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Abstract	

The ability to predict when a relevant event might occur is critical to survive 

in our dynamic and uncertain environment. This cognitive ability, usually referred to 

as temporal preparation, allows us to prepare temporally optimized responses to 

forthcoming stimuli by anticipating their timing: from safely crossing a busy road 

during rush hours, to timing turn taking in a conversation, to catching something in 

mid-air, are all examples of how important and ubiquitous temporal preparation is in 

our everyday life (e.g., Correa, 2010; Coull & Nobre, 2008; Nobre, Correa, & Coull, 

2007).  

In laboratory settings, temporal preparation has been traditionally investigated, 

in its implicit form, through the “variable foreperiod paradigm” (see Coull, 2009; 

Niemi & Näätänen, 1981, for a review). In such a paradigm, the foreperiod is a time 

interval of variable duration that separates a warning stimulus and a target stimulus 

requiring a response. What is usually observed with this paradigm is that response 

times (RTs) reflect the temporal probability of stimulus onset: RTs decrease with 

increasing probability. This implies that participants learn to use the information 

implicitly afforded by the passage of time and that related to the temporal probability 

of the onset of the target stimulus (i.e., hazard rate; Janssen & Shadlen, 2005). In 

other words, it seems that they are able to use predictive internal models of event 

timing in order to optimize behaviour.  

Despite previous studies have started to investigate which brain areas encode 

temporal probabilities (i.e., predictive models) to anticipate event onset (e.g., Bueti, 

Bahrami, Walsh, & Rees, 2010; Cui, Stetson, Montague, & Eagleman, 2009; also see 

Vallesi et al., 2007), to our knowledge, there is no evidence on how the brain does 
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form and update such predictive models. Based on such premises, the overarching 

goal of the present PhD project was to pinpoint the neural mechanisms by which 

predictive models of event timing are dynamically updated. Moreover, given that in 

real life updating usually occurs in the presence of surprising events (i.e. low probable 

events under a predictive model), it is challenging to disentangle between updating 

and surprise (O’Reilly et al, 2013). Therefore, our second and interrelated research 

goal was to understand whether, and to which extent, it is possible to dissociate 

between the neural mechanisms specifically involved in updating and those dealing 

with surprising events that do not require an update of internal models. To accomplish 

our research goals, we capitalized on both state-of-the-art methodologies [i.e., 

functional magnetic resonance imaging (fMRI) and electrophysiology (EEG)] and 

computational modelling. Specifically, we considered the brain like a Bayesian 

observer. Indeed, Bayesian frameworks are gaining increasing popularity to explain 

cognitive brain functions (Friston, 2012). In a nutshell, the construction of 

computational Bayesian models allows us to quantitatively describe temporal 

expectations in terms of probability distributions and to capture updating using Bayes’ 

rule.  

In order to accomplish our goals, the present PhD project is composed of three 

studies. In the first two studies we implemented a version of the foreperiod paradigm 

in which participants could predict target onsets by estimating their underlying 

temporal probability distributions. During the task, these distributions changed, hence 

requiring participants to update their temporal expectations. Furthermore, a simple 

manipulation of the colors in which the target were presented (cf., O’Reilly et al., 

2013) allowed us to independently vary updating and surprise across trials. Then, we 

constructed a normative Bayesian learner (a computational model adapted from 
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O’Reilly et al., 2013) in order to obtain an estimate of a participant’s temporal 

expectations on a trial-by-trial basis. In Study 1, trial-by-trial fMRI data acquired 

during our foreperiod paradigm were correlated with two information theoretical 

parameters calculated with reference to our Bayesian model: the Kullbach-Leibler 

divergence (DKL) and the Shannon’s information (IS). These two measures have been 

previously used to formally describe belief updating and surprise associated with 

events under a predictive model, respectively (e.g., Baldi & Itti, 2010; Kolossa, Kopp, 

& Fingscheidt, 2015; O'Reilly et al., 2013; Strange et al., 2005). Our results showed 

that the fronto-parietal network and the cingulo-opercular network were differentially 

involved in the updating of temporal expectations and in dealing with surprising 

events, respectively.  

Having successfully validated the use of Bayesian models in our first fMRI 

study and dissociated between updating and surprise, the next step was to investigate 

the temporal dynamics of these two processes. Do updating and surprise act on 

similar or distinct processing stage(s)? What is the time course associated with the 

two? To address these questions, in Study 2 participants performed our adapted 

foreperiod task (same task as in Study 1) while their EEG activity was recorded. In 

this study, we relied on the literature on the P3 (a specific ERP component related to 

information processing) and the Bayesian brain (e.g., Kopp, 2008; Kopp et al., 2016; 

Mars et al., 2008; Seer, Lange, Boos, Dengler, & Kopp, 2016). Importantly, however, 

we also took advantage from the combination of a mass-univariate approach with 

novel deconvolution methods to explore the entire spatio-temporal pattern of EEG 

data. This enabled us to extend our analyses beyond the P3 component. Results from 

study 2 confirmed that surprise and updating can be differentiated also at the 

electrophysiological level and that updating elicited a more complex pattern than 
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surprise. As regards the P3 in relation to the literature on the Bayesian brain (Kolossa, 

Fingscheidt, Wessel, & Kopp, 2013; Kolossa et al., 2015; Mars et al., 2008), our 

findings corroborated the idea that such a component is selectively modulated by 

surprise and updating.  

While in Studies 1 and 2, participants were explicitly encouraged to form and 

update temporal expectations using the target color, in Study 3 we wanted to make a 

step further by asking whether the use of a more implicit task structure might 

influence the construction of the predictive internal model. To that aim, during the 

foreperiod task designed for the third study, participants were not explicitly informed 

about the presence of the underlying temporal probability distributions from which 

target onsets were drawn. In this way, we aimed to investigate behavioural and EEG 

differences in the way participants learnt to form and updated temporal expectations 

when changes in the underlying distributions were not explicitly signalled. Critically, 

we again found that surprise and updating could be differentiated. Moreover, coupled 

with the results from study 2, we isolated two EEG signatures of the inferential 

process underlying updating of prior temporal expectations, which responded to both 

explicit and implicit contextual changes. 

Overall, we believe that the results of the present PhD project will further our 

understanding of the cognitive processes and neural mechanisms that allow us to 

optimize our temporal preparation abilities.  
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 	Chapter	1

General	introduction	

To	 get	 access	 to	my	 supervisor’s	 office,	 I	 usually	 take	 the	 elevator.	On	one	

occasion	I	was	waiting	for	it	together	with	other	people.	While	I	was	still	entering	the	

elevator,	 the	 door	 “unexpectedly”	 started	 to	 close	 hitting	 my	 shoulder.	 This	

embarrassing	 situation	 happened	 again	 a	 few	 times	more	 before	 I	 learnt	 that	 the	

waiting	interval	between	door	opening	and	closing	was	very	short	and	to	update	my	

incorrect	 temporal	expectation	 in	such	a	way	to	safely	enter	the	elevator	 in	 future	

occasions!	

The	 example	 above	 illustrates	 the	 importance	 of	 the	 ability	 to	 accurately	

predict	the	likely	moment	at	which	an	event	might	occur	in	everyday	situations,	an	

ability	usually	labeled	“temporal	preparation”	(Correa,	2010;	Nobre,	Correa,	&	Coull,	

2007).	 While	 previous	 studies	 have	 started	 to	 unveil	 the	 neural	 mechanisms	 by	

which	temporal	expectations	are	updated,	a	direct	modeling	of	how	our	brain	faces	

this	key	task	is	still	poorly	estimated.	To	address	this	issue,	in	the	present	thesis	we	

combined	 a	 temporal	 preparation	 task	 with	 Bayesian	 modeling	 during	 either	

functional	magnetic	resonance	imaging	(fMRI)	or	electrophysiological	(EEG)	studies.	

The	reasons	why	we	believe	that	a	Bayesian	approach	would	be	particularly	suited	to	

investigate	 temporal	 preparation	 are	 outlined	 below.	 Specifically,	 in	 order	 to	 fully	

appreciate	 the	 rationale	 behind	 the	work	 presented	 here,	we	will	 begin	 by	 briefly	



	

	 10	

reviewing	the	literature	on	both	temporal	preparation	and	Bayesian	belief	updating.	

In	the	last	part	of	the	Introduction,	we	will	then	present	an	overview	of	the	project	in	

which	we	make	a	link	between	the	literature	on	temporal	preparation	and	Bayesian	

models.	

	

1.1 Temporal	preparation	

In	laboratory	settings,	temporal	preparation	has	been	usually	studied	through	

the	“foreperiod	paradigm”	(see	Coull,	2009;	Niemi	&	Näätänen,	1981,	for	reviews).	

The	 foreperiod	 is	 the	 time	 interval	 that	 separates	 a	 warning	 stimulus	 from	 a	

subsequent	target	that	calls	for	a	fast	and	accurate	response.	When	the	foreperiod	

duration	 is	kept	constant	 throughout	a	block	of	 trials	 (e.g.,	 in	one	block	 the	 target	

always	 appears	 after	 500	ms,	whereas	 in	 another	block	 it	 does	 so	 after	 1000	ms),	

participants’	reaction	times	(RTs)	are	usually	faster	for	the	short	rather	than	the	long	

block	 of	 trials,	 a	 phenomenon	 known	 as	 the	 “fixed	 foreperiod	 effect”	 (e.g.,	

Bausenhart,	Rolke,	&	Ulrich,	2008;	Mattes	&	Ulrich,	1997;	Vallesi,	McIntosh,	Shallice,	

&	 Stuss,	 2009).	 However,	 if	 short	 and	 long	 foreperiod	 durations	 are	 randomly	

intermixed	across	the	trials	and	each	one	has	the	same	a	priori	probability	of	being	

presented,	 participants	 will	 be	 faster	 for	 targets	 appearing	 after	 long	 than	 short	

foreperiods,	 i.e.,	 “the	 variable	 foreperiod	 effect”	 (Niemi	 &	 Näätänen,	 1981;	

Woodrow,	1914).		

The	 different	 findings	 associated	 with	 fixed	 and	 variable	 foreperiod	

paradigms	 have	 been	 traditionally	 explained	 by	 two	mechanisms:	 time	 estimation	

and	monitoring	the	conditional	probability	of	target	occurrence,	respectively.	Since	

in	 the	 fixed	paradigm,	uncertainty	 in	 time	estimation	will	 increase	as	a	 function	of	

the	 time	 interval	being	estimated	 (i.e.	 scalar	 theory,	Gibbon,	1977),	 it	 follows	 that	

RTs	will	 also	 increase	with	 longer	 durations.	 The	 scenario	 instead	 changes	 for	 the	

variable	foreperiod	paradigm.	Here,	as	time	goes	by	during	the	trial	and	the	target	

has	not	yet	appeared	after	the	shorter	foreperiods,	participants	may	infer	that	it	will	

surely	 occur	 after	 the	 longest	 ones,	 provided	 that	 there	 are	 no	 catch	 trials,	which	

explains	 the	 RT	 advantage	 for	 long	 foreperiod	 trials.	 This	 pattern	 of	 data	 can	 be	
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formally	described	in	terms	of	a	mechanism	monitoring	the	hazard	function,	that	is	

the	 conditional	 probability	 that	 the	 target	 will	 occur	 given	 that	 it	 has	 not	 yet	

occurred,	and	exploiting	it	to	optimize	preparation	(Nobre	et	al.,	2007).	

Converging	 evidence	 from	 fMRI	 (Vallesi,	McIntosh,	 Shallice,	 et	 al.,	 2009;	 A.	

Vallesi,	McIntosh,	&	Stuss,	2009),	transcranial	magnetic	stimulation	(Vallesi,	Shallice,	

&	Walsh,	2007),	and	neuropsychological	studies	(Stuss	et	al.,	2005;	Trivino,	Correa,	

Arnedo,	 &	 Lupianez,	 2010;	 Vallesi	 et	 al.,	 2007)	 points	 to	 the	 involvement	 of	

prefrontal	areas,	in	particular	the	right	dorsolateral	prefrontal	cortex,	in	the	variable	

foreperiod	effect.	However,	 these	studies	most	often	used	 few	discrete	 foreperiod	

durations	(e.g.,	two),	which	makes	it	difficult	to	model	how	behavioural	and	neural	

responses	 are	 shaped	by	 the	 hazard	 function.	 Crucial	 in	 this	 regard	 is	 the	 seminal	

work	by	Janssen	and	Shadlen	(2005).	The	authors	trained	rhesus	monkeys	to	make	

eye	 movements	 to	 peripheral	 targets	 presented	 in	 a	 foreperiod	 task.	 Foreperiod	

durations	were	 drawn	 from	either	 a	 bimodal	 or	 unimodal	 continuous	 distribution.	

They	 found	 that	 monkeys’	 RTs	 and	 the	 firing	 rate	 of	 neurons	 in	 the	 lateral	

intraparietal	area	both	correlated	with	the	respective	hazard	functions	of	unimodal	

or	bimodal	duration	distributions.	Hence,	 this	 study	provided	 strong	evidence	 that	

temporal	 preparation	 is	 accomplished	 by	 combining	 both	 prior	 knowledge	 about	

foreperiod	duration	and	the	elapse	of	time	(i.e.,	hazard	function).		

Janssen	and	Shadlen’s	(2005)	findings	have	been	replicated	in	humans	in	both	

fMRI	 (Bueti,	 Bahrami,	 Walsh,	 &	 Rees,	 2010)	 and	 EEG	 studies	 (Herbst,	 Fiedler,	 &	

Obleser,	2018).	Bueti	and	colleagues	(2010)	tested	participants	using	the	same	task	

as	 Janssen	 and	 Shadlen	 and	 found	 that	 activity	 in	 V1	 and	 extrastiate	 visual	 areas,	

together	with	 the	parietal	 cortex	and	motor	 regions	 (SMA,	cerebellum),	 correlated	

with	the	hazard	function.	More	recently,	Herbst	and	colleagues	(2018)	showed	that	

the	EEG	signal	obtained	from	three	different	foreperiod	distributions	was	modulated	

by	 the	associated	hazard	 function	and	 that	 the	 signal	 tracking	 the	hazard	 function	

was	reconstructed	in	the	supplementary	motor	area.		

Another	 popular	 paradigm	 to	 study	 temporal	 preparation	 is	 the	 temporal	

orienting	 task	 (Kingstone,	 1992).	 In	 this	 paradigm,	 which	 represents	 the	 temporal	

analogue	of	Posner’s	spatial	orienting	task	(Posner,	Snyder,	&	Davidson,	1980),	 the	
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warning	signal	acts	as	an	explicit	cue	that	predicts	with	high	probability	 (e.g.,	75%)	

the	specific	foreperiod	duration	(i.e.,	short	versus	long)	after	which	the	target	would	

occur.	Temporal	orienting	effects	are	typically	reflected	at	the	short	time	interval	by	

faster	and	more	accurate	responses	 to	validly-cued	targets	as	compared	to	 targets	

occurring	earlier	than	expected.	At	the	long	time	interval,	temporal	orienting	effects	

are	usually	smaller	or	even	absent	because	participants	will	reorient	their	attention	

to	 the	 long	 interval	 if	 the	 target	 has	 not	 appeared	 early	 as	 expected,	 which	

counteracts	the	negative	consequences	of	an	 invalid	temporal	expectation	(Correa,	

Lupianez,	Madrid,	&	Tudela,	2006;	Coull	&	Nobre,	1998).		

Temporal	orienting	of	attention	 is	usually	associated	with	greater	activity	 in	

the	left	inferior	parietal	cortex	(Cotti,	Rohenkohl,	Stokes,	Nobre,	&	Coull,	2011;	Coull	

&	Nobre,	1998;	Davranche,	Nazarian,	Vidal,	&	Coull,	2011).	

Summing	up	foreperiod	and	temporal	orienting	studies,	it	is	clear	that	there	

should	 be	 some	 functional	 differences	 in	 the	 way	 temporal	 expectations	 are	

developed	 in	 each	 task.	 Namely,	 temporal	 orienting	 tasks	 use	 fixed	 and	 constant	

cues	that	indicate	a	priori	the	likely	moment	in	time	at	which	the	target	might	occur.	

Conversely,	 in	 variable	 foreperiod	 paradigms	 temporal	 expectations	 evolve	 over	

time	and	need	to	be	updated.	This	key	difference	between	temporal	orienting	and	

foreperiod	 paradigms	 led	 Coull	 and	 colleagues	 (2016)	 to	 surmise	 that,	 in	 Bayesian	

terms,	 the	 temporal	 predictability	 afforded	 by	 the	 two	 “can	 be	 considered	 as	

equivalent	to	prior	and	posterior	probability,	respectively”.	To	this	end,	the	authors	

ran	an	 fMRI	 study	 in	which	 they	compared	 the	benefits	of	 temporal	orienting	 (the	

“prior”	in	their	reasoning)	and	foreperiod	(“posterior”)	effects.	Results	showed	that	

the	left	inferior	parietal	cortex	was	engaged	by	both	the	temporal	cue	(prior)	and	the	

hazard	 function	 (posterior),	 whereas	 the	 right	 inferior	 frontal	 cortex	 was	 only	

engaged	by	the	hazard	function.	Despite	interesting,	however,	a	direct	modeling	of	

the	 data	within	 a	 Bayesian	 framework	was	missing	 in	 that	 fMRI	 study	 and,	 to	 our	

knowledge,	 in	 all	 the	 other	 fMRI	 studies	 that	 have	 so	 far	 tested	 temporal	

preparation	 (e.g.,	 Vallesi	 et	 al.,	 2009a).	 In	 the	 following	 paragraphs,	we	will	make	

indeed	evident	that	in	Bayesian	terms	updating	and	posteriors	are,	in	a	strict	sense,	

terms	that	cannot	be	related	to	the	concepts	used	by	Coull	and	colleagues	(2016).		
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Before	going	into	the	details	of	how	we	modeled	temporal	updating	using	a	

Bayesian	approach,	we	will	briefly	touch	upon	the	main	features	of	Bayesian	models.	

	

1.2 Bayesian	belief	updating	

Imagine	 being	 in	 a	 well-lighted	 room.	 Looking	 at	 the	 objects	 in	 the	

environment,	you	have	the	naïve	impression	that	what	you	perceive	is	an	exact	copy	

of	what	is	around	you.	However,	it	is	enough	that	the	light	grows	dim	to	realize	that	

you	 start	 perceiving	 with	 uncertainty.	 The	 fact	 that	 we	 continuously	 deal	 with	

uncertain	 information	 becomes	 much	 more	 evident	 if	 we	 move	 from	 vision	 to	

hearing	or	possibly	even	more	to	time.	Consequently,	a	key	function	of	our	brain	is	

to	infer	the	possible	causes	of	the	world	from	uncertainty.	This	leads	to	the	idea	that	

brain	processes	have	a	probabilistic	nature.	In	this	regard,	Bayesian	frameworks	are	

gaining	increasing	popularity	to	explain	cognitive	brain	functions.		

The	 strength	 of	 a	 Bayesian	 approach	 is	 that	 it	 provides	 a	way	 to	 formalize	

inferential	 mechanisms	 necessary	 to	 process	 information	 under	 uncertainty.	

According	 to	 the	 Bayesian	 brain	 hypothesis,	 information	 is	 “represented	 by	 a	

conditional	 probability	 density	 function	 over	 the	 set	 of	 unknown	 variables–	 the	

posterior	 density	 function”	 (Knill	&	 Pouget,	 2004).	 For	 example,	when	 you	 feel	 an	

unseen	 object	 in	 a	 bag,	 the	 brain	 tries	 to	 infer	 the	 causes	 of	 your	 sensation	 (i.e.,	

which	 object	 you	 are	 touching)	 based	 on	 a	model	 of	 the	 interior	 of	 the	 bag.	 This	

inferential	process	is	formally	expressed	using	Bayes’	rule	as:	

	

(	 𝑃 𝐴 𝐵 ∝ 𝑃 𝐵 𝐴 𝑃 𝐴 .	 (1.1)	

	

From	 the	 formula,	 your	 beliefs	 about	 which	 object	 your	 are	 touching	 are	

expressed	as	a	posterior	distribution,	P(A|B),	that	is	the	probability	of	many	possible	

objects	of	being	the	object	you	feel	given	the	available	sensory	 information.	These	

beliefs	 are	 derived	 by	 combining	 the	 relative	 likelihood	 of	 feeling	 that	 sensation	

given	different	possible	objects,	P(B|A),	with	our	prior	beliefs	about	the	probability	
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of	different	objects	of	being	in	the	bag,	P(A).	In	sum,	a	Bayesian	observer	represents	

beliefs	as	probability	distributions	interpreting	new	information	with	respect	to	prior	

knowledge.	

Experimentally,	 a	 Bayesian	 approach	 can	 be	 applied	 through	 the	

implementation	of	an	ideal	observer	to	make	predictions	about	behavioral	or	neural	

data.	 A	 Bayesian	 ideal	 observer	 is	 a	 hypothetical	 participant	 who,	 using	 Bayesian	

inference,	performs	a	specific	task	in	an	optimal	way,	consistently	with	the	specified	

information	and	constraints	(Geisler,	2011).	As	a	result,	we	can	look	into	the	“mind”	

of	 our	 ideal	 participant	 in	 order	 to	 derive	 measures	 about	 the	 internal	

representation	 and	 processing	 of	 task	 information.	 These	 measures	 can	 be	 used,	

then,	as	a	benchmark	to	predict	behavior	and	brain	activity	of	people	performing	the	

same	task.		

The	Bayesian	framework	has	been	used	to	investigate	several	brain	processes	

across	many	cognitive	domains,	such	as	visual	processing,	multisensory	integration,	

sensorimotor	integration,	and	decision-making	(see		Penny,	2012;	Vilares	&	Kording,	

2011;	 Yuille	 &	 Kersten,	 2006,	 for	 reviews).	 One	 key	 aspect	 in	 this	 literature,	 and	

particularly	relevant	for	the	present	dissertation,	 is	Bayesian	belief	updating.	Based	

on	 the	episode	 reported	at	 the	beginning	of	 the	 chapter,	 it	 is	 clearly	 important	 to	

have	accurate	beliefs	about	events	 in	order	 to	predict	environmental	contingences	

and	 behave	 in	 a	 more	 efficient	 way.	 Hence,	 the	 significance	 of	 studying	 the	

processes	involved	in	maintaining	appropriate	beliefs	about	the	environment.	In	the	

Bayesian	 framework,	 the	 brain	 iteratively	 derives	 updated	 beliefs	 (posterior)	 from	

prior	 beliefs	 given	 new	 observations	 (i.e.,	 Bayes’	 rule).	 Although	 in	 stable	

environments	 belief	 updating	 is	 negligible	 (i.e.,	 differences	 between	 prior	 and	

posterior	are	very	small),	the	importance	of	this	process	becomes	evident	when	the	

probabilistic	structure	of	the	events	is	unknown	or	changeable.	To	make	an	example	

about	possible	experimental	situations	as	reported	 in	O’Reilly	and	Mars	(O’Reilly	&	

Mars,	2015),	participants	at	 the	beginning	of	an	uncued	Posner	task	 (Posner	et	al.,	

1980)	have	no	useful	beliefs	about	the	probability	associated	with	target	location.	To	

improve	 their	 performance,	 participants	 need	 to	 update	 beliefs	 on	 a	 trial-by-trial	

basis	 to	 accurately	 predict	 target	 location,	 thus,	 enhancing	 information	 processing	



	

	 15	

and	response	selection.	Despite	belief	updating	is	at	the	core	of	the	Bayesian	brain	

hypothesis	 (Knill	 &	 Pouget,	 2004),	 researchers	 have	 started	 only	 recently	 to	

investigate	the	mechanisms	underlying	belief	updating	in	the	brain.	In	the	remainder	

of	 the	paragraph,	we	will	 briefly	 review	 the	 literature	on	 fMRI	 and	 EEG	 studies	 of	

Bayesian	belief	updating.		

Concerning	fMRI,	Bayesian	belief	updating	has	been	investigated	in	different	

cognitive	domains.	In	the	spatial	domain,	for	example,	Vossel	and	colleagues	(2015)	

investigated	 the	 neural	 mechanisms	 underlying	 Bayesian	 belief	 updating	 in	 the	

deployment	 of	 spatial	 attention.	 To	 this	 aim,	 the	 authors	 implemented	 a	 Posner	

cueing	task	in	which	they	varied	cue	validity	rate	and	applied	a	hierarchical	Bayesian	

learning	model	 (Mathys	 et	 al.,	 2014)	 to	 quantify	 trial-by-trial	 belief	 updating.	 The	

results	showed	the	 involvement	of	 three	brain	 regions	 in	Bayesian	belief	updating,	

namely,	 right	 frontal	 eye	 fields	 (FEF),	 right	 temporo-parietal	 junction	 (TPJ)	 and	

putamen.	 Furthermore,	 they	 showed	 that	 effective	 connectivity	 from	 TPJ	 to	 other	

brain	areas	was	modulated	by	updating.	

Other	fMRI	studies	that	used	a	normative	Bayesian	 learner	describing	belief	

updating	 showed	 that	 the	 anterior	 cingulate	 cortex	 (ACC)	 reflected	 increased	

uncertainty	 during	 evidence	 accumulation	 in	 decision	 making	 (Behrens,	 Woolrich,	

Walton,	&	Rushworth,	2007;	Stern,	Gonzalez,	Welsh,	&	Taylor,	2010).	In	the	field	of	

decision	 making,	 Waskom	 and	 colleagues	 (2017)	 devised	 a	 context-dependent	

perceptual	decision	task	 in	which	participants	were	cued	to	make	a	decision	either	

on	 the	 color	 of	 random	 dot	 stimuli	 or	 their	 motion.	 Frequency	 about	 the	 cued	

dimension	 varied	 during	 the	 task.	 Violations	 of	 expectations	were	 associated	with	

increased	activity	in	bilateral	inferior	frontal	sulcus	(IFS),	bilateral	intraparietal	sulcus	

(IPS),	posterior	cingulate	cortex	(PCC)	and	middle	superior	parietal	lobe	(mSPL).	

A	 common	 aspect	 in	 all	 the	 fMRI	 studies	 presented	 so	 far	 is	 the	 fact	 that	

belief	updating	has	been	driven	by	surprising	events	that	violated	prior	expectations.	

This	is	intuitive	since	generally	speaking	a	surprising	event	leads	to	an	update	of	our	

prior	beliefs.	However,	not	always	surprise	(violations	of	expectations)	is	associated	

with	updating	and	actually	 surprise	and	updating	 represent	 two	distinct	constructs	

that	have	been	often	conflated.	We	 illustrate	 this	point	 through	 the	“white	noise”	
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paradox	 (Barto,	 Mirolli,	 &	 Baldassarre,	 2013;	 Itti	 &	 Baldi,	 2005).	 Imagine	 yourself	

watching	 a	 “snow”	 television	 screen.	 Each	 frame	 is	 very	 surprising	 given	 the	 high	

number	 of	 possible	 random	 combinations	 of	 pixel	 patterns,	 each	 of	 which	 is	

associated	with	a	low	probability	of	occurrence.	Notwithstanding	this,	surprise	does	

not	lead	to	a	relevant	change	in	the	agent’s	internal	model	since	a	random	noise	will	

end	up	being	increasingly	more	expected.		

As	it	will	become	clear	later,	the	dissociation	between	surprise	and	updating	

lies	at	the	core	of	our	experimental	designs	and	associated	models.	We	are	aware	of	

only	three	previous	studies	that	have	differentiated	surprise	and	updating.	The	first	

one	was	conducted	by	O’Reilly	and	colleagues	 (2013)	using	a	 spatial	 saccadic	 task.	

Participants	 were	 signaled	 whether	 target	 violating	 prior	 expectations	 were	

informative	or	not	to	predict	 future	target	 locations.	This	gave	rise	to	two	types	of	

trials	violating	participants’	prior	beliefs:	updating	trials	and	surprise-only	trials.	The	

authors	 found	 that	 ACC	 was	 involved	 in	 belief	 updating,	 while	 superior	 parietal	

lobule	responded	to	the	 immediate	consequences	of	violation	of	expectations	(i.e.,	

reprogramming	actions).	In	the	second	study,	Schwartenbeck	and	colleagues	(2016)	

dissociated	 between	 surprise	 and	 updating	 to	 characterize	 the	 role	 of	 dopamine	

signaling	in	response	to	unexpected	events.	To	the	aim,	they	implemented	a	task	in	

which	 participants	 had	 to	 infer	 which	 one	 of	 two	 simultaneously	 presented	 cue	

modalities	 (visual	 or	 auditory)	 predicted	 a	 monetary	 outcome.	 Participants	 were	

instructed	 that	 the	 predictive/non-predictive	 status	 of	 the	 two	modalities	 did	 not	

change	on	a	 trial-by-trial	basis	but	periodically.	 For	each	modality,	 there	were	one	

bad	and	one	good	tone/shape,	which	predicted,	respectively,	monetary	loss	and	win	

with	 a	 cue	 validity	 rate	 of	 90%.	 Importantly,	 half	 of	 the	 trials	 were	 useful	 for	

inference	(one	modality	predicted	a	win	while	the	other	a	loss),	while	the	other	half	

were	 uninformative	 (both	 modality	 predicted	 win	 or	 loss).	 In	 this	 way,	 they	

dissociated	between	surprise	events	(e.g.,	the	10%	invalid	trials	in	the	uninformative	

trials),	 and	 updating	 that	 could	 occur	 only	 in	 informative	 trials.	 Differently	 from	

O’Reilly	 and	colleagues	 (2013),	no	motor	 response	was	 required	at	 cue	onset,	 and	

the	 surprise/update	 values	 of	 the	 stimuli	were	not	 explicitly	 signaled.	 The	 authors	

found	 that	 updating	 involved	 dopamine-rich	midbrain	 regions	 along	with	 bilateral	
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inferior	 frontal	 cortex,	 bilateral	 posterior	 parietal	 cortex,	 and	 ACC,	 while	 surprise	

modulated	activity	 in	pre-supplementary	motor	area	(pre-SMA)	and	dorsal	anterior	

cingulate	cortex	(dACC).		

The	 last	 study	 attempting	 to	 decorrelate	 surprise	 and	 updating	 was	

conducted	by	Kobayashi	and	Hsu	(2017).	They	implemented	a	version	of	the	Ellsberg	

three-color	urn	problem	in	which	participants	exactly	knew	the	total	number	of	balls	

in	an	urn	and	the	number	of	balls	of	one	color	(called	“risky	color”),	but	they	did	not	

know	the	number	of	balls	of	the	other	two	colors	(called	“ambiguous	colors”).	At	the	

end	 of	 each	 trial,	 participants	 received	 $	 10	 if	 a	 resolution	 draw	 from	 the	 urn	

matched	 a	 winning	 color	 presented	 at	 the	 beginning	 of	 the	 trial.	 Before	 the	

resolution	draw,	participants	viewed	a	ball	drawn	from	the	urn	and,	then,	returned	

to	 the	 urn.	 This	 task	 allowed	 distinguishing	 not	 only	 update	 from	 surprise,	 but	

further	differentiating	belief	update	about	 the	urn	 composition	 from	value	update	

about	 the	 chance	 of	 winning.	 Concerning	 belief	 update,	 only	 the	 draw	 of	 an	

ambiguous-color	 ball	 was	 informative	 because	 seeing	 a	 risky-ball	 was	 redundant	

since	their	number	was	already	known.	Concerning	value	updating,	 it	 should	occur	

only	 when	 the	 specified	 winning	 color	 was	 ambiguous	 (“ambiguous	 gamble”),	

because	 in	 case	 the	winning	 color	was	 the	 risky	 one	 (“risky	 gamble”),	 participants	

already	knew	 the	 chance	of	winning.	 Summarizing	 then,	belief	update	 could	occur	

only	after	ambiguous-ball	draws,	while	value	update	only	after	ambiguous	gambles.	

Surprise	was	associated	with	every	draw,	since	each	color,	including	the	risky	color,	

had	 its	 level	 of	 expectancy	 violation.	 The	 authors	 found	 that	 belief	 updating	

modulated	activity	 in	bilateral	middle	frontal	gyrus,	bilateral	 inferior	parietal	sulcus	

(IPS)	 and	 precuneus.	 Value	 updating	 was	 associated	 with	 activity	 in	 right	

ventromedial	 prefrontal	 cortex,	 anterior	 and	 middle	 cingulate,	 and	 left	 superior	

temporal	gyrus.	Surprise	was	associated	with	activity	in	bilateral	anterior	insula.			

Overall,	these	three	studies	found	dissociations	between	belief	updating	and	

surprise	highlighting	the	importance	of	tasks	that	allow	decorrelating	these	types	of	

information	 in	 order	 to	 better	 characterize	 the	 associated	 processes.	 However,	

despite	some	broad	commonalities,	there	were	differences	in	the	precise	localization	

of	 updating	 and	 surprise,	 likely	 due	 to	 difference	 in	 the	 tasks	 and	 in	 the	 required	
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processes.	As	suggested	by	Kobayashi	and	colleagues	(2017),	given	the	low	number	

of	 studies	 attempting	 to	 dissociate	 between	 surprise	 and	 update,	 we	 need	 more	

studies	in	various	tasks	and	domains	to	assess	the	existence	of	domain-general	and	

domain-	specific	correlates	of	belief	updating.	

Concerning	 the	 EEG	 literature	 on	 Bayesian	 belief	 updating,	 the	majority	 of	

the	 studies	 have	 focused	 on	 the	 P3	 event-related	 potential	 (ERP)	 component	

(Kolossa	 et	 al.,	 2013;	 Kolossa,	 Kopp,	&	 Fingscheidt,	 2015;	 Kopp,	 2008;	Mars	 et	 al.,	

2008).	The	attention	to	this	component	was	likely	driven	by	its	amplitude	sensitivity	

to	 stimulus	 probabilities.	 According	 to	 the	 influential	 context-updating	 theory	

(Donchin	&	Coles,	1988),	 indeed,	the	P3	(a	parietally-distributed	positive	deflection	

usually	emerging	around	250-500;	 for	an	overview,	see	Polich,	2003)	 is	an	 index	of	

the	 revision	 of	 an	 internal	 model	 in	 order	 to	 maintaining	 “its	 mapping	 of	

probabilities”	 (p.	 367)	 accurate.	 Despite	 the	 clear	 similarity	 between	 former	

interpretations	of	P3	and	Bayesian	 inference	 (Kopp,	2008),	a	Bayesian	approach	to	

the	 study	of	 this	 component	 is	 relatively	 recent.	Using	an	 ideal	Bayesian	observer,	

Mars	and	colleagues	 (2008)	modeled	beliefs	about	stimulus	occurrence	 in	a	choice	

RT	 task	 in	 which	 the	 relative	 frequency	 of	 four	 stimuli	 was	manipulated	 between	

blocks.	 The	 authors	 found	 that	 trial-by-trial	 fluctuations	 in	 P3	 amplitude	 could	 be	

explained	 by	 surprise	 conveyed	 by	 the	 stimuli.	 A	 similar	 result	 was	 obtained	 by	

Kolossa	 and	 colleagues	 (Kolossa	 et	 al.,	 2013)	 in	 a	 two-choice	 RT	 task,	 in	 which	

fluctuations	 in	 P3	 amplitude	 were	 well	 explained	 by	 a	 Bayesian	 observer	 that	

updated	 beliefs	 with	 some	 memory	 constraints	 (this	 aspect	 will	 be	 discussed	 in	

details	 in	 Chapter	 4)	 and	 alternation	 expectancies	 (Squires,	 Wickens,	 Squires,	 &	

Donchin,	1976).		

Further	studies	have	investigated	whether	different	P3	subcomponents	might	

be	dissociated	in	terms	of	updating	and	surprise.	To	this	aim,	Kolossa	and	colleagues	

(2015)	implemented	a	special	urn-ball	task	that	allowed	manipulating	probabilities	at	

two	levels.	At	the	beginning	of	each	trial	participants	were	presented	with	a	tableau	

containing	ten	urns	of	two	different	types,	each	of	which	containing	ten	balls	of	two	

different	colors.	The	two	probabilistic	manipulations	involved	the	proportion	of	urn	

types	and	the	proportion	of	ball	colors	within	each	urn	type.	They	referred	to	these	
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two	proportions	as	prior	probability	 (urn	type)	and	 likelihood	(ball	color).	After	the	

tableau	presentation,	four	balls	were	sequentially	drawn	with	replacement	from	one	

randomly	selected	urn.	Afterwards,	participants	were	required	to	infer	which	type	of	

urn	had	been	selected.	This	paradigm	allowed	the	authors	to	distinguish	updating	of	

beliefs	 about	 “hidden	 state”	 (beliefs	 about	 which	 type	 of	 urn	 was	 being	 sampled	

from)	 from	updating	of	beliefs	 about	 future	observations	 (beliefs	 about	which	ball	

would	 have	 been	 drawn).	 Results	 showed	 that	 three	 subcomponents	 of	 the	 “late	

positive	complex”	(Sutton	&	Ruchkin,	1984),	namely	P3a,	P3b	and	Slow	Wave	(SW),	

were	differently	influenced	by	updating	and	surprise.	First,	they	confirmed	previous	

findings	 about	 the	 modulation	 of	 the	 P3b	 amplitude	 (also	 referred	 to	 as	 P3)	 by	

surprise.	Updating	of	beliefs	about	hidden	states	was	the	best	predictor	of	the	P3a	

amplitude,	 a	 component	with	 a	more	 frontocentral	 topography	 than	 the	 P3b	 and	

with	earlier	peak	latency.	Last,	updating	of	beliefs	about	future	observations	was	the	

best	predictor	of	the	SW	activity	emerging	after	the	P3.	The	association	between	P3a	

amplitude	and	belief	updating	has	been	supported	by	Bennett	and	colleagues	(2015)	

in	a	perceptual	learning	task.	It	is	important	to	highlight	here	that	despite	all	the	EEG	

studies	described	so	far	have	investigated	surprise	and	updating,	these	two	were	not	

explicitly	decoupled	in	their	respective	tasks.		

This	brief	review	of	the	 literature	on	Bayesian	belief	updating	demonstrates	

the	 great	 value	 of	 Bayesian	 models	 to	 gain	 direct	 insights	 into	 the	 cognitive	

processes	 and	 neural	 mechanisms	 underlying	 different	 functions.	 The	 present	

dissertation	aims	at	joining	and	further	extending	this	previous	work	by	exploring	a	

pivotal	 dimension	 of	 our	 life,	 that	 is,	 time.	 As	 already	 mentioned,	 research	 on	

temporal	preparation	has	investigated	how	the	brain	tracks	the	temporal	hazard	of	

target	 onset	 starting	 from	 a	 prior	 foreperiod	 distribution.	 However,	 how	 prior	

distributions	 are	 formed	 and	 updated	 is	 still	 an	 unsettled	 question.	 In	 the	 last	

paragraph	of	the	Introduction,	we	will	describe	how	we	applied	a	Bayesian	approach	

to	investigate	updating	and	surprise	associated	with	temporal	expectations.	
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1.3 Project	overview	

The	overarching	goal	of	the	present	PhD	project	was	to	pinpoint	the	neural	

mechanisms	 by	 which	 beliefs	 about	 event	 timing	 are	 dynamically	 updated.	

Moreover,	as	mentioned	above,	although	updating	usually	occurs	in	the	presence	of	

surprising	events,	processes	involved	in	belief	updating	are	probably	different	from	

those	responding	to	mere	violations	of	expectations	(Kobayashi	&	Hsu,	2017;	O'Reilly	

et	 al.,	 2013;	 Schwartenbeck	 et	 al.,	 2016).	 Therefore,	 our	 second	 and	 interrelated	

research	goal	was	to	understand	whether,	and	to	which	extent,	it	would	be	possible	

to	 dissociate	 the	 neural	 mechanisms	 specifically	 involved	 in	 updating	 from	 those	

dealing	with	surprising	events	that	do	not	require	an	update	of	internal	models.	To	

accomplish	 our	 research	 goals,	 we	 capitalize	 on	 both	 state-of-art	 methodologies	

(i.e.,	 functional	 magnetic	 resonance	 imaging	 and	 electrophysiology)	 and	 Bayesian	

computational	modeling.	

The	present	 dissertation	 is	 composed	of	 an	 fMRI	 and	 two	 EEG	 studies	 that	

constitute	our	three	main	chapters.		

In	 the	 fMRI	 study,	 we	 implemented	 a	 temporal	 preparation	 task	 that	 was	

devised	 following	 the	 spatial	 saccadic	 planning	 task	 by	 O’Reilly	 and	 colleagues	

(2013).	 Briefly,	 in	 their	 task	 participants	 had	 to	 make	 speeded	 saccades	 to	 visual	

colored	 targets	 that	 appeared	 at	 different	 locations	 on	 a	 circular	 perimeter.	

Participants	could	predict	target	locations	since	most	of	them	appeared	at	an	angle,	

α,	 drawn	 from	 a	 Gaussian	 distribution	 whose	mean	 and	 standard	 deviation	 were	

kept	 constant	 during	 each	 block	 of	 trials,	 but	 abruptly	 changed	 between	 blocks.	

Blocks	 were	 not	 temporally	 separated,	 but	 participants	 were	 explicitly	 instructed	

that	a	change	in	the	target	color	signaled	the	beginning	of	a	new	block.	On	few	trials	

(interspersed	 with	 the	 other	 trials),	 the	 target	 appeared	 at	 a	 random	 location.	

Importantly,	these	“one-off”	targets	were	always	grey,	signaling	to	the	participants	

that	 the	 current	 trial	 was	 not	 the	 start	 of	 a	 new	 block	 (update	 trial),	 that	 is,	 no	

update	 had	 to	 be	 done.	 In	 sum,	 although	 update	 and	 one-off	 trials	 were	 both	

surprising,	update	and	surprise	were	dissociated	using	the	color	manipulation.		
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In	our	temporal	preparation	task,	we	also	differentiated	between	update	and	

surprise	 trials	 by	 using	 the	 same	 color	manipulation	 as	 in	 O’Reilly	 and	 colleagues	

(2013)	 and	by	 varying	 foreperiod	durations	 instead	of	 target	 location.	Hoping	 that	

the	 reader	 will	 forgive	 us	 for	 the	 following	 spoiler,	 the	 results	 of	 the	 fMRI	 study	

confirmed	 the	 validity	 of	 our	manipulation	 and	 showed	 that	 two	 cognitive-control	

networks	(Dosenbach,	Fair,	Cohen,	Schlaggar,	&	Petersen,	2008)	were	differentially	

involved	in	updating	of	temporal	expectations	and	in	dealing	with	surprising	events.		

Having	 successfully	 dissociated	 between	 updating	 and	 surprise	 in	 our	 first	

fMRI	 study,	 the	 next	 step	 was	 to	 investigate	 the	 temporal	 dynamics	 of	 the	 two	

processes.	Do	 updating	 and	 surprise	 act	 on	 similar	 or	 distinct	 processing	 stage(s)?	

What	 is	 the	 time	 course	 associated	with	 the	 two?	 To	 address	 these	 questions,	 in	

Study	2	participants	performed	our	adapted	foreperiod	task	(basically	the	same	task	

as	 in	 Study	 1)	 while	 their	 electroencephalographic	 activity	 was	 recorded.	 We	

dissociated	 surprise	 and	 updating	 at	 the	 P3	 level,	 but	 interestingly,	 we	 found	

modulations	also	at	early	processing	stages.		

While	 in	 Studies	 1	 and	 2,	 the	 color	 manipulation	 explicitly	 encouraged	

participants	 to	 form	 and	 update	 temporal	 expectations	 about	 the	 foreperiod	

duration,	in	Study	3	we	wanted	to	make	a	step	further	trying	to	answer	the	following	

question:	 how	 updating	 of	 temporal	 expectations	 is	 accomplished	 when	 Bayesian	

inference	 is	 implicitly	 rather	 than	 explicitly	 driven?	 To	 this	 aim,	we	 took	 away	 the	

color	manipulation	from	our	version	of	the	foreperiod	task.	In	doing	so,	we	aimed	to	

investigate	 whether	 EEG	 signatures	 would	 differ	 or	 not	 when	 changes	 in	 the	

underlying	distributions	are	explicitly	signalled	or	not.		Results	from	Study	3	showed	

both	 similarities	 and	 differences	 between	 implicitly-	 and	 explicitly-driven	 temporal	

inferences,	further	confirming	the	role	of	the	P3	in	belief	updating.	
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 	Chapter	2

Temporal	 belief	 updating	 and	 surprise	 modulate	

cognitive	control	networks	

	

2.1 Introduction	

The	ability	to	predict	when	a	relevant	event	might	occur	is	critical	to	survive	

in	our	dynamic	and	uncertain	environment.	This	cognitive	ability,	usually	referred	to	

as	 temporal	 preparation,	 allows	 us	 to	 prepare	 fast	 and	 accurate	 responses	 to	

forthcoming	 stimuli	 by	 anticipating	 their	 likely	 timing	 of	 occurrence:	 from	 safely	

crossing	a	busy	 road	during	 rush	hours,	 to	 timing	 turn	 taking	 in	a	 conversation,	 to	

catching	 something	 in	mid-air,	 are	 all	 examples	 of	 how	 important	 and	 ubiquitous	

temporal	preparation	is	in	our	everyday	life	(e.g.,	Correa,	2010;	Coull	&	Nobre,	1998;	

Nobre	et	al.,	2007).	

Temporal	 preparation	 has	 been	 traditionally	 investigated	 in	 simple	 and	

choice	 response	 time	 (RT)	 tasks	 in	which	 a	 variable	 time	 interval	 (i.e.,	 foreperiod)	

separates	 warning	 and	 target	 stimuli	 (for	 reviews,	 see	 Niemi	 &	 Näätänen,	 1981;	

Vallesi,	 2010).	 Previous	 research	 has	 shown	 that	 temporal	 preparation	 can	 be	

modeled	by	the	hazard	function,	which	refers	to	the	conditional	probability	that	an	
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event	will	occur,	given	it	has	not	yet	occurred	(Bueti	et	al.,	2010;	Janssen	&	Shadlen,	

2005).	This	 implies	that	an	observer	may	build	up	temporal	expectations	according	

to	 both	 elapsed	 time	 and	distribution	 of	 possible	 foreperiods.	 In	 a	 very	 influential	

study	by	Janssen	and	Shadlen	(2005),	monkeys	were	trained	to	anticipate	the	timing	

of	a	“go”	signal	preceded	by	a	warning	signal.	Within	a	block	of	trials,	the	foreperiod	

was	 drawn	 from	 either	 a	 unimodal	 or	 a	 bimodal	 distribution.	 Single-cell	 recording	

showed	that	the	firing	rate	of	neurons	in	the	intraparietal	area	reflected	the	hazard	

function	associated	with	the	valid	distribution.	Such	a	finding	was	then	corroborated	

in	 humans	 in	 both	 functional	 magnetic	 resonance	 imaging	 (fMRI)	 and	

electroencephalographic	(EEG)	studies	(for	fMRI:	Bueti	et	al.,	2010;	for	EEG:	Herbst	

et	 al.,	 2018;	 Trillenberg,	 Verleger,	 Wascher,	 Wauschkuhn,	 &	 Wessel,	 2000).	

However,	while	these	studies	demonstrated	the	use	of	an	internal	predictive	model	

(i.e.,	 the	 underlying	 foreperiod	 distribution),	 the	 question	 of	 how	 such	 a	model	 is	

learnt	is	still	unsettled.		Here,	we	sought	to	characterize	the	neural	mechanisms	that	

allow	 forming	 and	 updating	 temporal	 expectations.	 Specifically,	 we	 applied	 the	

Bayesian	 brain	 framework	 to	 quantitatively	 describe	 belief	 updating	 about	

foreperiod	distributions.		

According	to	the	Bayesian	brain	hypothesis	(Doya,	Ishii,	Pouget,	&	Rao,	2007;	

Friston,	2005;	Kersten,	Mamassian,	&	Yuille,	2004;	Knill	&	Pouget,	2004),	 the	brain	

weighs	 current	 evidence	 (likelihood)	 on	 the	 basis	 of	 expectations	 about	 the	

environment	 (prior	 beliefs)	 and	updates	 such	 beliefs	 into	posterior	 ones.	Given	 an	

agent’s	 beliefs,	 those	 events	 fulfilling	 our	 prior	 expectations	 can	 be	 predicted	 to	

optimize	 behavior.	 Conversely,	 those	 events	 violating	 our	 expectations	 are	

surprising,	 thus	 leading	 to	 behavioral	 costs	 and	 to	 an	 update	 of	 the	 internal	

predictive	 models.	 It	 is	 important	 to	 note	 that	 “a	 surprising	 observation	 is	 not	

necessarily	 associated	 with	 improving	 an	 agent's	 beliefs	 about	 the	 environment”	

(Schwartenbeck	 et	 al.,	 2016).	 A	 classic	 example	 of	 this	 concept	 is	 provided	 by	 the	

“white	 noise”	 paradox	 (Barto	 et	 al.,	 2013;	 Itti	 &	 Baldi,	 2005).	 Imagine	 yourself	

watching	 a	 “snow”	 television	 screen.	 Each	 frame	 is	 very	 surprising	 given	 the	 high	

number	 of	 possible	 random	 combinations	 of	 pixel	 patterns,	 each	 of	 whom	 is	

associated	with	a	low	probability	of	occurrence.	Notwithstanding	this,	surprise	does	
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not	lead	to	a	relevant	change	in	the	agent’s	internal	model	since	a	random	noise	will	

end	 up	 being	 increasingly	more	 expected.	 The	white	 noise	 paradox	 represents	 an	

extreme	 case	 as,	 normally,	 a	 surprising	 event	does	 cause	 a	 revision	of	 the	 agent’s	

beliefs.	 Two	 information	 theory	measures	 have	 been	 used	 to	 disentangle	 surprise	

and	updating.	The	surprise	associated	with	a	particular	event	is	formalized	in	terms	

of	Shannon’s	information	(IS),	as	follows	(Itti	&	Baldi,	2005;	Shannon,	1948):	

	

(

1)	

𝐼! 𝑜 = − log𝑝 𝑜|𝑝𝑟𝑖𝑜𝑟 ,	 (2.1)	

	

that	 is,	 the	 negative	 log	 probability	 of	 the	 observation,	 o,	 given	 the	 prior	

expectations,	prior.	According	to	this	formula,	an	event	that	is	highly	unlikely	elicits	

high	surprise	when	it	occurs.		

The	 updating	 of	 the	 internal	 model	 is,	 instead,	 formalized	 in	 terms	 of	 the	

Kullback-Leibler	divergence	(DKL)	from	prior	to	posterior	beliefs	(Baldi	&	Itti,	2010;	Itti	

&	Baldi,	2009):	

	

(

1)	
𝐷!" 𝑝𝑜𝑠𝑡||𝑝𝑟𝑖𝑜𝑟 = log

!

𝑜|𝑝𝑟𝑖𝑜𝑟
𝑜|𝑝𝑜𝑠𝑡 𝑝 𝑜|𝑝𝑟𝑖𝑜𝑟 .	 (2.2)	

	

Although	 surprise	 and	 updating	 are	 likely	 to	 co-occur	 (i.e.,	 they	 are	

correlated),	 they	may	 reflect	 distinct	 processes	 that	might	 be	 dissociated.	 To	 this	

aim,	 O’Reilly	 and	 colleagues	 (2013)	 developed	 a	 saccadic	 planning	 task	 in	 which	

target	 locations	 could	be	predicted	by	 inferring	 the	underlying	 spatial	 distribution.	

Crucially,	participants	were	explicitly	informed	whether	information	from	surprising	

trials	was	useful	 to	 infer	 future	 target	 locations	 (updating	 trials)	or	whether	 it	was	

not	 (one-off	 trials).	 This	 manipulation	 allowed	 decomposing	 surprise	 (IS)	 and	

updating	(DKL)	of	spatial	locations	at	two	levels	of	cognitive	operations:	1)	between-

trial	 processes	 associated	 with	 the	 updating	 of	 an	 internal	 predictive	 model	 to	
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predict	 future	 events,	 and	 2)	 within-trial	 processes	 involved	 in	 facing	 unexpected	

events	 (e.g.	 reprogramming	 a	 response	 to	 an	 unpredicted	 stimulus).	 Using	 this	

paradigm,	the	authors	managed	to	observe	separated	brain	regions	for	surprise	and	

updating,	namely,	posterior	parietal	and	anterior	cingulate	cortex,	respectively.		

In	 the	 present	 study,	 we	 combined	 computational	 modeling	 and	 fMRI	 to	

investigate	 the	 neural	 mechanisms	 associated	 with	 updating	 of	 temporal	

expectations	 and	 the	 effect	 of	 temporally	 unexpected,	 surprising,	 events.	 Despite	

temporal	preparation	 is	 a	 fundamental	 feature	of	 cognitive	brain	 functions,	 to	 the	

best	of	our	knowledge,	the	present	study	represents	the	first	attempt	to	investigate	

the	neural	mechanisms	underlying	the	optimization	of	prior	temporal	expectations.	

To	 achieve	 our	 goal,	 we	 adapted	 the	 spatial	 paradigm	 by	 O’Reilly	 and	 colleagues	

(2013)	to	a	foreperiod	temporal	preparation	task.	 In	order	to	quantify	surprise	and	

updating,	we	used	an	ideal	Bayesian	observer	that	enabled	to	capture	participants’	

beliefs	 in	 terms	of	probability	distributions	and	 to	model	belief	updating	using	 the	

Bayes’	 rule.	 Surprise	 and	 updating	 were	 employed	 as	 parametric	 explanatory	

variables	of	both	whole-brain	fMRI	and	functional	connectivity	analyses	to	elucidate	

how	Bayesian	inference	about	temporal	expectations	is	implemented	in	the	brain.	

	

2.2 Methods	

2.2.1 Participants	

The	 study	 included	 an	 initial	 sample	 of	 26	 participants.	 Data	 from	 two	

participants	were	discarded	because	of	 excessive	head	movements	 (see	details	 on	

paragraph	 2.2.6).	 Additionally,	 one	 participant	 was	 excluded	 due	 to	 falling	 asleep	

(11%	of	no	response)	and	another	one	due	to	low	compliance	with	task	instructions	

(49%	 of	 overall	 accuracy;	 the	 participant	 reported	 that	 he	 changed	 his	 strategy	

during	 the	 session,	 but	 this	 fact	 led	 to	 a	 lot	 of	 anticipations).	 Therefore,	 the	 final	

sample	 comprised	22	participants	 [10	 females;	mean	age:	 26	 (SD=4),	 range:	 20-34	

years	 old].	 All	 of	 them	 were	 right-handed,	 as	 assessed	 with	 the	 Edinburgh	

Handedness	 Inventory	 (Oldfield,	 1971)	 with	 an	 average	 score	 of	 89.1	 (SD=11.7,	
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range:	60-100),	reported	no	history	of	neurological	or	psychiatric	disorders,	normal	

color	vision	and	normal	or	corrected-to-normal	visual	acuity	(MRI-compatible	glasses	

were	used	when	appropriate).	The	procedures	involved	in	this	study	were	approved	

by	the	Bioethical	Committee	of	the	Azienda	Ospedaliera	di	Padova.	Participants	gave	

their	 written	 informed	 consent	 before	 the	 experiment,	 in	 accordance	 with	 the	

Declaration	of	Helsinki,	and	they	were	reimbursed	25	euros	for	their	time.		

2.2.2 Task	and	procedure	

The	 foreperiod	 task	 was	 implemented	 in	 MATLAB	 (The	 MathWorks,	 Inc.,	

Natick,	Massachusetts,	United	States)	using	the	PSYCHOPHYSICS	TOOLBOX	3	(Brainard	&	

Vision,	1997;	Kleiner	et	al.,	2007;	Pelli,	1997).	As	mentioned	in	the	Introduction,	we	

modeled	 our	 temporal	 task	 after	 the	 spatial	 one	 developed	 by	 O’Reilly	 and	

colleagues	 (2013).	 Each	 trial	 began	 with	 the	 presentation	 of	 an	 uninformative	

warning	 signal	 that	 consisted	 of	 a	 black	 fixation	 cross.	 The	 warning	 signal	 was	

displayed	 centrally	 against	 a	 gray	background	and	 remained	on	 the	 screen	 for	 the	

whole	duration	of	the	foreperiod	for	that	trial.	After	the	foreperiod	elapsed,	a	target	

appeared	and	participants	were	instructed	to	respond	to	the	onset	of	the	target	as	

quickly	 as	 possible.	 The	 target	 was	 a	 colored	 circle	 with	 a	 diameter	 equal	 to	 the	

length	 of	 the	 cross	 arms,	 centrally	 presented	 for	 1500	 ms	 (Fig.	 2.1).	 Participants	

responded	by	pressing	a	button	of	an	MRI-compatible	response	box	with	their	index	

finger.	 Half	 of	 the	 participants	 used	 their	 right	 hand	 and	 the	 other	 half	 their	 left	

hand.	 The	 inter-trial	 interval	 was	 a	 blank	 screen	 that	 was	 presented	 for	 a	 total	

duration	drawn	from	a	Poisson	distribution	having	a	lambda	of	2	and	shifted	of	2	sec	

(i.e.,	from	2	to	12	sec).		

In	 80%	 of	 trials,	 called	 “normal	 trials”,	 the	 foreperiod	 duration	 (FP)	 was	

drawn	 from	 a	 Gaussian	 distribution	 with	 a	 mean	 and	 standard	 deviation	 that	

remained	fixed	during	a	block,	but	that	abruptly	changed	across	blocks.	Blocks	were	

not	 temporally	 separated,	 such	 that	 the	 first	 trial	 of	 a	new	block	 followed	directly	

the	 last	 trial	 of	 the	 previous	 block.	 In	 the	 remaining	 20%	 trials,	 called	 “uniform	

trials”,	 the	 foreperiod	 duration	 was	 drawn	 from	 a	 uniform	 distribution	 with	
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boundaries	 200	 and	 3000	ms	 (Fig.	 2.1B).	 Consequently,	 the	 generative	 probability	

density	function	over	foreperiod	duration	was:	

	

𝑝 𝐹𝑃 = .80 𝑝 𝐹𝑃 𝐹𝑃~𝒩 𝜇,𝜎 + .20 𝑝 𝐹𝑃 𝐹𝑃~𝒰 200 𝑚𝑠, 3000 𝑚𝑠 	 (2.3)	

	

Importantly,	 participants	 were	 instructed	 to	 use	 the	 color	 of	 the	 target	 in	

order	 to	 distinguish	 the	 beginning	 of	 a	 new	 block	 from	 uniform	 trials.	 More	

specifically,	 in	 normal	 trials	 each	 target	 could	 be	 filled	 with	 one	 of	 four	 colors	

(vermillion,	reddish	purple,	bluish	green,	and	blue).	A	given	color	(i.e.,	blue)	was	kept	

constant	 over	 a	 block	 of	 trials	 and	 changed	 only	 when	 a	 new	 block	 started.	

Differently	 from	normal	 trials,	 in	 uniform	 trials	 the	 target	 color	was	 always	white.	

Every	time	a	white	circle	was	encountered,	participants	were	instructed	to	respond	

to	 it	 but	 avoid	using	 the	 current	 temporal	 information	 (either	earlier	or	 later	 than	

the	actual	foreperiod	distribution)	to	anticipate	the	next	target	occurrence.	Rather,	a	

change	in	color	signaled	that	the	current	trial	was	the	beginning	of	a	new	block	and,	

thus,	participants	could	use	information	from	the	last	foreperiod	to	strongly	update	

their	 expectation	 in	 order	 to	 predict	 subsequent	 target	 onsets.	 Summarizing,	 the	

color	manipulation	allowed	creating	essentially	three	types	of	trials:	“update”	trials	

in	which	the	unpredicted	FP	led	to	strongly	updating	the	internal	model	in	order	to	

anticipate	the	next	target	onset,	“predictable”	trials	in	which	the	target	onset	could	

be	easily	predicted	using	 information	from	previous	trials	 in	the	current	block,	and	

“uniform”	trials	 that,	even	 if	 they	were	breaking	current	temporal	expectation,	did	

not	require	any	updating	of	foreperiod	distribution.	

The	 experiment	 was	 composed	 of	 33	 blocks	 with	 a	 total	 number	 of	 trials	

equal	to	350	(the	number	of	trials	in	a	block	was	in	the	range	7-13,	mean	=	9.82,	sd	=	

1.24).	 For	 each	 new	 block,	 the	mean	 of	 the	 Gaussian	 distribution	 from	which	 the	

normal	foreperiods	were	extracted	was	at	least	3	standard	deviations	far	away	from	

the	previous	block.	Moreover,	16	blocks	had	a	mean	lower	than	the	previous	block,	

and	 16	 blocks	 a	 mean	 higher	 than	 the	 previous	 one.	 Overall,	 the	 32	 Gaussian	

distribution	 (not	 considering	 the	 first	 block)	 were	 derived	 from	 an	 orthogonal	



	

	 29	

combination	 of	 7	 means	 (500,	 800,	 1100,	 1400,	 1700,	 2000	 and	 2300	 ms)	 and	 4	

standard	 deviations	 (20,	 40,	 60	 and	 80	 ms).	 In	 total	 there	 were	 6	 fMRI	 runs.	

Participants	 were	 informed	 that	 each	 new	 run	 started	 using	 the	 same	 foreperiod	

distribution	as	that	used	on	the	previous	block	(at	the	beginning	of	a	new	run,	the	

number	of	trials	before	the	new	block	was	in	the	range	4-6,	mean	=	5.2,	sd	=	0.8).	

Before	the	fMRI	session,	participants	practiced	the	task	outside	the	MRI	bore.	

They	performed	a	shorter	version	of	the	experimental	task	comprising	four	blocks.	In	

the	first	 two	blocks,	 they	were	presented	with	normal	 foreperiods	only	 in	order	to	

familiarize	themselves	with	the	arbitrary	association	between	colors	and	foreperiod	

distributions.	 In	 the	 subsequent	 blocks,	 we	 introduced	 uniform	 foreperiods	 and	

carefully	explained	the	difference	between	them	and	the	normal	ones.		

	

Figure	2.1	|	(A)	Example	of	a	trial.	On	each	trial	participants	began	observing	a	neutral	cue,	which	was	displayed	
for	a	variable	foreperiod	(FP)	duration.	At	the	end	of	the	FP	a	colored	dot	appeared	and	was	displayed	for	1500	
ms.	Participants	were	required	to	respond	as	soon	as	possible	to	the	onset	of	the	target.	(B)	Distribution	of	FP	
duration	 in	 three	 blocks.	 Predictable	 trials	 were	 characterized	 by	 FP	 durations	 extracted	 from	 a	 normal	
distribution	(color	dots	indicate	onset	of	targets	after	normal	foreperiods)	whose	mean	and	standard	deviation	
were	kept	constant	within	a	block.	Uniform	trials	were	characterized	by	FP	extracted	from	a	uniform	distribution	
(white	dots).	

…	
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2.2.3 Normative	Bayesian	learner	

On	 a	 trial-by-trial	 basis,	 we	 modeled	 participants’	 expectations	 for	 target	

onset	 by	 assuming	 they	 updated	 their	 beliefs	 as	 an	 ideal	 Bayesian	 observer.	 This	

model	(adapted	from:	O'Reilly	et	al.,	2013)	aims	to	iteratively	infer	the	parameters	μ	

and	 σ	 of	 the	Gaussian	 distribution	 underlying	 normal	 foreperiods.	 After	 each	 new	

observation,	 it	 estimates	 the	 posterior	 probability	 for	 each	 possible	 pair	 of	

parameters	 μ	 and	 σ	 (i.e.	 the	 posterior	 probability	 over	 parameter	 space)	 as	

described	 below.	 Following	 the	 instructions	 given	 to	 participants,	 no	 updating	

occurred	after	uniform	 trials,	 so	 the	posterior	probability	over	parameter	 space	at	

trial	n	was:	

	

(1)	 𝑝 𝐹𝑃~𝒩 𝜇,𝜎 𝐹𝑃!:! = 𝑝 𝐹𝑃~𝒩 𝜇,𝜎 𝐹𝑃!:!!! .	 (2.4)	

	

After	 update	 and	 predictable	 trials,	 the	 parameter	 space	 probability	 was	 updated	

using	the	Bayes’	rule:	

	

(1)	 𝑝 𝐹𝑃~𝒩 𝜇,𝜎 𝐹𝑃!:! ∝ 𝑝 𝐹𝑃! 𝐹𝑃~𝒩 𝜇,𝜎 ×𝑝 𝐹𝑃~𝒩 𝜇,𝜎 𝐹𝑃!:!!!,𝜑 ,	 (2.5)	

	

where	the	variable	φ	 indicates	 that	 the	type	of	 trial	determined	the	prior	used.	 In	

predictable	 trials,	 the	 prior	 on	 trial	 n	 was	 the	 posterior	 obtained	 on	 trial	 n-1.	

However,	 the	change	of	color	 in	update	 trials	explicitly	 signaled	 the	start	of	a	new	

distribution	 and,	 as	 a	 consequence,	 previous	observations	were	no	more	useful	 in	

estimating	the	posterior	probability.	For	this	reason,	the	prior	in	update	trials	was	a	

uniform	distribution	computed	as:	

	

(1)	 𝑝 𝐹𝑃~𝒩 𝜇,𝜎 𝐹𝑃!:!!! = 1
300×15 ,	 (2.6)	
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where	 300×15	 indicates	 the	 size	 of	 the	 employed	 parameter	 space	 (i.e.	 the	

combination	of	all	the	means	from	10	to	3000	ms	and	standard	deviations	from	10	

to	150	ms	in	steps	of	10	ms).	

The	 model	 then	 translated	 the	 estimates	 of	 the	 parameters	 μ	 and	 σ	 into	

probability	density	functions	over	time.	Specifically,	on	trial	n	the	prior	over	time	for	

the	 subsequent	 trial	 was	 derived	 from	 the	 posterior	 over	 parameter	 space	 as	

follows:	

			

 𝑝 𝐹𝑃!!! 𝐹𝑃!:! = 𝑝 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒!"!! 𝐹𝑃!!! 𝐹𝑃!!!~𝒩 𝜇!!!,𝜎!!!
!!!!,!!!!

 

                                               ×𝑝 𝐹𝑃!!!~𝒩 𝜇!!!,𝜎!!! 𝐹𝑃!:! + 𝑝 𝑢𝑛𝑖𝑓𝑜𝑟𝑚!"!! ∪ 𝑢𝑝𝑑𝑎𝑡𝑒!!!!  

𝑝(𝐹𝑃!!!|𝒰 10 𝑚𝑠, 3000 𝑚𝑠 ,                                   	

(2.7)	

	

where	p(predictablenb+1)	and	p(uniformnb+1	U	updatenb+1)	represent	the	probability	of	

incurring,	respectively,	in	a	predictable,	or	in	a	uniform/update	trial		at	the	next	trial	

of	the	current	block	(nb	indicates	the	trial	number	within	a	block).	For	simplicity,	the	

combined	 probability	 to	 have	 an	 uniform	 or	 an	 update	 trial	 was	 set	 to	 the	 true	

proportion	 of	 those	 trial	 types	 at	 a	 given	 trial	 within	 a	 block,	 smoothed	 using	 a	

moving	average	in	order	to	have	a	monotonic	increase	in	the	probability	of	having	an	

update	trial	(e.g.,	the	probability	of	having	an	update/uniform	trial	on	tb+1=14	was	

higher	than	on	tb+1=13	and	so	on).	The	probability	of	a	predictable	trial	was	equal	to	

1-p(uniformnb+1	U	updatenb+1).	The	output	of	the	model	is	presented	in	Fig.	2.2A.	

2.2.4 Model-based	measures	of	updating	and	surprise	

As	 mentioned	 in	 the	 Introduction,	 two	 measures	 from	 information	 theory	

were	 used	 to	 formally	 distinguish	 between	 the	 updating	 of	 temporal	 expectations	

and	the	surprise	of	observing	the	target	after	a	specific	foreperiod.	These	measures	

were	computed	with	reference	to	our	model	as	follows:		
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Updating.	Following	 Itti	and	Baldi	 (2009),	we	quantified	the	updating	of	 the	

internal	predictive	model	as	the	Kullback-Leibler	divergence	(DKL;	Fig.	2.2.B)	between	

prior	and	posterior	on	trial	n:		

	

(1)	
𝐷!"(𝐹𝑃!) = 𝑝 𝐹𝑃! 𝐹𝑃!:!!!

!"

log
𝑝 𝐹𝑃! 𝐹𝑃!:!!!
𝑝 𝐹𝑃!!! 𝐹𝑃!:!

;	
(2.8)	

	

Surprise.	Since	during	the	trial,	 the	prior	probability	of	target	onset	changes	

as	a	function	of	the	elapse	of	time	(Janssen	&	Shadlen,	2005),	we	quantified	surprise	

as	the	Shannon	information	(IS)	associated	with	the	value	of	the	hazard	function	at	

target	onset:	

	

(1)	 𝐼! 𝐹𝑃! = − log ℎ 𝐹𝑃! ,	 (2.9)	

	

where	h(FPn)	is	the	probability	of	FP	of	the	prior	on	trial	n	conditional	on	the	elapsed	

time	(Fig.	2.2.C):	

	

(1)	
ℎ 𝐹𝑃! =

𝑓 𝐹𝑃!
1− 𝐹(𝐹𝑃!)

,	
(2.10)	

	

where	 f(FPn)	 is	 the	 prior	 probability	 p(FPn|FP1:n-1),	 and	 F(FPn)	 is	 the	 cumulative	

probability	 𝑓!"(𝑚𝑠)𝑑𝑚𝑠
!"!
! .		
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Figure	2.2	|	Bayesian	learner	and	model-based	regressors.	All	panels	show	the	data	from	100	trials.	Dot	colors	
indicate	trial	types	as	reported	in	the	legend.	(A)	Plot	of	the	state	of	the	normative	Bayesian	learner.	On	y	axis	is	
FP	duration.	The	dashed	line	indicates	the	mean	of	the	generative	Gaussian	distribution	from	which	update	and	
predictable	 foreperiods	 were	 drawn.	 Dots	 indicate	 the	 true	 FP	 duration	 on	 each	 trial.	 Shading	 indicates	 the	
estimated	probability	of	FP	duration	given	the	prior,	p(FP|prior).	(B,	C)	Model-based	regressors	for	updating	(DKL)	
and	surprise	(IS).	

C	

A	

B	
Trial	type:								Update											Uniform									Predictable		
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2.2.5 Behavioral	data	analysis	

Data	from	error	trials	(with	anticipated	or	without	responses)	and	post-error	

trials	 were	 excluded	 from	 analysis.	 Reaction	 times	 (RTs)	 were	 log-transformed	 to	

mitigate	 the	 influence	 of	 non-normal	 distribution	 and	 skewed	 data.	 Following	 the	

procedure	proposed	by	Baayen	and	Milin	(2010),	log-transformed	RTs	were	analyzed	

by	conducting	Linear	Mixed	Models	 (LMM),	using	the	 lme4	 library	 (Bates,	Mächler,	

Bolker,	 &	 Walker,	 2014)	 in	 R	 (R	 Core	 Team,	 2015).	 In	 our	 main	 analysis,	 we	

investigated	the	behavioral	correlates	of	surprise	and	updating	by	using	IS	and	DKL	as	

regressors	 of	 interest.	 A	 full	 LMM	 was	 specified	 as	 follows:	 IS	 and	 DKL	 (and	 their	

interaction)	as	well	as	TRIAL,	that	represents	the	rank-order	of	a	trial,	and	 log-RT	at	

the	 preceding	 trial	 (PRECEDING	 RT),	 were	 entered	 as	 fixed-effects	 predictors.	 	 The	

random	 structure	 include	 correlated	 by-subject	 random	 intercepts	 and	 by-subject	

random	 slopes	 for	 TRIAL,	 PRECEDING	 RT,	 IS	 and	 DKL.	 All	 these	 continuous	 predictors	

were	 standardized	 using	 Z-score	 in	 order	 to	 have	 the	 same	 scale,	 which	 allows	

comparing	 them	statistically.	The	variables	TRIAL	and	PRECEDING	RT	were	 included	to	

control	 for	the	temporal	dependencies	that	usually	occur	between	successive	trials	

(Baayen	&	Milin,	2010).	Specifically,	TRIAL	was	included	to	capture	possible	effects	of	

learning	 and	 fatigue,	 while	 PRECEDING	 RT	 was	 used	 to	 take	 into	 account	 the	 RT	

autocorrelation	 between	 subsequent	 trials.	 Using	 the	 function	 step	 from	 the	

lmerTest	 library	 (Kuznetsova,	 Brockhoff,	 &	 Christensen,	 2015),	 a	 stepwise	 variable	

selection	 was	 performed	 starting	 from	 the	 full	 model	 to	 eliminate	 non-significant	

effects	from	the	full	LMM.		

2.2.6 fMRI	data	analysis	

Data	acquisition.	Structural	and	 functional	 images	were	acquired	using	a	3T	

Ingenia	Philips	whole	body	scanner	(Philips	Medical	Systems,	Best,	The	Netherlands)	

equipped	with	a	32-channel	head-coil,	at	the	Neuroradiology	Unit	of	the	University	

Hospital	 of	 Padova,	 Italy.	 Functional	 data	 were	 obtained	 using	 a	 whole	 head	 T2-

weighted	 echo-planar	 image	 (EPI)	 sequences	 (repetition	 time,	 TR:	 2000	 ms;	 echo	

time,	TE:	30	ms;	39	axial	slices	with	ascending	acquisition;	voxel	size:	3	×	3	×	3	mm;	
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flip	 angle,	 FA:	 76°;	 field	 of	 view,	 acquisition	 matrix:	 84	 ×	 84).	 Excluding	 the	 four	

dummy	scans	for	stabilization	of	the	T1-saturation	effect,	the	functional	acquisitions	

consisted	of	 8	minutes	of	 resting	 state	 activity,	which	will	 not	be	discussed	 in	 this	

thesis,	 followed	by	a	 total	of	39.4	minutes	of	 task	 related	activity.	To	correct	 fMRI	

images	for	spatial	distortion,	at	the	beginning	of	each	of	the	six	runs,	two	spin	echo	

EPI	 images	with	 reversed	 phase	 encoding	 directions	were	 acquired.	 These	 images	

are	 geometrically	matched	 (same	 field	 of	 view	 and	 voxel	 size)	with	 the	 functional	

images	 (Glasser	 et	 al.,	 2013).	 After	 functional	 session,	 high	 resolution	 T1-	 and	 T2-	

weighted	anatomical	 images	 (T1w:	TR/TE:	8.10/3.72	ms;	180	 sagittal	 slices;	 FA:	8°;	

voxel	size:	1	×	1	×	1	mm;	acquisition	matrix:	256	×	256;	T2w:	TR/TE:	2500/249	ms;	

180	sagittal	slices;	FA:	90°;	voxel	size:	0.97	×	0.97	×	1	mm;	acquisition	matrix:	256	×	

256)	were	collected.	In	order	to	avoid	head	movement	during	scanning,	small	foam	

cushions	and	sponge	pads	were	placed	around	the	participant’s	head.	Subjects	also	

wore	earplugs	to	reduce	acoustic	noise.	

MRI	preprocessing.	First,	spatial	distortion	of	functional	data	were	corrected	

using	 the	 susceptibility-induced	 off-resonance	 field	 estimated	 from	 the	 two	

oppositely	phase-encoded	spin	echo	EPI	 images	as	 implemented	 in	 the	FSL	 (FMRIB	

Software	 Library,	 version	 5.0.7)	 toolbox	 “topup”	 (Andersson,	 Skare,	 &	 Ashburner,	

2003;	S.	M.	Smith	et	al.,	2004).	This	step	improves	the	following	coregistration	step	

between	fMRI	and	structural	image	(Glasser	et	al.,	2013).	Functional	data	were	then	

slice-timing	corrected	using	the	middle	slice	as	the	reference	frame,	rigidly	realigned	

to	the	first	volume	and	spatially	smoothed	using	a	Gaussian	kernel	with	a	full-width	

at	 half-maximum	 (FWHM)	 of	 5	 mm	 using	 SPM12	 (Statistical	 Parametric	 Mapping	

software;	 Wellcome	 Department	 of	 Cognitive	 Neurology,	 London,	 UK;	

http://www.fil.ion.ucl.ac.uk/spm).	Participant’s	head	movements	were	quantified	by	

means	 of	 framewise	 displacement	 (FD)	 index	 which	 represents	 the	 sum	 of	 the	

absolute	 values	 of	 the	 derivatives	 of	 the	 translational	 and	 rotational	 realignment	

parameters	 (Power,	 Barnes,	 Snyder,	 Schlaggar,	 &	 Petersen,	 2012).	 Subjects	 with	

mean	FD	above	two	standard	deviations	from	the	mean	of	all	subjects	(group	mean	

=	 0.09	mm,	 standard	 deviation	 =	 0.02	mm)	were	 excluded.	 The	 deformation	 field	

that	 mapped	 the	 individual	 functional	 data	 to	 standard	 Montreal	 Neurological	
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Institute	(MNI)	template	was	derived	combining	several	steps,	all	implemented	with	

FSL	 (Jenkinson,	 Beckmann,	 Behrens,	 Woolrich,	 &	 Smith,	 2012;	 S.	 M.	 Smith	 et	 al.,	

2004).	Usually	a	typical	workflow	involves	the	coregistration	of	the	functional	image	

to	 the	 T1-weighted	 anatomical	 image	 and	 the	 warp	 of	 the	 structural	 image	 to	 a	

template.	Here,	a	T2-weighted	anatomical	image	was	used	as	an	intermediate	target	

since	it	has	the	same	acquisition	modality	of	fMRI	data,	but	the	same	high-resolution	

with	 clear	 region	 boundary	 contours	 of	 T1-weighted	 anatomical	 images.	 First,	 T1-

weighted	anatomical	image	was	bias-field	corrected	and	a	non-linear	transformation	

to	 MNI	 template	 was	 estimated	 (T1>MNI).	 Both	 T2-	 and	 T1-	 weighted	 structural	

images	were	skull-stripped	and	then	a	6-parameter	transformation	from	the	former	

to	 the	 latter	 was	 computed	 (T2>T1).	 At	 the	 end,	 a	 12-parameter	 affine	

transformation	from	the	first	volume	of	the	functional	data	to	the	T2-weighted	skull-

stripped	anatomical	 image	was	estimated	 (fMRI>T2)	and	combined	with	 the	T2>T1	

and	 T1>MNI	 transformations.	 The	 resulting	 transformation	was	 then	 used	 to	map	

the	results	obtained	at	individual	level	in	the	functional	space	to	the	MNI	template.	

Whole-brain	 analysis.	 Statistical	 analyses	 were	 carried	 out	 using	 SPM12	

(Ashburner	et	al.,	2014)	to	identify	the	volumes	of	interest	(VOIs)	for	the	functional	

connectivity	 (FC)	 analysis.	 For	 each	 participant,	 first-level	 analysis	 was	 performed	

into	the	subject	space	(i.e.	not	normalized)	using	two	general	linear	models	(GLMs).	

For	each	GLM,	the	task	was	modeled	with	three	regressors	that	were	the	main	effect	

of	 the	 FP,	 the	main	 effect	 of	 target	 onset,	 and	 either	 DKL	 or	 IS,	 estimates	 of	 head	

movements	were	also	included	as	six	additional	regressors	of	no	interest.	Slow	signal	

drifts	were	removed	using	a	128	s	high-pass	filter.	The	main	effect	of	the	foreperiod	

was	model	as	a	boxcar	starting	from	the	cue	onset	and	with	duration	equal	to	the	FP	

length.	The	main	effect	of	target	onset	was	modeled	as	a	delta	function	at	the	target	

onset	 modulated	 by	 the	 model-based	 regressor,	 DKL	 or	 IS,	 respectively.	 All	 these	

regressors	 were	 convolved	 with	 the	 hemodynamic	 response	 function.	 As	 in	 the	

behavioral	analysis,	these	two	parametric	modulators	(PMs)	were	standardized	using	

Z-score	and	orthogonalized	with	regard	to	target	onset.	The	decision	of	running	two	

GLMs	 instead	of	a	single	GLM	including	both	PMs	was	made	to	keep	variance	that	

these	 two	PMs	 likely	 share.	 Since	 this	 analysis	was	preliminary	 to	 FC,	 keeping	 this	
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shared	 variance	 is	 important	 to	 obtain	 a	more	 exhaustive	 picture	 of	 the	 networks	

involved	 in	 processing	 and	 differentiating	 surprising	 information 1 .	 For	 each	

participant	and	each	GLM,	a	t-contrast	was	computed	for	each	PM	versus	zero	(i.e.	

baseline).	 At	 the	 group	 level,	 individual	 participants’	 Z-statistic	 maps	 were	

normalized	 to	MNI	 template	 as	 described	 in	 the	 previous	 section.	 Then,	 for	 each	

GLM,	 group-level	 maps	 were	 generated	 with	 random-effect	 models	 using	

participants’	 contrast	 maps.	 Group	 statistics	 were	 assessed	 for	 cluster-wise	

significance	using	a	cluster-defining	threshold	of	p	<	 .001	and	a	cluster	significance	

threshold	of		p	<	.05	(FWE-corrected).	Furthermore,	a	third	GLM	with	the	hazard	rate	

of	 the	 target	 onset	 (i.e.	 h(FPonset))	 as	 PM	 was	 run	 in	 order	 to	 replicate	 previous	

findings	on	hazard	rate	(Bueti	et	al.,	2010).	

Functional	connectivity	analysis.	Task-related	functional	connectivity	analysis	

was	computed	using	the	correlational	psychophysiological	interaction	(cPPI)	toolbox	

(Fornito,	Harrison,	Zalesky,	&	Simons,	2012).	 In	classical	PPI	analyses	(Friston	et	al.,	

1997),	the	activity	time	course	from	a	specific	seed	region	is	extracted	and	multiplied	

by	a	task	regressor	of	 interest	to	 isolate	task-specific	modulations	 in	the	functional	

coupling	 between	 the	 seed	 region	 and	 other	 brain	 regions.	 This	 approach	 is	

regression-based,	 in	 the	 sense	 that	 for	 each	 pair	 of	 time	 series	 the	 seed	 region	

activity	is	used	as	a	predictor	of	the	activity	in	the	other	regions.	This	implies	that	PPI	

is	a	form	of	effective	connectivity	(Friston	et	al.,	1997),	thus,	it	is	suitable	when	there	

are	 clear	 hypotheses	 about	 which	 region	 may	 modulate	 activity	 in	 other	 regions	

(Fornito	et	al.,	 2012).	 Since	we	had	no	 such	 specific	predictions,	we	employed	 the	

cPPI	 approach,	which	 provides	 a	measure	 of	 functional	 connectivity	 that	 does	 not	

require	directional	assumptions.	Briefly,	for	any	given	pair	of	brain	regions	their	time	

course	is	multiplied	by	the	task-regressor	to	obtain	two	PPI	terms.	Then,	the	partial	

correlation	 between	 the	 two	 PPI	 terms	 is	 estimated	while	 controlling	 for	 possible	

confounds	(e.g.,	task-unrelated	connectivity,	noise).	In	a	nutshell,	starting	from	a	set	

of	 regions	 the	 cPPI	 analysis	 returns	 a	 functional	 connectivity	 matrix	 of	 pair-wise	

covariations	 in	 task-specific	modulations	of	neural	 activity.	We	estimated	 two	cPPI	

correlation	matrices,	one	for	each	of	the	two	model-based	regressors,	DKL	and	IS.	For	

																																																								
1	The	orthogonalization	of	the	regressors	gave	similar	results.	
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each	 cPPI	 analysis,	 volumes	 of	 interest	 (VOI)	 were	 defined	 by	 generating	 6-mm-

radius	spheres	centered	on	the	maximum	peak	of	each	significant	cluster	observed	

in	the	whole-brain	analysis.	Then,	the	time	course	from	each	VOI	in	each	subject	was	

extracted	using	 the	 spm_regions	 function	 in	 SPM.	 For	 each	matrix,	 the	 correlation	

between	pairs	 of	 VOIs	was	 estimated	 after	 partialing	 out	 the	 coviariance	with	 the	

remaining	VOIs	to	ensure	that	each	correlation	is	specific	to	each	pair.	P-values	for	

the	 two	cPPI	 correlation	matrices	were	adjusted	 for	multiple-testing	by	 controlling	

the	false	discovery	rate	(FDR)	at	the	.05	level.		

	

2.3 Results	

2.3.1 Behavioral	results	

	Backward	elimination	of	non-significant	effects	resulted	in	a	model	specified	

as	the	following	lme4-notation	formula:		

	

(1)	 log(RT)	~	TRIAL	+	PRECEDING	RT	+	IS	*	DKL	+	(TRIAL	+	PRECEDING	RT	+	IS	|	ID).	 (2.11)	

	

Visual	 inspection	 of	 the	 residuals	 showed	 that	 the	 model	 was	 a	 bit	 stressed.	 As	

suggested	 by	 Baayen	 and	Milin	 (2010),	 trials	 with	 absolute	 standardized	 residuals	

higher	than	2.5	standard	deviations	were	considered	outliers	and	removed	(2.4%	of	

the	 trials).	 After	 removing	 outlier	 trials,	 the	 model	 was	 refitted	 and	 this	 time	 it	

achieved	reasonable	closeness	to	normality.	Table	2.1	shows	the	statistical	results	of	

the	type	III	ANOVA.	A	significant	 interaction	was	found	between	IS	and	DKL.	Fig.	2.3	

shows	that	RTs	increased	with	increasing	surprise	(IS)	and	this	effect	was	augmented	

with	increasing	DKL.		
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Table	2.1	|	Analysis	of	variance	with	type-III	sums	of	squares.		

	 Fixed	Effects	 	 Sum	Sq	 	 Num.	df	 	 Den.	df	 	 F	 	 p	 	 β	 	

	 TRIAL	 	 0.39	 	 1	 	 21.0	 	 10.0	 	 .005	 	 0.07	 	

	 PRECEDING	RT	 	 0.66	 	 1	 	 21.0	 	 17.0	 	 <	.001	 	 0.10	 	

	 IS	 	 3.70	 	 1	 	 22.1	 	 94.8	 	 <	.001	 	 0.25	 	

	 DKL	 	 0.33	 	 1	 	 6819.8	 	 8.6	 	 .003	 	 -0.05	 	

	 IS	:DKL	 	 0.99	 	 1	 	 6823.5	 	 25.5	 	 <.	001	 	 0.09	 	

Notes:	F-statistics	and	associated	p-values	were	calculated	using	Kenward-Roger’s	approximation	of	degrees	of	
freedom	(Halekoh	&	Højsgaard,	2014).	Additionally,	standardized	regression	coefficients	(β)	are	shown.	

	

	

Figure	2.3.	|	Interaction	plot	for	log-transformed	RTs.	The	plot	shows	the	effect	of	surprise	(IS)	at	three	levels	of	
updating	(DKL),	high	(+1SD),	medium	(Mean)	and	low	(-1SD).	The	plot	was	done	using	the	R	package	jtools.	

	

2.3.2 Whole-brain	fMRI	results	

All	 whole-brain	 fMRI	 results	 are	 reported	 in	 Table	 2.2.	 Updating	 (DKL)	

significantly	modulated	activity	in	a	set	of	lateral	frontal	and	parietal	regions,	as	well	

as	 in	 medial	 parietal	 regions,	 along	 with	 a	 cluster	 around	 the	 left	 fusiform	 gyrus	

(lFFG)	 and	 the	 left	 cerebellum	 (Fig.	 2.4A).	 Lateral	 frontal	 and	 parietal	 regions	
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included	 bilateral	 inferior	 frontal	 gyri	 (IFGs)	 and	 posterior	 parietal	 cortices	 (PPCs)	

around	 the	 intra-parietal	 sulci	 (IPSs).	 Medial	 parietal	 activations	 included	 the	

posterior	cingulate	cortex	(PCC)	and	the	precuneus.		

Surprise	(IS)	significantly	modulated	activity	in	the	right	IFG,	in	bilateral	PPCs	

around	 the	 IPSs,	 in	 the	 dorsal	 anterior	 cingulate	 cortex	 (dACC)	 including	 the	 pre-

supplementary	motor	area	 (pre-SMA),	 in	bilateral	anterior	 insula	 (aINS),	and	 in	 the	

lFFG	(Fig.	2.4B).	

Results	from	cPPI	analysis	showed	that	these	set	of	brain	regions	formed	two	

task-related	 large-scale	 networks.	 Fig.	 2.5	 shows,	 for	 each	 network,	 functional	

connection	strengths	between	nodes,	which	were	significantly	modulated	by	DKL	and	

IS,	respectively.	

Concerning	the	temporal	hazard	associated	with	target	onset,	this	regressor	

modulated	activity	in	bilateral	lingual	cortex,	in	the	cuneus,	and	in	bilateral	superior	

temporal	gyrus	(Fig.	2.6).	

	

Table	2.2	|	Significant	cluster	activations	in	SPM	analyses.	

	 Anatomical	region	 	 MNI	 	 Peak	Z	 	 Cluster	level	 	
	 	 	 x	 y	 z	 	 	 	 p	 Size	 	

Regions	modulated	by	DKL		

	L.	Fusiform	Gyrus	 	 -42	 -60	 -12	 	 4.52	 	 .001	 240	 	
	 	 	 -38	 -56	 -6	 	 4.20	 	 	 	 	
	 	 	 -36	 -62	 -34	 	 4.09	 	 	 	 	

	 L.	Posterior	Parietal		Cortex	 	 -34	 -64	 44	 	 4.37	 	 <	.001	 801	 	
	 	 	 -48	 -44	 48	 	 4.08	 	 	 	 	
	 	 	 -44	 -64	 44	 	 3.99	 	 	 	 	

	 R.	Inf.	Frontal	Gyrus	 	 50	 20	 28	 	 4.33	 	 <	.001	 315	 	
	 	 	 44	 28	 20	 	 4.06	 	 	 	 	
	 	 	 36	 26	 20	 	 4.03	 	 	 	 	

	 R.	Posterior	Parietal	Cortex	 	 34	 -62	 34	 	 4.29	 	 <	.001	 371	 	
	 	 	 34	 -66	 46	 	 4.14	 	 	 	 	
	 	 	 26	 -62	 36	 	 4.08	 	 	 	 	

	 L.	Inf.	Frontal	Gyrus	 	 -40	 4	 30	 	 4.08	 	 .016	 142	 	

	 Precuneus	 	 -8	 -68	 46	 	 3.93	 	 .012	 152	 	
	 	 	 4	 -68	 46	 	 3.73	 	 	 	 	



	

	 41	

	 	 	 12	 -68	 44	 	 3.58	 	 	 	 	

	 Post.	Cingulate	Cortex	 	 -2	 -34	 26	 	 3.74	 	 .043	 112	 	

Regions	modulated	by	IS	

	 L.	Ant.	Insula	 	 -36	 22	 4	 	 5.36	 	 <	.001	 515	 	
	 	 	 -38	 14	 6	 	 4.59	 	 	 	 	
	 	 	 -32	 26	 -2	 	 4.13	 	 	 	 	

	 L.	Posterior	Parietal	Cortex	 	 -34	 -60	 46	 	 5.26	 	 <	.001	 932	 	
	 	 	 -40	 -42	 46	 	 4.42	 	 	 	 	
	 	 	 -36	 -42	 38	 	 4.08	 	 	 	 	

	 R.	Ant.	Insula	 	 34	 24	 2	 	 4.90	 	 .003	 206	 	

	 Dorsal	Ant.	Cingulate	Cortex	 	 -4	 10	 48	 	 4.61	 	 <	.001	 342	 	
	 	 	 -8	 -4	 64	 	 3.65	 	 	 	 	
	 	 	 10	 16	 40	 	 3.26	 	 	 	 	

	 R.	Posterior	Parietal	Cortex	 	 34	 -68	 46	 	 4.50	 	 <.001	 356	 	
	 	 	 30	 -62	 38	 	 4.03	 	 	 	 	
	 	 	 30	 -48	 44	 	 3.75	 	 	 	 	

	 L.	Fusiform	Gyrus	 	 -38	 -60	 -12	 	 4.49	 	 .008	 170	 	

	 R.	Inf.	Frontal	Gyrus	 	 40	 26	 20	 	 4.22	 	 .003	 201	 	

Regions	modulated	by	h	

	 R.	Lingual	Cortex	 	 24	 -74	 -4	 	 4.65	 	 .004	 180	 	
	 	 	 16	 -64	 -4	 	 3.87	 	 	 	 	
	 	 	 16	 -74	 -12	 	 3.50	 	 	 	 	

	 L.	Sup.	Temporal	Gyrus	 	 -50	 -38	 20	 	 4.36	 	 .001	 224	 	
	 	 	 -58	 -20	 10	 	 4.02	 	 	 	 	
	 	 	 -58	 -32	 18	 	 3.83	 	 	 	 	

	 R.	Cuneus	 	 14	 -82	 26	 	 4.23	 	 .003	 188	 	
	 	 	 16	 -90	 14	 	 3.30	 	 	 	 	
	 	 	 22	 -88	 20	 	 3.29	 	 	 	 	

	 L.	Lingual	Cortex	 	 -10	 -80	 -2	 	 4.00	 	 .025	 122	 	
	 	 	 -8	 -72	 -2	 	 3.80	 	 	 	 	
	 	 	 -14	 -70	 -8	 	 3.51	 	 	 	 	

	 R.	Sup.	Temporal	Gyrus	 	 58	 -12	 10	 	 3.94	 	 .009	 151	 	
	 	 	 56	 4	 -2	 	 3.83	 	 	 	 	
	 	 	 52	 -16	 4	 	 3.58	 	 	 	 	

	 L.	Cuneus	 	 -16	 -88	 28	 	 3.73	 	 .032	 115	 	
	 	 	 -4	 -86	 22	 	 3.73	 	 	 	 	
	 	 	 -10	 -92	 18	 	 3.32	 	 	 	 	

Note:	L.	and	R.	indicate	left	and	right.	
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Figure	 2.4	 |	 Whole-brain	 analysis	 results.	 (A)	 Regions	 significantly	modulated	 by	 updating	 (DKL).	 (B)	 Regions	
significantly	 modulated	 by	 surprise	 (Is).	 (C)	 Overlapping	 of	 activation	 between	 DKL	 and	 Is.	 Abbreviations:	 IFG:	
inferior	 frontal	 gyrus;	 PPC:	 posterior	 parietal	 cortex;	 Pcun:	 precuneus;	 PCC:	 posterior	 cingulate	 cortex;	 FFG:	
fusiform	 gyrus.	 AI:	 anterior	 insula;	 dACC:	 dorsal	 anterior	 cingulate	 cortex;	 pre-SMA:	 pre-supplementary	motor	
area.	
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Figure	2.5	|	cPPI	analysis	results.	Lines	represent	significant	correlations	(FDR	=.05)	between	nodes	modulated	
by	(A)	updating	(DKL)	and	(B)	surprise	(IS).	Dashed	lines	represent	significant	correlations	with	p	>	.01.	Line	width	
is	proportional	to	the	strength	of	the	correlation.		

	

	

	

Figure	2.6	|	Whole-brain	analysis	for	the	temporal	hazard	(h).	Abbreviations:	STG:	superior	temporal	gyrus;	Cun:	
cuneus;	LING:	lingual	gyrus.	

	

2.4 Discussion	

The	present	study	sought	 to	 identify	 the	neural	correlates	of	between-trials	

updating	 of	 temporal	 expectations	 and	 within-trials	 surprise	 about	 variable	

foreperiod	 durations.	 While	 previous	 research	 focused	 on	 how	 the	 brain	 tracks	

temporal	expectations	during	the	foreperiod	(i.e.,	hazard	function),	the	mechanisms	

by	 which	 the	 brain	 forms	 and	 updates	 such	 expectations	 have	 not	 been	 properly	
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defined.	 The	 combination	of	Bayesian	 computational	modeling	of	 temporal	 beliefs	

and	single-trial	analyses	of	both	fMRI	activity	and	functional	connectivity	showed	the	

engagement	of	two	sets	of	brain	regions,	which	differentially	encoded	updating	and	

surprise.	 Remarkably,	 such	 regions	 belong	 to	 two	 functional	 networks	 that	 prior	

work	has	found	to	play	a	key	role	in	cognitive	control:	the	fronto-parietal	(FPN)	and	

cingulo-opercular	(CON)	networks	(Dosenbach	et	al.,	2008).		

Updating,	measured	 as	 the	 Kullback-Leibler	 divergence	 (DKL)	 between	 prior	

and	posterior	beliefs,	was	mainly	 associated	with	 regions	 that	 are	part	of	 the	 FPN	

such	 as	 the	 posterior	 parietal	 cortex	 (PPC),	 the	 precuneus,	 the	 posterior	 cingulate	

cortex	 (PCC)	 and	 the	 inferior	 frontal	 gyri	 (IFG).	 Surprise,	 defined	 as	 the	 Shannon’s	

information	 (IS)	 on	 the	hazard	 rate	of	 target	onset,	was	encoded	 in	 regions	of	 the	

CON	 such	 as	 the	 dorsal	 anterior	 cingulate	 cortex	 (dACC),	 the	 presupplementary	

motor	 area	 (pre-SMA)	 and	 the	 anterior	 insulae	 (aINS),	 and	 in	 some	 regions	 of	 the	

FPN,	namely,	the	IPL	and	the	right	lPFC.		

According	 to	 recent	models	of	 cognitive	control	 (Cocchi,	 Zalesky,	Fornito,	&	

Mattingley,	2013;	Crittenden,	Mitchell,	&	Duncan,	2016;	Dosenbach	et	al.,	2008),	the	

FPN	 is	 involved	 in	 the	 trial-by-trial	 adjustment	 of	 task-relevant	 information	 to	

implement	top-down	control.	An	example	is	offered	by	the	task-switching	paradigm	

in	 which	 instantiation/maintenance	 of	 the	 proper	 task-set	 is	 required	 on	 each	

switch/repeat	 trial	 (Waskom,	 Kumaran,	 Gordon,	 Rissman,	 &	 Wagner,	 2014).	 This	

property	 of	 the	 FPN	 is	 in	 line	 with	 the	 idea	 of	 a	 Bayesian	 brain	 that	 updates	 its	

predictive	models	after	each	new	observation.	Accordingly,	Waskom	and	colleagues	

(2017)	 showed	 that	 the	 FPN	gradually	 responded	 to	 violation	of	predictions	 about	

forthcoming	task-sets	in	a	task-switching-like	paradigm.	Our	study	corroborates	their	

findings	 as	 we	 also	 found	 the	 involvement	 of	 the	 FPN	 when	 predictions	 were	

violated.	However,	as	outlined	in	the	Introduction,	events	violating	our	expectations	

may	lead	to	both	surprise	and	updating.	It	follows	that	the	FPN	activation	found	by	

Waskom	and	 colleagues	 (2017)	 could	 reflect	 either	one	or	both	of	 these	 cognitive	

processes,	as	their	paradigm	did	not	differentiate	between	them.	In	this	regard,	our	

findings	 critically	 extended	 those	 previous	 results	 by	 disentangling	 surprise	 and	

updating	 in	 the	 FPN.	 Updating	was	 associated	with	 all	 the	 areas	 belonging	 to	 the	
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FPN.	 The	 right	 PPC	 and	 IFG,	 which	 are	 congruent	 with	 the	 areas	 included	 in	 the	

ventral	network	proposed	by	Corbetta	and	Shulman	(2002),	additionally	responded	

to	surprise.	The	ventral	system	is	thought	to	deal	with	salient	and	unexpected	events	

(Corbetta	&	Shulman,	2002).	It,	thus,	makes	sense	to	speculate	that	in	our	paradigm	

such	 areas	 responded	 to	 two	 types	 of	 salient	 information,	 one	 needed	 for	

responding	 quickly	 to	 current	 relevant	 goals	 (i.e.,	 within-trial	 response	

reprogramming	triggered	by	surprise)	and	the	other	one	for	reconfiguring	predictive	

models.	While	 these	 lateral	 fronto-parietal	 areas	were	 activated	 for	 both	 surprise	

and	 updating,	 other	 medial	 parietal	 areas	 (Precuneus	 and	 PCC)	 were	 specifically	

modulated	by	updating.	This	 finding	 is	 in	accord	with	previous	studies	showing	the	

involvement	 of	 such	 areas	 in	 task-set	 reconfiguration	 (Chiu	 &	 Yantis,	 2009),	

integration	of	information	between	brain	systems	(Fornito	et	al.,	2012;	Leech,	Braga,	

&	 Sharp,	 2012),	 environmental	 reward	 outcomes	 (Hayden,	 Nair,	 McCoy,	 &	 Platt,	

2008),	 and	 encoding	 of	 statistical	 properties	 of	 changing	 environments	 (Pearson,	

Heilbronner,	Barack,	Hayden,	&	Platt,	2011).		

Unlike	the	FPN,	areas	belonging	to	the	CON	were	exclusively	associated	with	

surprise.	According	to	the	“dual-network”	model	(Dosenbach	et	al.,	2008),	whereas	

the	 FPN	 would	 implement	 control	 on	 a	 trial-by-trial	 basis,	 the	 CON	 would	 be	 in	

charge	of	maintaining	relevant	task-goals	across	trials.	Other	models,	however,	have	

proposed	 that	 the	 AI	 along	 with	 the	 ACC	 form	 a	 “salience	 network”,	 which	 is	

involved	in	the	transient	identification	of	relevant	stimuli	in	order	to	guide	behavior	

(Seeley	et	al.,	2007).	More	in	details,	Menon	and	Uddin	(2010)	proposed	that	the	AI,	

which	receives	multimodal	sensory	inputs,	detects	salient	stimuli	and	sends	transient	

control	 signals	 to	 the	 ACC	 and	 associated	 pre-SMA,	 which	 in	 turn	 send	 motor	

outputs	 to	 respond	 to	 such	 salient	 stimuli.	 This	 model	 is	 more	 in	 line	 with	 our	

surprise-related	 findings	 than	 the	 sustained	 role	of	 the	CON	proposed	 in	 the	dual-

network	model.	Indeed,	following	Menon	and	Uddin	(2010),	we	can	speculate	that	in	

our	task	too	the	salience-network	detected	low-probable	targets	in	order	to	enhance	

a	non-well	temporally	prepared	response.		

Of	 note,	 updating	 and	 surprise	 both	 elicited	 activity	 in	 a	 cluster	 of	 regions	

around	 the	 left	 fusiform	 gyrus	 (lFFG)	 and	 the	 cerebellum.	 The	 contribution	 of	 the	
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lFFG	could	be	explained	by	its	putative	role	in	color	perception	(Zeki	et	al.,	1991).	In	

our	 task,	 indeed,	 cue	 color	 was	 the	 only	 information	 provided	 to	 participants	 in	

order	 to	 discriminate	 between	 update	 and	 surprise	 trials.	 The	 involvement	 of	 the	

cerebellum	 could	 be	 instead	 understood	within	 the	 dual-network	 framework	 as	 it	

has	 been	 suggested	 that	 the	 FPN	 and	 CON	 interact	 with	 each	 other	 via	 the	

cerebellum	 (Dosenbach	 et	 al.,	 2008).	 Unfortunately,	 the	 field	 of	 view	 used	 in	 our	

fMRI	 protocol	 was	 not	 optimal	 for	 a	 complete	 acquisition	 of	 the	 cerebellum	 and	

nearby	regions	and	the	related	results	should	be	interpreted	with	caution.	

As	 mentioned	 in	 the	 Introduction,	 only	 few	 studies	 tried	 to	 dissociate	

updating	 and	 surprise.	 O’Reilly	 and	 colleagues	 (2013)	 separately	 manipulated	

surprise	 and	 updating	 in	 a	 saccadic	 planning	 spatial	 task.	 Unlike	 our	 study,	 they	

observed	 significant	 activation	 of	 the	 ACC/pre-SMA	 for	 updating	 and	 enhanced	

activity	in	the	PPC	for	surprise.	The	discrepancy	between	their	and	our	results	might	

be	due	to	different	task	demands.	Concerning	the	correlation	between	surprise	and	

PPC,	the	peak	of	activity	 (MNI	coordinates:	 [-18	-60	58])	 fell	 in	a	region	called	 IPS3	

(Mars	 et	 al.,	 2011),	 a	 homolog	 of	 the	 monkey’s	 saccadic	 planning	 area	 LIP.	 	 The	

authors	suggested	that	surprise-related	activity	in	the	IPS3	was	elicited	by	the	need	

of	 a	 saccadic	 reprogramming	 towards	 unexpected	 locations.	 Thus,	 the	 absence	 in	

our	study	of	a	significant	activation	in	this	region	might	be	probably	explained	by	the	

lack	of	saccadic	motor	planning	demands.	Different	task	demands	can	also	account	

for	the	divergent	pattern	of	ACC/pre-SMA	activations	reported	in	our	paradigm.	For	

example,	it	has	been	shown	that	SMA	and	adjacent	regions	are	key	areas	in	tracking	

the	hazard	function	of	predictable	temporal	events	(Herbst	et	al.,	2018).	Since	in	our	

task	 surprise	 only,	 but	 not	 updating,	 was	 computed	 on	 the	 hazard	 rate	 of	 target	

onset,	it	is	plausible	that	variations	in	these	regions	were	better	captured	by	IS	than	

DKL.		

In	 contrast	 to	 O’Reilly	 and	 colleagues	 (2013),	 our	 findings	 on	 surprise	

replicated	 those	 by	 Schwartenbeck	 and	 colleagues	 (2016).	 These	 authors	 also	

attempted	to	dissociate	surprise	and	updating	with	a	focus	on	the	role	of	dopamine	

in	 belief	 updating.	 ROI	 analyses	 of	 midbrain	 activity	 showed	 these	 dopamine-rich	

regions	 to	 be	modulated	 by	 updating.	 Conversely,	 in	 line	with	 our	 results,	 whole-
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brain	analyses	showed	surprise	to	be	encoded	in	medial	frontal	regions	including	the	

dACC	and	pre-SMA.	A	 last	 study,	 in	which	updating	and	 surprise	were	dissociated,	

was	conducted	by	Kobayashi	and	Hsu	(2017).	Using	and	adapted	Ellsberg	three-color	

urn	 task	 (see	 General	 Introduction)	 the	 authors	 found	 that	 surprise	 modulated	

activity	 in	 bilateral	 insula	 while	 updating	 of	 belief	 about	 the	 urn	 content	 was	

associated	with	activity	 in	bilateral	middle	 frontal	 girus	and	 IPS,	 and	 in	precuneus.	

Our	findings	are	consistent	with	their	results	on	both	updating	and	surprise.	

Concerning	the	areas	responding	to	the	temporal	probability	of	target	onset,	

we	 found	that	 regions	 located	 in	 the	auditory	and	visual	cortices	were	sensitive	 to	

the	 hazard	 function.	 These	 findings	 corroborate	 those	 by	 Bueti	 and	 colleagues	

(2010),	which	showed	the	involvement	of	sensory	visual	areas	in	tracking	or	at	least	

shadowing	 elapsed	 time.	 Interestingly,	 it	 has	 also	 been	 shown	 that	 auditory	

temporal	expectations	modulated	activity	in	both	auditory	and	visual	areas	(Bueti	&	

Macaluso,	2010),	a	result	that	points	to	the	existence	of	crossmodal	associations	in	

temporal	 preparation.	 Here,	 we	 further	 lend	 support	 to	 this	 idea	 by	 showing	 the	

involvement	of	auditory	regions	in	the	deployment	of	visual	temporal	expectations.		

In	sum,	our	fMRI	data	showed	that	updating	of	internal	models	and	surprise	

about	the	timing	of	relevant	events	do	rely	on	the	work	of	two	influential	cognitive	

control	networks.	In	this	regard,	the	value	of	our	study	can	be	appreciated	along	two	

directions.	 On	 a	 general	 level,	 it	 sheds	 new	 light	 into	 the	 understanding	 of	 the	

differential	role	of	the	FPN	and	CON	in	higher-order	cognition.	More	specifically,	to	

our	knowledge,	this	is	the	first	study	that	unveils	the	neural	mechanisms	underlying	

the	 formation	 and	 adjustment	 of	 temporal	 predictive	models.	 Indeed,	we	 showed	

that	 our	 brain	 encodes	 temporal	 probabilities	 in	 an	 optimal	 Bayesian	 fashion	 and	

that	regions	involved	in	updating	can	be	at	least	in	part	differentiated	from	regions	

dealing	with	surprising	events.		
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 	Chapter	3

Electrophysiological	 correlates	 of	 temporal	 belief	

updating	and	surprise	

	

3.1 Introduction	

In	 recent	 years,	 Bayesian	 inference	 is	 gaining	 increasing	 popularity	 in	

cognitive	neuroscience	(Doya	et	al.,	2007;	Friston,	2012;	Kersten	et	al.,	2004;	Knill	&	

Pouget,	2004).	Recent	theories	propose	that,	like	other	adaptive	systems,	the	brain	

tries	to	infer	the	causal	structure	of	the	environment	in	a	Bayesian	optimal	fashion.	

This	 means	 that	 we	 derive	 beliefs	 according	 to	 Bayes’	 rule	 in	 order	 to	 predict	

environmental	 contingencies.	 The	 Bayesian	 brain	 hypothesis	 has	 been	 applied	 to	

many	 cognitive	 domains	 including	 perception,	 language,	 motor	 preparation	 and	

decision	making	(Chater	&	Manning,	2006;	Wolpert,	2007;	Yuille	&	Kersten,	2006).	As	

shown	 in	Chapter	2,	we	successfully	used	this	approach	 in	an	fMRI	study	to	model	

temporal	expectations	during	a	foreperiod	task.	We	identified	two	networks	partially	

distinctly	associated	with	two	levels	of	processes	elicited	by	surprising	events:	1)	the	

fronto-parietal	network	was	mainly	 involved	 in	updating	of	 temporal	expectations;	

2)	the	cingulo-opercular	network	was	related	to	processes	dealing	with	unexpected	

events.	 These	 findings,	 thus,	 showed	 that	 our	 foreperiod	 task	 was	 well	 suited	 to	
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isolate	 neural	 correlates	 of	 processes	 related	 to	 these	 two	 levels	 of	 cognitive	

operations.	However,	 the	 poor	 temporal	 resolution	of	 fMRI	 does	 not	 tell	 us	much	

about	 the	 temporal	 dynamics	 underlying	 Bayesian	 inferences	 of	 temporal	

expectations.	 The	 recording	 of	 electroencephalographic	 (EEG)	 activity	 may	 help	

characterize	 in	 a	 more	 direct	 manner	 the	 nature	 of	 the	 cognitive	 processes	

associated	 with	 surprise	 and	 updating.	 To	 this	 end,	 in	 the	 present	 study	 we	

combined	our	previously	used	foreperiod	task	with	the	excellent	temporal	resolution	

of	EEG.	

Recent	 EEG	 research	 suggests	 a	 role	 of	 Bayesian	 inference	 in	 modulating	

electrophysiological	 activity	 associated	 with	 perception	 and	 learning	 (for	 an	

overview,	see:	Kopp	et	al.,	2016a).	One	of	the	most	studied	event-related	potentials	

(ERPs)	 in	 this	 regard	 is	 the	P3	 (more	 specifically,	 various	 components	belonging	 to	

the	P3	family).	Traditionally,	 it	has	been	consistently	shown	that	“surprising	events	

elicit	 a	 large	 P300	 component”	 (Donchin,	 1981,	 p.	 498),	 which	 has	 led	 to	 the	

hypothesis	 that	 the	 P3	 amplitude	 is	 inversely	 related	 to	 the	 observer’s	 subjective	

probability	of	the	event	(Donchin	&	Coles,	1988).	Although	an	explicit	 link	between	

the	 P3	 amplitude	 and	 the	 Bayesian	 brain	 hypothesis	 has	 been	 proposed	 relatively	

recently	(Friston,	2005;	Kopp,	2008),	since	its	discovery	terms	related	to	information	

processing	 and	 inference	 such	 as	 expectancy,	 uncertainty,	 subjective	 probability,	

surprise,	or	updating	have	been	often	employed	to	functionally	characterize	this	ERP	

component	(Donchin,	1979,	1981;	Squires	et	al.,	1976;	Sutton,	1979).	For	example,	

according	 to	 the	 influential	“context-updating”	hypothesis	 (Donchin	&	Coles,	1988)	

“the	P300	is	elicited	by	processes	associated	with	the	maintenance	of	our	model	of	

the	context	of	the	environment”	(p.	370).	This	theoretical	account	for	the	P3	is	highly	

compatible	with	Bayesian	inference	(Kopp,	2008):	the	prior	could	be	seen,	indeed,	as	

a	conceptual	cognate	of	the	internal	context	model	and	updating	as	the	process	that	

guarantees	the	optimal	maintenance	of	this	model.		

Corroborating	 the	 similarity	 between	 former	 interpretations	 of	 the	 P3	 and	

the	 Bayesian	 brain	 hypothesis,	 recent	 studies	 have	 shown	 that	 trial-by-trial	

fluctuations	 in	 the	P3	amplitude	could	be	explained	by	means	of	an	 ideal	Bayesian	

observer	(e.g.,	Mars	et	al.,	2008;	see	also	Chapter	2).	Some	studies	have	consistently	
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reported	 that	 some	 P3	 sub-components	 can	 be	 differentiated	 in	 terms	 of	 distinct	

measures	 of	 surprise:	 Shannon’s	 information	 (Is)	 and	 Kullback-Leibler	 divergence	

(DKL).	In	particular,	a	parietally-distributed	P3b	has	been	associated	with	Is	(Kolossa	

et	al.,	2013;	Mars	et	al.,	2008),	while	an	earlier	and	more	fronto-central	P3a	with	DKL	

(Kolossa	 et	 al.,	 2015).	 However,	 the	 precise	 nature	 of	 the	 processes	 captured	 by	

these	 two	measures	of	 surprise	 is	 still	 elusive.	 Concerning	DKL,	 even	 if	 it	 plausibly	

represents	a	formal	measure	of	processes	underlying	Bayesian	updating,	it	is	unclear	

whether	 its	 neurophysiological	 correlates	 (e.g.,	 P3a)	 reflect	 the	 actual	 updating	 of	

internal	models	or	they	just	index	more	general	attentional	processes	also	playing	a	

role	in	updating.	As	regards	Is,	although	its	neurophysiological	correlates	(e.g.,	P3b)	

have	been	related	to	uncertainty	or	surprise,	previous	studies	have	not	specified	the	

nature	of	the	underlying	processes.		

	

The	present	study	aimed	at	investigating	the	neurophysiological	signatures	of	

processes	 formalized	by	 Is	 and	DKL	by	making	 a	distinction	between	 two	 levels	 of	

cognitive	operations.	As	detailed	above	and	also	in	Chapter	2,	the	first	level	is	given	

by	 between-trial	 processes	 involved	 in	 the	 updating	 of	 predictive	 models.	 The	

second	 level	 is	 related	 to	within-trial	 processes	 coping	with	 surprising	 events.	 The	

implementation	of	a	temporal	preparation	task	 is	very	useful	to	differentiate	these	

two	levels	of	analysis	since	they	are	affected	by	two	different	types	of	probabilistic	

information	conveyed	by	 the	 target.	On	 the	one	hand,	DKL	uses	 the	probability	of	

target	onset	with	respect	to	the	prior	(likelihood).	On	the	other	hand,	Is	is	associated	

with	the	probability	of	target	onset	given	that	it	has	not	yet	occurred	within	the	trial	

(i.e.,	hazard	rate).	Accordingly,	our	manipulation	allowed	making	sure	that	our	DKL	is	

reflecting	 updating,	 while	 Is	 is	 genuinely	 associated	 with	 processes	 involved	 in	

surprise	(e.g.,	reprogramming	a	response)	but,	critically,	not	in	updating.		

In	 order	 to	 depict	 the	 temporal	 dynamics	 of	 the	 processes	 involved	 in	

updating	 and	 surprise,	 here	 we	 tried	 to	 move	 a	 step	 forward	 with	 respect	 to	

previous	 ERP	 studies	 on	 this	 topic.	 These	 studies	 investigated	 the	 effects	 of	

continuous	 variables	 such	 as	 Is	 and	 DKL	 on	 EEG	measures	 extracted	 from	 a-priori	

time	windows	 (i.e.,	 mean	 amplitude	 and/or	 peak)	 and	 electrodes	 of	 interest.	 The	
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main	disadvantage	of	 this	approach	 is	 that	 it	 cannot	provide	a	 temporally	detailed	

waveform	 (N.	 J.	 Smith	 &	 Kutas,	 2015).	 Moreover,	 it	 is	 plausible	 that	 processes	

evoked	by	updating	and	surprise	occur	in	close	temporal	proximity	and,	accordingly,	

that	the	resulting	EEG	signal	may	reflect	some	overlap	between	the	two	that	could	

be	 confounded.	 Finally,	 other	 modulations	 above	 and	 beyond	 the	 P3	 could	 be	

associated	with	 updating	 and	 surprise	 but	 they	 have	 been	probably	 overlooked	 in	

previous	 studies.	 To	 face	 all	 these	 limitations,	 in	 the	 present	 study	we	 adopted	 a	

regression-based	 mass	 univariate	 approach	 that	 considered	 the	 entire	 spatio-

temporal	EEG	domain	(Ehinger	&	Dimigen,	2018).	In	doing	so,	we	aimed	at	providing	

a	 more	 temporally	 defined	 and	 comprehensive	 picture	 about	 the	 ERPs	 reflecting	

updating	and	surprise	than	what	already	done	in	previous	EEG	studies.	Importantly,	

to	the	best	of	our	knowledge,	our	study	represents	the	first	attempt	to	delineate	the	

neural	 correlates	 of	 Bayesian	 updating	 of	 predictive	 models	 about	 the	 timing	 of	

forthcoming	events.		

	

3.2 Methods	

3.2.1 Participants	

The	study	 included	an	 initial	 sample	of	26	participants.	One	participant	was	

excluded	 due	 to	 low	 compliance	 with	 task	 instructions	 (22%	 of	 responses	 were	

anticipations)	 and	 replaced	 with	 an	 additional	 participant.	 Therefore,	 the	 final	

sample	still	comprised	26	participants	[10	males;	mean	age:	23.4	(SD	=	3),	range:	19-

33	 years	 old].	 All	 of	 them	 were	 right-handed	 [EHI	 average	 score:	 81.8	 (SD=16)]	

except	one	who	showed	weak	right-handedness	(EHI	=	20),	they	reported	no	history	

of	neurological	or	psychiatric	disorders,	normal	color	vision	and	normal	or	corrected-

to-normal	visual	acuity.	The	procedures	involved	in	this	study	were	approved	by	the	

Bioethical	Committee	of	the	Azienda	Ospedaliera	di	Padova.	Participants	gave	their	

written	informed	consent	before	the	experiment,	in	accordance	with	the	Declaration	

of	Helsinki,	and	they	were	reimbursed	20	euros	for	their	time.		
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3.2.2 Task	and	procedure	

The	foreperiod	task	was	the	same	as	the	one	employed	in	Study	1	(Chapter	

2).	 However,	 since	 in	 an	 EEG	 paradigm	 we	 do	 not	 need	 ITI	 as	 long	 as	 in	 fMRI	

paradigms,	 in	 this	 task	we	 could	 double	 the	number	 of	 trials.	Overall,	 participants	

performed	 72	 blocks	 (plus	 an	 initial	 block	 excluded	 from	 the	 analyses)	 whose	

Gaussian	 distributions	 were	 derived	 from	 an	 orthogonal	 combination	 of	 9	 means	

(500,	 700,	 900,	 1100,	 1300,	 1500,	 1700,	 1900,	 and	 2100	 ms)	 and	 8	 standard	

deviations	 (25,	 50,	 75,	 100,	 125,	 150,	 175	 and	 200	 ms).	 The	 block	 sequence	 is	

presented	 in	Table	3.1).	 The	 increase	 in	 the	number	of	 trials	 allowed	us	 to	have	a	

more	 balanced	 paradigm	 in	 terms	 of	 distances	 between	 subsequent	 means.	

Furthermore,	 we	 could	 increase	 variability	 in	 the	 precision	 of	 the	 Gaussian	

distribution	 also	 by	 increasing	 the	 number	 and	 the	 duration	 of	 possible	 standard	

deviations.	 Foreperiod	 durations	 in	 uniform	 trials	 were	 drawn	 from	 a	 uniform	

distribution	with	boundaries	250	and	2500	ms.		

Differently	from	the	task	in	the	previous	study	the	ITI	duration	was	randomly	

jittered	between	1.25	 and	1.75	 s	 and	 the	 target	was	 displayed	 for	 1	 second.	 Each	

block	 consisted	 of	 a	 number	 of	 trials	 between	 8	 and	 13	 (mean:	 10.5).	 The	 blocks	

were	 grouped	 in	 four	 runs	 with	 self-paced	 breaks	 in	 between.	 Before	 the	 EEG	

montage,	participants	practiced	 the	 task.	 The	practice	 session	and	 the	 instructions	

were	identical	to	those	provided	in	Study	1.	
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Table	3.1	|	Block-list.		

Block	 µ	 σ	
	

Block	 µ	 σ	
	

Block	 µ	 σ	

0	 500	 175	
	 	 	 	 	 	 	 	1	 1900	 125	
	

25	 1300	 50	
	

49	 1500	 100	

2	 1500	 175	
	

26	 1100	 50	
	

50	 1100	 200	

3	 500	 100	
	

27	 1700	 50	
	

51	 2100	 125	

4	 1100	 25	
	

28	 1300	 25	
	

52	 1300	 200	

5	 900	 75	
	

29	 1100	 175	
	

53	 500	 200	

6	 1300	 100	
	

30	 2100	 175	
	

54	 2100	 100	

7	 700	 150	
	

31	 700	 75	
	

55	 1500	 125	

8	 1700	 75	
	

32	 1100	 100	
	

56	 1100	 75	

9	 1300	 150	
	

33	 500	 175	
	

57	 1700	 100	

10	 1900	 25	
	

34	 700	 25	
	

58	 900	 25	

11	 1700	 25	
	

35	 900	 200	
	

59	 700	 125	

12	 2100	 150	
	

36	 2100	 75	
	

60	 1500	 200	

13	 1300	 75	
	

37	 1500	 150	
	

61	 500	 125	

14	 1500	 50	
	

38	 900	 175	
	

62	 1300	 175	

15	 1700	 150	
	

39	 2100	 50	
	

63	 1900	 175	

16	 700	 50	
	

40	 1700	 125	
	

64	 700	 200	

17	 1100	 150	
	

41	 900	 50	
	

65	 2100	 25	

18	 1900	 50	
	

42	 1100	 125	
	

66	 1900	 200	

19	 2100	 200	
	

43	 1900	 75	
	

67	 500	 50	

20	 500	 75	
	

44	 1700	 175	
	

68	 900	 150	

21	 900	 100	
	

45	 500	 25	
	

69	 1900	 100	

22	 1300	 125	
	

46	 700	 175	
	

70	 1500	 75	

23	 700	 100	
	

47	 1900	 150	
	

71	 1700	 200	

24	 1500	 25	
	

48	 900	 125	
	

72	 500	 150	

Notes:	For	each	block,	mean	(µ),	and	standard	deviation	(σ)	of	 the	generative	FP	distribution	are	 indicated	and	

expressed	in	ms.	Block	0	was	not	included	in	the	analyses.	

	

3.2.3 EEG	data	acquisition	

The	 EEG	was	 recorded	 using	 BrainAmp	 amplifiers	 (Brain	 Products,	Munich,	

Germany)	 from	 64	 Ag/AgCl	 electrodes	 that	 were	 mounted	 on	 an	 elastic	 cap	

(EASYCAP	 GmbH,	 Germany)	 according	 to	 the	 international	 10-20-system.	

Electrooculographic	 activity	 was	 recorded	 through	 an	 electrode	 placed	 under	 the	

right	 eye	 and	 was	 also	 monitored	 through	 the	 scalp	 electrodes	 placed	 in	 the	

proximity	of	both	eyes.	Before	recording,	impedance	for	all	electrodes	was	checked	
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and	 adjusted	 until	 it	 was	 lower	 than	 10	 kΩ	 before	 testing.	 All	 electrodes	 were	

referenced	to	FCz	during	the	recording,	and	an	electrode	positioned	at	AFz	served	as	

the	ground.	EEG	activity	was	digitized	at	a	sampling	rate	of	500	Hz.	

3.2.4 Normative	Bayesian	learner	and	regressors	

The	model	was	the	same	as	the	one	described	in	Study	1	(see	2.2.3).	The	only	

difference	concerned	the	parametric	space.	Due	to	the	new	standard	deviations,	the	

size	of	the	parameter	space	was	300×25.	As	in	Study	1,	surprise	and	updating	were	

quantified	using	IS	and	DKL,	which	were	derived	as	in	2.2.4.	

3.2.5 EEG	data	analysis	

EEG	 pre-processing.	 Offline	 EEG	 processing	 was	 performed	 using	 custom	

MATLAB	 scripts	 using	 functions	 from	 the	 EEGLAB	 environment	 (version	 13.6.5b;	

Delorme	&	Makeig,	2004).		

As	 a	 pre-preprocessing	 step	 for	 subsequent	 ICA,	 a	 band-pass	 filter	 using	 a	

one-pass	non-causal	zero-phase	Kaiser	windowed	sinc	FIR	filter	[cut-off	frequencies	

=	2	and	40	Hz,	transition	bandwidth	=	4	and	20	Hz	for	the	high-	and	low-pass	filters,	

respectively,	passband	ripple	=	 .001]	was	applied	to	continuous	EEG	data.	The	high	

cut-off	for	the	high-pass	filter	was	applied	to	remove	low-frequency	drifts	in	order	to	

improve	 the	 results	 of	 ICA	 (Winkler,	 Debener,	Muller,	 &	 Tangermann,	 2015).	 The	

clean_rawdata	function	was	used	to	remove	noisy	channels	(channel	criterion	=	.8)	

and	 short-time	 bursts	 (burst	 criterion	 =	 20	 SD)	 from	 the	 data.	 A	 maximum	 of	 3	

channels	per	subject	(mean	=	0.6,	sd	=	1)	were	removed.	Then,	the	FastICA	algorithm	

(Hyvarinen	&	Oja,	2000)	was	employed	to	obtain	ICA	weight	matrices	and	sphereing	

matrices.		

Whilst	 the	 use	 of	 such	 an	 extreme	 high-pass	 filter	 cut-off	 stabilizes	 ICA	

solution,	it	is	known	that	high-pass	filtering	may	attenuate	ERP	effects	and	introduce	

distortions.	 For	 this	 reason,	 the	 ICA	 solution	 calculated	 on	 2-Hz	 high-pass	 filtered	

data	was	then	applied	on	continuous	EEG	data	band-pass	 filtered	using	a	one-pass	

non-causal	zero-phase	Kaiser	windowed	sinc	FIR	filter	with	cut-off	frequencies	of	0.1	
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(transition	bandwidth	=	0.2)	and	40	Hz	(transition	bandwidth	=	20)	for	the	high-	and	

low-pass	 filter,	 respectively.	 Indeed,	 the	 0.1-Hz	 cut-off	 frequency	 seems	 a	 good	

trade-off	 between	 waveform	 distortions	 and	 statistical	 power	 (Tanner,	 Morgan-

Short,	&	Luck,	2015).	Before	applying	the	ICA	solution,	noisy	channels	identified	in	2-

Hz	 high-pass	 filtered	 data	 were	 removed.	 Subsequently,	 the	 EEGLAB	 extension	

SASICA	(Chaumon,	Bishop,	&	Busch,	2015)	was	used	to	guide	the	identification	and	

exclusion	of	artifact	independent	components	(e.g.,	blinks,	eye	movements,	muscle	

activity,	misconnected	channels).	Finally,	removed	channels	were	interpolated	using	

spherical	 splines	 (Perrin,	 Pernier,	 Bertrand,	&	 Echallier,	 1989)	 and	 continuous	 EEG	

data	were	re-referenced	to	the	average	of	all	EEG	electrodes.	

Inferential	 statistics.	 First-level	 (subject-specific)	 analysis	 was	 performed	

using	 the	Unfold	 toolbox	 (Ehinger	&	Dimigen,	2018)	 in	MATLAB.	This	 toolbox	allows	

performing	regression-based	EEG	analysis	by	integrating	a	mass-univariate	approach	

with	 linear	 deconvolution.	 Deconvolution	 tries	 to	 disentangle	 overlapping	

electrophysiological	 responses	 from	 subsequent	 events	 (e.g.,	 from	 stimulus	 onset	

and	 from	button	press).	 This	 aspect	 is	 very	helpful	 in	our	paradigm	 to	analyze	 the	

neural	 response	 associated	 to	 target	 onset.	 Indeed,	 targets	were	 preceded	 by	 the	

foreperiod	 interval	 in	 which	 several	 processes	 likely	 occurred.	 Since	 targets	

appeared	at	different	stages	of	these	foreperiod	processes	depending	on	their	status	

(i.e.,	 predictable	 vs.	 surprising),	 the	 resolution	of	 electrophysiological	 correlates	 of	

such	processes	differently	affected	target-related	ERPs.	Deconvolution	helped	us	to	

face	 this	 problem	 by	 isolating	 specific	 ERPs	 associated	 with	 target	 onset.	 For	 a	

methodological	description	of	 the	“Unfold”	analysis	 steps	 the	 reader	 is	 referred	 to	

the	 original	 paper	 (Ehinger	 &	 Dimigen,	 2018).	 For	 the	 analysis	 we	 specified	 three	

events:	 cue	 onset,	 target	 onset	 and	 button	 press.	 Target	 onsets	 were	 modeled	

according	 to	 the	 following	 Wilkinson-notation	 (Wilkinson	 &	 Rogers,	 1973)	

formula: 𝑦 = 1+ 𝐷!" + 𝐼!,	where	1	 represents	 the	 	 intercept	 term,	 and	 IS	 and	DKL	

are	our	model-derived	parametric	regressors	for	updating	and	surprise,	respectively.	

Since	we	were	not	interested	in	modeling	cue	onset	and	button	press,	these	events	

were	 modeled	 using	 only	 an	 intercept	 term	 (𝑦 = 1).	 The	 design	 matrix	 was	 time	

expanded	from	-1	s	to	1	s	around	each	event	using	a	set	of	spline	functions	(1	s	is	the	
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target	 stimulus	 duration	 and,	 therefore,	 the	 maximum	 time	 allowed	 to	 respond).	

Before	 fitting	 the	 model,	 artifact	 intervals	 were	 identified	 using	 a	 peak-to-peak	

voltage	threshold	of	75	μV	and	removed	from	the	design	matrix	(i.e.,	set	to	0).		

Second-level	analysis	was	performed	using	the	ept-TFCE	 toolbox	(Mensen	&	

Khatami,	 2013)	 in	 MATLAB.	 Estimated	 DKL	 and	 IS	 parameters	 in	 the	 data	 space	

channels	×	epoch	time	points	(0	-	1000	ms)	were	tested	using	threshold-free	cluster	

enhancement	 one-sample	 t-test	 (number	 of	 permutations	 =	 200000,	 alpha-level	 =	

.001).		

	

3.3 Results	

3.3.1 Behavioral	results	

Response	 time	 analysis	 is	 described	 at	 2.2.5.	 Backward	 elimination	 of	 non-

significant	effects	resulted	in	a	model	specified	as	the	following	Wilkinson-notation	

formula:		

	

(1)	 log(RT)	~	TRIAL	+	PRECEDING	RT	+	IS	*	DKL	+	(TRIAL	+	PRECEDING	RT	+	IS	|	ID).	 (3.1)	

	

Visual	 inspection	 of	 the	 residuals	 showed	 that	 the	 model	 was	 a	 bit	 stressed.	 As	

suggested	 by	 Baayen	 and	Milin	 (2010),	 trials	 with	 absolute	 standardized	 residuals	

higher	than	2.5	standard	deviations	were	considered	outliers	and	removed	(1.5%	of	

the	 trials).	 After	 removing	 outlier	 trials,	 the	 model	 was	 refitted	 and	 this	 time	 it	

achieved	reasonable	closeness	to	normality.	Table	3.2	shows	the	statistical	results	of	

the	type	III	ANOVA.	A	significant	 interaction	was	found	between	IS	and	DKL.	Fig.	3.1	

shows	that	RTs	increased	with	increasing	surprise	(IS)	and	this	effect	was	augmented	

with	increasing	DKL.		
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Table	3.2	|	Analysis	of	variance	with	type-III	sums	of	squares.		

	 Fixed	Effects	 	 Sum	Sq	 	 Num.	df	 	 Den.	df	 	 F	 	 p	 	 β	 	

	 TRIAL	 	 0.15	 	 1	 	 24.9	 	 4.10	 	 .054	 	 -0.04	 	

	 PRECEDING	RT	 	 1.94	 	 1	 	 24.2	 	 52.32	 	 <	.001	 	 0.14	 	

	 IS	 	 9.14	 	 1	 	 26.4	 	 246.50	 	 <	.001	 	 0.26	 	

	 DKL	 	 2.89	 	 1	 	 18367.8	 	 77.91	 	 <	.001	 	 -0.10	 	

	 IS	:DKL	 	 4.58	 	 1	 	 18368.2	 	 123.64	 	 <.	001	 	 0.12	 	

Notes:	F-statistics	and	associated	p-values	were	calculated	using	Kenward-Roger’s	approximation	of	degrees	of	
freedom	(Halekoh	&	Højsgaard,	2014).	Additionally,	standardized	regression	coefficients	(β)	are	shown.	

	

	

Figure	3.1	|	Interaction	plot	for	log-transformed	RTs.	The	plot	shows	the	effect	of	surprise	(IS)	at	three	levels	of	
of	updating	(DKL),	high	(+1SD),	medium	(Mean)	and	low	(-1SD).	T	

	

3.3.2 Electrophysiological	results	

The	results	of	the	TFC	analyses	on	surprise	and	updating	showed	that	both	
processes	were	associated	with	several	electrophysiological	modulations	displaying	
distinct	spatio-temporal	characteristics.	
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Concerning	surprise	(Is),	as	portrayed	in	Fig	3.2	(warm	color)	the	first	significant	
effect	was	an	early	positive	deflection	emerging	in	the	70-130	ms	time	window,	
which	was	distributed	over	posterior	scalp	electrodes	(P4,	P6,	PO3,	POz,	PO4,	PO8,	
O1,	Oz,	O2).	Correspondingly,	a	negative	modulation	(Fig.	3.2,	cold	color)	was	
observed	over	frontal	electrodes	(Fp1,	Fpz,	Fp2,	AF7,	AF3,	AF8,	AF4,	F7,	F5,	F6).	Fig.	
3.4A	shows	the	corresponding	topographic	maps	and	the	effects	averaged	across	
participants	for	these	results.	The	second	modulation,	represented	in	Fig.	3.2	(warm	
color)	was	a	larger	and	wider-spread	positivity	that	developed	over	centro-parietal	
electrodes	(Cp1,	Cp3,	Cpz,	Cp2,	Cp4,	P1,	P3,	Pz,	P2,	P4,	PO3,	POz,	PO4)	and	lasted	for	
a	longer	time	window	ranging	from	360	ms	to	680	ms.	As	depicted	in	the	
topographic	map	(Fig.	3.4B),	this	positivity	was	surrounded	by	a	negativity	over	
lateral	frontal	electrodes	(Fp1,	Fpz,	Fp2,	AF7,	AF3,AF8,	AF4,	F7,	F5,	F8,	F6,	FT9,FT7,	
FT10,	FT8,	FC5,	FC6,	T7,	T8,	TP9,	TP10).		
The	results	of	the	TFCE	analysis	on	Updating	(DKL)	are	portrayed	in	Fig.	3.3:	It	is	clear	
that,	in	contrast	to	surprise,	updating	was	associated	with	a	more	complex	
electrophysiological	pattern.	Specifically,	there	was	a	first	double-peak	waveform	
that	was	distributed	over	fronto-central	scalp	regions	(FP1,	Fpz,	Fp2,	AF7,	AF3,	AF4,	
AF8,	F7,	F5,	F3,	F1,	Fz,	F6,	F4,	F2,	FC5,	FC3,	FC1,	FCz,	FC4,	FC2,	C3,	C1,	Cz,	C4,	C2)	
lasting	from		50	ms	to	290	ms	(Fig.	3.5A).	Between	the	first	and	second	peak,	there	
was	a	positive	modulation	distributed	over	parietal	electrodes	(CP1,	P1,	P3,	CPz,	Pz,	
CP2,	CP4,	P2,	P4,	P6)	from	100	ms	to	200	ms	(Fig.	3.5C).	Such	modulations	were	
followed	by	a	later	(from	320	ms	to	480	ms)	positivity	(Fig.	3.5B),	which	was	
significantly	present	over	occipital	electrodes	(TP9,	TP10,	P7,	P6,	P8,	PO3,	PO7,	PO4,	
PO8,	O1,	Oz,	O2).	The	last	modulation	(Fig.	3.5C)	was	a	positivity	that	developed	at	
450	ms	and	lasted	until	880	ms	over	centro-posterior	electrodes	(CP1,	CP3,	CP5	CPz,	
CP2,	CP4,	CP6,	P1,	P3,	P5,	Pz,	P2,	P4,	P6,	PO3,	POz,	PO4,	PO8).	
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Figure	 3.2	 |	 Raster	 diagram	 showing	 significant	 effect	 elicited	 by	 surprise	 (IS)	 according	 to	 TFCE	 analysis.	
Rectangle	 in	warm	and	cold	colors	 indicates	electrodes/time	points	significantly	modulated	by	 IS	positively	and	
negatively,	 respectively.	 The	 colorbar	 on	 the	 right	 indicates	 t	 values.	Gray	 rectangles	 indicate	 electrodes/time	
points	 that	 were	 not	 significantly	 modulated.	 Note	 that	 electrodes	 are	 organized	 along	 the	 y-axis	 somewhat	
topographically	(Groppe,	Urbach,	&	Kutas,	2011).	Electrodes	on	the	left	side	of	the	scalp	are	grouped	on	the	top	
part	of	the	diagram,	midline	electrodes	are	shown	in	the	middle,	and	right	electrodes	are	grouped	at	the	bottom.	
Within	those	three	groupings,	the	y-axis	top-to-bottom	corresponds	to	scalp	anterior-posterior.		
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Figure	3.3	|	Raster	diagram	showing	significant	effects	elicited	by	updating	(DKL)	according	to	TFCE	analysis.	
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Figure	3.4	|	Electrophysiological	results:	surprise	(IS).	(A)	The	trace	plot	depicts	the	average	t	value	pooled	over	
the	electrodes	PO3,	POz,	PO4,	O1,	OZ,	O3.	These	electrodes	are	 indicated	as	black	circles	 in	 the	 topographical	
map	on	the	right.	The	topographical	map	shows	the	t	values	averaged	in	the	time	window	ranging	from	80	ms	to	
120	ms.	The	color	scale	is	the	same	as	that	of	the	raster	diagram.	(B)	The	trace	plot	depicts	the	average	t	value	
pooled	 over	 the	 electrodes	 Cz,	 CP1,	 CPz,	 CP2,	 Pz.	 These	 electrodes	 are	 indicated	 as	 black	 circles	 in	 the	
topographical	map	on	the	right.	The	topographical	map	shows	the	t	values	averaged	in	the	time	window	ranging	
from	450	ms	to	550	ms.	
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Figure	3.5	 |	 Electrophysiological	 results:	 updating	 (DKL).	 (A)	The	trace	plot	depicts	 the	average	t	value	pooled	
over	the	electrodes	F1,	Fz,	F2.	These	electrodes	are	indicated	as	black	circles	 in	the	topographical	maps	on	the	
right.	The	topographical	map	on	the	left	shows	the	t	values	averaged	in	the	time	window	ranging	from	80	ms	to	
120	ms.	The	topographical	map	on	the	right	shows	the	t	values	averaged	in	the	time	window	ranging	from	240	
ms	 to	 2600	 ms.	 (B)	 The	 trace	 plot	 depicts	 the	 average	 t	 value	 pooled	 over	 the	 electrodes	 O1,	 Oz,	 O2.	 The	
topographical	map	shows	the	t	values	averaged	in	the	time	window	ranging	from	340	ms	to	360	ms.	(C)	The	trace	
plot	depicts	the	average	t	value	pooled	over	the	electrodes	Cz,	CP1,	CPz,	CP2,	Pz.	The	topographical	map	shows	
the	 t	 values	averaged	 in	 the	 time	window	ranging	 from	550	ms	 to	650	ms.	The	 topographical	map	on	 the	 left	
shows	the	t	values	averaged	in	the	time	window	ranging	from	160	ms	to	200	ms.	The	topographical	map	on	the	
left	shows	the	t	values	averaged	in	the	time	window	ranging	from	550	ms	to	650	ms.	
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3.4 Discussion	

In	 the	 present	 study,	we	 investigated	 the	 electrophysiological	 correlates	 of	

updating	 and	 surprise	 in	 a	 modified	 foreperiod	 temporal	 preparation	 task	 that	

allowed	separating	updating	of	 temporal	expectations	 from	processes	dealing	with	

surprising	 events.	 Corroborating	 previous	 results,	we	 replicated	 the	modulation	 of	

late	components	(as	 indexed	by	a	P3-like	potential)	by	both	surprise	and	updating.	

Moreover,	 our	 channel-	 and	 time-uninformed	 mass	 univariate	 approach	 revealed	

that	probabilistic	and	inferential	processes	also	acted	on	earlier	processing	stages.	In	

brief,	surprise	was	associated	with	only	two	significant	modulations,	an	earlier	phasic	

modulation	and	a	later	and	longer	one.	Updating,	instead,	triggered	a	more	complex	

electrophysiological	pattern	composed	of	a	 first	series	of	early	and	fast	deflections	

followed	by	 a	 later	 and	more	 sustained	 component.	 Below,	we	 elaborate	 on	 each	

one	of	these	results.		

As	 concerns	 early	 processing	 stages,	 surprise	 elicited	 a	 positive	 component	

peaking	 at	 around	 100	 ms,	 whose	 occipital	 scalp	 distribution	 resembled	 a	 P1	

waveform.	The	common	finding	in	studies	of	temporal	attention,	in	which	a	symbolic	

cue	 predicts	 the	 likely	 timing	 of	 target	 onset,	 is	 that	 early	 components	 are	 not	

modulated	by	valid	temporal	expectations,	unless	a	demanding	discrimination	task	is	

used	(see	Correa,	for	a	discussion	on	this	issue).	At	first	glance,	our	finding	of	a	larger	

P1	 for	 surprising	 events	 could	 thus	 seem	 at	 odds	 with	 such	 previous	 studies.	

However,	it	has	been	shown	that	P1	also	responds	to	color	processing	(Forder,	He,	&	

Franklin,	2017).	Taking	 into	account	that	higher	surprising	events	(i.e.,	both	update	

and	surprise	trials)	were	always	associated	with	a	color	change	in	the	target,	it	might	

be	 possible	 then	 that	 the	 surprise-related	 P1	 modulation	 found	 here	 was	 just	

reflecting	 a	 low-level	 perceptual	 encoding	 rather	 than	 an	 attentional	 one.	 This	

explanation	 is	 indirectly	 supported	 by	 our	 previous	 fMRI	 study	 (see	 Chapter	 2),	 in	

which	we	found	activation	of	the	fusiform	gyrus	for	the	surprise	modulator.		

In	 sharp	 contrast	with	 surprise,	 updating	 acted	 on	 several	 early	 processing	

stages.	 As	 it	 is	 evident	 from	 Fig.	 3.3,	 there	 were	 a	 first	 double-peak	 waveform	

distributed	 over	 fronto-central	 sites	 and	 a	 parietal	 distributed	 P2-like	 deflection	

followed	 by	 a	 later	 P2-like	 posterior	 positivity,	 which	 was	more	 pronounced	 over	
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occipital	 electrodes.	 Overall,	 this	 pattern	 of	 electrophysiological	 modulations	

strengthens	the	idea	that	updating	involved	more	high-level	perceptual	and	memory	

processes	than	surprise.	Indeed,	similar	frontal	ERPs	as	the	ones	reported	here	have	

been	observed	in	perceptual	decision-making	studies	(e.g.,	Go-NoGo),	in	which	they	

have	 been	 considered	 as	 markers	 of	 prefrontal	 activity	 reflecting	 top-down	

perceptual	 processing,	 such	 as	 perceptual	 awareness	 (Di	 Russo	 et	 al.,	 2017).	

Concerning	the	parietal	positive	modulation,	Kononowicz	and	van	Rijn	(2014),	have	

shown	 that	 the	 amplitude	 of	 a	 similar	 P2	 component	 was	 proportional	 to	 the	

distance	 between	 standard	 and	 comparison	 intervals	 in	 a	 temporal	 discrimination	

task.	These	findings	may	suggest	that	our	parietal	P2-like	component	was	an	index	of	

some	 comparison	 mechanisms	 involved	 in	 updating.	 Concerning	 the	 posterior	

modulation,	 previous	 cuing	 and	 priming	 studies	 have	 shown	 that	 the	 P2	 was	

enhanced	 for	 invalid	 compared	 to	 valid	 targets,	while	 it	was	 attenuated	 for	 target	

repetitions,	respectively	(Freunberger,	Klimesch,	Doppelmayr,	&	Holler,	2007).	These	

findings,	 thus,	 suggest	 that	 the	 P2	 may	 index	 the	 recruitment	 of	 top-down	

mechanisms	underlying	 the	 revision	of	participants’	expectancies.	 In	any	 case,	 it	 is	

important	 to	 note	 here	 that	 it	 is	 quite	 difficult	 to	 ascribe	 a	 univocal	 functional	

meaning	 to	 each	 one	 of	 the	 early	 modulations	 elicited	 by	 updating	 since,	 to	 our	

knowledge,	 there	 are	 no	 previous	 similar	 studies	 of	 updating	 of	 temporal	

expectations	against	which	to	compare	our	results.	Further	analyses	such	as	principal	

component	analysis	might	help	in	reducing	the	dimensionality	of	these	findings	and	

their	 interpretation.	 What	 it	 is	 critical	 to	 outline,	 however,	 is	 that	 surprise	 and	

updating	acted	differentially	on	the	first	stages	of	target	processing,	which	confirms	

that	our	modulators	managed	to	capture	two	distinct	classes	of	cognitive	operations	

already	early	along	the	processing	stream.	

Our	 results	 on	 the	 late	 electrophysiological	 responses	 extend	 previous	

findings	on	the	relation	between	P3	and	Bayesian	inference	in	the	temporal	domain	

and	 also	 help	 further	 characterize	 the	 cognitive	 processes	 underlying	 the	 P3.	

Concerning	surprise,	we	found	a	significant	positive	modulation	that,	according	to	its	

timing	 and	 scalp	 distribution,	 can	 be	 described	 as	 a	 P3b	 component.	 The	 strong	

modulation	of	the	P3b	by	surprise	replicates	previous	studies	 (Kolossa	et	al.,	2013;	
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Kolossa	et	al.,	2015;	Mars	et	al.,	2008).	In	this	regard,	it	should	be	acknowledged	that	

prior	 work	 has	 not	 provided	 an	 exhaustive	 definition	 of	 the	 cognitive	 processes	

captured	by	surprise.	We	believe	that	more	information	on	this	issue	can	be	drawn	

from	our	results,	as	detailed	in	what	follows.	First	of	all,	the	nature	of	our	task,	which	

used	a	color	manipulation	to	differentiate	between	surprise	and	updating,	allowed	

minimizing	 the	 possibility	 that	 the	 surprise-related	 P3b	 found	 here	 reflected	

processes	 involved	 in	 the	 revision	 of	 an	 internal	 model.	 Such	 a	 conclusion	 is	

bolstered	 by	 the	 fact	 that	we	 computed	 surprise	 on	 the	 target	 hazard	 rate	 rather	

than	on	its	prior	probability	(i.e.,	the	expected	foreperiod	duration	at	the	beginning	

of	 the	 trial).	 As	 explained	 in	 the	 Introduction	 and	 in	 Chapter	 2,	 the	 information	

derived	 by	 the	 hazard	 function	 is	 indeed	 very	 useful	 for	 the	 current	 trial	 (i.e.,	 for	

processes	 subserving	 immediate	 behavioral	 response)	 but	 less	 for	 updating	 of	

expectations	about	 future	 foreperiod	durations	 in	 the	 forthcoming	 trials.	A	 second	

point	is	that	previous	studies	typically	used	paradigms	with	two	or	more	target	types	

associated	with	distinct	motor	outputs	(i.e.,	n-choice	task).	This	inevitably	creates	a	

confound	since	the	P3b	evoked	by	surprise	in	this	kind	of	designs	may	either	reflect	

the	surprise	triggered	by	the	sensory	stimulus	or	the	surprise	related	to	the	selection	

of	 the	 corresponding	 (less	 expected)	motor	 response	 (Barceló,	 Perianez,	&	Nyhus,	

2008;	 O'Connell,	 Dockree,	 &	 Kelly,	 2012).	 Given	 that	 our	 task	 required	 only	 one	

motor	response,	we	can	then	conclude	that	violations	of	sensory	expectations	per	se	

(in	 our	 case	 temporal	 expectations)	 are	 sufficient	 to	 elicit	 the	 P3b.	 Nevertheless,	

since	 interactions	 between	 temporal	 preparation	 and	 task-demands	 have	 been	

shown	to	be	captured	by	P3-like	components	(cf.	Barceló	&	Cooper,	2018),	it	would	

be	interesting	for	future	research	to	compare	our	P3	modulation	with	that	elicited	in	

a	two-forced	choice	paradigm.		

Similarly	 to	 surprise,	 updating	 also	 elicited	 a	 positive	 potential	 distributed	

over	parietal	sites	with	a	later	and	more	sustained	activity	compared	to	the	surprise-

P3b	 described	 above	 (from	 450	 ms	 to	 880	 ms	 vs.	 from	 360	 ms	 to	 680	 ms,	

respectively).	As	for	the	results	concerning	surprise,	we	suggest	that	such	a	positivity	

may	resemble	a	P3b-like	component.	Our	finding	of	a	significant	modulation	of	the	

P3b	by	updating	is	in	disagreement	with	previous	studies	reporting	that	updating	is	
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usually	 associated	 with	 an	 earlier	 and	 more	 anterior	 P3a	 (Bennett	 et	 al.,	 2015;	

Kolossa	et	al.,	2015).	However,	there	is	some	recent	evidence	that	may	help	explain	

the	 discrepancy	 between	 our	 results	 and	 those	 previous	 findings.	 In	 particular,	

Kolossa	and	colleagues	(2015)	used	a	modified	version	of	the	urn-ball	paradigm	and	

decomposed	 updating	 into	 two	 distinct	 processes	 labeled	 “Bayesian	 surprise”	 and	

“postdictive	 surprise”.	 Bayesian	 surprise	 represents	 the	 updating	 of	 beliefs	 about	

hidden	states	given	current	observation.	Postdictive	surprise	represents	the	change	

in	beliefs	about	future	observations	given	current	observation.	To	better	understand	

the	 difference	 between	 these	 two	 measures,	 we	 make	 a	 parallel	 with	 our	 task.	

Hidden	states	 in	Kolossa	and	colleagues’	 (2015)	study	could	be	associated	with	the	

Gaussian	 distribution	 from	 which	 normal	 FP	 can	 be	 drawn	 in	 our	 task	 (i.e.	 the	

parameter	 space,	 see	 2.2.4).	 Thus,	 Bayesian	 surprise	 represents	 changes	 in	 the	

probability	 over	 the	parameter	 space	before	 and	 after	 each	 FP.	 This	measure	was	

not	considered	 in	our	 study.	By	contrast,	postdictive	 surprise	would	correspond	 to	

the	 DKL	 that	 we	 used	 here	 to	 represent	 updating.	 Kolossa	 and	 colleagues	 (2015)	

found	 that	 the	 P3a	 was	 mainly	 modulated	 by	 Bayesian	 surprise,	 whereas	 the	

postdictive	surprise	better	explained	a	positive	slow	wave	 (SW)	emerging	after	 the	

P3b.	 In	 addition	 to	 these	 two	measures,	 they	 also	 observed	 that	 surprise	 (IS)	 was	

related	to	the	P3b.	Considering	the	different	EEG	analytic	approach	used	here,	 it	 is	

reasonable	to	speculate	that	our	surprise-	and	updating-related	P3-like	components	

may	 correspond	 to	 Kolossa	 and	 colleagues	 (2015)	 P3b	 and	 SW	 potentials,	

respectively.	 Coupled	 with	 the	 above-mentioned	 studies	 (Bennett	 et	 al.,	 2015;	

Kolossa	 et	 al.,	 2013;	 Kolossa	 et	 al.,	 2015;	 Mars	 et	 al.,	 2008),	 then,	 our	 findings	

reinforce	the	idea	that	the	P3	family	is	a	valuable	index	to	get	access	to	the	Bayesian	

brain	across	very	different	paradigms	and	cognitive	domains.	In	this	regard,	it	would	

be	 interesting	 in	 future	 studies	 to	 compare	our	updating-	 and	 surprise-related	P3-

like	components	with	those	obtained	in	tasks	in	which	uncertainty	relates	to	“what”	

instead	of	to	“when”.		

In	 sum,	 in	 the	 present	 EEG	 study	 we	 isolated	 the	 electrophysiological	

responses	 specifically	 associated	 with	 surprise	 and	 updating	 during	 a	 temporal	

preparation	 task.	 In	 order	 to	 achieve	 this,	 we	 relied	 exactly	 on	 the	 same	
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manipulation	employed	in	our	previous	fMRI	study.	However,	one	might	argue	that	

it	 is	 difficult	 to	 generalize	 our	 results	 to	 common	 real	 life	 situations	 in	 which,	

normally,	 changes	 in	 the	 environment	 are	 not	 explicitly	 signaled	 as	 done	 here.	

Despite	 this	 point	 does	 not	 undermine	 the	 validity	 of	 our	 paradigm,	 it	 raises	 an	

important	 question	 that	 needs	 to	 be	 answered:	 How	 updating	 of	 temporal	

expectations	 is	 accomplished	 when	 Bayesian	 inference	 is	 implicitly	 rather	 than	

explicitly	 driven?	 This	 question	 represents	 the	 starting	 point	 for	 our	 second	 EEG	

study,	which	will	be	described	in	the	next	chapter.	
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 	Chapter	4

Beyond	 explicit	 inference:	 EEG	 correlates	 of	 implicit	

updating	of	temporal	expectations	

	

4.1 Introduction	

In	 the	previous	 fMRI	and	EEG	studies	of	 the	present	 thesis,	we	 investigated	

the	neural	mechanisms	by	which	temporal	expectations	are	updated	and	separated	

them	 from	 those	 responsible	 for	 an	 immediate	 reaction	 to	 a	 surprising	 event.	 To	

disentangle	updating	and	surprise,	we	used	a	color	manipulation	by	which	changes	

in	 the	current	generative	 foreperiod	distribution	were	explicitly	signaled.	However,	

belief	 updating	 is	 not	 only	 driven	 by	 explicit	 cues	 but	 also	 it	 can	 be	 implicitly	

accomplished.	In	this	regard,	it	has	been	shown	that	explicit	and	implicit	inferential	

processes	are	differently	encoded	by	 the	brain	 (e.g.,	Hayden,	Smith,	&	Platt,	2010;	

Pearson	 et	 al.,	 2011;	 Yu	 &	 Dayan,	 2005).	 Given	 that	 so	 far	 we	 have	 explored	 the	

mechanisms	 involved	 in	 the	 temporal	 updating	 induced	 by	 explicit	 changes	 in	 the	
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environment,	we	could	not	generalize	our	results	to	situations	in	which	such	changes	

implicitly	occur.			

Thus,	 the	 main	 goals	 of	 the	 present	 study	 were	 to	 investigate	 the	

electrophysiological	 correlates	underlying	 “implicit”	Bayesian	updating	of	 temporal	

expectations	and	to	directly	compare	them	with	the	explicit	one.	To	these	aims,	we	

employed	 the	 same	 task	 as	 that	 used	 in	 the	 previous	 EEG	 study	 (Chapter	 3),	 but	

without	 the	 color	 manipulation.	 Here,	 participants	 were	 simply	 instructed	 to	

respond	as	 fast	as	possible	 to	 the	onset	of	 the	target	but	 they	had	no	 information	

about	 the	 probabilistic	 structure	 of	 the	 task.	 This	 modification	 in	 the	 paradigm	

required	 the	 implementation	of	 a	 new	 ideal	 Bayesian	observer,	which	 should	 take	

into	account	not	only	differences	 in	 the	paradigm	and	 the	participants’	knowledge	

about	 the	 task	 (i.e.,	 different	 task	 instructions),	 but	 also	 the	 long-term	 trialwise	

accumulation	 of	 evidence	 and	 memory	 constraints.	 Namely,	 in	 the	 previous	

paradigm,	 after	 the	 change	 in	 color,	 participants	 could	 discard	 the	 information	

carried	 out	 by	 the	 previous	 trial	 since	 this	was	 no	 longer	 useful	 to	 infer	 the	 new,	

current	foreperiod	distribution.	Conversely,	the	absence	of	the	color	 in	the	present	

study	 led	to	the	fact	that	participants	were	exposed	to	a	 long	series	of	foreperiods	

that	was	 experienced	 as	 a	 unique	 sequence	 throughout	 the	 task.	 This	 aspect	was	

implemented	in	the	model,	as	elaborated	in	the	Method	section.		

As	 in	 our	 previous	 studies,	 we	 also	 aimed	 at	 differentiating	 the	 processes	

involved	 in	 updating	 from	 those	 dealing	 with	 surprising	 events.	 Even	 if	 here	 we	

discarded	the	color	manipulation,	we	reasoned	that	the	temporal	nature	of	our	task	

should	still	allow	us	to	distinguish	between	the	two.	Specifically,	as	mentioned	in	the	

previous	chapters,	the	two	measures	used	to	quantitatively	describe	updating	(DKL)	

and	surprise	(IS)	 relied	on	two	types	of	temporal	 information	carried	by	the	target.	

Briefly,	 surprise	was	 computed	on	 the	hazard	 rate	 related	 to	 target	 onset	 that,	 as	

already	explained,	considered	the	passage	of	time	during	the	trial.	The	information	

conveyed	by	the	passage	of	time	was	not	instead	used	for	the	calculation	of	trial-to-

trial	updating	of	temporal	expectations.	The	computational	distinction	between	the	

modulators	 for	 updating	 and	 surprise	 also	 holds	 for	 the	 present	 temporal	
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preparation	task,	which	made	us	confident	to	observe	again	such	a	difference	at	the	

electrophysiological	level.		

The	 previous	 EEG	 study	 showed	 that	 surprise	 and	 updating	 acted	 on	 both	

early	 and	 late	 processing	 stages.	 The	modulation	 of	 later	 components	was	 in	 line	

with	 the	 literature	 (Kolossa	 et	 al.,	 2013;	 Kolossa	 et	 al.,	 2015;	 Mars	 et	 al.,	 2008)	

confirming	that	the	P3	is	sensitive	to	inferential	processes	(Kopp,	2008).	In	contrast,	

we	could	not	draw	firm	conclusions	on	the	specific	role	of	earlier	components.	This	is	

due	 to	 the	 fact	 that,	 since	 processing	 of	 the	 cue	 color	 necessarily	 affected	 early	

components,	 it	 is	 not	 clear	 whether	 such	 potentials	 truly	 encoded	 probabilistic	

information	or	 they	were	 just	 involved	 in	 the	 cue	elaboration.	 Testing	 this	 issue	 is	

crucial	to	pinpoint	the	difference	between	explicit	and	implicit	inferential	processes	

and	to	better	interpret	the	results	of	our	previous	study.		

To	 sum	 up,	 here	 we	 tried	 to	 gain	 further	 insight	 into	 the	 inferential	

mechanisms	underlying	 temporal	expectations	when	 they	are	 implicitly	driven	and	

to	make	a	comparison	between	explicit	and	implicit	inferential	processes.			

	

4.2 Methods	

4.2.1 Participants	

The	study	 included	a	sample	of	28	participants	[17	females;	mean	age:	24.5	

(SD	=	4),	range:	19-33	years	old].	All	of	them	were	right-handed	[EHI	average	score:	

82.7	(SD=19),	range:	40-100],	they	reported	no	history	of	neurological	or	psychiatric	

disorders,	normal	color	vision	and	normal	or	corrected-to-normal	visual	acuity.	The	

procedures	involved	in	this	study	were	approved	by	the	Bioethical	Committee	of	the	

Azienda	 Ospedaliera	 di	 Padova.	 Participants	 gave	 their	 written	 informed	 consent	

before	 the	 experiment,	 in	 accordance	 with	 the	 Declaration	 of	 Helsinki,	 and	 they	

were	reimbursed	20	euros	for	their	time.		
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4.2.2 Task	and	procedure	

The	foreperiod	task	was	the	same	as	the	one	employed	in	the	previous	EEG	

study	 (Chapter	 3),	 except	 for	 the	 target	 color	 that	 was	 always	 black.	 Participants	

were	not	informed	about	the	temporal	structure	or	the	probabilistic	nature	of	task.	

They	were	only	 instructed	to	respond	as	fast	as	possible	to	the	onset	of	the	target	

and	to	avoid	responding	before	the	target	had	appeared.	

4.2.3 Normative	Bayesian	learner	and	regressors	

For	the	present	study,	we	modified	the	normative	Bayesian	learner	employed	

in	the	former	two	studies	(Section	2.2.3;	see:	O'Reilly	et	al.,	2013)	in	order	to	reflect	

the	 features	 of	 the	 present	 paradigm.	 Before	 describing	 the	 new	 model,	 we	 will	

present	the	differences	in	task	structure	between	the	present	and	the	previous	two	

studies	that	were	considered	for	the	implementation	of	the	model.	

As	stated	by	O’Reilly	and	colleagues	(2013),	the	model	was	optimal,	meaning	

that	it	provided	the	best	estimate	of	the	generative	foreperiod	distribution	given	the	

data	 sequence	 (the	 same	 experienced	 by	 the	 participant)	 and	 that	 it	 took	 into	

account	participants’	knowledge	about	the	structure	of	the	task	based	on	the	given	

instructions.	 Since	 participants	 were	 informed	 that	 white	 targets	 appeared	 after	

foreperiods	of	random	duration,	the	model	did	not	update	after	uniform	foreperiods	

(see	eq.	2.4).	Moreover,	since	participants	were	instructed	that	the	change	of	target	

color	 signaled	 the	 beginning	 of	 a	 new	 distribution,	 observation	 from	 previous	

distributions	were	blanked.	Consequently,	after	update	 trials,	 the	model	estimated	

the	posterior	starting	from	a	uniform	distribution.	All	these	assumptions	are	no	more	

valid	 in	 the	 present	 paradigm	 since	 the	 type	 of	 trial	 (i.e.,	 update,	 predictable	 and	

uniform)	was	not	explicitly	signaled	by	the	color	cue	(all	the	targets	were	identical).	

Therefore,	 the	 new	model	 estimated	 posterior	 distribution	 in	 the	 same	way	 after	

each	trial.	

The	absence	of	a	cued	transition	between	blocks	implied	that	at	a	given	trial	

n	all	 the	observations	 from	1	to	n	were	available	 for	estimating	the	posterior.	This	

raised	 the	 question	 of	 the	 extent	 to	 which	 previous	 observations	 are	 used	 to	
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estimate.	 For	 example,	 it	 could	 be	 possible	 that	 all	 past	 events	 concur	 in	 the	

estimation,	 with	 an	 equal	 weight	 for	 distant	 and	 recent	 observations.	 However,	

several	studies	have	shown	that	the	brain	integrates	past	experience	accordingly	to	a	

temporal	gradient	over	past	observation	 (see:	Harrison,	Bestmann,	Rosa,	Penny,	&	

Green,	 2011).	 	 For	 instance,	 it	 has	 been	 shown	 that	 in	 the	 oddball	 paradigm,	 the	

recent	trial	history	 influences	the	P3b	amplitude	to	a	greater	extent	(Squires	et	al.,	

1976).	 Recently,	 Kolossa	 and	 colleagues	 implemented	 a	 model	 of	 trial-by-trial	 P3	

fluctuations	in	a	simple	two-choice	response	time	task	(Kolossa	et	al.,	2013),	which	

takes	 into	 account	both	 short-term	and	 long-term	memory	decay	processes.	 Since	

this	 model	 provided	 a	 superior	 account	 of	 P3b	 amplitude	 with	 respect	 to	 other	

previous	P3b	models,	we	supplied	our	model	with	 those	 two	short-term	and	 long-

term	memory	forgetting	factors.	

Let	us	call	

	

(1)	 𝑃!"(𝑛) = 𝑝 𝐹𝑃~𝒩 𝜇,𝜎 𝐹𝑃!:! ,	 (4.1)	

	

the	 estimated	 foreperiod	 posterior	 probability	 over	 the	 parameter	 space	𝒩 𝜇,𝜎 	

(see	Section	2.2.3).	on	trial	n	(the	parameter	space	had	a	size	of	300×200,	that	is,	the	

combination	of	all	the	means	from	10	ms	to	3000	ms	and	standard	deviations	from	

10	ms	to	2000	ms	in	steps	of	10	ms).	Based	on	Kolossa	and	colleagues	(2013),	in	the	

current	study	the	posterior	was	computed	as	follows:	

	

(1)	 𝑃!" 𝑛 = 𝛼! ∙ 𝑃!,!" 𝑛 + 𝛼! ∙ 𝑃!,!" 𝑛 ,	 (4.2)	

	

that	is	the	weighted	sum	of	PL,FP	and	PS,FP,	which	represent	the	posteriors	estimated	

accordingly	 to	 long-term	 and	 short-term	 decaying	 memories	 about	 prior	

observations,	 respectively.	 The	 weighting	 parameters	 αL	 and	 αS	 represent	 the	

relative	 contributions	 of	 PL,FP	 and	 PS,FP	 in	 forming	 the	 posterior,	 and	 they	 hold	

𝛼! = 1− 𝛼!	and	0 ≤ 𝛼! ≤ 1.		The	two	posteriors	PL,FP	and	PS,FP	can	be	expressed	as:	
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(1)	 𝑃!,!" 𝑛 = 𝑃𝑟!,!" 𝑛 − 1 !!𝐿!,!" 𝑛 , 𝑖 ∈ [𝐿, 𝑆],	 (4.3)	

	

where	𝐿!,!" 𝑛 	is	the	likelihood	𝑝 𝐹𝑃! 𝐹𝑃~𝒩 𝜇,𝜎!  at	trial	n,	and	𝑃𝑟!,!" 𝑛 − 1 !! 	

is	the	power	prior	(Ibrahim,	Chen,	Gwon,	&	Chen,	2015)		𝑝 𝐹𝑃~𝒩 𝜇,𝜎! 𝐹𝑃!:!!! 	

raised	 to	 the	 power	 γi,	 which	 represents	 the	 exponential	 forgetting	 factor	 of	 the	

long-term	 (γL)	 or	 short-term	 (γS)	 decaying	 memory.	 From	 Kolossa	 and	 colleagues	

(2013),	the	short-term	and	long-term	decay	factors	were	respectively	defined	as		

	

(1)	 𝛾! = 𝑒!
!
!! 				e				𝛾! = 𝑒!

!
!!,!.	 (4.4)	

	

Both	forgetting	factors	are	exponential,	but	only	the	long-term	memory	depends	on	

the	trial	number	as	follows:				

	

(1)	 𝛽!,! = 𝑒!
!
!!
∙!! !

!! .	 (4.5)	

	

This	aspect	determines	that	forgetting	becomes	much	sharper	when	the	number	of	

trials	increases	(for	a	detailed	description	of	the	two	exponential	forgetting	factors,	

we	refer	the	reader	to:	Kolossa	et	al.,	2013).	

Posteriors	were,	then,	translated	from	the	parameter	space	over	time,	as	follows:	

	

(1)	 𝑃!,!" 𝑛 = 𝐹𝑃! 𝐹𝑃!~𝒩 𝜇!,𝜎!!!!,!! ,	 (4.6)	

	

Model-based	 measures	 of	 updating	 (DKL)	 and	 surprise	 (IS)	 were	 calculated	 as	 in	

section	2.2.4.	
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The	values	for	the	model	parameters,	αL,	τ1,	τ2,	and	βS,	were	 identified	by	finding	

the	parameter	combination	underlying	the	Bayesian	observer	who	better	explained	

RTs.	 Since	 the	 calculation	 of	 the	 model	 evidence	 for	 all	 possible	 combinations	 of	

parameters	 with	 a	 reasonable	 resolution	 is	 computationally	 too	 expensive,	 we	

adopted	an	iterative	selection	procedure	as	illustrated	in	Table	4.1.	At	each	iteration,	

the	ideal	Bayesian	observer	from	each	parameter	combination	provided	the	two	DKL	

and	 IS	 regressors	 that	were	used	 to	estimate	 the	 following	model	 (lme	 function	 in	

MATLAB):	

	

(1)	 log(RT)	~	IS	*	DKL	+	(1	|	ID).	 (4.7)	

	

The	model	with	the	combination	of	parameters	(Table	4.1)	that	better	explained	RTs	

in	 terms	 of	 AIC	was	 selected	 for	 the	 EEG	 analysis.	 Behavioral	 results	 for	 the	 best-

fitting	model	are	presented	in	Table	4.2.		

	 As	a	 final	note,	despite	 the	 temporal	 structure	of	 the	 task	was	 the	same	of	

the	 paradigm	 in	 the	 previous	 EEG	 study,	 the	 estimated	 foreperiod	 distributions	 in	

the	current	task	were	characterized	by	higher	uncertainty	(Fig.	4.1).	This	aspect	led	

to	a	more	gradual	updating	process	(DKL;	see	Fig.	4.1).		

Table	4.1	|	Ranges	of	free	model	parameters	for	each	iteration	and	optimized	parameters	from	the	RTs	best-
fitting	model.	

	 αL	 τ1	 τ2	 βS	

Iteration	1	 0.1-0.9	 10-100	 0.1-1	 1-10	

Iteration	2	 0.4-0.6	 88.75-111.25	 0.21-0.44	 0.01-2.12	

Iteration	3	 0.47-0.52	 102.81-108-44	 0.35-0.41	 0.27-0.80	

Optimized	parameters	 0.51	 107.03	 0.40	 0.53	

Notes.	At	 iteration	1	we	found	the	best	combination	from	a	subset	of	parameters,	which	included	5	values	per	

parameter	linearly	space	in	the	indicated	range.	At	subsequent	iterations,	for	each	parameter	a	new	range	of	5	

values	was	 centered	on	 the	best	 value	 found	 in	 the	previous	 iteration	and	had	a	 length	equal	 to	 the	distance	

between	subsequent	values	in	the	previous	iteration.		
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Figure	4.1	|	Model	and	regressors	of	Study	2	(left	column)	and	Study	3	(right	column).	All	panels	show	the	data	
from	 100	 trials.	 For	 Study	 2,	 dot	 colors	 indicate	 trial	 types	 as	 in	 the	 legend.	 (A1-2)	 Plot	 of	 the	 state	 of	 the	
normative	Bayesian	learner.	On	the	y	axis	 is	FP	duration.	The	dashed	line	 indicates	the	mean	of	the	generative	
Gaussian	distribution	from	which	update	and	predictable	trials	were	drawn.	Dots	indicate	the	true	FP	duration	on	
each	trial.	Shading	indicates	the	estimated	probability	of	FP	duration	given	the	prior,	p(FP|prior).	Note	that	the	
estimation	in	Study	3	was	more	uncertain	(higher	variance)	than	in	Study	2.	(B1-2,	C1-2)	Model-based	regressors	
for	updating	(DKL)	and	surprise	(IS).		

	

	

Table	4.2	|	Linear	mixed-effects	model	fit	by	Maximum	Likelihood	for	the	final	model	

Fixed	effects	 Estimate	 SE	 Den.	df	 t	 	 p-value	

Intercept	 5.721	 0.021	 20621	 268.03	 	 <.001	

IS	 0.071	 0.002	 20621	 31.73	 	 <.001	

DKL	 -0.004	 0.002	 20621	 -2.12	 	 .034	

IS*DKL	 0.009	 0.002	 20621	 5.83	 	 <.001	

	

Trial	type:									Update											Uniform											Predictable
		

A2	

B2	

C1	

A1	

B1	

C2	
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4.2.4 EEG	data	analysis	

EEG	data	acquisition	and	pre-processing	were	performed	as	described	in	the	

previous	chapter	(3.2.3).		

Inferential	 statistics.	 First-level	 analysis	 was	 performed	 using	 the	 Unfold	

toolbox	 (Ehinger	 &	 Dimigen,	 2018)	 following	 the	 same	model	 specification	 of	 the	

previous	 EEG	 study	 (see	 Section	3.2.3).	 Second-level	 analysis	was	performed	using	

the	 ept-TFCE	 toolbox	 (Mensen	 &	 Khatami,	 2013)	 in	 MATLAB.	 Estimated	 DKL	 and	 IS	

parameters	 in	 the	 data	 space	 channels	 ×	 epoch	 time	 points	 (0	 -	 1000	 ms)	 were	

tested	using	a	threshold-free	cluster	enhancement	(TFCE)	one-sample	t-test	(number	

of	permutations	=	200000,	alpha-level	=	.001).		

Between-study	 comparison.	We	 further	 tested	differences	between	Study	2	

and	Study	3	for	updating	(DKL)	and	surprise(IS)	using	a	TFCE	two-sample	independent	

t-test	 (number	 of	 permutations	 =	 200000,	 alpha-level	 =	 .001).	We	 also	 tested	 for	

spatio-temporal	regions	of	significant	between-study	equivalence	for	updating	(DKL)	

and	 surprise	 (IS)	 using	 equivalence	 testing	 (Rogers,	 Howard,	 &	 Vessey,	 1993;	

Schuirmann,	1987).	In	particular,	we	performed	the	so-called	two	one-sided	(t-)tests	

for	 equivalence	 (TOST,	 see	D.	 Lakens,	 2017;	Daniël	 Lakens,	 Scheel,	&	 Isager,	 2018;	

Montefinese,	 Ambrosini,	 &	 Roivainen,	 2018).	 Although	 it	 is	 never	 statistically	

possible	 to	 conclusively	 show	 the	 absence	 of	 any	 effect,	 this	 approach	 allows	 to	

reject	the	presence	of	meaningful	effects	by	testing	whether	the	observed	effect	size	

for	a	non-significant	test	is	close	enough	to	zero	(or,	in	other	words,	too	small	to	be	

of	 practical	 importance	 or	 meaningful).	 In	 the	 current	 study,	 we	 set	 equivalence	

bounds	at	effects	we	had	80%	power	to	reject,	given	our	sample	size	and	an	alpha	

level	of	0.05	(D.	Lakens,	2017),	that	is,	corresponding	to	an	effect	size	d	of	.78.	
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4.3 Results	

4.3.1 Electrophysiological	results	

The	results	of	the	TFCE	analyses	on	surprise	and	updating	in	the	current	study	

are	shown	in	Fig.	4.2	and	4.3,	respectively.	

Concerning	updating	(DKL),	as	portrayed	in	Fig.	4.2	(warm	color),	there	were	

two	 significant	 effects	 (Fig.	 4.4A).	 The	 first	 significant	 modulation	 was	 a	 positive	

deflection	 emerging	 in	 the	 130-320	ms	 time	 window,	 which	 was	 distributed	 over	

parietal	 electrodes	 (P1,	 P3,	 PO3,	 Cz,	 CPz,	 Pz,	 POz,	 CP2,	 P2).	 This	 modulation	 was	

followed	 by	 a	 second	 larger	 positive	 deflection	 emerging	 in	 the	 480-900	ms	 time	

window	again	over	parietal	electrodes	(CP1,	P1,	P3,	CPz,	Pz,	POz,	CP2).	

Concerning	 surprise	 (IS,	 Fig.	4.3),	 the	 first	 significant	effect	 (Fig.	4.4B)	was	a	

positive	modulation	 in	the	260-490	ms	time	window	over	centro-frontal	electrodes	

(F3,	F1,	FC5,	FC3,	FC1,	C1,	C5,	CP1,	CP3,	P1,	P3,	Fz,	FCz,	Cz,	CPz,	F4,	F2,	FC4,	FC2,	C4,	

C2,	CP2),	which	was	 surrounded	by	a	negativity	mainly	 located	at	 lateral	posterior	

electrodes	 	 (TP7,	 TP9,	 P7,	 PO7,	O1,	Oz,	 T8,	 TP8,	 TP10,	 P6,	 P8,	 PO8,	O2).	A	 second	

significant	effect	was	a	slow	positive	deflection	(Fig.	4.4C)	observed	over	frontal	sites	

(Fp1,	AF7,	AF3,	F7,	F5,	Fpz,	Fp2,	AF8,	AF4,	F8,	F6,	FT10,	FT8,	FC6),	which	started	from	

510	 ms.	 Correspondingly,	 a	 negative	 modulation	 was	 observed	 over	 parietal	

channels	(CP3,	P1,	P3,	P5,	PO3,	CPz,	Pz,	POz,	CP2,	P2).	

4.3.2 EEG	results,	between-study	comparison	

Concerning	updating,	Fig.	4.5	shows	the	results	of	 the	TFCE	 (left	panel)	and	

TOST	(right	panel)	analyses	for	spatio-temporal	regions	of	significant	between-study	

differences	and	equivalence,	respectively.	The	first	significant	difference	(Fig.	4.7A-B)	

interested	a	first	double-peak	waveform	that	was	enhanced	in	Study	2	(cold	color).	

The	difference	was	distributed	over	fronto-central	electrodes	(Fp1,	AF7,	AF3,	F7,	F5,	

F3,	F1,	FT9,	FT7,	FC5,	FC3,	FC1,	C3,	T7,	C1,	Fpz,	Fz,	F2,	FC4,	FC2)	and	lasted	from	50	to	

300	ms.	The	second	difference	regarded	a	positive	deflection	at	parietal	electrodes	

in	 the	 200-320	 time.	 As	 shown	 in	 Fig.	 4.7C,	 this	 positive	 component	 was	 more	
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pronounced	and	longer	lasting	in	Study	3	than	in	Study	2.	Fig.	4.7C	also	shows	in	the	

340-720	 ms	 time	 interval,	 the	 significant	 equivalence	 of	 the	 parietal	 positive	

deflections	(P3b-like)	we	found	in	both	studies.	

The	 results	 of	 the	 TFCE	 and	TOST	 analyses	on	 surprise	 (IS)	 are	portrayed	 in	

Fig.	4.6.	A	first	difference	emerged	at	posterior	electrodes	(Fig.	4.8A)	 in	the	70-120	

ms	 time	window.	 This	 difference	 interested	 a	 positive	 deflection	 that	was	 present	

only	 in	Study	2.	A	second	difference	emerged	at	 frontocentral	electrodes	 (FC3,	C1,	

C3,C5,	CP2)	around	300-450	ms.	As	shown	in	Fig.	4.8B,	the	positive	deflection	over	

fronto-central	 electrodes	 described	 above	 was	 present	 only	 in	 Study	 3.	 A	 last	

difference	 emerged	 around	 400-800	 ms,	 over	 parieto-occipital	 channels	 (P1,	 P3,	

PO3,	O1,	CPz,	Pz,	POz,	Oz,	P2,	P4,	PO4,	PO8).	As	shown	 in	Fig.	4.8C,	 the	difference	

interested		a	positive	deflection	that	was	higher	and	larger	in	Study	2.	
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Figure	4.2	|	Raster	diagram	showing	significant	effects	elicited	by	updating	(DKL).	For	other	conventions	see	Fig.	
3.2	
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Figure	4.3	|	Raster	diagram	showing	significant	effects	elicited	by	surprise	(IS).	
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Figure	4.4	|	Electrophysiological	results.	(A)	The	trace	plot	depicts	the	average	t	value	for	updating	(DKL)	pooled	
over	electrodes	Cz,	Cp1,	Cpz,	Cp2,	Pz.	The	topographical	maps	show	the	t	values	averaged	in	the	time	windows	
180-280	and	690-790	ms.	 (B)	The	trace	plot	depicts	the	average	t	value	for	surprise	(IS)	pooled	over	electrodes	
FC3	FC1	C3	C1	CP3,	CP1.	The	topographical	map	shows	the	t	values	averaged	in	the	time	window	350-450	ms.	(C)	
The	trace	plot	depicts	the	average	t	value	for	surprise	(IS)	pooled	over	electrodes	Fp1,	Fpz,	Fp2.	The	topographical	
map	shows	the	t	values	averaged	in	the	time	window	850-950	ms.	For	other	conventions,	see	Fig.	3.2.	
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Figure	4.5	|	Between-study	comparison	results:	Updating	(DKL).	Results	from	the	TFCE	two-sample	independent	
t-test	 	 are	 shown	 in	 the	 left	 panel.	 Warm	 color	 indicates	 electrodes/time	 points	 in	 which	 the	 effect	 was	
significant	more	positive	 in	 Study	3	 than	 in	 Study	2.	 	 Cold	 color	 indicates	 electrodes/time	points	 in	which	 the	
effect	 was	 significant	 more	 positive	 in	 Study	 2	 than	 in	 Study	 3.	 Results	 from	 the	 TOST	 equivalence	 test	 are	
presented	 in	 the	 right	 panel.	 	Warm	 color	 indicates	 electrodes/time	 points	 in	 which	 is	 possible	 to	 reject	 the	
presence	of	meaningful	differences.	
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Figure	 4.6	 |	 Between-study	 comparison	 results:	 Surprise	 (IS).	 Results	 from	 the	 TFCE	 (left	 panel)	 and	 TOST	
analyses.	
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Figure	 4.7	 |	 Between-study	 electrophysiological	 differences:	Updating	 (DKL).	The	 trace	plots	depict	 the	mean	
effects	 (μV)	of	DKL	 in	 Study	2	 (red	 line)	 and	 in	 Study	3	 (black	 line).	The	 topographical	map	 shows	 the	 t	 values	
(mean	effect	differences	between	Study	3	–	Study	2).	 (A)	The	trace	plots	depicts	the	mean	effects	pooled	over	
electrodes	F3,	F1,	FC1,	FC3.	The	topographical	map	shows	the	t	values	averaged	in	the	time	window	80-120	ms.	
(B)	The	trace	plots	depict	the	mean	effects	pooled	over	electrodes	AF7,	F7,F5.	The	topographical	map	shows	the	
t	 values	 averaged	 in	 the	 time	window	240-280	ms.	 	 (C)	 The	 trace	plots	 depicts	 the	mean	effects	 pooled	over	
electrodes	Cz,	CP1,	CPz,	CP2,	Pz.	The	topographical	map	shows	the	t	values	averaged	between	240-280	ms.	The	
gray	bar	indicates	the	equivalence	interval	for	the	P3b-like	components.	
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Figure	4.8	|	Between-study	electrophysiological	differences:	Surprise	(IS).	For	conventions	see	Fig.	4.7.	(A)	The	
trace	plots	depict	 the	mean	effects	pooled	over	electrodes	PO4,	PO8,	O2.	The	 topographical	map	shows	 the	 t	
values	 averaged	 in	 the	 time	 window	 80-120	 ms.	 (B)	 The	 trace	 plots	 depict	 the	 mean	 effects	 pooled	 over	
electrodes	FC3,	C5,	C3,	CP3.	The	topographical	map	shows	the	t	values	averaged	in	the	time	window	340-380	ms.		
(C)	The	trace	plots	depict	the	mean	effects	pooled	over	electrodes	Cz,	CP1,	CPz,	CP2,	Pz.	The	topographical	map	
shows	the	t	values	averaged	in	the	time	window	450-550	ms.			
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4.4 Discussion	

The	main	aim	of	the	present	EEG	study	was	to	investigate	how	surprise	and	

updating	are	encoded	when	changes	in	the	temporal	probabilities	of	the	events	are	

implicitly	inferred.	As	shown	in	Fig.	4.1B,	the	absence	of	the	cue	color	manipulation	

used	in	our	previous	studies	made	the	updating	process	more	gradual	over	time	by	

eliminating	the	abrupt	shift	in	the	estimated	distribution.	This	aspect	was	critical	to	

test	 implicit	 inferential	processes	and	to	draw	a	direct	comparison	with	the	explicit	

ones	addressed	in	our	previous	study.		

To	 summarize	 the	 main	 findings,	 surprise	 elicited	 a	 first	 fronto-central	

positivity	 and	 a	 later	 slower	 positivity	 at	 frontal	 sites.	 Updating	 was	 instead	

associated	 with	 a	 P2-like	 component	 followed	 by	 a	 P3-like	 modulation,	 both	

distributed	 over	 parietal	 sites.	 Overall,	 these	 results	 confirmed	 that,	 even	without	

the	explicit	color	change,	it	was	still	possible	to	distinguish	surprise	and	updating	at	

the	electrophysiological	level.		

Beginning	 with	 our	 surprise-related	 findings,	 the	 analyses	 showed	 a	

significant	 positive	 modulation	 peaking	 at	 about	 400	 ms	 over	 fronto-central	

electrodes.	 According	 to	 its	 timing	 and	 topographical	 distribution	 (see	 Fig.	 4.4B),	

such	a	component	could	be	seen	as	belonging	to	the	P3a	waveform	(Polich,	2003).	

Traditionally,	 the	 anterior	 P3a	 has	 been	 associated	with	 rare	 and	 novel	 attention-

capturing	distractors	across	different	tasks	(e.g.,	oddball	paradigm;	Squires,	Squires,	

&	Hillyard,	1975).	However,	it	has	been	shown	that	the	P3a	may	be	also	modulated	

by	rare	target	stimuli	in	the	oddball	paradigm	(Spencer,	Dien,	&	Donchin,	2001).	All	

in	 all,	 these	 previous	 findings	 provide	 support	 for	 our	 P3a	 modulation	 by	 low-

probable	(surprising)	target	onset.	It	is	worth	mentioning	that	a	surprise-related	P3a	

was	 not	 found	 in	 our	 previous	 EEG	 study	 where,	 in	 contrast,	 surprising	 events	

elicited	a	more	posterior	and	 later	positivity	 (labeled	as	P3b-like	 component).	One	

difference	 between	 the	 two	 studies	 relies	 on	 the	 different	 amount	 of	 uncertainty	

experienced	 during	 the	 task,	 with	 more	 uncertain	 temporal	 expectations	 in	 the	

present	study	compared	to	 the	previous	one.	From	a	computational	point	of	view,	

the	 increase	 in	 uncertainty	 is	 represented	 by	 the	 larger	 standard	 deviation	 in	 the	

prior	 (see	 Figure	 4.1A).	 It	 follows,	 then,	 that	 here	 the	 general	 task	 context	 was	
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overall	more	demanding	than	the	other	EEG	study.	These	key	differences	in	the	task	

structure	are	in	favor	of	the	claim	that	the	anterior	P3a	and	posterior	P3b	should	not	

be	seen	as	two	distinct	components	but,	rather,	as	the	reflection	of	the	activity	of	a	

common	 “multiple-demand”	 network	 (Duncan,	 2013),	 which	 is	 differently	

distributed	on	the	basis	of	 the	specific	 task	demands	 (Barceló	&	Cooper,	2018).	Of	

course,	our	assumption	would	benefit	from	further	studies	manipulating	the	degree	

of	 uncertainty	 in	 a	 parametric	 fashion.	 In	 this	 respect,	 some	 studies	 of	 belief	

updating	 emphasized	 a	 distinction	 between	 unexpected	 and	 expected	 uncertainty	

(Yu	 &	 Dayan,	 2005).	 Expected	 uncertainty	 arises	 from	 a	 known	 unreliability	 of	 a	

stable	 environment.	 For	 example,	 in	 Study	 2	 expected	 uncertainty	 is	 due	 to	 the	

probabilistic	 nature	 of	 the	 causes	 of	 FP	 duration	 (i.e.	 the	 generative	 probability	

density	function	given	by	the	weighted	sum	of	a	Gaussian	distribution	and	a	uniform	

distribution	 as	 expressed	 in	 Eq.	 2.3).	 Unexpected	 uncertainty	 relates	 to	 strong	

violations	of	an	internal	model,	which	usually	arises	from	unsignaled	changes	in	the	

causes	 of	 the	 context	 that	 invalidates	 predictions	 based	 on	 previous	 observations	

and	 signals	 for	 a	 revision	 of	 the	 internal	 predictive	 model.	 In	 our	 studies,	 strong	

violations	 were	 caused	 by	 both	 update	 and	 uniform	 trials,	 but	 they	 likely	 led	 to	

different	 types	 of	 uncertainty	 depending	 on	 the	 presence/absence	 of	 the	 color	

manipulation.	 In	 Study	 2,	 the	 changes	 in	 the	 underlying	 FP	 distribution	 were	

explicitly	 signaled,	 thus,	 it	 is	 unlikely	 they	 induced	 uncertainty	 beyond	 the	 one	

caused	 by	 the	 stochasticity	 inherent	 in	 the	 context	 (expected	 uncertainty).	 Also	

violations	in	uniform	trials,	since	signaled,	were	“expected”,	thus,	contributing	to	the	

unreliability	 of	 the	 context.	 In	 contrast,	 the	 absence	 of	 the	 color	 manipulation	 in	

Study	3	might	have	 led	 to	unexpected	uncertainty	after	update	and	uniform	trials.	

This	 suggests	 that	 the	 two	 studies	 might	 differ	 in	 the	 degree	 of	 unexpected	

uncertainty.	However,	 the	 high	 context	 volatility	 in	 our	 tasks,	 due	 to	 the	 frequent	

changes	 in	 the	underlying	FP	distributions,	might	have	 induced	participants	 to	also	

internally	 represent	 the	 rate	of	 context	 change	 (Behrens	et	 al.,	 2007).	 This	 implies	

that	 in	Study	3	uncertainty	due	 to	 changes	 in	 the	FP	distribution	might	have	been	

also	 expected	 and	 that	 the	 differences	 between	 the	 two	 studies	 might	 regard	

differences	in	the	level	of	expected	uncertainty.		
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The	 second	 significant	modulation	 elicited	 by	 surprise	was	 a	 late	 and	 slow	

positive	 potential	 emerging	 around	 650	 ms	 over	 frontal	 electrodes.	 It	 is	 quite	

difficult	to	attribute	a	specific	functional	meaning	to	such	a	component	since,	to	our	

knowledge,	it	has	been	usually	reported	in	fields	far	away	from	our	topic	(e.g.,	 late	

positive	 potential	 in	 emotion	 and	 affective	 processing,	 Brown,	 van	 Steenbergen,	

Band,	 de	 Rover,	 &	 Nieuwenhuis,	 2012).	 For	 example,	 a	 larger	 post-N400	 frontal	

positivity	(pN400FP)	has	been	observed	in	response	to	unfulfilled	expected	sentence	

continuations	 (DeLong,	 Urbach,	 Groppe,	 &	 Kutas,	 2011).	 Accordingly,	 it	 has	 been	

proposed	 that	 the	 pN400FP	 could	 index	 the	 violation	 of	 word	 predictions	 in	 a	

sentence	 (Federmeier,	 Wlotko,	 De	 Ochoa-Dewald,	 &	 Kutas,	 2007).	 Drawing	 a	

parallelism	 with	 our	 task,	 it	 is	 tempting	 to	 extrapolate	 some	 similarities	 between	

these	language	studies	and	the	present	one	in	the	sense	that	 in	our	task	surprising	

events	 violated	 an	 expected	 (temporal	 rather	 than	 verbal-semantic)	 prediction	 as	

well.	 At	 any	 rate,	 we	 are	 aware	 that	 our	 interpretation	 is	 highly	 speculative	 and	

hence	it	should	be	taken	with	great	caution	also	in	light	of	the	fact	that	a	slow	frontal	

positivity	was	not	found	in	our	previous	study.		

As	 a	 final	 remark	 on	 surprise,	 here	 we	 did	 not	 observe	 any	 significant	

modulation	of	the	occipital	P1	as	reported	previously.	The	significant	differences	in	

this	component	between	the	two	studies	further	suggest	that	the	P1	in	Study	2	was	

likely	related	to	the	cue	color	manipulation	and	not	to	the	process	under	study	(see	

Discussion	of	Chapter	3).		

Concerning	 updating,	 the	 first	 significant	 modulation	 was	 a	 P2-like	

component	arising	around	250	ms	over	parietal	sites.	As	mentioned	in	the	previous	

study	(see	Discussion	of	Chapter	3),	the	involvement	of	this	potential	for	updating	of	

temporal	expectations	fits	well	with	previous	findings	showing	that	the	P2	amplitude	

reflects	 the	 distance	 between	 standard	 and	 comparison	 intervals	 in	 temporal	

discrimination	 tasks	 and	 is	 not	 affected	 by	 the	 hazard	 rate	 of	 elapsed	 time	

(Kononowicz	&	 van	 Rijn,	 2014).	 It	 is	 noteworthy	 that	 in	 the	 current	 paradigm	 the	

updating-related	 P2	 effect	 was	 significantly	 higher	 and	 longer	 lasting	 than	 the	

previously	 found	 P2.	 We	 suggest	 that	 the	 P2	 indexes	 the	 computation	 of	 the	

posterior.	 In	 the	 previous	 study,	 after	 update	 trials,	 the	 posterior	 temporal	
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expectation	 was	 computed	 starting	 from	 a	 uniform	 distribution	 since	 participants	

were	 explicitly	 instructed	 about	 the	 transition	 from	 one	 block	 to	 the	 other	 one	

(O’Reilly	 et	 al,	 2013).	 This	 means	 that	 they	 could	 disregard	 the	 temporal	

expectations	 built	 up	 on	 the	 previous	 distribution	 to	 derive	 the	 posterior.	

Conversely,	 in	 the	current	 study	 the	posterior	was	continuously	 computed	starting	

from	 the	prior.	 This	more	 complex	 computation	of	 the	posterior	might	 have	been	

captured	by	larger	P2	amplitude.		

As	 in	 our	 previous	 study,	 we	 again	 found	 a	 significant	 P3b	 modulation	

associated	with	updating.	For	most	of	the	involved	time	points	and	electrodes,	there	

was	no	 substantial	difference	 in	 the	P3b	between	 the	 two	 studies,	which	 suggests	

that	 the	 same	updating	processes	occurred	 for	 both	 explicit	 and	 implicit	 temporal	

inferences.	 This	 finding	 strongly	 supports	 the	 view	 that	 the	 P3b	 represents	 a	 key	

electrophysiological	correlate	of	updating	of	temporal	expectations	in	general.		

Another	feature	of	the	present	study	results	is	that	we	did	not	find	significant	

modulations	 by	 updating	 of	 the	 early	 potentials,	 namely,	 the	 frontal	 double-peak	

component	 and	 the	 occipital	 P2,	 observed	 in	 the	 former	 study.	 Only	 the	 frontal	

double-peak	component	was	significantly	different	between	the	two	studies.	Taking	

into	 account	 that	 such	 components	 have	 been	 formerly	 related	 to	 top-down	

perceptual	stimulus	evaluation	(Berchicci,	Spinelli,	&	Di	Russo,	2016;	Di	Russo	et	al.,	

2017),	it	is	possible	that	they	were	involved	in	the	processing	of	the	explicit	cue.		

In	our	studies	we	focused	on	processes	associated	with	target	processing	by	

analyzing	deconvolved	stimulus-locked	ERPs.	However,	by	using	recent	trial-by-trial	

decomposition	 techniques	 (i.e.,	 residue	 iteration	 decomposition,	 RIDE;	 Ouyang,	

Sommer,	&	Zhou,	2015),	recent	studies	(Brydges	&	Barcelo,	2018;	Verleger,	Grauhan,	

&	 Smigasiewicz,	 2016)	 have	 shown	distinct	 target	 P3-like	 potentials	 that	 are	 time-

locked	not	only	 to	 the	 stimulus,	but	also	 to	 the	 response	or	 to	neither	of	 the	 two	

(i.e.,	capturing	trial-by-trial	 latency	variability	 in	neural	activity).	Therefore,	 it	could	

be	interesting	to	adopt	this	approach	to	disentangle	updating-	and	surprise-related	

target	P3-like	components	 in	 the	 form	of	 stimulus-locked,	 response-locked	or	non-

phase	locked	EEG	response.	
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Before	 concluding,	 it	 should	 be	 acknowledged	 that	 the	 model	 that	 better	

explained	participants’	RTs	 included	both	short-term	and	 long-term	memory	decay	

as	 compared	 to	 a	 model	 that	 did	 not	 take	 into	 account	 any	 recency	 effect.	 This	

finding	 lends	 support	 to	 Kolossa	 and	 colleagues	 (2013),	 who	 showed	 that	 the	 P3	

amplitude	is	indeed	better	accounted	for	by	a	model	that	considers	both	short-term	

and	long-term	memory	decay.		

To	 sum	 up,	 in	 the	 present	 study	 we	 isolated	 the	 electrophysiological	

correlates	 of	 surprise	 and	 updating	 by	 highlighting	 both	 commonalities	 and	

differences	in	implicit	and	explicit	temporal	inferential	processes.		

	 	



	

	 92	

	 	



	

	 93	

	

 	Chapter	5

General	discussion	

The	present	project	tackled	an	aspect	of	temporal	preparation	that	has	been	

often	 raised	 in	 the	 literature	 but	 never	 directly	 investigated	 so	 far,	 that	 is,	 the	

formation	 and	 revision	 of	 prior	 temporal	 expectations.	 Specifically,	 our	 aim	 was	

mainly	twofold.	The	general	aim	was	to	identify	the	neural	and	electrophysiological	

correlates	of	both	explicit	and	implicit	belief	updating	about	the	time	of	occurrence	

of	an	event.	Considering	that	belief	updating	takes	places	prominently	after	events	

violating	our	prior	expectations,	a	second	related	aim	was	to	disentangle	processes	

involved	in	updating	from	those	merely	responding	to	surprising	events.	To	the	best	

of	our	knowledge,	there	are	no	previous	studies	that	have	investigated	these	issues	

in	the	field	of	temporal	preparation.		

To	 address	 our	 research	 questions,	 we	 developed	 a	 foreperiod	 temporal	

preparation	task	in	which	the	generative	foreperiod	distribution	was	non-stationary	

throughout	the	task.	This	 implies	that	participants	had	to	constantly	update	beliefs	

in	order	 to	speed	up	 response	 to	 target	onset.	To	 investigate	explicit	processes,	 in	

the	first	two	studies	we	manipulated	the	color	of	the	target	in	order	to	decompose	

updating	and	surprise.	By	contrast,	to	explore	implicit	processes,	in	our	last	study	we	

got	 rid	 of	 the	 color	 manipulation.	 Despite	 the	 absence	 of	 the	 color,	 it	 was	 still	

possible	 to	 differentiate	 updating	 and	 surprise	 because	 of	 the	 temporal	 nature	 of	
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our	 task.	 Indeed,	 we	 measured	 updating	 and	 surprise	 based	 on	 two	 different	

probabilistic	 processes.	More	 in	 detail,	 to	 characterize	 updating	 of	 prior	 temporal	

expectations,	we	developed	an	ideal	observer	that	quantitatively	described	trial-by-

trial	Bayesian	belief	updating.	At	each	trial,	updating	was	quantified	as	the	Kullbach-

Liebler	divergence	(DKL)	between	prior	and	posterior.	Surprise	was	measured	as	the	

Shannon’s	 information	 (IS),	 which	 represents	 the	 violation	 of	 participants’	

expectations	according	to	the	hazard	function	(i.e.,	the	probability	that	an	event	will	

occur	given	that	it	has	not	yet	occurred).	Hence,	while	updating	(DKL)	was	associated	

with	Bayesian	inference,	surprise	(IS)	was	related	to	hazard	inference.	

In	 what	 follows	 we	 shall	 provide	 a	 general	 overview	 of	 the	 main	 findings	

obtained	 in	 the	 present	 project	 together	with	 a	 consideration	 of	 both	 values	 and	

challenges	that,	we	hope,	will	stimulate	more	exciting	work	in	this	field	of	study.		

The	fMRI	findings	showed	both	common	and	differential	involvement	of	two	

cognitive	 control	 networks	 for	 updating	 and	 surprise:	 the	 fronto-parietal	 network	

(FPN;	Dosenbach	et	al.,	2008)	and	the	cingulo-opercular	network	(CON;	Dosenbach	

et	 al.,	 2008;	 Menon,	 2015).	 Concerning	 updating,	 it	 modulated	 activity	 and	

functional	 connectivity	 in	 regions	 belonging	 to	 the	 FPN,	 namely	 bilateral	 lateral	

frontal	 cortex,	 bilateral	 posterior	 parietal	 cortex,	 posterior	 cingulate	 cortex,	 and	

precuneus.	The	reliability	of	such	results	is	supported	by	the	high	concordance	with	

previous	 fMRI	 studies	 that	 have	 investigated	 belief	 updating	 (e.g.,	 Gläscher,	 Daw,	

Dayan,	 &	 O’Doherty,	 2010;	 Kobayashi	 &	 Hsu,	 2017;	 Schwartenbeck	 et	 al.,	 2016;	

Waskom	et	al.,	2017).	As	an	example,	Waskom	and	colleagues	(2017)	reported	that	

inferior	frontal	sulcus,	intra-parietal	sulcus	(IPS),	precunesus	and	posterior	cingulate	

cortex	 (PCC)	 responded	 to	 prediction	 error	 in	 a	 context-dependent	 perceptual	

decision	making	task.	Although	prediction	error	is	a	measure	more	similar	to	IS	than	

DKL,	our	results	make	it	unlikely	that	their	findings	reflected	surprise	alone.	Further	

support	 for	 our	 findings	 comes	 from	 a	 similar	 involvement	 of	 the	 FPN	 in	 belief	

updating	 in	those	tasks	that	have	decomposed	surprise	and	updating	(Kobayashi	&	

Hsu,	2017;	Schwartenbeck	et	al.,	2016).	However,	there	is	also	evidence	that	argues	

against	our	 results	on	belief	 updating	 (O'Reilly	 et	 al.,	 2013;	Vossel	 et	 al.,	 2015).	 In	

particular,	O’Reilly	and	colleagues	(2013)	found	that	updating	was	mainly	located	to	
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ACC	(an	area	also	reported	in	Schwartenbeck	et	al.,	2016).	The	discrepancy	between	

O’Reilly	and	colleagues	and	our	study	could	seem	quite	counterintuitive	considering	

that	 our	 paradigm	 was	 modeled	 after	 their	 task.	 Yet,	 we	 believe	 that	 such	 a	

difference	 is	 particularly	 telling	 in	 the	 light	 of	 the	 fact	 that	 they	 used	 a	 saccadic	

planning	 task	 requiring	 visuo-motor	 learning	 and	 saccadic	 preparation.	 This	 may	

imply	 that	 belief	 updating	 in	 space	 and	 time	 could	 rely	 on	 different	 brain	 areas,	

lending	 support	 to	 the	 hypothesis	 that	 predictions	 for	 where	 and	 when	 are	

functionally	different	(Coull	&	Nobre,	1998).	Future	studies	that	manipulate	updating	

in	the	two	dimensions	during	the	same	task	are	necessary	to	provide	direct	evidence	

on	this	question.		

Our	fMRI	results	on	surprise	showed	the	involvement	of	regions	belonging	to	

the	CON,	including	bilateral	insula,	dorsal	ACC	and	pre-SMA.	Such	areas	are	coherent	

with	two	out	of	the	three	studies	that	separated	updating	and	surprise	(Kobayashi	&	

Hsu,	 2017;	 Schwartenbeck	 et	 al.,	 2016).	 It	 is	 worth	 noting	 that	 these	 two	 studies	

were	also	in	line	with	our	results	on	updating.	Our	localization	of	surprise	in	the	CON	

is	consistent	with	previous	studies	reporting	that	the	CON	responds	to	salient	stimuli	

(Menon	&	Uddin,	2010).		

In	 order	 to	 integrate	 our	 fMRI	 findings	 with	 previous	 literature	 on	 belief	

updating	 and	 violation	 of	 expectation,	 a	 tantalizing	 speculation	 would	 be	 that	

updating	 and	 surprise	might	 be	 at	 the	 core	 of	 the	 dissociation	 between	 FPN	 and	

CON.	 If	 this	 were	 true,	 our	 hypothesis	 could	 provide	 a	 valuable	 key	 to	 further	

understand	the	functional	role	that	these	two	networks	play	in	cognitive	control.		

Turning	 back	 to	 previous	 fMRI	 studies	 tracking	 temporal	 hazard,	 our	 study	

lends	 support	 to	 the	 involvement	 of	 sensory	 areas,	 which	 can	 be	 modulated	 by	

attention	 deployed	 in	 anticipation	 of	 a	 forthcoming	 stimulus	 (Bueti	 et	 al.,	 2010;		

Bueti	 &	 Macaluso,	 2010;	 Vallesi,	 McIntosh,	 Shallice,	 et	 al.,	 2009).	 Regarding	 the	

pivotal	 role	 that	 has	 been	 attributed	 so	 far	 to	 the	 right	 prefrontal	 cortex	 in	

monitoring	temporal	contingencies	(Coull	et	al.,	2016;	Vallesi,	McIntosh,	Shallice,	et	

al.,	 2009),	 our	 findings	 showed	 that	 such	 a	 region	 responded	 to	 both	 violation	 of	

expectations	 and	 updating	 of	 prior	 beliefs.	 This	 suggests	 that	 its	 relation	 to	 the	

hazard	 function	might	 deal	more	with	 the	 detection	 and	 resolution	 of	 expectancy	
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violation	than	with	the	simple	tracking	of	the	passage	of	time.	However,	it	should	be	

noted	that	since	our	analyses	were	target-locked,	we	cannot	draw	any	conclusion	on	

the	 (monitoring)	 role	 of	 the	 right	 prefrontal	 cortex	 during	 the	 course	 of	 the	

foreperiod.	 The	 same	 reasoning	 applies	 to	 other	 studies	 that	 have	 investigated	

temporal	preparation	by	looking	at	the	BOLD	activity	time-locked	to	the	cue	stimulus	

(Cotti	et	al.,	2011;	Coull	&	Nobre,	1998;	Davranche	et	al.,	2011).	 In	this	regard,	our	

study	 critically	 adds	 to	 this	 previous	 literature	 not	 only	 by	 showing	 how	 prior	

temporal	expectations	are	updated	but	also	by	providing	a	finer-grained	analysis	of	

the	processes	that	take	place	at	target	onset.		

Once	 identified	 the	 neural	 correlates	 of	 surprise	 and	 updating,	 which	

supports	the	success	of	our	color	manipulation	in	separating	the	two,	the	next	step	

was	to	investigate	the	temporal	dynamics	associated	with	surprise	and	updating.	In	

doing	 so,	 we	 were	 inspired	 by	 the	 literature	 on	 the	 P3	 and	 the	 Bayesian	 brain	

hypothesis	(Bennett	et	al.,	2015;	Kolossa	et	al.,	2015;	Kopp,	2008;	Kopp	et	al.,	2016b;	

Mars	et	al.,	2008;	Seer,	Lange,	Boos,	Dengler,	&	Kopp,	2016).	Importantly,	however,	

we	also	went	beyond	the	P3	by	exploiting	recent	advances	in	computer	power	and	

statistics	 to	analyze	 the	EEG	data.	Specifically,	we	used	a	method	that	combined	a	

mass-univariate	 approach	 with	 deconvolution	 (Ehinger	 &	 Dimigen,	 2018).	 This	

approach	gave	the	following	advantages	over	a	more	traditional	EEG	approach:	first,	

it	allowed	us	to	isolate	specific	ERPs	associated	with	target	onset	and	to	characterize	

the	 specific	 contribution	 of	 updating	 and	 surprise;	 moreover,	 it	 allowed	 fully	

exploiting	the	spatial	and	temporal	resolution	of	the	EEG	that	enabled	us	to	explore	

non-expected	 effects	 and,	 at	 the	 same	 time,	 to	 provide	 a	 more	 defined	 and	

comprehensive	picture	of	a	priori	expected	components	(i.e.,	P3).		

In	 the	 first	EEG	study,	we	 found	 that	 surprise	and	updating	differed	 in	 that	

while	 the	 former	 only	 elicited	 two	modulations	 (i.e.,	 posterior	 P1-like	 and	parietal	

P3b-like	waveforms),	 the	 latter	was	 associated	with	 a	more	 complex	 pattern	 (i.e.,	

frontal	 double-peak,	 parietal	 P2-like	 and	 occipital	 P2-like	 earlier	 waveforms,	 and	

later	 P3b-like	 component).	 What	 is	 particularly	 interesting	 here	 is	 that	 we	

corroborated	previous	literature	on	the	P3	family	(Kolossa	et	al.,	2013;	Kolossa	et	al.,	

2015;	 Mars	 et	 al.,	 2008)	 by	 showing	 that	 specific	 P3-like	 components	 were	
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selectively	 associated	with	 surprise	 and	 updating.	 Importantly,	we	 extended	 these	

previous	studies	by	isolating	the	specific	contribution	of	each	process.		

Adding	 to	 the	 fMRI	 findings,	 the	 EEG	 data	 give	 us	 some	 hints	 of	 the	 time	

course	 and	 the	 scalp	 topography	 of	 the	 P3-like	 waveforms	 modulated	 by	 both	

surprise	and	updating.	These	two	components	had	similar	scalp	distribution,	but	the	

P3-like	component	elicited	by	surprise	occurred	earlier	and	 lasted	shorter	than	the	

P3	elicited	by	updating.	We	might	 surmise	 that	 the	similar	 topography	was	due	 to	

similar	P3	cortical	generators.	In	our	fMRI	study	we	found,	indeed,	some	overlapping	

regions	that	were	modulated	by	both	updating	and	surprise,	and	which	were	mainly	

located	in	the	PPC.	This	speculation	finds	plausible	support	from	several	studies	that,	

by	 using	 fMRI-constrained	 EEG	 source	 analysis	 (Bledowski	 et	 al.,	 2004;	 Crottaz-

Herbette	&	Menon,	2006;	Horovitz,	Skudlarski,	&	Gore,	2002),	have	shown	that	the	

PPC	is	a	generator	of	the	parietal	P3.	Concerning	the	difference	in	the	time	course,	

this	might	also	find	anatomical	support	in	our	fMRI	study	that	identified	the	insula	as	

a	 critical	 region	 involved	 in	 surprise.	 Indeed,	Menon	and	Uddin	 (2010)	proposed	a	

model	 of	 attentional	 control	 in	 which	 the	 AI	 sends	 rapid	 signals	 through	 von	

Economo	neurons	 (neurons	with	 large	axons	which	 facilitate	 rapid	broadcasting	of	

the	 signal;	 Nimchinsky	 et	 al.,	 1999)	 to	 areas	 generating	 the	 scalp-recorded	 P3,	

including	the	PPC	(see	also	Sridharan,	Levitin,	&	Menon,	2008).	In	our	fMRI	study,	we	

also	 found	strong	connectivity	between	right	AI	and	PPC,	which	could	suggest	 that	

the	 early	 onset	 of	 the	 surprise-related	P3b	was	due	 to	 the	 rapid	 trasmission	of	AI	

signals	 to	 the	 PPC.	 These	 speculations	 would	 largely	 benefit	 from	 source	

reconstruction	 of	 the	 EEG	 data,	 albeit	 we	 are	 aware	 that	 a	 direct	 comparison	

between	 fMRI	and	source	analysis	 should	be	considered	with	caution.	 In	any	case,	

source	 reconstruction	of	 the	EEG	data	could	help	clarify	 the	 functional	meaning	of	

our	ERPs	and	 represents	 a	 future	 research	 step	 that	 slipped	off	 the	present	 thesis	

due	to	time	constraints.		

To	 sum	 up	 the	 EEG	 results	 of	 Study	 2,	 a	 conclusion	 is	 that	 surprise	 and	

updating	 can	be	 also	 separated	 in	 terms	of	 electrophysiological	 signatures.	 At	 this	

point,	 we	 asked	 whether	 our	 results	 truly	 reflected	 Bayesian	 inference	 or	 were	

reflecting	a	sort	of	all-or-none	shift	in	beliefs	(Nassar,	Wilson,	Heasly,	&	Gold,	2010)	
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caused	 by	 our	 explicit	 manipulation.	 Answering	 this	 question	 was	 critical	 to	

substantiate	 our	 conclusions.	 For	 this	 aim,	 we	 designed	 a	more	 implicit	 task	 that	

kept	 the	 same	 general	 structure	 as	 the	 explicit	 one	 but	 that	 removed	 any	 explicit	

information	 about	 its	 probabilistic	 nature.	 In	 any	 case,	 as	 stated	 above,	 we	 were	

confident	 about	 the	 fact	 that	 we	 were	 still	 differentiating	 between	 updating	 and	

surprise,	since	the	respective	measures,	DKL	and	IS,	were	calculated	on	probabilistic	

information	 of	 two	 different	 inferential	 processes	 (i.e.,	 Bayesian	 and	 hazard).	

Confirming	 our	 hypotheses,	 we	 found	 that	 surprise	 and	 updating	 could	 be	 again	

differentiated.	In	this	study,	surprise	elicited	a	positive	modulation	that	according	to	

its	timing	and	topography	can	be	conceived	as	a	P3a-like	component.	Although	this	

result	was	consistent	with	previous	findings	showing	that	the	P3a	is	elicited	by	rare	

surprising	 stimuli	 (see	 Polich,	 2003),	 it	 differed	 from	 the	 results	 from	 study	 2.	 A	

possible	 explanation	 for	 this	 difference	 could	 be	 that	 in	 the	 last	 study	 the	

environment	was	likely	experienced	as	more	uncertain	and	volatile,	thus	making	the	

task	more	demanding.		According	to	recent	views	that	see	the	P3-family	as	an	index	

of	 the	activity	 from	the	multiple	demand	network	 (a	super	network	 including	both	

FPN	 and	 CON;	 Crittenden	 et	 al.,	 2016),	 which	 is	 more	 frontally	 distributed	 with	

increased	 task	 demands	 (Barceló,	 Periáñez,	 &	 Nyhus,	 2008).	 Hence,	 we	 could	

speculate	 that	 the	 P3s	 in	 the	 two	 studies	 might	 reflect	 similar	 brain	 activity	

differently	 modulated	 in	 response	 to	 uncertainty.	 The	 comparison	 of	 the	 source	

reconstructed	EEG	data	from	the	two	studies	could	help	to	gain	more	insight	on	this	

issue.		

As	regards	updating,	we	corroborated	our	previous	findings	by	showing	that	a	

later	 P3b	 was	 modulated	 by	 implicitly	 driven	 updating	 of	 temporal	 expectations.	

Moreover,	we	provided	 substantial	 evidence	 for	 the	absence	of	differences	 in	P3b	

modulations	 by	 implicitly	 and	 explicitly	 driven	 inference.	 These	 results	 extend	 the	

literature	on	 the	P3	by	 showing	 that	 this	 component	was	 truly	 reflecting	Bayesian	

belief	updating.		

Moreover,	in	both	studies	we	found	that	the	P3b	was	preceded	by	a	parietal	

P2-like	 component.	 However,	 in	 the	 last	 study	 this	 modulation	 was	 significantly	

greater	 with	 respect	 to	 the	 P2	 found	 in	 study	 2.	 Since	 this	 component	 has	 been	
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previously	 implicated	 in	 comparison	 processes	 involved	 in	 temporal	 discrimination	

(Kononowicz	&	van	Rijn,	2014),	here	we	suggest	that	it	might	reflect	an	index	of	the	

posterior	 computation.	 This	 explanation	 stems	 from	 the	 fact	 that	 in	 the	 last	 study	

posterior	 estimation	 was	 computationally	 more	 demanding.	 Indeed,	 in	 study	 2,	

posterior	computation	was	easier	since	it	could	be	optimally	derived	from	a	uniform	

prior	 distribution.	 In	 study	 3,	 posterior	 estimation	 required	 a	 more	 complex	

integration	 of	 prior	 and	 likelihood.	 It	 follows	 that	 the	 enhanced	 P2	modulation	 in	

study	3	might	reflect	this	increased	computational	complexity.		

In	sum,	in	study	3	we	were	able	to	differentiate	update	and	surprise	even	in	

absence	of	a	strong	explicit	manipulation	that	allowed	having	surprise-only	events.	

Moreover,	by	integrating	findings	from	the	two	EEG	studies,	we	discovered	two	EEG	

indexes	 of	 the	 inferential	 process	 underlying	 updating	 of	 prior	 temporal	

expectations,	which	respond	to	both	explicit	and	implicit	contextual	changes.	

At	 this	 point	 it	 should	be	noted	 that	 the	use	of	 an	 ideal	 Bayesian	observer	

represents	“just	a	description	of	optimal	behavior:	 it	does	not	prescribe	how	Bayes	

optimal	perception,	sensorimotor	 integration	or	decision-making	under	uncertainty	

emerges”	(Friston,	2012).	To	attempt	to	understand	how	the	brain	updates	temporal	

expectations,	we	need	more	sophisticated	models	that	take	into	account	constraints	

deriving	 from	 the	 anatomy	 and	 the	 physiology	 of	 the	 brain,	 such	 as	 its	 functional	

hierarchical	architecture	or	neuronal	dynamics.	In	this	respect,	our	project	should	be	

considered	 as	 a	 pioneering	 attempt	 that	 should	 stimulate	 the	 implementation	 of	

further	models	to	understand	how	the	brain	refines	temporal	expectations.	

Related	to	this	point,	another	remaining	question	that	has	to	be	addressed	in	

the	 future	 is	 the	 role	 of	 neuromodulatory	 systems	 in	 updating	 of	 temporal	

expectations.	In	this	regard,	a	recent	study	provided	evidence	for	a	role	of	dopamine	

(DA)	 in	 regulating	 the	 precision	 with	 which	 humans	 track	 the	 temporal	 hazard	

(Tomassini,	Ruge,	Galea,	Penny,	&	Bestmann,	2016).	At	the	same	time,	other	studies	

have	 shown	 the	 involvement	 of	 catecholamine	 systems,	 including	 DA	 and	

norepinephrine	 (NE),	 in	belief	updating	 (Jepma	et	al.,	2018;	 Jepma	et	al.,	2016).	 In	

the	 light	of	 these	 findings,	our	paradigm	might	help	 characterize	 the	 role	of	DA	 in	

“Bayesian”	 and	 hazard	 inference.	 More	 generally,	 our	 paradigm	 might	 make	 a	
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significant	 contribution	 in	 understanding	 the	 specific	 influence	 that	 the	 different	

neuromodulatory	systems	have	on	belief	updating.		For	example,	in	our	EEG	studies,	

we	 found	 that	P3-like	modulations	were	 sensitive	 indexes	of	Bayesian	 inference	 in	

different	 situations	 (e.g.	 in	 presence	 of	 evident	 or	 non-evident	 changes	 in	 the	

environment,	 or	 in	 higher	 or	 lower	 context	 uncertainty)	 and	 allow	 distinguishing	

between	 updating	 and	 surprise.	 In	 light	 of	 the	 association	 between	 P3	 and	

catecholamine	 (i.e.,	 DA	 and	 NE)	 systems	 (Nieuwenhuis,	 Aston-Jones,	 &	 Cohen,	

2005),	our	task	represents	a	promising	tool	to	better	characterize	the	involvement	of	

these	 neuromodulatory	 systems	 in	 updating.	 Moreover,	 the	 simplicity	 of	 our	

paradigm	makes	 it	 an	 excellent	 tool	 to	 explore	 these	 and	 other	 related	 research	

questions	on	(temporal)	belief	updating	in	patients	and	in	animals.	

To	 conclude,	 the	 present	 dissertation	 provides	 the	 first	 characterization	 of	

the	cognitive	brain	processes	involved	in	temporal	belief	updating.	Considering	that	

temporal	 expectations	 are	 a	 fundamental	 feature	 of	 cognitive	 brain	 functions,	we	

hope	that	our	work	will	stimulate	future	work	to	provide	a	more	exhaustive	answer	

to	an	overarching	question	that	still	puzzles	us:	how	does	the	brain	exploit	temporal	

expectations	to	optimize	behavior?		
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