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Abstract

The diffusion of an innovation in a social system is characterised as a dynamic that

typically gives rise to a finite lifecycle. The pioneering approach by Bass (1969), called

the Bass model (BM), has been widely used because it considers the internal rules of

the social system. The model has been extended in several directions. The generalised

Bass model (GBM), by Bass et al. (1994), is the most popular extension describing

the exogenous interventions acting on the timing of the diffusion process. Another

important extension is the Guseo and Guidolin (2009) model (GGM), which defines the

dynamic nature of the latent market potential. However, these univariate time series

models do not consider the competitive environment, in which two or more concurrent

innovations enter the market, possibly at different times, and target the main set of

potential adopters or subgroups of potential adopters with possible interaction effects.

The model proposed by Guseo and Mortarino (2014) allows a flexible behaviour in

describing the diffusion of two products under competition, where interaction effects,

namely word-of-mouth (WOM), are split into within-product and cross-product effects.

This thesis proposes an extended diffusion model for three products in a competitive

framework that may be able to improve the description of mutual interactions (either

competition or cooperation), along with defining specific features of each product. To

examine the improvement of the proposed three-competitor model (3CM) compared

with the bivariate model (2CM), both models are applied to energy data to describe

competition among energy sources. The intervention functions (e.g. the external shocks)

are incorporated in the models when necessary to estimate the effect of incentives and

policy measures, which are crucial tools in the expansion of renewables and nonrenewable

energy technologies.

Without incorporating intervention functions, models based on the assumption of a

constant market potential are virtually unable to capture the wide variety of shapes of

products in a diffusion process. Following the model proposed by Guseo and Mortarino

(2015), this thesis further proposes a diffusion model for three competing products that

are sufficiently similar to share a common market potential, where the size increases over

time. Models 2CM and 3CM with dynamic market potential (DMP) are also applied to

the same energy data studied in the preceding part of this work. The obtained results

highlight the efficacy of the models with DMP over similar models with fixed market

potential. Overall, the proposed models (3CM), either with a fixed market potential, m,

or DMP, prove to be useful in applied contexts, for example, in describing the lifecycle

of products and evaluating predictions.





Sommario
La diffusione di un’innovazione in un sistema sociale si caratterizza come una dina-

mica che dà origine a un ciclo di vita finito. L’approccio pionieristico di Bass (1969),

chiamato Bass model (BM), è stato ampiamente utilizzato in quanto tiene conto delle

regole interne del sistema sociale. Il BM è stato esteso in molteplici direzioni. Il mo-

dello di Bass Generalizzato (GBM), Bass et al. (1994), è l’estensione più popolare e

descrive gli interventi esogeni che agiscono sui tempi del processo di diffusione. Un’altra

estensione importante è il modello Guseo and Guidolin (2009), (GGM), che definisce la

natura dinamica del potenziale di mercato latente. Questi modelli per serie storiche uni-

variate non considerano l’ambiente competitivo, in cui due o più innovazioni concorrenti

entrano nel mercato, eventualmente in tempi diversi, e descrivono il gruppo principa-

le di potenziali adottanti o sottogruppi di potenziali adottanti con possibili effetti di

interazione.

Il modello proposto da Guseo and Mortarino (2014) consente di ottenere maggiore

flessibilità nella descrizione della diffusione di due prodotti in competizione, dal momento

che gli effetti di interazione, ovvero il passaparola (WOM), sono suddivisi in interni e

incrociati.

Questa tesi propone un modello a diffusione esteso a tre prodotti in un quadro com-

petitivo in grado di migliorare la descrizione delle interazioni reciproche (competizione

o cooperazione), e di definire le caratteristiche specifiche di ciascun prodotto. Per valu-

tare il miglioramento del modello proposto (3CM) rispetto al modello bivariato (2CM),

entrambi i modelli sono applicati ai dati energetici per descrivere la competizione tra

le diverse fonti energetiche. Le funzioni di intervento (ad es. gli shock esterni) sono

integrate nei modelli per stimare l’effetto di incentivi e misure politiche, che sono stru-

menti cruciali per l’espansione delle energie rinnovabili e delle tecnologie energetiche

non rinnovabili.

Senza incorporare le funzioni di intervento, i modelli basati sull’assunzione di un

potenziale di mercato costante non sono virtualmente in grado di catturare un’ampia

varietà di forme di prodotti in un processo di diffusione. Seguendo il modello proposto da

Guseo and Mortarino (2015), nella seconda parte di questa tesi si propone un modello di

diffusione per tre prodotti concorrenti che sono sufficientemente simili per condividere

un potenziale di mercato comune, ma variabile nel tempo. I modelli 2CM e 3CM

con potenziale di mercato dinamico (DMP) sono applicati agli stessi dati energetici

esaminati nella prima parte di questo lavoro. I risultati ottenuti evidenziano l’efficacia

dei modelli con DMP rispetto agli altri modelli simili con un potenziale di mercato fisso.

Nel complesso, i modelli proposti (3CM) si dimostrano molto efficaci nelle applicazioni,

nel descrivere il ciclo di vita dei prodotti e calcolare le corrispondenti previsioni.
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Introduction

Overview

Consistent energy supply through a reliable and well-established infrastructure is a

precondition for a nation’s balanced economic growth. In contrast, an inadequate or

unreliable setup, as observed in most developing countries, inhibits sustainable devel-

opment. In this context, global energy consumption is expected to increase by 28%

between 2015 and 2040 (Energy Information Administration (EIA), 2017). However,

the use of popular sources of energy, such as fossil fuels and uranium, generates pol-

lution, greenhouse effects and climate change. Renewable energy sources appear as a

viable option that guarantees the availability of electricity produced in a safer way.

Renewable energy has often been used in human civilisation. Examples include the

use of firewood to cook food or produce heat or the use of energy from wind as an

input for transport vehicles. Renewables were used as a major source of energy in the

preindustrial era, playing a pivotal role in the pace of economic development. With the

exponential growth since the industrial revolution, the use of nonrenewable sources of

energy became a nearly universal phenomenon around the globe, especially for most of

the developed nations. However, in recent decades, an increasing trend in the use of

renewable sources of energy has been observed. The magnitude of this trend is different

across countries, and it depends highly on country-specific characteristics, such as the

market structure, political tendency and population’s perception of technological change

and substitution. The adoption of renewables has been generally facilitated by specific

policy instruments like feed-in-tariffs (FiT) and other incentive mechanisms.

The use of traditional sources of energy is expected to reach the last phase of the

lifecycle. However, new technological innovations can unpredictably alter the lifecycle

of a source, at least temporarily. For example, the extended application of fracking

technologies in the United States has heavily modified internal and external energy

policies due to the unexpected growth of shale oil and shale gas (Wang and Krupnick,

2015). Even when extending the lifecycle of a specific source is possible through a

1
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technological discovery, a sensible choice could be to consider the safety aspects of such

innovation (Furlan and Mortarino, 2018). For instance, due to the negative effects of

shale gas on the environment through hydraulic fracturing (Melikoglu, 2014; Wang et al.,

2014; Vengosh et al., 2014), cautions should be taken in considering shale gas as the

bridge for renewables (Klein and Whalley, 2015). In fact, the effects of shale gas on

the environment are worse than those of natural gas from conventional sources (Wang

et al., 2014).

Renewable sources of energy have emerged as an important component in the world

energy consumption mix because of fossil fuel’s negative environmental consequences,

high and unstable prices and depleting sources (Apergis and Payne, 2012). In the

first decade of the 21st century, the growth rate of renewables was 4.40%, including

hydropower (3.18%) and non-hydropower (12.89%; Pao and Fu, 2013). In 2011, an

estimated 16.7% of global final energy consumption was supplied by renewable energy

sources. Due to reductions in costs and technological innovations, global new investment

in renewables increased by 17%. Cost-competitive renewables have been established as

a mainstream source of energy around the world (Renewable Energy Policy Network

for the 21st Century (REN21), 2016). However, further research and development are

required to achieve a technological breakthrough in the near future.

With different motivations, a nuclear power renaissance is especially being sustained

in the energy economies, contributing 11% of the global electricity production (Nuclear

Power (NP), 2017). The operating externalities of the source are relatively low, as nu-

clear power produces low levels of air pollution and greenhouse gas (GHG) emissions.

Although the burning of nuclear energy releases zero CO2 into the atmosphere, the

byproduct is extremely hazardous. The invisible nuclear pollution is considered danger-

ous because the source of nuclear energy is not categorised as clean. Considering the

safety issues, nuclear power plants are probably the most vulnerable of all sources of

energy used to produce electricity (Furlan et al., 2016). For example, three major acci-

dents have occurred during the commercial use of nuclear fission since 1950. The first

occurred in 1979 at Three Mile Island (USA), causing limited damage. The second one,

the Chernobyl disaster in the western Union of Soviet Socialist Republics (USSR) and

Europe in 1986, is considered the worst ever nuclear accident. This has been classified

at the maximum level (Level 7) on the International Nuclear Event Scale (INES). The

third accident occurred in Fukushima (Japan), in March 2011 and it was also classified

as Level 7. In addition, nuclear energy may not be a good economic investment, as

the establishment of nuclear plants is more expensive and their construction usually

takes longer than is the case for renewable energy sources like solar or wind. However,
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nuclear energy has been considered as an alternative source to fossil fuels. For instance,

after the oil boycott in 1973, France decided to achieve greater energy independence. In

the two subsequent decades, the majority of energy-generating capacity in France was

converted from fossil-fuel-based to uranium-based systems (Brook et al., 2014).

Overall, the use of various energy sources is changing with time, and the different

sources behave as competitors in the market niche. Their availability, sustainability and

cost effectiveness change over time, and each has dynamic shares. The new technological

innovations may restrict the usual behaviour of pre-existing technologies, and at the

same time, foster the expansion of the market potential, especially for emerging states.

Moreover, the speed of competition depends on the entry time of new technologies and

the lifecycle of pre-existing technologies. Hence, the diffusion of energy sources in a

competitive framework may be a broader research topic that can enrich the existing

literature.

The competition effect of a new technology with existing ones may be studied using

diffusion models. However, studies on competition modelling are limited in contempo-

rary literature (Krishnan et al., 2000; Savin and Terwiesch, 2005; Guseo and Mortarino,

2012, 2014, 2015). Describing the competition requires complex mathematical/statisti-

cal tools, especially with diffusion models requiring nonlinear estimation. The models

studying competition between two energy sources with different data include the logis-

tic model (Vestrucci et al., 2015), diffusion model (Huh and Lee, 2014), Lotka–Volterra

model (Duan et al., 2014), extended Lotka–Volterra model (Guidolin and Guseo, 2016)

and two-wave diffusion model (Furlan and Mortarino, 2018). These studies are restricted

to explaining the competition between two rivals. The development of diffusion mod-

els for more than two competitors may be a notable input in the literature, and their

applications, especially to energy issues, may have valuable implications in designing

policies.

Main contributions of the thesis

The central goal of this thesis is developing a novel model explaining the diffusion

of a new technology with more than two products under competition. Following a brief

introduction, Chapter 1 reviews existing univariate and bivariate diffusion models. The

univariate models include the Bass model, the generalised Bass model (GBM) and the

Guseo and Guidolin (2009) model (GGM). Among the bivariate models, the models

proposed by Guseo and Mortarino (2014, 2015) are briefly discussed. The examination
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mainly focusses on the structure of the models and their adaptability to specific situa-

tions. Where necessary, the limitations of the models are also considered. In addition,

various aspects of existing models and the models proposed in this thesis, which are

useful for drawing inferences, are also discussed.

The main contributions of the thesis are presented in Chapters 2–5. A three-

competitor diffusion model (3CM) is proposed in Chapter 2. The model assumes an

invariant market potential over the entire diffusion process. The proposed 3CM may

improve the description of mutual interactions, whether through competition or cooper-

ation of the products, over the existing two-competitor models (2CM). The 2CM models

entail information loss due to the aggregation of data relating to similar products or the

simplified description of the market by the two leading products.

Applications (e.g. parameter estimation and short-period predictions) of the pro-

posed 3CM are discussed in Chapter 3 using energy consumption data from 12 selected

countries. The consumptions are partitioned into three sources, as follows: coal, gas

and oil (CGO), renewables and nuclear. Using the same energy data, a comparison of

the 3CM with the 2CM (proposed by Guseo and Mortarino, 2014) is performed. The

2CM is applied to the energy data, contrasting renewable and nonrenewable sources.

The forecasting accuracy of the models is compared both in terms of in-sample (train-

ing data) performances based on multi-step forecasts and out-of-sample performances

(test data). In the latter case, we compare the entire sample performances based on the

width of prediction confidence bands. The improvement of 3CM over 2CM is assessed

using the confidence bands for all 12 countries. This improvement is also verified using

forecasting accuracy measures for two countries.

A three-competitor diffusion model with the assumption of a non-constant or dynamic

market potential (DMP) is proposed in Chapter 4. With the entrance of a new product

into the market, the knowledge and awareness do not disperse instantly throughout

the eligible adopters. In such a situation, as compared with the models with fixed

market potential, the proposed model with DMP assumption is more flexible to follow

the observed data and achieve more reliable forecasts.

In Chapter 5, the model proposed in Chapter 4 is discussed through an application

using energy data. The same dataset and partitioning as mentioned for applications

of Chapter 3 is used. However, some of the countries are excluded from the analysis.

Considering the number of parameters, the models with DMP are relatively more com-

plex than similar models with a fixed market potential. In this context, we quantify

the benefits of using relatively complex models over the simpler models. This is done

by comparing the efficacy of 3CM with DMP models with their bivariate structure, as
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proposed by Guseo and Mortarino (2015).

Overall discussion of the results obtained through the proposed and existing diffusion

models for competition is presented in the concluding chapter. Here, we highlight the

relative flexibility of our proposed models over the existing models used in this field of

research. We also mention the potential limitations of the models. Finally, we suggest

some research directions that may help in further contributing to the diffusion of inno-

vations literature.





Chapter 1

Review of innovation diffusion

models

1.1 Introduction

In the last several decades, the innovation diffusion models have gained considerable

interests among scholars working on modelling and forecasting the diffusion of innova-

tive ideas and technologies. The over 4000 scholarly publications in this broad research

area since 1940 is indicative of the progression of its theoretical underpinnings. Con-

temporary researchers in this research area have been developing innovative modelling

approaches to capture the character of innovation diffusion models. One of the signif-

icant innovations is the extension of models to describe the diffusion in a competitive

approach for bivariate data.

In addition to the basic usage of forecasting the lifecycles of products, the models

have been used for descriptive and normative purposes (Guseo et al., 2007). The re-

cent research on diffusion theory has focussed on administrative diagnostics, including

divulging the basic structures of a market, generating comparisons with other contexts,

helping organisations to forge ahead and preparing for potential manoeuvres in the fu-

ture (Muller et al., 2009). Diffusion of innovation is basically a social phenomenon,

and the classic diffusion of innovations theories have applications in the marketing and

management disciplines. However, the complex nature of the diffusion of innovations

demands interdisciplinary research by incorporating knowledge from economics, social

sciences, physics, mathematics, statistics, organisational behaviour, technological man-

agement and technological forecasting disciplines (Guseo et al., 2007).

In a diffusion process, innovation is communicated among the members of a social

7
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system through certain networks (Rogers, 2003). The process comprises four essen-

tial elements, namely the innovation, communication networks, time and social system.

According to Mahajan et al. (1990) the focus of diffusion theory should be the commu-

nication channels, which determine how information about innovation is spread to the

social system within which an innovation is implemented and practiced. These channels

may be formal or informal. The formal channel includes the mass media and adver-

tising, whereas, interpersonal communication is a basic informal channel. Nonverbal

observations, a component of interpersonal communications, has a great influence in

determining the speed and shape of the diffusion process in a social system (Mahajan

et al., 1990).

Earlier contributors to this dynamic research area explicated diffusion as a process

that is mostly governed by learning through imitation. Tarde (1890), a French lawyer,

claimed that the imitation process can represent a general law of social change. In

support of the claim, he argued that, although invention is a necessary condition of

change, the actual change occurs only when a large number of individuals instigates the

adoption process.

Imitation plays the central role in explaining the diffusion processes, and the process

is commonly represented by logistic curves (Kijek and Kijek, 2010). However, several

studies indicate that the diffusion of an innovation follows an S-shaped curve over time

(Rogers, 2003). For example, the Bass model, BM (Bass, 1969) is deemed to be the most

known and widely used diffusion model offering the theoretical and empirical evidence

for the S-shaped pattern. Later, many reviews of innovation diffusion models have been

developed (Mahajan and Muller, 1979; Mahajan et al., 1990, 1995, 2000; Meade and

Islam, 2001, 2006; Hauser et al., 2006; Muller et al., 2009).

Following research for univariate lifecycles, several models have been developed and

applied to describe the diffusion of products under competition, such as those of Peter-

son and Mahajan (1978), Mahajan et al. (1993), Kalish et al. (1995), Krishnan et al.

(2000), Savin and Terwiesch (2005), Libai et al. (2009) and Guseo and Mortarino (2012,

2014). All these models assume that the market potential is invariant throughout the

diffusion process. However, the assumption has been reasonably relaxed in the recent

literature (see Guseo and Guidolin, 2009 for univariate and Guseo and Mortarino, 2015

for bivariate diffusion of innovations).

In this chapter, we make a brief review of the BM, its extensions, the GBM (Bass

et al., 1994) and GGM. While all three models explain the diffusion process of an

innovation, the GGM works differently from the other two in terms of market potential.

We also review the general competition models developed for explaining two competitors’
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diffusion and proposed by Guseo and Mortarino (2014) and Guseo and Mortarino (2015).

The models are dissimilar in terms of their market potential framework.

1.2 Univariate diffusion models

1.2.1 The Bass Model

The BM (Bass, 1969) describes the diffusion of a novelty by portraying the launch,

growth, maturity and decline phases, that is, the S-shaped diffusion dynamics. Let

y(t) denote the relative cumulative number of adoptions at time t with corresponding

instantaneous adoptions y′(t) = dy(t)/dt. The BM can be defined through its hazard

function, that is, the probability that an adoption of a new product or service occurs at

time t, given that it has not been adopted yet. We have

y′(t)/[1− y(t)]. (1.1)

The function can be expanded through the theorem of total probability. Equation (1.1)

is a combination of three factors, following the conditional probability law. These are

as follows:

i) The conditional probability of adoption of innovators: 1;

ii) The analogous conditional probability of imitators: y(t); and

iii) The conditional probability of neutral agents: 0.

Mathematically,

y′(t)/[1− y(t)] = p.1 + q.y(t) + 0.(1− p− q) = p+ qy(t), (1.2)

where p > 0 and q > 0 are coefficients of innovation (measuring the propensity of poten-

tial adopters to become adopters) and imitation (measuring the propensity of potential

adopters to imitate previous adopters), respectively. Van den Bulte (2002) gave a differ-

ent interpretation of the parameters, where p represents the effect of external influence

due to mass media communication and q measures the effect of internal influence, both

acting on the same agent. Combining Equations (1.2) and (1.1), we see that the BM

can be expressed by the normalised equation

y′(t) = [p+ q.y(t)] [1− y(t)] . (1.3)
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Under the initial condition y(0) = 0, as proven in Bass (1969), the solution of Equa-

tion (1.3) can be expressed as:

y(t) =
1− e−(p+q)t

1 + q

p
e−(p+q)t

, t ≥ 0, p, q > 0. (1.4)

Here, y(t), the proportion of adoptions, describes the dynamics of the diffusion process.

The number of adoptions at time t, expressed as z(t), can be obtained by multiplying

both sides of Equation (1.4) by the scale parameter, m. This parameter represents the

market potential or carrying capacity. Hence, we have,

z(t) = m
1− e−(p+q)t

1 + q

p
e−(p+q)t

, t ≥ 0. (1.5)

The structure (1.5) is the closed-form solution of the BM, a special cumulative dis-

tribution. For instantaneous adoptions, the BM can be expressed with the following

first-order differential equation:

z′(t) =

[

p+ q
z(t)

m

]

[m− z(t)] . (1.6)

From this formulation, we can appreciate that z′(t), the amount of new adoptions, is

proportional to the residual market, [m − z(t)] at time t. The market potential, m,

representing the maximum number of adoptions in the lifecycle, is assumed to be fixed

along the entire diffusion process.

The BM is considered the seminal contribution that separates innovators and imita-

tors in the innovation diffusion process. One of the model’s advantages is the tangible

possibility of describing the initialising phase of diffusion, due to the presence of inno-

vators. Although an ample body of literature has recognised the role of innovators, also

called ‘early adopters’ (Rogers, 2003), or ‘opinion leaders’ (Katz and Lazarsfeld, 1955)

in the process, the BM was the first to formalise their action.

1.2.2 The Generalised Bass Model (GBM)

The BM is criticised for its inability to incorporate marketing mix variables under

managerial control, like price strategies and advertising (Mahajan and Muller, 1979;

Mahajan, 1986; Mahajan et al., 1990), into the framework. Another criticism of the

model, as indicated by Muller et al. (2009), is what is regarded as a conceptual conflict.

With assumptions on consumers’ behaviour, the BM provides good-fit models to real-

life data, leading to reliable forecasts. Marketing mix decisions have a notable influence
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on the growth of new products, and hence, the variable(s) should be included in the

model. Moreover, shortening of lifecycles due to the evolution of successive generations

(see Norton and Bass, 1987), especially for high-technology products, demands adopting

models that can incorporate control variables.

According to Bass et al. (2000), a diffusion model with decision variables should have

several desirable properties. The model should have empirical support and a closed-form

solution, be easy to implement and managerially useful and allow a direct explanation

of parameters and comparisons with competing models. The GBM (Bass et al., 1994),

an important extension of the standard BM, possesses all these properties. The GBM

is obtained by multiplying the basic structure of the BM by an intervention or control

function, x(t) = x(t; θ), θ ∈ R
k. The model depicts the possible effect of price and

advertising strategies as exogenous variables on the diffusion process. Thus, as an

extension of Equation (1.6), the GBM is represented as:

z′(t) =

[

p+ q
z(t)

m

]

[m− z(t)] x(t), (1.7)

and its closed-form solution, under the initial condition z(0) = 0, is

z(t) = m
1− e−(p+q)

∫
t

0
x(τ)dτ

1− q

p
e−(p+q)

∫
t

0
x(τ)dτ

, 0 ≤ t < +∞. (1.8)

Function x(t) is called the ‘current marketing effort’, and it acts on the natural shape

of diffusion, modifying its temporal structure without affecting its internal parameters.

As a result, the important effect of x(t) is to accelerate or delay adoptions but not

to increase or decrease them. More explicitly, if x(t) > 1, we observe an acceleration

of the diffusion process, while a delay in adoptions is implied by x(t) < 1. If there

are no external influences on the diffusion process, that is, if x(t) = 1, ∀t ∈ R
+, the

GBM reduces to the standard BM. According to Guseo and Dalla Valle (2005), the

intervention function, x(t), with exponential shocks can be expressed as:

x(t) = 1 + c1e
b1(t−a1)I[t≥a1], (1.9)

where a1 represents the starting time of the shock, b1 indicates how rapidly the shock

decays toward 0 (it usually has negative values) and c1 denotes the intensity of the

shock. Another possible form of x(t) is suggested by Guseo and Dalla Valle (2005). The
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form is called rectangular shock and can be presented as:

x(t) = 1 + c1I[a1≤t≤b1], (1.10)

where a1 and b1 delimit the time interval when the shock affects diffusion and c1 indi-

cates the shock’s intensity. Although function x(t) was originally perceived to represent

marketing mix variables, its configuration is so common and simple that it can take

various forms, to portray external influences other than marketing strategies. The pos-

sibility of estimating its parameters simultaneously with the model’s main parameters

gives further advantages to this model.

The market potential of both the BM and GBM is assumed to be fixed in the whole

diffusion process. With the aim of achieving more flexible models to describe real data,

a plausible extension, the dynamic market potential (DMP), m(t), is introduced in the

models proposed by Guseo and Guidolin (2009, 2010, 2011).

Despite recent developments, the standard BM and GBM suffer from conceptual

limitations in operational and predictional terms. Both the models assume that the in-

ternal influence (word-of-mouth, WOM, effect) remains static throughout the diffusion

process. In practice, later adopters may not be as prompt in discussing the product,

and they may be less inclined to exhibit the interest in discussing the new product

with non-adopters compared with the early adopters. In many situations, late adopters

are found to have different characteristics from early adopters, and consequently, they

respond differently (Rogers, 2003). Furthermore, Bass-type models consider more spe-

cific assumptions regarding the social interactions, maintaining the social structure as

a fully connected network. Consequently, the effect of adopters on non-adopters is a

linear function of the number of adopters during the diffusion timeline (Shaikh et al.,

2006). Nonetheless, the control function, x(t), may not be flexible enough to cover the

entire range of agents’ heterogeneity.

Both the BM and GBM have been employed in a wide range of applications in

social sciences, applied sciences, business and marketing research. Special applications

of the GBM have been used in the energy sector, especially for crude oil (Guseo and

Dalla Valle, 2005; Guseo et al., 2007; Guseo, 2011) and solar photovoltaic (PV) (Guidolin

and Mortarino, 2010). The motivation for these applications is based on the related

diffusion of technologies consuming energy. This topic is discussed in more detail in

Chapter 3.
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1.2.3 Guseo and Guidolin (2009) model (GGM)

The BM and GBM proved to be valuable for describing the diffusion of an innovation.

However, both models assume the market potential or carrying capacity,m, as a constant

along the entire diffusion process. This assumption conflicts with the common concept

that knowledge is time varying. Attempts have been proposed in the literature to

overcome this constraint.

In some studies, the DMP is defined as a function of exogenous variables (see, e.g.

Mahajan and Peterson, 1978; Kalish, 1985; Kamakura and Balasubramanian, 1988;

Horsky, 1990; Jain and Rao, 1990; Parker, 1992, 1993; Kim et al., 1999), whereas other

studies assume this as an exponential function of time only (e.g. Sharif and Ramanathan,

1981; Meyer and Ausubel, 1999; Centrone et al., 2007). Guseo and Guidolin (2009)

assumed that the market potential is a function of time that may assume various levels

throughout the product lifecycle.

As Guseo and Guidolin (2009) define it, the adoption of an innovation in a social

system is a direct indication of an existing absorptive capacity. The ability to assimilate

and accept an innovation depends on the accumulation of prior knowledge. They ob-

served that accumulating knowledge involves learning dynamics, which can be explained

through an evolutionary model, rather than a cross-sectional model, as proposed by Co-

hen and Levinthal (1990). Consequently, by adopting an evolutionary perspective, they

represented a communication structure as a set of informational linkages among the

units of the system. The progress of collective knowledge can be considered an evolving

network, where some linkages exist, some rise and some others perish. This happens

when individual knowledge creates connecting ideas and concepts between them and

demolishes existing networks. The market potential proposed by Guseo and Guidolin

(2009) is a function of this knowledge process depending on a network of connections

that changes over time. The DMP is defined through the following form:

m(t) = K

√

1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

, K, pc, qc > 0, t > 0, (1.11)

where K is the upper asymptotic potential, K = limt→∞ z(t), and pc and qc are evolu-

tionary parameters describing how rapidly communication spreads through the network.

For large values of pc and qc, the DMP m(t) rapidly approaches K. In contrast, smaller

values of pc and qc negatively affect m(t), so that it reaches K much more slowly.

In Equation (1.11), the expression under the square root represents the core of a BM

describing the latent diffusion process of communication. Hence, the model proposed
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by Guseo and Guidolin (2009), called GGM – an extension of BM (Bass, 1969) – can

be defined as

z′(t) = m(t)

[

ps + qs
z(t)

m(t)

] [

1−
z(t)

m(t)

]

+ z(t)
m′(t)

m(t)
, ps, qs > 0, t > 0, (1.12)

where z(t) and z′(t) represent the mean cumulative sales and the mean instantaneous

sales at time t, respectively, and m(t) ≥ z(t). The parameters ps and qs are evolutionary

parameters that describe how rapidly the product is adopted, while pc and qc, as men-

tioned above, are related to the spread of knowledge. The last term on the right-hand

side in Equation (1.12) – which would obviously vanish for a constant m(t) – represents

a self-reinforcing effect, which is common in marketing behavioural studies (see, e.g.

Sydow and Schreyogg, 2013). This point is further discussed in Subsection 1.3.2.

1.3 Competition diffusion models

1.3.1 The two-competitor model with fixed m

The model proposed by Guseo and Mortarino (2014) is a generalisation or modifi-

cation of all available bivariate models (e.g. Krishnan Bass Kumar Diachronic, KBKD,

model by Krishnan et al., 2000, Savin Terwiesch Diachronic, STD, model by Savin and

Terwiesch, 2005, Libai Muller Peres Diachronic, LMPD, model by Libai et al., 2009

and Competition and Regime Change Diachronic, CRCD, model by Guseo and Mor-

tarino, 2012) that have been developed through the concept of the Bass diffusion of an

innovation. The model refers to a category based on substitute products; that is, the

products represent a homogeneous category competing for the same customers. In this

case, the specific diffusion process of each product under competition is driven at the

product-category level (Parker and Gatignon, 1994).

Let zi(t) be the cumulative sales of product i, i = 1, 2 and z(t) = z1(t) + z2(t) be the

category cumulative sales. Let z′1(t) = dzi(t)/dt be the instantaneous sales of the i-th

product. Suppose we examine a two-product competition with the late entrance of the

second product at time t = c2 with c2 > 0, where t = 0 indicates the time origin for

the first product. Therefore, the model proposed by Guseo and Mortarino (2014) can
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be expressed with a system of differential equations:

z′1(t)=m

{[

p1a + q1a
z(t)

m

]

(1− It>c2) +

[

p1c + (q1c + δ)
z1(t)

m
+ q1c

z2(t)

m

]

I > c2

}

×

×

[

1−
z(t)

m

]

,

z′2(t)=m

[

p2 + (q2 − γ)
z1(t)

m
+ q2

z2(t)

m

] [

1−
z(t)

m

]

It>c2 , (1.13)

m=ma(1− It>c2) +mcIt>c2 ,

z(t)=z1(t) + z2(t)It>c2 .

Here, m is the limiting state of z(t) as t → +∞, representing the aggregate market

potential. System (1.13) describes a twofold model, called an unrestricted unbalanced

competition and regime change diachronic (unrestricted UCRCD) model. It considers

different aspects of diachronic competition (sequential market entries of the competing

products). Until t ≤ c2, the stand-along period, the first product is characterised by the

three parameters, as follows: an innovation coefficient, p1, and imitation coefficient, q1,

and market potential, ma.

For the competition period, t > c2, the market potential takes a new value mc.

The first product is characterised by a new innovation coefficient p1c and two imitation

coefficients based on the decomposition of WOM. These are the within-product imitation

coefficient, (q1+δ), modulating the sales of the first product through the relative diffusion

level z1/m (the market fraction already controlled by the first competitor at time t) and

the cross-product imitation coefficient, q1, which is driven by z2/m (the market fraction

already controlled by the second competitor at time t) and measures the effect on sales of

the first product due to WOM by adopters of the second product. Likewise, the second

product is characterised by the three following parameters: the innovation coefficient, p2,

within-product imitation coefficient, q2, and cross-product imitation coefficient, (q2−γ),

which measures the effect on sales of the second product due to WOM by adopters of

the first product.

The unrestricted UCRCD model is flexible as the parameters δ and γ can eventually

be different. They are unrestricted in the model, since δ refers uniquely to the first

product and γ to the second product. Specifically, δ represents the difference between

within-product effect and cross-product effect for the first product, and γ represents the

similar difference for the second product. Parameters δ and γ are positive (negative)

if the within-product effect is stronger (weaker) than the cross-product effect for the

corresponding product.
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Under the constraint δ = γ, the model in Equation (1.13) reduces to a specific unbal-

anced model discussed in Guseo and Mortarino (2014), based on a kind of symmetry that

leads to a BM for the aggregate consumptions of the homogeneous category. The model

with this constraint admits a closed-form solution, differently from the unrestricted

UCRCD. With the further restriction δ = γ = 0, the model in Equation (1.13) reduces

to a balanced model (for details, see Guseo and Mortarino, 2012), where the WOM has

no specific decomposition between product levels; in this situation, the within-product

WOM is equal to the cross-product WOM.

The first two equations of system (1.13), for t > c2, can be rearranged in the following

way:

z1(t)It>c2 ∝ p1c + q1c
z1(t) + z2(t)

m
+ δ

z1(t)

m
,

z2(t)It>c2 ∝ p2 + (q2 − γ)
z1(t) + z2(t)

m
+ γ

z2(t)

m
.

The above rearrangement of system (1.13) highlights that the diffusion of each product

is characterised by a category-level imitation coefficient, q1c for the first entrant and

q2 − γ for the second, and a product-level imitation coefficient, δ or γ.

It is possible to construct the aggregate hazard of Equation (1.13) for t > c2 (for

t ≤ c2, the result is straightforward), that is,

h(t) =
z′(t)/m

1− z(t)/m
= (p1c + p2) + [(q1c − δ) + (q2 − γ)]

z1(t)

m
+ (q1c − q2)

z2(t)

m
, t > c2.

Here, the cumulative sales of the homogeneous category, z(t), behaves as a BM if the

hazard assumes the form h(t) = P +Qz(t)/m for appropriate P and Q values.

1.3.2 The two-competitor model with dynamic market poten-

tial

The models proposed by Guseo and Mortarino (2014) and models previously pub-

lished in the literature to describe the diffusion of two competing products in a common

market stand on the assumption that the market potential is invariant throughout the

lifecycle from the products’ takeoff. Guseo and Mortarino (2015) noticed that this as-

sumption is impracticable in almost all situations. Thus, they proposed a diffusion

model for two competing products, where the products are supposed to be sufficiently

similar to share a common market potential, where the size increases over time. The

assumption of a common market potential is suitable in situations where the products
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are perfect substitutes. Whenever the competing products are sufficiently different to

preserve product-specific market potentials, Abramson and Zanette (1998) suggested

relying on Lotka–Volterra models. While Guseo and Mortarino (2015) presented their

model by both the closed-from solution and the form of differential equations, we rep-

resent their model with the latter formulation, which is suitable for instantaneous data.

The model is defined as

z′1(t) = m(t)

[

p1 + (q1 + δ)
z1(t)

m(t)
+ q1

z2(t)

m(t)

] [

1−
z(t)

m(t)

]

+ z1(t)
m′(t)

m(t)
,

z′2(t) = m(t)

[

p2 + (q2 − γ)
z1(t)

m(t)
+ q2

z2(t)

m(t)

] [

1−
z(t)

m(t)

]

+ z2(t)
m′(t)

m(t)
,

z(t) = z1(t) + z2(t),

(1.14)

where zi(t) denotes the mean cumulative sales and z′i(t) = ∂zi(t)/∂t the instantaneous

mean sales at time t of the i-th product, i =1, 2; z(t) indicates the category cumulative

sales of both the products; and z(t) ≤ m(t), for all t.

The parameters related to innovation effects (p1 and p2) and imitation effects (q1, q2,

δ and γ) may be different for describing products with different strengths in the market.

Observe that the structure of the model in Equation (1.14) is analogous to the second

phase of model (1.13), allowing for different within-product WOMs (q1 + δ and q2 for

two products, respectively) in relation to their respective cross-product WOMs (q1 and

q2 − γ). In model (1.13), however, unlike model (1.14), m(t) is supposed to be constant

throughout the diffusion process, that is, m(t) = m for all t.

Similar to the GGM, the final additive terms in Equation (1.14), which are the self-

reinforcing components, will disappear for a constant m(t). The mean sales of both

products are enhanced when m(t) increases more quickly, that is, when awareness of

the product category spreads rapidly based on the agents’ mutual performance. In

contrast, the mean sales are further reduced by a diminishing potential persuaded by

disapproving signals, and in this case, m(t) would be a nonmonotonic function, with

a negative self-reinforcing term when the market potential endures a reduction (Guseo

and Mortarino, 2015). It is important to mention that model (1.14) is the more general

structure of diffusion model for two competitors, while Guseo and Mortarino (2015)

proposed its restricted version with only one parameter as discrimination, that is, δ = γ.

The restricted version has a closed-form solution, while the general one does not. The

differences between the two cases in terms of inference are discussed in Section 1.4.

The sum of the equations in (1.14) is equivalent to model (1.12). In addition, the

model can be used with an expression for m(t) that is dissimilar from Equation (1.11).
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Guseo and Mortarino (2015) suggested the following two alternative functions of (1.11):

m(t) = K
1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

(1.15)

and

m(t) = K.F (t) = K.

∫ t

0

1

Γ(α1)
α0

α1tα1−1e−α0tdt, (1.16)

where Γ(α1) =
∫∞

0
tα1−1e−tdt, and α0, α1, t > 0. The function in (1.15) expresses a

modification of (1.11), while (1.16) defines the evolution of the DMP as proportional

to F (t), the cumulative distribution function of a Gamma random variable with mean

α1/α0 and variance α1/α
2
0.

1.4 Inferential aspects

1.4.1 Parameter estimates

The BM and GBM can be expressed either in a closed-form solution or with a dif-

ferential equation. Here, the GGM is represented by a differential equation, although it

also has a closed-form solution. Moreover, models (1.13) and (1.14), under restriction

δ = γ, can be represented by a closed-form solution or with a system of differential

equations. Notice that models with a closed-form solution are suitable for cumulative

data, and models defined by differential equations are appropriate for instantaneous

data. In the latter case, forecasts cannot be evaluated directly, as we will show in the

next subsection. Given that, in this dissertation, we deal mostly with models without

a closed-form solution, we will focus now on this kind of model.

The structure of a nonlinear regression model for instantaneous data can be expressed

as:

s(t) = z′(t) + ε(t), (1.17)

where s(t) represents observed data, namely instantaneous adoptions or sales of product

at time t, and z′(t) = z′(t; β) represents the deterministic component of the model.

Structure (1.17) is adequate for univariate data. It will be the same structure for two or

more variables as well. The second component in Equation (1.17), ε(t), is the residual or

error term. The set of parameters of the diffusion models, β, can be estimated through a

nonlinear least square (NLS) algorithm without allowing detailed assumptions, from the

beginning, about the structure of ε(t). In order to avoid convergence on local minima,
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confidence bands for the predictions ẑ(t) = z(t; β̂) can be computed as

ẑ(t)± 2 σ̂u ẑ′(t), t = T + 1, T + 2, ..., (1.20)

where σ̂2
u represent the variance estimate and T is the number of observations used to

estimate the parameters (for details, see Guseo and Mortarino, 2015).

Given the confidence bands definition of Equation (1.20), their width is equal to:

4 uσ̂i ẑ
′
i(t), t = T + 1, T + 2, ... (1.21)

This highlights that width is affected both by residuals’ variability, uσ̂i, and the fitted

trajectory, ẑ′i(t). Both may depend on model choice, but while low residuals’ variability

always represents an improvement, the role of ẑ′i(t) may be controversial, as highlighted

in the applications in Chapter 3 and Chapter 5.

1.4.3 Forecasting accuracy

In addition to confidence bands, forecasting accuracy (FA) measures are also useful

alternative techniques for assessing a model’s predictions. It is an assessment of the in-

sample (training data) performances based on multistep forecasts to the out-of-sample

(test data), which is performed by a ‘rolling-origin evaluation’ process, proposed by

Tashman (2000). Consequently, we have different training data sets, each containing

one more observation compared with the previous set.

There are various measures for computing the errors between the observed data and

parallel forecasts. Many researchers (Armstrong and Collopy, 1992; Makridakis, 1993;

Armstrong and Fildes, 1995) claimed that no single measure can be superior to all others,

and the performance of forecasting methods varies according to the accuracy measure

being used (Makridakis and Hibon, 2000). Although root mean square error (RMSE) is

not unit-free, it has been used frequently to draw conclusions about forecasting methods

(Armstrong and Collopy, 1992). However, it is sensible to use scale-independent error

measures. The mean absolute percentage error (MAPE) can be used when there are no

zeros or extremely small values in a data. Although the symmetric MAPE (sMAPE) is

widely criticised as an asymmetric measure (Goodwin and Lawton, 1999), it does not

have the problems of being excessively large or infinite.

The relative absolute errors (RAEs), especially the geometric mean RAE (GMRAE)

and median RAE (MdRAE) proposed by Armstrong and Collopy (1992), also have

a serious deficiency when the benchmark method – the random walk (RW) – can be

small (Hyndman and Koehler, 2006). Armstrong and Collopy (1992) suggested the use
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of ‘Winsorising’ to trim extreme values and avoid the difficulties associated with small

values of the näıve (RW) method, but this adds some complications to the computation.

Instead of using the average of relative errors, one can use the relative of average errors

obtained using a base measure proposed by Armstrong and Collopy (1992). For instance,

when the base measure is mean absolute error (MAE), the relative MAE (RelMAE) is

the ratio of MAE to MAE*, where MAE* denotes the MAE from the benchmark method.

Hyndman and Koehler (2006) noticed as an advantage of these measures that they are

interpretable. For instance, when RelMAE < (>) 1, the proposed forecast method is

better (worse) than the benchmark method. However, the measures require several

forecasts on the same series to enable an MAE (or RMSE) to be computed (Hyndman

and Koehler, 2006).

The mean absolute scaled error (MASE), a new measure proposed by Hyndman and

Koehler (2006), is suitable in those situations where the previously mentioned measures

are problematic to use. The measure can be defined as

MASE = mean

(

et
1

n−1

∑n

i=2 |Zi − Zi−1|

)

,

where et = Zt−Ft is the forecast error at time t and 1
n−1

∑n

i=2 |Zi−Zi−1| is the in-sample

MAE from the näıve forecast method. Notice that MASE will not be infinite unless all

historical data are equal. When MASE < 1, the errors from the proposed method are,

on average, smaller than the errors from the one-step näıve method. However, MASE

is also vulnerable to outliers (Davydenko and Fildes, 2013).

Another accuracy measure, called the unscaled mean bounded relative absolute error

(UMBRAE), has recently been proposed by Chen et al. (2017). The RAE is used as

the base to derive this new measure. Since RAE= |et|
|e∗

t
|
has no upper bound, it can be

extremely large or infinite when |e∗t |, one-step näıve method, is small or equal to zero.

This issue can easily be solved by adding an |et| to the denominator of RAE, which is

addressed as a bounded RAE (BRAE) and is defined as BRAE= |et|
|e∗

t
|+|et|

. The average of

BRAE is called mean BRAE (MBRAE). Finally, the unscaled MBRAE can be defined

as

UMBRAE =
MBRAE

1−MBRAE
.

When UMBRAE is equal to 1, the proposed method performs roughly the same as

the näıve method. When UMBRAE < (>) 1, the proposed model performs roughly

(1−UMBRAE)× 100% better ((UMBRAE− 1)× 100% worse) than the näıve method.
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UMBRAE would be particularly useful for cases where the forecasting method perfor-

mance is not expected to be dominated by forecasting outliers.

1.4.4 Comparison with alternative models

As explained in Subsection 1.2.2, the model may incorporate external shocks whose

parameters are estimated jointly with the remaining ones. In particular, through the

general grid of initial values, models with an increasing number of shocks are fitted

starting from different initial values about ai, which describe the starting points for the

shocks. The least square algorithm designates the optimal allocation of any shock. In

order to decide whether further shocks provide a significant improvement, we exploit

the theory of nested models. For dealing with the comparison of models from different

families, Akaike’s Information Criterion (AIC), Akaike (1974), or Bayesian Information

Criterion (BIC), Schwarz (1978), would be adequate. Conversely, the models with a

lower number of shocks are nested within larger models with more shocks. For this

reason, we can exploit this relationship to obtain more powerful statistical tests as

follows (Seber, 1980; Seber and Wild, 1989; Guseo and Mortarino, 2015).

Suppose M1 and M2 are two different models, where M2 is nested in M1; then, the

normalised squared multiple partial correlation coefficient can be computed as

R̃2 =
(

R2
M1

−R2
M2

)

/
(

1−R2
M2

)

,

where R2
M1

and R2
M2

are the standard determination index of modelsM1 and M2, respec-

tively. The improvement between M1 and M2 can be assessed by using the traditional

F -ratio, which has a one-to-one monotone correspondence with R̃2, that is,

F = [R̃2(N − k)]/[(1− R̃2)v], (1.22)

where N is the total number of observations, k is the number of parameters of M1

and v is the number of parameters of M1 not in M2. Under the null hypothesis H0,

models M1 and M2 are equivalent, and the F -ratio is distributed as a Snedecor’s F with

(v, N − k) degrees of freedom, F ∼ Fv, N−k if the error term ε(t) is independently and

identically distributed normal. Nevertheless, without strong assumptions about error

distributions, the F -ratio (1.22) can be used as an approximate robust criterion to check

the null hypothesis by considering the threshold of 4 (Guseo et al., 2007).

In the next chapters, we propose some extensions of the existing diffusion models for

competition and discuss their applications in the energy market.



Chapter 2

The three-competitor diffusion

model with a fixed m

2.1 Introduction

Contemporary researchers across disciplines (e.g. marketing, social sciences, physics,

mathematics, statistics, biology and epidemiology) have been contributing to either

theoretical extension or novel applications of diffusion models (Krishnan et al., 2000;

Rogers, 2003; Meade and Islam, 2006; Peres et al., 2010; Guseo and Mortarino, 2012,

2014). Existing models in the diffusion of innovations literature explains the competi-

tion between two products (as discussed in Chapter 1). To apply these models, data

from two or more similar products are aggregated or only the two leading products are

considered. This aggregation may hide specific features of some of the products, result-

ing in lost information. Indeed, the higher number of products are aggregated, the more

the possibility is to have a new path for the aggregated products. In such a situation,

there is a higher chance to lose the usual patterns and behaviors of individual prod-

ucts. To avoid loss information on leading products, the aggregation can be applied to

non-leading products. However, any kind of aggregation determines information waste.

Thus, an extended model for dealing with additional competitors may be an important

contribution to the diffusion literature. However, higher dimension models with extra

parameters and a composite structure of the interactions among competitors demand

greater computational effort.

With the aim of improving the description of mutual interactions of three competing

products (either competition or cooperation), a higher dimension diffusion model is

proposed. In contemporary literature, alternative options for two-product competition

models include, balanced or unbalanced versions and models for synchronic or diachronic

23
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competition. We propose a diffusion model for three competitors following the model

proposed by Guseo and Mortarino (2014), which is a general model of competition

between two products with a fixed market potential. The competing products share a

common residual market.

2.2 The model

We assume that all the products belong to a homogeneous category and they will

compete in the same customer segment. Hence, we assume a common market potential

m, and consequently, a common residual market m−z(t). Here, z(t) =
∑

i zi(t) denotes

the aggregate cumulative consumptions, while zi(t), i = 1, 2, 3 represents the cumulative

consumptions of product i. Considering that observing three simultaneous products is

uncommon, we focus on situations where two products exist in the market from the

beginning, while the third enters the market later.

Let us consider a twofold case with the late entrance of the third competitor at

time t = c2 with c2 > 0, where t = 0 represents the time of origin for the first two

competitors. Our proposed new model, as an extension of the models proposed by Guseo

and Mortarino (2014), can be expressed through the following system of differential

equations:

z′1(t)=m

{[

p1α + (q1α + δα)
z1(t)

m
+ q1α

z2(t)

m

]

(1− It>c2) +

+

[

p1β + (q1β + εβ)
z1(t)

m
+ (q1β + ηβ)

z2(t)

m
+ q1β

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

,

z′2(t)=m

{[

p2α + (q2α − δα)
z1(t)

m
+ q2α

z2(t)

m

]

(1− It>c2) +

+

[

p2β + (q2β + θβ)
z1(t)

m
+ (q2β + ξβ)

z2(t)

m
+ q2β

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

, (2.1)

z′3(t)=m

{[

p3 + (q3 − εβ − θβ)
z1(t)

m
+ (q3 − ηβ − ξβ)

z2(t)

m
+ q3

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

,

m=mα(1− It>c2) +mβIt>c2 ,

z(t)=z1(t) + z2(t) + z3(t)It>c2 ,

where z′i(t) = ∂zi(t)/∂t, i = 1, 2, 3, represents instantaneous consumptions of product

i. The system of Equation (2.1) indicates a competition among three products in two

phases. During the first phase, until t ≤ c2, it is assumed that the first two products

are characterised separately by three parameters each (denoted with subscript α). The

parameters of the first product are p1α, q1α + δα and q1α. The second product has three
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corresponding parameters, as follows: p2α, q2α and q2α − δα. Thus, in the first phase,

we assume an unrestricted unbalanced (synchronic) competition (UUC) model with the

constraint δα = γα.

The second phase of the model begins when the third product enters the market, at

time t = c2. We allow the first two products to be characterised by new parameters.

The parameters of the second phase are denoted with β as subscript. In case of the first

product, the new parameters are as follows: the innovation coefficient, p1β; the imitative

one due to the WOM, split into three parts, the within-product imitation coefficient,

(q1β+εβ), modulating the sales of the first product through the relative knowledge z1/m;

the cross-product imitation coefficient (q1β+ηβ), powered by z2/m and the cross-product

imitation coefficient, q1β, powered by z3/m. The second product has the corresponding

four new parameters, as follows: the innovation coefficient, p2β; the within-product

imitation coefficient (q1β + ξβ); the cross-product imitation coefficient (q2β + θβ), which

measures the effect of the first product on sales of the second product and the cross-

product imitation coefficient q2β, which measures the effect of the third product on

sales of the second product. Finally, the third product has four parameters with the

same meaning, as follows: the innovation coefficient, p3; the within-product imitation

coefficient q3; the cross-product imitation coefficient (q3 − εβ − θβ), which measures the

effect of the first product on sales of the third product and the cross-product imitation

coefficient (q3−ηβ − ξβ), which measures the effect of the second product on sales of the

third product. As before, εβ, ηβ, θβ and ξβ are called discriminations, where εβ and ηβ

represent the differences between within-product and cross-product WOM effect of the

first product, θβ and ξβ represent the similar differences in the second product, and all

together represent those differences for the third product. The discriminations εβ, ηβ,

θβ and ξβ may be either positive or negative, depending on whether the within-product

effects of a specific product is stronger or weaker than the cross-product effects of the

corresponding product. The common market potential, m, is equal to mα in the first

phase and is allowed to change to mβ in the second phase. A restricted version of model

(2.1), with εβ = ξβ and ηβ = θβ = 0, has been proposed and applied in Furlan et al.

(2018a) and Furlan et al. (2018b).
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In the second phase, the first three equations of system (2.1) may be reorganised in

the following way:

z′1(t)It>c2 ∝ p1β + q1β
z1(t) + z2(t) + z3(t)

m
+ εβ

z1(t)

m
+ ηβ

z2(t)

m
,

z′2(t)It>c2 ∝ p2β + q2β
z1(t) + z2(t) + z3(t)

m
+ θβ

z1(t)

m
+ ξβ

z2(t)

m
,

z′3(t)It>c2 ∝ p3 + (q3 − εβ − θβ − ηβ − ξβ)
z1(t) + z2(t) + z3(t)

m
+

+ (ηβ + ξβ)
z1(t)

m
+ (εβ + θβ)

z2(t)

m
+ (εβ + θβ + ηβ + ξβ)

z3(t)

m
.

The restructuring of system (2.1) shows that the diffusion of each product is charac-

terised by a category level imitation coefficient, specifically, q1β for the first, q2β for the

second and (q3 − εβ − θβ − ηβ − ξβ) for the third product, and product-level imitation

coefficients, namely εβ and θβ or ηβ and ξβ. As a result, the aggregate hazard of the

first three equations of system (2.1) for t > c2, is

h(t) =
z′(t)/m

1− z(t)/m
= (p1β + p2β + p3) + (q1β + q2β + q3)

[

z1(t) + z2(t) + z3(t)

m

]

, t > c2.

The hazard assumes the form h(t) = P + Qz(t) for P = p1β + p2β + p3 and Q =

q1β + q2β + q3, as it behaves as a BM for the cumulative sales z(t) of the homogeneous

category. The parameters εβ, ηβ, θβ and ξβ denote the equivalence discriminations

for the first three equations of system (2.1) for t > c2. Following Guseo and Mortarino

(2014), the equations of system (2.1) may be called a UCRCD model for the competitors.

If all three products are launched simultaneously, the first phase of the equations

of system (2.1) disappears. Then, only the second phase of the Equation (2.1) system,

with a minor change due to the fixed market potential, m, can be termed an unbalanced

synchronic competition (USC) model (for details, see Appendix A). If the competing

products in the market niche are extremely similar, that is, there is a homogeneous

market, it is not necessary to split the WOM for each product from those of competing

products. In such a situation, the equations of system (2.1) reduce to a balanced model,

the same as proposed in Guseo and Mortarino (2012) for two competitors.

We may incorporate intervention functions in model (2.1) for one or more products.

The number of intervention functions in the lifecycle can be three or more, if necessary

(for details, see Subsection 1.2.2).
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Applications of the three-competitor

diffusion model with a fixed m

3.1 Introduction

Since the 1960s, various diffusion models have been used to capture the usual S-

shaped pattern of the process (Meade and Islam, 2006). The diffusion rates are context

specific, and they are either facilitated or prevented by socioeconomic, technological and

institutional factors (Rao and Kishore, 2010). These interrelated factors influencing the

process demand the development of complex models. For example, renewable energy

technologies (RETs) are boosted by impending environmental and energy security con-

siderations arising from the use of fossil fuels (e.g. CGO). The issue has appeared at

the front line because of the consideration that the fossil fuel-based energy sources are

not unlimited. Moreover, RETs are promoted and adopted through financial and fiscal

incentives from the government and private agencies (Rao and Kishore, 2010). Although

RETs are inherently advantageous for the environment and receive financial support,

the share of RETs in the energy market mix is not increasing to a desired rate. In-

deed, the lifecycle of renewables may be influenced by alternative energy sources. For

instance, the nonrenewables may have a more prominent lifecycle compared with renew-

ables. Since diffusion of innovations models are able to explain how, why and at what

rate new ideas and technology spread, the models can suitably be used in the energy

market.

Marchetti (1980) was one of the first to employ the diffusion of innovation frame-

work (logistic model) to analyse energy dynamics. Later, several researchers employed

diffusion models, especially Bass models (the BM, Bass, 1969 and GBM, Bass et al.,

1994) and proposed their potential modifications to describe and forecast energy sources

27
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and technologies. Rao and Kishore (2009) applied the BM for investigating growth pat-

terns of wind power technology in several Indian states. They noticed that the diffusion

model is suitable for the study of consumer markets and capital-intensive equipment,

such as wind power generators. Davies and Diaz-Rainey (2011) studied the diffusion of

wind power in 25 Organisation for Economic Co-operation and Development (OECD)

countries by testing several assumptions related to the logistic and Bass models. The

authors examined the difference between induced diffusion patterns when interventions

exist and conventional diffusion patterns without any interventions. They revealed how

the effects of induced diffusion could be modelled through a series of analyses and pro-

posed several policy implications for inducing the diffusion of wind power. Guidolin and

Mortarino (2010) analysed adoption patterns of solar photovoltaic (PV) for 11 countries

to select a model, among the several Bass modifications, suitable to each country. They

modelled the intervention function of the GBM through two types of shock function, as

follows: an exponential function for describing a drastic perturbation and a rectangular

function for a more stable perturbation. To describe the lifecycles of wind power in the

United States and some European countries, Dalla Valle and Furlan (2011) introduced

incentive influences as exogenous dynamics in the GBM. They found that, among sev-

eral diffusion models, GBM performed the best in terms of forecasting accuracy. Duan

et al. (2014) employed a revised Lotka–Volterra model to explore the diffusion patterns

of wind and PV solar technologies in the United States, China, Japan and some Euro-

pean countries. They examined the possible relationships (competition or cooperation)

between the two technological innovations. Through equilibrium calculation, they made

some short-term predictions for equilibrium-stable countries.

The GBM was also profitably used to analyse the adoption of nonrenewable energy

sources, such as oil (Guseo et al., 2007; Brandt, 2007), natural gas (Aguilera and Aguil-

era, 2012; Wang et al., 2013) and nuclear (Guidolin and Guseo, 2012). Furthermore,

Guseo et al. (2015) introduced two separate heterogeneity effects in a GBM through

Bemmaor’s approach and applied them to conventional Algerian natural gas produc-

tion. In contrast, Furlan and Mortarino (2018) studied the lifecycles of renewable and

nonrenewable energy sources as two competitors. They proposed a two-wave diffusion

model that offers a competition between two products. To describe external influences

with internal dynamics, they incorporated shock functions into the model.

Although the diffusion of innovation methodology is not new for the energy sector,

the existing research on the diffusion of energy sources or technologies may be improved;

especially, the competitive relationship among three or more sources of energy has never

been investigated. Hence, we are interested in studying the possible relationship among
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three energy competitors by introducing some powerful diffusion models.

In contemporary literature, renewable and nonrenewable energy sources are observed

as perfect substitutes (see, e.g. Tsur and Zemel, 2003; Chakravorty et al., 2006, 2012;

Van der Ploeg and Withagen, 2012). Understanding the relationship is critical when the

fossil fuels (CGO), a major source of nonrenewable energy, are depleting and may run

out over time. Complete dependency on such energy sources could spell disaster for a

country’s future energy security. Moreover, the negative effects of these sources on the

environment is a well-established scientific fact. Nuclear energy is an alternative energy

source that may reduce the consumption of fossil fuels. The established nuclear plants

provide energy for an indefinitely long time, and hence, nuclear power is being considered

as a feasible energy source by several nations. However, considering economic viability,

environmental friendliness and safety issues, the use of nuclear energy is being restricted.

The nuclear sources are not considered clean because of environmental degradation.

Alternatively, ‘renewable’ sources (energy derived from hydro, solar, wind, geothermal

and biomass resources) are appearing as the most feasible alternative (Brook et al.,

2014). The share of renewable sources in energy consumption has been increasing over

time, especially among the developed countries.

This study considers energy sources as (two or three) competitors of substitute prod-

ucts competing for the same adopters (consumers). Thus, models with a common mar-

ket potential appear as an adequate solution. Here, energy represents the category of

products, and adopters are the ultimate consumers. The sales are considered as annual

energy consumptions. The market potential (or carrying capacity) is the entire size of

the market (total consumptions), and the residual market is the additional amount that

the sources can still ensure will be produced.

3.2 The Data

In this study, we analyse energy consumption (in million tonnes of oil equivalent,

Mtoe) data for both nonrenewable (coal, gas, oil and nuclear: CGON) and renewables

(hydro, solar, wind, geothermal and biomass) sources as provided by British Petroleum

(2016). Information from 12 countries, namely Belgium, China, Finland, France, Ger-

many, India, Japan, Spain, Sweden, Switzerland, the United Kingdom and the United

States are utilised. The data cover the period from 1965 to 2015, with a few exceptions.

At the beginning of the study period, the use of traditional energy sources (coal, natural

gas and oil) were nearly universal in most of the studied countries. Since the beginning

of the study period, Belgium, France, Germany, Japan, the United Kingdom and the
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United States have been using nuclear sources along with fossil fuels. The other studied

countries introduced the nuclear source at a later time. Hydroelectricity, a renewable

energy source, came into use in all countries in or before 1965. The other renewable

sources, such as solar, wind, geothermal and biomass, were launched at a later time.

Geothermal and biomass sources were introduced at a relatively early stage compared

with solar and wind sources.

First, we aggregate consumptions (in Mtoe) into two competitors, CGON and re-

newables. The competition in all the studied countries turns out to be synchronic, as at

least one of the sources of energy has been used since the beginning of the study period.

Hence, in the first step, the two-competitor diffusion model is adopted to explain the

competition between CGON sources and renewables. For the alternative categorisation

of competition among the aggregate consumptions (in Mtoe) of CGO sources, renew-

ables and nuclear, the three competitors may be synchronic or diachronic depending

on the launch time of nuclear energy. A synchronic model can suitably be used when

nuclear energy is launched simultaneously with CGO sources and renewables; otherwise,

a diachronic model is appropriate. To describe nuclear consumptions with CGO sources

and renewables, we subsequently analyse each country via the diffusion models for three

competitors.

3.3 Analysis

When the energy sources are categorised as CGON and renewables, it should be un-

derstood that sources were present from the beginning of the study. In such a situation,

only the second phase of the model (1.13) is applicable. However, grouping the sources

into three categories (CGO, renewables and nuclear) would provide better information.

In such case, we may observe two situations, as follows:

i) CGO and renewables were available from the beginning and nuclear sources en-

tered the market later (e.g. China, Finland, India, Spain, Sweden and Switzer-

land); and

ii) All three sources were present at the beginning of the study (as in Belgium, France,

Germany, Japan, the United Kingdom and the United States).

For the former situation, both the phases of model (2.1) are used. For the latter situa-

tion, only the second phase of the model is applicable. All available versions (balanced,

unbalanced and unrestricted unbalanced) of models (1.13) and (2.1) are fitted to the en-

ergy data partitioned into two and three competitors, respectively. Additionally, one or
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more exponential shocks (control functions) are added to the model. This introduction

is intended to improve the fitting of the models by incorporating the effect of financial

crisis and incentives that are externalities to the diffusion process. The performance of

the models is compared to achieve the best fit within the models included in the study.

Only renewables are common in both the two- (2CM) and three-competitor (3CM) mod-

els. Hence, in both the models (2CM and 3CM), we targeted having essentially the same

raising point for the shocks for renewables. This choice was made to avoid introducing

bias into the comparison between the performance of the 2CM and 3CM. However, for

the price of achieving a good-fitted model, in some cases, we accepted, as a compromise,

an insignificant variation between the raising point for the shocks for renewables in the

2CM and 3CM.

Since we are dealing with nonlinear models, a general discussion on their structural

settings and inferential aspects is very relevant although, in Section 1.4, we have dis-

cussed in details how to make inference for these models. Nonlinear regression models

can take many different forms. There are almost no restrictions on how parameters can

be used in a nonlinear model. The positive side is that this flexibility allows nonlin-

ear regression to provide the most flexible curve-fitting functionality. The weakness is

that the correct null hypothesis value for each parameter depends on the expectation

function, the parameter’s location in it, and the field of study. Because the expectation

functions can be so wildly different, it is not possible to create a single hypothesis test

that works for all nonlinear models.

Simpler models are better, in the sense that, models with a large number of parame-

ters demand complex mathematical computation. However, we are explaining complex

market situations where a large number of products compete for the same customers.

In such situation, relatively complex models with additional parameters (e.g. an in-

creasing number of shocks) is preferred. While choosing a model, we make a balance by

considering a minimum number of parameters but not excluding any parameter with

physical importance or statistical significance. In practice, while fitting a model with

large number of parameters, all the confidence intervals for respective parameters may

not include the null value. Though, as Kalinowski and Fidler (2010) mentioned, sta-

tistically insignificant parameters may have practical (contextual) importance. Hence,

some of the statistically insignificant parameters with importance in market philosophy

were included in the models fitted in this study.

Naturally, diffusion models for cumulative data give an extremely high R2 value. The

R2 value is also very large even if the model is fitted to instantaneous data. Because,

in a comparison, with the mean response, growth curves as nonlinear diffusion models,
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Table 3.1: Belgium, 2CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the BSC model with four shocks (three for CGON sources and
one for renewables).

Parameter Estimate Standard error 95% Confidence interval

m 5925.11 1802.93 {2340.40, 9509.82}
p1 0.00587 0.00171 {0.00246, 0.00928}
q1 0.03323 0.00767 {0.01797, 0.04848}
c1 0.19133 0.04605 {0.09977, 0.28289}
b1 −0.28437 0.20522 {−0.69240, 0.12367}
a1 5.55485 0.00251 {5.54987, 5.55983}
c2 −0.21730 0.02375 {−0.26453,−0.17007}
b2 −0.07552 0.04266 {−0.16035, 0.00930}
a2 15.0000 0.00039 {14.9992, 15.0008}
c3 −0.00092 0.00320 {−0.00728, 0.00545}
b3 0.23169 0.13364 {−0.03403, 0.49741}
a3 27.1793 6.78 ∗ 10−7 {27.1793, 27.1793}
p2 3.52 ∗ 10−6 0.00008 {−0.00016, 0.00017}
q2 0.00023 0.00052 {−0.00081, 0.00127}
c4 0.97486 2.68338 {−4.36042, 6.31014}
b4 0.20187 0.16742 {−0.13100, 0.53475}
a4 40.3508 0.52808 {39.3008, 41.4007}

R2 0.99712

at which point a substantial increasing trend could be observed. Fluctuations in the

consumption of CGON sources were observed between the early 1980s and mid-’90s.

Afterward, CGON sharply increased as the share of oil and nuclear in the energy mix

remained stable. While coal consumption was reduced, the use of natural gas almost

doubled. After a sharp increase between 1985 and 2005, a decreasing trend in overall

CGON consumption has been observed since 2005. In this interim, the Belgium Federal

Commission for Electricity and Gas Regulation (CREG), as well as other authorities

and consultants, concluded that Belgium was facing security problems because of low

electricity generation (Deloitte, 2015a). In fact, the country heavily depends on im-

ported CGO energy. Moreover, in 2012–2013, Belgium’s energy production capacity

was compromised due to cold weather (Deloitte, 2015a).

Belgium has a long industrial history in the nuclear sector; however, its first com-

mercial nuclear power reactor started functioning in 1974. Currently, about half of the

domestically generated electricity comes from nuclear power (Nuclear Power in Belgium

(NPB), 2018). According to British Petroleum (2016), Belgium’s nuclear consumption
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Table 3.2: Belgium, 3CM. Estimates, standard errors and marginal linearised 95%
confidence interval of the BSC model with five shocks (three for CGO sources, one for
renewables and one for nuclear).

Parameter Estimate Standard error 95% Confidence interval

m 6059.81 1571.47 {2951.07, 9168.55}

p1 0.00600 0.00152 {0.00300, 0.00900}

q1 0.02383 0.00417 {0.01558, 0.03208}

c1 0.16966 0.03545 {0.09953, 0.23979}

b1 −0.35364 0.17609 {−0.70198,−0.00529}

a1 7.00000 0.00213 {6.99579, 7.00421}

c2 −0.27100 0.02227 {−0.31505,−0.22695}

b2 −0.07330 0.02301 {−0.11882,−0.02777}

a2 18.0000 0.00044 {17.9991, 18.0009}

c3 −0.00025 0.00132 {−0.00285, 0.00236}

b3 0.23112 0.17376 {−0.11261, 0.57485}

a3 22.5871 7.41 ∗ 10−8 {22.5871, 22.5871}

p2 0.00001 0.00008 {−0.00015, 0.00018}

q2 0.00009 0.00053 {−0.00096, 0.00114}

c4 1.82989 6.22416 {−10.4830, 14.14280}

b4 0.18918 0.12618 {−0.06044, 0.43880}

a4 39.0587 2.15466 {34.7963, 43.3212}

p3 −0.00030 0.00015 {−0.00059,−0.00002}

q3 0.01054 0.00103 {0.00850, 0.01258}

c5 −0.08619 0.05561 {−0.19620, 0.02383}

b5 0.13345 0.04593 {0.04259, 0.22430}

a5 37.3546 0.00064 {37.3534, 37.3559}

R2 0.99514

1965 + â2 ' 1983 and 1965 + â3 ' 1988. The first shock was estimated as positive

(ĉ1 = 0.16966) and decaying over time (negative b̂1). The second and third shocks were

estimated as negative (ĉ2 = −0.27100, ĉ3 = −0.00025). The former shock decayed over

time (negative b̂2) but the latter did not (positive b̂3). The first shock was observed

immediately after 1971. The year is prominent for discharging the highest percentage of

CO2 emissions from liquid fuel consumption in Belgium’s 50-year CO2 emissions record.

The second shock happened during the oil crisis 1979, which abruptly reduced CGO

consumption in Belgium. The third shock was quite mild, and may have been due to

a long-term effect of the oil crisis of 1979. One shock arose for renewables at time

1965 + â4 ' 2004. It is estimated to be positive (ĉ4 = 1.82989) and not yet faded over

time (positive b̂4). The shock can be explained in that several subsidies and tax incen-

tives encouraged both Belgian and foreign private companies to invest in wind or solar
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energy. A negative shock (ĉ5 = −0.08619) arose for nuclear at time 1965 + â5 ' 2002,

which did not decay over time (positive b̂5). The shock may be due to the fact that

the Belgian Senate approved the Federal Act of 31 January 2003, which limited the

operating lives of existing nuclear power plants to 40 years and prohibited the building

of new plants (NPB, 2018).

The 3CM’s findings are more specific and informative than those of the 2CM mod-

els, and hence, we focus on the parameters estimated through the 3CM. Table 3.2

indicates that the effect of the innovative component corresponding to CGO sources

(p̂1 = 0.00637) is notably larger than the effect for competitors (p̂2 = 0.00001 for renew-

ables and p̂3 = −0.00031 for nuclear). This indicates that Belgium is somewhat more

motivated for the innovation of clean and safe energy (renewables) technology compared

with nuclear technology. By substituting the estimated parameter values in the BSC

model, the following three equations can be obtained:

z′1(t) ∝ 0.00600 + 0.02383 z(t)/m

z′2(t) ∝ 0.00001 + 0.00009 z(t)/m

z′3(t) ∝ −0.00031 + 0.01054 z(t)/m.

Here, all three sources exploited the WOM effect of the whole category. It shows that

the innovative effect of nuclear is negative, whereas it experiences a positive imitative

(WOM) effect with other sources. More specifically, the diffusion spread of CGO sources

is high (q̂1 = 0.02383) and that of nuclear is also high (q̂3 = 0.01054). Conversely,

renewable diffusion spread is extremely low (q̂2 = 0.00009).

The solid lines in Figures 3.1 and 3.2, representing fitted models, show satisfactory fit

of the models to the observed data. Here, we make a short period of predictions (5 years

after 2015) for each competitor. Both the 2CM and 3CM predictions suggest increasing

trends in renewables in 2016–2020, when the use of other energies may decline. In fact,

over the last 10 years, the share of renewables in Belgium’s final energy consumption has

increased from 2% in 2005 to 8% in 2014. That is, the country is progressing through

the way to meet its 2020 objective of 13% increase in the use of renewables (Energy

Transition, 2016).

Although fitted lines are found be consistent with the observed data, we observe

worse fit in the first part of renewables in 2CM and nuclear in 3CM. For this reason, the

estimate of the variance of the stochastic component, based on residuals that are inflated

by a partial lack of fit, is biased. To build credible confidence bands for future assessment

of the series, we excluded the first two residuals for renewables and the first 17 residuals
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for nuclear. As the renewables are common to both 2CM and 3CM, we also omitted

the first two residuals of renewables for the 3CM. No residuals were omitted for other

sources (CGON in 2CM and CGO in 3CM). Then, we computed ‘scaled residuals’ of

each competitor in the two models (for details, see Subsection 1.4.2). The Kolmogorov–

Smirnov test confirms the hypothesis that scaled residuals follow a Gaussian distribution.

The standard deviations of scaled residuals (σ̂u) through 2CM are 0.04483 for CGON and

0.31263 for renewables, and those obtained with 3CM are 0.05254 for CGO, 0.27749 for

renewables and 0.18512 for nuclear. Now, using the properties of normal distributions,

we computed 95% confidence bands for predictors with 2σ bands (represented by broken

lines in Figures 3.1 and 3.2) and the corresponding confidence band width (Table 3.3).

The first column of Table 3.3 represents the prediction years. The next two columns

represent the confidence band width of 2CM predictions, and the last three columns

represent the confidence band width of 3CM predictions. Since 2CM and 3CM use

different data, it is not appropriate to compare them through global goodness-of-fit

measures (standard deviation, residual diagnostics and the R2 value). Thus, we decided

to assess the improvement of the 3CM with respect to 2CM, focussing on the common

time series, for example, renewables.

The confidence bands of predictions for renewables using 3CM are narrower than

those obtained through 2CM. However, the band width from the first to the subsequent

prediction years increased for both the 2CM and 3CM. While both the models suggest

increasing renewables in 2016–2020, the predictions obtained with 3CM are more reli-

able. CGO predictions suggest a sharp decline of traditional energies (CGO sources)

in 2016–2020. According to nuclear predictions, the use of nuclear may decline or stop

between 2016 and 2020. Above all, the planned nuclear phase-out and implied embargo

on new investments in coal for power generation will change the diversity of electricity

Table 3.3: Belgium. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.04483) (σ̂u=0.31263) (σ̂u=0.05254) (σ̂u=0.27749) (σ̂u=0.18512)

2016 8.40890 5.01686 8.87624 4.50149 4.27832

2017 7.44140 6.07902 8.19142 5.38906 3.34565

2018 6.21916 7.38121 7.33420 6.45810 2.26483

2019 4.67646 8.97784 6.26243 7.74632 1.01773

2020 2.72858 10.93599 4.92237 9.29982 –

Confidence band width is not shown when the fitted trajectory is negative.
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Table 3.4: Sweden, 2CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the USC model with two shocks (one for each competitor).

Parameter Estimate Standard error 95% confidence interval

m 3498.97 418.868 {2666.82, 4331.12}

p1 0.00633 0.00085 {0.00463, 0.00802}

q1 0.13153 0.06685 {−0.00127, 0.26434}

δ −0.16301 0.09086 {−0.34352, 0.01751}

c1 0.21120 0.06588 {0.08032, 0.34208}

b1 0.01569 0.02587 {−0.03571, 0.06708}

a1 3.11651 0.00022 {3.11608, 3.11694}

p2 0.00273 0.00032 {0.00210, 0.00338}

q2 −0.10260 0.06430 {−0.23035, 0.02516}

c2 0.05254 0.03101 {−0.00906, 0.11414}

b2 0.17576 0.02615 {0.12381, 0.22771}

a2 33.1467 0.00029 {33.1461, 33.1473}

R2 0.97506

(Sweden.se, 2018). The consumption of CGO sources sharply increased until 1974.

Later, it sharply declined for a decade and gradually declined after 1983.

First, the data from Sweden were partitioned as CGON sources and renewables.

Model (A.2), USC, with two exponential shocks (one for each competitor) is fitted. The

F -ratio, comparing the fitted model with and without shocks, provides a large value

(F̂ = 7.05260). This suggests that the shocks are significantly incorporated into the

model.

Later, the data were partitioned into three sources (CGO, renewables and nuclear),

and we observed that the first two sources existed from the beginning and the third

entered the market later. Hence, model (A.4), restricted UCRCD, with three exponential

shocks (one for each competitor) is applied. The shocks are significant, as the value of

the F -ratio obtained by comparing the fitted model with and without shocks is large

(F̂ = 16.07882). The shocks occurred at time 1965+ â1 = 1982 for the CGO time series,

time 1965+â2 ' 1999 for renewables and time 1965+â3 ' 1986 for nuclear sources. The

shock for CGO sources was estimated as negative (ĉ1 = −0.21129) and not absorbed in

time (positive b̂1). The next two shocks were estimated to be positive (ĉ2 = 0.03203 and

ĉ3 = 0.43093). The shock for renewables has not yet decayed (positive b̂2), while that of

nuclear energy decayed over time (negative b̂3). The negative shock for CGO sources may

be related to the 1980s oil price hike, which also had an effect on the Swedish economy.

The positive shock for renewables may be due to Swedish Parliament’s 1999 decision to
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Table 3.5: Sweden, 3CM. Estimates, standard errors and marginal linearised 95%
confidence interval of restricted UCRCD model with three shocks (one for each com-
petitor).

Parameter Estimate Standard error 95% Confidence interval

mα 1459.83 7.02 ∗ 10−9 {1459.83, 1459.83}

p1α 0.01438 0.00063 {0.01314, 0.01563}

q1α 0.30682 0.17885 {−0.04720, 0.66084}

δα −0.37089 0.25191 {−0.86952, 0.12775}

p2α 0.00753 0.00063 {0.00629, 0.00878}

q2α −0.26222 0.17885 {−0.61625, 0.09180}

mβ 3941.92 580.513 {2792.83, 5091.01}

p1β 0.00875 0.00114 {0.00650, 0.01100}

q1β 0.04038 0.02603 {−0.01115, 0.09191}

δβ −0.06425 0.04356 {−0.15047, 0.02196}

c1 −0.21129 0.03477 {−0.28011,−0.14247}

b1 0.00439 0.04225 {−0.07923, 0.08802}

a1 17.0000 0.00003 {16.9999, 17.0001}

p2β 0.00255 0.00037 {0.00183, 0.00327}

q2β 0.02969 0.01182 {0.00630, 0.05308}

c2 0.03203 0.02481 {−0.01707, 0.08113}

b2 0.18170 0.03724 {0.10799, 0.25541}

a2 33.8456 0.00014 {33.8454, 33.8459}

p3 −0.00225 0.00043 {−0.00310,−0.00139}

q3 −0.03358 0.04032 {−0.11340, 0.04624}

c3 0.43093 0.13511 {0.16349, 0.69836}

b3 −0.04525 0.10586 {−0.25480, 0.16430}

a3 21.0000 0.00263 {20.9948, 21.0052}

R2 0.96284

establish 15 environmental quality objectives, where green energy was prioritised with

increasing prices on carbon and fossil fuels. Moreover, the positive shocks for nuclear

energy may be related to six new nuclear reactors that entered commercial service in

the 1980s (NPS, 2018).

The market potential of the second phase (m̂β = 4088.32 Mtoe) is about three times

of the first phase (m̂α = 1457.43 Mtoe). Indeed, the length of the first phase is extremely

short. In the second phase, the innovative effect of CGO sources (p̂1β = 0.00875) and

renewables (p̂2β = 0.00255) are notably larger than the effect of nuclear (p̂3 = −0.00225).

By substituting the parameter estimates in the second phase of model (A.4), we obtain
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lines (see Figures 3.3 and 3.4), and the corresponding band width shown in Table 3.6. As

we anticipated in Subsection 1.4.2, the band width results require a specific comment.

The 3CM apparently results in a reduction in terms of confidence band width for only

the first two prediction years. However, both σ̂u values and the predicted trajectories

highlight that the slight increase for the remaining three years is due to the steep increase

in the predicted trajectory for the 3CM in contrast to a mild increase in the 2CM fitted

trajectory. Conversely, the σ̂u has a lower value for the 3CM, showing greater precision.

One of the aims of this thesis is developing models that can be used for forecasting

future energy consumptions of the three types of sources. At this stage, we estimate the

forecasting accuracy (FA) of the 2CM and 3CM models through a set of out-of-sample or

test datasets. It should be noted that different datasets were used to estimate the FA for

the 2CM and 3CMmodels (except for renewables). Hence, the various error measures (as

mentioned below) of FA for the two models are not comparable. Conversely, we consider

the forecasting error measures obtained through the random walk (RW) method as a

benchmark (or näıve forecast method). The forecasting accuracies of both the models

(2CM and 3CM) are then compared with the FA of the benchmark method.

Using the rolling-origin estimation procedure, we fix the origin t of the forecasting

period at 2008 and forecasts until 2015. In the procedure, at least 86% of the available

data are used for training, and the rest are kept for testing the prediction performance.

Thus, we achieve seven 1-year-ahead and three 5-year-ahead forecasts. The forecasting

accuracy is assessed using the forecasting error measures: RMSE, MAPE, sMAPE,

MASE, UMBRAE and % Better (for details, see Subsection 1.4.3).

The measures evaluated here, except for MASE and UMBRAE, have no threshold

for choosing a good fit model. Hence, we mainly focus on the MASE and UMBRAE

measures for assessing a model’s FA. In our study, the CGON and renewables have

Table 3.6: Sweden. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.05115) (σ̂u=0.08742) (σ̂u=0.04591) (σ̂u=0.08319) (σ̂u=0.08890)

2016 6.23919 7.94242 3.09704 7.70788 4.76385

2017 6.11291 8.25599 3.03326 8.13855 4.68028

2018 5.97605 8.57684 2.96649 8.63140 4.59246

2019 5.82688 8.89427 2.89637 9.18911 4.49981

2020 5.66358 9.19494 2.82244 9.81229 4.40155
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Table 3.7: Sweden. Forecasting accuracy measures for CGON predictions by 2CM
and RW.

Measure
2CM (USC with 2 shocks) RW

1-step 2-step 3-step 4-step 5-step 1-step 2-step 3-step 4-step 5-step

RMSE 6.110 3.707 4.571 3.356 3.814 5.730 3.897 2.488 2.278 2.276
MAPE 0.046 0.042 0.056 0.038 0.065 0.052 0.037 0.026 0.025 0.033
sMAPE 0.044 0.041 0.054 0.037 0.062 0.050 0.037 0.026 0.025 0.032
MASE 0.834 0.787 1.030 0.717 1.182 0.939 0.688 0.477 0.451 0.581

UMBRAE 0.834 1.317 1.370 0.508 0.811 1.000 0.840 0.668 0.315 0.334
% Better 43% 33% 60% 75% 67% 0% 67% 80% 100% 100%

Table 3.8: Sweden. Forecasting accuracy measures for CGO and nuclear predictions
by 3CM and RW.

Measure
3CM (restricted UCRCD with 3 shocks) RW

1-step 2-step 3-step 4-step 5-step 1-step 2-step 3-step 4-step 5-step

CGO

RMSE 1.705 1.519 0.552 0.575 0.445 2.903 2.486 1.814 0.854 0.490
MAPE 0.025 0.024 0.013 0.016 0.013 0.048 0.043 0.034 0.021 0.015
sMAPE 0.025 0.024 0.013 0.016 0.013 0.048 0.043 0.033 0.021 0.015
MASE 0.389 0.377 0.192 0.234 0.193 0.760 0.676 0.524 0.317 0.225

UMBRAE 0.577 0.696 0.211 0.172 0.099 1.000 0.990 0.485 0.223 0.137
% Better 86% 67% 100% 100% 100% 0% 67% 60% 100% 100%

Nuclear

RMSE 3.974 2.553 1.967 1.620 1.363 3.732 2.577 2.225 2.142 1.987
MAPE 0.094 0.069 0.058 0.048 0.054 0.089 0.066 0.060 0.064 0.067
sMAPE 0.090 0.068 0.058 0.049 0.055 0.086 0.066 0.058 0.062 0.064
MASE 1.021 0.790 0.683 0.575 0.638 0.970 0.754 0.687 0.733 0.754

UMBRAE 1.119 0.771 0.573 1.059 1.029 1.000 0.679 0.481 0.972 0.945
% Better 43% 67% 60% 75% 33% 0% 83% 80% 50% 33%

different lifecycles. Hence, simultaneously achieving smaller errors of out-of-sample

forecasts for both the competitors is less likely. The situation is even more vulnerable

when three competitors (CGO, renewables and nuclear) are assessed simultaneously. In

this case, we assessed forecasting accuracies of the two models, namely the CGON time

series in the 2CM and CGO time series in the 3CM. According to the data level, these

two series are relatively more consistent than the other time series are.

Table 3.7 represents the 1- to 5-year-ahead forecasting error measures for CGON

predictions in Sweden. Only the measures of 1-year-ahead forecasts (except the RMSE

measure) and the RMSE measure at the 1-year-ahead forecasts using the 2CM are

smaller than those from the RW method. This may be an example that, on occasions,

the simpler models can perform better than the more sophisticated, complex models

(Makridakis and Hibon, 2000). However, the value of the MASE measure at the 1-,

2- and 4-year-ahead forecasts and that of the UMBRAE measures at the 1-, 4- and

5-year-ahead forecasts using the 2CM are smaller than 1. This means that the 2CM



44 Section 3.3 - Analysis

Table 3.9: Sweden. Comparison of forecasting accuracy measures for renewables
predictions by 2CM and 3CM.

Measure
2CM 3CM

1-step 2-step 3-step 4-step 5-step 1-step 2-step 3-step 4-step 5-step

RMSE 7.024 9.087 7.485 6.616 7.548 6.071 7.497 7.595 5.046 1.923
MAPE 0.120 0.148 0.144 0.137 0.160 0.092 0.119 0.136 0.081 0.045
sMAPE 0.121 0.151 0.149 0.150 0.182 0.090 0.113 0.133 0.087 0.046
MASE 1.661 2.119 2.119 2.021 2.423 1.288 1.662 2.031 1.224 0.654

UMBRAE 1.503 1.604 3.450 1.309 1.908 1.069 1.249 3.531 0.614 0.602
% Better 29% 17% 0% 25% 0% 57% 50% 20% 50% 67%

forecasting errors are not too large.

For all the 1- to 5-year-ahead forecasts of CGO consumption, in contrast, the esti-

mated values of the forecasting error measures using the 3CM are smaller than those

obtained for the RW method (Table 3.8). In addition, all the 3- to 5-year-ahead fore-

casting error measures (except the UMBRAE measures) for the consumption of energy

from nuclear sources through 3CM are smaller than those obtained by the RW method.

Apparently, the 3CM produces better forecasts (smaller error measures) than those

achieved through the RW method. Moreover, all 1- to 5-year ahead measures of MASE

and UMBRAE for CGO are smaller than 1. Further, the MASE measures of 2- to

5-year-ahead forecasts and the UMBRAE measures of 2- and 3-year-ahead forecasts for

nuclear energy are smaller than 1. This means that the forecasting errors obtained

through the 3CM are smaller than those obtained using the RW method. Hence, both

models (2CM and 3CM), and especially the 3CM, prove to be powerful for achieving

reasonably accurate forecasts for these data.

Beyond the above discussions, our main concern is observing any improvement of the

3CM over 2CM assessed by FA measures. In this case, we focus on renewables findings,

as only the renewables data are common to both the models. As shown in Table 3.9,

all 1- to 5-year-ahead forecasting error measures (except RMSE and UMBRAE at 3-

year-ahead forecasts) by the 3CM are smaller than those obtained for the 2CM. We can

conclude that, with respect to the 2CM, the 3CM model is more accurate in forecasting

the energy data for Sweden.

3.3.3 Switzerland

The Swiss energy policies are oriented toward reviewing the CO2 law to fulfil the

goals being debated in Europe and worldwide. According to source-specific data (British

Petroleum, 2016), in 1965, Switzerland consumed about 6 Mtoe of energy from renew-

ables, when CGON consumption amounted nearly to 11 Mtoe. From the beginning,
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Table 3.11: Switzerland, 3CM. Estimates, standard errors and marginal linearised
95% confidence intervals of the restricted UCRCD model with three shocks (one for
each competitor).

Parameter Estimate Standard error 95% Confidence interval

mα 566.398 2.52 ∗ 10−8 {566.398, 566.398}

p1α 0.01618 0.00075 {0.01470, 0.01765}

q1α 0.03845 0.01447 {0.00982, 0.06708}

p2α 0.01002 0.00075 {0.00854, 0.01149}

q2α 0.02654 0.01447 {−0.00209, 0.05517}

mβ 2605.15 138.442 {2331.20, 2879.10}

p1β 0.00490 0.00025 {0.00441, 0.00538}

q1β 0.02503 0.00582 {0.01351, 0.03655}

δβ −0.02542 0.01007 {−0.04534,−0.00550}

c1 0.26752 0.15234 {−0.03393, 0.56896}

b1 −1.89115 1.86736 {−5.58632, 1.80401}

a1 8.65531 0.07707 {8.50280, 8.80781}

p2β 0.00235 0.00013 {0.00209, 0.00262}

q2β 0.01466 0.00313 {0.00846, 0.02086}

c2 0.12913 0.06338 {0.00372, 0.25454}

b2 0.08712 0.19123 {−0.29129, 0.46553}

a2 47.5553 0.00070 {47.5539, 47.5567}

p3 −0.00027 0.00015 {−0.00057, 0.00003}

q3 −0.01174 0.00822 {−0.02801, 0.00454}

c3 0.41973 0.12489 {0.17260, 0.66686}

b3 −0.10201 0.05289 {−0.20668, 0.00265}

a3 20.0000 0.00530 {19.9894, 20.0106}

R2 0.98710

for the next two decades, and then it narrowly declined after 2006. In May 2011, the

Swiss Federal Council approved the nuclear phase-out, that is, nuclear plants will not

be replaced after their working lifetimes expire. However, nuclear energy is still the

second most consumed energy source in Switzerland (Redondo and van Vliet, 2015).

The consumption of CGO sources declined with the increase of renewables and nuclear

energy. Both per capita and per gross domestic product (GDP), the energy and CO2

intensities of Switzerland are some of the lowest among the IEA countries owing to the

structure of the Swiss economy and energy supply (IEA, 2007).

Model (A.2), USC, with two exponential shocks (one for each competitor) is applied

to the Swiss energy data, which are partitioned as CGON sources and renewables. The

shocks are significant, as the value of F -ratio, comparing the fitted model with the USC
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be obtained:

z′1(t) ∝ 0.00490− 0.00039 z1(t)/mβ + 0.02503 z2(t)/mβ + 0.02503 z3(t)/mβ

z′2(t) ∝ 0.00235 + 0.01466 z1(t)/mβ − 0.01076 z2(t)/mβ + 0.01466 z3(t)/mβ

z′3(t) ∝− 0.00027 + 0.01369 z1(t)/mβ + 0.01369 z2(t)/mβ − 0.01174 z3(t)/mβ.

All three products experience a negative within-product WOM effect. That is, none

of the sources sustain its further consumptions (q̂1β + δ̂β = −0.00039 for CGO, q̂2β +

δ̂β = −0.01076 for renewables and q̂3 = −0.01174 for nuclear). In contrast, the cross-

product WOM effects of each product through its competitors are positive. The effect

of CGO sources by renewables and nuclear is q̂1β = 0.02503. The corresponding effects

of renewables and nuclear by their competitors are q̂2β = 0.01466 and q̂3− δ̂β = 0.01369,

respectively. Since all the cross-product measures are substantially large, the diffusion

of Swiss energy reveals three separate sources strongly supporting each other to further

evolve.

The estimated trajectories in Figures 3.5 and 3.6 adequately describe the observed

data; consequently, the predictions from 2016 to 2020 are reliable. The predictions

suggest a moderate increase of renewables against substantial stability of other energy

sources in 2016–2020. Since the first two estimated values of nuclear series are quite

far from the observed values, we ignored them in computing the variance of scaled

residuals. The Kolmogorov–Smirnov test confirmed the normality assumption of scaled

residuals. The standard deviations of scaled residuals (σ̂u) using the 2CM are 0.03772

and 0.08269 for CGON and renewables, and those obtained with the 3CM are 0.03540,

0.08009 and 0.04602 for CGO, renewables and nuclear, respectively. Thus, we computed

the 2σ confidence bands of predictions, represented by dashed lines in Figures 3.5 and

Table 3.12: Switzerland. Confidence band width of 2CM and 3CM predictions in
2016–2020.

Year
2CM 3CM

CGO Renewables CGO Renewables Nuclear

(σ̂u=0.03772) (σ̂u=0.08269) (σ̂u=0.03540) (σ̂u=0.08009) (σ̂u=0.04602)

2016 2.88587 3.04972 1.94055 2.93491 1.10693

2017 2.85009 3.07992 1.92358 2.94783 1.10296

2018 2.81193 3.11599 1.90564 2.96182 1.09818

2019 2.77151 3.15853 1.88673 2.97702 1.09258

2020 2.72884 3.20809 1.86686 2.99360 1.08618
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Table 3.13: Switzerland. Forecasting accuracy measures for CGON predictions by
2CM and RW.

Measure
2CM (USC with 2 shocks) RW

1-step 2-step 3-step 4-step 5-step 1-step 2-step 3-step 4-step 5-step

RMSE 1.672 1.677 0.999 0.867 1.288 1.894 1.892 1.710 1.612 1.607
MAPE 0.027 0.026 0.020 0.014 0.033 0.031 0.036 0.035 0.036 0.046
sMAPE 0.027 0.026 0.020 0.014 0.033 0.031 0.035 0.034 0.036 0.045
MASE 0.800 0.759 0.580 0.420 0.964 0.910 1.041 1.009 1.050 1.336

UMBRAE 0.952 0.429 0.562 0.302 0.633 1.000 0.727 0.845 0.782 0.904
% Better 43% 83% 60% 75% 67% 0% 67% 60% 50% 67%

Table 3.14: Switzerland. Forecasting accuracy measures for CGO and nuclear pre-
dictions by 3CM and RW.

Measure
3CM (restricted UCRCD with 3 shocks) RW

1-step 2-step 3-step 4-step 5-step 1-step 2-step 3-step 4-step 5-step

CGO

RMSE 1.517 1.461 1.409 1.233 1.291 2.005 2.003 1.914 1.797 1.744
MAPE 0.037 0.040 0.043 0.041 0.051 0.045 0.052 0.054 0.055 0.064
sMAPE 0.036 0.039 0.042 0.040 0.050 0.044 0.051 0.053 0.054 0.062
MASE 0.875 0.943 1.012 0.956 1.198 1.075 1.228 1.270 1.303 1.490

UMBRAE 0.913 0.663 0.852 1.387 1.321 1.000 0.859 0.971 1.708 1.332
% Better 57% 83% 60% 50% 67% 0% 50% 60% 25% 67%

Nuclear

RMSE 1.036 1.038 1.030 1.152 0.885 1.151 1.151 1.130 1.126 1.088
MAPE 0.050 0.062 0.064 0.090 0.074 0.053 0.062 0.067 0.080 0.091
sMAPE 0.048 0.059 0.061 0.086 0.070 0.051 0.059 0.064 0.076 0.085
MASE 1.160 1.440 1.486 2.095 1.672 1.241 1.448 1.556 1.851 2.069

UMBRAE 1.206 1.140 1.180 1.053 0.915 1.000 0.967 1.199 0.825 1.348
% Better 43% 17% 20% 25% 33% 0% 50% 40% 50% 33%

Table 3.15: Switzerland. Comparison of forecasting accuracy measures for renew-
ables predictions by 2CM and 3CM.

Measure
2CM 3CM

1-step 2-step 3-step 4-step 5-step 1-step 2-step 3-step 4-step 5-step

RMSE 1.604 1.976 2.260 2.763 2.368 1.287 1.653 1.891 2.225 1.959
MAPE 0.059 0.075 0.100 0.149 0.150 0.043 0.064 0.085 0.121 0.124
sMAPE 0.061 0.078 0.106 0.162 0.162 0.044 0.066 0.088 0.129 0.132
MASE 0.831 1.066 1.446 2.213 2.220 0.590 0.905 1.210 1.796 1.836

UMBRAE 2.095 2.042 1.146 1.713 2.044 0.994 1.759 0.779 1.404 1.689
% Better 29% 33% 40% 0% 0% 71% 33% 60% 25% 0%

3.6, and the corresponding band width (see Table 3.12). Compared with the 2CM, the

3CM gives narrower confidence bands of predictions for renewables. This means that

the 3CM predictions are more reliable.

Now, we assess the FA of the fitted models. Table 3.13 shows the error measures of 1-

to 5-year-ahead forecasts for CGON predictions by the 2CM and RW method applied to

the data from Switzerland. It shows that all error measures (RMSE, MAPE, sMAPE,
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MASE, UMBRAE and % Better) of 1- to 5-year-ahead forecasts by the 2CM are smaller

than those obtained using the RW method – the benchmark. It should be noted that

the MASE and UMBRAE measures of the 1- to 5-year-ahead forecasts are less than 1.

In contrast, the error measures of the 1- to 5-year-ahead forecasts for CGO by the

3CM are smaller than those of RW method (see Table 3.14). The corresponding mea-

sures (except for 4-year-ahead forecasts and the UMBRAE of 1- and 2-year-ahead fore-

casts) for nuclear using the 3CM are also smaller than those obtained through the RW

method. Furthermore, for CGO, the MASE measures of 1-, 2- and 4-year-ahead fore-

casts and the UMBRAE measures of 1- to 3-year-ahead forecasts using the 3CM are

smaller than 1. Above all, in relation to RW method, the fitted models (2CM and 3CM)

provide smaller errors for the test datasets.

As underlined in the previous subsection, we are concerned with any improvement of

the 3CM over the 2CM assessed through FA measures. For this, we focus on renewables

predictions that are common in both the models. The results show that all the error

measures of 1- to 5-year-ahead forecasts for renewables by the 3CM are smaller than

those obtained by the 2CM (see Table 3.15). This implies that, compared with the

2CM, the 3CM is more accurate in forecasting the Swiss energy data.

3.3.4 The United Kingdom

The United Kingdom’s electricity is generated from several different fuel sources

and technologies. Hence, the country has a constant supply, and it is not excessively

dependent on a single type of power generation. However, the share of renewables in

the UK energy mix is limited. In 1965, the United Kingdom consumed about 197 Mtoe

energy from CGON sources and only 1 Mtoe from renewables. Initially, hydroelectricity

was the sole renewable energy source. Solar, wind and geothermal and biomass sources

were added to the renewable energy mix in 1984, 1989 and 1990, respectively (British

Petroleum, 2016). According to Figure 3.7, the consumption of CGON was always

exceedingly higher than that of renewables. In fact, for a long time, the United Kingdom

extensively used mainly fossil fuels (94% of total energy consumption in 1970), such that

it ranked among the world’s largest GHG producers. Still, its per capita CO2 emissions

from fuel burning are higher than the European average (7.2 tonnes in 2012, compared to

an EU average of 6.9 tonnes; Planete-energies, 2015c). Figure 3.7 also shows that, after

2005, the use of renewables substantially increased against a sharp decline of CGON

consumption. Basically, the United Kingdom’s economic restructuring is engendering

huge energy savings and lower carbon emissions.
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Table 3.17: The United Kingdom, 3CM. Estimates, standard errors and marginal
linearised 95% confidence interval of the USC model with three shocks (one for each
competitor).

Parameter Estimate Standard error 95% Confidence interval

m 33247.9 14934.8 {3707.45, 62788.4}

p1 0.00560 0.00269 {0.00068, 0.01132}

q1 0.11769 0.08228 {−0.04506, 0.28044}

ε −0.10694 0.08117 {−0.26749, 0.05360}

η −1.34682 0.23844 {−1.81844,−0.87519}

c1 −0.11774 0.01381 {−0.14505,−0.09043}

b1 −0.04098 0.02386 {−0.08817, 0.00621}

a1 16.0698 0.00007 {16.0697, 16.0700}

p2 4.68 ∗ 10−6 0.00007 {−0.00013, 0.00014}

q2 −0.09308 0.08656 {−0.26429, 0.07813}

θ 0.09272 0.09124 {−0.08775, 0.27320}

ξ 1.41632 0.34781 {0.72836, 2.10428}

c2 −0.90652 0.27968 {−1.45973,−0.35332}

b2 −0.00446 0.00726 {−0.01882, 0.00991}

a2 4.00000 0.00113 {3.99777, 4.00223}

p3 0.00005 0.00005 {−0.00005, 0.00015}

q3 −0.00984 0.02466 {−0.05862, 0.03894}

c3 −0.34769 0.12872 {−0.60228,−0.09310}

b3 −0.07467 0.22585 {−0.52139, 0.37205}

a3 43.0000 0.00334 {42.9934, 43.0066}

R2 0.99859

By substituting the estimated parameter values in model (A.6), the following three

equations can be obtained:

z′1(t) ∝ 0.00560 + 0.01075 z1(t)/m− 1.22913 z2(t)/m+ 0.11769 z3(t)/m

z′2(t) ∝ 4.68 ∗ 10−6 − 0.00036 z1(t)/m+ 1.32324 z2(t)/m− 0.09308 z3(t)/m

z′3(t) ∝ 0.00005 + 0.00438 z1(t)/m− 0.07934 z2(t)/m− 0.00984 z3(t)/m.

The innovative component of CGO sources is large (p̂1 = 0.00560) compared with the

components of renewables (p̂2 = 4.68∗10−6) and nuclear sources (p̂3 = 0.00005). Turning

to the imitative component, the within-product WOM effect of CGO is positive (q̂1+ε̂ =

0.01075), and its cross-product WOM effects by renewables and nuclear sources are

negative (q̂1 + η̂ = −1.22913) and positive (q̂1 = 0.11769), respectively. This means

that the level of diffusion of CGO is enhanced by its spread and that of nuclear energy,
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but it is decreased by renewables’ spread. The renewables’ within-product effect is

positive (q̂2 + ξ̂ = 1.32324), and their cross-product effects by both CGO sources (q̂2 +

θ̂ = −0.00036) and nuclear (q̂2 = −0.09308) are negative. That is, the diffusion of

renewables is enhanced by their spread but discharged by that of the competitors. The

nuclear within-product (q̂3 = −0.00984) and cross-product effects by renewables (q̂3 −

η̂ − ξ̂ = −0.07934) are negative, while the cross-product effect by CGO sources (q̂3 −

ε̂− θ̂ = 0.00438) is positive. This denotes that the level of diffusion of nuclear energy is

reduced by its spread and that of renewables but increased by CGO’s spread. CGO and

renewables are sustained by further internal consumptions, whereas nuclear energy has

no internal support to further sustain it. Renewables and nuclear sources are mutually

exclusive to further sustain, as they are quite strong in their positions. That is, the share

of nuclear energy in the UK energy mix is substantially large. Conversely, nowadays,

the use of renewables is markedly increasing.

The estimated trajectories shown in Figures 3.7 and 3.8 adequately follow the ob-

served path, especially at the last part of each time series. Hence, the predictions from

2016 to 2020 are trustworthy and suggest a rapid increase for the renewables against

a steep decline of other energies, especially CGO sources. It should be observed that

estimated values in the first part of the renewables series in the 3CM do not satisfac-

torily follow the observed data. Thus, we excluded the first 12 residuals for renewables

obtained with 3CM. To maintain consistency between the 2CM and 3CM confidence

bands, all these residuals are also ignored from the 2CM. Due to the lack of fit, we

also omitted the first five values of the nuclear series in estimating the scaled residuals’

variance. The Kolmogorov–Smirnov test confirmed the normality assumption of scaled

residuals. The standard deviations of scaled residuals (σ̂u) obtained with the 2CM are

0.02856 and 0.17900 for CGON and renewables, and those from the 3CM are 0.02767,

Table 3.18: The United Kingdom. Confidence band width of 2CM and 3CM pre-
dictions in 2016–2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.02856) (σ̂u=0.17900) (σ̂u=0.02767) (σ̂u=0.16514) (σ̂u=0.12663)

2016 18.61456 15.06058 15.45041 14.46406 7.64444

2017 17.09520 18.16938 13.63603 17.83507 7.34031

2018 15.25245 21.94720 11.38197 22.06343 6.89061

2019 13.01813 26.53902 8.57551 27.37995 6.26170

2020 10.30804 32.12262 5.07208 34.08372 5.40996
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Table 3.19: The United States, 2CM. Estimates, standard errors and marginal
linearised 95% confidence intervals of the BSC model with four shocks (three for
CGON sources and one for renewables).

Parameter Estimate Standard error 95% Confidence interval

m 272997.0 70072.4 {133674.0, 412320.0}

p1 0.00475 0.00119 {0.00238, 0.00712}

q1 0.02474 0.00485 {0.01510, 0.03438}

c1 0.12586 0.01993 {0.08623, 0.16549}

b1 −0.10034 0.07294 {−0.24536, 0.04468}

a1 4.66597 0.00025 {4.66547, 4.66647}

c2 −0.16026 0.01567 {−0.19141,−0.12910}

b2 −0.11071 0.03896 {−0.18817,−0.03324}

a2 17.7119 0.00028 {17.7114, 17.7125}

c3 −0.06316 0.01274 {−0.08850,−0.03783}

b3 0.06260 0.03163 {−0.00028, 0.12548}

a3 43.4611 0.00005 {43.4610, 43.4612}

p2 0.00019 0.00006 {0.00008, 0.00030}

q2 0.00089 0.00028 {0.00032, 0.00145}

c4 0.14276 0.22252 {−0.29966, 0.58518}

b4 0.17970 0.25574 {−0.32879, 0.68819}

a4 44.1508 0.00571 {44.1395, 44.1622}

R2 0.99899

2016). The use of renewables was almost constant or trivially increased over the years.

In fact, renewables mostly come from hydroelectricity, which produces almost a fixed

amount of energy. O’Connor and Cleveland (2014) observed that wind and solar power

are expanding rapidly for electricity generation on a large scale.

Nuclear energy was launched in the United States in 1965 (British Petroleum, 2016).

According to Nuclear Power in the USA (NPUS; 2018), today, the United States is

the world’s largest nuclear energy producer, accounting for more than 30% of the global

nuclear energy generation. In 2016, the United States’ 100 nuclear reactors produced 805

billion kWh, almost 20% of the total energy production. Figure 3.10 shows that nuclear

consumption almost continuously increased until 1995 and slightly declined after that

year. In fact, by the late 1990s, 28 nuclear reactors permanently closed before their 40-

year working licenses expired. Various factors (including cost escalation, slower growth

of electricity demand and a changing regulatory environment) played a role in this.

CGO consumptions fluctuated widely in the first two decades, and later, they formed a

second wave.
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Table 3.20: The United States, 3CM. Estimates, standard errors and marginal
linearised 95% confidence intervals of the BSC model with five shocks (three for CGO
sources, one for renewables and one for nuclear).

Parameter Estimate Standard error 95% Confidence interval

m 197260.0 8284.92 {180871.0, 213650.0}

p1 0.00665 0.00026 {0.00614, 0.00717}

q1 0.02996 0.00149 {0.02702, 0.03291}

c1 0.15234 0.04350 {0.06629, 0.23838}

b1 −0.56366 0.23664 {−1.03179,−0.09552}

a1 7.25068 0.00373 {7.24329, 7.25806}

c2 −0.18752 0.01181 {−0.21087,−0.16416}

b2 −0.03990 0.00998 {−0.05965,−0.02015}

a2 16.3727 0.00009 {16.3725, 16.3729}

c3 −0.05770 0.01169 {−0.08082,−0.03458}

b3 −0.08237 0.07509 {−0.23091, 0.06618}

a3 45.0000 0.00006 {44.9999, 45.0001}

p2 0.00025 0.00005 {0.00016, 0.00034}

q2 0.00115 0.00024 {0.00068, 0.00162}

c4 0.19635 0.21172 {−0.22248, 0.61517}

b4 0.17497 0.18660 {−0.19416, 0.54411}

a4 44.3532 0.00727 {44.3388, 44.3675}

p3 −0.00011 0.00005 {−0.00021,−0.00002}

q3 0.00433 0.00025 {0.00383, 0.00483}

c5 −0.03262 0.11891 {−0.26785, 0.20261}

b5 0.08754 0.51223 {−0.92576, 1.10085}

a5 42.1567 0.00034 {42.1560, 42.1574}

R2 0.99889

For the US energy data separated as CGON sources and renewables, model (A.3),

BSC, with four exponential shocks (three for CGON and one for renewables) is fitted.

The shocks are significant, as the F -ratio, comparing the fitted model with the BSC

without shocks, offers a large value (F̂ = 30.07433).

When the data have been separated into three sources, namely CGO, renewables

and nuclear, we see that all three products are launched simultaneously. Hence, model

(A.7), BSC, with five exponential shocks (three for CGO, one for renewables and one

for nuclear) is applied. The shocks are significantly incorporated into the model, as

the value of the F -test obtained by the fitted model with and without shocks is large

(F̂ = 27.57070). A notably large value of R2 (0.99889) is a proof of a good-fitting model.

The three shocks arose for CGO sources at times 1965+ â1 ' 1972, 1965+ â2 ' 1981
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Table 3.21: The United States. Confidence band width of 2CM and 3CM predictions
in 2016–2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.02350) (σ̂u=0.09739) (σ̂u=0.02823) (σ̂u=0.09564) (σ̂u=0.09934)

2016 199.89091 55.01620 220.94707 54.06655 74.20643

2017 198.68395 59.06870 220.17926 58.01955 73.62590

2018 197.28804 63.89289 219.16304 62.68527 72.91027

2019 195.69755 69.64031 217.90067 68.18687 72.05794

2020 193.90967 76.49056 216.39779 74.66669 71.06575

we obtain the following three equations:

z′1(t) ∝ 0.00665 + 0.02996 z(t)/m

z′2(t) ∝ 0.00025 + 0.00115 z(t)/m

z′3(t) ∝ −0.00011 + 0.00433 z(t)/m.

All three products exploit the WOM effect of the whole category. Although nuclear

experiences a negative innovative effect, the imitative component (WOM effect) of each

product is positive. However, the spread of CGO sources diffusion is extremely fast

(q̂1 = 0.02996), and those of the other sources are also considerable (q̂2 = 0.00115 for

renewables and q̂3 = 0.00433 for nuclear).

In Figures 3.9 and 3.10, we see that the fitted lines by the 2CM and 3CM satisfactorily

follow the observed path. The predictions suggest a gradual increase for the renewables

and a small decline of the other energies in 2016–2020. It should be observed that the

fitted values in the first part of the nuclear series are somewhat more scattered from the

observed data. Thus, we omitted the first nine residuals of nuclear energy in computing

the scaled residuals’ variance. The standard deviations of the scaled residuals (σ̂u) using

the 2CM are 0.02350 for CGON and 0.09739 for renewables. Those obtained from the

3CM are 0.02823 for CGO, 0.09564 for renewables and 0.09934 for nuclear sources. The

Kolmogorov–Smirnov test confirmed that the scaled residuals follow a Gaussian distri-

bution. Accordingly, we computed the 2σ confidence bands for predictions, represented

by broken lines in Figures 3.9 and 3.10, and the corresponding band width (see Table

3.21). The confidence bands of renewables predictions through the 3CM is narrower

than those obtained with the 2CM. That is, the 3CM is more appropriate for reliably

producing forecasts on the US energy market.
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3.4 Remarks

In this chapter, we have analysed energy consumption data through diffusion models

in a competitive environment. First, the existing diffusion models were applied to two-

competitor data, namely those of depleting energies (CGON) and renewables. The form

of the model is quite straightforward, as both the competitors generated consumptions

from the beginning of the observed period. The models were then extended to three

competitors (CGO, renewable and nuclear). To incorporate possible regime changes

in the diffusion framework, the extended model demands a relatively complex mathe-

matical form. Both models were fitted to the total annual energy consumption data

from 10 developed and 2 developing countries. The countries were selected based on the

availability of data for the period from 1965 to 2015.

The competitors considered in the models were at different stages of their lifecycle

and the competition dynamics were different among the competitors. Hence, instead of

confining ourselves to a specific model, we initially considered a set of diffusion models

for competition. Then, based on the model fitting performance, we chose the model

with the best fit for the data from each of the studied countries. To minimise the errors

globally and locally, one or more shocks were incorporated into the models. The overall

fit of the models was satisfactory for most cases.

According to the observed data, the financial crisis in 2008–2009 had an inverse

effect on the energy sectors of Europe, Japan and the United States. This resulted in

the reduction of total energy consumptions (especially CGON sources) in these countries

in recent years, although the US consumptions are relatively stable now. In the interim,

all these countries approved incentives to promote green energies, which were deemed

a partial substitution for the reduction of CGON consumption. Conversely, during the

financial crisis, the energy consumptions of China and India, especially those depending

on CGON sources, showed an increasing trend. This may be due to the developing

stage of the energy sector. In all the selected countries, the 2016–2020 predictions for

the consumption of CGON sources demonstrate a declining trend, whereas a moderate

increasing trend is observed in the predicted renewables consumption.

In the case of three competitors, the consumption of CGO sources has undergone a

trend similar to the trend of CGON consumption. Nuclear energy has already reached

the top of its growth. After the Fukushima accident in 2011, nuclear consumptions have

been declining around the globe. Japan is the frontrunner in this declining track, fol-

lowed by Europe and the United States. The rising trend in nuclear energy consumption

is still observed in China and India. The 2016–2020 predictions for nuclear consumption
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suggest a declining trend for all the other studied countries.

We now focus on the estimated parameters obtained from 3CM models. The findings

from the fitted 3CM models are more specific and informative than those relating to the

2CM. Eight of 12 countries were analysed with an unbalanced model that can split the

WOM coefficients into within-product and cross-product effects. The within-product

effects of all three sources (CGO, renewables and nuclear) for China and Germany are

positive, and for Finland, Sweden and Switzerland, they are negative. The correspond-

ing effects for France, Japan and the United Kingdom are positive (or negative) for one

or two sources. The cross-product effects of each source by its competitors are posi-

tive for Finland, Sweden and Switzerland, and in all the cases, CGO strongly supports

spreading its competitors’ diffusion. An opposite situation is observed for China, that

is, all the cross-product effects (excluding the effect of nuclear energy by CGO) are nega-

tive. Although each source is acting as a competitor to energy sources in China, nuclear

strongly opposes spreading its competitors’ diffusion. Not all the cross-product effects

are positive (or negative) for France, Germany, Japan, and the United Kingdom, where

nuclear energy has a larger support to sustain its competitors, followed by CGO and

renewables. In contrast, a balanced model is suitably fitted to the data from Belgium,

India, Spain and the United States. The WOM effect of each source for all four coun-

tries is found to be positive. However, the effect is extremely strong for CGO, followed

by nuclear (except for India) and renewables. Apparently, the different countries gave

different results about the sign and the magnitude of WOM coefficients, thereby de-

scribing different competition/substitution patterns. Our results show some similarities

to the findings reported by Csereklyei et al. (2017). These authors performed cluster

analyses with energy data from the 28 member states of the European Union for the

period 1971–2010 and found several distinct energy paths and profiles. The energy pro-

files were ranked from the highest to lowest combined fossil fuel share. The researchers

noticed that it takes a long time to make relevant changes in the energy paths. Usually,

countries stay in a specific cluster for decades before moving to other clusters. This may

be due to the consequence of energy policies, financial development or the availability

of a new dominant energy form.

Notable variations in the 2σ confidence bands of the predictions are observed in

the 2CM and 3CM. The renewables data are the same in both models, but the two

models produced different confidence bands for the predictions. For 10 of the 12 studied

countries, narrower confidence bands are observed for 3CM than those obtained with

2CM. Since narrower confidence bands correspond to a reduced forecasting uncertainty,

we can say that our extended 3CM allows more precise forecasting.
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For two countries, the performance of the two models (2CM and 3CM) is also com-

pared using FA measures. The FA measures for Sweden and Switzerland give results

in the same direction as those pertaining to the confidence band width. That is, like

the confidence band width, the FA measures corresponding to renewables by 3CM are

found to be almost uniformly smaller than those in the 2CM. Hence, we can say that

the proposed 3CM produces a concrete advantage in forecasting the energy dynamics.



Chapter 4

The three-competitor diffusion

model with dynamic market

potential

4.1 Introduction

In Chapter 2, we proposed a diffusion model for three competing products with

the assumption that the market potential is fixed (constant) throughout the diffusion

process. In the application of that model (Chapter 3), we observed that, capturing

the wide variety of shapes of diffusion requires incorporating intervention functions (i.e.

external shocks) in the model. For some datasets, the required number of shocks proved

to be relevant. However, this approach may not be the proper way to follow the lifecycle

of products, and it generates a load of extra parameters. Such models cannot describe

communication networks that spread knowledge and generate awareness of products

in a marketplace. Knowledge and awareness of products are not instantly dispersed

to all the eligible adopters upon the entrance of new products into the market. In

addition, the entrance of new products in the same category may increase awareness of

the previously existing products. In fact, awareness is a latent adoption criterion, and

the amount of incursion of a product into the market is controlled by the amount of

diffusion of knowledge concerning its survival and characteristics (Guseo and Mortarino,

2015). Such a behaviour may concern almost all types of goods or services in a social

system.

Energy may be considered as a good until its production stage (produced by the

electric utility company), or it may be a service when it is distributed (as electricity) to

consumers. Energy sources have been measured with coherent data for decades, and long
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time series of consumptions are available. In all 12 countries analysed here, we see that

renewable and nonrenewable energy sources have been available since 1965. Moreover,

there is a competition among energy sources (discussed in detail in the Introduction).

Consequently, the lifecycle of one source may be affected by its competitors. These

interactions among energy sources may differ from country to country, depending on

country-specific characteristics, such as the market structure, political tendency and

people’s openness to technological change and substitution.

A relevant point is that the size of the energy market has been increasing over time.

For instance, a rising trend in overall energy consumption was observed in all 12 countries

in the period of 1965–2015. According to World Bank Development Indicators, the use of

energy is strongly related to almost every possible aspect of development (Lloyd, 2017).

Hence, energy demands are increasing day by day, and the demand for consumption

of energy is not fixed; instead, it rises with time. This feature is comparable to the

evolution of a product, as the number of adopters grows over time. For this reason, an

interesting question is investigating whether the description of this increasing market

could benefit from the use of a diffusion model with a dynamic market potential (DMP).

Although diffusion of innovations has a long practice in model building and corre-

sponding applications, the contributions of such models relaxing the fixed m assumption

are limited in the literature. As mentioned in Chapter 1, only in recent years Guseo

and Guidolin (2009) did propose a univariate diffusion model, and even more recently,

Guseo and Mortarino (2015) proposed a bivariate model that describes diffusion in a

competitive environment (for details, see Subsections 1.2.3 and 1.3.2).

In this chapter, we contribute to the diffusion of innovations literature by proposing a

model for three products competing for the same customers in a marketplace, assuming

a DMP. For models with a large number of competitors, which entail extra parameters,

the inference with an actual diagnosis of feasibility may be more complicated. Thus,

the relevant point is the study of the feasibility of such a model and the assessment of

the gain in terms of fitting performance and forecasting reduability. Specifically, a key

question is whether the increase in flexibility due to the DMP (and proven for a single

product or two competitors) could reduce the need for introducing many shocks.

4.2 The Model

In building the model, we follow the model structure and corresponding assump-

tions proposed by Guseo and Mortarino (2015). The diffusion of innovations modelling

for three competing products with the assumption of DMP requires a large number
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of parameters. The model may not have any closed-form solution. Thus, it is neces-

sary to represent the model through differential equations that can suitably be used to

instantaneous data.

As we are building a diffusion model extended for three competitors, the repetition

of notations (discussed in Chapter 2) is avoided. We assume that the competition is

performed in two phases: two products partake in the first phase and a third enters in

the second phase. Therefore, the model can be expressed with the following system of

differential equations:

z′1(t)=m(t)

{[

p1α + (q1α + δα)
z1(t)

m(t)
+ q1α

z2(t)

m(t)

]

(1− It>c2) +

+

[

p1β + (q1β + εβ)
z1(t)

m(t)
+ (q1β − ηβ)

z2(t)

m(t)
+ q1β

z3(t)

m(t)

]

It>c2

}[

1−
z(t)

m(t)

]

+

+z1(t)
m′(t)

m(t)
,

z′2(t)=m(t)

{[

p2α + (q2α − γα)
z1(t)

m(t)
+ q2α

z2(t)

m(t)

]

(1− It>c2) +

+

[

p2β + q2β
z1(t)

m(t)
+ (q2β + θβ)

z2(t)

m(t)
+ (q2β − ξβ)

z3(t)

m(t)

]

It>c2

}[

1−
z(t)

m(t)

]

+

+z2(t)
m′(t)

m(t)
, (4.1)

z′3(t)=m(t)

{[

p3 + (q3 − µ)
z1(t)

m(t)
+ q3

z2(t)

m(t)
+ (q3 + λ)

z3(t)

m(t)

]

It>c2

}[

1−
z(t)

m(t)

]

+

+z3(t)
m′(t)

m(t)
,

m(t)=mα(t)(1− It>c2) +mβ(t)It>c2 ,

z(t)=z1(t) + z2(t) + z3(t)It>c2 ,

where z(t) ≤ m(t), for all t. System (4.1) is a general structure for a diffusion model,

describing a competition among three products in two phases. Observe that system

(2.1), in Chapter 2, is a restricted version of (4.1), while both are unbalanced models,

letting the within-product WOM be different from the cross-product WOM in phase α.

That is, the number of discrimination parameters of this model is larger than model

(2.1), since this model also assumes δα = γα (besides m = m(t) ∀t). Thus, model (4.1)

may be more flexible to express the within-product and the cross-product WOM effects.

In model (4.1), m(t) is the common market potential, which is defined by the struc-

ture (1.11), proposed by Guseo and Guidolin (2009; for details, see Subsection 1.2.3).

Guseo and Mortarino (2015) have also proposed two alternative structures of m(t) that

are defined by Equations (1.15) and (1.16), respectively (see Subsection 1.3.2). In this
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study, we will consider all three structures of m(t). That is, all three structures are

used for model fitting. Finally, we choose the one that performs better than the two

alternative structures. Since (4.1) is a two-phase model, m(t) equals mα(t) in the first

phase and is allowed to change to mβ(t) in the second phase. The last additive terms in

the first three equations of (4.1) represent the self-reinforcing component, which would

obviously vanish for a constant m(t), that is, when m(t) = m. The mean sales of all

three products are increased when m(t) increases faster, that is, when awareness of the

product category spreads rapidly. Sincem(t) could be also a nonmonotonic function (for

structures different from (1.11), (1.15) and (1.16)), the self-reinforcing term could be

negative when the market potential reduces, and the mean sales would suffer a further

reduction.

It should be noted that, for the first phase, the sum of the first two equations of

model (4.1) with consideration of their last terms is equal to a GGM (see model (1.12)).

This is also the case for the second phase. For convenience, system (4.1) is called the

competition dynamic market potential (CDMP) model for three competitors. A similar

version of model (4.1) has been proposed and applied in Furlan et al. (2018c).



Chapter 5

Applications of the

three-competitor diffusion model

with dynamic market potential

5.1 Introduction

Guseo and Mortarino (2015) proved that the CDMP model designed for two products

performed better than fixed market potential (FMP) in the pharmaceutical market, and

they opined that the model may play a valuable role in the diffusion of innovations liter-

ature. However, the application of CDMP models is still lacking for energy markets. In

this chapter, we apply CDMP models of two competitors to energy data, with potential

extension to three competitors.

All available energy sources and how they are partitioned have been discussed in

Chapter 3. Here, we consider all those energy sources with the same partitioning to

keep uniformity throughout the study. However, we apply the two- and three-competitor

CDMP models and other similar models with FMP to the energy data from four coun-

tries (Belgium, Finland, France and Germany) instead of to the data from all 12 coun-

tries studied in Chapter 3. Indeed, we conduct a comparative study of CDMP models

and the models with FMP. In addition, we compare CDMP models with two and three

competitors.

5.2 Analysis

In Chapter 4, we discussed the observed behaviour of energy sources partitioned into

two competitors, coal, gas, oil and nuclear (CGON) and renewables (hydro, solar, wind,
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geothermal and biomass), and three competitors, where CGO and nuclear are analysed

separately and contrasted to renewables. Here, we skip those discussions and focus

only on the model-fitting performance and flexibility of the CDMP models over the

models with FMP. For assessing the real performance of the CDMP models, we avoid

incorporating control functions (i.e. external shocks) into the models. Indeed, models

with a dynamic market potential (DMP) may be able to capture the wide variety of

structures of diffusion (see Guseo and Guidolin, 2009; Guseo and Mortarino, 2015).

Here, we conjecture that increased flexibility of DMP could make the improvement due

to shocks’ inclusion less useful than we observed for fixed m. (This topic is discussed

further below).

5.2.1 Belgium

5.2.1.1 2CM and 3CM DMP

To describe the diffusion of energy consumptions in Belgium as two competing prod-

ucts, model (1.14), UUC with DMP, is applied to the data partitioned as CGON and

renewables. The model gives a large value of R2 (0.99526); hence we can assert that

the fitting is good. The estimation results are shown in Table 5.1. For this case, struc-

ture (1.11) for the DMP performs better than the other two structures do. (In this

case, the R2 values obtained with structures (1.15) and (1.16) are 0.99364 and 0.99396,

respectively).

For three-way comparison, the data are split into three sources (CGO, renewables

and nuclear). Since all three products simultaneously entered the market, model (C.2),

UUC with DMP (see Appendix C), is suitably fitted to the data. For this, structure

(1.11) is found again to perform better (R2 = 0.99254) than the alternative structures

(1.15) and (1.16) of DMP do, giving R2 values 0.99155 and 0.98944, respectively. The

parameter estimates are shown in Table 5.2.

For this model, K̂ (5406.12 Mtoe) represents an estimate of the aggregate size of the

energy market, which is about one-third of the estimate obtained with the 2CM-DMP

(16722.3 Mtoe). Figures 5.1(a) and 5.1(b) depict the estimated evolution of the common

DMP,m(t), of the 2CM and 3CM, respectively. A linear increase in the market potential

is observed in the 2CM. Both lines are exceedingly far from the fixed m pattern. That is,

the demand for energy consumption seems to have grown in a regular way in Belgium.

If we focus on the innovation parameters in the 3CM, it is apparent that this com-

ponent does not play a significant role for nuclear and renewables, and this may explain

their slow start. The innovation effect of both nuclear and renewables could not compete
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Table 5.2: Belgium, 3CM-DMP. Estimates, standard errors and marginal linearised
95% confidence intervals of the UUC model with DMP for three competitors.

Parameter Estimate Standard error 95% Confidence interval

K 5406.12 1426.55 {2585.39, 8226.84}
pc 0.01105 0.00166 {0.00778, 0.01433}
qc 0.20628 0.01400 {0.17859, 0.23397}
p1 0.03527 0.00881 {0.01785, 0.05269}
ε −1.52452 0.15280 {−1.82665,−1.22240}
η 2.01248 0.36996 {1.28097, 2.74400}
q1 1.29702 0.12718 {1.04555, 1.54849}
p2 −0.00002 0.00117 {−0.00233, 0.00228}
θ 0.43878 0.25524 {−0.06591, 0.94346}
ξ 0.00122 0.04823 {−0.09416, 0.09659}
q2 −0.00047 0.00877 {−0.01781, 0.01686}
p3 −0.00090 0.00123 {−0.00333, 0.00152}
µ −1.00818 0.22866 {−1.46031,−0.55604}
λ 1.00173 0.22785 {0.55121, 1.45225}
q3 −0.99334 0.22633 {−1.44086,−0.54582}

R2 0.99254

of renewables (0.43831) and nuclear (0.00839) sources. Substantial variations in the

cross-product WOM effect of a product by its competitors have been observed for the

energy sources. For instance, CGO’s cross-product effects from its competitors are

strongly positive (3.3095 from renewables and 1.29702 from nuclear). Conversely, the

cross-product effects of renewables from the competitors are weakly negative (−0.00047

from CGO and −0.00169 from nuclear). Nuclear sources receive a positive cross-product

effect from CGO (0.01484) and a negative one from renewables (−0.99334).

5.2.1.2 Comparison between models with two and three competitors

Now, we want to prove the efficacy of the extension from two to three competitors

in the CDMP models. In other words, as we showed that 3CM models were generally

more performant than their corresponding 2CM versions in Chapter 3, here, we want

to make a similar comparison for DMP models. Moreover, while the observed flexibility

stands in favour of models with DMP, m(t), it should be tested whether fitted, such a

model really improves the fitting. For these purposes, the model proposed by Guseo

and Mortarino (2014) is fitted, as it can be obtained from the model (1.14) with the

restriction m(t) = m. Since model (1.14) for two competitors and (C.2) for three

competitors are fitted to the data from Belgium, we fitted similar models with fixed m.

It should be noted that, excluding the restriction m(t) = m, all the features related to
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Table 5.3: Belgium. Values of R2 of the 2CM and 3CM with FMP and DMP. The
F -ratio values to compare DMP models with the corresponding FMP version are also
shown.

FMP DMP

2CM R2 = 0.99365 R2 = 0.99526

(F̂ = 15.72549)

3CM R2 = 0.98876 R2 = 0.99254

(F̂ = 34.93917)

the evolution of the process are the same for both CDMP models and the models with

FMP. Thus, we can assert that, if a CDMP model performs significantly better than the

model with fixed m, this proves that the market potential for this category formed in a

way that differs significantly from the constant path. Observe that the 2CM and 3CM

with FMP compared here are not the ones discussed in Chapter 3, because here, we did

not incorporate external shocks (to avoid introducing a further confounding element).

The R2 values of models (1.14) and (C.2) with fixed m are 0.99365 and 0.98876,

respectively (see Table 5.3). Since the models with fixed m are nested in the similar

models with DMP, an F test (for details, see Subsection 1.4.4) can be used to detect

whether the gain of the complex model (say, M1) from the relatively simple model

(say, M2) is significant. The test comparing model (1.14) and model (C.2) with their

respective fixed m pattern models assign large values of F̂ , which are 15.72549 and

34.93917, respectively, demonstrating the relevance of CDMPmodels presented by (1.14)

for two competitors and (C.2) for three competitors. Both the results of the F test

and the graphical comparisons for both two and three competitors demonstrate that a

DMP is more suitable for describing the Belgium energy consumption data than the

corresponding FMP version is.

Now, as anticipated, to assess whether 3CM really performs better than 2CM from

a forecasting point of view in the context of the CDMP models, we proceed as we did

in Chapter 3. We make a short-term prediction (for the 5 years from 2016 to 2020) for

each time series using the CDMP models (and the models with fixed m). To obtain the

predictions and corresponding confidence bands, we follow the procedure mentioned in

Subsection 1.4.2 . Figure 5.2(a) represents the predictions using 2CM with DMP and

fixed m, and Figure 5.2(b) represents those obtained by 3CM with DMP and fixed m.

We observe worse fit in the first part of each series, especially for models with fixed m.

Since the purpose is to build plausible confidence bands for the future assessment of each

series, we excluded the first 17 residuals from each time series of all 2CM and 3CM in

computing the scaled residuals’ variance. The Kolmogorov–Smirnov test for goodness
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Table 5.4: Belgium. Comparison among all 2CM and 3CM models: predictions’
confidence band width.

2CM-FMP 2CM-DMP

CGON Renewables CGON Renewables

σ̂u 0.05163 0.19237 0.02908 0.19339
p-value 0.48942 0.46047 0.97551 0.63522

C
on

fi
d
en
ce

b
an

d
w
id
th

2016 4.67631 1.64194 2.73143 1.47439
2017 4.09088 1.99584 2.50663 1.76943
2018 3.35310 2.42784 2.23933 2.12696
2019 2.42896 2.95522 1.92264 2.56099
2020 1.27693 3.59904 1.54796 3.08899

3CM-FMP 3CM-DMP

CGO Renewables Nuclear CGO Renewables Nuclear

σ̂u 0.05517 0.22090 0.15362 0.04870 0.17495 0.14963
p-value 0.87889 0.67030 0.67123 0.99016 0.55906 0.51164

C
on

fi
d
en
ce

b
an

d
w
id
th

2016 4.48915 1.87098 1.26488 4.04761 1.45356 1.46009
2017 4.01374 2.26635 0.51796 3.67898 1.73535 0.92130
2018 3.41164 2.74690 – 3.23102 2.06967 0.27657
2019 2.65491 3.33098 – 2.69007 2.46742 –
2020 1.70957 4.04093 – 2.03793 2.94286 –

Confidence band width is not shown when the fitted trajectory is negative.

In Table 5.4, we see that the confidence band width for predictions of CGON using

2CM-DMP is smaller than that obtained with 2CM-FMP for 4 out of 5 years (the rapid

reduction in the fit of the 2CM-FMP reduces the final width). Conversely, the 2CM-

DMP gives a slightly larger residuals’ variance for renewables, but the corresponding

band width is smaller due to a milder increase in the fitted trajectory.

We now compare 3CM-FMP with 3CM-DMP. Since σ̂u values for all sources through

3CM-DMP models are smaller than the 3CM-FMP, we conclude that CDMP models

are more suitable for evaluating forecasts about Belgium’s energy market.

Finally, we compared the predictive performance between 2CM-DMP and 3CM-DMP

models. The focus of the comparison was renewables, as these elements are common in

both models. Narrower confidence band width for predictions was obtained for 3CM-

DMP. The reduced forecasting uncertainty (narrower confidence band width) indicates

more reliable predictions for the 3CM-DMP model.
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5.2.1.3 Comparison among the alternative 3CM models

In Chapter 3, the 3CM model with an FMP and shocks was fitted to Belgium’s energy

data. A comparison of the different fitted models with three competitors evaluated

in this study may be of interest. In Table 5.5, we see that, among the models, the

3CM-FMP with shocks (results described in Subsection 3.3.1) has the highest R2 value

(0.99514). However, it entails a large number of parameters (22) compared with the

parameters of the other two models (15 of 3CM-DMP and 13 of 3CM-FMP). According

to the diffusion parameters, only the innovative components are common in 3CM-DMP

and 3CM-FMP with shocks. While we observe some similarities between the findings,

the innovative effect for renewables using 3CM-DMP (−0.00002) is opposite to that

obtained with 3CM-DMP (0.00001). In addition, the innovative effect for CGO with

3CM-DMP is extremely large (0.03527) compared with 3CM-FMP (0.00600). This may

be due to the fact that models with DMP are more proficient in describing the products

under competition, considering their weight.

The agreement between the observed and fitted values for three competitors can be

assessed by observing Figure 5.3. The continuous (red) line represents fitted values ob-

tained by a DMP model, the dashed (brown) line shows the model with fixed m and

the dotted (orange) line describes the model with fixed m incorporating shocks. In

Figure 5.3, the estimated profiles of CGO and renewables through 3CM-DMP are found

to be more flexible to account for the observed data, but the profile of nuclear sources

deviates from the observations for the period 1965–1990. The estimated profiles using

3CM-FMP with shocks are also flexible to follow the observed path. However, even

with shocks, the 3CM-FMP is unable to minimise the deviation between the observed

and estimated values for the period 1965–1990. Moreover, the model (3CM-FMP with

shocks) is quite rigid for the last few points of nuclear energy. Although the estimated

profiles of renewables and nuclear through 3CM-DMP and 3CM-FMP are almost over-

lapping, the profile of CGO using 3CM-FMP is extremely stiff and unable to follow the

observed path.

Table 5.5: Belgium, 3CM. Comparison among models with DMP, fixed m and fixed
m with shocks.

Name of model No. of parameters R2 value

3CM-DMP 15 0.99254
3CM-FMP 13 0.98876

3CM-FMP with shocks 22 0.99514
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Table 5.7: Finland, 3CM-DMP. Estimates, standard errors and marginal linearised
95% confidence intervals of the unrestricted UCRCD model with DMP for three com-
petitors.

Parameter Estimate Standard error 95% Confidence interval

Kα 474.193 52.0778 {371.055, 577.33}
pcα 0.00069 0.00022 {0.00026, 0.00113}
qcα 0.46511 0.02348 {0.41862, 0.51160}
p1α 0.53166 0.05435 {0.42403, 0.63929}
δα −13.1734 2.84509 {−18.8079,−7.5388}
q1α 10.0140 2.31343 {5.43236, 14.5956}
p2α 0.15682 0.03315 {0.09118, 0.22246}
γα 2.21220 0.76280 {0.70152, 3.72289}
q2α 1.56006 0.61444 {0.34319, 2.77692}
Kβ 1009.54 27.1152 {955.839, 1063.24}
pcβ 0.00092 0.00002 {0.00088, 0.00095}
qcβ 0.09278 0.00052 {0.09176, 0.09381}
p1β −2.34032 0.32187 {−2.97777,−1.70288}
εβ 2.19500 0.40444 {1.39402, 2.99598}
ηβ −4.46217 0.79661 {−6.03981,−2.88452}
q1β −0.78713 0.18005 {−1.14371,−0.43055}
p2β −0.02829 0.10895 {−0.24405, 0.18748}
θβ −0.09914 0.14373 {−0.38379, 0.18552}
ξβ −0.00600 0.12081 {−0.24526, 0.23326}
q2β 0.02996 0.06424 {−0.09727, 0.15718}
p3 0.22212 0.10891 {0.00643, 0.43782}
µβ −0.58102 0.14906 {−0.87622,−0.28582}
λβ 1.08410 0.26804 {0.55327, 1.61493}
q3 −0.69963 0.20442 {−1.10446,−0.29479}

R2 0.99441

Now, substituting parameter estimates in the second phase of model (4.1), we obtain

the following three equations:

z′1(t)− z1(t)
m′(t)

m(t)
∝ −2.34032 + 1.40787

z1(t)

m(t)
+ 3.67504

z2(t)

m(t)
− 0.78713

z3(t)

m(t)
,

z′2(t)− z2(t)
m′(t)

m(t)
∝ −0.02829 + 0.02996

z1(t)

m(t)
− 0.06918

z2(t)

m(t)
+ 0.03596

z3(t)

m(t)
,

z′3(t)− z3(t)
m′(t)

m(t)
∝ 0.22212− 0.11861

z1(t)

m(t)
− 0.69963

z2(t)

m(t)
+ 0.38447

z3(t)

m(t)
.

The innovation parameter estimate for nuclear energy is positive (0.22212), and those

for CGO and renewables are negative (−2.34032 and −0.02829, respectively). This

may be because, at phase β, the innovative effect for CGO and renewables had already
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been exhausted. However, CGO experiences a strong positive within-product WOM

effect (1.60665), and that for nuclear is also positive (0.38447), but for renewables, it

is negative (−0.06918). According to the cross-product WOM effect, CGO is sustained

by a strong positive push from renewables (3.67504) and a negative effect from nuclear

(−0.78713). Renewables are sustained by positive effects from competitors (0.02996

from CGO and 0.03596 from nuclear), whereas nuclear obtains negative effects from its

competitors (−0.11861 from CGO and −0.69963 from renewables).

5.2.2.2 Comparison between models with two and three competitors

In this section, we want to assess the efficacy of two- and three-competitor DMP

models over similar models with FMP (e.g. under the restriction m(t) = m). These

models (2CM and 3CM) with FMP are not the same ones discussed in Chapter 3.

The R2 value using model (C.1) for FMP is 0.98619 and that obtained by model (4.1)

for FMP is 0.98672. The F -ratio, comparing models (C.1) and (4.1) with the similar

models with fixed m, assigns the values 11.83202 and 32.18180, respectively (see Table

5.8). Thus, we conclude that CDMP models significantly differ from the models with

fixed m. Both the graphical representation (see Figure 5.5) and the F -test values show

that an FMP is not as suitable as a DMP to describe the Finnish energy consumption

data partitioned in two or three sources.

Now, to assess the performance of CDMP models in terms of the models with fixed

m and in the context of CDMP models from a forecasting point of view, we make a

short-term prediction for each time series from 2016 to 2020. Figures 5.5(a) and 5.5(b)

represent the predictions for each source using DMP and FMP models for two and three

competitors, respectively. We observe worse fit to the first part of renewables obtained

with 2CM and 3CM and nuclear sources using 3CM. To obtain credible confidence bands

for the predictions of each series, we ignored the first three residuals from renewables

and four residuals from nuclear for all the models with DMP and fixed m in computing

Table 5.8: Finland. Values of R2 of the 2CM and 3CM with FMP and DMP. The
F -ratio values to compare DMP models with the corresponding FMP version are also
shown.

FMP DMP

2CM R2 = 0.98619 R2 = 0.98919

(F̂ = 11.83202)

3CM R2 = 0.98672 R2 = 0.99441

(F̂ = 32.18180)
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Table 5.9: Finland. Comparison among all 2CM and 3CM models: predictions’
confidence band width.

2CM-FMP 2CM-DMP

CGON Renewables CGON Renewables

σ̂u 0.08208 0.16037 0.06235 0.12878
p-value 0.79144 0.99669 0.56241 0.53227

C
on

fi
d
en
ce

b
an

d
w
id
th

2016 3.37906 1.61718 2.61857 1.47041
2017 3.29517 1.59255 2.56053 1.46955
2018 3.20881 1.56563 2.50045 1.46653
2019 3.12040 1.53660 2.43861 1.46135
2020 3.03035 1.50565 2.37529 1.45403

3CM-FMP 3CM-DMP

CGO Renewables Nuclear CGO Renewables Nuclear

σ̂u 0.06041 0.13575 0.09225 0.03697 0.12331 0.05189
p-value 0.68501 0.74630 0.40610 0.88992 0.84885 0.83002

C
on

fi
d
en
ce

b
an

d
w
id
th

2016 1.83984 1.43891 0.81255 0.98242 1.51684 0.59173
2017 1.68942 1.37212 0.76947 0.90368 1.53257 0.59979
2018 1.59266 1.30314 0.72536 0.82498 1.54896 0.60764
2019 1.49336 1.22992 0.68010 0.74360 1.56624 0.61593
2020 1.39299 1.15385 0.63434 0.65971 1.58477 0.62482

using 2CM-DMP is smaller than those obtained with 2CM-FMP. Focussing on the 3CM,

the confidence bands for CGO and nuclear sources through the model with DMP are

smaller than those obtained by the model with FMP. In relation to the model with

FMP, the confidence bands for renewables using the model with DMP are wider due to

a steeper increase of predicted trajectories (the decreasing trend predicted by the 3CM-

FMP for renewables is not reliable). Indeed, models with DMP for both two and three

competitors give smaller residual variance for each source than the models with fixed m.

This suggests that CDMP models are more suitable for providing reliable predictions

for the Finnish energy market.

We now concentrate on predictions using the two- and three-competitor DMPmodels.

To accomplish this, we consider only the findings for renewables that are common to

both the models. We notice that 3CM predictions are more reliable since the residuals’

variance using 3CM is smaller than 2CM.
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imitative effects using 3CM-DMP are opposite to those obtained with 3CM-FMP. No-

tice that the values of the estimated parameter largely differ between the models. This

may also happen because the WOM parameters multiply zi(t)/m in the FMP model

and zi(t)/m(t) in the DMP model. In terms of 3CM-FMP, the 3CM-DMP findings may

be more relevant to the data structure.

The agreement between the observed and estimated profiles for all three sources are

shown in Figure 5.6. The dashed (brown) line for each source using 3CM-FMP is not

flexible enough to follow the observed path, especially in the last part of each time series,

which is heavily underestimated, resulting in totally unreliable predictions. Conversely,

the continuous (red) line for of each series obtained by the CDMP model is flexible

enough to follow the observed path. Although the dotted (orange) line for each source

through 3CM-FMP with shocks is well flexible to follow the observed data, the estimated

profile for CGO deviates in the final stage of the observed time series. Overall, the 3CM-

DMP appears to be more appropriate for describing the Finland energy consumption

data and providing reliable predictions.

5.2.3 France

5.2.3.1 2CM and 3CM DMP

The initial model was developed by partitioning the France’s energy consumption

data into CGON and renewable sources. The diffusion process of these two sources

has been described by model (1.14), UUC with DMP. The adequately large value of

R2 (0.99703) suggests that the model is well fitted. Structure (1.15) of DMP performs

better than structures (1.11), giving R2 = 0.99655, and (1.16), giving R2 = 0.99530.

The findings are shown in Table 5.11.

Subsequently, the data have been partitioned into three sources, namely CGO, re-

newables and nuclear sources. We observe a synchronic competition among the sources

as they are simultaneously launched. In this situation, model (C.2), UUC with DMP, is

suitably fitted. For three competitors, structure (1.11) is found to be better performing

(R2 = 0.99207) than the other two structures of DMP (R2 = 0.99180 for structure

(1.15) and R2 = 0.98503 for (1.16)). The parameter estimates, standard errors and 95%

confidence intervals are shown in Table 5.12.

The aggregate size of the market potential using 3CM-DMP is smaller (K̂ =16793

Mtoe) than that obtained by 2CM-DMP (K̂ =19374.6 Mtoe). The estimated profiles

for the DMP of both 2CM and 3CM, presented in Figure 5.7, are exceedingly far from

a fixed m pattern.
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Table 5.12: France, 3CM-DMP. Estimates, standard errors and marginal linearised
95% confidence intervals of the UUC model with DMP for three competitors.

Parameter Estimate Standard error 95% Confidence interval

K 16793.0 841.361 {15129.3, 18456.6}
pc 0.00782 0.00290 {0.00208, 0.01355}
qc 0.03566 0.01079 {0.01433, 0.05699}
p1 0.04790 0.01050 {0.02713, 0.06867}
ε −0.06358 0.02930 {−0.12152,−0.00565}
η 3.32585 0.51144 {2.31459, 4.33712}
q1 0.24298 0.01951 {0.20440, 0.28156}
p2 0.00392 0.00136 {0.00123, 0.00662}
θ −0.41769 0.30648 {−1.0237, 0.18831}
ξ −0.00026 0.01646 {−0.03280, 0.03228}
q2 0.02827 0.02508 {−0.02132, 0.07785}
p3 −0.00725 0.00214 {−0.01148,−0.00301}
µ 2.02319 0.36763 {1.29628, 2.75011}
λ −1.89003 0.35426 {−2.59052,−1.18954}
q3 1.88821 0.33960 {1.21671, 2.55971}

R2 0.99207

WOM effects, CGO experiences a positive effect (0.17940), but the other two sources

experience a negative one (−0.38942 for renewables and −0.00182 for nuclear). For the

cross-product WOM effects, CGO is sustained by the spread of nuclear sources (0.24298),

but it is strongly adversely affected by renewables’ spread (−3.08287). Conversely,

renewables are supported by the competitors’ diffusion spread (0.02827 from CGO and

0.02853 from nuclear). Although nuclear energy is opposed by CGO sources (−0.13498),

it obtains strong support from renewables (1.88821).

5.2.3.2 Comparison between models with two and three competitors

Here, we want to assess the efficacy of CDMP models over the similar models with

FMP (i.e. the models under the restriction m(t) = m). It should be noted that these

FMP models are different from those we discussed in Chapter 3. The R2 values of

the 2CM (model (1.14) with FMP) and 3CM (model (C.2) with FMP) are 0.99531

and 0.98213, respectively (see Table 5.13). The F -test, obtained by the 2CM-DMP

compared with 2CM-FMP, gives a large value of 26.90704. Furthermore, when the

test is performed for the 3CM-DMP in comparison with the 3CM-FMP, we obtain a

huge value of F = 86.51318. These validate that both the two- and three-competitor

DMP models significantly differ from their respective similar models with fixed m. This
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Table 5.13: France. Values of R2 of the 2CM and 3CM with FMP and DMP. The
F -ratio values to compare DMP models with the corresponding FMP version are also
shown.

FMP DMP

2CM R2 = 0.99531 R2 = 0.99703

(F̂ = 26.90704)

3CM R2 = 0.98213 R2 = 0.99207

(F̂ = 86.51318)

Table 5.14: France. Comparison among all 2CM and 3CM models: predictions’
confidence band width.

2CM-FMP 2CM-DMP

CGON Renewables CGON Renewables

σ̂u 0.06132 0.14857 0.04306 0.14784
p-value 0.27561 0.93777 0.81552 0.75257

C
on
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d
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th

2016 25.65349 4.33513 18.65833 4.49481
2017 25.11492 4.24048 18.41235 4.43567
2018 24.55186 4.14210 18.15551 4.37417
2019 23.96714 4.04043 17.88857 4.31049
2020 23.36360 3.93594 17.61226 4.24476

3CM-FMP 3CM-DMP

CGO Renewables Nuclear CGO Renewables Nuclear

σ̂u 0.07637 0.14602 0.07248 0.04402 0.15193 0.06845
p-value 0.44420 0.77441 0.76200 0.54626 0.92200 0.75515

C
on
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ce

b
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d
w
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th

2016 16.07373 3.97619 14.83264 10.01167 4.28108 13.02210
2017 15.62368 3.88216 14.61179 9.78329 4.18697 12.77710
2018 15.16555 3.78448 14.36533 9.54917 4.08952 12.51288
2019 14.70113 3.68362 14.09530 9.31023 3.98921 12.23176
2020 14.23219 3.58009 13.80384 9.06738 3.88651 11.93602

means that models with fixed m are less appropriate for describing the energy dynamics

of France.

Now, to measure the gain due to the more realistic description of the market potential

(for all the sources in 2CM and 3CM) and the improvement due to more specific data

(only for renewables) based on predictions, we make a short-term forecast for each

time series from 2016 to 2020. The predictions for each source obtained by the models

with DMP and FMP for both two and three competitors are shown in Figure 5.8. It

should be observed that, at the beginning of the CGO and nuclear time series, the

estimated values using 3CM-FMP are quite far from their observed data. Hence, for
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from the observed values.

The Kolmogorov–Smirnov test confirmed that scaled residuals follow a Gaussian dis-

tribution. The standard deviations (σ̂u) and p-values of scaled residuals for each series

using the 2CM and 3CM are shown in Table 5.14. Using the properties of normal dis-

tributions, we computed the 2σ confidence bands for predictions, represented in Figure

5.8, and the corresponding confidence band width (see Table 5.14).

In Table 5.14, the confidence band width for predictions of CGON through 2CM-

DMP is smaller than that obtained with the 2CM-FMP. Conversely, the confidence band

width for predictions of renewables using the 2CM-DMP is larger than that obtained

with the 2CM-FMP, whereas the 2CM-DMP has a smaller residual variance. This is

because the predicted trajectories using the 2CM-DMP are larger than those obtained

by the 2CM-FMP. In the case of 3CM, the confidence bands for CGO and nuclear

predictions using the model with DMP are smaller than those obtained by the model

with FMP. Conversely, compared with the model with FMP, the model with DMP

provides larger confidence bands for renewables predictions. Overall, the predictions

using CDMP models are more trustworthy, since the residuals’ variance for each source

(except for renewables in 3CM-DMP) using the models with DMP are smaller than the

similar models with fixed m are.

Our main concern is perceiving any improvement of the 3CM-DMP over 2CM-DMP

assessed by the renewables’ predictions that are common in both models. With respect

to this point, we observe a smaller confidence band width from the 3CM-DMP than

the results obtained with the 2CM-DMP. However, the 3CM-DMP gives a relatively

large residual variance. Hence, the 3CM-DMP may not be a good choice for predictions

about the French energy market.

5.2.3.3 Comparison among the alternative 3CM models

In Chapter 3, the French energy consumption data were analysed through the 3CM

model with FMP and shocks (results discussed in Subsection B.3). Here, it is interesting

to compare the alternative fitted models for three competitors. The values in Table 5.15

highlight that the value of R2 = 0.98978 using the 3CM-FMP with shocks is smaller

than that obtained with the 3CM-DMP (0.99207). Conversely, 3CM-FMP with shocks

has a higher parameter dimension (20) than the other two models do (15 parameters for

the 3CM-DMP and 13 for the 3CM-FMP). Focussing on diffusion parameter estimates,

the innovative and imitative components for each source using the 3CM-DMP have the

same sign as those obtained with the 3CM-FMP with shocks.

The agreement of observed and estimated profiles of all the three sources (CGO,
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5.2.4 Germany

5.2.4.1 2CM and 3CM DMP

First, model (C.1), USC with DMP, is fitted to the data from Germany to describe

the diffusion of energy sources partitioned as CGON and renewables. The structure

(1.11) for the DMP performs slightly better (R2 = 0.99647) than the other two DMP

structures do (structure (1.15) gives R2 = 0.99638 and (1.16) gives R2 = 0.99627). The

findings are shown in Table 5.16.

Subsequently, the data were separated into three sources, as follows: CGO, renew-

ables and nuclear. Since all three sources were launched simultaneously, model (C.2),

UUC with DMP, is fitted. A notably large value of R2 (0.99819) proves that the fitting

is good overall. Structure (1.15) for DMP gives improved performance compared with

structures (1.11) and (1.16), which have R2 values of 0.99602 and 0.99707, respectively.

Table 5.17 represents the findings of the fitted model.

The aggregate size of the market potential through 3CM-DMP is K̂ = 40210 Mtoe,

which is about 1.5 times larger than that obtained with the 2CM-DMP (K̂ = 28783.2

Mtoe). The estimated profiles of the DMP, m(t), from the 2CM and 3CM are shown

in Figures 5.10(a) and 5.10(b), respectively. We observe a linear increase in the market

potential in the 3CM, whereas the DMP quickly reaches its asymptotic value.

If we focus on the innovation parameters of 3CM, it is clear that this component

for nuclear sources is not important compared with the other two sources’ components.

By substituting the parameter estimates in model (C.2), we obtain the following three

Table 5.16: Germany, 3CM-DMP. Estimates, standard errors and marginal lin-
earised 95% confidence intervals of the USC model with DMP for two competitors.

Parameter Estimate Standard error 95% Confidence interval

K 28783.2 104209.0 {−178126.0, 235692.0}
pc 1.57190 10.9229 {−20.1158, 23.2596}
qc −1.57190 11.9233 {−25.2459, 22.1021}
p1 0.01011 0.00029 {0.00953, 0.01069}
δ 0.26623 0.04968 {0.16759, 0.36487}
q1 −0.23923 0.04953 {−0.33757,−0.14089}
p2 0.00002 0.00012 {−0.00022, 0.00026}
q2 0.26397 0.04874 {0.16719, 0.36074}

R2 0.99647
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CGO sources are sustained by a large innovative effect (0.82137), that is, the cycle

starts rapidly. The cycle of renewables also started rapidly (0.01283), whereas the large

negative effect for nuclear (−0.02603) represents an extremely slow start of the nuclear

cycle. Regarding the within-product WOM effects, only renewables experience a positive

effect (0.33735), while the other two sources experience negative effects (−0.97694 for

CGO and −0.05527 for nuclear). With respect to the cross-product WOM effect, the

spread of CGO’s diffusion is strongly opposed by both its competitors (−2.06970 from

nuclear and −3.52656 from renewables). Renewables’ diffusion spread is also limited

by competitors (−0.02090 form CGO and −0.02659 from nuclear), while renewables

sustain further internal consumptions. In contrast, nuclear energy’s diffusion spread is

supported by CGO sources (0.04956) but opposed by renewables (−0.17964).

5.2.4.2 Comparison between models with two and three competitors

In this subsection, we want to assess the efficacy of CDMP models with reference

to similar models under the restriction m(t) = m. The R2 values of the 2CM and

3CM with FMP are 0.99557 and 0.99699, respectively (see Table 5.18). In the case of

the 2CM, the F -ratio, obtained by model (C.1) compared with the similar model with

FMP, assigns a large value of F̂ = 11.87971. Furthermore, for the 3CM, the value of

the F -test, comparing model (C.2) with the similar model with fixed m, is notably large

(F̂ = 45.65672). The estimates of both F -ratios validate the significance of the CDMP

models. Apparently, models with DMP are more appropriate for describing the German

energy market.

Now, we make a short-term prediction for each time series, using the 2CM and 3CM,

from 2016 to 2020, to assess the improvement of the models with DMP over the similar

models with fixed m and further investigate the improvement of the 3CM-DMP over the

2CM-DMP. Figure 5.11 represents the predictions for each source obtained by the models

with DMP and FMP for both two and three competitors. It should be observed that,

Table 5.18: Germany. Values of R2 of the 2CM and 3CM with FMP and DMP. The
F -ratio values to compare DMP models with the corresponding FMP version are also
shown.

FMP DMP

2CM R2 = 0.99557 R2 = 0.99647

(F̂ = 11.87971)

3CM R2 = 0.99699 R2 = 0.99819

(F̂ = 45.65672)
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Table 5.19: Germany. Comparison among all 2CM and 3CM models: predictions’
confidence band width.

2CM-FMP 2CM-DMP

CGON Renewables CGON Renewables

σ̂u 0.04701 0.25644 0.04300 0.21834
p-value 0.98729 0.45740 0.99478 0.39267

C
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2016 23.61976 17.79177 21.89753 16.87599
2017 22.94994 18.83600 21.27710 18.15474
2018 22.26948 19.89622 20.63837 19.49069
2019 21.58022 20.96809 19.98246 20.88153
2020 20.88397 22.04712 19.31058 22.32445

3CM-FMP 3CM-DMP

CGO Renewables Nuclear CGO Renewables Nuclear

σ̂u 0.04153 0.14271 0.12092 0.03104 0.13698 0.12846
p-value 0.53371 0.95846 0.46210 0.96762 0.91070 0.48499

C
on
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2016 20.31696 10.98120 3.86159 15.12109 13.38838 3.76394
2017 19.11660 10.76348 3.33125 14.82897 15.01720 2.84346
2018 17.68847 10.30349 2.83808 14.51080 16.84014 1.83134
2019 16.08775 9.63768 2.38994 14.16579 18.87882 0.71893
2020 14.38377 8.81767 1.99144 13.79304 21.15694 –

Confidence band width is not shown when the fitted trajectory is negative.

in the beginning, the estimated profiles for renewables using the 2CM- and 3CM-FMP

and for nuclear energy using the 3CM-FMP deviated somewhat from their observed

paths. To obtain reliable confidence bands for the predictions, we thus ignored the first

7 residuals for renewables in both 2CM- and 3CM-FMP and the first 12 residuals for

nuclear in 3CM-FMP. To maintain consistency, all these residuals for renewables and

nuclear in 2CM- and 3CM-DMP are also ignored in computing the scaled residuals’

variance.

The Kolmogorov–Smirnov test for goodness of fit confirmed the normality assumption

of the scaled residuals. Table 5.19 represents the standard deviations (σ̂u) and p-values

of scaled residuals for each series using the 2CM and 3CM with DMP and fixed m.

Accordingly, we computed the 2σ confidence bands for predictions’ (see Figure 5.11)

and the corresponding confidence band width (see Table 5.19).

In Table 5.19, the confidence band width for CGON predictions using the 2CM-DMP

is smaller than those obtained with the 2CM-FMP. Moreover, the confidence band width

for the first four-year predictions of renewables through the 2CM-DMP is smaller than
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3CM-FMP predictions, renewables may be declining in 2016–2020, but this is not con-

sistent with the observed data. Moreover, the smaller residual variance for renewables

using the 3CM-DMP represents greater precision. Conversely, the confidence bands for

nuclear predictions using the 3CM-FMP are more consistent than those obtained by the

3CM-DMP. Overall, the models with DMP are more appropriate for obtaining reliable

predictions.

Beyond the above discussions, we are interested in finding any improvement of the

3CM-DMP model in comparison with the 2CM-FMP. In this case, we consider only the

findings for renewables that are common to both models. Compared with the 2CM-

DMP, the 3CM-DMP gives narrower confidence bands for the renewables’ predictions.

This means that the 3CM-DMP is more suitable for evaluating forecasts about the

German energy market.

5.2.4.3 Comparison among the alternative 3CM models

In Chapter 3, the energy consumption data from Germany were analysed through

the 3CM model with fixed m and shocks. Thus, it is important to make a comparison

among the alternative fitted models for three competitors. In Table 5.20, we see that

the 3CM-FMP with shocks has the largest R2 value (0.99869). However, the value is

narrowly larger than that obtained through the 3CM-DMP (R2 = 0.99819). Notice that

3CM-FMP with shocks entails a large number of parameters (23) compared with the

other two models (15 parameters for 3CM-DMP and 13 parameters for 3CM-FMP).

According to the diffusion parameter estimates, the innovative components using

the 3CM-DMP and 3CM-FMP with shocks change in the same directions. Of all three

within-product WOM effects using both models, we observe the same changing direction

for renewables. Moreover, both models describe the decrease of the traditional energy

(CGO sources) consumptions well. In addition to this, the models suggest that the

diffusion of renewables is opposed by the spread of CGO sources. The direction of

changes for all the remaining within- and cross-product WOM effects using the 3CM-

DMP is the opposite of those obtained by the 3CM-FMP with shocks. It should be

Table 5.20: Germany, 3CM. Comparison among models with DMP, fixed m and
fixed m with shocks.

Name of model No. of parameters R2 value

3CM-DMP 15 0.99819
3CM-FMP 13 0.99699

3CM-FMP with shocks 23 0.99869
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were extended to three competitors (CGO, renewables and nuclear). The data were

analysed using three different versions of the CDMP models, as follows: balanced, un-

balanced and unrestricted unbalanced. Finally, we chose the best-fitting model. Other

models with FMP have also been applied to prove the efficacy of CDMP models over the

models with FMP. All these models have been fitted to the yearly energy consumption

data from four countries, that is, Belgium, Finland, France and Germany.

Focussing on the estimate profiles of the market potential, we see that, for both the

2CM and 3CM, they are generally extremely far from the fixed m patterns. This means

that the demand for energy consumption seems to have grown in a regular way in the

energy market of the studied countries.

For the interpretation of parameter estimates, we focus only on CDMP models for

three competitors, since some rich information may be hidden in the bivariate models.

Here, all four countries were analysed using an unrestricted unbalanced model. The

innovative component for nuclear sources in each country (excluding Finland) is neg-

ative. This means that we did not observe a good start of the nuclear cycle against

other energies with almost positive innovative effects. Two out of three sources’ within-

product WOM effects at the maximum were positive (or negative) in each country. The

cross-product WOM effects for renewables by competitors were positive in Finland and

France, but they were negative in Belgium and Germany. CGO’s cross-product effects

by competitors were positive in Belgium but negative in Germany. Only in Finland

the cross-product effects of nuclear energy by its competitors are negative. Of all other

cross-product effects for each source in each country, it shows that both competitors

have an opposite influence on the specific source. Indeed, the findings obtained by

the CDMP models are somewhat similar to those we discussed in Chapter 3 using the

models with FMP and shocks. This means that the competition/substitution patterns

among energy sources differ from country to country.

The estimated profiles using models with fixed m are not flexible enough to follow

the observed path. Conversely, the estimated profiles obtained with the CDMP models

are flexible to undergo the observed path. Although the estimated profiles using models

with fixed m and shocks are also flexible to follow the observed data, they have a

high parameter dimension and do not provide any significant improvement over the

models with DMP. Hence, CDMP models may be more appropriate for describing the

energy dynamics, as these models consider a more realistic assumption about the market

potential.

In almost all cases, the predictions for each source using models with DMP differ

significantly from those obtained with the similar models with fixed m. According to the



Chapter 5 - Applications of the three-competitor diffusion model with DMP 97

2σ confidence bands for predictions, CDMP models are generally more precise. Beyond

the above comparisons, our main concern is observing any improvement of the 3CM-

DMP over the 2CM-DMP. Regarding this point, we focus on the renewables elements

that are common to the two models. We see that for three of four countries (Belgium,

Finland and Germany), the confidence band width using the 3CM-DMP is narrower than

that obtained from the 2CM-DMP. Although, for France, the 2CM-DMP gives narrower

confidence bands than the 3CM-DMP does, the 2CM-DMP fails to carefully follow the

last few points of the renewables time series. Above all, the 3CM-DMP models are

more appropriate for describing the evolution of energy sources and providing reliable

predictions about the energy market.





Conclusions

Discussion

Research on the diffusion of innovations represents an attempt to explain the mech-

anism by which new ideas, products, technologies or trends spread in society. The

new trends or innovations take time to diffuse. The basic paradox in the diffusion of

innovations research is explore the reasons why there is often a long interim between

the first appearance of an innovation and the time of its significant adoption. In fact,

an innovation diffusion process is often affected by the existing technologies. Thus, it

is important to structure a diffusion process of two or more products or technologies,

targeting the main set of potential adopters or subgroups of potential adopters with

possible interaction effects.

In Chapter 1 of this thesis, we discussed the fundamental diffusion models and the

models of two products diffusion in a competitive environment that are already available

in the literature. The BM (Bass, 1969) describes how an innovation is diffused or

adopted in a society through interaction between early adopters and potential adopters

(innovators and imitators). The GBM (Bass et al., 1994) enables capturing the local

extensions or contractions in the lifecycle of an innovation. Considering the structure of

the market potential, the GGM (Guseo and Guidolin, 2009) is dissimilar from the BM

and GBM. It allows the nature of the market potential to be dynamic, while in the BM

and GBM, it is assumed to be constant throughout the diffusion process.

Existing diffusion models describe a competition between only two products. These

models are not suitable in situations when there are several products competing in a

homogeneous category. Typically, building a diffusion model for a substantial number

of products is too tricky as it requires a high number of parameters to describe a com-

posite structure of the interactions among the products. In this study, the models for

competition are extended from two to three products.

Following the model proposed by Guseo and Mortarino (2014), in Chapter 2, we

proposed a diffusion of innovations model to describe a market, where three products

99
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compete for the same customers. The model separates competition into two phases.

In the first phase, the competition is between two products, and in the second, it is

extended from two to three products. The first phase is absent when all the three

products are simultaneously launched. This model is described by a set of differential

equations that may not have a closed-form expression; for this reason, they are suitable

for instantaneous data. The flexibility of this model is that it can also be represented

in some reduced forms (see Appendix A) by imposing restrictions on the discrimination

parameters. Nonlinear estimation techniques are used to estimate the parameters.

Applications of the proposed model (3CM) to 12 countries’ energy data, partitioned

as CGO, renewables and nuclear sources, are discussed in Chapter 3. The existing

bivariate model (2CM) is also applied to the data, where nuclear is added to CGO, that

is, CGON is contrasted with renewables. The 2CM fitting is performed to perceive the

improvement of the 3CM over the 2CM. Notice that the intervention functions (e.g. the

external shocks) are incorporated with the models applied to all 12 countries (except

for India) to capture the wide variety of shapes of data. The significance of shocks’

inclusion in the model is verified by the F -test (see Subsection 1.4.4), where the model

without shocks is considered the benchmark.

If we focus on the findings of 3CM, we see that for all 12 countries (excluding China),

the innovative components corresponding to CGO sources are extremely large, followed

by renewables and nuclear energy sources. This indicates that almost all countries are

somewhat more motivated for the innovation of green energy (renewables) technology

in comparison with nuclear technology. Of all 12 countries, a balanced model is fitted to

the data from Belgium, India, Spain and the United States. According to the imitative

component, referred to WOM effect, the diffusion spread of CGO is substantially larger

than its competitors’ spread. However, except for India, nuclear has a higher diffusion

spread than renewables. An unbalanced model is fitted to the data from the remaining

eight countries. In this case, the WOM effect is split into within-product and cross-

product effect. For China and Germany, all three sources within-product effects are

positive, and the analogous cross-product effects are mostly negative. We observe a

reverse situation for Finland, Sweden and Switzerland and a mixed situation for France,

Japan and the United Kingdom. Indeed, when energy sources sustain further internal

consumptions, at that time they are more likely to be controlled by competitors, and

vice-versa.

With respect to the 2CM, the 3CM is more flexible for representing the specific fea-

tures of some of the products under competition. For instance, in the case of China,

concerning the cross-product WOM effect using 2CM, CGON sources counteracted the
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spread of renewables. According to 3CM, nonrenewables (CGO and nuclear) also nega-

tively affected the spread of renewables, but the effect from nuclear is larger than that

from CGO sources (see Subsection B.1). This means that nuclear energy is an intense

threat for renewables’ expansion in China. Using 3CM, we also obtained similar rich

information for the remaining 11 countries, whereas the 2CM failed to be so specific.

It should be noted that the countries’ WOM components are different. That is, across

countries different signs and magnitudes of WOM components describe different com-

petition/substitution patterns.

The model fitting performance, that is, the model’s goodness of fit was measured

by the standard deviation, residual diagnostics and R2 value. Since the two models

(2CM and 3CM) use different data other than renewables, we decided to evaluate the

improvement of the 3CM over 2CM, focussing on the renewables instead of the global

goodness of fit measures. The focus is on the forecasting performance of the renew-

ables. We see that among the 12 countries analysed, our proposed 3CM gives narrower

confidence bands than the existing 2CM does for 10 countries. The predictions from

2016 to 2020 suggest an increase of renewables against declining other energies in all 12

countries except for India, where all sources of energy may be increased in 2016–2020,

since India’s energy sector is still developing.

The performance of the models was also assessed by FA measures that we computed

for two countries (Sweden and Switzerland). The FA measures, for both countries,

denoted the superiority of the 3CM compared with the 2CM. It should be noted that

the confidence bands for renewables’ predictions for Sweden and Switzerland using 3CM

are also narrower than those obtained with the 2CM. That is, both FA measures and

confidence band width agree, suggesting that 3CM performs better than 2CM.

Although the diffusion models proposed in Chapter 2 are more suitable for estimating

the innovation and imitation effects of the products under competition, the application

results show that the model often requires incorporating several intervention functions

to have a good fit with reliable forecasts. In this case, the intervention functions may

influence the estimates of diffusion parameters. Such influences may be more severe

when there are larger variations in the lifecycle of products. Hence, it is crucial to

define a model that can modify the evolutionary shapes of diffusion of innovations

methodologies over time.

Energy sources, partitioned as two or three products, differ essentially in the persua-

sion effects exerted by the respective energy companies and in their acceptance through

early adopters spreading WOM about their efficacy. The initial novelty of these influ-

ences of energy sources as two or three products suggests configuring diffusion models
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that define the market potential as a dynamic structure. The model proposed in Chapter

4 is suitable for describing the diffusion of three competing products under the assump-

tion of DMP. We suppose that awareness and adoption are two successive situations

that subjects may experience. The first situation, awareness, is a latent criterion. As

we have no data at the individual level, the description is combined, as a mean profile,

that gives rise to the equations (1.11) or (1.15) or (1.16).

Our proposed CDMP model, in Equation (4.1), is suitable for analysing competition

among three products, where two products exist from the beginning and the third

enters the market later. The model stands only on its’ second phase (see model (C.2) in

Appendix C), when all three products enter the market simultaneously. In the case of

two-product competition, we used the model proposed by Guseo and Mortarino (2015),

but we considered its more general structure.

To prove the efficacy of CDMP models for both two and three products over the

similar models with FMP, all these models were applied to four countries’ energy data

(see Chapter 5). The F -test proved that the CDMP models significantly differ from

the models with FMP. Moreover, the confidence bands for predictions of each source

using CDMP models are more precise compared with those obtained by the models with

FMP. When we focussed on the context of two- and three-competitor CDMP models,

we saw that only renewables are common in the two models. For three of the four

studied countries, the confidence bands using the 3CM-DMP are narrower than those

obtained with the 2CM-DMP. That is, the predictions about the energy market using

the 3CM-DMP are more reliable.

Regarding the diffusion parameter estimates, the innovative component for nuclear

sources in each country (except for Finland) is negative. This means that the nuclear

cycle did not have a good start against other energies in Belgium, France and Germany.

None of four countries’ within-product effects are completely opposite to the correspond-

ing cross-product effects. However, when an energy source is found to be diffused by its

own spread, it is more likely to be opposed by competitors’ spread. Apparently, there

are some similarities in innovative and imitative components using the CDMP models

compared with the models with FMP and shocks (see Chapter 3), although the values

differ. That is, like the models with FMP and shocks, the CDMP models describe a

diverse competition/substitution pattern among the countries. The 3CM-DMP predic-

tions also suggest for increasing renewables in 2016–2020, when other energies may be

declined in all four countries except for France, although there may have a gradual in-

crease of nuclear sources in Finland. When comparing among all the alternative fitted

models through the observed and estimated profiles, we see that the estimated profiles
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using the models with FMP are often unable to follow the observed path. Conversely,

the estimated profiles using the CDMP models and the models with FMP and shocks

are flexible and adequately follow the observed path. Although both the CDMP model

and the model with FMP and shocks are well fitted to the observed data, the CDMP

model can preferably be used in describing the diffusion of energy dynamics and similar

issues as the model has a more realistic structure of market potential.

Above all, the applications of the two models (i.e. the CDMP model and model with

FMP and shocks) show the feasibility of the 3CM and highlight that a more accurate

description of the market category through the data of three separate products gives

better results than the 2CM for the common product, the renewables, in terms of out-

of-sample accuracy.

As a final remark, the applications of the proposed models in this thesis seem to be

interesting from two perspectives. First, the newly developed models are based on the

latest bivariate diffusion models, which are more flexible in their framework compared

with other similar models available in the literature. It is important to note that the

models stand on the basic assumptions of the BM, which is the pioneer in the diffusion

of innovations literature and has been widely used because it considers the internal rules

of a social system. Second, the proposed models in the given structures are more flex-

ible for interpreting the interaction effects of competing products. However, according

to necessity, the models can be expressed in some reduced forms by imposing certain

restrictions on the discrimination parameters. The applications of the proposed mod-

els to historical energy consumption data are indeed appropriate, as there is relatively

complex competition among energy sources. The models can also be applied to describe

the diffusion of three competing products with similar setups.

Future directions for research

This thesis described the diffusion dynamics of two and three products in a com-

petitive framework. To obtain an improved description of mutual interactions among

competitors, the thesis proposed some feasible extensions of the existing models that

motivates further research directions.

Our proposed models are suitable in situations when the products under competition

represent a homogeneous category competing for the same customers. That is, the

products are similar enough to have a common market potential and common residual

market. However, in other situations, a modified Lotka–Volterra approach may be

preferable to our proposed models because it will allow more realistic residual market
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potentials that are partially specific with latent ‘churn’ effects. One can find ideas about

a modified Lotka–Volterra approach in Guidolin and Guseo (2015).

It should be observed that the models we considered under the assumption of a fixed

market potential required incorporation of intervention or control functions to capture

the wide variety of structures of products in diffusion processes. However, models with

control functions may not be well fitted when the fluctuations are too intense. In this

situation, a multi-wave (two or more waves) model may give a better fit, especially when

there is a synchronic competition among the products. Discussions about a two-wave

model are available in Furlan and Mortarino (2018). Furthermore, the concept of multi-

wave modelling with the assumption of DMP may also be suitable in situations when

the data are naturally waved. Nevertheless, in situations where models with DMP are

also unable to capture the wide variety of shapes of data, a limited number of shocks

with the DMP models may enrich the fitting and provide more reliable predictions, but

the complexity of a DMP model with shocks may introduce identifiability problems.

The proposed diffusion models, which allow competition among a substantially large

number of products, require a high number of parameters. Indeed, every additional

product in a diffusion process generates a complex structure of interactions among com-

peting products. Since there are open competitions in almost every marketplace, sub-

stitute products or services are increasing day by day. Thus, a model for more than

three competitors may make important contributions to the diffusion literature.
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Models with fixed m

For two products

In the case of two products (or competitors), if the products launch together, only the

second phase of model (1.13) is applicable. Then, it is called the unrestricted unbalanced

(synchronic) competition (UUC) model of two competitors and has the following form:

z′1(t)=m

[

p1 + (q1 + δ)
z1(t)

m
+ q1

z2(t)

m

] [

1−
z(t)

m

]

,

z′2(t)=m

[

p2 + (q2 − γ)
z1(t)

m
+ q2

z2(t)

m

] [

1−
z(t)

m

]

, (A.1)

z(t)=z1(t) + z2(t).

Under the restriction δ = γ, (A.1) is called the unbalanced synchronic competition

(USC) model and can be written as

z′1(t)=m

[

p1 + (q1 + δ)
z1(t)

m
+ q1

z2(t)

m

] [

1−
z(t)

m

]

,

z′2(t)=m

[

p2 + (q2 − δ)
z1(t)

m
+ q2

z2(t)

m

] [

1−
z(t)

m

]

, (A.2)

z(t)=z1(t) + z2(t).

If the further restriction δ = γ = 0 in (A.1) or δ = 0 in (A.2) is imposed, it reduces

to a balanced model, called the balanced synchronic competition (BSC) model, and this
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can be expressed as

z′1(t)=m

[

p1 + q1
z1(t)

m
+ q1

z2(t)

m

] [

1−
z(t)

m

]

,

z′2(t)=m

[

p2 + q2
z1(t)

m
+ q2

z2(t)

m

] [

1−
z(t)

m

]

, (A.3)

z(t)=z1(t) + z2(t).

For three products

In the case of three products, if two products exist from the beginning and the other

one enters the market later, model (2.1) can suitably be used. However, sometimes, it

requires to represent the model in a reduced form. If, in the second phase, we consider

only one discriminant parameter instead of four, model (2.1) reduces the most restricted

version of an unbalanced model, called the restricted unbalanced competition and regime

change diachronic (restricted UCRCD) model of three competitors and can be written

in the following form:

z′1(t)=m

{[

p1α + (q1α + δα)
z1(t)

m
+ q1α

z2(t)

m

]

(1− It>c2) +

+

[

p1β + (q1β + δβ)
z1(t)

m
+ q1β

z2(t)

m
+ q1β

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

,

z′2(t)=m

{[

p2α + (q2α − δα)
z1(t)

m
+ q2α

z2(t)

m

]

(1− It>c2) +

+

[

p2β + q2β +
z1(t)

m
+ (q2β + δβ)

z2(t)

m
+ q2β

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

, (A.4)

z′3(t)=m

{[

p3 + (q3 − δβ)
z1(t)

m
+ (q3 − δβ)

z2(t)

m
+ q3

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

,

m=mα(1− It>c2) +mβIt>c2 ,

z(t)=z1(t) + z2(t) + z3(t)It>c2 .

Under the restriction δα = 0 in the first phase and εβ = ηβ = θβ = ξβ = 0 in

the second phase, model (2.1) reduces a balanced model, called the competition and

regime change diachronic (CRCD) model of three competitors, which can be expressed
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as follows:

z′1(t)=m

{[

p1α + q1α
z1(t)

m
+ q1α

z2(t)

m

]

(1− It>c2) +

+

[

p1β + q1β
z1(t)

m
+ q1β

z2(t)

m
+ q1β

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

,

z′2(t)=m

{[

p2α + q2α
z1(t)

m
+ q2α

z2(t)

m

]

(1− It>c2) +

+

[

p2β + q2β
z1(t)

m
+ q2β

z2(t)

m
+ q2β

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

, (A.5)

z′3(t)=m

{[

p3 + q3
z1(t)

m
+ q3

z2(t)

m
+ q3

z3(t)

m

]

It>c2

}[

1−
z(t)

m

]

,

m=mα(1− It>c2) +mβIt>c2 ,

z(t)=z1(t) + z2(t) + z3(t)It>c2 .

If all three competitors enter the market together, then there is a synchronic compe-

tition. In this case, only the second phase of model (2.1) is appropriate; this is called

the USC model, and it can be represented as

z′1(t)=m

[

p1 + (q1 + ε)
z1(t)

m
+ (q1 + η)

z2(t)

m
+ q1

z3(t)

m

] [

1−
z(t)

m

]

,

z′2(t)=m

[

p2 + (q2 + θ)
z1(t)

m
+ (q2 + ξ)

z2(t)

m
+ q2

z3(t)

m

] [

1−
z(t)

m

]

, (A.6)

z′3(t)=m

[

p3 + (q3 − ε− θ)
z1(t)

m
+ (q3 − η − ξ)

z2(t)

m
+ q3

z3(t)

m

] [

1−
z(t)

m

]

,

z(t)=z1(t) + z2(t) + z3(t).

Under the restriction ε = η = θ = ξ = 0, (A.6) reduces a balanced model, called the

BSC model of three competitors, and it can be written as

z′1(t)=m

[

p1 + q1
z1(t)

m
+ q1

z2(t)

m
+ q1

z3(t)

m

] [

1−
z(t)

m

]

,

z′2(t)=m

[

p2 + q2
z1(t)

m
+ q2

z2(t)

m
+ q2

z3(t)

m

] [

1−
z(t)

m

]

, (A.7)

z′3(t)=m

[

p3 + q3
z1(t)

m
+ q3

z2(t)

m
+ q3

z3(t)

m

] [

1−
z(t)

m

]

,

z(t)=z1(t) + z2(t) + z3(t).
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Applications of the

three-competitor diffusion model

with a fixed m to other countries

B.1 China

Over the last few decades, China has been observing a consistent and remarkable

expansion in the energy sector (Shen and Luo, 2015). With an average annual increase

of 50%, the total energy consumption reached 2329 Mtoe in 2009 from 132 Mtoe in

1965. By this time, China become the world’s largest energy consumer (see source-

specific data in British Petroleum, 2016). To meet this rapidly rising demand, China

produces huge amounts of energy from coal. Roughly 90% of the world’s total coal

is produced by 10 countries, with China in the lead (47%). Moreover, the country

consumes more than half of the total global coal consumption1. Lack of environmental

consciousness over the decades leads China to depend heavily on coal (Crompton and

Wu, 2005). However, in recent years, environmental awareness regarding the use of green

energy has been developing among China’s citizens. This trend has been acknowledged

by policymakers, which is reflected in the respective public policies. For instance, since

2005, the Government of China has approved several policies to support the growth of

renewables and reduce the CO2 emissions (Shen and Luo, 2015). These policies were

also underlined to sustain local industries (e.g. PV cell manufacturers). A faster growth

in the consumption of CGON sources was observed between 2000 and 2010 (Figure B.1).

1Worldatlas. The top 10 coal producers worldwide. http://www.worldatlas.com/articles/the-top-
10-coal-producers-worldwide.html
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Table B.1: China, 2CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the UUC model with two exponential shocks (one for each
competitor).

Parameter Estimate Standard error 95% Confidence interval

m 72383.6 5667.05 {61123.3, 83643.9}

p1 0.00207 0.00024 {0.00159, 0.00254}

q1 0.04959 0.36525 {−0.67614, 0.77532}

δ 0.01913 0.37891 {−0.73375, 0.77201}

c1 0.41564 0.02368 {0.36859, 0.46270}

b1 0.10764 0.01249 {0.08283, 0.13245}

a1 40.0000 0.00106 {39.9979, 40.0021}

p2 0.00015 0.00014 {−0.00013, 0.00043}

q2 0.42129 0.23942 {−0.05444, 0.89702}

γ 0.43481 0.24954 {−0.06102, 0.93063}

c2 0.09416 0.19070 {−0.28475, 0.47307}

b2 0.19221 0.13706 {−0.08013, 0.46454}

a2 40.7539 0.00345 {40.7471, 40.7608}

R2 0.99822

that, after 2002, the use of coal sharply increased in China, as it is relatively cheap to

extract. A sharp increasing trend in the GHG emissions in China has been observed

since the early 1990s, and by 2007, the emission exceeded the amount produced by

the United States, the world’s biggest carbon dioxide polluter. Moreover, the positive

shock for renewables may indicate the country’s policies with an alignment to the Paris

Agreement, where China declared that it would cut the carbon intensity by 60–65% by

2030, compared with the 2005 level2.

While focussing the findings of 3CM, we observe that the second phase of the market

potential (m̂β = 70932 Mtoe) is about two times larger than that of the first phase

(m̂α = 37405 Mtoe). Since the innovative and imitative components of the first phase

are similar to those with 2CM, we concentrate on the second phase only. Substituting

the estimated parameters in the second phase of model (2.1), we obtain the following

three equations:

z′1(t) ∝− 0.00055 + 0.09754 z1(t)/mβ − 0.33685 z2(t)/mβ − 0.45635 z3(t)/mβ

z′2(t) ∝ 0.00037− 0.01270 z1(t)/mβ + 0.37428 z2(t)/mβ − 0.09156 z3(t)/mβ

z′3(t) ∝ 0.00054− 0.00453 z1(t)/mβ + 0.04288 z2(t)/mβ + 0.62822 z3(t)/mβ.

2www.nytimes.com/2017/06/02/world/asia/chinas-role-in-climate-change-and-possibly-in-
fighting-it.html
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Table B.2: China, 3CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the UCRCD model with two shocks (one for CGO sources and
the other for renewables).

Parameter Estimate Standard error 95% Confidence interval

mα 37405.2 9929.03 {17711.0, 57099.4}

p1α 0.00367 0.00084 {0.00200, 0.00534}

q1α 0.13909 0.75055 {−1.34963, 1.62781}

δα −0.05968 0.77215 {−1.59123, 1.47186}

p2α 0.00008 0.00025 {−0.00043, 0.00058}

q2α −0.05403 0.74527 {−1.53227, 1.42421}

mβ 70932.0 7204.58 {56641.7, 85222.2}

p1β −0.00055 0.00229 {−0.00509, 0.00399}

q1β −0.45635 3.17901 {−6.76190, 5.84921}

εβ 0.55389 3.19182 {−5.77706, 6.88484}

ηβ 0.11950 3.22989 {−6.28697, 6.52596}

c1 0.32721 0.03217 {0.26340, 0.39102}

b1 0.12754 0.01415 {0.09946, 0.15561}

a1 39.1721 0.00134 {39.1694, 39.1747}

p2β 0.00037 0.00279 {−0.00516, 0.00590}

q2β −0.09156 3.20178 {−6.44228, 6.25915}

θβ 0.07886 3.21342 {−6.29495, 6.45268}

ξβ 0.46584 3.31426 {−6.10797, 7.03966}

c2 0.26777 0.60561 {−0.93346, 1.46899}

b2 0.14337 0.20467 {−0.26259, 0.54934}

a2 41.0000 0.02325 {40.9539, 41.0461}

p3 0.00054 0.00140 {−0.00223, 0.00331}

q3 0.62822 1.98373 {−3.30650, 4.56294}

R2 0.99852

the use of nuclear sources of energy is curbed by the use of CGO sources because of

their long tradition and lower costs.

The solid lines (the fitted data) in Figures B.1 and B.2 accurately follow the respective

observed paths. Hence, the models fit well to the data, and the predictions over the

period from 2016 to 2020 may be considered reliable. According to the 2CM predictions,

the consumption of CGON sources may decline sharply against a notable increase in the

use of renewables. In contrast, the predictions using the 3CM models indicate a rapid

decline of CGO sources, substantial increase of renewables and stable state or trivial

increase of nuclear sources. This may be due to the continuous evolution of China’s

energy mix, with coal’s dominance declining from 66% in 2014 to 47% in 2035, but
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Table B.3: China. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.08869) (σ̂u=0.32436) (σ̂u=0.07742) (σ̂u=0.15474) (σ̂u=0.37148)

2016 948.59818 468.13508 805.04921 221.20378 53.80993

2017 919.05892 516.44322 768.44861 240.71042 55.15661

2018 867.91948 559.11796 712.67286 255.32121 54.26001

2019 794.51652 589.58268 639.33230 261.96062 50.90648

2020 700.43216 600.06843 552.25140 257.83103 45.26108

natural gas more than doubling to 11%. Moreover, the share of oil remains consistent

(at around 19%), and the share of nuclear energy increases by 12%. The target use of

renewables is surprisingly high (+593%; see British Petroleum, 2016).

We computed the ‘scaled residuals’ for each of the products for both models (2CM and

3CM). The Kolmogorov–Smirnov test confirmed the normality assumption for scaled

residuals. The standard deviations of scaled residuals (σ̂u) for CGON and renewables

in the 2CM are 0.08869 and 0.32436, respectively, and those obtained with the 3CM

are 0.07742 for CGO, 0.15474 for renewables and 0.37148 for nuclear. Accordingly,

we computed the 2σ confidence bands, represented by broken lines in Figures B.1 and

B.2, and the corresponding band width (see Table B.3). The confidence bands of the

prediction for renewables obtained through the 3CM are almost half of those obtained

through the 2CM. This means that the 3CM is more appropriate for providing reliable

predictions about the energy market of China. Both models suggest an increasing trend

in the consumption of renewables in 2016–2020. In 2014, a 32% increase from the

previous year in the investments in renewables was reported, and the investment of

China in this sector reached US$ 89.5 billion (Bloomberg New Energy Finance (BNEF),

2015). China is the leading investor in renewables, and by 2020, the world’s largest

energy operator plans to have 100 GW of solar and 200 GW of wind installed (China

Analysis, 2015).

B.1.1 An alternative partition of energy sourcs as two com-

petitors

Findings of the previous section conclude that the 3CM performs better than the

2CM. This is true in describing the lifecycle of energy sources and also in achieving

reliable predictions. Further comparison of the performance of 3CM and 2CM with an
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Table B.5: China. Confidence band width of 2CM (CGO and RenNuc) and 3CM
predictions in 2016–2020.

Year
2CM 3CM

CGO RenNuc CGO Renewables Nuclear

(σ̂u=0.08855) (σ̂u=0.35136) (σ̂u=0.07742) (σ̂u=0.15474) (σ̂u=0.37148)

2016 935.63688 558.57264 805.04921 221.20378 53.80993

2017 903.42727 604.04859 768.44861 240.71042 55.15661

2018 849.93114 638.81646 712.67286 255.32121 54.26001

2019 774.95722 656.22851 639.33230 261.96062 50.90648

2020 680.61999 649.62854 552.25140 257.83103 45.26108

each competitor) is applied. A substantially large value of R2 (0.99812) proves that the

fitting is good (see Table B.4). The shocks are significantly incorporated into the model,

as the F -ratio, comparing the fitted models with and without shocks, provides a large

value (F̂ = 84.88399). The fitted lines in Figure B.3 accurately follow the observed

paths, consequently, the predictions from 2016 to 2020 are reliable. The scaled residuals

of CGO and RenNuc energy sources follow a Gaussian distribution, which is verified by

the Kolmogorov–Smirnov test. Hence, the 2σ confidence bands for predictions are com-

puted and represented by broken lines in Figure B.3. The band width for predictions is

also computed and shown in Table B.5.

In both 2CM and 3CM, only CGO sources are common, hence, the corresponding

findings are considered in making a comparison between the two models. We see that

the band width for CGO sources using 2CM is larger than that obtained with 3CM.

This means that the 2CM predictions are less reliable than the 3CM predictions. This

result confirms the conclusion reached when nuclear energy was added to CGO sources.

That is, the 3CM models are more suitable for reducing the forecasting uncertainty

along with describing the more specific features of products.

B.2 Finland

Among the EU member states, Finland stands at the second position (after Luxem-

burg) in per capita energy consumption. In 2003, the per capita energy consumption of

Finland (188.3) was much higher than the EU-25 average (100) and Japanese (107.2)

levels. The consumption is comparable with that of the United States (207.3; Eurostat,

2006). With an alignment to the Kyoto Protocol, the Government of Finland has de-

veloped a national strategy ensuring the reduction of the emission of gases responsible
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Table B.7: Finland, 3CM. Estimates, standard errors and marginal linearised 95%
confidence interval of the UCRCD model with three shocks, one for each competitor.

Parameter Estimate Standard error 95% Confidence interval

mα 415.510 88.3780 {240.450, 590.570}

p1α 0.01757 0.00351 {0.01063, 0.02452}

q1α 0.30491 0.21822 {−0.12734, 0.73716}

δα −0.22818 0.27058 {−0.76415, 0.30778}

p2α 0.00579 0.00135 {0.00311, 0.00847}

q2α −0.17941 0.22732 {−0.62968, 0.27086}

mβ 1499.39 97.9620 {1305.35, 1693.44}

p1β 0.01813 0.00222 {0.01374, 0.02253}

q1β 0.41368 0.07792 {0.25933, 0.56802}

εβ −0.47725 0.08317 {−0.64200,−0.31250}

ηβ −0.33901 0.18450 {−0.70446, 0.02645}

c1 0.19662 0.03180 {0.13363, 0.25961}

b1 0.00899 0.06386 {−0.11751, 0.13549}

a1 37.9798 0.08955 {37.8024, 38.1571}

p2β 0.00169 0.00211 {−0.00250, 0.00587}

q2β 0.06223 0.07833 {−0.09293, 0.21739}

θβ −0.05986 0.08175 {−0.22178, 0.10206}

ξβ −0.06988 0.19678 {−0.45968, 0.31991}

c2 0.00391 0.01273 {−0.02129, 0.02912}

b2 0.16175 0.05223 {0.05830, 0.26521}

a2 14.9531 12.6061 {−10.0173, 39.9235}

p3 −0.00741 0.00159 {−0.01055,−0.00427}

q3 −0.22710 0.05179 {−0.32969,−0.12451}

c3 0.10944 0.07572 {−0.04056, 0.25943}

b3 0.18317 0.04077 {0.10242, 0.26392}

a3 37.8745 0.57089 {36.7437, 39.0053}

R2 0.99080

declining trend in the use of such sources has been observed since then.

Model (A.1), UUC, with two exponential shocks (one for each competitor) is applied

to the data from Finland, partitioned as CGON sources and renewables. An adequately

large value of R2 (0.99305) suggests that the fitting is good overall. The fitted model

significantly differs from the UUC model without shocks, as the value of the F -ratio

(F̂ = 4.457255) is larger than the threshold of 4.

When the data are partitioned into three sources (CGO, renewables and nuclear),

we consider that CGO and renewables exist form the beginning, while nuclear enters
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the market later. Thus, the model in Equation (2.1), a UCRCD model with three expo-

nential shocks (one for each competitor), is suitably fitted. The shocks are significant,

since the value of the F -ratio, comparing the fitted model with the UCRCD model

without shocks, is large (F̂ = 9.85032). The shocks rose at time 1965+â1 ' 2003 for

the CGO time series, time 1965+â2 ' 1980 for renewables and time 1965+â3 ' 2003

for nuclear. All three shocks were estimated to be positive (ĉ1 = 0.19662, ĉ2 = 0.16175

and ĉ3 = 0.10944) and not yet faded in time (b̂1, b̂2 and b̂3 are positive). The shock of

renewables may be motivated by the incentives provided by the government to increase

renewable consumption in 1980–81, when CGO consumptions abruptly declined. More-

over, the shock of nuclear may be linked to Finland’s parliamentary vote in May 2002,

approving the building of a fifth nuclear power reactor (NPF, 2018).

The market potential of the second phase (m̂β = 1499.39) is more than three times

that of the first phase (m̂α = 415.51). Now, by substituting the estimated parameters

in the second phase of model (2.1), the following three equations can be obtained:

z′1(t) ∝− 0.00741− 0.06357 z1(t)/mβ + 0.07467 z2(t)/mβ + 0.41368 z3(t)/mβ

z′2(t) ∝ 0.00169 + 0.12209 z1(t)/mβ − 0.00765 z2(t)/mβ + 0.06223 z3(t)/mβ

z′3(t) ∝− 0.00741 + 0.31001 z1(t)/mβ + 0.18179 z2(t)/mβ − 0.22710 z3(t)/mβ.

The innovative effect of CGO (p̂1 = 0.01813) is far larger than that of nuclear (p̂3 =

−0.00741), and the effect of renewables is also considerable (p̂2 = 0.00169). The within-

product WOM effect of CGO is negative (q̂1β + ε̂β = −0.06357), and its cross-product

effects by both renewables and nuclear are positive (q̂1β + η̂β = 0.07467 and q̂1β =

0.41368, respectively). Similarly, renewables and nuclear have negative within-product

effects (q̂2β+ ξ̂β = −0.00765 for renewables and q̂3β = −0.22710 for nuclear) and positive

cross-product effects. More specifically, renewables’ cross-product effects by CGO and

nuclear are q̂2β+θ̂β = 0.12209 and q̂2β = 0.06223, respectively. The corresponding effects

of nuclear by CGO and renewables are q̂3β − ε̂β − θ̂β = 0.31001 and q̂3β − η̂β − ξ̂β =

0.18179, respectively. That is, none of the products’ diffusion is sustained by further

internal consumptions; however, they are supported by the spread of their competitors.

Specifically, nuclear receives strong support from its competitors, followed by CGO

sources and renewables.

In Figure B.5, the fitted lines accurately follow the observed path. The predictions

suggest a steep decline of CGO sources and a narrower increase of renewables in 2016–

2020, with a minor decline of nuclear. Observe that the fitted and observed values

are not well matched in the first part of the nuclear series. Therefore, we removed
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Table B.8: Finland. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.04537) (σ̂u=0.20138) (σ̂u=0.05406) (σ̂u=0.10394) (σ̂u=0.05438)

2016 3.48633 5.16328 2.99068 2.79693 1.13561

2017 3.34114 5.22772 2.80906 2.88174 1.12100

2018 3.18870 5.27605 2.62009 2.96363 1.09977

2019 3.03080 5.31633 2.42428 3.03839 1.07049

2020 2.86565 5.32438 2.22249 3.10090 1.03197

the first four residuals of nuclear when computing the scaled residuals’ variance. The

Kolmogorov–Smirnov test confirmed the assumption that scaled residuals of 2CM and

3CM follow a Gaussian distribution. The standard deviations of scaled residuals (σ̂u)

using 2CM are 0.04537 and 0.20138 for CGON and renewables, and those using 3CM

are 0.05406, 0.10394 and 0.05438 for CGO, renewables and nuclear, respectively. We

computed 2σ confidence bands of predictions for both models, see Figures B.4 and B.5,

and the corresponding band width, shown in Table B.8. With respect to the 2CM,

the confidence bands of renewables predictions with the 3CM are much narrower. This

means that the 3CM is more appropriate to make forecasts on the Finnish energy market.

B.3 France

France has the second largest electricity generation capacity of the EU member

states, and the second ‘less-carbonised’ electricity generation mix after Sweden (De-

loitte, 2015b). Of the French primary energy consumption, nuclear energy accounts

for the greatest share today, while fossil fuels still play an important role. Biomass is

the leading source of renewable energy in France (more than 50% of renewable con-

sumption, second in Europe after Germany), ahead of hydroelectricity, wind and solar

energy3. Despite having a high-volume electricity generation capacity, France imports

almost half of its energy demands and uses around 2.5% of the global energy supply

(Planete-energies, 2015a). According to source-specific data (British Petroleum, 2016),

in 1965, French total energy consumption was approximately 111 Mtoe, where the share

of renewables, represented only by hydroelectric energy, was only 11 Mtoe. Geothermal

and biomass were launched as renewables in 1966, and after more than two decades,

3Renewable energy research in France. campusfrance.org.
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Table B.9: France, 2CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the BSC model with three shocks (two for CGON sources and
one for renewables).

Parameter Estimate Standard error 95% Confidence interval

m 16508.4 748.777 {15020.4, 17996.5}

p1 0.00659 0.00029 {0.00602, 0.00716}

q1 0.04570 0.00208 {0.04156, 0.04983}

c1 −0.15792 0.02047 {−0.19859,−0.11724}

b1 −0.06897 0.02803 {−0.12466,−0.01327}

a1 17.9545 0.03154 {17.8918, 18.0172}

c2 0.04698 0.01866 {0.00990, 0.08407}

b2 −0.07278 0.19762 {−0.46550, 0.31994}

a2 38.9892 0.25129 {38.4898, 39.4886}

p2 0.00070 0.00010 {0.00050, 0.00090}

q2 0.00220 0.00047 {0.00126, 0.00313}

c3 0.12657 0.17695 {−0.22508, 0.47823}

b3 0.22943 0.20716 {−0.18227, 0.64113}

a3 43.5560 2.24 ∗ 10−7 {43.5560, 43.5560}

R2 0.99729

shocks, provides the value of F̂ = 12.74395. The shocks occurred at 1965+ â1 = 1981 for

the CGO time series, 1965+ â2 ' 2008 for renewables and 1965+ â3 ' 2014 for nuclear.

The shocks for CGO and nuclear sources were estimated to be negative (ĉ1 = −0.26083

and ĉ3 = −0.08535, respectively) and that of renewables was estimated to be positive

(ĉ2 = 0.08360). None of the three shocks decayed over time (positive b̂1, b̂2 and b̂3).

The shock for CGO sources may represent the effect of the second oil crisis in 1979, as

France does not have significant oil resources on its territory. The shock of renewables

can be explained in that the French renewable energy sector offers admirable investment

opportunities owing to the FiT mechanism, announced in 2008, for boosting renewables

growth. The shock of nuclear may be an effect of the French National Assembly’s

Deputies voting to reduce the country’s reliance on nuclear power to reduce its 2012

electricity supply levels by half by the year 20504.

4The Local. www.thelocal.fr/20141010/france-votes-to-reduce-reliance-on-nuclear-power
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Table B.10: France, 3CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the USC model with three shocks (one for each competitor).

Parameter Estimate Standard error 95% Confidence interval

m 19326.4 3577.46 {12250.3, 26402.5}

p1 0.00604 0.00110 {0.00387, 0.00821}

q1 0.06264 0.01942 {0.02424, 0.10104}

ε 0.07453 0.01892 {0.03711, 0.11195}

η −1.15514 0.25088 {−1.65137,−0.65892}

c1 −0.26083 0.02215 {−0.30464,−0.21702}

b1 0.01144 0.01263 {−0.01353, 0.03642}

a1 16.0000 0.00007 {15.9999, 16.0001}

p2 0.00053 0.00016 {0.00022, 0.00085}

q2 0.00859 0.01047 {−0.01213, 0.02931}

θ 0.02821 0.01237 {0.00374, 0.05268}

ξ −0.36854 0.23114 {−0.82572, 0.08865}

c2 0.08360 0.20395 {−0.31981, 0.48702}

b2 0.29126 0.27815 {−0.25892, 0.84143}

a2 42.5465 0.00497 {42.5367, 42.5563}

p3 −0.00074 0.00016 {−0.00106,−0.00042}

q3 −0.01491 0.01981 {−0.05409, 0.02429}

c3 −0.08535 0.06751 {−0.21889, 0.04818}

b3 0.18547 0.40291 {−0.61147, 0.98240}

a3 48.9757 0.00107 {48.9736, 48.9778}

R2 0.98978

By substituting the estimated parameter values in model (A.6), the following three

equations can be obtained:

z′1(t) ∝ 0.00604 + 0.13717 z1(t)/m− 1.0925 z2(t)/m+ 0.06264 z3(t)/m

z′2(t) ∝ 0.00053 + 0.03680 z1(t)/m− 0.35995 z2(t)/m+ 0.00859 z3(t)/m

z′3(t) ∝− 0.00074− 0.11765 z1(t)/m+ 1.50877 z2(t)/m− 0.01491 z3(t)/m.

The innovative effect for CGO sources (p̂1 = 0.00604) and renewables (p̂2 = 0.00053) is

remarkably larger than the effect for nuclear (p̂3 = −0.00074). Turning to the imitative

components, the within-product WOM effect of CGO is positive (q̂1+ ε̂ = 0.13717). The

cross-product effects on CGO by renewables and nuclear are negative (q̂1+ η̂ = −1.0925)

and positive (q̂1 = 0.06264), respectively. This means the diffusion level of CGO is

accelerated by both its spread and that of nuclear, but it is reduced by the spread

of renewables. Renewables’ within-product effect is negative (q̂2 + ξ̂ = −0.35995) and
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Table B.11: France. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.04479) (σ̂u=0.10900) (σ̂u=0.06340) (σ̂u=0.13745) (σ̂u=0.08021)

2016 37.61000 10.05058 29.61929 11.57386 31.91185

2017 36.71964 10.96417 28.53481 11.82726 31.79371

2018 35.78628 12.09893 27.40748 11.84782 31.39164

2019 34.81352 13.49955 26.27254 11.51641 30.56280

2020 33.80134 15.21805 25.17724 10.76650 29.14194

with 2CM are 0.04479 for CGON and 0.10900 for renewables. Those for 3CM products

are 0.06340, 0.13745 and 0.08021 for CGO, renewables and nuclear, respectively. Ac-

cordingly, we computed 2σ confidence bands of 2CM and 3CM predictions, represented

in Figures B.6 and B.7, and the corresponding band width, shown in Table B.11. The

σ̂u and Figures B.6 and B.7 highlight that predictions for renewables using the 2CM are

more reliable than those obtained with the 3CM.

B.4 Germany

Germany is a huge energy consumer, with one of the world’s most powerful and

competitive economy. Around four-fifths of German energy comes from fossil fuels, to

which petroleum contributes the lion share, followed by coal and natural gas (Deloitte,

2015c). Despite having the largest energy system in Europe, Germany depends heavily

on imported fossil fuels. However, the country has the largest share of renewable power

(excluding hydroelectricity) in Europe in terms of installed capacity, which is the third

largest in the world (REN21, 2014). To decarbonise the economy, the country has also

introduced a transformative energy transition, called the Energiewende. Through this

policy, Germany planned to phase out nuclear energy by 2022 (Agora Energiewende,

2015).

In 1965, Germany consumed about 250 Mtoe of energy from CGON sources and

only 3.7 Mtoe from renewables (British Petroleum, 2015). Hydroelectricity has been

representing renewables from the beginning. Geothermal and biomass, wind and solar

energy were added to the renewable energy mix in 1979, 1986 and 1990, respectively.

Figure B.8 depicts that the consumption of CGON sources sharply increased in the first

few years. It was unstable during the period 1972–2000 and gradually declined after that
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built in 1989. Nevertheless, March 2011, Germany obtained one-fourth of its electricity

from nuclear sources of energy using 17 reactors (NPG, 2018). According to source-

specific data (British Petroleum, 2016), Germany started consuming nuclear energy in

1965. As Figure B.9 shows, initially, the amount of nuclear consumption was below 0.05

Mtoe, which was much lower than the renewables consumption (3.7 Mtoe). However,

through a continuous rising trend, nuclear consumption outstripped renewables in 1973,

reached a plateau between 1985 and 2007 and gradually declined after that point. With

some instabilities, the consumption of CGO sources sharply increased until 1976. After

this year, it substantially declined.

First, the data from Germany were partitioned as CGON sources and renewables,

and model (A.2), USC, with three exponential shocks (two for CGON and one for

renewables) was fitted. The shocks are significant, since the value of F -ratio, obtained

by comparing the USC model with and without shocks, is large (F̂ = 11.26911).

Subsequently, the data were separated into three sources, as follows: CGO, renewables

and nuclear. Since all three products were simultaneously launched, model (A.6), USC,

with four exponential shocks (two for CGO, one for renewables and one for nuclear) was

fitted. A substantially large value of R2 (0.99869) is a proof of a good model fit. The

F -statistic, comparing the fitted model with the USC model without shocks, provides

a large value (F̂ = 24.94398). That is, the shocks are significantly incorporated into

the model. Two shocks occurred for the CGO time series, at times 1965 + â1 ' 1983

and 1965 + â2 ' 1997. The former shock was estimated as negative (ĉ1 = −0.08340)

and decaying over time (negative b̂1). The latter shock was found to be positive (ĉ2 =

0.07720) and not yet faded over time (positive b̂2). The negative shock for CGO sources

may be due to the second oil crisis of 1979, which notably reduced the German fossil

fuel consumption, as occurred throughout Europe (Planete-energies, 2015b). However,

the positive shock may be due to the energy regulation, passed in 1998, that marked full

legal liberalisation of the German natural gas sector according to European Union orders

(EIA, 2003). For renewables, a positive shock (ĉ3 = 0.34621) rose at time 1965 + â3 '

1995, and this did not fade over time (positive b̂3). This shock may be due to numerous

incentives, especially relating to the Renewable Energy Sources Act or Erneuerbare-

Energien-Gesetz (EEG), that were approved; as a result of this, the share of renewables

in the German energy mix has been growing rapidly since 1995. Furthermore, for nuclear

energy, a negative shock (ĉ4 = −0.09755) arose at time 1965+ â4 ' 1997, but the shock

did not decay over time (positive b̂4).
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Table B.13: Germany, 3CM. Estimates, standard errors and marginal linearised
95% confidence intervals of the USC model with four shocks (two for CGO sources,
one for renewables and one for nuclear).

Parameter Estimate Standard error 95% Confidence interval

m 22949.8 6599.82 {9892.83, 36006.8}

p1 0.01096 0.00309 {0.00486, 0.01707}

q1 −0.25658 0.16526 {−0.58352, 0.07036}

ε 0.30602 0.16523 {−0.02087, 0.63291}

η −0.23910 0.19507 {−0.62502, 0.14682}

c1 −0.08340 0.01840 {−0.11980,−0.04700}

b1 −0.06659 0.10351 {−0.27138, 0.13819}

a1 17.8534 0.04797 {17.7585, 17.9483}

c2 0.07720 0.02163 {0.03441, 0.11998}

b2 0.13240 0.00789 {0.11679, 0.14802}

a2 31.9969 0.08593 {31.8269, 32.1669}

p2 0.00015 0.00011 {−0.00007, 0.00038}

q2 0.00050 0.01992 {−0.03891, 0.03992}

θ −0.00312 0.02089 {−0.04444, 0.03820}

ξ 0.22807 0.31156 {−0.38831, 0.84444}

c3 0.36661 0.91081 {−1.43533, 2.16854}

b3 0.06381 0.10488 {−0.14367, 0.27130}

a3 31.8230 0.94243 {29.9585, 33.6875}

p3 −0.00018 0.00012 {−0.00040, 0.00005}

q3 0.07318 0.03730 {−0.00062, 0.14698}

c4 −0.09760 0.08549 {−0.26674, 0.07154}

b4 0.06591 0.08614 {−0.10451, 0.23634}

a4 31.7783 0.42105 {30.9453, 32.6113}

R2 0.99869

Now, substituting the parameter estimates in model (A.6), we obtain the following

three equations:

z′1(t) ∝ 0.01096 + 0.04944 z1(t)/m− 0.49568 z2(t)/m− 0.25658 z3(t)/m

z′2(t) ∝ 0.00015− 0.00266 z1(t)/m+ 0.22935 z2(t)/m+ 0.00050 z3(t)/m

z′3(t) ∝− 0.00018− 0.22970 z1(t)/m+ 0.08341 z2(t)/m+ 0.07318 z3(t)/m.

The innovative component of CGO sources is much larger (p̂1 = 0.01096) than that

of nuclear (p̂3 = −0.00018) and renewables (p̂2 = 0.00015) sources. However, we see

that Germany has a greater interest in the innovation of green energy technology than
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Table B.14: Germany. Confidence band width of 2CM and 3CM predictions in
2016–2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.03030) (σ̂u=0.13268) (σ̂u=0.02642) (σ̂u=0.12681) (σ̂u=0.18326)

2016 32.90884 25.82253 26.71890 24.79289 12.45192

2017 32.55353 28.76076 26.25334 27.66530 10.81685

2018 32.25193 31.95426 25.64824 30.78123 9.19791

2019 32.00931 35.40394 24.86544 34.13294 7.62200

2020 31.82991 39.10532 23.86324 37.70647 6.11711

2016–2020. Since the first five estimated values of the nuclear time series are not well

matched with the observed data, we have ignored them in computing the scaled resid-

uals’ variance. The Kolmogorov–Smirnov test confirmed the normality assumption of

the scaled residuals. The standard deviations of scaled residuals (σ̂u) for 2CM products

are 0.03030 and 0.13268 for CGON and renewables, and those for 3CM products are

0.02642, 0.12681 and 0.18326 for CGO, renewables and nuclear, respectively. Thus, we

computed the 2σ confidence bands, represented by broken lines in Figures B.8 and B.9,

and the corresponding band width (see Table B.14). In comparison with the 2CM, the

3CM gives narrower confidence bands of predictions for renewables. This implies that

the 3CM predictions may be more reliable.

B.5 India

In 2011, India became the world’s fourth-largest energy consumer, following China,

the United States and Russia. India’s dependence on imported energy resources and the

inconsistent restructuring of the energy sector are challenged to meet the rising demand.

According to source-specific data (British Petroleum, 2016), in 1965, India’s total energy

consumption was only 53 Mtoe, and more than 48 Mtoe came from CGON sources. That

is, initially, the share of renewables produced by hydroelectricity was extremely limited.

Other renewable sources (geothermal, biomass and wind energy) were launched in 1990s,

while solar power was launched in 1995. Figure B.10 depicts an exponential curve for

the consumption of CGON sources and a slowly rising trend in the use of renewables.

Indian Electricity Scenario (2016) reported some recent improvements in the renewable

energy mix. For instance, even if 62.1% of the electricity still comes from coal thermal

power, 27.4% comes from renewables. Before March 31, 2014, 21 318 (3.6%) villages in
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still far from reaching maturity. If we focus on the second phase findings (Table B.16),

the innovative components of all three competitors are extremely small (p̂1β = 1.36∗10−5

for CGO, p̂2β = 2.20 ∗ 10−6 for renewables and p̂3 = −7.84 ∗ 10−8 for nuclear), especially

for nuclear sources. By substituting the parameter estimates in the second phase of the

CRCD model, we obtain the following three equations:

z′1(t) ∝ 1.36 ∗ 10−5 + 5.14 ∗ 10−2 z(t)/mβ

z′2(t) ∝ 2.20 ∗ 10−6 + 3.02 ∗ 10−3 z(t)/mβ

z′3(t) ∝ −7.84 ∗ 10−8 + 6.80 ∗ 10−5 z(t)/mβ.

Here, the nuclear imitative effect (WOM) is negligible (q̂3 = 6.80 ∗ 10−5). This is linked

to the low spread of nuclear diffusion. Conversely, the spread of CGO diffusion is high

(q̂1β = 5.14 ∗ 10−2), and that of renewables is also considerable (q̂2β = 3.02 ∗ 10−3).

The observed and fitted values, in Figures B.10 and B.11, are extremely close to

each other, resulting in reliable predictions from 2016 to 2020. According to the trend

of predictions, all sources of energy may increase in 2016–2020. In fact, in the 12th 5-

year plan of the Planning Commission, the estimated total domestic energy production

reaches 669.6 Mtoe by 2016–17 and 844 Mtoe by 2021–22 (Kumar and Vimala, 2012).

Moreover, India’s energy consumption is set to grow 4.2% per year by 2035, faster than

that of all the world’s major economies (British Petroleum, 2016).

Through a close inspection, we can see that, in the first part of the nuclear series, the

fitted values do not satisfactorily follow the observed data. Thus, we removed the first

eight residuals when computing the scaled residuals. The Kolmogorov–Smirnov test

confirmed that scaled residuals follow a Gaussian distribution. The standard deviations

of scaled residuals (σ̂u) using 2CM are 0.05350 for CGON and 0.15818 for renewables.

Those obtained with 3CM are 0.04282, 0.13245 and 0.19164 for CGO, renewables and

Table B.17: India. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear
(σ̂u=0.05350) (σ̂u=0.15818) (σ̂u=0.04282) (σ̂u=0.13245) (σ̂u=0.19164)

2016 147.435381 28.139080 116.68254 23.40227 6.35929
2017 155.530653 29.551810 123.08152 24.56385 6.74071
2018 164.066746 31.041335 129.82638 25.78821 7.14275
2019 173.065060 32.611787 136.93542 27.07867 7.56650
2020 182.553412 34.267516 144.42786 28.43874 8.01310
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nuclear, respectively. Thus, we computed 2σ confidence bands of 2CM and 3CM pre-

dictions, represented by broken lines in Figures B.10 and B.11, and the respective band

width, shown in Table B.17. The confidence bands of renewable predictions by 3CM

are narrower than those of 2CM. That is, the 3CM predictions are more trustworthy.

B.6 Japan

Japan is the frontrunner in energy technology development and a major exporter in

that sector. However, the security of the energy supply has customarily been critical

to Japan, as it depends on imported energies, especially in terms of its entire fossil fuel

supply (IEA, 2016b). In 1965, Japan consumed only 16 Mtoe of energy from renewables

(represented by hydroelectricity) against about 138 Mtoe CGON consumption. The

2015 Key World Energy Statistics reported that hydroelectricity (including pumped

storage) is the leading renewable energy source of Japan, with an installed capacity of

about 50 GWs. Geothermal and biomass started being exploited in 1970, and after more

than two decades, solar (in 1990) and wind (in 1993) were added to the renewable energy

mix. Figure B.12 shows that the consumptions of CGON sources sharply increased in

the first few years. After some fluctuations, it further increased in the period 1984–2006

and rapidly declined after that. The use of renewables was almost stable or increased

trivially over time.

Japan is the sole country that suffered overwhelming effects from nuclear the World

War II, with over 100 000 deaths. However, the country embraced the peaceful use of

nuclear technology to afford a significant portion of its electricity (Nuclear Power in

Japan (NPJ), 2018). Japan’s first commercial nuclear power reactor started operating

in mid-1966. Initially, the consumption of nuclear was extremely low (< 0.05 Mtoe),

against extremely large fossil fuel (about 138 Mtoe) and substantial renewable (about

16 Mtoe) consumptions (see source-specific data in British Petroleum, 2016). Figure

B.13 shows that, through a continuously increasing trend, the consumption of nuclear

overlapped with renewables in 1982. However, it suddenly declined in 2010, and it

ceased in 2014 (this is naturally connected with the Fukushima accident occurred in

March 2011). The CGO consumption exhibits a trend similar to that of CGON sources,

but it has become unstable in recent years.

When the data from Japan are partitioned as CGON sources and renewables, model

(A.3), BSC, with four exponential shocks (three for CGON and one for renewables) is

applied. The shocks are significant, as the F -ratio, comparing the fitted model with the

BSC without shocks, provides an adequately large value (F̂ = 24.02300).
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Table B.18: Japan, 2CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the BSC model with four shocks (three for CGON sources and
one for renewables).

Parameter Estimate Standard error 95% Confidence interval

m 34395.0 4947.19 {24558.7, 44231.4}

p1 0.00455 0.00063 {0.00329, 0.00580}

q1 0.05179 0.00768 {0.03652, 0.06707}

c1 0.39699 0.05090 {0.29577, 0.49820}

b1 −0.12728 0.06178 {−0.25011,−0.00445}

a1 4.60010 0.00257 {4.59499, 4.60522}

c2 −0.19941 0.02593 {−0.25097,−0.14785}

b2 −0.08143 0.05424 {−0.18926, 0.02641}

a2 16.6034 0.00042 {16.6026, 16.6043}

c3 −0.01421 0.02008 {−0.05413, 0.02571}

b3 0.13092 0.04920 {0.03310, 0.22874}

a3 32.0000 0.00004 {31.9999, 32.0001}

p2 0.000446 0.00011 {0.00024, 0.00066}

q2 0.00172 0.00055 {0.00062, 0.00281}

c4 0.01042 0.04930 {−0.08761, 0.10844}

b4 0.27690 0.31498 {−0.34937, 0.90316}

a4 35.9616 0.00014 {35.9613, 35.9618}

R2 0.99779

Afterward, the data have been separated into three products (CGO sources, renew-

ables and nuclear). Since all three products were launched simultaneously, the second

phase of model (A.6), USC, with five exponential shocks (three for CGO, one for re-

newables, and one for nuclear) is applied. The fitting is good overall (R2 = 0.99688).

The F -ratio, obtained by the USC model with and without shocks, gives a large value

(F̂ = 25.27788). Hence, the shocks are significantly incorporated into the model. Three

shocks occurred for CGO sources, at times 1965 + â1 ' 1970, 1965 + â2 ' 1982 and

1965 + â3 ' 2002. The first shock was estimated as positive (ĉ1 = 0.32869) and the

next two were found to be negative (ĉ2 = −0.19301 and ĉ3 = −0.01534), but all three

shocks decayed over time (negative b̂1, b̂2 and b̂3). The positive shock may be due to

a rapid industrial growth; Japan’s energy consumption grew much faster than its gross

national product (GNP) in 1960–1972. However, the negative shocks can be explained

in that, after the oil shocks of the 1970s, Japan offered strong incentives to reduce the

reliance on fossil fuels in relation to its economic growth. The country also possessed

the advanced technology and ample capital to grow non-fossil energy (Ishida, 2013). A
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Table B.19: Japan, 3CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the USC model with five shocks (three for CGO sources, one
for renewables and one for nuclear).

Parameter Estimate Standard Error Lower 95% Confidence interval

m 34478.8 2357.33 {29814.0, 39143.5}

p1 0.00454 0.00033 {0.00390, 0.00519}

ε −0.03224 0.03711 {−0.10566, 0.04118}

η 0.76943 0.26760 {0.23990, 1.29896}

q1 0.03154 0.02730 {−0.02248, 0.08557}

c1 0.32869 0.05277 {0.22426, 0.43312}

b1 −0.13858 0.08949 {−0.31566, 0.03851}

a1 5.35307 0.00240 {5.34831, 5.35783}

c2 −0.19301 0.02043 {−0.23344,−0.15257}

b2 −0.03467 0.04445 {−0.12263, 0.05329}

a2 16.7768 0.00014 {16.7766, 16.7771}

c3 −0.01534 0.01581 {−0.04663, 0.01595}

b3 −0.05327 0.42367 {−0.89165, 0.78510}

a3 37.0000 0.00001 {37.0000, 37.0000}

p2 0.00061 0.00017 {0.00029, 0.00094}

θ 0.06173 0.02775 {0.00682, 0.11665}

ξ −0.46364 0.23496 {−0.92859, 0.00130}

q2 −0.02761 0.01913 {−0.06546, 0.01024}

c4 0.12406 0.26593 {−0.40217, 0.65028}

b4 0.15919 0.12504 {−0.08824, 0.40661}

a4 37.0000 0.00525 {36.9896, 37.0104}

p3 −0.00005 0.00016 {−0.00037, 0.00027}

q3 0.05180 0.01927 {0.01366, 0.08994}

c5 −0.07580 0.03446 {−0.14398,−0.00761}

b5 0.16412 0.03024 {0.10429, 0.22395}

a5 34.4843 0.00043 {34.4834, 34.4851}

R2 0.99688

If we substitute the parameter estimates in model (A.6), we obtain the following

three equations:

z′1(t) ∝ 0.00454− 0.0007 z1(t)/m+ 0.80097 z2(t)/m+ 0.03154 z3(t)/m

z′2(t) ∝ 0.00061 + 0.03412 z1(t)/m− 0.49125 z2(t)/m− 0.02761 z3(t)/m

z′3(t) ∝− 0.00005 + 0.02231 z1(t)/m− 0.25399 z2(t)/m+ 0.0518 z3(t)/m.

The innovative effect of CGO sources (p̂1 = 0.00454) is notably larger than the effect of
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nuclear (p̂3 = −0.00005) and renewables (p̂2 = 0.00061) as well. Turning to the imitative

component, the within-product effect of CGO (q̂1 + ε̂ = −0.0007) is negative, while its

cross-product effects by renewables (q̂1 + η̂ = 0.80097) and nuclear (q̂1 = 0.03154) are

positive. This means that the diffusion of CGO is reduced by its spread but enhanced

by that of its competitors. Regarding within-product effects, according to the Paris

climate agreement, Japan is under pressure to carry out a public pledge to reduce fossil

fuel consumptions to reduce GHG emissions by 26% by 2030 compared with the 2013

level. Regarding cross-product effects, after the Fukushima disaster in 2011, Japan

largely reduced the nuclear consumption, resulting in a shift in Japan’s energy mix

toward oil and natural gas (EIA, 2013). Moreover, biomass and geothermal energy

steadily supported the increase of the use of fossil fuels, mainly gas, in combined heat

and power (CHP) generation (Greenpeace, 2008). Renewables’ within-product effect

(q̂2 + ξ̂ = −0.49125) is negative, and their cross-product effect by CGO (q̂2 + θ̂ =

0.03412) and nuclear (q̂2 = −0.02761) are positive and negative, respectively. That is,

the level of diffusion of renewables is delayed by their spread and that of nuclear sources

but increased by the spread of CGO. The within-product effect can be explained as a

reflection of Japan’s geothermal, wind, and solar energy potential, which could easily

power the world’s third-largest economy. The recent growth of solar PV in Japan is

indebted to strong policies promoting its adoption (Treehugger, 2011). Regarding cross-

product effects, after the Fukushima accident, nuclear power has faced higher security

standards, and therefore, higher costs. Thus, Japan has a greater interest in renewable

energy. In addition to this, Japan planned to reduce long-term reliance on imported fossil

fuels (CGO sources) through larger investments in renewable energy. Nuclear within-

product (q̂3 = 0.0518) and cross-product effects by CGO sources (q̂3 − ε̂− θ̂ = 0.02231)

are positive, while the cross-product effect by renewables (q̂3 − η̂ − ξ̂ = −0.25399)

is negative. That is, the diffusion of nuclear sources is positively associated with its

spread and that of CGO, but it is inversely associated with renewables. Regarding

within-product effects, Japan relies heavily on nuclear energy, as it is resources poor

for other energy forms. Regarding cross-product effects, the extent to which renewable

energy sources enjoys public support through subsidies may also related to concern over

traditional energy because of the Fukushima disaster, whereas green energies can be an

alternative source to nuclear power.

The fitted lines in Figures B.12 and B.13 adequately follow the observed data. Con-

sequently, the predictions (except for nuclear), from 2016 to 2020, satisfactorily follow

the previous trend. The predictions for nuclear sources are uncrealistic, but this is es-

sentially a consequence of the dramatic decline observed after 2010 (the fitted model
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Table B.20: Japan. Confidence band width of 2CM and 3CM predictions in 2016–
2020.

Year
2CM 3CM

CGON Renewables CGO Renewables Nuclear

(σ̂u=0.04485) (σ̂u=0.07479) (σ̂u=0.04647) (σ̂u=0.19068) (σ̂u=0.18020)

2016 69.81056 11.41988 76.14831 24.52651 –

2017 66.55990 12.90362 75.71014 25.34581 –

2018 63.00063 14.85018 75.29020 26.24335 –

2019 59.11447 17.39510 74.90513 27.21071 –

2020 54.87917 20.71285 74.57093 28.23823 –

Confidence band width is not shown when the fitted trajectory is negative.

follows the trend of the final part of the observed data). Both 2CM and 3CM pre-

dictions suggest increasing renewables and declining other energies in 2016–2020. In

fact, Japan’s green innovation goals for 2020 are to create over 50 trillion yen (JPY) in

new environmental-related markets and 1.4 million new jobs in the environment sector,

as well as reducing CO2 emissions by using Japan’s private sector technology (Global

Energy Network Institute (GENI), 2012). It should be observed that the first four

estimated values of nuclear are far from their observed data, so we ignored them in esti-

mating the scaled residuals’ variance. The Kolmogorov–Smirnov test confirmed that the

scaled residuals follow a Gaussian distribution. The standard deviations of scaled resid-

uals (σ̂u) obtained with 2CM are 0.04485 for CGON and 0.07479 for renewables, and

those with 3CM are 0.04647 for CGO, 0.19068 for renewables and 0.18020 for nuclear.

Accordingly, we computed the 2σ confidence bands of predictions, shown by broken lines

in Figures B.12 and B.13, and the corresponding band width, represented in Table B.20.

The confidence band width of predictions for renewables with 3CM is much larger than

those obtained with 2CM. This means that the 2CM gives more reliable predictions for

this dataset.

B.7 Spain

In 1965, Spain’s energy consumption from CGON sources was 24 Mtoe and that

from renewables it was about 5 Mtoe (British Petroleum, 2016). For the first few years,

hydroelectricity uniquely represented the renewables. Other renewable sources, such

as geothermal and biomass, were launched in 1970, and wind and solar power were

launched simultaneously in 1989. In Figure B.14, we observe that the consumption of

CGON sources markedly increased for a long period, but they sharply declined from
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estimated to have a positive effect (ĉ1 = 0.31927, ĉ2 = 0.21799 and ĉ3 = 0.10978), and

they have not yet been absorbed (positive b̂1, b̂2 and b̂3). The shock for CGO sources may

be because, after facing some instabilities, the CGO consumption increased incredibly

during the period of economic boom from 1997 to 2007. The shock for renewables may

be related to the diffusion of on-shore wind power, during the period 1995–2004, that

made Spain reach second rank in wind power installed capacity, behind only Germany

and on par with the United States (Montoya et al., 2014). Moreover, the shock for

nuclear sources can be explained in that, although the fossil fuel consumption radically

declined in the Spanish economic recession of 2009–2013, nuclear energy increased over

the period.

The market potential of the first phase (m̂α=399.23 Mtoe) is extremely small with

respect to the second phase (m̂β=5404.72 Mtoe). This is because the period of the

first phase is short, and m̂α may not be reliable. In the second phase, the innovative

component of CGO is impressive (p̂1 = 0.00658), as is that of renewables (p̂2 = 0.00136),

compared with nuclear (p̂3 = −0.00069). This means that Spain is well motivated for

the innovation of green energy technology in place of nuclear technology.

Table B.21: Spain, 2CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the UUC model with two shocks (one for each competitor).

Parameter Estimate Standard error 95% Confidence interval

m 5622.46 199.376 {5226.31, 6018.62}

p1 0.00524 0.00037 {0.00450, 0.00597}

q1 0.03186 0.07933 {−0.12576, 0.18948}

δ 0.02936 0.08791 {−0.14532, 0.20403}

c1 0.25919 0.03072 {0.19814, 0.32023}

b1 0.09418 0.01956 {0.05531, 0.13304}

a1 34.8787 0.06197 {34.7555, 35.0018}

p2 0.00116 0.00030 {0.00057, 0.00175}

q2 0.00336 0.07948 {−0.15455, 0.16128}

γ 0.00214 0.08891 {−0.17452, 0.17880}

c2 0.20901 0.37141 {−0.52896, 0.94699}

b2 0.18766 0.05889 {0.07065, 0.30466}

a2 29.9352 0.96753 {28.0127, 31.8576}

R2 0.99284
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Table B.22: Spain, 3CM. Estimates, standard errors and marginal linearised 95%
confidence intervals of the CRCD model with three shocks (one for each competitor).

Parameter Estimate Standard error 95% Confidence interval

mα 399.233 1.14 ∗ 10−6 {399.233, 399.233}

p1α 0.05990 0.00739 {0.04526, 0.07453}

q1α 0.07759 0.05077 {−0.02286, 0.17805}

p2α 0.01307 0.00739 {−0.00157, 0.02770}

q2α 0.00409 0.05077 {−0.09637, 0.10454}

mβ 5404.72 96.428 {5213.92, 5595.52}

p1β 0.00658 0.00028 {0.00602, 0.00714}

q1β 0.04494 0.00158 {0.04182, 0.04806}

c1 0.31927 0.02470 {0.27038, 0.36815}

b1 0.10705 0.01035 {0.08656, 0.12753}

a1 33.9995 0.00084 {33.9978, 34.0011}

p2β 0.00136 0.00029 {0.00079, 0.00193}

q2β 0.00087 0.00156 {−0.00222, 0.00397}

c2 0.21799 0.15686 {−0.09239, 0.52836}

b2 0.20347 0.02123 {0.16144, 0.24545}

a2 29.8929 0.00696 {29.8791, 29.9066}

p3 −0.00069 0.00024 {−0.00117,−0.00021}

q3 0.01166 0.00098 {0.00973, 0.01359}

c3 0.10978 0.12799 {−0.14347, 0.36303}

b3 0.32666 0.19112 {−0.05149, 0.70481}

a3 43.9918 0.00459 {43.9827, 44.0009}

R2 0.99193

By substituting the parameter estimates in the second phase of the CRCD model,

the following three equations can be obtained:

z′1(t) ∝ 0.00658 + 0.04494 z(t)/mβ

z′2(t) ∝ 0.00136 + 0.00087 z(t)/mβ

z′3(t) ∝− 0.00069 + 0.01166 z(t)/mβ.

Here, nuclear exploited the WOM of the whole category. Although the innovative effect

of nuclear is negative, it is experienced by a strong positive imitative (WOM) effect.

The other two sources also have positive imitative effects. The spread of renewables

diffusion is extremely low (q̂2 = 0.00087).

The fitted lines in Figures B.14 and B.15 adequately follow the observed data. Es-

pecially, the fitted lines of the renewables follow the observed path well, resulting in
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Models with dynamic market

potential

For two products

Model (1.14) is the general structure of two products, when the products launch

together, and the model is called the UUC model with DMP. Under the restriction

δ = γ, it is called the USC model with DMP, and it can be expressed as

z′1(t)=m(t)

[

p1 + (q1 + δ)
z1(t)

m(t)
+ q1

z2(t)

m(t)

] [

1−
z(t)

m(t)

]

+ z1(t)
m′(t)

m(t)
,

z′2(t)=m(t)

[

p2 + (q2 − δ)
z1(t)

m(t)
+ q2

z2(t)

m(t)

] [

1−
z(t)

m(t)

]

+ z2(t)
m′(t)

m(t)
, (C.1)

z(t)=z1(t) + z2(t).

For three products

If all three products enter the market simultaneously, only the second phase of model

(4.1) is applicable. Then, it is called the UUC model with DMP of three competitors,
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and can be written in the following form:

z′1(t)=m(t)

[

p1 + (q1 + ε)
z1(t)

m(t)
+ (q1 − η)

z2(t)

m(t)
+ q1

z3(t)

m(t)

] [

1−
z(t)

m(t)

]

+

+z1(t)
m′(t)

m(t)
,

z′2(t)=m(t)

[

p2 + q2
z1(t)

m(t)
+ (q2 + θ)

z2(t)

m(t)
+ (q2 − ξ)

z3(t)

m(t)

] [

1−
z(t)

m(t)

]

+

+z2(t)
m′(t)

m(t)
, (C.2)

z′3(t)=m(t)

[

p3 + (q3 − µ)
z1(t)

m(t)
+ q3

z2(t)

m(t)
+ (q3 + λ)

z3(t)

m(t)

] [

1−
z(t)

m(t)

]

+

+z3(t)
m′(t)

m(t)
,

z(t)=z1(t) + z2(t) + z3(t).
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in the European Union: A model-based clustering approach. Energy Economics 65,

442–457.

Dalla Valle, A. and Furlan, C. (2011) Forecasting accuracy of wind power technology

diffusion models across countries. International Journal of Forecasting 27(2), 592–

601.

Davies, S. W. and Diaz-Rainey, I. (2011) The patterns of induced diffusion: Evidence

from the international diffusion of wind energy. Technological Forecasting and Social

Change 78(7), 1227–1241.

Davydenko, A. and Fildes, R. (2013) Measuring forecasting accuracy: The case of judg-

mental adjustments to SKU-level demand forecasts. International Journal of Fore-

casting 29(3), 510–522.

Deloitte (2015a) European energy market reform. Country profile: Belgium. Available

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-

Resources/gx-er-market-reform-belgium.pdf.

Deloitte (2015b) European energy market reform. Country profile: France. Available

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-

Resources/gx-er-merket-reform-france.pdf.

Deloitte (2015c) European energy market reform. Country profile: Germany. Available

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-

Resources/gx-er-market-reform-germany.pdf.



152 Bibliography

Duan, H. B., Zhu, L. and Fan, Y. (2014) A cross-country study on the relationship

between diffusion of wind and photovoltaic solar technology. Technological Forecasting

and Social Change 83, 156–169.

Eclareon (2014) Assessment of climate change policies in the context of the European

semester. Country report: Finland. Ecologic Institute. Available https://www.ecolo

gic.eu/sites/files/publication/2014/countryreport fi ecologiceclareon jan2014 0.pdf.

EIA (2003) Country analysis briefs: Germany. Available https://www.geni.org/global

energy/library/national energy grid/germany/GermanyCountryAnalysisBrief.shtml.

EIA (2013) Today in Energy. Japan is the second largest net importer of fossil fuels in

the world. Available https://www.eia.gov/todayinenergy/detail.php?id=13711.

EIA (2017) The US Energy Information Administration. International energy outlook

2017. Available https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf.

Energy Outlook (2013) The Belgian electricity market: Overview, analysis of todays

issues and suggestions to fix it. Available http://energy.sia-partners.com/belgian-

electricity-market-overview-analysis-todays-issues-and-suggestions-fix-it.

Energy Transition (2016) The Global Energiewende. Renewable energy in Belgium.

Available https://energytransition.org/2016/10/renewable-energy-in-belgium/.

Eurostat (2006) EU integration seen through statistics. Available https://www.lu.lv/ma

teriali/biblioteka/es/pilnieteksti/statistika/EU%20integration%20seen%20through%

20statistics.pdf.

Financial Times (2013) Osborne hails UK nuclear deal with China as ‘new dawn’. Avail-

able https://www.ft.com/content/9fffdb6a-367c-11e3-aaf1-00144feab7de.

Financial Times (2014) German coal use at highest level since 1990. Available https://

www.ft.com/content/e6470600-77bf-11e3-807e-00144feabdc0.

Furlan, C., Guidolin, M. and Guseo, R. (2016) Has the Fukushima accident influenced

short-term consumption in the evolution of nuclear energy? An analysis of the world

and seven leading countries. Technological Forecasting and Social Change 107, 37–49.

Furlan, C. and Mortarino, C. (2018) Forecasting the impact of renewable energies in

competition with non-renewable sources. Renewable and Sustainable Energy Reviews

81(2), 1879–1886.



Bibliography 153

Furlan, C., Mortarino, C. and Zahangir, M. S. (2018a) A new diffusion model for com-

petition among three actors. Proceedings of the 33rd International Workshop of

Statistical Modelling, July 16–20, 2018, Bristol, UK, Vol. II, 50–55.

Furlan, C., Mortarino, C. and Zahangir, M. S. (2018b) Interaction among three com-

petitors: an extended innovation diffusion model. Working Paper Series 03/2018.

Department of Statistical Sciences, University of Padova (submitted for publication

to an international journal).

Furlan, C., Mortarino, C. and Zahangir, M. S. (2018c) An extended diffusion model ap-

plied to competition between renewables and alternative energies. Proceedings of the

3rd Renewable Energy Sources – Research and Business (RESRB) 2018 conference,

June 18–20, 2018, Brussels, Belgium, Book of ‘Abstract’, 63–64.

GENI (2012) Global Energy Network Institute. How is 100% renewable energy possible

in Japan by 2020? Available https://www.geni.org/globalenergy/research/renewable-

energy-potential-of-japan/renewable energy potential of Japan by 2020.pdf.

Goodwin, P. and Lawton, R. (1999) On the asymmetry of the symmetric MAPE. In-

ternational Journal of Forecasting 15(4), 405–408.

Greenpeace (2008) The energy revolution scenario for Japan. Available https://www.

greenpeace.org/archive-international/en/publications/reports/energy-revolution-

scenario-japan/.

Guidolin, M. and Guseo, R. (2012) A nuclear power renaissance? Technological Fore-

casting and Social Change 79(9), 1746–1760.

Guidolin, M. and Guseo, R. (2015) Technological change in the US music industry:

Within-product, cross-product and churn effects between competing blockbusters.

Technological Forecasting and Social Change 99, 35–46.

Guidolin, M. and Guseo, R. (2016) The German energy transition: Modeling compe-

tition and substitution between nuclear power and renewable energy technologies.

Renewable and Sustainable Energy Reviews 60, 1498–1504.

Guidolin, M. and Mortarino, C. (2010) Cross-country diffusion of photovoltaic systems:

Modelling choices and forecasts for national adoption patterns. Technological Fore-

casting and Social Change 77(2), 279–296.

Guseo, R. (2011) Worldwide cheap and heavy oil productions: A long-term energy

model. Energy Policy 39(9), 5572–5577.



154 Bibliography

Guseo, R. and Dalla Valle, A. (2005) Oil and gas depletion: Diffusion models and

forecasting under strategic intervention. Statistical Methods and Applications 14(3),

375–387.

Guseo, R., Dalla Valle, A. and Guidolin, M. (2007) World oil depletion models: Price ef-

fects compared with strategic or technological interventions. Technological Forecasting

and Social Change 74(4), 452–469.

Guseo, R. and Guidolin, M. (2009) Modelling a dynamic market potential: A class of

automata networks for diffusion of innovations. Technological Forecasting and Social

Change 76, 806–820.

Guseo, R. and Guidolin, M. (2010) Cellular automata with network incubation in in-

formation technology diffusion. Physica A: Statistical Mechanics and its Applications

389(12), 2422–2433.

Guseo, R. and Guidolin, M. (2011) Market potential dynamics in innovation diffusion:

Modelling the synergy between two driving forces. Technological Forecasting and

Social Change 78(1), 13–24.

Guseo, R. and Mortarino, C. (2012) Sequential market entries and competition mod-

elling in multi-innovation diffusions. European Journal of Operational Research

216(3), 658–667.

Guseo, R. and Mortarino, C. (2014) Within-brand and cross-brand word-of-mouth for

sequential multi-innovation diffusions. IMA Journal of Management Mathematics

25(3), 287–311.

Guseo, R. and Mortarino, C. (2015) Modeling competition between two pharmaceutical

drugs using innovation diffusion models. The Annals of Applied Statistics 9(4), 2073–

2089.

Guseo, R., Mortarino, M. and Darda, M. A. (2015) Homogeneous and heterogeneous

diffusion models: Algerian natural gas production. Technological Forecasting and

Social Change 90(B), 366–378.

Hauser, J., Tellis, G. J. and Griffin, A. (2006) Research on innovation: A review and

agenda for marketing science. Marketing Science 25(6), 687–717.

Horsky, D. (1990) A diffusion model incorporating product benefits, price, income and

information. Marketing Science 9(4), 342–365.



Bibliography 155

Huh, S. Y. and Lee, C. Y. (2014) Diffusion of renewable energy technologies in South

Korea on incorporating their competitive interrelationships. Energy Policy 69, 248–

257.

Hyndman, R. J. and Koehler, A. B. (2006) Another look at measures of forecast accu-

racy. International Journal of Forecasting 22(4), 679–688.

IEA (2007) International Energy Agency. Energy policies of IEA countries – Switzer-

land 2007 review. Available https://webstore.iea.org/energy-policies-of-iea-countries-

switzerland-2007-review.

IEA (2016a) International Energy Agency. Energy policies of IEA countries – Belgium

2016 review. Available https://www.iea.org/publications/freepublications/publica

tion/Energy Policies of IEA Countries Belgium 2016 Review.pdf.

IEA (2016b) International Energy Agency. Energy policies of IEA countries – Japan

2016 review. Available https://www.iea.org/publications/freepublications/publication

/EnergyPoliciesofIEACountriesJapan2016.pdf.

IET (2012) The Institute of Engineering Technology. UK energy policy 1980–2010: A

history and lessons to be learnt. Available http://sro.sussex.ac.uk/38852/1/uk-energy-

policy.pdf.

Ishida, H. (2013) Causal relationship between fossil fuel consumption and economic

growth in Japan: A multivariate approach. International Journal of Energy Eco-

nomics and Policy 3(2), 127–136.

Jain, D. C. and Rao, R. C. (1990) Effect of price on the demand for durables: Modeling,

estimation, and findings. Journal of Business and Economic Statistics 8(2), 163–170.

Kalinowski, P. and Fidler, F. (2010) Interpreting significance: the differences between

statistical significance, effect size, and practical importance. Newborn and Infant

Nursing Reviews 10(1), 50–54.

Kalish, S. (1985) A new product adoption model with price, advertising, and uncertainty.

Management Science 31(12), 1569–1585.

Kalish, S., Mahajan, V. and Muller, E. (1995) Waterfall and sprinkler new-product

strategies in competitive global markets. International Journal of Research in Mar-

keting 12(2), 105–119.



156 Bibliography

Kamakura, W. A. and Balasubramanian, S. (1988) Long-term view of the diffusion of

durables a study of the role of price and adoption influence processes via tests of

nested models. International Journal of Research in Marketing 5(1), 1–13.

Katz, E. and Lazarsfeld, P. F. (1955) Personal Influence: The Part Played by People in

the Flow of Mass Communication. Free Press: Glencoe, IL.

Kijek, A. and Kijek, T. (2010) Modelling of innovation diffusion. Operations Research

and Decisions 20(3-4), 53–68.

Kim, N., Bridges, E. and Srivastava, R. K. (1999) A simultaneous model for innovative

product categorysales diffusion and competitive dynamics. International Journal of

Research in Marketing 16(2), 95–111.

Klein, S. J. W. and Whalley, S. (2015) Comparing the sustainability of U.S. electricity

options through multi-criteria decision analysis. Energy Policy 79, 127–149.

Krishnan, T. V., Bass, F. M. and Kumar, V. (2000) Impact of a late entrant on the

diffusion of a new product/service. Journal of Marketing Research 37(2), 269–278.

Kumar, V. K. R. and Vimala, M. (2012) Energy consumption in India-recent trends.

Asia Pacific Journal of Research 1(36), 140–151.

Libai, B., Muller, E. and Peres, R. (2009) The role of within-brand and cross-brand

communications in competitive growth. Journal of Marketing 73(3), 19–34.

Lloyd, P. J. (2017) The role of energy in development. Journal of Energy in Southern

Africa 28(1), 54–62.

Mahajan, V. (1986) Innovation diffusion models of new product acceptance. In Innova-

tion Diffusion Models of New Product Acceptance: A Reexamination, eds V. Mahajan

and Y. Wind. Ballinger: Cambridge, MA.

Mahajan, V. and Muller, E. (1979) Innovation diffusion and new product growth models

in marketing. Journal of Marketing 43(Fall), 55–68.

Mahajan, V., Muller, E. and Bass, F. M. (1990) New product diffusion models in mar-

keting: A review and directions for research. Journal of Marketing 54(January),

1–26.

Mahajan, V., Muller, E. and Bass, F. M. (1995) Diffusion of new products: Empirical

generalizations and managerial uses. Marketing Science 14(3), G79–G88.



Bibliography 157

Mahajan, V., Muller, E. and Wind, Y. (2000) New-product Diffusion Models. Springer

Verlag: Switzerland.

Mahajan, V. and Peterson, R. A. (1978) Innovation diffusion in a dynamic potential

adopter population. Management Science 24(15), 1589–1597.

Mahajan, V., Sharma, S. and Buzzell, R. D. (1993) Assessing the impact of competitive

entry on market expansion and incumbent sales. Journal of Marketing 57, 39–52.

Makridakis, S. (1993) Accuracy measures: Theoritical and practical concerns. Interna-

tional Journal of Forecasting 9(4), 527–529.

Makridakis, S. and Hibon, M. (2000) The M3-competition: Results, conclusions and

implications. International Journal of Forecasting 16(4), 451–476.

Marchetti, C. (1980) Society as a learning system: Discovery, invention, and innovation

cycles revisited. Technological Forecasting and Social Change 18(4), 267–282.

Market Watch (2016) China’s growth in renewable energy raises ‘overcapacity’ concerns:

IEA. Available https://www.marketwatch.com/story/chinas-growth-in-renewable-

energy-raises-overcapacity-concerns-iea-2016-10-25.

Meade, N. and Islam, T. (2001) Forecasting the diffusion of innovations: Implications

for time-series extrapolation. In Principles of Forecasting, ed. J. S. Armstrong, pp.

577–595. Springer: Boston, MA.

Meade, N. and Islam, T. (2006) Modelling and forecasting the diffusion of innovation–A

25-year review. International Journal of Forecasting 22, 519–545.

Melikoglu, M. (2014) Shale gas: Analysis of its role in the global energy market. Re-

newable and Sustainable Energy Reviews 37, 460–468.

Meyer, P. S. and Ausubel, J. H. (1999) Carrying capacity: A model with logistically

varying limits. Technological Forecasting and Social Change 61(3), 209–214.

Montoya, F. G., Aguilera, M. J. and Manzano-Agugliaro, F. (2014) Renewable energy

production in Spain: A review. Renewable and Sustainable Energy Reviews 33, 509–

531.

Muller, E., Peres, R. and Mahajan, V. (2009) Innovation Diffusion and New Product

Growth. Marketing Science Institute: Cambridge, MA.



158 Bibliography

Norton, J. A. and Bass, F. M. (1987) A diffusion theory model of adoption and substi-

tution for successive generations of high-technology products. Management Science

39(9), 1069–1086.

NP (2017) World Energy Needs and Nuclear Power. World Nuclear Association. Avail-

able http://www.world-nuclear.org/information-library/current-and-future-generati

on/world-energy-needs-and-nuclear-power.aspx.

NPB (2018) Nuclear Power in Belgium. World Nuclear Association. Available http://

www.world-nuclear.org/information-library/country-profiles/countries-a-f/belgium.

aspx.

NPC (2018) Nuclear Power in China. World Nuclear Association. Available http://www.

world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-

power.aspx.

NPF (2018) Nuclear Power in Finland. World Nuclear Association. Available http://

www.world-nuclear.org/information-library/country-profiles/countries-a-f/finland.

aspx.

NPG (2018) Nuclear Power in Germany. World Nuclear Association. Available http://

www.world-nuclear.org/information-library/country-profiles/countries-g-n/germany.

aspx.

NPJ (2018) Nuclear Power in Japan. World Nuclear Association. Available http://www.

world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-

power.aspx.

NPS (2017) Nuclear Power in Spain. World Nuclear Association. Available http://www.

world-nuclear.org/information-library/country-profiles/countries-o-s/spain.aspx.

NPS (2018) Nuclear Power in Sweden. World Nuclear Association. Available http://

www.world-nuclear.org/information-library/country-profiles/countries-o-s/sweden.

aspx.

NPUS (2018) Nuclear Power in the USA. World Nuclear Association. Available http://

www.world-nuclear.org/information-library/country-profiles/countries-t-z/usa-nucle

ar-power.aspx.

O’Connor, P. A. and Cleveland, C. J. (2014) U.S. energy transitions 1780–2010. Energies

7(12), 7955–7993.



Bibliography 159

Pao, H. T. and Fu, H. C. (2013) Renewable energy, non-renewable energy and economic

growth in Brazil. Energy Economics 25, 381–392.

Parker, P. M. (1992) Price elasticity dynamics over the adoption life cycle. Journal of

Marketing Research 29(3), 358–367.

Parker, P. M. (1993) Choosing among diffusion models: Some empirical evidence. Mar-

keting Letters 4(1), 81–94.

Parker, P. M. and Gatignon, H. (1994) Specifying competitive effects in diffusion models:

An empirical analysis. International Journal of Research in Marketing 11(1), 17–39.

Peres, R., Muller, E. and Mahajan, V. (2010) Innovation diffusion and new product

growth models: A critical review and research directions. International Journal of

Research in Marketing 27(2), 91–106.

Peterson, R. A. and Mahajan, V. (1978) Multi-product growth models. Research in

Marketing 1(20), 1–23.

Planete-energies (2015a) The history of energy in France. Available https://www.plane

te-energies.com/en/medias/saga-energies/history-energy-france.

Planete-energies (2015b) The history of energy in Germany. Available https://www.pla

nete-energies.com/en/medias/saga-energies/history-energy-germany.

Planete-energies (2015c) The history of energy in the United Kingdom. Available

https://www.planete-energies.com/en/medias/saga-energies/history-energy-united-

kingdom.

Rao, K. U. and Kishore, V. V. N. (2009) Wind power technology diffusion analysis in

selected states of India. Renewable Energy 34(4), 983–988.

Rao, K. U. and Kishore, V. V. N. (2010) A review of technology diffusion models with

special reference to renewable energy technologies. Renewable and Sustainable Energy

Reviews 14(3), 1070–1078.

Redondo, P. D. and van Vliet, O. (2015) Modelling the energy future of Switzerland

after the phase out of nuclear power plants. Energy Procedia 76, 49–58.

REEEP (2014) Renewable Energy and Energy Efficiency Partnership. Switzerland

(2013). Available https://www.reeep.org/switzerland-2013.



160 Bibliography

REN21 (2014) Renewable Energy Policy Network for the 21st Century. Renewables 2014

global status report. Available http://www.ren21.net/Portals/0/documents/Resourc

es/GSR/2014/GSR2014 full%20report low%20res.pdf.

REN21 (2016) Renewable Energy Policy Network for the 21st Century. Renewables 2016

global status report. Available http://www.ren21.net/wp-content/uploads/2016/05/

GSR 2016 Full Report lowres.pdf.

Rogers, E. M. (2003) Diffusion of Innovation. 4th ed. Free Press: New York.

Savin, S. and Terwiesch, C. (2005) Optimal product launch times in a duopoly: Bal-

ancing life-cycle revenues with product cost. Operations Research 53(1), 26–47.

Schwarz, G. (1978) Estimating the dimension of a model. The annals of Statistics 6(2),

461–464.

Seber, G. A. F. (1980) The Linear Hypothesis: A General Theory. 2nd ed. Griffin:

London.

Seber, G. A. F. and Wild, C. J. (1989) Nonlinear Regression. Wiley: New York.

Shaikh, N. I., Rangaswamy, A. and Balakrishnan, A. (2006) Modeling the diffusion of

innovations using small-world network. Technical Report, Penn State University.

Sharif, M. N. and Ramanathan, K. (1981) Binomial innovation diffusion models with

dynamic potential adopter population. Technological Forecasting and Social Change

20(1), 63–87.

Shen, J. and Luo, C. (2015) Overall review of renewable energy subsidy policies in

China—Contradictions of intentions and effects. Renewable and Sustainable Energy

Reviews 41, 1478–1488.

Sweden.se (2018) Energy use in Sweden. Available https://sweden.se/society/energy-

use-in-sweden/.

Sydow, J. and Schreyogg, G. (2013) Self-Reinforcing Processes in and among Organiza-

tions. Palgrave Macmillan: New York.

Tarde, G. (1890) Les lois de l’imitation. Kimé: Paris.
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