 1.185 1.345
1.6 1.026 1.113 1.292 1.111 1.192 1.365 1.158 1.238 1.406 1.189 1.269 1.432
1.8 1.077 1.162 1.344 1.161 1.244 1.411 1.208 1.286 1.452 1.240 1.317 1.476
2 1.113 1.198 1.374 1.196 1.277 1.442 1.244 1.321 1.481 1.275 1.350 1.506
3 1.211 1.293 1.462 1.291 1.366 1.524 1.334 1.407 1.558 1.363 1.436 1.582
4 1.262 1.339 1.500 1.336 1.410 1.564 1.378 1.450 1.599 1.407 1.478 1.621
6 1.316 1.390 1.544 1.387 1.460 1.606 1.428 1.496 1.638 1.456 1.522 1.660
8 1.346 1.419 1.569 1.417 1.486 1.629 1.456 1.522 1.661 1.483 1.548 1.686
10 1.367 1.440 1.588 1.437 1.503 1.644 1.475 1.540 1.677 1.500 1.565 1.703
∞ 1.450 1.514 1.648 1.512 1.573 1.703 1.547 1.606 1.736 1.570 1.629 1.760

k = 5 k = 6 k = 7 k = 8
m 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
1.2 0.954 1.023 1.170 0.972 1.041 1.186 0.987 1.054 1.198 1.000 1.065 1.206
1.4 1.133 1.208 1.366 1.152 1.225 1.381 1.167 1.241 1.396 1.181 1.253 1.409
1.6 1.214 1.293 1.452 1.235 1.311 1.466 1.251 1.325 1.477 1.265 1.339 1.488
1.8 1.265 1.340 1.496 1.283 1.357 1.511 1.300 1.372 1.525 1.315 1.385 1.537
2 1.299 1.372 1.526 1.317 1.388 1.541 1.333 1.404 1.556 1.347 1.418 1.566
3 1.386 1.457 1.601 1.404 1.472 1.615 1.420 1.487 1.629 1.433 1.500 1.640
4 1.429 1.497 1.638 1.446 1.513 1.651 1.461 1.527 1.665 1.473 1.539 1.679
6 1.476 1.541 1.680 1.492 1.557 1.696 1.507 1.571 1.709 1.519 1.583 1.718
8 1.503 1.567 1.706 1.519 1.582 1.718 1.533 1.596 1.728 1.545 1.607 1.739
10 1.520 1.584 1.718 1.536 1.599 1.732 1.551 1.612 1.744 1.562 1.623 1.752
∞ 1.589 1.647 1.775 1.604 1.661 1.788 1.617 1.673 1.799 1.627 1.683 1.807

Note: Critical values λα for Mmon
SBQ,m are reported using the linear boundary (2.2). The Gaussian processes in the limiting

distributions are simulated on a grid of 10,000 equidistant points with 100,000 Monte Carlo repetitions. The case m = ∞
corresponds to the right-hand side of equation (2.5).

ties. Finally, while the sup-Wald statistic and the backward CUSUM detector are not

suitable for monitoring, the stacked backward CUSUM test is much more powerful than

the forward CUSUM test, and its detector statistic is therefore well suited for real-time

monitoring.

For the monitoring case, the critical values for the stacked backward CUSUM are shown

in Table 2.4. For the forward CUSUM with the linear boundary (2.2), the simulated 5%

critical values for m =∞ using the representation of the right hand side of equation (2.3)

are given by 0.957 for k = 1 and 1.044 for k = 2.

In order to evaluate the finite sample performances of the monitoring detectors, we

consider models (2.6) and (2.7) for the time points t = T + 1, . . . , bmT c. We simulate the

series up to the fixed endpoints m ∈ {1.5, 2, 4, 10}, while the critical values for the case

m = ∞ are implemented. Table 2.5 presents the size results. Note, that the tests are

undersized by construction, as not all of the size is used up to the time point bmT c. For

k ≥ 2, we observe some size distortions for small sample sizes. The results in Table 2.6
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Table 2.5: Empirical sizes of the infinite horizon monitoring detectors

k = 1 k = 2
T = 100 T = 500 T = 100 T = 200 T = 500

horizon SBQ Q CSW SBQ Q CSW SBQ Q SBQ Q SBQ Q
m = 1.5 0.1 2.8 0.0 0.1 3.0 0.0 0.5 4.5 0.2 3.7 0.1 3.2
m = 2 0.2 4.2 0.1 0.2 4.4 0.1 1.4 6.6 0.7 5.5 0.4 4.8
m = 4 1.0 4.7 0.9 0.9 4.8 0.8 4.8 7.3 2.5 6.0 1.4 5.2
m = 6 1.7 4.7 1.6 1.4 4.8 1.4 7.7 7.4 4.1 6.0 2.3 5.2
m = 8 2.4 4.7 2.0 2.0 4.8 1.8 10.3 7.4 5.7 6.0 3.3 5.2
m = 10 3.1 4.7 2.3 2.7 4.8 2.0 12.7 7.4 7.2 6.0 4.3 5.2

Note: Simulated rejection rates under H0 are presented in percentage points. The linear boundary (2.2) is implemented,
while critical values for α = 5% and m = ∞ are considered. The values are obtained from 100,000 random draws of the
models yt = β1 + ut and yt = β1 + β2xt2 + ut for t = 1, . . . , bmT c, where xt2 and ut are i.i.d. and standard normal. While
SBQ and Q correspond to the stacked backward CUSUM and the forward CUSUM with critical values for the case m =∞,
the univariate test by Chu et al. (1996) using the radical boundary (2.4) is denoted by CSW.

Table 2.6: Empirical mean detection delays of the monitoring detectors

Model (2.6) Model (2.7)
SBQ Q CSW SBQ Q

r∗ = 1.5 41.4 39.4 53.6 62.2 50.4
r∗ = 2 38.4 59.4 60.1 57.7 77.0
r∗ = 2.5 36.9 79.2 65.8 54.6 103.4
r∗ = 3 36.0 99.1 71.1 52.4 129.6
r∗ = 5 34.5 178.0 89.4 48.1 233.6
r∗ = 10 33.5 374.6 124.2 45.7 487.8

Note: The empirical mean detection delays are obtained from 100,000 Monte Carlo repetitions using size-adjusted critical
values for a significance level of 5%, where models (2.6) and (2.7) are simulated for t = 1, . . . , bmT c with T = 100 and
m = 20. While SBQ and Q correspond to the stacked backward CUSUM and the forward CUSUM with the linear boundary
(2.2) and with critical values for the case m =∞, the univariate test by Chu et al. (1996) with the radical boundary (2.4)
is denoted by CSW.

show that the mean delay for the stacked backward CUSUM is much lower than that of

the forward CUSUM and is almost constant across the breakpoint locations.

2.5 Conclusion

Two alternatives to the conventional CUSUM detectors by Brown et al. (1975) and Chu

et al. (1996) have been proposed. It has been demonstrated that a detector that back-

wardly cumulates recursive residuals yields much higher power than when using forwardly

cumulated recursive residuals when the break is located in the middle or at the end of

the sample. Furthermore, the stacked triangular array of backwardly cumulated recursive

residuals can be applied for monitoring and yields a much lower detection delay than that

of the monitoring procedure by Chu et al. (1996). Due to the multivariate nature of the

tests, we also have power against structural breaks that do not affect the unconditional

mean of the dependent variable.
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Appendix to Chapter 2

We present some auxiliary lemmas that are required to prove Theorem 2.1.

Lemma 2.1. Let {(xt, ut)}t∈N satisfy Assumption 2.1, let Ft be the σ-algebra generated by

{(x′i+1, ui)
′, i ≤ t}, and let zt be some k-dimensional and Ft−1-measurable vector sequence

that satisfies ‖T−1
∑T

t=1 ztz
′
t −R‖M = oP (1) for some positive definite matrix R, where

‖ · ‖M denotes some matrix norm on Rk×k. Then, for any fixed and positive m <∞,

1√
T

brT c∑
t=1

ztεt ⇒ σR−1/2W(r), r ∈ [0,m],

as T →∞, where W(r) is a vector of k independent standard Brownian motions.

Proof. A direct consequence of the functional central limit theorem for multiple time

series on the space D([0, 1])k given by Theorem 2.1 in Phillips and Durlauf (1986) is that

M−1/2
∑bsMc

t=1 ztut ⇒ σR−1/2W(s), s ∈ [0, 1], as M → ∞. A similar result is also stated

in Lemma 3 in Krämer et al. (1988). Then, on the space D([0,m])k,

1√
T

brT c∑
t=1

ztεt =

√
m√
M

b(r/m)Mc∑
t=1

ztεt ⇒
√
mW(r/m)

D
= W(r), r ∈ [0,m].

Lemma 2.2. Let {(xt, ut)}t∈N satisfy Assumption 2.1, let βt = β0 for all t ∈ N, and let

m ∈ (0,∞). Then, as T →∞,

sup
r∈[0,m]

∥∥∥∥ 1√
T

brT c∑
t=1

xtwt −
1√
T

brT c∑
t=1

xtut +

∫ r

0

1

s

( 1√
T

bsT c∑
j=1

xjuj

)
ds

∥∥∥∥
V

= oP (1),

where ‖ · ‖V denotes some vector norm on Rk.

Proof. Let t > k, and let ft = (1 + (t − 1)−1x′tC
−1
t−1xt)

1/2 be the denominator of wt.
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Furthermore, let

Yt(r) =
1√
T

brT c∑
t=1

xtwt, XT (r) =
1√
T

brT c∑
t=1

xtut, ZT (r) =

∫ r

0

1

s
XT (s) ds,

Z1,T (r) =
1√
T

brT c∑
t=k+1

1

ft
xtut, Z2,T (r) =

1√
T

brT c∑
t=k+1

1

ft(t− 1)
xtx

′
tC
−1
t−1

t−1∑
j=1

xjuj,

Z3,T (r) =
1√
T

brT c∑
t=k+1

1

t− 1
xtx

′
tC
−1

t−1∑
j=1

xjuj, Z4,T (r) =
1√
T

brT c−1∑
t=k+1

1

t− 1
CtC

−1
t∑

j=1

xjuj.

From the fact that

ftwt = yt − x′tβ̂t−1 = ut − x′t
( t−1∑
j=1

xjx
′
j

)−1( t−1∑
j=1

xjuj

)
= ut − x′tC−1

t−1

( 1

t− 1

t−1∑
j=1

xjuj

)
it follows that Yt(r) = Z1,T (r)− Z2,T (r). Thus, it remains to show

sup
r∈[0,m]

‖Z1,T (r)−XT (r)‖V = oP (1), (2.8)

sup
r∈[0,m]

‖Z2,T (r)− Z3,T (r)‖V = oP (1), (2.9)

sup
r∈[0,m]

‖Z3,T (r)− Z4,T (r)‖V = oP (1), (2.10)

sup
r∈[0,m]

‖Z4,T (r)− ZT (r)‖V = oP (1), (2.11)

as T →∞, which implies that supr∈[0,m] ‖Yt(r)−XT (r) +ZT (r)‖V = oP (1). For equation

(2.8), note that
√
t(f−1

t − 1) = OP (1) for all t > k, and let zt =
√
T (f−1

t − 1)xt, which

satisfies the conditions of Lemma 2.1 for t > k. Then,

sup
r∈[0,m]

‖Z1,T (r)−XT (r)‖V ≤ sup
r∈[0,m]

(∥∥∥∥ 1

T

brT c∑
t=k+1

ztut

∥∥∥∥
V

+

∥∥∥∥ 1√
T

k∑
t=1

xtut

∥∥∥∥
V

)
= OP (T−1/2).

For equation (2.9), we have

sup
r∈[0,m]

‖Z2,T (r)− Z3,T (r)‖V = sup
r∈[0,m]

∥∥∥∥ 1√
T

brT c∑
t=k+1

1

t− 1
xtx

′
t

(
f−1
t C

−1
t−1 −C−1

) t−1∑
j=1

xjuj

∥∥∥∥
V

= sup
r∈[0,m]

∥∥∥∥∫ r

0

1

s
xbsT cx

′
bsT c
(
f−1
bsT cC

−1
bsT c −C

−1
)
XT (s) ds

∥∥∥∥
V

+OP (T−1/2) = oP (1),
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since supr∈[0,m] ‖f−1
bsT cC

−1
bsT c − C

−1‖M = oP (1) due to Assumption 2.1(a), where ‖ · ‖M
denotes the induced matrix norm of ‖ · ‖V .

To show (2.10), we apply Abel’s formula of summation by parts, which is given by

n∑
t=1

Atbt =
n∑
t=1

Atbn +
n−1∑
t=1

t∑
j=1

Aj(bt − bt+1), At ∈ Rk×k, bt ∈ Rk, n ∈ N. (2.12)

With At = xtx
′
tC
−1 and bt = (t− 1)−1

∑t−1
j=1 xjuj, it follows that

Z3,T (r) =
1√
T

brT c∑
t=k+1

Atbt =
1√
T

brT c∑
t=k+1

AtbbrT c +
1√
T

brT c−1∑
t=k+1

t∑
j=1

Aj(bt − bt+1)

= Z5,T (r)− Z6,T (r) + Z4,T (r),

where

Z5,T (r) =
1√
T

brT c∑
t=k+1

AtbbrT c = C̃brT cC
−1XT ( brT c−1

T
), C̃t =

1

t− 1

t∑
j=k+1

xjx
′
j,

Z6,T (r) =
1√
T

brT c−1∑
t=k+1

t∑
j=1

Aj(bt+1 − t−1
t
bt) =

1√
T

brT c−1∑
t=k+1

CtC
−1xtut,

Z4,T (r) =
1√
T

brT c−1∑
t=k+1

t∑
j=1

Aj(bt − t−1
t
bt) =

1√
T

brT c−1∑
t=k+1

1

t− 1
CtC

−1
t∑

j=1

xjuj.

With Assumption 2.1(a) and Lemma 2.1, it follows that

sup
r∈[0,m]

∥∥Z5,T (r)−XT (r)
∥∥
V
≤ sup

r∈[0,m]

∥∥(C̃brT cC
−1 − Ik)XT (r)

∥∥
V

+ oP (1) = oP (1),

sup
r∈[0,m]

∥∥Z6,T (r)−XT (r)
∥∥
V
≤ sup

r∈[0,m]

∥∥∥ 1√
T

brT c∑
t=1

(CtC
−1 − Ik)xtut

∥∥∥
V

+ oP (1) = oP (1).

Then, the triangle inequality yields supr∈[0,m] ‖Z3,T (r)− Z4,T (r)‖ = oP (1). Finally, (2.11)

follows from Assumption 2.1(a) together with Lemma 2.1 and the continuous mapping
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theorem, which imply that

sup
r∈[0,m]

∥∥∥∥Z4,T (r)−
∫ r

0

1

s

( 1√
T

bsT c∑
j=1

xjuj

)
ds

∥∥∥∥
V

≤ sup
r∈[0,m]

∥∥∥∥∫ r

0

1

s
(CbrT cC

−1 − Ik)XT (s) ds

∥∥∥∥
V

+ oP (1) = oP (1).

Lemma 2.3. Let W (r) be a standard Brownian motion. Furthermore, for r ≥ 0, let

F (W (r)) = W (r)−
∫ r

0
z−1W (z) dz. Then F (W (r))

D
= W (r).

Proof. Note that, by the Cauchy-Schwarz inequality and Jensen’s inequality, we obtain∫ r
0
z−1E[|W (z)|] dz < ∞ as well as

∫ r
0
z−1E[|W (r)W (z)|] dz < ∞, which justifies the

application of Fubini’s theorem in the subsequent steps. Since both W (r) and F (W (r))

are Gaussian, it remains to show that their covariance functions coincide. First, note that

E[F (W (r))] = E[W (r)] = 0. Furthermore, let w.l.o.g. r ≤ s. Then, the assertion follows

from

E[F (W (r))F (W (s))]− E[W (r)W (s)]

=

∫ r

0

∫ s

0

E[W (z1)W (z2)]

z1z2

dz2 dz1 −
∫ s

0

E[W (r)W (z2)]

z2

dz2 −
∫ r

0

E[W (s)W (z1)]

z1

dz1

= (2r + r ln(s)− r ln(r))− (r + r ln(s)− r ln(r))− r = 0.

Lemma 2.4. Let {(xt, ut)}t∈N satisfy Assumption 2.1, let βt = β0 for all t ∈ N, and let

m ∈ (0,∞). Then, as T →∞,

1√
T

brT c∑
t=1

xtwt ⇒ σC−1/2W(r), r ∈ [0,m],

where W(r) is a vector of k independent standard Brownian motions.

Proof. Let XT (r) = T−1/2
∑brT c

j=1 xjuj, and let YT (r) = T−1/2
∑brT c

j=1 xjwj. Lemma 2.2

states that supr∈[0,m] ‖YT (r) − F (XT (r))‖V = oP (1), where F (·) is defined as in Lemma

2.3. Therefore, the Skorokhod metric of F (XT (r)) and YT (r) tends to zero in probability.

Lemma 2.1 implies that F (XT (r))⇒ F (σC−1/2W(r)) = σC−1/2F (W(r)). Furthermore,

from Lemma 2.3, it follows that F (W(r))
D
= W(r). Consequently, YT (r)⇒ σC−1/2W(r).
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Lemma 2.5. Let ‖ · ‖V be some vector norm on Rk, and let ‖ · ‖M be the induced matrix

norm. Let h be a Rk-valued function of bounded variation, and let {At}t∈N be a sequence of

random (k×k) matrices with supr∈[0,m] ‖T−1
∑brT c

t=1 (At−A)‖M = oP (1), where m ∈ (0,∞).

Then, as T →∞,

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(At −A)h( t
T

)
∥∥∥
V

= oP (1).

Proof. By the application of Abel’s formula of summation by parts, which is given in

(2.12), it follows that

brT c∑
t=1

(At −A)h( t
T

) =

brT c∑
t=1

(At −A)h( brT c
T

) +

brT c−1∑
t=1

t∑
j=1

(Aj −A)(h( t
T

)− h( t+1
T

)).

The fact that h(r) is of bounded variation yields

sup
r∈[0,m]

‖h(r)‖V = O(1), sup
r∈[0,m]

∥∥∥ brT c−1∑
t=1

t

T
(h( t

T
)− h( t+1

T
))
∥∥∥
V

= O(1).

Consequently,

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(At −A)h( brT c
T

)
∥∥∥
V
≤ sup

r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(At −A)
∥∥∥
M

∥∥∥h( brT c
T

)
∥∥∥
V

= oP (1)

and

sup
r∈[0,m]

∥∥∥ 1

T

brT c−1∑
t=1

t∑
j=1

(Aj −A)(h( t
T

)− h( t+1
T

))
∥∥∥
V

≤ sup
r∈[0,m]

brT c−1∑
t=1

t

T

∥∥∥1

t

t∑
j=1

(Aj −A)
∥∥∥
M

∥∥∥h( t
T

)− h( t+1
T

)
∥∥∥
V

= oP (1).

Then, by the triangle inequality, the assertion follows.
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Proof of Theorem 2.1

Let w∗t = f−1
t (y∗t − x′tβ̂

∗
t−1), which are recursive residuals from a regression without any

structural break, where ft = (1 + (t− 1)−1x′tC
−1
t−1xt)

1/2,

y∗t = x′tβ
0 + ut, and β̂

∗
t−1 =

( t−1∑
j=1

xjx
′
j

)−1( t−1∑
j=1

xjy
∗
j

)
.

Then, yt = x′tβt + ut = y∗t + T−1/2x′tg(t/T ), and

β̂t−1 = β̂
∗
t−1 +

1√
T (t− 1)

C−1
t−1

t−1∑
j=1

xjx
′
jg(j/T ).

Furthermore, wt = w∗t + f−1
t T−1/2x′tg(t/T ) − f−1

t T−1/2(t − 1)−1C−1
t−1

∑t−1
j=1 xjx

′
jg(j/T ).

We can decompose the partial sum process as
∑brT c

t=1 xtwt = S1,T (r) + S2,T (r) + S3,T (r),

where

S1,T (r) =
1√
T

brT c∑
t=1

xtw
∗
t , S2,T (r) =

1

T

brT c∑
t=1

f−1
t xtx

′
tg( t

T
),

S3,T (r) = − 1

T

brT c∑
t=1

1

ft(t− 1)
xtx

′
tC
−1
t−1

t−1∑
j=1

xjx
′
jg( j

T
).

Let ‖ · ‖V be some vector norm on Rk, and let ‖ · ‖M be the induced matrix norm. Lemma

2.4 yields S1,T (r)⇒ σC1/2W(r). For the second term, note that, from Assumption 2.1(a)

and the fact that
√
T (f−1

T − 1) = OP (1), it follows that

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(f−1
t xtx

′
t −C)

∥∥∥
M

= oP (1). (2.13)

Since g(r) is piecewise constant and therefore of bounded variation, Lemma 2.5 yields

sup
r∈[0,m]

∥∥∥S2(r)−
∫ r

0

Cg(s) ds
∥∥∥
V

= sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(f−1
t xtx

′
t −C)g( t

T
)
∥∥∥
V

= oP (1).
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For the third term, let

p1(r) =
1

brT c
C−1
brT c

brT c∑
j=1

xjx
′
jg( j

T
), p2(r) =

1

brT c
C−1
brT c

brT c∑
j=1

Cg( j
T

),

p3(r) =
1

brT c

brT c∑
j=1

g( j
T

).

From Assumption 2.1(a), it follows that supr∈[0,m] ‖p2(r)−p3(r)‖M = oP (1). Furthermore,

from Lemma 2.5 and from the fact that supr∈[0,m] ‖ 1
brT c

∑brT c
t=1 (xtx

′
t − C)‖M = oP (1), it

follows that supr∈[0,m] ‖p1(r)−p2(r)‖V = oP (1). Thus, supr∈[0,m] ‖p1(r)−p3(r)‖V = oP (1).

Consequently,

sup
r∈[0,m]

∥∥∥S3,T (r) +
1

T

brT c∑
t=1

f−1
t xtx

′
th3( t−1

T
)
∥∥∥
V

≤ sup
r∈[0,m]

1

T

brT c∑
t=1

‖f−1
t xtx

′
t‖M‖p1( t−1

T
)− p3( t−1

T
)‖V ,

which is oP (1). Since p3 is a partial sum of a piecewise constant function, it is of bounded

variation, and, together with (2.13), we can apply Lemma 2.5. Then,

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(f−1
t xtx

′
t −C)p3( t−1

T
)
∥∥∥ = oP (1),

which yields

sup
r∈[0,m]

∥∥∥S3,T (r) +

∫ r

0

∫ s

0

1

s
Cg(v) dv ds

∥∥∥
V

= sup
r∈[0,m]

∥∥∥S3,T (r) +
1

T
C

brT c∑
t=1

p3( t−1
T

)
∥∥∥
V

+ oP (1) = oP (1).

Finally, Slutsky’s theorem implies that S1,T (r)+S2,T (r)+S3,T (r)⇒ σC1/2W(r)+σCh(r),

which yields

QT (r) = σ̂−1C
−1/2
T (S1,T (r) + S2,T (r) + S3,T (r))⇒W(r) +C1/2h(r),

since σ̂2 is consistent for σ2 (see Krämer et al. 1988).
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Proof of Theorem 2.2

First, note that Assumption 2.2 and the law of the iterated logarithm ensure that all

random variables considered in this proof are bounded in probability and are well defined.

Let m ∈ (1,∞) be fixed. Under H0, Theorem 2.1 yields QT (r)⇒W(r), r ∈ [0,m]. Then,

(a) follows with the continuous mapping theorem. For result (b), the continuous mapping

theorem implies that

Mmon
Q,m = sup

r∈(0,m]

‖QT (r)−QT (1)‖
d(r − 1)

D−→ sup
r∈(0,m]

‖W(r)−W(1)‖
d(r − 1)

D
= sup

r∈(0,m−1)

‖W(r)‖
d(r)

.

To obtain a supremum over a subset of the unit interval, we consider the bijective function

g : (0, (m− 1)/m)→ (0,m− 1) that is given by g(η) = η/(1− η). Furthermore, note that

W(g(η))
D
= B(η)/(1 − η), where B(r) is a vector of k independent standard Brownian

bridges. This follows from the fact that both W(g(η)) and B(η)/(1 − η) are Gaussian

with mean zero and have the same covariance function. Consequently,

sup
r∈(0,m−1)

‖W(r)‖
d(r)

= sup
η∈(0,m−1

m
)

‖W(g(η))‖
d(g(η))

D
= sup

η∈(0,m−1
m

)

‖B(η)‖
(1− η)d

(
η

1−η

) .
Finally, for (c), we obtain

lim
m→∞

lim
T→∞

P
(
Mmon

Q,m ≤ λ
)

= lim
m→∞

P

(
sup

r∈(0,m−1
m

)

‖B(r)‖
(1− r)d

(
r

1−r

) ≤ λ

)
= P

(
sup
r∈(0,1)

‖B(r)‖
(1− r)d

(
r

1−r

) ≤ λ

)
,

which follows from the monotonicity of supr∈(0,m−1
m

) ‖B(r)‖/((1− r)d( r
1−r )) in m and the

fact that the probability measure is σ-additive.

Proof of Theorem 2.3

Theorem 2.1 and the continuous mapping theorem imply that

Mret
BQ = sup

r∈(0,1)

‖QT (1)−QT (r)‖
d(1− r)

D−→ sup
r∈(0,1)

‖W(1)−W(r)‖
d(1− r)

D
= sup

r∈(0,1)

‖W(r)‖
d(r)

.
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Proof of Theorem 2.4

Analogously to the proof of Theorem 2.2,

Mret
SBQ

D−→ sup
r∈(0,1)

sup
s∈(0,r)

‖W(r)−W(s)‖
d(r − s)

, Mmon
SBQ,m

D−→ sup
r∈(0,m−1)

sup
s∈(0,r)

‖W(r)−W(s)‖
d(r − s)

follow with Theorem 2.1 and the continuous mapping theorem. Furthermore, let the

function g : (0, (m− 1)/m)→ (0,m− 1) be given by g(η) = η/(1− η). Then,

sup
r∈(0,m−1)

sup
s∈(0,r)

‖W(r)−W(s)‖
d(r − s)

= sup
η∈(0,m−1

m
)

sup
s∈(0,g(η))

‖W(g(η))−W(s)‖
d(g(η)− s)

= sup
η∈(0,m−1

m
)

sup
ζ∈(0,η)

‖W(g(η))−W(g(ζ))‖
d(g(η)− g(ζ))

D
= sup

η∈(0,m−1
m

)

sup
ζ∈(0,η)

‖B(η)/(1− η)−W(ζ)/(1− ζ)‖
d
(

η
1−η −

ζ
1−ζ

)
= sup

η∈(0,m−1
m

)

sup
ζ∈(0,r)

‖(1− ζ)B(η)− (1− η)B(ζ)‖
(1− η)(1− ζ)d

(
η−ζ

(1−η)(1−ζ)

) .

Finally, for (c), we obtain

lim
m→∞

lim
T→∞

P
(
Mmon

SBQ,m ≤ λ
)

= lim
m→∞

P

(
sup

r∈(0,m−1
m

)

sup
s∈(0,r)

‖(1− s)B(r)− (1− r)B(s)‖
(1− r)(1− s)d

(
r−s

(1−r)(1−s)

) ≤ λ

)
= P

(
sup
r∈(0,1)

sup
s∈(0,r)

‖(1− s)B(r)− (1− r)B(s)‖
(1− r)(1− s)d

(
r−s

(1−r)(1−s)

) ≤ λ

)
,

which follows from the monotonicity in m and the fact that the probability measure is

σ-additive.
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Chapter 3

A Dynamic Functional Factor Model

for Yield Curves: Identification,

Estimation, and Prediction

3.1 Introduction

The number of factors that explain the shape of the term structure of bond yields is

typically much smaller than the number of available maturities. According to Diebold

et al. (2005), yields of the same bond with different maturities are driven by only a few

sources of risk. Factor models thus received much attention in the literature on bond yield

modeling, as they allow a high dimensional problem to be reduced to a lower dimensional

one.

In the classical factor analysis, both the latent factors and the factor loadings are

estimated using principal components, while the model is identified by imposing orthog-

onality conditions (see, e.g., Anderson 2003). Litterman and Scheinkman (1991), Ang

et al. (2006), and Joslin et al. (2014) conducted a factor analysis on the yields of U.S.

Treasuries with different maturities and demonstrated that the first three principal com-

ponents explain more than 98% of the variation in the yields. Bliss (1997) proposed a

dynamic version of the classical factor model for bond yields, where the first three princi-

pal components follow an autoregressive process. For surveys of classical and more recent

results in factor analysis, see the review articles by Stock and Watson (2012) and Breitung

and Choi (2013).

Another approach that has gained wide acceptance in practice is based on the Nelson-

Siegel term structure model (see Nelson and Siegel 1987), where the underlying yield curve
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is assumed to follow a certain parametric functional structure. The standard version of

this model considers three predefined loading functions, which are denoted as the level, the

slope, and the curvature function. The corresponding factors are interpreted as the long-

term, short-term, and medium-term factors. Extensions and alternative factor loadings

were proposed in Svensson (1995), Gürkaynak et al. (2007), Christensen et al. (2009),

and Park et al. (2009). The dynamic Nelson-Siegel (DNS) model, which was introduced

by Diebold and Li (2006), considers common factor dynamics in the form of a vector

autoregressive process. In a two-step procedure, the factors are first estimated by ordinary

least squares, and the dynamic process is then estimated given the fitted factor values from

the first step. For a review on the DNS approach, see Diebold and Rudebusch (2013).

The dynamic versions of both the classical factor model and the Nelson-Siegel model

are particularly useful for predicting the term structure of bond yields, since a predictor

for the bond yields can be obtained from the minimum mean squared error (MSE) forecast

of the factors. However, both approaches have their advantages and disadvantages. While

the classical factor analysis does not depend on a specific form of the loadings and provides

an optimal basis system, it considers yield curves as vector-valued objects and does not

take into account the functional nature of the underlying curve. On the other hand,

while the Nelson-Siegel model considers smooth loading functions and generates a fully

functional representation of the yield curve, its predefined loadings are not optimal in

some sense, as argued, for instance, in Lengwiler and Lenz (2010) and Hays et al. (2012).

In this paper, we follow recent advances in functional data analysis (for reviews, see,

e.g., Ramsay and Silverman 2005, Hörmann and Kokoszka 2012, and Hsing and Eubank

2015). We consider a dynamic functional factor model, which is akin to the models

proposed in Hays et al. (2012) and Bardsley et al. (2017). In contrast to Hays et al. (2012),

where the estimation is achieved by applying an expectation maximization algorithm, we

suggest a different estimation procedure and identify the model by imposing orthogonality

conditions on the loading functions and suitable assumptions on the factors and the error

term. We propose a functional principal component (FPC) estimator, which results from

applying the least squares principle. It is shown that the model parameters are estimated

consistently. Following Aue et al. (2015), the factors are modeled as an autoregressive

process. Moreover, in the fashion of Stock and Watson (2002), forecasts are conducted

in a two-step procedure, where the predictive model is estimated given the estimated

factors. Analogously to Diebold and Li (2006), a forecast for the entire yield curve is

obtained from the estimated functional factor model and the optimal MSE forecast for

the factors. Furthermore, we derive both pointwise and simultaneous prediction bands

for these forecasts. While the pointwise bands are asymptotically exact, the simultaneous
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bands are conservative.

The paper is organized as follows: In Section 3.2, the functional factor model and its

identification conditions are defined, while in Section 3.3, the FPC estimator is derived,

and consistency is shown. Predictions for the entire yield curve as well as pointwise

and simultaneous prediction bands are provided in Section 3.4. Then, in Section 3.5,

the predictor is applied to a dataset of monthly U.S. Treasury yields, and Section 3.6

concludes.

3.2 The dynamic functional factor model

We consider a time series of yield curves Yt(r) with time to maturity r ∈ [a, b] at time

t = 1, . . . , T , where a denotes the lowest time to maturity, and b denotes the longest one.

The curves are assumed to be already given as square-integrable functions on the domain

[a, b]. Following Hays et al. (2012), a general dynamic functional factor model with K

factors can be formulated as

Yt(r) = µ(r) +
K∑
l=1

Fl,tψl(r) + εt(r), t = 1, . . . , T, r ∈ [a, b],

where µ(r) is an intercept function, Fl,t denotes the l-th factor at time t, and ψl(r) is the

l-th loading for time to maturity r. While µ(r) and ψl(r) are deterministic terms, the

vector of factors Ft = (F1,t, . . . , FK,t)
′ is assumed to be a time series that follows some

linear autoregressive process, which stems the attribute “dynamic” in the name of the

model, and εt(r) is an idiosyncratic error term. In vector notation, the model can be

equivalently expressed as

Yt(r) = µ(r) + Ψ′(r)Ft + εt(r), t = 1, . . . , T, r ∈ [a, b], (3.1)

where the loadings at time to maturity r are given by Ψ(r) = (ψ1(r), . . . , ψK(r))′.

While model (3.1) can be viewed as an extension of the vector-valued dynamic factor

model for bond yields by Bliss (1997) to a continuous domain, it also nests the widely

used DNS framework, in which the loadings Ψ(r) are predefined. Diebold and Li (2006)

specified the Nelson-Siegel model with three fixed loading functions given by

ψ1(r) = 1, ψ2(r) =
1− e−λr

λr
, ψ3(r) =

1− e−λr

λr
− e−λr, (3.2)

where the decay parameter is fixed, and the intercept is zero. The Nelson-Siegel loadings
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Figure 3.1: Nelson-Siegel loading functions
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Note: The figure presents a plot of the loading functions considered in Diebold and Li (2006). The decay parameter in
equation (3.2) is set to λ = 0.0609, which maximizes the curvature factor at a maturity of r = 30 months.

are illustrated in Figure 3.1, where the first loading ψ1(r) represents the level of the yield

curve at time t, the function ψ2(r) corresponds to the slope and the third function ψ3(r)

has a hump at mid-term maturities and represents the curvature of the yield curve. A

plot of the yield curve data from Jungbacker et al. (2014) is depicted in Figure 3.2, and

Figure 3.3 presents an example of a fitted Nelson-Siegel yield curve.

In this paper, we neither impose restrictive assumptions on the shape of the loading

functions, as in the DNS framework, nor do we treat yield curves as vectors, as in the

classical factor analysis. We consider model (3.1) to be a fully functional model and assume

that both the factors Ft and loadings Ψ(r) are unknown. Analogously to the vector-valued

factor model, this implies an ambiguity, since Ψ′(r)Ft = Ψ′(r)QQ−1Ft for any non-singular

K × K matrix Q. Thus, K2 restrictions are necessary to make Ψ(r) and Ft separately

identifiable. Assuming that the loadings are pairwise orthogonal imposes K(K − 1)/2

restrictions, and another K(K − 1)/2 restrictions follow by assuming that the factors are

pairwise uncorrelated. The remaining K restrictions can be obtained by normalizing either

the loadings or the factors. Since the consideration of orthonormal loading functions is

common in functional data analysis, we normalize the loadings. Another ambiguity follows

from the fact that µ(r) + Ψ′(r)Ft = µ(r) + Ψ′(r)F0 + Ψ′(r)(Ft−F0) for any F0 ∈ RK , and

K restrictions are obtained by setting the mean of the factors to zero.

To formalize these restrictions, we define a Hilbert space structure for the underlying

function space H = L2([a, b]), which denotes the space of real-valued square integrable

functions on the domain [a, b]. The inner product for the function space is defined as

〈x, y〉 =
∫ b
a
x(r)y(r) dr, where x, y ∈ H, and the norm is given by ‖x‖2 = 〈x, x〉. The

following identification conditions are imposed:
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Figure 3.2: Yields of U.S. Treasury bonds
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Note: The figure depicts a plot of the monthly yield curves of U.S. Treasuries from January 1985 until December 2007. The
dataset is taken from Jungbacker et al. (2014) and is an extension of the dataset considered in Diebold and Li (2006).

Assumption 3.1. (a) The loading functions are pairwise orthogonal; i.e., 〈ψk, ψl〉 = 0,

for all k, l = 1, . . . , K with k 6= l.

(b) The loading functions are normalized, so that ‖ψl‖ = 1 for all l = 1, . . . , K.

(c) The factors satisfy Ft ∼ N (0,ΣF ) for all t = 1, . . . , T , where ΣF = diag(λ1, . . . , λK)

with distinct entries λ1 > λ2 > . . . > λK > 0.

The assumptions are similar to the identification conditions for the classical factor

model (see Stock and Watson 2002 and Bai and Ng 2013). The loadings are assumed

to be pairwise orthonormal, while the factors are uncorrelated. Distinct variances of the

factors serve to identify the individual entries of Ft, which could otherwise be consistently

estimated only up to an orthonormal transformation. Note that Assumption 3.1 is a

local identification condition, since Ψ(r) and Ft are identified separately only up to a sign

change. Changing the sign of both the loadings and the factors will leave the common

component Ψ′(r)Ft unchanged. A global identification condition can be obtained by fixing

the sign for either the loadings or the factors.

Assumption 3.2. (a) The functions µ(r) and ψl(r), l = 1, . . . , K, are bounded.

(b) The errors {εt}t∈N are an i.i.d. sequence of zero mean Gaussian random functions

on the domain [a, b] with covariance kernel cε(r, s).

For each r, s ∈ [a, b], the error term is normally distributed with E[εt(r)] = 0 and

Cov[εt(r), εt(s)] = cε(r, s). Note that Hays et al. (2012) proposed normality conditions

on the factors and errors similar to those made in Assumptions 3.1 and 3.2. In contrast
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Figure 3.3: Fitted Nelson-Siegel curve and cubic B-spline representation
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Note: The figure illustrates the yield curve from the dataset of Jungbacker et al. (2014) for December 1999. While the
solid line presents the fitted Nelson-Siegel curve, the dash-dotted line is a functional representation of the yields from the
B-spline basis expansion (see Remark 3.1 and Section 3.5.1).

to their estimation procedure, we impose normality only to derive the prediction bands.

For the estimation of the model and the forecast of the yield curve itself, normality of the

errors and the factors is not necessary.

Moreover, Assumptions 3.1(c), 3.2(a), and 3.2(b) imply that {Yt}t∈N is a sequence of

H-valued random functions with E‖Yt‖2 ≤ ‖µ‖2 + E‖εt‖2 < ∞. It follows that Yt(r) is

covariance stationary with mean E[Yt(r)] = µ(r) <∞, and covariance kernel

cY (r, s) = Cov[Yt(r), Yt(s)] =
K∑
l=1

λlψl(r)ψl(s) + cε(r, s) <∞

for all t. The covariance operator of Yt(r) is given by

CY (x)(r) =

∫ b

a

cY (r, s)x(s) ds, x ∈ H, r ∈ [a, b],

and the eigenequation is defined as∫ b

a

cY (r, s)ψ(s) ds = λψ(s), λ ∈ R, ψ ∈ H, r ∈ [a, b],

where (λ, ψ(s)) is called an eigenvalue and eigenfunction pair of CY . The covariance

operator of εt(r) is analogously defined as

Cε(x)(r) =

∫ b

a

cε(r, s)x(s) ds, x ∈ H, r ∈ [a, b].
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Since CY and Cε are positive semi-definite and symmetric (see Hörmann and Kokoszka

2012), all eigenvalues are nonnegative, and the eigenfunctions are orthogonal. An or-

thonormal eigenfunction that corresponds to the l-th largest eigenvalue of CY is called

the l-th FPC. We next establish a link between the functional factor model (3.1) and the

FPCs.

Assumption 3.3. (a) 〈εt, ψl〉 = 0 for all l = 1, . . . , K, t = 1, . . . , T .

(b) E‖εt‖2 < λK.

(c) Cε has L−K nonzero eigenvalues, which are denoted as λK+1 > λK+2 > . . . > λL.

Assumption 3.3 is similar to the conditions made in Forni et al. (2000) for the dy-

namic vector-valued factor model. The first assumption implies that the idiosyncratic

component εt(r) is orthogonal to the common component Ψ′(r)Ft, which separates H into

a factor space and its orthogonal complement, while the second assumption guarantees

some limited amount of cross-correlation in the idiosyncratic component. The covariances

of εt(r) are bounded in the sense that there is no direction in H along which the idiosyn-

cratic component has a variance that exceeds V ar[FK,t] = λK . The third assumption

implies that the error term is an element of an (L−K)-dimensional subspace of H, and

the yield curve series consequently takes values in an L-dimensional subspace of H, where

K ≤ L <∞.

Next, we show that under Assumptions 3.1–3.3, the variances of the factors λ1, . . . , λK

coincide with the K largest eigenvalues of CY , while the factor loadings ψ1(r), . . . , ψK(r)

are the first K FPCs. Furthermore, the factors are equal to the projections of the de-

meaned yield curve onto the corresponding FPC. This relation is summarized as follows:

Lemma 3.1. Let Assumptions 3.1–3.3 hold true.

(a) The largest K eigenvalues of CY are given by λ1, . . . , λK, while ψ1(r), . . . , ψK(r) are

corresponding eigenfunctions.

(b) The factors satisfy Fl,t = 〈Yt − µ, ψl〉 for all l = 1, . . . , K and t = 1, . . . , T .

The eigenvalues of CY are given by λ1 > λ2 > . . . > λL > 0, and the FPCs are the

corresponding orthonormal eigenfunctions ψ1(r), . . . , ψL(r), which are identified up to a

sign change. The term 〈Yt − µ, ψl〉 is called the l-th FPC score of Yt(r) and describes the

contribution of the l-th FPC to the curve Yt(r). While Aue et al. (2015) imposed a vector

autoregressive structure on the empirical counterpart of the FPC scores, we incorporate
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this assumption into the model (3.1) and assume that the factors follow a VAR process.

This dynamic structure is exploited in Section 3.4 to obtain predictions of the yield curve

and to construct prediction bands.

Assumption 3.4. The factors follow the VAR(p) process Ft = A(L)Ft−1 +ηt with K×K
lag polynomial matrices A(L) = A1 +A2L+ . . .+ApL

p−1. The VAR process is stable; i.e.,

all roots of the characteristic polynomial lie outside the unit circle. The innovation vectors

{ηt}t∈N are i.i.d. with ηt = (η1,t, . . . , ηK,t)
′ ∼ N (0,Ση), where Ση = diag(σ2

1, . . . , σ
2
K).

Furthermore, E[ηl,tεt+j(r)] = 0 for all t ∈ N, j ≥ 0, l = 1, . . . , K, and r ∈ [a, b].

Since the factors have zero mean and are uncorrelated, the VAR model does not in-

clude a constant, and the entries of the innovation vector are uncorrelated. Although

the contemporaneous correlations of the factors are zero by Assumption 3.1(c), the cross-

correlations of the factors might be nonzero, and the lag polynomial matrices are therefore

not necessarily diagonal. However, Diebold and Li (2006) argued that VAR models for

bond yield factors tend to produce poor forecasts compared to those from univariate

autoregressive models, since a model with a large number of parameters is prone to over-

fitting. Hyndman and Ullah (2007) also argued that a simple univariate autoregressive

model for each FPC score is more adequate in the forecasting context, since contempora-

neous correlations of the FPC scores are zero, and the cross-correlations at non-zero lags

are often quite small. Therefore, we discuss both multivariate and univariate predictive

time series models for the factors in Section 3.4.

Remark 3.1. Throughout the theoretical part of the paper, we assume that the yield curves

are already given in functional form as elements of H. In practice, however, only vectors

of bond yields with a finite number N of times to maturity are observed. The problem

of transforming the vector observations into functions has been extensively studied in

the literature on functional data analysis and is well understood (see, e.g., Ramsay and

Silverman 2005 for a review of the available techniques). The data is interpolated or

approximated by means of a basis expansion, which is typically performed using a spline

basis in the case of non-periodic data. In the empirical part of the paper, we employ B-

spline techniques to reconstruct yield curves (see Figure 3.3). Since only a finite number of

basis functions are necessary to interpolate N observations, the reconstructed yield curve

observations are in practice elements of a finite-dimensional subspace of H. More details

on this topic are provided in Section 3.5.1.
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3.3 The functional principal components estimator

While in the classical factor analysis the principal components estimator is obtained as

the solution to some least squares problem, an analogous least squares problem arises for

the functional factor model (3.1). Let

µ̂(r) =
1

T

T∑
t=1

Yt(r), r ∈ [a, b],

denote the empirical mean function of Yt(r). We consider the demeaned curve Yt(r)− µ̂(r)

and minimize the objective function

T∑
t=1

∥∥∥Yt − µ̂− K∑
l=1

Fl,tψl

∥∥∥2

(3.3)

subject to the orthonormality conditions given by Assumptions 3.1(a) and 3.1(b). Taking

the loading functions as given, we minimize (3.3) with respect to the factors Fl,t for all

l = 1, . . . , K and t = 1, . . . , T . Note that addition and multiplication for functional objects

are defined pointwise, so that (Yt − µ̂)(r) = YT (r)− µ̂(r) and (Fl,tψl)(r) = Fl,t · ψl(r) for

all r ∈ [a, b].

Lemma 3.2. Under Assumptions 3.1(a) and 3.1(b),

min
Fl,t

T∑
s=1

∥∥∥Ys − µ̂− K∑
k=1

Fk,sψk

∥∥∥2

(3.4)

is reached, if Fl,t = 〈Yt − µ̂, ψl〉 for any l = 1, . . . , K and t = 1, . . . , T .

The objective function is minimized by setting Fl,t equal to the projection of the

demeaned yield curve at time t onto the l-th loading function. The least squares problem

is consequently equivalent to minimizing

T∑
t=1

∥∥∥Yt − µ̂− K∑
l=1

〈Yt − µ̂, ψl〉ψl
∥∥∥2

(3.5)

with respect to ψ1(r), . . . , ψK(r). Hence, we have to find a K-dimensional orthonormal

system in H that minimizes (3.5), which is a well known problem in the literature on
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functional data analysis and extensively studied in Hörmann and Kokoszka (2012). Let

ĉY (r, s) =
1

T

T∑
t=1

(
Yt(r)− µ̂(r)

)(
Yt(s)− µ̂(s)

)
, r, s ∈ [a, b],

be the sample covariance operator. The eigenequation is given by∫ b

a

ĉY (r, s)ψ̂(s) ds = λ̂ψ̂(r), r ∈ [a, b], (3.6)

where λ̂ ∈ R is an eigenvalue and ψ̂(r) a corresponding eigenfunction of the sample co-

variance operator, which is defined as ĈY (x)(r) =
∫ b
a
ĉY (r, s)x(s) ds, x ∈ H, r ∈ [a, b].

Note that all eigenvalues are nonnegative, since ĈY is positive semi-definite, and the

eigenspaces are pairwise orthogonal, since ĈY is symmetric. Furthermore, the underly-

ing function space H is countably infinite-dimensional, which yields the existence of a

sequence of eigenpairs {(λ̂j, ψ̂j(r))}j∈N with orthonormal eigenfunctions {ψ̂j(r)}j∈N and

with eigenvalues {λ̂j}j∈N that are arranged in decreasing order λ̂1 ≥ λ̂2 ≥ . . . ≥ 0. Fol-

lowing Hörmann and Kokoszka (2012), the eigenfunction ψ̂l(r) is called the l-th empirical

FPC, and the term F̂l,t = 〈Yt − µ̂, ψ̂l〉 is called the l-th empirical FPC score of Yt(r).

The vector of empirical FPCs is given by Ψ̂(r) = (ψ̂1(r), . . . , ψ̂K(r))′, and the vector of

empirical scores is defined as F̂t = (F̂1,t, . . . , F̂K,t)
′.

Theorem 3.1. Under Assumptions 3.1(a) and 3.1(b), the solution to the least squares

problem

min
Ψ(r)

F1,...,FT

T∑
t=1

∥∥∥Yt − µ̂−Ψ′(r)Ft

∥∥∥2

is reached if Ft = F̂t for all t = 1, . . . , T and Ψ(r) = Ψ̂(r) for all r ∈ [a, b].

The l-th empirical FPC score has mean zero, since T−1
∑T

t=1 F̂l,t = 〈µ̂ − µ̂, ψ̂l〉 = 0,

and is uncorrelated with the k-th empirical score for k 6= l, while its sample variance is

equal to λ̂l, since

1

T

T∑
t=1

F̂k,tF̂l,t =
1

T

T∑
t=1

∫ b

a

∫ b

a

ĉY (r, s)ψ̂l(s)ψ̂k(r) ds dr =

∫ b

a

λ̂lψ̂l(r)ψ̂k(r) dr = λ̂l · 1{k=l},

for any k, l ∈ N.

Note that the sequence {ψ̂j(r)}j∈N of empirical FPCs cannot be unique. If ψ̂l(r) is an
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orthonormal eigenfunction of ĈY with respect to the eigenvalue λ̂j, then −ψ̂l(r) possesses

the same orthonormality properties. However, if the first K eigenvalues of ĈY are distinct,

with λ̂1 > λ̂2 > . . . > λ̂K > λ̂K+1 ≥ 0, then the orthonormal eigenvectors ψ̂1(r), . . . , ψ̂K(r)

are unique up to a sign change, and the common components F̂1,tψ̂1(r), . . . , F̂K,tψ̂K(r) are

uniquely determined.

Consistency results for the empirical mean function, the empirical FPCs, the empir-

ical FPC scores, and the eigenvalues of the empirical covariance operator are obtained

under fairly general conditions. Hörmann and Kokoszka (2010) established consistency

for weakly dependent data. Salish and Gleim (2019) expanded the consistency results to

strongly dependent data. The results in Salish and Gleim (2019) can be used to establish

uniform consistency under the functional factor model (3.1), as described in the following

lemma.

Lemma 3.3. Let Assumptions 3.1–3.4 hold true. Then, as T →∞,

(a) sup
r∈[a,b]

∣∣µ̂(r)− µ(r)
∣∣ = OP (T−1/2),

(b) sup
r,s∈[a,b]

∣∣ĉY (r, s)− cY (r, s)
∣∣ = OP (T−1/2),

(c)
∣∣λ̂l − λl∣∣ = OP (T−1/2),

(d) sup
r∈[a,b]

∣∣slψ̂l(r)− ψl(r)∣∣ = OP (T−1/2),

(e) max
1≤t≤T

∣∣sl〈Yt − µ̂, ψ̂l〉 − 〈Yt − µ, ψl〉∣∣ = OP (T−1/2),

for all l = 1, . . . , L, where sl = sign(〈ψ̂l, ψl〉).

Accordingly, it follows that supr∈[a,b] |Ŷt(r)− µ(r)−Ψ′(r)Ft| = OP (T−1/2), as T →∞,

where the fitted yield curve is formulated as

Ŷt(r) = µ̂(r) +
K∑
l=1

F̂l,tψ̂l(r), r ∈ [a, b].

In practice, equation (3.6) can be solved by using, for instance, the fda-package,

which is available for R and MATLAB (see Ramsay et al. 2009). If the yield curves are

transformed from vector-valued data, as discussed in Remark 3.1, then they are elements

of a finite-dimensional subspace of H, which implies that, in practice, only a finite number

of nonzero eigenvalues are obtained.
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3.4 Predictions and prediction bands

The optimal one-step ahead forecast of the factors with respect to MSE loss is given by

FT+1|T = E[FT+1|IT ] =

p∑
i=1

AiFT−i+1,

where IT = {Yt, t ≤ T}. For longer horizons h ∈ N, the h-step ahead forecast is obtained

by the chain rule of forecasting as

FT+h|T = E[FT+h|IT ] =

p∑
i=1

AiFT+h−i|T ,

where FT+j|T = FT+j for j ≤ 0. A forecast for the entire yield curve can be formulated

with the help of the following theorem:

Theorem 3.2. Let g(IT ) ∈ H be a forecast function for YT+h given the information up

to time T . Then, E‖YT+h − g(IT )‖2 is minimized if g(IT )(r) = E[YT+h(r)|IT ] for any

r ∈ [a, b].

The minimum MSE h-step ahead forecast for the yield curve is thus given by

YT+h|T (r) = E[YT+h(r)|IT ] = µ(r) + Ψ′(r)E[FT+1|IT ] = µ(r) + Ψ′(r)FT+h|T , (3.7)

where r ∈ [a, b], and the forecast error curve is obtained as

eT+h|T (r) = YT+h(r)− YT+h|T (r) = Ψ′(r)(FT+h − FT+h|T ) + εT+h(r)

= Ψ′(r)
( h−1∑
i=0

ΦiηT+h−i

)
+ εT+h(r), r ∈ [a, b],

where the matrices Φi are defined by the recursion Φi =
∑p

j=1 Φi−jAj with Φ0 = IK and

Φj = 0 for j < 0. From Assumptions 3.2 and 3.4, we conclude that eT+h(r) is a Gaussian

random function with E[eT+h(r)] = 0 and covariance kernel

ce,h(r, s) = Cov[eT+h(r), eT+h(s)] = Ψ′(r)
( h−1∑
i=0

ΦiΣηΦ
′
i

)
Ψ(s) + cε(r, s), r, s ∈ [a, b].
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For any fixed r ∈ [a, b], it follows that

YT+h(r)− YT+h|T (r)√
ce,h(r, r)

∼ N (0, 1). (3.8)

The above formulas are infeasible, since µ(r), Ψ(r), FT , A(L), and Ση are unknown and

must be replaced by consistent estimators. For the intercept, the loadings, and the factors,

consistent estimators are provided by Lemma 3.3. Following the two-step procedures of

Stock and Watson (2002), Diebold and Li (2006), and Aue et al. (2015), the estimated

factors can be used to estimate the VAR model parameters. If the factors are known,

then the least squares estimator for the (p×Kp)-matrix B = (A1, . . . , Ap) is equal to B̃ =

FZ ′(ZZ ′)−1, where F = (Fp+1, . . . , FT ), Z = (Zp, . . . , ZT−1), and Zt = (F ′t , . . . , F
′
t−p+1)′

(see, e.g., Lütkepohl 2005, Section 3). We thus consider its feasible counterpart which

is given by B̂ = F̂ Ẑ ′(ẐẐ ′)−1, where F̂ = (F̂p+1, . . . , F̂T ), Ẑ = (Ẑp, . . . , ẐT−1), and

Ẑt = (F̂ ′t , . . . , F̂
′
t−p+1)′. The residuals are obtained as η̂t = F̂t −

∑p
i=1 ÂiF̂t−i, where

(Â1, . . . , Âp) = B̂, and the covariance matrix of ηt is estimated by Σ̂η = diag(σ̂2
1, . . . , σ̂

2
K),

where σ̂2
l = (T − p− 1)−1

∑T
t=p+1 η̂

2
lt.

Lemma 3.4. Let S = diag(s1, . . . , sK), where sl = sign〈ψ̂l, ψl〉. Then, under Assumptions

3.1–3.4, it follows that

(a) ‖SÂiS − Ai‖M = OP (T−1/2), for all i = 1, . . . , p,

(b) ‖Σ̂η − Ση‖M = OP (T−1/2),

as T →∞, where ‖ · ‖M denotes some matrix norm.

The feasible h-step ahead factor forecast is defined by the recursion

F̂T+h|T =

p∑
i=1

ÂiF̂T+h−i|T ,

where F̂T+j|T = F̂T+j for j ≤ 0, and the feasible h-step ahead forecast for the yield curve

is obtained as

ŶT+h|T (r) = µ̂(r) + Ψ̂′(r)F̂T+h|T . (3.9)

Moreover, the estimated covariance kernel of the forecast error function is given by

ĉe,h(r, s) = Ψ̂′(r)
( h−1∑
i=0

Φ̂iΣ̂ηΦ̂
′
i

)
Ψ̂(s) +

L∑
l=K+1

λ̂lψ̂l(r)ψ̂l(s), r, s ∈ [a, b].
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Note that the h-step ahead predictor for stationary functional time series by Aue et al.

(2015) coincides with (3.9). The authors assumed a VAR(p) model for the first K empirical

FPC scores, and they discussed its relation to the optimal forecast from the functional

autoregressive model (FAR) of order p. The consistent estimator by Bosq (2000) for the

FAR(p) model is based on a truncated FPC decomposition. Aue et al. (2015) demonstrated

that the predictor (3.9) and the h-step ahead predictor by Bosq (2000) are asymptotically

equivalent, as T →∞, if the truncation parameter for the estimator by Bosq (2000) is set

to K.

The following result indicates that (3.9) is an asymptotically optimal minimum MSE

forecast for model (3.1), as T →∞.

Lemma 3.5. Let Assumptions 3.1–3.4 hold true. Then, as T →∞,

(a) sup
r∈[a,b]

∣∣ŶT+h|T (r)− YT+h|T (r)
∣∣ = OP (T−1/2),

(b) sup
r,s∈[a,b]

∣∣ĉe,h(r, s)− ce,h(r, s)∣∣ = OP (T−1/2).

Together with equation (3.8), we can formulate both pointwise and simultaneous (1−α)

prediction bands. The first part of the following theorem provides an interval forecast for

each fixed time to maturity r ∈ [a, b] and some given significance level α, while the second

part presents a conservative simultaneous prediction band for the entire yield curve.

Theorem 3.3. Under Assumptions 3.1–3.4, it follows that

(a) lim
T→∞

P

(
|YT+h(r)− ŶT+h|T (r)|

ω(r)
≤ u1−α

2

)
= 1− α, for all r ∈ [a, b],

(b) lim
T→∞

P

(
|YT+1(r)− ŶT+1|T (r)|

ω(r)
≤
√
χ2
L,1−α, for all r ∈ [a, b]

)
≥ 1− α,

where uν is the ν-quantile of the standard normal distribution, χ2
L,ν is the ν-quantile of

the chi-squared distribution with L degrees of freedom, and

ω2(r) = Ψ̂′(r)

( h−1∑
i=0

Φ̂iΣ̂ηΦ̂
′
i

)
Ψ̂(r) +

L∑
l=K+1

λ̂lψ̂
2
l (r).

Estimating the functional factor model via FPCs yields a model that asymptotically

explains (
∑K

l=1 λl)/(
∑∞

l=1 λl) of the variability in Yt, while
∑∞

l=1 λl = E‖Yt−µ‖2 <∞. The

proportion of the variance explained by the l-th FPC is given by λl/
∑∞

k=1 λk. Hence, a

scree plot provides a useful selection criterion for the number of relevant factors K. The lag
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Figure 3.4: Explained variance of the factors and scree plot

FPC 1 2 3 4 5 6 7 8 9 10
eigenvalue 3.3649 0.1119 0.0033 0.0006 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000
expl.var. 96.65% 3.21% 0.10% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
cumulative 96.65% 99.87% 99.96% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99% 100.00%
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Note: The table at the top presents the proportion of the explained variance by the l-th FPC score and the cumulative
proportions, which are given by λ̂l/

∑∞
k=1 λ̂k and (

∑l
j=1 λ̂j)/

∑∞
k=1 λ̂k. The figure at the bottom presents a scree plot of

the eigenvalues of the empirical covariance operator of the yield curves.

order p can also be identified using an information criterion from the VAR literature. Given

the relation of the VAR(p) model for the factors and the FAR(p) model for the curves, as

discussed above, the testing procedure for selecting the lag order in the FAR(p) model of

Kokoszka and Reimherr (2013) also provides a useful criterion to select p. Furthermore,

the functional FPE criterion of Aue et al. (2015) allows for a simultaneous identification

of the lag order p and the number of factors K.

3.5 Application to yields for U.S. Treasuries

To apply the prediction and prediction band methodology, we consider a panel of monthly

unsmoothed Fama-Bliss zero-coupon yields of U.S. Treasuries with fixed maturities of 3,

6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months, from January 1985

until December 2007 (see Figure 3.2). The dataset is taken from Jungbacker et al. (2014),

which is available in the Journal of Applied Econometrics Data Archive.1 It extends the

dataset of Diebold and Li (2006). The time span ranges from the period after the Volcker

disinflation until the 2008 financial crisis, which can be treated as a consistent monetary

policy regime (see Mönch 2012).

1see http://qed.econ.queensu.ca/jae/.
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Figure 3.5: Empirical functional principal components
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Note: The plot presents the first six empirical functional principal components (FPCs) of the empirical covariance operator
of the yield curves from the full dataset of Figure 3.2.

3.5.1 From discrete data to functional data

The data is given in the form of a panel of bond yields yit at time t = 1, . . . , T and

times to maturity ri, i = 1, . . . , N , with r1 < r2 < . . . < rN . We convert the panel

to a functional time series Yt(r), t = 1, . . . , T , r ∈ [a, b], by means of a cubic B-spline

expansion, where a = r1 and b = rN . The curve is represented as Yt(r) =
∑J

j=1 ctjφj(r),

r ∈ [a, b], where {φj}j=1,...,J are basis functions on the domain [a, b], and ct1, . . . , ctJ are

basis coefficients. The B-spline basis is defined with respect to a sequence of knots. At

each interior observation point r2, . . . , rN−1, we set a single interior knot, which yields N−2

basis functions. For cubic B-splines, another four basis functions are necessary to ensure

twice continuous differentiability. The number of basis functions is hence J = N + 2. For

the definition of and a comprehensive discussion on the B-spline basis, see de Boor (2001).

Minimizing the sum of squared errors
∑N

i=1(Yt(ri)− yit)2 is not feasible, since J > N .

Following Ramsay and Silverman (2005), we introduce the roughness penalty λ > 0 and

minimize the criterion

min
ct1,...,ctJ

N∑
i=1

(Yt(ri)− yit)2 + λ

∫ b

a

(
D2Yt(r)

)2
dr

for each t = 1, . . . , T , where D2Yt(r) is the second derivative of Yt(r). By choosing

a roughness penalty λ that is close to zero, the approximation errors at the observed

points r1, . . . , rN are almost zero, such that Yt(r) interpolates the observed bond yields
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Figure 3.6: Effects of the first six functional principal components
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Note: The figure presents the plot of µ̂(r)± 0.5 · ψ̂l(r) for l = 1, . . . , 6, where the empirical functional principal components
(FPCs) are identified up to a sign change.

y1t, . . . , yNt. For our application, we set λ = 10−8. A comprehensive overview of the

problem of transforming discrete data to functional data is provided in Ramsay and Sil-

verman (2005) and Ramsay et al. (2009). The basis representation not only guarantees

a smooth yield curve and but also produces yields at maturities that we do not observe.

Furthermore, it handles missing values across maturities in a natural way. Note that the

B-Spline functions for a basis of an (N + 2)-dimensional subspace of H. Therefore, at

most N + 2 eigenvalues of the empirical covariance function are nonzero.
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Figure 3.7: Empirical functional principal component scores
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Note: The figure presents the plot of the empirical functional principal component (FPC) scores F̂l,t for l = 1, . . . , 6, which
are estimated using the full dataset of Figure 3.2.

3.5.2 Functional principal component analysis

Since the data consists of 17 times to maturity, the transformed functional objects are

elements of a 19-dimensional subspace of H, which implies that ĈY has at most 19 nonzero

eigenvalues. Figure 3.4 depicts a scree plot of the eigenvalues. The estimated explained

variance of the l-th FPC is given by λ̂l/
∑∞

k=1 λ̂k, while
∑∞

k=1 λ̂k =
∑19

k=1 λ̂k = 3.4814.

The first empirical FPC explains more than 96% of the variation of the curve.

Figure 3.5 presents orthonormal eigenfunctions for the empirical covariance operator’s

six largest eigenvalues, which are identified up to a sign change. In the foreground, the

eigenfunctions belonging to the largest three eigenvectors are illustrated, while the next

five eigenfunctions are plotted in the background. The shape of the first three loading
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Figure 3.8: One-month ahead yield curve predictions and prediction bands
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Note: Four exemplary one-step ahead forecasts, pointwise prediction bands and simultaneous prediction bands (α = 5%)
are illustrated for the model with K = 3 factors and AR(1) factor dynamics. While the predictions for January 1994 and
December 2014 are usual cases, the ones for July 2003 and November 2017 are exceptional, since the true curve crosses the
pointwise prediction band.

functions are similar to the level, shape, and curvature function of the Nelson-Siegel model

(see Figure 3.1). Figure 3.6 illustrates a plot of µ̂(r) ± 0.5ψ̂l(r) for l = 1, . . . , 6, which

illustrates the effect of each factor on the mean function across all times to maturity. The

series of the first six empirical FPC scores are presented in Figure 3.7.

3.5.3 Yield curve prediction

To evaluate and compare the forecasting performances in an out-of-sample experiment, we

follow the sequential setting in Diebold and Li (2006) and forecast the yield curve for each

month from January 1994 until the end of the sample. Let P denote the set of prediction

time points, so that the h-step ahead yield curve forecast for time t ∈ P is estimated using

all observations from the beginning of the sample until the time point t− h.

For the predictor from the functional dynamic factor model in equation (3.9), we

consider the fixed numbers of K = 3, K = 4, and K = 6 factors and three different
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Table 3.1: Root mean square forecast errors

RW Nelson-Siegel Functional principal components estimator
K 3 3 3 4 6 3 4 6 3 4 6

dynamics – AR1 VAR1 AR1 AR2 VAR1
1-month-ahead forecast

3m 0.215 0.216 0.194 0.206 0.202 0.202 0.205 0.199 0.199 0.187 0.185 0.190
6m 0.213 0.229 0.206 0.205 0.209 0.210 0.197 0.201 0.201 0.199 0.194 0.196
9m 0.228 0.250 0.236 0.231 0.227 0.227 0.221 0.217 0.217 0.233 0.216 0.218

12m 0.246 0.264 0.249 0.250 0.244 0.243 0.242 0.236 0.236 0.255 0.240 0.242
15m 0.258 0.277 0.261 0.267 0.263 0.259 0.259 0.255 0.252 0.271 0.259 0.258
18m 0.266 0.280 0.269 0.275 0.271 0.269 0.267 0.264 0.262 0.279 0.268 0.268
21m 0.273 0.286 0.279 0.285 0.282 0.280 0.278 0.275 0.273 0.288 0.278 0.280
24m 0.279 0.297 0.293 0.292 0.288 0.288 0.285 0.282 0.282 0.296 0.286 0.288
30m 0.288 0.297 0.298 0.294 0.294 0.294 0.289 0.288 0.288 0.298 0.292 0.295
36m 0.293 0.297 0.300 0.294 0.294 0.295 0.290 0.290 0.290 0.298 0.295 0.297
48m 0.299 0.299 0.304 0.295 0.298 0.299 0.293 0.295 0.296 0.300 0.298 0.301
60m 0.289 0.298 0.303 0.289 0.291 0.291 0.287 0.289 0.288 0.295 0.294 0.296
72m 0.284 0.290 0.294 0.282 0.285 0.285 0.281 0.283 0.283 0.288 0.288 0.290
84m 0.276 0.282 0.286 0.278 0.279 0.277 0.277 0.278 0.276 0.285 0.283 0.282
96m 0.270 0.272 0.275 0.274 0.272 0.272 0.274 0.273 0.272 0.280 0.278 0.279

108m 0.262 0.266 0.268 0.267 0.264 0.265 0.268 0.265 0.265 0.273 0.267 0.270
120m 0.263 0.271 0.273 0.270 0.262 0.263 0.271 0.263 0.264 0.274 0.264 0.268

TRMSFE 0.266 0.276 0.272 0.269 0.268 0.267 0.265 0.264 0.263 0.273 0.266 0.268

6-month-ahead forecast
3m 0.814 0.820 0.723 0.725 0.734 0.734 0.744 0.752 0.753 0.724 0.667 0.669
6m 0.829 0.867 0.806 0.794 0.798 0.798 0.804 0.808 0.808 0.820 0.745 0.750
9m 0.837 0.879 0.853 0.829 0.826 0.826 0.834 0.832 0.832 0.871 0.785 0.792

12m 0.852 0.889 0.874 0.856 0.851 0.851 0.863 0.859 0.859 0.904 0.823 0.832
15m 0.864 0.895 0.887 0.874 0.870 0.870 0.884 0.881 0.880 0.924 0.851 0.861
18m 0.859 0.888 0.897 0.873 0.870 0.870 0.883 0.880 0.880 0.926 0.861 0.872
21m 0.860 0.884 0.906 0.873 0.871 0.870 0.883 0.881 0.880 0.928 0.869 0.881
24m 0.861 0.885 0.920 0.872 0.869 0.869 0.881 0.879 0.878 0.928 0.874 0.887
30m 0.849 0.858 0.902 0.847 0.846 0.846 0.858 0.858 0.858 0.906 0.863 0.877
36m 0.835 0.838 0.889 0.825 0.825 0.826 0.839 0.839 0.839 0.886 0.852 0.867
48m 0.799 0.801 0.859 0.790 0.792 0.793 0.805 0.808 0.808 0.852 0.831 0.847
60m 0.776 0.785 0.848 0.768 0.770 0.770 0.784 0.786 0.786 0.834 0.820 0.837
72m 0.739 0.749 0.809 0.734 0.736 0.736 0.752 0.754 0.754 0.799 0.790 0.809
84m 0.716 0.717 0.779 0.712 0.712 0.712 0.731 0.732 0.731 0.776 0.770 0.791
96m 0.694 0.688 0.749 0.694 0.694 0.694 0.718 0.717 0.717 0.759 0.754 0.776

108m 0.674 0.671 0.732 0.683 0.681 0.681 0.705 0.703 0.704 0.744 0.737 0.760
120m 0.659 0.672 0.732 0.675 0.671 0.671 0.698 0.695 0.695 0.732 0.723 0.749

TRMSFE 0.798 0.815 0.836 0.793 0.792 0.792 0.807 0.806 0.806 0.845 0.803 0.817

12-month-ahead forecast
3m 1.392 1.348 1.355 1.272 1.279 1.279 1.294 1.301 1.301 1.369 1.187 1.192
6m 1.418 1.382 1.437 1.344 1.346 1.347 1.350 1.352 1.352 1.462 1.265 1.273
9m 1.402 1.372 1.463 1.359 1.358 1.358 1.357 1.355 1.355 1.490 1.282 1.291

12m 1.408 1.370 1.469 1.378 1.375 1.375 1.376 1.373 1.373 1.509 1.308 1.317
15m 1.400 1.357 1.461 1.379 1.377 1.377 1.383 1.381 1.380 1.509 1.322 1.332
18m 1.374 1.330 1.446 1.354 1.352 1.352 1.359 1.357 1.357 1.484 1.310 1.321
21m 1.348 1.305 1.432 1.328 1.326 1.326 1.334 1.333 1.332 1.458 1.297 1.307
24m 1.326 1.289 1.424 1.304 1.302 1.302 1.310 1.308 1.307 1.432 1.282 1.293
30m 1.280 1.237 1.373 1.248 1.248 1.248 1.260 1.260 1.260 1.375 1.247 1.259
36m 1.233 1.193 1.328 1.196 1.196 1.196 1.213 1.213 1.214 1.320 1.213 1.226
48m 1.146 1.119 1.249 1.115 1.117 1.116 1.142 1.143 1.143 1.235 1.163 1.179
60m 1.092 1.081 1.207 1.061 1.062 1.063 1.093 1.094 1.095 1.184 1.133 1.150
72m 1.026 1.030 1.148 1.011 1.013 1.013 1.050 1.052 1.052 1.132 1.097 1.117
84m 0.983 0.986 1.101 0.972 0.973 0.972 1.014 1.014 1.014 1.091 1.067 1.091
96m 0.946 0.947 1.060 0.946 0.945 0.945 0.994 0.993 0.993 1.064 1.047 1.073

108m 0.913 0.924 1.037 0.928 0.927 0.927 0.975 0.974 0.975 1.044 1.029 1.057
120m 0.895 0.929 1.040 0.918 0.916 0.916 0.965 0.963 0.964 1.030 1.015 1.046

TRMSFE 1.226 1.200 1.306 1.195 1.195 1.195 1.214 1.214 1.214 1.317 1.197 1.211

Note: Root mean square forecast errors (RMSFEs) and trace root mean square forecast errors (TRMSFEs) are reported.
Furthermore, RW is the random walk forecast,
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Table 3.2: Diebold-Mariano test statistics

Functional principal components estimator
K 3 4 6 3 4 6 3 4 6

dynamics AR1 AR2 VAR1

Test against the RW forecast
1-month-ahead forecast

3m -0.96 -2.19* -2.31* -0.96 -2.11* -2.25* -2.80* -3.22* -2.60*
12m 0.77 -0.63 -0.87 -0.55 -1.50 -1.66* 1.25 -0.82 -0.47
60m -0.02 0.72 0.65 -0.38 0.02 -0.09 1.31 0.82 1.12

6-month-ahead forecast
3m -4.83* -4.48* -4.46* -2.64* -2.35* -2.32* -3.29* -3.92* -3.77*

12m 0.26 -0.08 -0.08 0.45 0.27 0.27 2.27 -0.79 -0.54
60m -0.66 -0.50 -0.50 0.38 0.45 0.45 2.37 1.41 1.92

12-month-ahead forecast
3m -4.21* -4.04* -4.05* -2.23* -2.09* -2.10* -0.62 -3.49* -3.45*

12m -1.21 -1.33 -1.33 -0.69 -0.75 -0.75 3.51 -1.81* -1.69*
60m -1.40 -1.34 -1.34 0.04 0.07 0.08 2.58 0.83 1.20

Test against the DNS forecast with AR(1) factor dynamics
1-month-ahead forecast

3m -2.18* -2.71* -2.35* -1.70* -2.70* -2.53* -3.70* -4.03* -3.32*
12m -2.98* -4.06* -4.12* -3.13* -3.84* -3.91* -0.97 -2.12* -1.80*
60m -1.98* -1.31 -1.44 -2.19* -1.63 -1.80* -0.58 -1.14 -0.35

6-month-ahead forecast
3m -6.60* -5.92* -5.90* -4.28* -3.77* -3.72* -3.25* -4.01* -3.87*

12m -2.25* -2.60* -2.61* -2.28* -2.72* -2.73* 0.49 -1.59 -1.36
60m -1.16 -1.03 -1.03 -0.10 0.05 0.06 2.37 1.29 1.92

12-month-ahead forecast
3m -3.14* -2.82* -2.83* -2.13* -1.86* -1.87* 0.46 -2.64* -2.56*

12m 0.27 0.17 0.17 0.37 0.20 0.21 3.08 -1.07 -0.93
60m -0.81 -0.76 -0.75 0.84 0.91 0.94 3.56 1.25 1.70

Note: The benchmark statistics for the Diebold-Mariano tests are the random-walk (RW) forecast and the dynamic Nelson-
Siegel (DNS) forecast with AR(1) factor dynamics. A negative value indicates the superiority of the functional principal
components (FPCs) based forecast, while the asterisks denote significance at the 5% level.

specifications for the factor dynamics, which are given by

Fl,t = alFl,t−1 + ηl,t, l = 1, . . . , K, (AR1)

Fl,t = alFl,t−1 + blFt,t−2 + ηl,t, l = 1, . . . , K, (AR2)

Ft = AFt−1 + ηt. (VAR1)

As reported in many studies, bond yields are close to being nonstationary, which makes

it difficult to outperform the simple random walk (RW) no-change forecast (see Duffee

2002, Ang and Piazzesi 2003, Diebold and Li 2006, Mönch 2008, Caldeira and Torrent

2017). This is also reflected by the fact that the first eigenvalue in Figure 3.4 is quite large

compared to the others and that augmented Dickey-Fuller tests are not able to reject the

unit root hypothesis for the first and the second empirical FPC score series in Figure 3.7

at the usual significance levels. We thus consider the RW forecast as the main benchmark.

Another benchmark is the forecast obtained from the DNS model. The factors are

estimated by regressing the available yields onto the Nelson-Siegel loadings given by equa-
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Table 3.3: Coverage rates and average widths of one-month-ahead interval forecasts

Functional principal components estimator with K = 3 components
nominal coverage 85 90 95

dynamics AR(1) AR(2) VAR(1) AR(1) AR(2) VAR(1) AR1 AR2 VAR1
3m 97.02 96.43 95.24 97.02 97.02 96.43 97.62 97.62 97.02

(1.09) (1.06) (0.73) (1.25) (1.21) (0.84) (1.48) (1.44) (1.00)
6m 96.43 97.02 95.24 97.02 97.02 96.43 98.21 98.21 97.62

(1.05) (1.02) (0.77) (1.20) (1.16) (0.88) (1.43) (1.39) (1.05)
9m 96.43 96.43 89.88 97.62 97.62 96.43 98.21 98.21 98.21

(1.03) (1.00) (0.82) (1.18) (1.15) (0.94) (1.41) (1.36) (1.12)
12m 94.64 95.24 89.88 97.02 97.02 92.86 98.21 97.62 97.02

(1.03) (1.00) (0.87) (1.18) (1.14) (1.00) (1.41) (1.36) (1.19)
15m 92.26 92.86 89.29 95.24 95.83 91.67 97.62 97.62 97.02

(1.03) (1.00) (0.91) (1.18) (1.14) (1.04) (1.41) (1.36) (1.24)
18m 92.26 91.67 90.48 95.24 94.64 91.67 98.21 97.62 95.83

(1.02) (0.99) (0.93) (1.17) (1.13) (1.06) (1.39) (1.35) (1.27)
21m 90.48 91.07 89.88 92.86 92.26 91.67 97.62 97.02 96.43

(1.01) (0.97) (0.95) (1.15) (1.11) (1.08) (1.37) (1.32) (1.29)
24m 89.88 90.48 89.88 92.86 91.07 92.26 97.02 95.24 96.43

(0.99) (0.96) (0.97) (1.13) (1.10) (1.10) (1.35) (1.31) (1.31)
30m 89.29 90.48 89.29 92.26 92.26 91.67 96.43 94.64 96.43

(0.97) (0.94) (0.97) (1.11) (1.08) (1.11) (1.33) (1.28) (1.32)
36m 87.50 89.29 87.50 92.26 91.07 92.26 94.64 93.45 97.02

(0.95) (0.91) (0.97) (1.08) (1.05) (1.11) (1.29) (1.25) (1.32)
48m 86.31 87.50 86.90 91.67 89.88 91.67 93.45 92.86 94.64

(0.92) (0.89) (0.97) (1.05) (1.01) (1.10) (1.25) (1.21) (1.32)
60m 86.90 86.31 88.69 91.07 90.48 92.26 94.05 93.45 94.64

(0.89) (0.86) (0.94) (1.01) (0.98) (1.08) (1.21) (1.17) (1.28)
72m 86.90 87.50 88.10 92.26 90.48 92.26 95.24 94.05 95.83

(0.89) (0.86) (0.94) (1.01) (0.98) (1.07) (1.21) (1.17) (1.28)
84m 87.50 86.90 88.69 91.07 89.88 92.26 95.83 93.45 96.43

(0.87) (0.84) (0.92) (0.99) (0.96) (1.05) (1.18) (1.14) (1.25)
96m 87.50 87.50 89.29 92.86 90.48 92.86 95.24 94.05 95.83

(0.86) (0.83) (0.90) (0.98) (0.95) (1.03) (1.17) (1.13) (1.23)
108m 88.69 88.10 89.29 92.26 91.67 93.45 96.43 96.43 97.62

(0.86) (0.84) (0.91) (0.99) (0.95) (1.04) (1.18) (1.14) (1.24)
120m 90.48 87.50 89.29 92.86 92.26 93.45 97.62 96.43 97.62

(0.86) (0.83) (0.90) (0.98) (0.95) (1.02) (1.17) (1.13) (1.22)

Note: The out-of-sample performance of the pointwise (1−α)-prediction bands from Theorem 3.3 is presented for the levels
α = 15%, α = 10%, and α = 5%. The true coverage rates are presented in percentage points, while the average widths of
the interval forecasts are indicated in the brackets . Bold numbers indicate that the coverage test by Christoffersen (1998)
does not reject the hypothesis that the expected coverage coincides with the nominal coverage at the 5% level.

Table 3.4: Coverage rates of one-month-ahead simultaneous prediction bands

Functional principal components estimator with K = 3 components
nominal coverage 85 90 95

dynamics AR(1) AR(2) VAR(1) AR(1) AR(2) VAR(1) AR(1) AR(2) VAR(1)
true coverage 100 100 100 100 100 100 100 100 100
average width (2.43) (2.35) (2.44) (2.55) (2.46) (2.56) (2.73) (2.64) (2.74)

Note: The out-of-sample performance of the simultaneous (1 − α)-prediction bands from Theorem 3.3 is presented for the
levels α = 15%, α = 10%, and α = 5%, and L = 10. The true coverage rates are presented in percentage points, while the
average widths of the interval forecasts are indicated in the brackets.
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tion (3.2) for a fixed value of λ = 0.0609. In a second step, a linear autoregressive model

is fitted to the estimated factors from the first step, which, analogously to equation (3.7),

gives rise to a forecast of the yield curve. Diebold and Li (2006) considered VAR(1) and

univariate AR(1) factor dynamics and demonstrated that the model has a good forecasting

performance for larger forecasting horizons.

The accuracies of the curve forecasts are evaluated by computing root mean square

forecast errors

RMSFE(ri) =

√
1

|P |
∑
t∈P

(
Ŷt|t−h(ri)− Yt(ri)

)2

and trace root mean square forecast errors

TRMSFE =

√√√√ 1

N

1

|P |

N∑
i=1

∑
t∈P

(
Ŷt|t−h(ri)− Yt(ri)

)2
,

where r1, . . . , rN are the available times to maturity in the data, and |P | denotes the

number of prediction time points. The results are presented in Table 3.1. The forecasts

based on the FPC estimator with AR(1) factor dynamics have a lower TRMSFE than the

DNS forecasts for all forecasting horizons, and a lower TRMSFE than the RW forecast

for the six-month and 12-month ahead forecasts. The Diebold-Mariano test results in

Table 3.2 indicate that the FPC-based forecasts outperform the RW and DNS forecasts

significantly for bonds with a short time to maturity.

To evaluate the prediction bands, we consider the same out-of-sample setting as that

for the curve forecasts. The coverage rates of the pointwise and simultaneous bands from

Theorem 3.3 are listed in Tables 3.3 and 3.4, where we set L = 10 for the simultaneous

bands (see Figure 3.4). Figure 3.8 presents four exemplary forecasts, pointwise prediction

bands, and simultaneous prediction bands. The accuracies of the interval forecasts from

the pointwise prediction bands are evaluated using the test by Christoffersen (1998), which

compares the nominal coverage of the interval forecast with the true coverage. The results

are provided in Table 3.3, and the null hypothesis that the expected coverage coincides with

the nominal coverage is not rejected for the medium and longer maturity bonds. While

the true coverage rates for the pointwise prediction bands do not deviate significantly from

the nominal coverage for many times to maturity, the simultaneous bands are conservative

and have a 100% coverage at a nominal coverage level of 85%, so that there is no yield

curve in our sample that exceeds the simultaneous prediction bands.
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3.6 Conclusion

We have introduced an identification strategy for a functional factor model by imposing

orthogonality conditions for the loading functions that are elements of the Hilbert space

of square integrable functions. The conditions are similar to those from the vector-valued

factor models by Stock and Watson (2002) and Bai (2003).

Using results from functional data analysis, an FPC estimator is derived, and consis-

tency results are presented. The minimum MSE h-step ahead forecast coincides with the

predictor proposed in Aue et al. (2015) and thus provides a model-based justification of

the prediction strategy in Aue et al. (2015). Furthermore, pointwise and simultaneous pre-

diction bands are derived from the forecast error curve distribution. In an out-of-sample

experiment with yield curve data, the forecasting procedure provides a higher accuracy

when compared to the conventional DNS model.

Since the number of factors K and the lag order p are assumed to be known or selected

by heuristic arguments, further research is required to answer the question of how these

numbers can be identified.
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Appendix to Chapter 3

We first show the following auxiliary result:

Lemma 3.6. Let {Yt}t∈N be a functional time series that satisfies (3.1) and Assumptions

3.1, 3.2, 3.3, and 3.4. Then, the demeaned series Xt(r) = Yt(r)− µ(r), r ∈ [a, b], admits

the Karhunen-Loève representation, Xt(r) =
∑∞

l=1 θl,tψl(r), and, for its FPC scores θl,t,

there exists some constants R <∞ and β ∈ (1,∞), such that

∣∣E [θl1,tθl2,t−h]
∣∣ ≤ Rh−β

√
λl1λl2 , (3.10)

∞∑
τ1,τ2,τ3=−∞

|κl1,l2,l3,l4(τ1, τ2, τ3)| ≤ R
√
λl1λl2λl3λl4 , (3.11)

for all t, h, l1, l2, l3, l4,∈ N, where κl1,l2,l3,l4(τ1, τ2, τ3) denotes the 4-th order cumulant of

(θl1,t, θl2,t+τ1 , θl3,t+τ2 , θl4,t+τ3), and λl = E[θ2
l,t].

Proof. Since E‖Xt‖2 < ∞, the demeaned series admits the Karhunen-Loève representa-

tion; that is,

Xt(r) =
∞∑
l=1

θl,tψl(r),

where {ψl}l∈N represents the corresponding sequences of eigenfunctions, and θl,t = 〈Xt, ψl〉
denotes the l-th FPC score of Xt(r) (see Hörmann and Kokoszka 2012) . From (3.1), we

have that

Xt(r) =
K∑
l=1

Fl,tψl(r) +
∞∑
l=1

εl,tϕl(r),

where the second term on the right-hand side is the Karhunen-Loève representation of the

error term εt(r). Following the identification results of Theorem 3.1, it follows that

θl,t =

Fl,t for 1 ≤ l ≤ K,

εl−K,t for l > K.
(3.12)

Finally, since Fl,t satisfies Assumption 3.4, the first K FPC scores can be written as a

linear process based on the innovation sequence {ηt}t∈N. Moreover, εk,t are uncorrelated

and Gaussian for all k, t ∈ N by Assumption 3.2 and the properties of the Karhunen-Loève

representation. Then, following the discussion in Salish and Gleim (2019) in Section 2.2,

the scores θl,t satisfy restrictions (3.10) and (3.11).
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Proof of Lemma 3.1

Since the covariance kernel of εt(r) is bounded and 〈εt, ψl〉 = 0 from Assumption 3.3, it

follows that
∫ b
a
cε(r, s)ψl(s) ds = E[εt(r)〈εt, ψl〉] = 0 for all l = 1, . . . , K and t = 1, . . . , T ,

and∫ b

a

cY (r, s)ψl(s) ds =

∫ b

a

( K∑
k=1

λkψk(r)ψk(s)
)
ψl(s) ds+

∫ b

a

cε(r, s)ψl(s) ds = λlψl(r)

for all r ∈ [a, b]. As a consequence, λl is an eigenvalue of CY , and ψl(r) is a corresponding

eigenfunction. Let {ξj}j∈N be the sequence of eigenvalues of Cε, and let {vj(r)}j∈N be

a sequence of corresponding orthonormal eigenfunctions. Then, {ξj, vj(r)}j∈N are also

eigenpairs of CY . Furthermore, {vj}j∈N forms a basis of H, and, by Parseval’s identity,

E‖εt‖2 =
∑∞

j=1 E〈εt, ψj〉2 =
∑∞

j=1〈Cε(ψj), ψj〉 =
∑∞

j=1 ξj, and E‖εt‖2 < λK < . . . < λ1

by Assumption 3.2(c). As a result, λ1, . . . , λK are the K largest eigenvalues of CY . The

second result follows from

〈Yt − µ, ψl〉 =
K∑
k=1

Fk,t〈ψk, ψl〉+ 〈εt, ψl〉 = Fl,t,

since the eigenfunctions are orthonormal, and 〈εt, ψl〉 = 0.

Proof of Lemma 3.2

From Assumptions 3.1(a) and 3.1(b), it follows that
∑T

t=1 ‖
∑K

l=1 Fltψl‖2 =
∑T

t=1

∑K
l=1 F

2
lt,

which yields

T∑
t=1

∥∥∥Yt − µ̂− K∑
l=1

Fltψl

∥∥∥2

=
T∑
t=1

(
‖Yt − µ̂‖2 − 2

K∑
l=1

Flt〈Yt − µ̂, ψl〉+
K∑
l=1

F 2
lt

)
.

The minimization problem (3.4) is then equivalent to minimizing F 2
lt− 2Flt〈Yt− µ̂, ψl〉 for

all l = 1, . . . , K and t = 1, . . . , T , and the unique minimum is attained if Flt = 〈Yt− µ̂, ψl〉.

Proof of Theorem 3.1

Let Xt(r) = Yt(r) − µ̂(r). The goal is to find an orthonormal basis ψ1(r), . . . , ψK(r),

such that
∑T

t=1 ‖Xt −
∑K

l=1〈Xt, ψl〉ψl‖2 is minimized. We follow Hörmann and Kokoszka

(2012) and Horváth and Kokoszka (2012), where this problem is treated in detail. From
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Assumptions 3.1(a) and 3.1(b), it follows that

T∑
t=1

‖Yt − µ−
K∑
l=1

〈Yt − µ, ψl〉ψl‖2 =
T∑
t=1

‖Xt‖2 −
T∑
t=1

K∑
l=1

〈Xt, ψl〉2.

Note that
∑T

t=1

∑K
l=1〈Xt, ψl〉2 = T

∑K
l=1〈ĈY (ψl), ψl〉. Then, the spectral decomposition

yields 〈ĈY (ψl), ψl〉 =
∑∞

j=0 λ̂j〈ψl, ψ̂j〉2. Following Theorem 3.2 in Horváth and Kokoszka

(2012),
∑K

l=1

∑∞
j=0 λ̂j〈ψl, ψ̂j〉2 is maximized if ψl(r) = ψ̂l(r) for all l = 1, . . . , K. Finally,

the assertion follows with Lemma 3.2.

Proof of Lemma 3.3

Since E‖Yt(r) − µ(r)‖2 < ∞, the demeaned series Xt(r) = Yt(r) − µ(r) admits the

Karhunen-Loève representation,

Xt(r) =
∞∑
l=1

θl,tψl(r),

where {λl}l∈N is the sequence of eigenvalues of the covariance operator of Xt(r) in decreas-

ing order, and {ψl(r)}l∈N is an orthonormal sequence of corresponding eigenfunctions.

The FPC scores θl,t =
∫ b
a
Xt(r)ψl(r) dr satisfy E[θl,tθm,t] = λl · 1{l=m}. Furthermore, since∫ b

a
(ψl(r))

2 dr = 1, Lebesgue’s criterion for Riemann integrability implies that, for any

l ≥ 1, the eigenfunction ψl(r) is bounded. That is, a constant M <∞ exists, such that

sup
r∈[a,b]

|ψ`(r)| ≤M for all l ∈ N. (3.13)

Proof of (a): From equation (3.13) we have

(
sup
r∈[a,b]

∣∣µ̂(r)− µ(r)
∣∣)2

= sup
r∈[a,b]

(
µ̂(r)− µ(r)

)2
= sup

r∈[a,b]

(
1

T

T∑
t=1

Xt(r)

)2

= sup
r∈[a,b]

1

T 2

T∑
t1,t2=1

∞∑
l1,l2=1

θl1,t1θl2,t2ψl1(r)ψl2(r) ≤
M2

T 2

T∑
t1,t2=1

∞∑
l1,l2=1

θl1,t1θl2,t2

=
M2

T 2

( T∑
t=1

∞∑
l1,l2=1

θl1,tθl2,t + 2
T−1∑
h=1

T∑
t=h+1

∞∑
l1,l2=1

θl1,tθl2,t−h

)
.
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With the identification (3.12), it follows that E[
∑∞

l1,l2=1 θl1,tθl2,t] =
∑∞

l=1 λl, and

E
[ ∞∑
l1,l2=1

θl1,tθl2,t−h

]
=

K∑
l1,l2=1

E[θl1,tθl2,t−h] ≤
R

h

K∑
l1,l2=1

√
λl1λl2 ,

where the last inequality follows from Lemma 3.6. Then,

E

[(
sup
r∈[a,b]

∣∣µ̂(r)− µ(r)
∣∣)2
]
≤ M2

T

∞∑
l=1

λl +
2M2R

T 2

T−1∑
h=1

T − h
h

K∑
l1,l2=1

√
λl1λl2 = O(T−1)

Chebyshev’s inequality thus concludes the first part of the lemma.

Proof of (b): From (a), it follows that supr,s∈[a,b] |ĉY (r, s) − ĉX(r, s)| = OP (T−1/2), where

ĉX(r, s) = T−1
∑T

l=1Xt(r)Xt(s). It hence suffices to show consistency for ĉX(r, s). From

equation (3.13), it follows that

sup
r,s∈[a,b]

∣∣ĉX(r, s)− cX(r, s)
∣∣ = sup

r,s∈[a,b]

∣∣∣∣ 1

T

T∑
t=1

(
Xt(r)Xt(s)− E[Xt(r)Xt(s)]

)∣∣∣∣
= sup

r,s∈[a,b]

∣∣∣∣ 1

T

∞∑
l1,l2=1

T∑
t=1

(
θl1,tθl2,t − E[θl1,tθl2,t]

)
ψl1(r)ψl2(s)

∣∣∣∣
≤ M2

T

∞∑
l1,l2=1

∣∣∣∣ T∑
t=1

θl1,tθl2,t − E[θl1,tθl2,t]

∣∣∣∣.
Then, by Jensen’s inequality,

E
[∣∣∣ sup

r,s∈[a,b]

∣∣ĉX(r, s)− cX(r, s)
∣∣∣∣∣] ≤ M2

T

∞∑
l1,l2=1

E

[∣∣∣∣ T∑
t=1

θl1,tθl2,t − E[θl1,tθl2,t]

∣∣∣∣]

≤ M2

T

∞∑
l1,l2=1

√√√√E

[( T∑
t=1

θl1,tθl2,t − E[θl1,tθl2,t]
)2
]

=
M2

T

∞∑
l1,l2=1

√√√√ T∑
t1,t2=1

E
[
θl1,t1θl2,t1θl1,t2θl2,t2

]
− E

[
θl1,t1θl2,t1

]
E
[
θl1,t2θl2,t2

]
.

The 4-th order cumulants have the following property:

κ(x1,x2,x3,x4) = E[x1x2x3x4]− E[x1x2]E[x3x4]− E[x1x3]E[x2x4]− E[x1x4]E[x2x3],
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which yields

T∑
t1,t2=1

E
[
θl1,t1θl2,t1θl1,t2θl2,t2

]
− E

[
θl1,t1θl2,t1

]
E
[
θl1,t2θl2,t2

]
=

T∑
t1,t2=1

κl1,l2,l1,l2 (0,|t1−t2|,|t1−t2|) + E
[
θl1,t1θl1,t2

]
E
[
θl2,t1θl2,t2

]
+ E

[
θl1,t1θl2,t2

]
E
[
θl2,t1θl1,t2

]
.

From Lemma 3.6, it follows that

T∑
t1,t2=1

κl1,l2,l1,l2 (0,|t1−t2|,|t1−t2|) ≤ Rλl1λl2 ,

and

T∑
t1,t2=1

E
[
θl1,t1θl1,t2

]
E
[
θl2,t1θl2,t2

]
+ E

[
θl1,t1θl2,t2

]
E
[
θl2,t1θl1,t2

]
=

T∑
t=1

(
E
[
θ2
l1,t

]E
[
θ2
l2,t

]
+ E

[
θl1,tθl2,t

]2)
+ 2

T−1∑
h=1

T∑
t=h+1

(
E
[
θl1,tθl1,t+h

]
E
[
θl2,tθl2,t+h

]
+ E

[
θl1,tθl2,t+h

]
E
[
θl2,tθl1,t+h

])
≤ Tλl1λl2

(
2 +

4R

T

T−1∑
h=1

T − h
hβ

)
.

Hence, a constant C <∞ exists, such that

E
[∣∣∣ sup

r,s∈[a,b]

∣∣ĉX(r, s)− cX(r, s)
∣∣∣∣∣] ≤ C√

T

∞∑
l1,l2=1

√
λl1λl2 =

C√
T

L∑
l1,l2=1

√
λl1λl2 = O(T−1/2),

since Yt(r) takes values in an L-dimensional subspace of H, and the assertion follows with

Markov’s inequality.

Proof of (c): The result follows from Lemma 3.6 and Corollary 2 in Salish and Gleim

(2019).

Proof of (d): From Lemma 3.6 and Corollary 2 in Salish and Gleim (2019) ir follows that
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‖slψ̂l − ψl‖ = OP (T−1/2). Then, the Cauchy-Schwarz inequality yields

sup
r∈[a,b]

∣∣∣λ̂lslψ̂l(r)− λlψl(r)∣∣∣ = sup
r∈[a,b]

∣∣∣∣ ∫ b

a

ĉY (r, s)slψ̂l(s) ds−
∫ b

a

cY (r, s)ψl(s) ds

∣∣∣∣
= sup

r∈[a,b]

∣∣∣∣ ∫ b

a

(
ĉY (r, s)− cY (r, s)

)
slψ̂l(s) ds+

∫ b

a

cY (r, s)
(
slψ̂l(s)− ψl(s)

)
ds

∣∣∣∣
≤ ‖ψl‖

(
sup
r∈[a,b]

√∫ b

a

(
ĉY (r, s)− cY (r, s)

)2
ds

)
+
∥∥slψ̂l − ψl∥∥( sup

r∈[a,b]

√∫ b

a

c2
Y (r, s) ds

)
≤ sup

r,s∈[a,b]

∣∣ĉY (r, s)− cY (r, s)
∣∣+OP (T−1/2) = OP (T−1/2),

which follows from (b). Finally, with (c), and Slutsky’s theorem, we obtain

∣∣slψ̂l(r)− ψl(r)∣∣ =
1

λl

∣∣∣λ̂lslψ̂l(r)− λlψl(r)∣∣∣+OP (T−1/2) = OP (T−1/2).

Proof of (e): The triangle inequality and the Cauchy-Schwarz inequality yield

max
1≤t≤T

∣∣sl〈Yt − µ̂, ψ̂l〉 − 〈Yt − µ, ψl〉∣∣
= max

1≤t≤T

∣∣〈Yt − µ̂, slψ̂l〉 − 〈Yt − µ̂, ψl〉+ 〈Yt − µ̂, ψl〉 − 〈Yt − µ, ψl〉
∣∣

≤ max
1≤t≤T

(∣∣〈Yt − µ̂, slψ̂l − ψl〉∣∣+
∣∣〈µ− µ̂, ψl〉∣∣)

≤ ‖slψ̂l − ψl‖
(

max
1≤t≤T

‖Yt − µ̂‖
)

+ ‖µ̂− µ‖ = OP (T−1/2),

which follows from (a) and (d).

Proof of Theorem 3.2

Note that

E‖YT+h − g(IT )‖2 = E‖YT+h − E[YT+h|IT ] + E[YT+h|IT ]− g(IT )‖2

= E‖YT+h − E[YT+h|IT ]‖2 − 2E[〈YT+h − E[YT+h|IT ], E[YT+h|IT ]− g(IT )〉]

+ E‖E[YT+h|IT ]− g(IT )‖2.
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While E‖YT+h − E[YT+h|IT ]‖2 does not depend on g(IT ), the second term satisfies

E
[〈
YT+h − E[YT+h|IT ], E[YT+h|IT ]− g(IT )

〉]
= E

[
E
[〈
YT+h − E[YT+h|IT ], E[YT+h|IT ]− g(IT )

〉∣∣IT ]]
= E

[〈
E
[
YT+h − E[YT+h|IT ]

∣∣IT ], E[YT+h|IT ]− g(IT )
〉]

= E
[〈

0, E[YT+h|IT ]− g(IT )
〉]

= 0

because of the law of iterated expectation. Finally, E‖E[YT+h|IT ] − g(IT )‖2 takes the

smallest value when g(IT ) = E[YT+h|IT ].

Proof of Lemma 3.4

From Proposition 3.1 in Lütkepohl (2005), it follows that ‖B̃ − B‖M = OP (T−1/2), and

Lemma 3.3(e) yields ‖SF̂ − F‖M = OP (T−1/2) and ‖(S ⊗ Ip)Ẑ − Z‖M = OP (T−1/2),

where ⊗ denotes the Kronecker product. The continuous mapping theorem implies that

‖Ẑ ′(ẐẐ ′)−1(S ⊗ Ip)− Z ′(ZZ ′)−1‖M = OP (T−1/2). Then,

‖SB̂(S ⊗ Ip)− B̃‖M ≤ ‖SF̂ − F‖M · ‖Ẑ ′(ẐẐ ′)−1(S ⊗ Ip)‖M
+ ‖F‖M · ‖Ẑ ′(ẐẐ ′)−1(S ⊗ Ip)− Z ′(ZZ ′)−1‖M = OP (T−1/2).

Therefore, ‖SB̂(S ⊗ Ip) − B‖M = OP (T−1/2), which follows by the triangle inequality,

and ‖SÂiS − Ai‖M = OP (T−1/2) for all i = 1, . . . , p. The second result follows from

Proposition 3.2 in Lütkepohl (2005) and the fact that η̂2
lt = (slη̂lt)

2 for all t and l.

Proof of Lemma 3.5

For the first result, let S be defined as in Lemma 3.4. Then,

sup
r∈[a,b]

∣∣Ψ̂′(r)F̂T+h|T −Ψ′(r)FT+h|T
∣∣

= sup
r∈[a,b]

∣∣∣ p∑
i=1

(SΨ̂(r))′(SÂiS)(SF̂T+h−i|T )−Ψ′(r)AiFT+h−i|T

∣∣∣ = OP (T−1/2),
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which follows from Lemmas 3.3(d) and 3.3(e), and 3.4. Finally, by the triangle inequality,

sup
r∈[a,b]

∣∣ŶT+h|T (r)− YT+h|T (r)
∣∣

≤ sup
r∈[a,b]

∣∣µ̂(r)− µ(r)
∣∣+ sup

r∈[a,b]

∣∣Ψ̂′(r)F̂T+h|T −Ψ′(r)FT+h|T
∣∣ = OP (T−1/2)

because of Lemma 3.3(a). For the second result, note that

ce,h(r, s) = Ψ′(r)
( h−1∑
i=0

ΦiΣηΦ
′
i

)
Ψ(s) +

L∑
l=K+1

λlψl(r)ψl(s), r, s ∈ [a, b],

since cε(r, s) =
∑L

l=K+1 λlψl(r)ψl(s) by Mercer’s theorem. Then, analogously to the proof

for the first result,

sup
r,s∈[a,b]

∣∣ĉe,h(r, s)− ce,h(r, s)∣∣
≤

h∑
i=0

sup
r,s∈[a,b]

∣∣(SΨ̂(r))′SΦ̂iSΣ̂η(SΦ̂iS)′SΨ̂(s)−Ψ′(r)ΦiΣηΦiΨ(s)
∣∣

+
L∑

l=K+1

sup
r,s∈[a,b]

∣∣λ̂lslψ̂l(r)slψ̂l(s)− λlψl(r)ψl(s)∣∣ = OP (T−1/2),

by Lemmas 3.3 and 3.4.

Proof of Theorem 3.3

From Equation (3.8), it follows that for any fixed r ∈ [a, b],

P

(
|YT+h(r)− YT+h|T (r)|√

Ψ′(r)(
∑h−1

i=0 ΦiΣηΦ′i)Ψ(s) +
∑L

l=K+1 λlψl(r)ψl(s)
≤ u1−α

2

)
= 1− α.

Then, (a) follows by Lemma 3.5 and Slutsky’s theorem. For (b), let θl,T = 〈Yt− µ, ψl〉 for

l > K, and consider the (L×1)-vector δ = ((
∑h−1

i=0 ΦiηT+h−i)
′, θK+1,T+h, . . . , θL,T+h)

′. Fur-

thermore, let V (r) = (ψ1(r), . . . , ψL(r))′, Then, eT+h|T (r) = V ′(r)δ, where δ ∼ N (0,Σδ)
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with

Σδ =


∑h−1

i=0 ΦiΣηΦ
′
i 0

0

λK+1

. . .

λL

 ,

and δ′Σ−1
δ δ ∼ χ2(K). Therefore,

1− α = P
(
δ′Σ−1

δ δ ≤ χ2
L,1−α

)
= P

(
(Σ
−1/2
δ δ)′(Σ

−1/2
δ δ) ≤ χ2

L,1−α
)
.

A result from linear algebra states that for any fixed vector x ∈ RL and any constant

c > 0, x′x ≤ c2 if and only if |a′x| ≤ c
√
a′a for all a ∈ RL (see Lemma A.4 in Yao et al.

2005). Then,

P
(
(Σ
−1/2
δ δ)′(Σ

−1/2
δ δ) ≤ χ2

L,1−α
)

= P
(∣∣a′(Σ−1/2

δ δ)
∣∣ ≤√χ2

L,1−αa
′a, ∀a ∈ Rk

)
.

Let E = {a ∈ RL : a = Σ
1/2
δ V (r), r ∈ [a, b]}, which is a subset of RL. Therefore,

P
(∣∣a′(Σ−1/2

δ δ)
∣∣ ≤√χ2

L,1−αa
′a, ∀a ∈ Rk

)
≤ P

(∣∣a′(Σ−1/2
δ δ)

∣∣ ≤√χ2
L,1−αa

′a, ∀a ∈ E
)
.

Furthermore,

P
(∣∣a′(Σ−1/2

δ δ)
∣∣ ≤√χ2

L,1−αa
′a, ∀a ∈ E

)
= P

( ∣∣V ′(r)δ∣∣√
V ′(r)ΣδV (r)

≤
√
χ2
L,1−α, ∀r ∈ [a, b]

)
.

As a consequence,

P

(
|eT+h|T (r)|√∑h−1

i=0 Ψ′(r)ΦiΣηΦ′iΨ(r) +
∑L

l=K+1 λlψl(r)
≤
√
χ2
L,1−α ∀r ∈ [a, b]

)

= P

( ∣∣V ′(r)δ∣∣√
V ′(r)ΣδV (r)

≤
√
χ2
L,1−α, ∀r ∈ [a, b]

)
≥ 1− α.

109



Finally, by Lemmas 3.3–3.5 and Slutsky’s theorem,

|YT+h(r)− ŶT+h|T (r)|√
Ψ̂′(r)(

∑h−1
i=0 Φ̂iΣ̂ηΦ̂′i)Ψ̂(r) +

∑L
l=K+1 λ̂lψ̂l(r)

=
|eT+h|T (r)|√

Ψ′(r)(
∑h−1

i=0 ΦiΣηΦ′i)Ψ(r) +
∑L

l=K+1 λlψl(r)
+ oP (1),

and the assertion follows.
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Ploberger, W., Krämer, W., and Kontrus, K. (1989). A new test for structural stability

in the linear regression model. Journal of Econometrics, 40:307–318.

Ramsay, J., Hooker, G., and Graves, S. (2009). Functional data analysis with R and

MATLAB. Springer.

Ramsay, J. and Silverman, B. (2005). Functional data analysis. Springer.

Rappoport, P. and Reichlin, L. (1989). Segmented trends and non-stationary time series.

The Economic Journal, 99:168–177.

Robbins, H. and Siegmund, D. (1970). Boundary crossing probabilities for the wiener

process and sample sums. The Annals of Mathematical Statistics, 41:1410–1429.

Rose, A. K. (1988). Is the real interest rate stable? The Journal of Finance, 43:1095–1112.

Said, S. E. and Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving

average models of unknown order. Biometrika, 71:599–607.

Salish, N. and Gleim, A. (2019). A moment-based notion of time dependence for functional

time series. Journal of Econometrics, https://doi.org/10.1016/j.jeconom.2019.

03.007.

Schmidt, P. and Phillips, P. C. (1992). Lm tests for a unit root in the presence of deter-

ministic trends. Oxford Bulletin of Economics and Statistics, 54:257–287.

Schwert, G. W. (1989). Tests for unit roots: a monte carlo investigation. Journal of

Business & Economic Statistics, 7:147–159.

Sen, P. K. (1982). Invariance principles for recursive residuals. The Annals of Statistics,

10:307–312.

118

https://doi.org/10.1016/j.jeconom.2019.03.007
https://doi.org/10.1016/j.jeconom.2019.03.007


Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a

large number of predictors. Journal of the American Statistical Association, 97:1167–

1179.

Stock, J. H. and Watson, M. W. (2012). Dynamic factor models. In The Oxford Handbook

of Economic Forecasting, pages 35–39. Oxford University Press.

Svensson, L. E. (1995). Estimating forward interest rates with the extended nelson &

siegel method. Quarterly Review (Sveriges Riksbank), 3:13–26.

Wied, D. and Galeano, P. (2013). Monitoring correlation change in a sequence of random

variables. Journal of Statistical Planning and Inference, 143:186–196.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse

longitudinal data. Journal of the American Statistical Association, 100:577–590.

Zeileis, A. (2004). Alternative boundaries for cusum tests. Statistical Papers, 45:123–131.

Zeileis, A., Leisch, F., Kleiber, C., and Hornik, K. (2005). Monitoring structural change

in dynamic econometric models. Journal of Applied Econometrics, 20:99–121.

Zivot, E. and Andrews, D. W. (1992). Further evidence on the great crash, the oil-

price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics,

10:251–270.

119


	Introduction
	Unit Root Testing with Slowly Varying Trends
	Introduction
	The pooled estimator
	Pseudo t-statistics for unit root testing
	Testing under heteroskedasticity
	Testing under short-run dynamics
	Simulations
	Empirical illustrations
	Conclusion
	Appendix to Chapter 1

	Backward CUSUM for Testing and Monitoring Structural Change
	Introduction
	The multivariate CUSUM process
	CUSUM detectors
	Forward CUSUM
	Backward CUSUM
	Stacked backward CUSUM

	Simulations
	Local asymptotic power and delay
	Critical values and finite sample performance

	Conclusion
	Appendix to Chapter 2

	A Dynamic Functional Factor Model for Yield Curves: Identification, Estimation, and Prediction
	Introduction
	The dynamic functional factor model
	The functional principal components estimator
	Predictions and prediction bands
	Application to yields for U.S. Treasuries
	From discrete data to functional data
	Functional principal component analysis
	Yield curve prediction

	Conclusion
	Appendix to Chapter 3

	References

