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Summary

This dissertation concerns the problem of spectral estimation subject to moment constraints.

Its scalar counterpart is well-known under the name of rational covariance extension which

has been extensively studied in past decades. The classical covariance extension problem

can be reformulated as a truncated trigonometric moment problem, which in general admits

infinitely many solutions. In order to achieve positivity and rationality, optimization with

entropy-like functionals has been exploited in the literature to select one solution with a fixed

zero structure. Thus spectral zeros serve as an additional degree of freedom and in this way

a complete parametrization of rational solutions with bounded degree can be obtained.

New theoretical and numerical results are provided in this problem area of systems

and control and are summarized in the following. First, a new algorithm for the scalar

covariance extension problem formulated in terms of periodic ARMA models is given and its

local convergence is demonstrated. The algorithm is formally extended for vector processes

and applied to finite-interval model approximation and smoothing problems.

Secondly, a general existence result is established for a multivariate spectral estimation

problem formulated in a parametric fashion. Efforts are also made to attack the difficult

uniqueness question and some preliminary results are obtained. Moreover, well-posedness

in a special case is studied throughly, based on which a numerical continuation solver is

developed with a provable convergence property. In addition, it is shown that solution to the

spectral estimation problem is generally not unique in another parametric family of rational

spectra that is advocated in the literature.

Thirdly, the problem of image deblurring is formulated and solved in the framework of

the multidimensional moment theory with a quadratic penalty as regularization.

Keywords: Rational covariance extension, ARMA modeling, multivariate spectral estimation,

generalized moment problem, parametrization of rational spectra, well-posedness, numerical

continuation method, convex optimization.
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Sommario

Questa tesi riguarda il problema della stima spettrale soggetta a vincoli sui momenti. La sua

controparte scalare è ben conosciuta sotto il nome di estensione razionale delle covarianze

ed è stata ampiamente studiata negli ultimi decenni. Il classico problema di estensione delle

covarianze può essere riformulato come un problema dei momenti trigonometrici troncato,

che in generale ammette infinite soluzioni. Al fine di ottenere positività e razionalità, in

letteratura è stata sfruttata l’ottimizzazione con funzionali entropici per selezionare una

soluzione con una struttura degli zeri fissa. Così gli zeri spettrali fungono da grado di

libertà addizionale e permettono di ottenere una parametrizzazione completa delle soluzioni

razionali con grado limitato.

Nuovi risultati teorici e numerici sono forniti in questa branca della teoria dei sistemi e

del controllo e sono riassunti di seguito. Innanzitutto si propone un nuovo algoritmo per

il problema scalare dell’estensione delle covarianze formulato in termini di modelli ARMA

periodici e se ne dimostra la convergenza locale. L’algoritmo è esteso formalmente ai processi

vettoriali e applicato ai problemi di approssimazione dei modelli a intervallo finito e di

livellamento.

In secondo luogo viene stabilito un risultato di esistenza generale per un problema di stima

spettrale multivariata formulato in modo parametrico. Si fanno anche sforzi per attaccare la

difficile questione dell’unicità e si ottengono alcuni risultati preliminari. Inoltre, in un caso

speciale è studiata a fondo la buona posizione del problema, in base alla quale è sviluppato

un risolutore a continuazione numerica con convergenza dimostrabile. Per di più, si dimostra

che la soluzione al problema della stima spettrale in generale non è unica in un’altra famiglia

parametrica di spettri razionali proposta in letteratura.

In terzo luogo, il problema del deblurring delle immagini è formulato e risolto nel quadro

della teoria multidimensionale dei momenti con una regolarizzazione a penalità quadratica.

Parole chiave: Estensione razionale delle covarianze, modellazione ARMA, stima spettrale

multivariata, problema dei momenti generalizzato, parametrizzazione di spettri razionali,

buona posizione, metodo di continuazione numerica, ottimizzazione convessa.
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1
Introduction

In this Ph.D. dissertation, we consider the problem of rational covariance extension and its

multivariate generalization known as a parametric spectral estimation problem.

The (scalar) rational covariance extension problem, also called partial stochastic realization,

has a long history and can be traced back to the formulation first given in (Kalman, 1982).

The problem aims to find an infinite extension of a finite covariance sequence such that the

resulting spectral density, i.e., the Fourier transform of the infinite sequence, is a rational

function. It is an important problem in realization theory, system identification, and signal

processing. The formulation is quite natural in the sense explained next.

Suppose that we have one finite-length simple path of a zero-mean discrete-time stationary

process and we want to build a model for it. Important features of the process are clearly

described by the second-order moments, i.e., covariances, which we shall estimate from

the sample path and use as data. Typically we can only obtain a finite number of reliable

estimates of the covariances because high-order estimates can be very noisy due to limited

samples. To make full use of the estimated covariance data, we want to find a model for the

underlying process such that the covariances match the data exactly. Such a problem admits

a neat equivalent formulation as a trigonometric moment problem, which goes back to some

classical theories, see e.g., (Grenander and Szegö, 1958; Akhiezer and Krĕın, 1962; Krĕın

and Nudel’man, 1977).

However, classical moment theories do not take into account the rationality constraint
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imposed on the candidate model, which is of practical interest for physical realizability. In

other words, we need to restrict our attention to the class of linear models with rational spectra.

A first choice of the model class is the so-called autoregressive moving-average (ARMA) models.

Existence of a solution to the problem of rational covariance extension was first proven in

(Georgiou, 1983, 1987a) when the numerator polynomial of the spectrum, or equivalently,

the moving-average (MA) part of the ARMA model, is fixed. It was also conjectured that the

corresponding denominator polynomial, or the equivalent autoregressive (AR) part, is unique.

The conjecture was proved in (Byrnes, Lindquist, Gusev, and Matveev, 1995)1, establishing

a complete parametrization of solutions. Moreover, it was shown that the parametrization

is smooth, and hence the solution can be tuned continuously. Including (Byrnes, Landau,

and Lindquist, 1997; Byrnes and Lindquist, 1997), major arguments in these works were

made using abstract technical tools from differential topology, modern nonlinear analysis,

and differential geometry, notably the degree theory and the global inverse function theorem

of Hadamard.

When the MA part is just a (discrete-time) white noise process, the problem reduces to

AR modeling, for which there are quite some earlier works. In particular, we want to mention

Yule-Walker equations to determine the AR coefficients (Yule, 1927; Walker, 1931), and the

Levinson algorithm (Porat, 1994) to compute their solution. Generalization to vector AR

processes was done in (Whittle, 1963). We would like to remark that AR modeling based

on covariance matching is a linear problem. Another important work is (Burg, 1967), in

which the principle of maximum entropy was first introduced for spectral estimation. In

maximum entropy spectral analysis, one aims to find a stationary process that is the most

random or the least predictable time series while being consistent with the given covariance

data. Surprisingly, the unique solution (under the feasibility assumption) that maximizes the

entropy subject to moment constraints is of AR type.

Inspired by Burg’s maximum entropy method, later the theory of rational covariance

extension was built into a more concrete form as the theory of optimization was incorporated.

Specifically in (Byrnes, Gusev, and Lindquist, 1998), it was shown that each rational solution

to the covariance extension problem can be obtained by minimizing a strictly convex functional

over the cone of positive Laurent polynomials (of bounded degree). In (Byrnes, Gusev, and

Lindquist, 2001b), it was further discovered that such a minimization problem is the dual of

maximizing a generalized entropy functional subject to moment constraints. This optimization

framework has led to a long list of results with various directions of generalizations:

• Further development and well-posedness (Georgiou, 2001; Enqvist, 2001; Byrnes,

1An earlier work (Byrnes and Lindquist, 1989) on the Kimura-Georgiou parametrization of modeling filters

played an important role in this paper.
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Enqvist, and Lindquist, 2001c, 2002; Byrnes, Fanizza, and Lindquist, 2005; Enqvist,

2006; Enqvist and Avventi, 2007),

• Analytic interpolation problem (Georgiou, 1987b, 1999; Byrnes, Georgiou, and Lindquist,

2001a; Blomqvist, Fanizza, and Nagamune, 2003a; Blomqvist, Lindquist, and Naga-

mune, 2003b; Byrnes, Georgiou, Lindquist, and Megretski, 2006; Takyar and Georgiou,

2010),

• Moment problem with general basis functions (Byrnes and Lindquist, 2003, 2006, 2008,

2009),

• Spectral estimation subject to a generalized moment constraint (Byrnes, Georgiou, and

Lindquist, 2000; Georgiou, 2002b,a; Georgiou and Lindquist, 2003; Georgiou, 2005,

2006; Pavon and Ferrante, 2006; Ferrante, Pavon, and Ramponi, 2007, 2008; Enqvist

and Karlsson, 2008; Ramponi, Ferrante, and Pavon, 2009, 2010; Ferrante, Pavon, and

Zorzi, 2010; Avventi, 2011a; Ferrante, Ramponi, and Ticozzi, 2011; Ferrante, Pavon,

and Zorzi, 2012b; Zorzi and Ferrante, 2012; Ferrante, Masiero, and Pavon, 2012a; Ning,

Jiang, and Georgiou, 2013; Pavon and Ferrante, 2013; Zorzi, 2014b,a, 2015; Georgiou

and Lindquist, 2017; Zhu and Baggio, 2017; Zhu, 2017; Baggio, 2018a; Zhu, 2018a,b),

• ARMA modeling and the circulant problem (Enqvist, 2004; Georgiou and Lindquist,

2008; Carli, Ferrante, Pavon, and Picci, 2010, 2011; Carli and Georgiou, 2011; Lindquist

and Picci, 2013; Lindquist, Masiero, and Picci, 2013; Ringh and Karlsson, 2015;

Lindquist and Picci, 2016; Picci and Zhu, 2017; Zhu and Picci, 2017),

• Multidimensional theory (Karlsson, Lindquist, and Ringh, 2016; Zhu and Lindquist,

2016; Ringh, Karlsson, and Lindquist, 2016, 2018).

Among them we shall elaborate more on the problem of spectral estimation subject to a

generalized moment constraint. As indicated in the survey paper (Robinson, 1982), spectral

estimation is an old problem that has its root deep in physics. In the paper (Byrnes et al.,

2000), a new approach to spectral estimation (scalar version) was introduced by Byrnes,

Georgiou, and Lindquist and then further developed in (Georgiou and Lindquist, 2003) in

order to allow for an a priori information. This formulation, known under the name of

THREE-like spectral estimation, has now become nearly standard and includes as special

cases the aforementioned problems of covariance extension and analytic interpolation. The

procedure to estimate the unknown spectrum of a zero-mean wide-sense stationary signal

is described briefly as follows. First the signal is fed into a rational filter and the output is

collected. Then the steady-state output covariance matrix is computed, and we want to find
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the input spectrum that is consistent with such covariance data. It turns out that in this way,

we are dealing with a generalized version of moment equations.

Similar to its classical counterpart (Grenander and Szegö, 1958; Akhiezer, 1965; Krĕın

and Nudel’man, 1977), the generalized moment problem has infinitely many solutions when

a solution exists, unless in certain degenerate cases. Therefore, such a problem is not well-

posed in the sense of Hadamard2. The mainstream approach today to promote uniqueness

of the solution is built on calculus of variations and optimization theory. It has two main

ingredients. One is the introduction of a prior spectral density function Ψ as additional data,

which represents our “guess” of the desired solution Φ. The other is a cost functional d(·, ·),
which is usually an entropy-like distance index (divergence) between two bounded and

coercive spectral densities. Then one tries to solve the optimization problem of minimizing

d(Φ,Ψ) subject to the (generalized) moment equation as a constraint. Still, it is not trivial to

solve such an optimization problem. Indeed, although the dual problem is typically convex,

the dual variable (i.e., the Lagrange multiplier) is a Hermitian matrix that lives in an open,

unbounded domain and this usually gives rise to a number of numerical issues.

With reference to the scalar case, results produced through this optimization approach

include (Georgiou and Lindquist, 2003; Pavon and Ferrante, 2006; Ferrante et al., 2007,

2011; Baggio, 2018a), in which the chosen distance index is the Kullback–Leibler divergence;

(Enqvist and Karlsson, 2008), where the Itakura-Saito distance is used; and (Zorzi, 2014b),

where a general family of divergences (the Alpha divergence family) is considered. In the

multivariate case, the problem becomes much more challenging and its feasibility strongly

depends on the selected distance. In particular, we mention the papers (Georgiou, 2006),

where a multivariate extension of the Kullback–Leibler divergence, the quantum relative

entropy, is considered; (Ferrante et al., 2008; Ramponi et al., 2009, 2010), which deal with a

sensible generalization of the Hellinger distance; and (Ferrante et al., 2012a; Georgiou and

Lindquist, 2017), where the selected distance index coincides with the multivariate Itakura–

Saito distance. It is worth remarking that the latter two approaches lead to rational solutions

with bounded McMillan degrees when the prior is rational. Finally, (Zorzi, 2014a) and

(Zorzi, 2015) introduce two more general frameworks based on the notions of Beta and Tau

divergence families, wherein the multivariate Kullback–Leibler divergence and Itakura–Saito

distance can be recovered as limiting cases.

A key feature of the “THREE” approach is that parameter (i.e., the prior function Ψ)

tuning is allowed in order to achieve high resolution in specified frequency bands.

Built upon the theme of rational covariance extension, multivariate spectral estima-

tion, and related moment problems, with motivation from the open question of covariance-

2Recall that a problem is well-posed if 1) a solution exists; 2) the solution is unique; 3) the solution depends

continuously on the data.
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consistent vector ARMA modeling, the main body of this dissertation is divided into five

chapters, whose contents are described next.

Chapter 2 concerns a variant of the rational covariance extension problem stated in

terms of periodic ARMA models defined on a finite interval, which leads to a circulant matrix

completion problem. When formulated directly in terms of the spectral density, the scalar

problem was solved in (Lindquist and Picci, 2013) and extended to a special multivariate

case in (Lindquist et al., 2013; Lindquist and Picci, 2016), which are in turn generalization

of earlier work on reciprocal processes (Carli et al., 2011; Carli and Georgiou, 2011). In

these papers, the circulant matrix completion problem is reformulated as optimization of a

generalized entropy functional, with main tools being convex optimization and calculus of

variations.

Our new finding about the alternative formulation, which we call the ARMA covariance

matching problem, is that the problem amounts to solving a set of generalized Yule-Walker

equations without involving the solution of a variational problem as in (Lindquist and Picci,

2013; Lindquist et al., 2013). Although the resulting equations turn out to be nonlinear, a

natural iterative scheme is apparent from their structure which brings about a new algorithm

that is proven to converge at least locally in the scalar case. The algorithm can be generalized

to vector processes in a straightforward manner although a proof of convergence remains to

be worked out. The chapter will be based on the following two works.

• Zhu B. and Picci G. Proof of local convergence of a new algorithm for covariance

matching of periodic ARMA models. IEEE Control Syst. Lett., 1(1):206–211, 2017.

• Picci G. and Zhu B. Approximation of vector processes by covariance matching with

applications to smoothing. IEEE Control Syst. Lett., 1(1):200–205, 2017.

Chapter 3 is about a multivariate spectral estimation problem considered in (Ferrante

et al., 2010), where a parametric solution was proposed with the intention of generalizing

the solution form in (Georgiou and Lindquist, 2003) of a corresponding scalar problem to the

multivariate case. One such generalization taking the optimization approach was presented

in (Avventi, 2011a) but the prior spectral density (which is part of the given data) was

still kept as scalar. In contrast, the paper (Ferrante et al., 2010) aimed to develop a bona

fide multivariate theory in the sense that a matrix-valued prior was incorporated. However,

difficulties arose since a cost function that leads to the particular form of the parametric

solution is not known (unless the prior is scalar). Actually in (Ferrante et al., 2010), the

question of existence of a solution parameter in general was left open, and this is our main

motivation here.

Main results in this chapter are the following three. First, we give a complete proof of
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well-posedness of the problem given a scalar prior, thus complementing the results in (Avventi,

2011a). Secondly, we answer the open question in (Ferrante et al., 2010) affirmatively by

showing that a solution to the parametric spectral estimation problem indeed exists given an

arbitrary matrix-valued prior. Thirdly, we give some preliminary development to approach

the much harder uniqueness question. This chapter is mostly based on the next two works.

• Zhu B. and Baggio G. On the existence of a solution to a spectral estimation problem à

la Byrnes-Georgiou-Lindquist. To appear in IEEE Trans. Automat. Control, arXiv e-print:

1709.09012, 2017.

• Zhu B. On a parametric spectral estimation problem. Presented at the 18th IFAC

Symposium on System Identification (SYSID 2018), arXiv e-print: 1712.07970, 2017.

Chapter 4 elaborates on two numerical solvers for the spectral estimation problem with

a scalar prior, in which case results of well-posedness have been obtained in the previous

chapter. Computations are carried out in the domain of spectral factors corresponding to

a set of positive definite rational spectral densities due to the improvement of numerical

conditioning. The first solver is a class of descent algorithms for minimizing a cost function

that is only locally convex. As a consequence, only local convergence is guaranteed. Such an

idea of optimization has been developed in (Avventi, 2011a), and the difference here is that

our (optimization) variables do not contain redundant elements due to the diffeomorphic

map of spectral factorization introduced in Section 3.5.

The second solver is an application of the continuation method (cf. (Allgower and Georg,

1990)) to numerically invert the moment map in a parametric form. Due to well-posedness,

the desired solution parameter can be achieved by solving an ordinary differential equation

given the initial condition. Instead of doing just numerical integration, a specialized algorithm

in this context called “predictor-corrector” is implemented and a proof of convergence is

worked out based on the argument of the famous Kantorovich theorem. Moreover, a crucial

step in the Newton iterations, namely, computation of the inverse Jacobian is detailed utilizing

a spectral factorization technique. This chapter is mainly based on the following paper.

• Zhu B. On the well-posedness of a parametric spectral estimation problem and its

numerical solution. Conditionally accepted for publication in IEEE Trans. Automat.

Control, arXiv e-print: 1802.09330, 2018a.

Chapter 5 is devoted to the multivariate spectral estimation problem with candidate solu-

tions restricted to another family of matrix spectral densities. This alternative parametrization

of spectral densities was proposed in the published paper (Georgiou, 2006), in which it is

also claimed that uniqueness of the solution holds in that family. However, we show through
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a numerical example that such a claim in general fails. An important point reflected by the

numerical example is that the moment map in that alternative parametric form can have a

critical point, namely, a point at which its Jacobian loses rank. Moreover, the critical point in

the example is demonstrated to be a bifurcation point, implying that the moment map is not

injective. Work in this chapter has been reported in the next paper.

• Zhu B. On Theorem 6 in “Relative Entropy and the Multivariable Multidimensional

Moment Problem”. Submitted to IEEE Trans. Inform. Theory, arXiv e-print: 1805.12060,

2018b.

Chapter 6 presents a new method of reconstructing an image that undergoes a spatially

invariant blurring process and is corrupted by noise. The methodology is based on a theory

of multidimensional moment problems with rationality constraints. This can be seen as

generalized spectral estimation with a finiteness condition, which in turn can be considered a

problem in system identification. With noise it becomes an ill-posed deconvolution problem

and needs regularization. A Newton solver is developed, and the algorithm is tested on two

images under different boundary conditions. These preliminary results show that the proposed

method could be a viable alternative to regularized least squares for image deblurring,

although more work is needed to perfect the method. The content of this chapter has been

included in the conference paper below.

• Zhu B. and Lindquist A. An identification approach to image deblurring. In Proc. 35th

Chinese Control Conference (CCC 2016), pages 235–241. IEEE, 2016.

After the main body of this dissertation, there are three chapters of appendices. Appendix A

collects some preliminaries on the spectral analysis of stationary periodic processes, and

its connection with (block-)circulant matrices. These serve in Chapter 2. Appendix B gives

some supplementary propositions and lemmas with some ancillary results on homogeneous

polynomial equations, which play roles in the proofs of Chapter 3. Appendix C contains a

standard procedure that takes the additive decomposition of a spectral density function to

the corresponding outer factor, which is needed in Chapter 4.
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List of Symbols

Some notations are common as E denotes mathematical expectation, C the complex plane, Z

the set of integers, and T the unit circle { z : |z|= 1 }. Those listed below are mainly used in

Chapters 3, 4, and 5.

Sets:

• D, the open complex unit disk {z ∈ C : |z| < 1}. The unit circle T ≡ ∂D, where ∂

stands for the boundary.

• GL(n,C), group of n× n invertible complex matrices.

• Hn, the vector space of n× n Hermitian matrices.

• H+,n, the subset of Hn that contains positive definite matrices.

• C(T;Hm), the space of Hm-valued continuous functions on T.

• C+(T), the set of continuous functions on T that take real and positive values, which is

an open subset (under the metric topology) of C(T)≡ C(T;H1).

• Sm, the family of H+,m-valued functions defined on T that are bounded and coercive.

More technically, for Ψ ∈Sm, there exist real positive constants µ, M such that µI ≤
Ψ(eiθ )≤ M I for all θ ∈ (−π,π].

Linear algebra:

• (·)∗, complex conjugate transpose. When considering a rational matrix-valued function

with a state-space realization G(z) = C(zI−A)−1B+D, G∗(z) := B∗(z−1 I−A∗)−1C∗+D∗.

• (·)−∗, shorthand for [(·)−1]∗.

• 〈A, B〉 := tr(AB∗), matrix inner product for A, B ∈ Cm×n.
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• ‖A‖F :=
p

〈A, A〉, the Frobenius norm.

• ‖x‖2 :=
p

x∗x , the Euclidean 2-norm of x ∈ Cn. The subscript is usually omitted

and we simply write ‖ · ‖. When applied to a matrix A ∈ Cm×n or more generally a

multilinear function, ‖A‖ means the induced 2-norm.



2
Periodic ARMA Modeling Based on Covariance

Matching

2.1 Introduction

Traditionally the problem of ARMA modeling is usually cast in the framework of Maximum

Likelihood (see e.g., (Rosenblatt, 1985)), or Minimum Prediction Error, which leads in general

to a nonconvex optimization problem that may have many local minima. Uniqueness can

only be proven asymptotically under unverifiable assumptions that the true model belongs to

the model class and the data are ergodic. Finding the order of a best approximate model still

seems to be to a large extent an unsolved problem.

In contrast, we consider in this chapter the ARMA modeling problem of periodic stationary

processes by matching a finite number of (estimated) covariance lags. As we shall see later,

this is in fact equivalent to the circulant rational covariance extension problem studied in

(Lindquist and Picci, 2013; Lindquist et al., 2013; Lindquist and Picci, 2016), when the data

are restricted to a finite interval. Under this framework, model order of the AR part is a priori

fixed and equal to the number of available covariance lags. Then we know from previous

works that for any fixed MA part, there is a unique AR part such that the resulting model has

covariances matching the data.

The main contribution of this chapter is devising a new numerical algorithm to the
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circulant rational covariance extension problem and proving its local convergence. We have

found that the ARMA formulation leads to a generalization of the Yule-Walker equations

whose structure naturally suggests an iterative solution. This idea seems to provide a viable

alternative to the variational formulation of essentially the same problem. The convergence

proof of the proposed iterative algorithm could be approached from the variational point of

view by interpreting it as a quasi-Newton-type iteration. This idea requires a reformulation

of the dual optimization problem in terms of the spectral factor, and then one can perform

convex analysis (see e.g., (Boyd and Vandenberghe, 2004)) locally. In this chapter we take

an alternative route and show local convergence using an elegant Lyapunov-type analysis

of the algorithm interpreted as a nonlinear dynamical system. The analysis of convergence

is carried out in the scalar case. A generalization to matrix covariance extension problem

entails some extra complexity due to certain redundancy in the parameter and is yet to be

completed.

As an application of the theory, periodic ARMA models can provide a useful finite-interval

approximation of a stationary state space model, e.g., a Gauss-Markov model defined on

the whole time line Z, by matching a certain number of covariances lags of the original

process. This finite-interval model can then be used to derive an easy-to-implement constant-

coefficients algorithm for linear smoothing of data of finite duration.

The outline of this chapter is as follows: In Section 2.2, we review the representation

of finite-interval scalar processes by periodic ARMA models and formulate the covariance

matching problem. In Section 2.3, we approach the problem by deriving a set of nonlinear

Yule-Walker equations. An iterative algorithm to compute the solution is described. The

main results of this chapter are presented in Section 2.4, where we study in detail the local

convergence of the algorithm viewed as a nonlinear dynamical system. The convergence is

then proven via Lyapunov stability analysis. Later the algorithm is extended for the matrix

covariance matching problem of vector ARMA models in Section 2.5, although a convergence

proof is still absent. Finally in Section 2.6, we demonstrate an application of the theory to

the finite-interval smoothing problem, where model approximation by covariance matching

is exploited. A simplified numerical example is given for illustration.

2.2 Covariance Matching for Scalar Periodic ARMA Processes

Consider a discrete-time zero-mean second order stationary real process y(t), defined on a

finite interval [−N + 1, N] of the integer line Z and extended to all of Z as a periodic process

with period 2N so that y(t +2kN) = y(t), k ∈ Z almost surely. We shall write it as a random
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vector

y :=
�

y(t − N + 1) y(t − N + 2) . . . y(t + N)
�⊤

(2.1)

As shown in (Carli et al., 2011), in order for the random vector y to represent the restriction to

[−N + 1, N] of a periodic process on Z, the covariances ck := E y(t + k)y(t) ; k = 0, 1, . . . , N ,

must form a circulant matrix, namely the matrix Σ := Eyy⊤ must have the form

Σ =





























c0 c1 · · · cN cN−1 · · · c1

c1 c0 · · · cN−1 cN · · · c2

...
...

. . .
...

. . .
. . .

...

cN−1 cN−2 · · · c0 · · · cN−1 cN

cN cN−1 · · · c0 · · · cN−1

...
. . .

. . .
. . .

. . .
...

c1 · · · cN cN−1 · · · c1 c0





























:= Circ{c0, c1, c2, . . . , cN , cN−1, . . . , c2, c1},

(2.2)

where we have the usual symmetry for the covariances c−k = ck. Circulant matrices will play

a key role in the following. They are completely determined by their first column (or row).

That is why we introduce the simplified notation Circ{·}. More references can be found in

(Davis, 1979; Gray, 2006) .

Some important facts about the discrete Fourier transform (DFT), stationary periodic

processes, and (block-)circulant matrices are collected in Appendix A. Here we recall some

basics for the development. By stationarity y has a spectral representation

y(t) =

∫ π

−π
ei tθ d ŷ(θ ), where E{|d ŷ(θ )|2}= dF(θ ) (2.3)

is the spectral distribution (see, e.g., (Lindquist and Picci, 2015, p. 74)), so that

ck = E{y(t + k)y(t)}=
∫ π

−π
eikθ dF(θ ) . (2.4)

As explained in (Lindquist and Picci, 2013), the support of the spectral distribution dF must

be contained in the discrete unit circle T2N := {ζ−N+1,ζ−N+2, . . . ,ζN}, where

ζk = eikπ/N , k = −N + 1, . . . , N , (2.5)

because of the periodicity condition. Moreover, one can represent the spectral distribution

as dF = Φ dν where dν is a uniform discrete measure supported on T2N (cf. (A.4) for the
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formula), and Φ is the DFT of the sequence {c−N+1, . . . , cN}, called the spectral density of y ,

Φ(ζ) :=

N
∑

k=−N+1

ck ζ
−k, (2.6)

which is also known as the symbol of the circulant matrix Σ. This is a nonnegative function of

the discrete variable ζ ∈ T2N which is strictly positive if and only if the 2N × 2N covariance

matrix Σ is positive definite (see Appendix A, also (Carli and Georgiou, 2011, Proposition

2)), that is to say, the process is full rank which we shall assume all through this chapter.

2.2.1 Bilateral ARMA Model

The dynamics of a periodic process can be defined in terms of relations among its random

variables in just one particular period, namely [−N + 1, N] which will be identified with the

finite modular group Z2N . In this setting, the most general finitely parametrized analog of a

stationary finite-dimensional linear model for a periodic process turns out to be a bilateral

ARMA model of finite order n (Carli et al., 2011; Lindquist and Picci, 2013)

n
∑

k=−n

qk y(t − k) =

n
∑

k=−n

pk e(t − k), t ∈ Z2N , (2.7)

with {qk, pk} real parameters satisfying the symmetry p−k = pk and q−k = qk and e(t) a

periodic process, called the conjugate process of y(t) (also called the double-sided innovation

(Masani, 1960)). The conjugate process is delta-correlated with y in the sense that Ey(t)e(s) =

δt,s where δt,s = 1 for t = s and zero otherwise. By periodicity, the model is associated to

periodic boundary conditions at the end points

y(−N) = y(N), . . . , y(−N − n+ 1) = y(N − n+ 1), (2.8)

which induce a circulant structure on the model (2.7). More explicitly, the bilateral model

(2.7) can be rewritten as an equivalent circulant matrix equation

Qy= Pe

where Q and P are symmetric positive semidefinite circulants with elements the coefficients

{qk} and {pk} defined above, and the vector

e :=
�

e(t − N + 1) e(t − N + 2) . . . e(t + N)
�⊤

. (2.9)



2.2 Covariance Matching for Scalar Periodic ARMA Processes 15

Moreover, Q and P are banded 2N × 2N circulants of bandwidth n as illustrated below.

Q=















































q0 q1 · · · qn 0 · · · 0 qn · · · q1

q1 q0 q1 · · · qn 0 · · · 0
...

...
...

...
. . .

...
. . .

. . . qn

qn qn−1 · · · q0 q1 · · · qn 0 · · · 0

0 qn qn−1 · · · q0 q1

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
. . . 0

0 0 · · · qn · · · q1 q0 q1 · · · qn

qn 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0 qn · · · q1 q0 q1

q1 · · · qn 0 · · · 0 qn · · · q1 q0















































:= Circ{q0, q1, . . . , qn, 0, . . . , 0, qn, . . . , q1}

Because of the orthogonality of y to its conjugate process, assuming invertibility of Q, the

covariance matrix Σ of the stacked vector y (2.1) has the expression

Σ = Q−1P, (2.10)

which is also a symmetric positive semidefinite circulant matrix. The special structure of

the resulting covariance matrix expressed as a ratio of two circulant banded matrices, will

later be exploited in Section 2.6 to solve the finite-interval smoothing problem in a stationary

setting.

The expression (2.10) has an analog in terms of the spectral representation of the process

y , due to the fact that the DFT is an algebra homomorphism mapping the circulant matrices

of the same dimension to their symbols (cf. Section A.2, also (Lindquist and Picci, 2013,

p. 2851)). More precisely, the representation (2.10) is equivalent to

Φ(ζ) =
P(ζ)

Q(ζ)
(2.11)

where

Q(ζ) :=

n
∑

k=−n

qk ζ
−k, P(ζ) :=

n
∑

k=−n

pk ζ
−k (2.12)

are Laurent polynomials (with both positive and negative powers of the indeterminate) of

degree n and positive semidefinite on T2N ; they are also symbols of the circulants Q and P.

In other words, the spectral density Φ(ζ) defined in (2.6) is now a rational function. We shall
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require that

Q(ζ) 6= 0, ∀ζ ∈ T2N , (2.13)

which is in turn equivalent to the nonsingularity of Q (Carli and Georgiou, 2011).

2.2.2 Unilateral ARMA Model and Problem Formulation

As described above, periodic processes can be conveniently seen as being defined on the

finite group Z2N made of the discrete interval [−N + 1, N] with arithmetic modulo 2N . The

bilateral model (2.7) has an equivalent unilateral representation of the form

n
∑

k=0

ak y(t − k) =

n
∑

k=0

bkw(t − k), t ∈ Z2N (2.14)

where w(t) is a periodic white noise on Z2N of unit variance and {ak, bk} are real parameters.

The equivalence is established through spectral factorization as we shall describe next.

Moreover, we will formulate the covariance matching problem for the unilateral model

since it is more useful for the recursive implementation of our algorithm.

Given the periodic boundary conditions (2.8), after introducing the vector notation

w :=
�

w(−N + 1) w(−N + 2) . . . w(N)
�⊤

with E{ww⊤}= I2N (identity), we obtain a compact circulant matrix representation of the

model (2.14)

Ay= Bw, (2.15)

where A and B are 2N × 2N nonsingular circulant lower-triangular1 matrices of bandwidth n

denoted

A= Circ{a0, a1, . . . , an, 0, . . . , 0},
B= Circ{b0, b1, . . . , bn, 0, . . . , 0}.

(2.16)

The symbols of A and B are the polynomials a(ζ), b(ζ) in the indeterminate ζ defined in

terms of the model coefficients as

a(ζ) :=

n
∑

k=0

ak ζ
−k, b(ζ) :=

n
∑

k=0

bk ζ
−k, (2.17)

1Notice that due to the circulant structure, the two matrices A and B are not really lower-triangular. They are

called so because most of the upper-triangular entries are indeed zero since it is usually the case that n≪ N .
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where the negative exponent in ζ−k agrees with the interpretation of DFT as a k-steps delay

operator in the frequency domain. In terms of the DFT, the model (2.14) can be rewritten as

a(ζ) ŷ(ζ) = b(ζ)ŵ(ζ), ζ ∈ T2N (2.18)

where

ŷ(ζ) =

N
∑

t=−N+1

y(t)ζ−t , ŵ(ζ) =

N
∑

t=−N+1

w(t)ζ−t

are the DFT of the random vectors y and w. The solution of (2.18) can formally be written as

ŷ(ζ) =
b(ζ)

a(ζ)
ŵ(ζ). (2.19)

After plain calculation, it can be shown that the DFT ŵ(ζk) satisfies

1

2N
E

�

ŵ(ζk)ŵ(ζl)
�

= δkl . (2.20)

From (2.19) it readily follows that the spectral density of y(t) is

Φ(ζ) =
1

2N
E

�

ŷ(ζ) ŷ(ζ)
�

=
b(ζ)b(ζ−1)

a(ζ)a(ζ−1)
:=

P(ζ)

Q(ζ)
(2.21)

which is a rational function, i.e., quotient of two symmetric positive polynomials

P(ζ) := b(ζ)b(ζ−1) , Q(ζ) := a(ζ)a(ζ−1). (2.22)

We consider now the covariance matching problem for periodic unilateral ARMA processes.

Problem 2.2.1. Suppose that we are given the MA coefficients {bk ; k = 0,1,2, . . . , n} of

(2.14) and a partial covariance sequence c0, c1, . . . , cn with n < N , such that the Toeplitz

matrix

Tn =

















c0 c1 c2 · · · cn

c1 c0 c1 · · · cn−1

c2 c1 c0 · · · cn−2

...
...

...
. . .

...

cn cn−1 cn−2 · · · c0

















, (2.23)

is positive definite. Determine the AR coefficients {ak} such that the first n+ 1 covariance

lags of the periodic process y(t) defined by (2.14) match the sequence {ck}.

This problem, once stated in terms of the symmetric polynomials (2.22), is essentially

the same moment problem discussed in (Lindquist and Picci, 2013, 2016), where it is proven
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that for any fixed positive polynomial P(ζ), there is a unique solution Q(ζ). Actually the

equivalence holds modulo a factorability condition which is stated in the next proposition.

Proposition 2.2.2. Assuming N > n, then the Laurent polynomial P(ζ) =
∑n

−n pk ζ
−k admits

a factorization P(ζ) = a(ζ)a(ζ−1) with a(ζ) as in (2.17), if and only if P(z) = a(z)a(z−1) for

z ∈ T, i.e., the usual polynomial factorization holds with the same coefficients.

Proof. Sufficiency is obvious. For the necessity, suppose P(ζ) = a(ζ)a(ζ−1) holds and define

the Laurent polynomial in z

P̌(z) =

n
∑

k=−n

p̌k z−k := a(z)a(z−1) .

Then the two polynomials P(z) and P̌(z) of order 2n coincide at 2N points, i.e., ζ−N+1, . . . ,ζN .

Since N > n, this implies that P(z) = P̌(z) and hence admits a usual polynomial factorization.

Positivity of a symmetric polynomial P(ζ) on T2N does not necessarily imply the existence

of banded spectral factors. For this to hold, nonnegativity of the extension P(z) on the whole

unit circle is necessary. Although such a requirement may seem restrictive, it is in fact satisfied

if N is large enough, which we shall assume for the remaining part of this chapter. This point

is demonstrated as follows.

Proposition 2.2.3. Let P(ζ) =
∑n

−n pk ζ
−k be positive on T2N . If N is large enough, the

extension of P(ζ) to the unit circle P(z) , must be nonnegative for all z ∈ T.

Proof. Suppose that for some z0 ∈ T, P(z0)< 0. Then there must exist an interval neighbor-

hood I of z0 in T having a positive Lebesgue measure such that P(eiθ )< 0 for any eiθ ∈I .

But if N is large enough some ζk ∈ T2N must belong to this neighborhood and then P(ζk)

must be negative which is a contradiction.

2.3 An Iterative Algorithm Based on a Nonlinear Yule-Walker

Equation

Let γ := {γk ; k = −N + 1, . . . , N} denote the inverse DFT of
b(ζ)
a(ζ) . The time-domain version

of (2.19) is a (circulant) convolution representation of y(t) in terms of the input noise w(t)

y(t) =

N
∑

s=−N+1

γt−sw(s), t ∈ Z2N , (2.24)
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which can also be written in the matrix notation as

y= Γw, (2.25)

where Γ= Circ{γ0,γ1, . . . ,γN ,γ−N+1, . . . ,γ−1} has the symbol

Γ (ζ) :=

N
∑

t=−N+1

γt ζ
−t =

b(ζ)

a(ζ)
. (2.26)

In circulant matrix notation, from (2.15) we have

Γ= A−1B. (2.27)

Now, multiplying the model equation (2.15) on both sides from the right with the transpose

of (2.25) and taking expectations, we obtain an equation for the circulant covariance

AΣ = BΓ⊤. (2.28)

Introduce the vector notation

a=
�

a0 . . . an

�⊤
, b=
�

b0 . . . bn

�⊤

and denote the upper-left (n + 1) × (n + 1) submatrix of Σ by Σn. Since b is fixed, the

covariance matrix Σ is a function of a so it is appropriate to denote Σn by Σn(a). With these

notations, our covariance matching equation can be written as

Tn = Σn(a). (2.29)

Our algorithm is based on a consequence of (2.29) which is obtained by a Yule-Walker-type

calculation combining the model equation (2.14) with the one-sided representation (2.24).

It is a nonlinear equation in the coefficient vector a of the polynomial a(ζ) having the form

Tna= Γ nb , (2.30)
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where Tn is the data matrix (2.23), and

Γ n =













γ0 γ1 . . . γn

γ−1 γ0

...
...

. . . γ1

γ−n . . . γ−1 γ0













.

is the upper-left (n+ 1)× (n+ 1) block of the circulant impulse response matrix Γ . For the

same reason as in the case of Σn(a), we shall denote Γ n by Γ n(a). With this definition of

Γn(a), we have

Γ n(a)b= Σn(a)a, (2.31)

which obviously agrees with (2.29) and (2.30).

It is evident that any a solving (2.29) will be a solution to (2.30). On the other hand, the

nonlinear equation (2.30) for a has in general several solutions, corresponding to different

spectral factors a(ζ) of Q(ζ) obtained by flipping zeros about the unit circle. Among them

we shall privilege the unique polynomial whose extension obtained by substituting ζ with

z ∈ C is a Schur (minimum phase) polynomial. Here we slightly modify the definition of a

Schur polynomial to accommodate the convention of the Fourier transform. Specifically, the

set Sn of Schur polynomials of degree n contains those

p(z) =

n
∑

k=0

pkz−k, p0 > 0

such that p(z) has all its roots strictly inside the unit circle. We define also the set

Sn :=
¦

p=
�

p0 . . . pn

�

: p(z) ∈ Sn

©

to distinguish the polynomials from their coefficients. Before attempting a solution to (2.30),

let us define the set of vectors

A :=

¨

a ∈ Rn+1 : a(z) :=

n
∑

k=0

akz−k 6= 0, ∀ z ∈ T
«

,

and notice that for any a ∈A ,

a⊤Σn(a)a=
1

2N

N
∑

k=−N+1

P(ζk) := mP ,
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where mP is a constant once the numerator P(ζ) of the spectral density Φ(ζ) is fixed. Thus

any solution to (2.30) must satisfy the constraint

a⊤Tna= mP . (2.32)

We call the model (2.14) normalized if the above constraint for the AR coefficients is satisfied.

For any nonzero vector a, the following map achieves the normalization

s : a 7→
√

√ mP

a⊤Tna
a. (2.33)

Now, consider the following iterative algorithm to solve numerically the nonlinear equation

(2.30).

Algorithm 2.1 Fixed-point iteration with renormalization: scalar case

Initialize a(0) e.g., as the output of the Levinson algorithm for the ordinary covariance

extension

Set k = 0 and a threshold τ to decide convergence

repeat

a(k+1) := T−1
n Γ n(a

(k))b

Rescale a(k+1) := s(a(k+1))

Update k := k+ 1

until ‖a(k) − a(k−1)‖ ≤ τ
return the last a(k)

The algorithm above has a connection with the variational approach stated in the next

proposition, in which we shall introduce the objective function JP from (Lindquist and Picci,

2013, Theorem 2).

Proposition 2.3.1. Step 2 of Algorithm 2.1 can be interpreted as a quasi-Netwon step for the

minimization of the function

JP(a) = a⊤Tna−
∫ π

−π
b(eiθ )b(e−iθ ) log[a(eiθ )a(e−iθ )] dν. (2.34)

Proof. We first compute the gradient

∇JP(a) =2Tna−
∫ π

−π
b(eiθ )b(e−iθ )

§

1

a(eiθ )
ū(eiθ )+

1

a(e−iθ )
u(eiθ )

ª

dν, (2.35)
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where for convenience we have introduced the column vectors

u(z) =
�

1 z . . . zn
�⊤

,

ū(z) =
�

1 z−1 . . . z−n
�⊤

.

(2.36)

The left term of the integrand in (2.35) can be written as

b(eiθ )

a(eiθ )
ū(eiθ )u(eiθ )⊤b,

so that this part of the integral becomes the sum

1

2N

N
∑

j=−N+1

b(ζ j)

a(ζ j)















1 ζ j . . . ζn
j

ζ−1
j

1
...

...
. . . ζ j

ζ−n
j

. . . ζ−1
j

1















b= Γ n(a)b,

where the equality follows from the definition of γ. The computation involving the other

term in the integral is similar, yielding in fact the same result, so that

∇JP(a) = 2[Tna− Γ n(a)b]. (2.37)

which, in force of (2.31) is equivalent to

1

2
∇JP(a) = [Tn −Σn(a)]a. (2.38)

The iteration in Step 2 of the algorithm can therefore be written as

Tn[a
(k+1) − a(k)] = Γ n(a

(k))b− Tna(k) = −1

2
∇JP(a(k))

which is a quasi-Newton step

a(k+1) = a(k) − 1

2
T−1

n ∇JP(a(k)). (2.39)

The functional JP parametrized in Q(ζ) is strictly convex (Lindquist and Picci, 2013,

Theorem 2). Following the lines in (Enqvist, 2001, Propositions 4–7), one can show that

(2.34) is in fact locally strictly convex about the normalized solution a of (2.29) in the set Sn
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since such a solution corresponds to the unique stable and minimum-phase spectral factor

Q(ζ). The key argument is about a nonsingularity condition of a certain matrix M(a) which

will be stated in the next proposition. Recall that a polynomial a(z) is called unmixing if it

has no reciprocal zeros. In particular, the Schur property implies unmixing.

Proposition 2.3.2. The solution â ∈ Sn to the nonlinear equation (2.30) defines a periodic

ARMA process (2.14) whose covariance matrix is a circulant extension of the data Tn. Thus such

â is a minimizer of (2.34).

Proof. Note that the term Tnâ can be written as M(â)c, where

M(a) =

















a0 a1 a2 . . . an

a1 a2 . . . an 0

a2 . . . an 0 0
... . .

.
. .

. ...

an 0 . . . 0 0

















+

















0 0 0 . . . 0

0 a0 0 . . . 0

0 a1 a0 0 0
...

...
. . .

. . .
...

0 an−1 . . . a1 a0

















is the so-called Jury matrix mentioned in (Demeure and Mullis, 1989) whose determinant is

an+1
0

n
∏

j=1

n
∏

k=1

(1− r j rk), (2.40)

where r j is the j-th root of the polynomial a(z). Hence M(â) is nonsingular if and only if

a(z) is unmixing, in particular if it is a Schur polynomial. Consider then the equation in the

unknown c

M(â)c= Γ n(â)b. (2.41)

with â and the corresponding γ= γ(â) fixed. This is a linear equation which has a unique

solution vector c=
�

c0 . . . cn

�⊤
, whose components are exactly the first n+ 1 covariance

lags of the periodic ARMA process (2.14).

The other claim is implied by the covariance matching since by (Lindquist and Picci, 2013,

Theorem 2), Q̂(ζ) := â(ζ)â(ζ−1) is then the unique minimizer of the original dual functional

parametrized in Q given P(ζ) := b(ζ)b(ζ−1).
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2.4 Proof of Local Convergence

Taking into account the normalization step (2.33), each iteration in our algorithm can be

written as a composition of two maps

a(k+1) = g(a(k)) := s(f(a(k))) , (2.42)

where

f(a(k)) := T−1
n Σn(a

(k))a(k). (2.43)

The convergence of the iterative algorithm can be studied via the stability analysis of the

system (2.42) around its equilibria and we shall do so through linearization. The following

well-known theorem is mentioned in (Khalil, 2002, p. 194).

Theorem 2.4.1 (First method of Lyapunov for discrete-time autonomous systems). Let x∗ = 0

be an equilibrium of the discrete-time autonomous system

xk+1 = f(xk), (2.44)

where f : D → Rn is continuously differentiable in a neighborhood of the origin D ⊂ Rn, and let

J = [∂ f/∂ xk]xk=0 be the Jacobian of the system evaluated at the origin. If all the eigenvalues of

J are strictly less than one in absolute value, then the system is asymptotically stable about its

zero equilibrium.

Before stating the main theorem of this chapter, we need some lemmas in order to compute

the Jacobian of the map g and study its eigenvalues.

Lemma 2.4.2. Let

Ξ(a) :=
d

da
[−Σn(a)a] , (2.45)

and then the Hessian of JP(a) is the (n+ 1)× (n+ 1) matrix

∇2
JP(a) = 2(Tn +Ξ(a)) (2.46)

where, with ū(eiθ ) defined as in (2.36) ,

Ξ(a) =

∫ π

−π
ū(eiθ )ū(eiθ )⊤

|b(eiθ )|2
a(eiθ )2

dν . (2.47)

Proof. Clearly (2.46) follows from (2.38). From the definition of γt , it is straightforward to
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check that

∂ γt

∂ a j

= −
N
∑

k=−N+1

ζ
t− j

k

b(ζk)

a(ζk)
2

1

2N
.

Then consider again the j-th entry of Γ n(a)b, by interchanging the order of summation,

∂

∂ ak

�
n
∑

k=0

bkγ− j+k

�

= −
N
∑

ℓ=−N+1

ζ
− j−k

ℓ

b(ζ−1
ℓ
)b(ζℓ)

a(ζℓ)
2

1

2N
,

which is the ( j, k) element of the matrix

d

da
[Γ n(a)b].

With the help of (2.31), it is also straightforward to verify the matrix form (2.47).

Lemma 2.4.3. Consider a function defined by the ratio of two polynomials

f (z) =

∑n

k=0 dkzk

∑n

k=0 akzk
,

where the denominator polynomial has all its zeros strictly outside the unit circle. Then if f

takes real values on the unit circle, we must have d= κa for some κ ∈ R, which in turn gives

f (z) = κ for any z ∈ T.

Proof. Under the condition of the lemma, f (z) must be holomorphic in some open region

of the complex plane containing the closed unit disk D. For z = x + i y, we can write

f (z) = u(x , y) + iv(x , y). Then it is a fact that both u and v are harmonic functions, which

follows directly from the Cauchy-Riemann equations. By the maximum/minimum principle

for harmonic functions (Ahlfors, 1966, p. 164, Theorem 23), the function v can only achieve

its maximum and minimum over D at the boundary, i.e., the unit circle, where it is constantly

zero. Hence, we have

v(z) = 0, ∀z ∈ D.

Furthermore, by the Cauchy-Riemann equations, the claim of the lemma follows.

Lemma 2.4.4. For any a ∈ Sn, the matrix Ξ(a) satisfies the inequality

|d⊤Ξ(a)d| ≤ d⊤Σn(a)d (2.48)

which holds in a strict sense for all d = [d0, . . . , dn]
⊤ ∈ Rn+1 except for the one dimensional

subspace of vectors which are proportional to a.
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Proof. By (2.47) and the triangle inequality,

|d⊤Ξ(a)d|=
�

�

�

�

∫ π

−π
d⊤ū(eiθ )

P(eiθ )

a(eiθ )2
ū(eiθ )⊤d dν

�

�

�

�

=

�

�

�

�

∫ π

−π

P(eiθ )

a(eiθ )2
d(eiθ )2 dν

�

�

�

�

≤
∫ π

−π

P(eiθ )

|a(eiθ )|2 |d(e
iθ )|2 dν = d⊤Σn(a)d,

where d(z) :=
∑n

k=0 dkz−k. This proves the inequality. To prove the other statement, we first

note that for any a ∈A it holds that

Ξ(a)a= Σn(a)a (2.49)

which readily follows from the representation (2.47) of Ξ(a) since ū(eiθ )⊤a = a(eiθ ). To

show that (2.48) can hold with equality only for vectors d = κa, κ ∈ R , we argue as follows.

For n complex numbers z1, . . . , zn, the condition for the equality

|z1 + · · ·+ zn|= |z1|+ · · ·+ |zn|

to hold is that for any j, z j = r jz0 with real r j ≥ 0 (or all ri ≤ 0) and some common z0 ∈ C.

Applying this to our case, i.e.,

z j =
P(ζ j)

a(ζ j)
2

d(ζ j)
2, j = −N + 1, . . . , N ,

given N large enough, it amounts to requiring that the ratio of two polynomials d(eiθ )/a(eiθ )

takes real values for any θ ∈ [−π,π] since d(ζ0)/a(ζ0) is real. By Lemma 2.4.3, this cannot

happen in general unless d is proportional to a.

Theorem 2.4.5. Algorithm 2.1 converges locally to the vector of AR coefficients â ∈Sn that is

a solution to (2.30).

Proof. Take â as the coefficient vector of the unique Schur polynomial that solves Problem

2.2.1. It is easy to check that â is a fixed point of the function g(·) = s(f(·)) since

s(â) = â, f(â) = â.

Next use the representation f(a) = a− 1
2T−1

n ∇JP(a) from Proposition 2.3.1 to compute the
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Jacobian matrix by the chain rule and evaluate it at â

J :=
dg

da(k)

�

�

�

�

a(k)=â

=
1

mP

ââ⊤Ξ(â)− T−1
n Ξ(â)

=
1

mP

ââ⊤Tn − T−1
n Ξ(â)

(2.50)

where we have also used Lemma 2.4.2 to get

∇f(a) = −T−1
n Ξ(a).

The last equality in (2.50) comes from (2.49).

In order to apply Theorem 2.4.1 to assert stability of the equilibrium â, we proceed to

show that all eigenvalues of (2.50) have absolute value smaller than 1. To this end, there is a

result in linear algebra stating that the spectral radius of a complex matrix A is less than 1 if

and only if Ak → 0 as k→∞, whose proof uses Jordan normal form (Horn and Johnson,

2013, p. 180). One can then show by induction that for k = 1,2, . . .

J2k = − 1

mP

ââ⊤Tn +
�

T−1
n Ξ(â)
�2k

,

J2k+1 =
1

mP

ââ⊤Tn −
�

T−1
n Ξ(â)
�2k+1

.

(2.51)

Therefore, it is equivalent to show that

lim
k→∞

�

T−1
n Ξ(â)
�k
=

1

mP

ââ⊤Tn. (2.52)

Naturally, we consider the eigenvalue problem

T−1
n Ξ(â)v= λv, v 6= 0.

It is equivalent to the generalized eigenvalue problem of the ordered pair (Ξ(â),Tn)

Ξ(â)v= λTnv.

From (Parlett, 1998, Theorem 15.3.3, p. 345), in the present case where Ξ(â) and Tn are

symmetric with Tn positive definite, all the eigenvalues λ are real and it is guaranteed that

there exists a basis of generalized eigenvectors. Moreover, eigenvectors v1 and v2 with distinct

eigenvalues are Tn-orthogonal (v⊤1 Tnv2 = 0). The eigenvalues can be expressed in terms of
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the eigenvectors as Rayleigh quotients

λ =
v⊤Ξ(â)v
v⊤Tnv

. (2.53)

By Lemma 2.4.4, we must have |λ| ≤ 1. Furthermore, there is exactly one (generalized)

eigenvalue equal to 1 since we have taken the corresponding â(z) ∈ Sn.

We are now ready to show (2.52). First notice that

Ξ(â)P= TnPD, (2.54)

where the columns of P are the eigenvectors and D is the diagonal matrix of eigenvalues. The

Tn-orthogonal relation can be written as

P⊤TnP= I, (2.55)

where the eigenvectors are normalized with the Tn-norm. Specifically, the eigenvector

corresponding to the eigenvalue 1 is 1p
mP

â. Hence,

lim
k→∞

�

T−1
n Ξ(â)
�k
= lim

k→∞
PDkP⊤Tn =

1

mP

ââ⊤Tn, (2.56)

which concludes the proof of local convergence.

2.5 Generalization to Vector Processes

The nonlinear Yule-Walker equation (2.30) and Algorithm 2.1 can be easily generalized

to their counterparts for vector-valued processes. Unfortunately, the convergence proof

in the vector case seems quite difficult and the linearization argument does not seem to

work in a straightforward manner due to some redundant parametrization in the matrix

coefficients. So far, from our numerical simulations, the algorithm works well when the

MA part is restricted to be scalar, which is the case in the next section for the application

to finite-interval smoothing. In general when the MA coefficients are matrix-valued, the

algorithm can converge to different values of AR coefficients. Hence some work remains to

be done in order to remedy this. We will use some overload of notations whose meanings are

clear from the context.

Let us begin with an m-dimensional zero-mean stationary periodic process y(t) that is
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described by a forward unilateral ARMA representation

n
∑

k=0

Ak y(t − k) =

n
∑

k=0

Bk w(t − k), t ∈ Z2N , (2.57)

where w(t) is an m-dimensional periodic normalized white noise, i.e., Ew(t)w(t)⊤ = Im.

With this convention the model is also called normalized. Naturally it must also be associated

to periodic boundary conditions (2.8) at the end points. With the stacked vector notation

y=







y(−N + 1)
...

y(N)





 , e=







e(−N + 1)
...

e(N)





 ∈ R2mN , (2.58)

the model (2.57) can be written compactly as a linear equation

Ay= Bw, (2.59)

in which A and B are 2mN × 2mN block-circulant matrices of bandwidth n, that is

A=





























A0 0 · · · 0 An · · · A1

A1 A0 0 · · · 0 · · · A2

...
...

. . .
...

...

An An−1 · · · A0 0 · · · 0

0 An An−1

...
...

. . .
. . .

. . .
...

0 0 · · · An · · · A1 A0





























:= Circ{A0, A1, . . . , An, 0, . . . , 0}

(2.60)

and similarly

B= Circ{B0, B1, . . . , Bn, 0, . . . , 0} . (2.61)

We require the condition that A is invertible. Define also the matrix polynomials

A(ζ) :=

n
∑

k=0

Ak ζ
−k, B(ζ) :=

n
∑

k=0

Bk ζ
−k , (2.62)

which are symbols of the block circulants A and B. Then similar spectral analysis of the vector

ARMA model (2.57) can be carried out as those in Section 2.2. Specifically, the solution of
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(2.57) can formally be written in the Fourier and time domains as

ŷ(ζ) = A(ζ)−1B(ζ)ŵ(ζ) ⇔ y= A−1Bw. (2.63)

The discrete transfer function W (ζ) := A(ζ)−1B(ζ) has the inverse Fourier transform

Wt :=

N
∑

k=−N+1

ζt
k
A(ζk)

−1B(ζk)
1

2N
, t ∈ Z2N (2.64)

called the impulse response of the system, which yields a convolution representation of the

process

y(t) =

N
∑

s=−N+1

Wt−s w(s), t ∈ Z2N . (2.65)

This is certainly equivalent to the block-circulant matrix equation in (2.63). The spectral

density of the process (2.57) has the form of a bilateral matrix fraction

Φ(ζ) =W (ζ)W (ζ−1)⊤

= A(ζ)−1B(ζ)B(ζ−1)⊤A(ζ−1)−⊤ , ζ ∈ T2N

(2.66)

which has an isomorphic counterpart in terms of block circulants

Σ =WW⊤ = A−1BB⊤A−⊤, (2.67)

where Σ := Eyy⊤ is the (block-circulant) covariance matrix, and W is the block circulant

having symbol W (ζ), namely

W= Circ{W0, W1, . . . , WN , W−N+1, . . . , W−1} . (2.68)

Later on we shall need to express the covariance matrix Σ as a single matrix fraction of

the type (2.10). This operation is easy when B(z) is a scalar polynomial times the identity

matrix, i.e., B(z) = b(z)Im, in which case W (ζ) admits a fraction representation of the type

A(ζ)−1 b(ζ)Im so that

Φ(ζ) =
�

A(ζ−1)⊤A(ζ)
�−1

b(ζ)b(ζ−1)

and one may take Q(ζ) = A(ζ−1)⊤A(ζ) and P(ζ) = b(ζ)b(ζ−1)Im.

2.5.1 Problem of Matrix Covariance Matching

We are now ready to formulate the ARMA covariance matching problem for vector processes.
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Problem 2.5.1. Suppose we are given n+ 1 matrix MA parameters {Bk} in the unilateral

ARMA model (2.57) and n+1 real m×m matrices Σ0,Σ1, . . . ,Σn, such that the block-Toeplitz

matrix

Tn =

















Σ0 Σ
⊤
1 Σ

⊤
2 · · · Σ

⊤
n

Σ1 Σ0 Σ
⊤
1 · · · Σ⊤n−1

Σ2 Σ1 Σ0 · · · Σ⊤n−2
...

...
...

. . .
...

Σn Σn−1 Σn−2 · · · Σ0

















, n ∈ Z+ (2.69)

is positive definte. We want to determine the matrix parameters {Ak, k = 0,1, . . . , n} such

that the first n+ 1 covariance matrices of the periodic process y(t) match the sequence {Σk}.

When B1 = B2 = . . . = Bn = 0, that is, the MA part is trivial, this is essentially the

Covariance Extension Problem for n-Reciprocal Processes discussed and solved in (Carli et al.,

2011). The solution of this problem when the MA part is scalar, stated in terms of symmetric

polynomials Q(ζ), P(ζ) under the criterion of generalized maximum entropy, is discussed in

(Lindquist et al., 2013). Here for reasons that will be apparent in a moment our unknowns

will instead be the coefficients of some distinguished spectral factor of the denominator Q(ζ).

An important point is that to get a unique solution Q(ζ) one needs to fix the numerator

polynomial P(ζ). Clearly to fix the MA part is equivalent to fixing P(ζ) and this explains the

problem formulation with fixed MA parameters {Bk}.
Observe that Problem 2.5.1 is just asking that the submatrix made of the upper-left

(n + 1) × (n + 1) blocks extracted from the block circulant covariance matrix Σ in (2.67)

should match the Toeplitz data (2.69). To make this precise we need to fix some notations.

Let A, B ∈ Rm×m(n+1) denote the AR and MA matrix coefficients of the vector ARMA model

(2.57), i.e.,

A=
�

A0 A1 . . . An

�

, B =
�

B0 B1 . . . Bn

�

,

and let us use the symbol Σn(A) to denote the upper-left (n+ 1)× (n+ 1) block-submatrix of

Σ written as a function of the unknown AR parameters since B is fixed. The same notation

applies to the matrix W (2.68), namely

Wn(A) :=













W0 W−1 . . . W−n

W1 W0 . . . W−n+1

...
...

. . .
...

Wn Wn−1 . . . W0













.

Moreover, T⊥n is the matrix obtained by taking the transpose of each block in Tn. Obviously,

the operation (·)⊥ applies to any block matrix with square blocks of the same size. The
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covariance matching condition leads to the equation

Tn = Σn(A) . (2.70)

Proposition 2.5.2. The covariance matching condition (2.70) implies the equation

AT⊥n = BW⊥n (A). (2.71)

Proof. Equation (2.71) can be proven directly by a Yule-Walker-type calculation. Specifically,

combining the model equation (2.57) with the convolution representation (2.65) and using

the relation Ew(t − k)y(t − j)⊤ =W⊤
k− j

, we easily obtain

n
∑

k=0

AkΣ j−k =

n
∑

k=0

Bk W⊤
k− j

, j = 0,1, . . . , n, (2.72)

which is equivalent to (2.71).

With the MA coefficients B and the covariance data Tn fixed, (2.71) is a nonlinear equation

in the unknown A. The counterpart of the constraint (2.32) for the AR coefficient matrix A

solving the matching problem is

AT⊥n A⊤ =
n
∑

k=0

BkB⊤
k
=

1

2N

N
∑

k=−N+1

B(ζk)B(ζk)
∗ := MP , (2.73)

where MP is a constant matrix, and the second equality comes from a matrix DFT analog of

the Parseval Formula (A.5) (see Appendix A). The first equality can be seen as a part of the

circulant identity AΣA⊤ = BB⊤.

The structure of (2.71) suggests a natural iterative scheme for the solution, namely:

A(k+1) = BW⊥n (A
(k))(T⊥n )

−1, (2.74)

with A(0) initialized e.g., with the output of the Levinson-Whittle algorithm (Whittle, 1963)

for the data {Σk ; k = 0,1, . . . , n}. After each iteration, the new A(k+1) does not necessarily

satisfy the normalization constraint (2.73) and thus needs to be scaled by a suitable map

S : A 7→ K−1A,

for some m×m nonsingular matrix K . This amounts to solving for K the matrix equation

AT⊥n A⊤ = KMP K⊤ , (2.75)
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which can be done by various methods such as Cholesky factorization. The corresponding

algorithm in the present context is summarized below.

Algorithm 2.2 Fixed-point iteration with renormalization: vector case

Initialize A(0)

Set k = 0 and a threshold τ to decide convergence

repeat

Do the iteration (2.74)

Solve (2.75) with A≡ A(k+1) for the scaling matrix K

Set A(k+1) := K−1A(k+1)

Update k := k+ 1

until ‖A(k) − A(k−1)‖ ≤ τ
return the last A(k)

2.6 Smoothing of Stationary Linear Systems with Boundary

Constraints

Consider the following problem. We have a wide-sense stationary zero-mean vector signal

x(t) observed on the finite interval [−N + 1, N], the observation channel being described by

the linear equation

y(t) = C x(t) + v(t), t ∈ [−N + 1, N] (2.76)

where v(t) is a stationary white noise with a known variance matrix R = R⊤ > 0, independent

of x(t). We want to compute the smoothed estimate x̂(t) given a finite chunk of observations,

x̂(t) := E{x(t) | y(s), s ∈ [−N + 1, N]} , t ∈ [−N + 1, N]. (2.77)

The right-hand side of (2.77) is the orthogonal projection onto the Hilbert space of random

variables spanned by the components of {y(s), s ∈ [−N + 1, N]}. We shall assume that the

process x(t) has a (stationary) periodic extension to the whole integer line Z. Equivalently

x(t) can be imagined to be the restriction to the interval [−N + 1, N] of a periodic stationary

process defined on Z. There are estimates in the literature (Dembo, Mallows, and Shepp,

1989) for how large should this N be. For short, we shall call x(t) a periodic process and

think of it as being defined on the finite modular group Z2N . Even if we do not care about

the extension, which we are never going to see, this apparently innocent assumption (which

is obviously always legitimate for deterministic signals on finite intervals) has important

consequences. In particular, the covariance matrix of the finite string {x(t) ; t ∈ [−N +1, N]}
must be block-circulant and automatically, x(t) is associated to periodic boundary conditions
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at the extremes.

We shall first discuss the problem of finding a periodic model (2.57) defined on the finite

discrete interval [−N + 1, N] which approximates in a suitable sense a given Gauss-Markov

stationary model defined on Z. Consider a stationary signal x(t) given as the output of the

state-space model






ξ(t + 1) = Fξ(t) +Hu(t)

x(t) = Gξ(t) + Ju(t)
(2.78)

where u(t) is a normalized white noise. We assume without loss of generality that the

Lyapunov equation Π= FΠF⊤ +HH⊤ for the variance matrix of ξ(t) has a unique positive

definite solution. Define D := FΠG⊤ + HJ⊤ and let







Σ0 := GΠG⊤ + JJ⊤

Σk := GF k−1D ; k = 1, . . . , n
(2.79)

be the string of the first n+ 1 output covariance matrices. One needs to provide a set of n+ 1

MA coefficients, or equivalently a positive polynomial P(ζ) to fix the zero dynamics of the

system. One possible way to do this is to approximate in the DFT domain the numerator

polynomial of the model (2.78) or use estimates of its cepstral coefficients (see (Byrnes et al.,

2001c; Enqvist, 2004; Lindquist and Picci, 2013)). Form with the data {Σk} the block-Toeplitz

matrix (2.69); then the periodic ARMA approximation can be computed by running the

covariance matching algorithm described in the previous section.

With the identified approximate model (2.57) at hand, one can now proceed to compute

the solution of the smoothing problem. The procedure is inspired by that for reciprocal

processes described in (Levy, Frezza, and Krener, 1990, Section VI). Write the observation

equation (2.76) in vector notation as

y= Cx+ v,

where C = diag{C , . . . , C}. Then use the standard one-shot solution for the minimum variance

Bayesian estimate x̂ (Lindquist and Picci, 2015, p. 29) to get the relation

(Σ−1 +C⊤R−1C)x̂= C⊤R−1y, (2.80)

Substituting (2.10) into the above equation, the matrix on the left-hand side becomes

P−1Q+C⊤R−1C= P−1(Q+ PC⊤R−1C). (2.81)
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Then define

Q̂ := Q+ PC⊤R−1C , (2.82)

which is a positive-definite block-circulant since C⊤R−1C is a block-diagonal matrix with

positive-semidefinite blocks and the symbol of P is essentially scalar. In fact, Q̂ is bilaterally

banded of bandwidth n since such are both summands on the right-hand side of (2.82). Then

(2.80) is equivalent to

Q̂x̂= PC⊤R−1y := ŷ. (2.83)

In order to carry out a two-sweep smoothing procedure in the style of the Rauch-Striebel-Tung

smoother (Rauch, Striebel, and Tung, 1965), we first perform a banded matrix factorization

Q̂= ÂÂ⊤, where

Â= Circ{Â0, Â1, . . . , Ân, 0, . . . , 0}. (2.84)

As discussed in Proposition 2.2.3, such a factorization is possible if N is taken large enough,

and it can be computed in the spectral domain by standard matrix polynomial factorization

algorithms (see e.g., (Rissanen, 1973)). Then given Â and ŷ, to compute the solution to

(2.83) we first perform a forward sweep described by

Âz= ŷ, (2.85)

and then a backward sweep

Â⊤x̂= z . (2.86)

The two sweeps can be implemented by a forward and a backward recursive algorithm

described by unilateral AR models. To this end we need to attach to them explicit boundary

values x̂(−N + 1), x̂(−N + 2), . . . , x̂(−N + n) and x̂(N − n+ 1), . . . , x̂(N) extracted from the

process x̂(t), which we assume are given. Due to the banded block-circulant structure of Â

exactly like (2.60), the first equation of the forward sweep can be written as

Â0z(−N + 1) = −
n
∑

i=1

Âiz(N − i + 1) + ŷ(−N + 1) , (2.87)

which needs to be initialized with the boundary values z(N − n+ 1), z(N − n+ 2), . . . , z(N).

These values can be obtained by solving for z the last n block equations in the backward

sweep (2.86) since only the boundary values at two ends of x̂ are involved there due to the

banded block-circulant structure of Â⊤.

The forward sweep starts by computing the boundary values z(N − n+ 1), . . . , z(N) as

described above. After these n endpoints of z are available, the recursion for z can be
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implemented by the scheme

z(t) = Â−1
0

�

ŷ(t)−
n
∑

i=1

Âiz(t − i)

�

, t ∈ [−N + 1, N − n]. (2.88)

One should notice that in this notation, we impose implicitly that z(−N) = z(N), . . . , z(−N −
n+ 1) = z(N − n+ 1). The backward sweep then proceeds by

x̂(t) = Â−⊤0

�

z(t)−
n
∑

i=1

Â⊤i x̂(t + i)

�

, t ∈ [−N + n+ 1, N − n], (2.89)

which is initialized with the known terminal boundary values x̂(N − n + 1), x̂(N − n +

2), . . . , x̂(N).

There is also a dual factorization which will lead to a backward-forward sequence of

sweeps but we shall not insist on this point.

2.6.1 A Numerical Example

Just to show the feasibility of the method, we shall discuss a toy example. For this particular

example we have chosen scalar MA coefficients resulting in obvious computational advantage

for the smoothing algorithm. We should stress that this example is not meant to reflect any

realistic situation. Referring to model (2.78), fix the matrices

F =

�

0.9 −0.3

0.3 0.9

�

, G =

�

1 2

1 0

�

(2.90)

and H, J equal to identity. For the observation process (2.76), we take

C =
�

1 1
�

.

The eigenvalues of A are 0.9± 0.3i with modulus 0.9487.

To compute the smoothed process (2.77), we first build a periodic ARMA model of order

n = 1 to approximately describe the process x(t) on a finite interval by matching the first

two steady-state covariances

Σ0 =

�

51 10

10 11

�

, Σ1 =

�

46 17

4 9

�

computed with the formulae (2.79). The period of interest is set as 2N = 50 and the MA

parameters are chosen (quite arbitrarily) as b0 = 0.4893, b1 = 0.3377. The unilateral ARMA
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model looks like

A0 x(t) + A1 x(t − 1) = b0w(t) + b1w(t − 1), (2.91)

and the AR parameters

A0 =

�

0.3725 0

0.1324 0.3341

�

, A1 =

�

−0.2571 −0.3579

−0.0739 −0.3659

�

are computed with Algorithm 2.2. The resulting poles of (2.91), i.e., roots of the equation

det A(z) = 0 are 0.7022± 0.2240i of modulus 0.7371.

Given the approximate model (2.91) and the observation process (2.76), the two-sweep

smoothing algorithm described in the previous part can be implemented. The two components

of the smoothed process x̂(t) are shown in Figures 2.1 and 2.2. The effect of smoothing is

appreciable.
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Figure 2.1: Result of smoothing for x1
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Figure 2.2: Result of smoothing for x2

2.7 Conclusion

We have proved local convergence of a new iterative algorithm to solve the covariance

matching problem for scalar periodic ARMA models. The algorithm can be seen as a nonlinear

dynamical system that is asymptotically stable about its equilibrium. From our simulations

global convergence to a solution of (2.29) appears to be true but a proof is left to future work.

The algorithm has been extended to deal with the covariance matching problem for

vector ARMA processes on a finite interval. As an application, this algorithm is used to

construct an approximate stationary periodic model for an original underlying process based

on matching a finite number of covariance lags. With the approximate model, we have

indicated how to solve a class of finite-interval smoothing problems subjected to boundary

constraints. However, some open questions remain in the vector case such as the effectiveness

of Algorithm 2.2 when MA parameters are matrix-valued as well as the issue of convergence.



3
Further Results on a Parametric Multivariate

Spectral Estimation Problem

3.1 Introduction

This chapter concerns a multivariate spectral estimation problem subject to a (generalized)

moment constraint. As explained in Chapter 1, the common approach in the literature is

to find one particular solution to the moment equation that extremizes a certain criterion.

Here we shall take a different route following the lines in (Ferrante et al., 2010). The idea

is to restrict the candidate solution to a parametric family of spectral densities, in which

each spectral density function is uniquely determined by a finite-dimensional parameter.

Two fundamental questions arise in this formulation. First, does a solution of the moment

equation exist in such a family? If so, the second question is whether such a solution is unique

(in the predefined family).

Before addressing these questions, we wish to point out that the particular parametric form

of matrix spectral densities introduced in (Ferrante et al., 2010) generalizes the scalar solution

in (Georgiou and Lindquist, 2003) of a constrained Kullback-Leibler spectrum approximation

problem. The optimization approach in the latter can be extended to the multivariate case

provided that the given prior spectral density is still kept as scalar, as reported in (Avventi,

2011a). However, it is quite unnatural to use a scalar prior for matrix spectral densities, and
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out of this consideration, the parametrization proposed in (Ferrante et al., 2010) includes

a matrix-valued prior. Moreover, such a parametric problem is closely related to ARMA

modeling of vector-valued stationary processes subject to covariance matching, which is a

multivariate generalization of the rational covariance extension problem.

In order to answer the questions of existence and uniqueness, in (Ferrante et al., 2010) a

moment map between two finite-dimensional spaces (of the same dimension) was defined

sending a parameter to generalized moments. Then the map was studied in light of a

Hadamard-type global inverse function theorem (Byrnes and Lindquist, 2007). However, the

result in (Ferrante et al., 2010) was not satisfactory because the authors only showed that

a solution exists when the prior spectral density has a very special structure. In fact, this is

the motivation behind the current chapter. As a continuation of the work in (Ferrante et al.,

2010), some new developments will be reported here.

We show first that the parametric spectral estimation problem is well-posed given a

scalar prior, which implies existence and uniqueness of the solution (identifiability), thus a

complement to the results in (Avventi, 2011a). Moreover, we prove that the unique solution

parameter depends also continuously on the prior function under a suitable metric topology.

One important technical tool for the proofs of well-posedness is the global inverse function

theorem of Hadamard that can be found e.g., in (Gordon, 1972). We wish to point out

that continuous dependence of the solution on data does not seem to have attracted much

attention in multivariate formulations of the spectral estimation problem, unlike the scalar

rational covariance extension problem (Byrnes et al., 1995, 1997, 1998, 2001b, 2002), where

such continuity argument is actually part of the results of well-posedness. We mention

(Ramponi et al., 2010), where continuous dependence of the solution on the covariance

matrix has been shown in the context of optimization with the Hellinger distance.

Then we present an existence result for the parametric problem under any fixed matrix-

valued prior that is bounded and coercive. The important special case of covariance extension

is addressed in connection with vector ARMA modeling. The main machinery behind our

existence proof is the topological degree theory from nonlinear analysis. As a historical

remark, Georgiou was the first to apply the degree theory to rational covariance extension

(Georgiou, 1983, 1987a,b) to show existence of a solution, and it was further developed by

Byrnes, Lindquist, and coworkers (Byrnes et al., 1995) to prove the uniqueness and well-

posedness. These theories were established before the discovery of the cost function in the

optimization framework (Byrnes et al., 1998, 2001b,a), which was later called generalized

entropy criterion.

Later in this chapter, we try to approach the question of uniqueness thanks to the intro-

duction of a diffeomorphic spectral factorization. Specifically, we show well-posedness when
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the prior is scalar times a constant positive definite matrix. This is still a preliminary result

and much more work is needed to deal with the general case.

The outline of this chapter is as follows. In Section 3.2, we review the problem formulation

and in particular, give a parametric family of matrix spectral densities. Section 3.3 contains

results on the well-posedness of the problem when the prior has a special structure of scalar

times identity. One of our main results, existence of a solution under an arbitrary matrix

prior, is presented in Section 3.4. A part of the degree theory is reviewed in order to carry out

our proof. A spectral factorization problem is discussed in Section 3.5, whose result will be

useful for the development in Section 3.6, where some preliminary results on the uniqueness

of the solution are provided. In the end, we conclude with some open questions.

3.2 Parametric Formulation of a Multivariate Spectral

Estimation Problem

Consider a linear system with a state-space representation

x(t + 1) = Ax(t) + B y(t), (3.1)

where A∈ Cn×n is Schur stable, i.e., has all its eigenvalues in D, B ∈ Cn×m is of full column

rank (n≥ m). Moreover, the pair (A, B) is assumed to be reachable. The input process y(t) is

zero-mean wide-sense stationary with an unknown spectral density matrix Φ(z). The transfer

function of (3.1) is just

G(z) = (zI − A)−1B, (3.2)

which can be interpreted as a bank of filters. An estimate of the steady-state covariance

matrix Σ := E x(t)x(t)∗ of the state vector x(t) is assumed to be known. (For the problem of

estimating covariance matrices in this setting, we refer to (Zorzi and Ferrante, 2012; Ferrante

et al., 2012b; Ning et al., 2013)). Hence we have

∫

GΦG∗ = Σ, (3.3)

where the function is integrated on T with respect to the normalized Lebesgue measure dθ
2π .

This notation will be adopted throughout in the present and later chapters.

Given the matrix Σ ∈ H+,n, we want to estimate the spectral density Φ such that the

generalized moment constraint (3.3) is satisfied. For example, consider the following choice
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of the matrix pair (A, B):

A=

















0 Im 0 · · · 0

0 0 Im · · · 0
...

...
. . .

...

0 0 0 · · · Im

0 0 0 · · · 0

















, B =

















0

0
...

0

Im

















. (3.4)

Here each block in A or B is of m×m and A is a (p+ 1)× (p+ 1) block matrix while B is a

(p+ 1)-block column vector. It is easy to verify that in this case

G(z) = (zI − A)−1B =













z−p−1 Im

z−p Im

...

z−1 Im













, (3.5)

Symbolically, the steady state vector

x(t) = G(z)y(t) =













y(t − p− 1)
...

y(t − 2)

y(t − 1)













, (3.6)

and the covariance matrix Σ has a block-Toeplitz structure, i.e.,

Σ =

















Σ0 Σ
∗
1 Σ

∗
2 · · · Σ

∗
p

Σ1 Σ0 Σ
∗
1 · · · Σ∗p−1

Σ2 Σ1 Σ0 · · · Σ∗p−2
...

...
. . .

. . .
...

Σp Σp−1 · · · Σ1 Σ0

















, (3.7)

where Σk := E y(t + k)y(t)∗ ∈ Cm×m with a slight abuse of notation.1 In fact, the constraint

(3.3) is equivalent to the set of moment equations

∫ π

−π
eikθ
Φ(eiθ )

dθ

2π
= Σk, k = 0,1, . . . , p. (3.8)

1The largest subscript here is p while in Section 2.5 it is n.
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To find a spectral density Φ satisfying (3.8) is the classical covariance extension problem

(Grenander and Szegö, 1958).

In general, existence of Φ ∈Sm satisfying (3.3) is not trivial. Such feasibility problem was

addressed in (Georgiou, 2002b,a) (see also (Ferrante et al., 2010, 2012b; Zorzi and Ferrante,

2012; Ferrante et al., 2007, 2008; Ramponi et al., 2009, 2010; Ferrante et al., 2012a)). In

order for Σ > 0 to be a state covariance, the Lyapunov-like equation

Σ− AΣA∗ = BH + H∗B∗

in the unknown H ∈ Cm×n has to be solvable or an equivalent rank condition must hold

rank

�

Σ− AΣA∗ B

B∗ 0

�

= rank

�

0 B

B∗ 0

�

.

Here we shall take the feasibility as a standing assumption, which is also expressible in terms

of the linear operator defined below

Γ : C(T;Hm)→ Hn

Φ 7→
∫

GΦG∗.
(3.9)

More precisely, we assume that the (positive definite) covariance matrix Σ ∈ Range Γ . Various

properties of the set Range Γ are elaborated in e.g., (Ferrante et al., 2012b, Section III). In

particular, by Proposition 3.1 of that paper, Range Γ ⊂ Hn is a linear space with real dimension

m(2n−m).

The parametric formulation of the spectral estimation problem starts by defining the set

of parameters

L+ := {Λ ∈ Hn : G∗(z)ΛG(z)> 0, ∀z ∈ T}, (3.10)

which obviously contains all the Hermitian positive definite matrices, since G(z) is of full

column rank for any z ∈ T which readily follows from the problem setup. By the continuous

dependence of eigenvalues on the matrix entries, one can verify that L+ is an open subset of

Hn. For Λ ∈L+, take WΛ as the unique stable and minimum phase (right) spectral factor of

G∗ΛG (Ferrante et al., 2010, Lemma 11.4.1), i.e.,

G∗ΛG =W ∗
Λ

WΛ. (3.11)

To avoid any redundancy in the parametrization, we have to define the set L
Γ

+ := L+ ∩
Range Γ . This is due to a simple geometric result. More precisely, the adjoint map of Γ in
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(3.9) is given by (cf. (Ferrante et al., 2010))

Γ
∗ : Hn→ C(T;Hm)

X 7→ G∗X G,
(3.12)

and we have the relation

(Range Γ )⊥ = Ker Γ ∗ = {X ∈ Hn : G∗(z)X G(z) = 0, ∀z ∈ T } . (3.13)

Hence for any Λ ∈L+, we have the orthogonal decomposition

Λ = ΛΓ +Λ⊥

with ΛΓ ∈ Range Γ and Λ⊥ in the orthogonal complement. In view of (3.13), the part Λ⊥

does not contribute to the function value of G∗ΛG on the unit circle, and we simply have

L
Γ

+ = ΠRange ΓL+,

where ΠRange Γ denotes the orthogonal projection operator onto the linear space Range Γ .

Now suppose that we are given Ψ ∈Sm, which represents an a priori information that

we have on the desired solution to (3.3). We can then define a parametric family of spectral

densities

D :=
�

ΦΛ =W−1
Λ
ΨW−∗

Λ
: Λ ∈L

Γ

+

	

. (3.14)

We have the map

Λ 7→WΛ 7→W−1
Λ
ΨW−∗

Λ

from the parameter Λ ∈L
Γ

+ to the density function ΦΛ.

Remark 3.2.1. In the scalar case, the form of spectral densities in the family (3.14) reduces to

ΦΛ =
Ψ

G∗ΛG
,

which is precisely the solution (4.3) in (Georgiou and Lindquist, 2003) of a constrained opti-

mization problem in terms of the Lagrange multiplier Λ. An alternative matricial parametriza-

tion has been proposed in (Georgiou, 2006) and will be revisited in Chapter 5.

Our problem is formulated as follows.

Problem 3.2.2. Given the filter bank G(z) in (3.2), the prior Ψ ∈Sm, and a positive definite

matrix Σ ∈ Range Γ , find a spectral density ΦΛ in the parametric family D defined in (3.14)
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such that ∫

GΦΛG∗ = Σ. (3.15)

The above problem has an equivalent formulation. Define Range+ Γ := Range Γ ∩H+,n

where H+,n is the open set of n× n Hermitian positive definite matrices. Consider the map

ω : L
Γ

+ → Range+ Γ

Λ 7→
∫

GW−1
Λ
ΨW−∗

Λ
G∗.

(3.16)

Then Problem 3.2.2 is asking: what is the preimage of a given Σ ∈ Range+ Γ under the map

ω? As will be clear in Section 3.4, this is a continuous map between open subsets of the

linear space Range Γ . Naturally, a first question is existence of a solution, i.e., surjectivity of

the map ω. If so, the second question is on the (much harder) injectivity, in other words,

uniqueness of the solution parameter to the above problem. In the next section, we will show

that ω is indeed a bijection if the prior Ψ is scalar. The general case where Ψ is arbitrarily

matrix-valued will be treated later.

Remark 3.2.3. The codomain of the map deserves a bit of justification. By definition we have

ω(Λ) ∈ Range Γ . To see the fact that ω(Λ) is also positive definite, notice that there exists

a real number µ > 0 such that ΦΛ ≥ µI since ΦΛ = W−1
Λ
ΨW−∗

Λ
is coercive. Then we have

ω(Λ)≥ µ
∫

GG∗, whose right hand side is strictly positive following from the reachability of

(A, B) (see Proposition 3.5.1).

3.3 Well-Posedness Given a Scalar Prior

In the case of a scalar prior, in which we take Ψ(z) =ψ(z)Im where the scalar-valued function

ψ(z) ∈S1, the map ω reduces to

ω̃ : L
Γ

+ → Range+ Γ

Λ 7→
∫

ψG(G∗ΛG)−1G∗,
(3.17)

and the family of spectral densities becomes

D̃ := {ΦΛ =ψ(G∗ΛG)−1 : Λ ∈L
Γ

+ }. (3.18)

In this section, we shall assume the prior density ψ to be also continuous. This assumption is

not strictly necessary, but it does not entail much loss of generality and we make it here for
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the sake of simplicity.

According to (Ferrante et al., 2010), a solution to Problem 3.2.2 under a scalar prior

exists and is unique. We shall next show that given a continuous prior ψ, the map ω̃ is a C1

diffeomorphism2 between L
Γ

+ and Range+ Γ , which in particular, means that the solution Λ

depends continuously on the covariance data Σ, and thus the problem is well-posed in the

sense of Hadamard. The proof is an application of the global inverse function theorem of

Hadamard that appears e.g., in (Gordon, 1972) (see also (Krantz and Parks, 2013, p. 127)).

Theorem 3.3.1 (Hadamard). Let M1 and M2 be connected, oriented, boundary-less n-dimensional

manifolds of class C1, and suppose that M2 is simply connected. Then a C1 map f : M1→ M2 is

a diffeomorphism if and only if f is proper3 and the Jacobian determinant of f never vanishes.

Conditions on the domain and codomain of ω̃ can be verified easily. In fact, the set

L
Γ

+ =L+∩Range Γ is easily seen to be open and path-connected since both L+ and Range Γ

are such. The simple connectedness of Range+ Γ follows from its convexity (see Proposition

B.1.1 in Appendix B). The fact that ω̃ is of class C1 is also reported there (cf. Lemma B.1.3).

Moreover, properness of the more general map ω has been proven in (Ferrante et al., 2010,

Theorem 11.4.1). Therefore, it is only left to check the Jacobian of ω̃. The next result can

be viewed as an interpretation of (Ferrante et al., 2010, Theorem 11.4.2). Here and in the

sequel, we shall introduce the notation Φ(z;Λ) to denote a spectral density function that

depends on the parameter Λ, and use it interchangeably with ΦΛ(z).

Proposition 3.3.2. The Jacobian determinant of ω̃ never vanishes in L
Γ

+ , and hence the map

ω̃ is a diffeomorphism.

Proof. From Lemma B.1.3, the differential of ω̃ at Λ ∈ L
Γ

+ is given by (B.3) such that

δΛ ∈ Range Γ . Our target is to show that

δω̃(Λ;δΛ) = 0 =⇒ δΛ = 0.

To this end, first notice that the middle part of the integrand in (B.3) is just the differential of

the spectral density ΦΛ =ψ(G
∗
ΛG)−1 w.r.t. Λ :

δΦ(z;Λ;δΛ) := −ψ(G∗ΛG)−1(G∗δΛG)(G∗ΛG)−1.

Then the condition δω̃(Λ;δΛ) = 0 means that

δΦ(z;Λ;δΛ) ∈ Ker Γ = (Range Γ ∗)⊥,

2The word “diffeomorphism” in the sequel should always be understood in the C1 sense. Hence the attributive

C1 will be omitted.
3Recall that f is called proper if the preimage of every compact set in M2 is compact in M1.



3.3 Well-Posedness Given a Scalar Prior 47

which in view of (3.12), reads

〈G∗X G,δΦ(z;Λ;δΛ)〉= tr

∫

G∗X GδΦ(z;Λ;δΛ)

= 0, ∀X ∈ Hn.

In particular, following (Ferrante et al., 2010, Equations 11.44–11.45), choosing X = δΛ will

lead to

G∗δΛG ≡ 0, ∀z ∈ T,

which by (3.13), implies that δΛ ∈ (Range Γ )⊥. Since at the same time δΛ ∈ Range Γ , it is

necessary that δΛ = 0. The rest is just an application of Theorem 3.3.1.

Remark 3.3.3. The unique solution in D̃ to the spectral estimation problem has an interesting

characterization in terms of an optimization problem studied in (Avventi, 2011a). In fact, the

equation ω̃(Λ) = Σ is equivalent to the stationarity condition of the dual function introduced

in that paper. We will get back to this point in more details in the next chapter.

3.3.1 Continuity with Respect to the Prior Function

In this subsection, we shall show that the unique solution in the family D̃ to the parametric

spectral estimation problem depends also continuously on the prior function ψ. The idea is

to study the moment map with the prior function incorporated. Due to the regularity of the

moment map, we can view the solution parameter as an implicit functional of the prior, and

then invoke the Banach space version of the implicit function theorem to prove continuity.

Consider the following map

f : D = C+(T)×L
Γ

+ → Range+ Γ

(ψ,Λ) 7→
∫

Gψ(G∗ΛG)−1G∗.
(3.19)

Given Σ ∈ Range+ Γ , we aim to solve the equation

f (ψ,Λ) = Σ. (3.20)

For a fixed ψ ∈ C+(T), we have

ω̃( · ) = f (ψ, · ) : L
Γ

+ → Range+ Γ (3.21)



48 Further Results on a Parametric Multivariate Spectral Estimation Problem

a section of the map f. Since ω̃ is a diffeomorphism by Proposition 3.3.2, we know that the

solution map

s : (ψ,Σ) 7→ Λ

is well defined, and for a fixed ψ, the map s(ψ, · ) : Range+ Γ →L
Γ

+ is continuous. We shall

next show the well-posedness in the other respect, namely, continuity of the map

s( · ,Σ) : C+(T)→L
Γ

+ (3.22)

when Σ is held fixed. Note that continuity here is to be understood in the metric space setting.

Clearly, it is equivalent to consider solving the functional equation (3.20) for Λ in terms of ψ

when its right-hand side is fixed, which naturally falls in to the scope of the implicit function

theorem.

We first show that f is of class C1 on its domain D. According to (Lang, 1999, Proposition

3.5, p. 10), it is equivalent to show that the two partial derivatives of f exist and are continuous

in D. More precisely, the partials evaluated at a point are understood as linear operators

between two underlying vector spaces

f ′1 : D→ L(C(T), Range Γ ),

f ′2 : D→ L(Range Γ , Range Γ ).
(3.23)

The symbol L(X , Y ) denotes the vector space of continuous linear operators between two

Banach spaces X and Y , which is itself a Banach space. We need some lemmas. Notice that

convergence of a sequence of continuous functions on a fixed interval [a, b] ⊂ R will always

be understood in the max-norm

‖ f ‖ := max
t∈[a,b]

| f (t)|. (3.24)

For m× n matrix valued continuous functions in one variable, define the norm as

‖M‖ := max
t∈[a,b]

‖M(t)‖F (3.25)

It is easy to verify that convergence in the norm (3.25) is equivalent to element-wise conver-

gence in the max-norm (3.24).

Lemma 3.3.4. For an n× p matrix continuous function M(θ ) on [−π,π] , the inequality holds

for the Frobenius norm












∫

M(θ )













F

≤pnp

∫

‖M(θ )‖F . (3.26)
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Proof. Let m jk(θ ) be the ( j, k) element of M(θ ). Then we have
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�
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≤ np max
j,k

�∫

|m jk(θ )|
�2

≤ np

�∫

‖M(θ )‖F
�2

(3.27)

where the third inequality holds because |m jk(θ )| ≤ ‖M(θ )‖F for any j, k.

Lemma 3.3.5. If a sequence {Λk} ⊂L
Γ

+ converges to Λ ∈L
Γ

+ , then the sequence of functions

{(G∗ΛkG)−1} converges to (G∗ΛG)−1 in the norm (3.25).

Proof. From Lemma B.1.2, there exists µ > 0 such that for any k and θ ∈ [−π,π], G∗ΛkG ≥
µI . Hence we have

‖(G∗ΛkG)−1 − (G∗ΛG)−1‖F
=‖(G∗ΛkG)−1G∗(Λ−Λk)G(G

∗
ΛG)−1‖F

≤κ2µ−2Gmax‖Λk −Λ‖F → 0,

(3.28)

where the constant Gmax defined in (B.1), and we have used submultiplicativity of the

Frobenius norm and norm equivalence ‖ · ‖F ≤ κ‖ · ‖2.

Proposition 3.3.6. The map f in (3.19) is of class C1.

Proof. Consider the partial derivative w.r.t. the first argument. Due to linearity, one has

f ′1(ψ,Λ) : C(T)→ Range Γ

δψ 7→
∫

Gδψ(G∗ΛG)−1G∗.
(3.29)

Clearly, the operator does not depend on ψ. Let the sequence {(ψk,Λk)}k≥1 ⊂ D converge

in the product topology to (ψ,Λ) ∈ D, that is, ψk→ψ in the max-norm and Λk→ Λ in any

matrix norm. We need to show that

f ′1(ψk,Λk)→ f ′1(ψ,Λ).
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in the operator norm. Indeed, we have

‖f ′1(ψk,Λk)− f ′1(ψ,Λ)‖

= sup
‖δψ‖=1













∫

Gδψ
�

(G∗ΛkG)−1 − (G∗ΛG)−1
�

G∗












F

≤ nGmax





(G∗ΛkG)−1 − (G∗ΛG)−1




→ 0.

(3.30)

where we have used the inequality (3.26) and Lemma 3.3.5.

For the partial derivative of f w.r.t. the second argument, we have

f ′2(ψ,Λ) : Range Γ → Range Γ

δΛ 7→ −
∫

Gψ(G∗ΛG)−1(G∗δΛG)(G∗ΛG)−1G∗.
(3.31)

To ease the notation, set Φ(ψ,Λ) =ψ(G∗ΛG)−1 and

δΦ(ψ,Λ;δΛ) = Φ(ψ,Λ)(G∗δΛG)(G∗ΛG)−1.

Through similar computation, we arrive at

‖f ′2(ψk,Λk)− f ′2(ψ,Λ)‖
≤ sup
‖δΛ‖=1

nGmax ‖δΦ(ψk,Λk;δΛ)−δΦ(ψ,Λ;δΛ)‖ → 0.
(3.32)

The limit tends to 0 because the part

sup
‖δΛ‖=1

‖δΦ(ψk,Λk;δΛ)−δΦ(ψ,Λ;δΛ)‖

= max
‖δΛ‖=1,
θ∈[−π,π]

‖δΦ(ψk,Λk;δΛ)−δΦ(ψ,Λ;δΛ)‖F

= max
‖δΛ‖=1,
θ∈[−π,π]





δΦ(ψk,Λk;δΛ)−Φ(ψk,Λk)(G
∗δΛG)(G∗ΛG)−1

+Φ(ψk,Λk)(G
∗δΛG)(G∗ΛG)−1 −δΦ(ψ,Λ;δΛ)







F

≤ max
‖δΛ‖=1,
θ∈[−π,π]

�

‖Φ(ψk,Λk)‖F‖(G∗ΛkG)−1 − (G∗ΛG)−1‖F

+‖Φ(ψk,Λk)−Φ(ψ,Λ)‖F‖(G∗ΛG)−1‖F
�

‖G∗δΛG‖F
≤κµ−1Gmax

�

Kψ‖(G∗ΛkG)−1 − (G∗ΛG)−1‖+ ‖Φ(ψk,Λk)−Φ(ψ,Λ)‖
�

(3.33)

Note that ‖ψk‖ ≤ Kψ for some Kψ > 0 uniformly in k because ψk→ψ. Also, Φ(ψk,Λk)→
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Φ(ψ,Λ) is a simple consequence of Lemma 3.3.5 and the fact

fk gk→ f g if fk→ f , gk→ g.

We are now in a place to state the main result of this subsection.

Theorem 3.3.7. For a fixed Σ ∈ Range+ Γ , the implicit function s( · ,Σ) in (3.22) is of class C1.

Proof. The assertion follows directly from the Banach space version of the implicit function

theorem (see, e.g., (Lang, 1999, Theorem 5.9, p. 19)), because restrictions of s( · ,Σ) must

coincide with those locally defined, continuously differentiable implicit functions, which

exist around every ψ ∈ C+(T) following from Proposition 3.3.6 and the fact that the partial

f ′2(ψ,Λ) is a vector space isomorphism everywhere in D.

3.4 Existence of a Solution Given a Matrix Prior

In this section, we tackle the nontrivial existence question of a solution to Problem 3.2.2.

Unfortunately, attempts of extending the optimization framework in (Avventi, 2011a) in

order to accommodate a matrix-valued prior Ψ turn out to be problematic, as pointed out

in (Georgiou, 2006; Ferrante et al., 2010). In other words, there does not seem to exist a

suitable cost function whose minimizer will lead to a solution of form (3.14). Therefore, we

have to take a different route.

The proof of existence of a solution to Problem 3.2.2 in general relies on the notion

of topological degree of a continuous map. The degree theory forms an important part of

differential topology and is closely related to fixed-point theory4 (cf. (Outerelo and Ruiz,

2009, Chapter I) for a rather informative historical account). In particular, the degree theory

is a powerful tool to prove existence of a solution to a system of nonlinear equations. There

are several versions of the theory for different types of maps. Although the maps that we

consider in this chapter are between open subsets of the Euclidean space, we shall use the

more general degree theory for continuous maps between smooth, connected, boundary-less

manifolds. Some main points of the theory are reviewed below.

3.4.1 A Short Review of the Degree Theory

We mainly follow the lines of (Outerelo and Ruiz, 2009, Chapter III). Suppose that U , V ⊂ Rn

are open and connected, and f : U → V is a proper C1 function. Our major concern is

4The proof of Theorem 3.3.1 also relies on the degree theory (cf. (Gordon, 1972)).
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solvability of the equation

f (x) = y. (3.34)

A point y ∈ V is called a regular value of f if either

(i) for any x ∈ f −1(y), det f ′(x) 6= 0 or

(ii) f −1(y) is empty.

Here f −1(y) denotes the preimage of y under f , i.e., the set

{x ∈ U : f (x) = y},

and f ′(x) denotes the Jacobian matrix of f evaluated at x . Let y be a regular value of type

(i), and the degree of f at y is defined as

deg( f , y) :=
∑

f (x)=y

sign det f ′(x), (3.35)

where the sign function

sign(x) =

¨

1 if x > 0

−1 if x < 0

and not defined at 0.

Throughout this chapter, properness will be a crucial property of our function. Since f

is proper, one can show that the preimage f −1(y) is finite following the classical inverse

function theorem, and hence the sum above is well defined. For regular values of type (ii), we

set deg( f , y) = 0. Moreover, the set of regular values is dense in V by Sard–Brown Theorem

(Outerelo and Ruiz, 2009, p. 63). Further properties of the degree related to our problem are

listed below:

• The degree of f at y does not depend on the choice of regular value. Therefore, we

can define the degree of f as

deg( f ) = deg( f , y)

for any regular value y .

• If deg( f ) 6= 0, then for any y ∈ V , there exists x ∈ U such that f (x) = y, that is, the

map f is surjective. A proof of this fact can be found e.g., in (Byrnes et al., 1995,

p. 1849).
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• Homotopy invariance. If H : U × [0,1]→ V, (x , t) 7→ y is jointly continuous in (x , t)

and proper, then deg(Ht , y) is defined and independent of t ∈ [0, 1]. Here Ht : U → V

is defined by Ht(x) = H(x , t).

One important point of the theory is that degree can be defined for continuous functions

through approximation by smooth functions(Outerelo and Ruiz, 2009, Proposition and

Definition 3.1, p. 111), and (3.35) is just a way of computing it in the special case of C1

(Schwartz, 1969, Remark p. 71). In particular, the homotopy invariance of the degree holds

in the continuous case (Outerelo and Ruiz, 2009, Proposition 3.4, p. 112).

3.4.2 Proof of Existence

Take Ψ = I the identity matrix, and the map ω reduces to

ω̃1 : L
Γ

+ → Range+ Γ

Λ 7→
∫

G(G∗ΛG)−1G∗.
(3.36)

The fact that ω̃1 is C1 follows from Lemma B.1.3. We will need the next lemma before

proving our main theorem of this section.

Lemma 3.4.1. The map

H : L
Γ

+ × [0, 1]→ Range+ Γ

(Λ, t) 7→
∫

GΦΛ,t G
∗ (3.37)

is a proper continuous homotopy between ω and ω̃1 , where

ΦΛ,t :=W−1
Λ
[ tΨ + (1− t)I ]W−∗

Λ
. (3.38)

Proof. By definition we need to show two things, namely that H is jointly continuous in Λ

and t and that H is proper. In order to prove joint continuity, we first notice that the spectral

factor WΛ(z) can be written as (Ferrante et al., 2010, Lemma 11.4.1)

WΛ(z) = L−∗
Λ

B∗PΛA(zI − A)−1B + LΛ, (3.39)

where PΛ is the unique stabilizing solution of the following Discrete-time Algebraic Riccati

Equation (DARE)

Π = A∗ΠA− A∗ΠB(B∗ΠB)−1B∗ΠA+Λ, (3.40)
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and LΛ is the right Cholesky factor of B∗PΛB > 0, i.e.,

B∗PΛB = L∗
Λ

LΛ (3.41)

with LΛ being lower triangular having real and positive diagonal entries. Next, let us introduce

a change of variables by letting

CΛ := L−∗
Λ

B∗PΛ. (3.42)

Then it is not difficult to recover the relation LΛ = CΛB. In this way, the spectral factor (3.39)

can be rewritten as

WΛ(z) = CΛA(zI − A)−1B + CΛB

= zCΛG ,
(3.43)

where the second equality holds because of the identity A(zI−A)−1+I = z(zI−A)−1. According

to (Avventi, 2011a, Theorem A.5.5), the dependence of the m× n matrix CΛ defined above

on Λ ∈L
Γ

+ turns out to be a homeomorphism. From this fact it follows that WΛ(e
iθ ) depends

continuously on Λ ∈L
Γ

+ , for all θ ∈ [−π,π]. Consider now

ΦΛ,t(e
iθ ) =W−1

Λ
(eiθ )[ tΨ(eiθ ) + (1− t)I ]W−∗

Λ
(eiθ ).

As a linear combination in t ∈ [0, 1] of continuous functions of Λ, ΦΛ,t(e
iθ ) is jointly continu-

ous w.r.t. t ∈ [0, 1] and Λ ∈L
Γ

+ , for all θ ∈ [−π,π].

Next we need to show the continuity together with the integral. Consider any sequence

{(Λk, tk)}k≥1 ⊂L
Γ

+ × [0,1] such that limk→∞ tk = t̄ ∈ [0,1] and limk→∞Λk = Λ̄ ∈L
Γ

+ . By

Lemma B.1.2, there exists µ > 0 such that G∗ΛkG ≥ µI , ∀k. Therefore, it holds that

GΦΛk ,tk
G∗ ≤ κG(G∗ΛkG)−1G∗

≤ κµ−1GG∗, ∀ k ≥ 1,

where κ is a positive real number such that

tΨ(eiθ ) + (1− t)I ≤ κI , ∀ t ∈ [0, 1], θ ∈ [−π,π].

Such κ exists since Ψ is bounded. The rest argument is similar to that in the proof of Lemma

B.1.3. Given the joint continuity of ΦΛ,t in Λ and t, one can show that the following limit
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holds

lim
k→∞

∫

GΦΛk ,tk
G∗ =

∫

lim
k→∞

GΦΛk ,tk
G∗ =

∫

GΦΛ̄, t̄ G
∗.

This proves joint continuity of H in t and Λ.

Once we have joint continuity, the properness is not difficult to prove. In fact, let K ⊂
Range+ Γ be a compact subset, and we next show that the set

H−1(K) := { (Λ, t) ∈L
Γ

+ × [0, 1] : H(Λ, t) ∈ K }

is compact. The argument is essentially the same as the proof of Theorem 11.4.1 of (Ferrante

et al., 2010). Since our setting is finite-dimensional, a set being compact is equivalent

to being closed and bounded. If H−1(K) is unbounded, one can then find a sequence

{(Λk, tk)} ⊂ H−1(K) such that ‖(Λk, tk)‖ →∞ as k→∞, which necessarily implies ‖Λk‖ →
∞. However, in this case H(Λk, tk) will tend to be singular, which contradicts the premise of

K being compact. This proves the boundedness.

To prove the closedness, if a sequence {(Λk, tk)} in H−1(K) converges to (Λ, t), then Λ

cannot be on the boundary of L+, otherwise ‖H(Λk, tk)‖ →∞, which again contradicts the

compactness of K . To see the latter fact, notice that

H(Λk, tk) =

∫

GΦΛk ,tk
G∗

=

∫

GW−1
Λk
[ tkΨ + (1− tk)I ]W

−∗
Λk

G∗

≥ κmin

∫

G(G∗ΛkG)−1G∗,

where the constant κmin is such that tkΨ(e
iθ )+(1− tk)I ≥ κmin for all θ and k. Such constant

exists since Ψ is coercive. Now if {Λk} approaches ∂L+, then G∗(eiθ )ΛkG(eiθ ) tends to be

singular for some θ . Since G has rank m on T, this in turn implies that ‖H(Λk, tk)‖ →∞ as

k→∞ (cf. Lemma B.1.4 in Appendix B for more details on this point). Therefore, by the

joint continuity of H, (Λ, t) ∈ H−1(K). This concludes the proof of properness.

Theorem 3.4.2. The map ω is surjective.

Proof. Given the second listed property of the degree, the claim follows directly if we can

show that

deg(ω) 6= 0.
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We notice first that ω is proper by Theorem 11.4.1 from (Ferrante et al., 2010), and thus the

degree is well defined. By Lemma 3.4.1 and the homotopy invariance of the degree,

deg(ω) = deg(ω̃1).

As a consequence of Sard–Brown theorem (Outerelo and Ruiz, 2009, p. 63), the codomain

Range+ Γ must contain a regular value of ω̃1 since it has positive Range Γ -Lebesgue measure.

By Lemma B.1.3, the C1 degree (3.35) of ω̃1 at a regular value is well-defined. Meanwhile,

from Proposition 3.3.2, we know that ω̃1 is a diffeomorphism. Therefore, we must have

deg(ω̃1) 6= 0,

and this concludes the proof.

3.4.3 The Special Case of Covariance Extension

Given Λ ∈L+ and G(z) in (3.5), G∗ΛG is now a matrix Laurent polynomial that takes positive

definite values on the unit circle. Let us take

Q(z) :=

p
∑

k=−p

Qkzk ≡ G∗ΛG, Q−k =Q∗
k
∈ Cm×m. (3.44)

Then according e.g. to (Baggio and Ferrante, 2016), Q(z) admits a spectral factorization

Q(z) = D∗(z)D(z), (3.45)

where D(z) =
∑p

k=0
Dkz−k is a m× m matrix polynomial (with negative powers) and the

scalar polynomial det D(z) has all its roots strictly inside the unit circle. We shall call such

D(z) Schur.5 Therefore, the outer spectral factor in (3.11) is just

WΛ(z)≡ D(z). (3.46)

We have the following corollary of Theorem 3.4.2.

Corollary 3.4.3. Given a finite m × m matrix covariance sequence Σ0,Σ1, . . . ,Σp, for any

Ψ ∈Sm, there exists a Schur polynomial D(z) of degree p such that the spectral density

Φ := D−1
ΨD−∗ (3.47)

5Moreover, one can make such spectral factor unique if the constant matrix coefficient D0 is required to be

lower triangular with real and positive diagonal elements.
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satisfies the moment equations (3.8). The polynomial D(z) is a right Schur spectral factor of

G∗ΛG for some Λ ∈L
Γ

+ .

In particular, when taking Ψ(z) = N(z)N ∗(z) with N(z) =
∑q

k=0
Nk z−k, Nk ∈ Cm×m,

which is the spectral density of a moving-average process, the spectral density Φ in (3.47)

corresponds to an m-dimensional vector ARMA (p, q) process

p
∑

k=0

Dk y(t − k) =

q
∑

k=0

Nk w(t − k), t ∈ Z, (3.48)

and we recover one of the main results of (Georgiou, 1983, Section V) under a more general

setting.

3.5 A Diffeomorphic Spectral Factorization

Given the existence result in the previous section, we would like to approach the question of

uniqueness. Quite naturally, we want to extend the analysis in Proposition 3.3.2 to the more

general map ω. However, a difficulty then arises as it will entail the differentiation of the

spectral factor WΛ in (3.11) w.r.t. the parameter Λ. Such a difficulty can be bypassed by the

change of variable introduced in (Avventi, 2011a) and to be reviewed and further developed

next.

Following the lines in the proof of Lemma 3.4.1, given a Λ ∈L
Γ

+ , the right outer spectral

factor of G∗ΛG can be written as WΛ(z) = zCG (3.43), where the matrix C := L−∗B∗P (3.42)

is defined in terms of the stabilizing solution of the DARE (3.40). Notice that here we have

dropped the subscript Λ for the variables to ease the notation. In view of this, the factorization

(3.11) can then be rewritten as

G∗ΛG = G∗C∗CG, ∀z ∈ T. (3.49)

This relation has also been expressed in (Ferrante et al., 2010, Equation 11.29). In the sequel,

we shall also call the m× n matrix C a “spectral factor”.

As reported in (Avventi, 2011a, Section A.5.5), it is possible to build a homeomorphic

factorization by carefully choosing the set where the factor C lives. More precisely, let the set

C+ ⊂ Cm×n contain those matrices C that satisfy the following two conditions:

• CB is lower triangular with real and positive diagonal entries,

• A− B(CB)−1CA has eigenvalues strictly inside the unit circle.
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Define the map

h : L
Γ

+ → C+

Λ 7→ C via (3.42).
(3.50)

Then according to (Avventi, 2011a, Theorem A.5.5), the map h of spectral factorization is a

homeomorphism. We shall next strengthen this result by showing that the map h is in fact a

diffeomorphism using Theorem 3.3.1.

3.5.1 Characterization of the Diffeomorphism

We are going to apply Theorem 3.3.1 to the inverse of h

h−1 : C+→L
Γ

+

C 7→ Λ := ΠRange Γ (C
∗C).

(3.51)

Those technical requirements on the domain and codomain of h−1 can be verified without

difficulty. The set C+ is an open subset of the linear space

C :=
�

C ∈ Cm×n : CB is lower triangular with real diagonal entries
	

,

whose real dimension coincides with Range Γ (cf. (Avventi, 2011a)). The fact that C+ is also

path-connected is a consequence of h being a homeomorphism. Furthermore, the set L
Γ

+ is

simply connected due to Proposition B.1.1. The map h−1 is actually smooth (hence of course

C1) because it is a composition of the quadratic map C 7→ C∗C and the projection ΠRange Γ ,

both of which are smooth. The fact that h−1 is proper has also been reported in (Avventi,

2011a). An alternative proof of such properness independent of optimization is also given

in Appendix B (Proposition B.1.5). Therefore, it remains to investigate the Jacobian of h−1.

In order to carry out explicit computation, it is necessary to choose bases for the two linear

spaces C and Range Γ .

Let M := m(2n−m), and let {Λ1,Λ2, . . . ,ΛM} and {C1, . . . , CM} be orthonormal bases of

Range Γ and C, respectively. Then one can parametrize Λ ∈L
Γ

+ and C ∈ C+ as

Λ(x) = x1Λ1 + x2Λ2 + · · ·+ xMΛM ,

C(y) = y1C1 + y2C2 + · · ·+ yM CM ,
(3.52)

for some x j , y j ∈ R, j = 1, . . . , M . The map h−1 can then be expressed coordinate-wisely as

x j = 〈Λ j , C(y)∗C(y)〉. (3.53)
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Then the partial derivatives can be computed as

∂ x j

∂ yk

= 〈Λ j , C∗
k
C(y) + C∗(y)Ck〉, (3.54)

which is the ( j, k) element of the Jacobian matrix denoted as Jh−1(y). We need some ancillary

results in order to show that h−1 has everywhere nonvanishing Jacobian.

Proposition 3.5.1. If v ∈ Cn is such that v∗G(z) = 0 for all z ∈ T, then v = 0.

Proof. The condition that v∗G(z) = 0 for all z ∈ T implies that

v∗
∫

GG∗v = 0.

Under our problem setting stated in Section 3.2, we have
∫

GG∗ > 0 and thus the assertion

of the proposition follows. To see the fact of positive definiteness, note first that the following

expansion holds

G(z) = (zI − A)−1B

= z−1
∞
∑

k=0

z−kAkB, for |z| ≥ 1,
(3.55)

since A is stable. Then by the Parseval identity, we have

∫

GG∗ =
∞
∑

k=0

AkBB∗(A∗)k = RR∗,

where R = [B, AB, . . . , AkB, . . . ]. The above is the unique solution of the discrete-time Lya-

punov equation

X − AXA∗ = BB∗. (3.56)

Since (A, B) is by assumption reachable, R is of full row rank, and therefore
∫

GG∗ > 0.

Proposition 3.5.2. Given C ∈ C+, the rational matrix equation in the unknown V ∈ Cm×n

G∗(C∗V + V ∗C)G = 0, ∀z ∈ T (3.57)

has the general solution

V =QC (3.58)

where Q ∈ Cm×m is an arbitrary constant skew-Hermitian matrix. If one further requires V ∈ C,

then (3.57) has only the trivial solution V = 0.
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Proof. The equation (3.57) is equivalent to

z∗G∗(C∗V + V ∗C)Gz = 0, ∀z ∈ T. (3.59)

Let

zCG(z) = zC(zI − A)−1B

=
PC(z)

z−n det(zI − A)
,

where PC(z) := z−n+1C adj(zI − A)B and adj(·) denotes the adjugate matrix. Obviously,

PC(z) is a matrix polynomial in the indeterminate z−1, which is intended to conform to the

engineering convention. From (3.55), we have

lim
z→∞

zCG = CB = lim
z→∞

PC(z),

where the second equality holds since limz→∞ z−n det(zI − A) = 1. Moreover, the scalar

polynomial det PC(z) has all its roots inside D, which can be seen from (3.43) as zCG is

minimum phase, i.e., admits a stable inverse.

Define similarly PV (z) := z−n+1V adj(zI −A)B. Then one can reduce (3.59) to the matrix

polynomial equation

P∗C(z)PV (z) + P∗V (z)PC(z) = 0, ∀z ∈ T, (3.60)

in which we have

P∗C(0) =
h

lim
z→∞

PC(z)

i∗
= (CB)∗

nonsingular because C ∈ C+. By the identity theorem for holomorphic functions, if the above

equation holds on T, then it holds for any z ∈ C except for 0 (and∞). Hence the restriction

z ∈ T can be removed here. Since P∗C is anti-stable and P∗C(0) nonsingular, according to

Theorem B.2.10, the general solution of (3.60) is

PV =QPC ,

where Q ∈ Cm×m is an arbitrary constant skew-Hermitian matrix. This in turn implies that

V G(z) =QCG(z), ∀z ∈ T, (3.61)

which in view of Proposition 3.5.1, further implies that V =QC .

To prove the remaining part of the claim, just apply the power series expansion (3.55) to

(3.61), and notice that all the Fourier coefficients on the two sides of (3.61) must coincide.
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This in particular means that

V B =QCB.

Since we have C ∈ C+ and V ∈ C in addition, both V B and CB are lower triangular and the

latter is invertible. Therefore Q turns out to be also lower triangular and at the same time

skew-Hermitian, which necessarily means that Q is equal to 0 and so is V .

Theorem 3.5.3. The Jacobian determinant of h−1 never vanishes in C+ , and hence the map h

in (3.50) is a diffeomorphism.

Proof. Suppose v ∈ RM is such that Jh−1(y)v = 0. We need to show that v = 0. To this end,

notice from (3.54) that equivalently we have for j = 1, 2, . . . , M ,

0=

M
∑

k=1

vk〈Λ j , C∗
k
C(y) + C∗(y)Ck〉

= 〈Λ j , C∗(v)C(y) + C∗(y)C(v)〉,

which implies that

C∗(v)C(y) + C∗(y)C(v)⊥ Range Γ .

In view of (3.13), this in turn means

G∗(z) [C∗(v)C(y) + C∗(y)C(v)]G(z) = 0, ∀z ∈ T.

By Proposition 3.5.2, the only solution is v = 0. Thus Theorem 3.3.1 is applicable and this

completes the proof.

3.6 Preliminary Results on the Uniqueness Question

Let us return to the map ω defined in (3.16). We shall use the result obtained in the previous

section to approach the question of uniqueness of the solution to Problem 3.2.2. Similar

to the case of scalar prior, we shall make the assumption Ψ ∈ C+,m(T), which will facilitate

reasoning. Given the relation (3.43), the spectral density ΦΛ can be reparametrized in C as

ΦΛ ≡ ΦC := (CG)−1
Ψ(CG)−∗. (3.62)

In this way, the map ω can be expressed as a composition

ω = τ ◦ h : ω(Λ) = τ(h(Λ)), (3.63)
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with h in (3.50) and

τ: C+→ Range+ Γ

C 7→
∫

GΦC G∗.
(3.64)

Since h has been proved to be a diffeomorphism, we can restrict our attention to the map τ

due to the next simple result.

Proposition 3.6.1. Let X , Y, Z be open subsets of Rn. Suppose we have functions f : X → Y ,

g : Y → Z and f is a diffeomorphism between X and Y . Define the composite function

h= g ◦ f : X → Z . (3.65)

Then h is a diffeomorphism between X and Z if and only if g is a diffeomorphism between Y

and Z.

Proof. The “if” part is trivial since a composition of two diffeomorphisms is again a diffeo-

morphism. To see the converse, for y ∈ Y , let x = f −1(y) ∈ X and put it into (3.65) as an

argument of h. Then one gets

g = h ◦ f −1,

which is again a composition of two diffeomorphisms.

Since properness of the map ω has already be proven, it remains to show that ω is

continuously differentiable and has everywhere nonvanishing Jacobian. In view of the

relation (3.63) and the previous proposition, it will be sufficient and necessary that the map

τ possesses such two properties. We need the next lemma before proving the continuous

differentiability.

Proposition 3.6.2. The map τ in (3.64) is of class C1.

Proof. We can proceed by mimicking the proof of Lemma B.1.3, although the argument here

is slightly more general. First compute the differential of Φ(z; C) w.r.t. C ∈ C+ as

δΦ(z; C;δC) = −(CG)−1δCGΦC −ΦC G∗δC∗(CG)−∗, (3.66)

which is easily seen to be continuous in C and θ ∈ [−π,π] for a fixed δC ∈ C. This means

that we can take the differential of the map τ inside the integral in (3.64)

δτ(C;δC) =

∫

GδΦ(eiθ ; C;δC)G∗. (3.67)



3.6 Preliminary Results on the Uniqueness Question 63

Next we show that the above differential is continuous in C for a fixed δC . To this end,

suppose we have a sequence {Ck}k≥1 ⊂ C+ that converges to some C̄ ∈ C+ as k→∞. Due

to the relation (3.49), we have for each k

G∗ΛkG = G∗C∗
k
CkG, ∀z ∈ T, (3.68)

where Λk = h−1(Ck) ∈L
Γ

+ . Since h is a diffeomorphism by Theorem 3.5.3, we have

lim
k→∞

Λk = Λ̄ := h−1(C̄).

Let λmin,k(θ ) be the smallest eigenvalue of G∗(eiθ )ΛkG(eiθ ), and σmin,k(θ ) be the smallest

singular value of CkG(eiθ ). In view of (3.68), we have

λmin,k(θ ) = σ
2
min,k(θ )

By Lemma B.1.2, there exist a real number µ > 0 such that

λmin,k(θ )≥ µ =⇒ σmin,k(θ )≥
p
µ, ∀k,θ .

Then we have

‖δΦ(eiθ ; Ck;δC)‖2 ≤ 2‖(CkG)−1δCGΦCk
‖2

≤ 2‖(CkG)−1‖32‖δCG‖2‖Ψ‖2

≤ 2

σ3
min,k
(θ )
‖δCG‖F‖Ψ‖F ≤ K ,

where the constant

K =
2

µ3/2
max
θ
‖δCG(eiθ )‖F max

θ
‖Ψ(eiθ )‖F .

We can now bound the integrand in (3.67). For any θ ∈ [−π,π] and k ≥ 1, we have

�

�

�

�

GδΦ(eiθ ; Ck;δC)G∗
�

jℓ

�

�

�≤ ‖GδΦ(eiθ ; Ck;δC)G∗‖F
≤ κ‖GδΦ(eiθ ; Ck;δC)G∗‖2
≤ κK‖G‖22 ≤ κKGmax,

where κ is a constant for norm equivalence and Gmax in (B.1). The last step is an application

of Lebesgue’s dominated convergence theorem to conclude

lim
k→∞

δτ(Ck;δC) = δτ(C̄;δC),



64 Further Results on a Parametric Multivariate Spectral Estimation Problem

which completes the proof.

We are now left with the task of investigating whether the Jacobian of τ vanishes nowhere,

which can be approached via the differential (3.67). However, the trick of orthogonality in

the proof of Proposition 3.3.2 does not apply in a straightforward manner to the general map

ω. The next result is due to (Baggio, 2018b). It is a small improvement over Proposition

3.3.2 and complements (Ferrante et al., 2010, Theorem 11.4.3), one of the main results in

that paper. The proof uses essentially the same technique as in the scalar case.

Proposition 3.6.3. If the prior Ψ = ψM with ψ ∈ S1 and M ∈ H+,m , then the Jacobian

determinant of τ vanishes nowhere in C+ , and hence the map ω is a diffeomorphism.

Proof. First observe that we can rewrite the differential (3.66) as

δΦ(z; C;δC) = −ΦC G∗δ(C∗Ψ−1C)GΦC , (3.69)

where δ(C∗Ψ−1C) denotes the differential of C∗Ψ−1C w.r.t. C , i.e.,

δ(C∗Ψ−1C) = C∗Ψ−1δC +δC∗Ψ−1C .

Fix C ∈ C+ and let δτ(C;δC) = 0 for some δC ∈ C. In view of (3.67), this implies that

δΦ(z; C;δC) ∈ ker Γ = (Range Γ ∗)⊥,

which in view of (3.12), means

〈G∗X G,δΦ(z; C;δC)〉= tr

∫

G∗X GδΦ(eiθ ; C;δC)

= − tr

∫

G∗X GΦC G∗δ(C∗Ψ−1C)GΦC

= 0, ∀X ∈ Hn.

(3.70)

When Ψ =ψM , choosing X = δ(C∗M−1C) in (3.70) will lead to the relation








ψ1/2
�

Φ
1/2
C

�∗
G∗δ(C∗M−1C)GΦ

1/2
C










2

L2

= 0,

where ‖χ‖2L2
:= tr
∫

χχ∗ and Φ
1/2
C

is a spectral factor of ΦC . By the same reasoning as in

Proposition 3.3.2, this implies G∗δ(C∗M−1C)G ≡ 0 on the unit circle, or more explicitly,

G∗(C∗M−1δC +δC∗M−1C)G = 0, ∀z ∈ T.
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In view of Proposition 3.5.2, the general solution to the above equation is

δC = MQC , (3.71)

where Q is an m×m skew-Hermitian matrix. Equation (3.71) in particular implies

δCB = MQCB, (3.72)

where δCB and CB lower triangular matrices with real diagonal entries and CB is invertible.

Introduce also the Cholesky factorization M = LM L∗M . Then we have

Q = M−1δCB(CB)−1

= L−∗M V,
(3.73)

where V := L−1
M δCB(CB)−1 is lower triangular. The matrix Q being skew-Hermitian gives

the relation

L−∗M V + V ∗L−1
M = 0⇐⇒ V LM + L∗M V ∗ = 0.

We see that V LM is skew-Hermitian and at the same time lower triangular, which means

V LM = 0. Therefore we must have V = 0 and Q = 0 by (3.73), which in turn implies

δC = 0.

3.7 Concluding Remarks

We have studied the multivariate spectral estimation problem formulated in a parametric

fashion first introduced in (Ferrante et al., 2010). We have shown that the problem is

well-posed with respect to the covariance data if the chosen prior is scalar. Moreover, the

unique solution parameter depends also continuously on the scalar prior function while the

covariance matrix is held fixed. Thus we have provided a complete proof of well-posedness in

this special case, which will facilitate the design of numerical algorithms in the next chapter.

For the general case with an arbitrary matrix prior density, we have shown that the

parametric spectral estimation problem admits a solution, and that well-posedness holds

when the prior has the structure of a scalar density function times a constant positive definite

matrix. The uniqueness question in general is still open and we hope to answer it in a future

work.

Another research direction concerns the computation of a solution to the problem. To

accomplish this task, in (Ferrante et al., 2010) the following matricial fixed-point iteration
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was introduced

Λk+1 =

∫

Λ
1/2

k
G(W−1

Λk
ΨW−∗

Λk
)G∗Λ1/2

k
, (3.74)

where the initialization is set to Λ0 =
1
n I . Iteration (3.74) can be seen as a multivariate

generalization of the scalar algorithm proposed in (Pavon and Ferrante, 2006) for the Kullback–

Leibler estimation of spectral densities. The latter algorithm has proved to be extremely

efficient and numerically robust, and its convergence properties have been thoroughly inves-

tigated in (Ferrante et al., 2007, 2011; Baggio, 2018a). The extension of these convergence

results to the multivariate case will be another subject of future investigation.



4
Numerical Solvers for the Spectral Estimation

Problem

4.1 Introduction

This chapter concerns the numerical solution to the parametric spectral estimation problem.

We consider only the case with a scalar prior in which results of well-posedness have been

established in Section 3.3. There are two different ways to do the computation. One is to

solve an optimization problem which was reported in (Avventi, 2011a), and the other is to

numerically invert the moment map directly using a continuation method. We shall discuss

the optimization problem briefly and focus more on the continuation method.

As for the optimization part, what interests us here is to do the optimization in the domain

of spectral factors, namely, to perform a bijective change of optimization variables using

the relation of spectral factorization studied in Section 3.5. This idea has been partially

pursued in (Avventi, 2011a). However, the spectral factor introduced in that thesis for the

optimization lives in a linear space which has a larger dimension than Range Γ . Hence there

is redundancy in the chosen variables for optimization in (Avventi, 2011a), which stimulates

the development here. In contrast, our optimization problem (after a change of variables) is

still well-posed although convexity holds only locally. Convergence of descent algorithms is

revisited.
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The rest of this chapter is devoted to another numerical solver to compute the unique

solution to the parametric spectral estimation problem using a continuation method which is a

quite standard tool from nonlinear analysis. The idea is to solve a family of moment equations

parametrized by one real variable, and to trace the solution curve from a known starting point

based on the continuity result in Subsection 3.3.1. An algorithm called “predictor-corrector”

(see (Allgower and Georg, 1990)) is adapted for the current problem. Thanks to the well-

posedness of the problem, convergence of the algorithm is ensured when the step length

is sufficiently small. The proof, inspired by (Enqvist, 2001), is built upon the Kantorovich

theorem for the convergence of Newton iterations to solve nonlinear equations.

In both cases, we do computation in the domain of spectral factors as introduced in

Section 3.5 due to the improvement of conditioning, as noted in (Enqvist, 2001; Avventi,

2011a), especially when the solution lies near the boundary of the feasible set.

The chapter is organized as follows. Following the result on spectral factorization in

Section 3.5, Section 4.2 concerns the optimization problem studied in (Avventi, 2011a)

reparametrized in terms of the spectral factor. We show that only local convergence can be

guaranteed when using descent algorithms due to loss of convexity. Section 4.3 contains a

numerical continuation solver to compute the solution parameter of the well-posed parametric

problem (Section 3.3) again in the domain of spectral factors. Convergence of the proposed

algorithm is investigated in detail. Moreover, a key computational step concerning the inverse

Jacobian is elaborated.

4.2 Optimization in the Domain of Spectral Factors

As mentioned briefly in Remark 3.3.3, the unique solution in D̃ (3.18) to the spectral

estimation problem studied in the previous chapter has an interesting characterization that it

solves the following optimization problem

minimize
Φ∈Sm

S(ψ||Φ) :=

∫

ψ log det(ψΦ−1) subject to (3.3) (4.1)

where S(ψ||Φ) is the multivariate counterpart of the Kullback-Leibler divergence between

spectral densities studied in (Georgiou and Lindquist, 2003). The parameter Λ appears in

the dual problem

minimize
Λ∈L Γ

+

Jψ(Λ) := 〈Λ,Σ〉 −
∫

ψ log det(G∗ΛG). (4.2)
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It can be shown that the dual problem is strictly convex, and convergence of some numerical

algorithms to solve the problem has been reported in (Avventi, 2011a).

Next we shall pursue the idea of reparametrizing the cost function in terms of the spectral

factor as expressed in the relation (3.49). Given orthonormal bases (3.52), we can rewrite

the cost as a function of the coordinates. More precisely, let us define

f (x) := Jψ(Λ(x)), (4.3a)

g(y) := ( f ◦ h−1)(y) = Jψ (C
∗(y)C(y)) , (4.3b)

where the map h−1 is understood in terms of the coordinates (3.53), and the second equality

comes from the fact that the part of C∗C that is orthogonal to Range Γ plays no role in the

evaluation of the function Jψ. The dual problem (4.2) can then be reformulated in terms of

the spectral factor C as

minimize
C(y)∈C+

g(y). (4.4)

This is a nonconvex problem since neither the feasibility set C+ nor the function g is convex.

However, it still possesses a number of desired properties as stated below.

Proposition 4.2.1. The function g(y) has a unique stationary point ŷ such that C( ŷ) ∈ C+ ,

which is the unique solution of the optimization problem (4.4), and it is related to the unique

stationary point x̂ of f (x) via the spectral factorization ŷ = h( x̂). Moreover, the function g(y)

is strictly convex in a neighborhood of ŷ.

Proof. One can proceed essentially in the same way as Propositions 4–7 in (Enqvist, 2001). For

simplicity, let us rename the unique minimizer of (4.2) as Λ̂ = Λ( x̂). Then Ĉ = C( ŷ) := h(Λ̂)

is necessarily a minimizer of (4.4). If there is another C̃ ∈ C+ with the same minimum value,

then it must happen that Λ̂= h−1(C̃), which implies Ĉ = C̃ . This proves the uniqueness of

the solution to (4.4).

From the relation (4.3b), we have

∇g(y) = Jh−1(y)⊤∇ f (h−1(y)). (4.5)

By Theorem 3.5.3, the Jacobian matrix of h−1 vanishes nowhere in C+. Therefore, y is a

stationary point of g if and only if h−1(y) is a stationary point of f . By the same reasoning

as above, the stationary point of g is unique and solves the optimization problem (4.4).

To see the last assertion, let us proceed to compute the Hessian of g

∇2 g(y) = Jh−1(y)⊤∇2 f (h−1(y)) Jh−1(y) +

�

d

d y
Jh−1(y)⊤
�

∇ f (h−1(y))
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where ∇2 f (·) is the Hessian matrix of f , and d
d y Jh−1(y)⊤ denotes the “array” of second-order

partials of h−1. Evaluating at y = ŷ coordinate of the minimizer Ĉ , we must have∇2 g( ŷ)> 0

since ∇2 f (·)> 0, Jh−1(·) is nonsingular, and ∇ f (h−1( ŷ)) = 0 due to stationarity. Because of

the continuity of the Hessian, there exists δ1 > 0 such that ∇2 g(y) is strictly positive definite

in the closed ball

B( ŷ ,δ1) := {y ∈ RM : ‖y − ŷ‖ ≤ δ1}. (4.6)

4.2.1 Local Convergence of Descent Algorithms

A class of iterative algorithms known as descent algorithms produce a sequence of points

{yk}k≥0 such that

yk+1 = yk +αkpk, (4.7)

where pk is the descent direction given by

Bkpk = −∇g(yk), (4.8)

with Bk > 0, and αk > 0 is the step length.

Convergence of descent algorithms for the problem (4.4) has been studied in (Avventi,

2011a, Subsection A.5.4). However, the proof relies on Propositions A.4.1 and A.5.4 in

the same paper whose assertions will in general fail if Bk in (4.8) is an arbitrary positive

definite matrix. The reason is due to (Horn and Johnson, 2013, Theorem 4.5.15(a), p. 286),

which states that the product of two Hermitian positive definite matrices is again Hermitian

positive definite if and only if they commute. Nonetheless, at least local convergence can be

guaranteed.

Proposition 4.2.2. Consider the optimization problem (4.4). Let the initial guess y0 be close

enough to the stationary point ŷ of g, and let {yk} be generated by (4.7) with the direction pk

given by (4.8). Suppose that

0< β− I ≤ Bk ≤ β+ I , ∀k,

for some β−,β+ ∈ R. Then one can determine the step length αk such that the descent algorithm

converges to ŷ.

Proof. Since the problem is locally strictly convex by Proposition 4.2.1, tools from convex

analysis can be utilized in the neighborhood B( ŷ ,δ1) in (4.6). The proof is an adaption of

the procedure in (Boyd and Vandenberghe, 2004, p. 468). We shall specify δ > 0 for y0 to

live in B( ŷ ,δ) and determine a constant step length to achieve convergence.
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First we can make δ ≤ δ1 so that y0 is in the strictly convex region. Let us recall some

basic facts derived from convexity. Due to locally strict convexity of g, we have (cf. (Boyd and

Vandenberghe, 2004, Subsection 9.1.2)) for some constants µ−,µ+ ∈ R and ∀y ∈ B( ŷ ,δ1)

0< µ− I ≤∇2 g(y)≤ µ+ I ,

‖y − ŷ‖ ≤
√

√ 2

µ−
(g(y)− g( ŷ)), (4.9)

‖∇g(y)‖2 ≥ 2µ−(g(y)− g( ŷ)). (4.10)

Moreover, we have the Mean Value Inequality

‖∇g(y)‖ ≤ µ+‖y − ŷ‖. (4.11)

Let us determine first the step length α0 such that

(i) y1 ∈ B( ŷ ,δ1);

(ii) g(y1)< g(y0) +ηα0∇g(y0)
⊤p0 for some constant η ∈ (0, 1).

By choosing the step length small enough, the point (i) above can be guaranteed. More

precisely, choosing

α0 ≤ β−
δ1 − ‖y0 − ŷ‖
‖∇g(y0)‖

will be sufficient, since it implies

‖y1 − ŷ‖ ≤ ‖y0 − ŷ‖+α0‖B−1
0 ∇g(y0)‖

≤ ‖y0 − ŷ‖+ α0

β−
‖∇g(y0)‖ ≤ δ1.

By the continuity of g, there exists δ2 > 0 such that the right-hand side of (4.9) can be made

less than δ1/2 if ‖y − ŷ‖< δ2. If we let ‖y0− ŷ‖< δ :=min{δ1,δ2}, by (4.9) we shall have

‖y0 − ŷ‖< δ1/2, which further implies

β−
δ1 − ‖y0 − ŷ‖
‖∇g(y0)‖

≥ β−
δ1 − ‖y0 − ŷ‖
µ+‖y0 − ŷ‖ ≥

β−
µ+

,

where we have used (4.11), and we can thus choose α0 ≤ β−/µ+.

The point (ii) is also called sufficient descent in the literature of optimization. To achieve



72 Numerical Solvers for the Spectral Estimation Problem

this, consider the second-order Taylor expansion for y1 ∈ B( ŷ ,δ1)

g(y1) = g(y0) +α0∇g(y0)
⊤p0 +

1

2
α2

0p⊤0∇2 g(y0 + ξ0p0)p0

≤ g(y0) + ‖∇g(y0)‖2
�

−α0

β+
+
α2

0

2β2
−
µ+

� (4.12)

where 0< ξ0 < α0. It is then easy to verify that any α0 <
2β−(β−−β+η)

µ+β+
with η < β−/β+ will

satisfy the condition of sufficient descent, since it readily implies that the constant in the

second line of (4.12) satisfies

−α0

β+
+
α2

0

2β2
−
µ+ < −

ηα0

β−
,

and at the same time, we have

−ηα0

β−
‖∇g(y0)‖2 ≤ ηα0∇g(y0)

⊤p0.

In particular, we can choose a constant step length, e.g., α0 =
β−(β−−β+η)

µ+β+
.

Finally, we can set

α0 =min

§

β−
µ+

,
β−(β− − β+η)

µ+β+

ª

.

Due to the descent in objective function value, by (4.9) we must have again ‖y1− ŷ‖ ≤ δ1/2

and the above reasoning holds also for future iterates. In this way, we obtain a sequence of

iterates {yk} ⊂ B( ŷ ,δ1) with sufficient descent

g(yk+1)< g(yk) +ηαk∇g(yk)
⊤pk (4.13)

for some constant η < β−/β+ at each step, with αk ≡ α0. Subtracting g( ŷ) on both sides of

(4.13), we have

g(yk+1)− g( ŷ)< g(yk)− g( ŷ) +ηαk∇g(yk)
⊤pk

≤ g(yk)− g( ŷ)− ηαk

β+
‖∇g(yk)‖2

≤
�

1− 2ηαkµ−
β+

�

(g(yk)− g( ŷ))

(4.14)

where the third inequality follows from (4.10). Apply the inequality recursively and we
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obtain the relation

g(yk)− g( ŷ)<

�

1− 2ηαkµ−
β+

�k

(g(y0)− g( ŷ)).

Letting η <min{β−/β+, 1/2}, the constant 1− 2ηαkµ−
β+

is less than one and we have at least

linear convergence locally.

4.3 A Continuation Solver for the Parametric Problem

In this section, we consider the problem of numerically solving the generalized moment

equation in the parametric form directly without referring to the cost function in (4.2). Again

we shall exploit the spectral factorization studied in Section 3.5 and reformulate Problem

3.2.2 in terms of the spectral factor of G∗ΛG for Λ ∈L
Γ

+ . Though it may appear slightly more

complicated, this reformulation is preferred from a numerical viewpoint, as the Jacobian of

the new map corresponding to (3.19) will have a smaller condition number when the solution

is close to the boundary of the feasible set. This point has been illustrated in (Enqvist, 2001;

Avventi, 2011a) (see also later in Subsection 4.3.2).

First let us introduce the moment map g : C+(T)×C+→ Range+ Γ parametrized in the

new variable C as

g (ψ, C) := f (ψ, h−1(C)) =

∫

Gψ(G∗C∗CG)−1G∗, (4.15)

and the sectioned map when ψ ∈ C+(T) is held fixed

τ̃ := ω̃ ◦ h−1 : C+→ Range+ Γ , (4.16)

where ω̃ has been defined in (3.21). A corresponding problem is formulated as follows.

Problem 4.3.1. Given the filter bank G(z) in (3.2), the matrix Σ ∈ Range+ Γ , and an arbitrary

ψ ∈ C+(T), find the parameter C ∈ C+ such that

τ̃(C) = Σ. (4.17)

The next corollary is an immediate consequence of Theorems 3.3.7 and 3.5.3 and is stated

without proof.
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Corollary 4.3.2. The map τ̃ in (4.16) is a diffeomorphism. Moreover, if we fix the matrix Σ

and allow the prior ψ to vary, then the solution map

h ◦ s( · ,Σ) : C+(T)→ C+ (4.18)

is of class C1.

Therefore, Problem 4.3.1 is also well-posed exactly like Problem 3.2.2. However, unlike

the case of the map ω̃ as mentioned in Remark 3.3.3, the equation (4.17) is different from the

stationarity condition of the function Jψ ◦ h−1 for a fixed ψ. Therefore, we cannot deal with

Problem 4.3.1 in the way of optimization. Nonetheless, it can be solved using a numerical

continuation method as will be detailed next. We shall work with coordinates as explained in

Subsection 3.5.1 whenever convenient. With reference to the coordinate representations of

Λ ∈L
Γ

+ and C ∈ C+ in (3.52), we shall then introduce some abuse of notation and make no

distinction between the variable and its coordinates. For example, f (ψ, x) is understood as

f (ψ,Λ(x)) defined in the previous chapter and similarly, τ̃(y) means τ̃(C(y)).

Instead of dealing with one particular equation (4.17), a continuation method (cf. (All-

gower and Georg, 1990)) aims to solve a family of equations related via a homotopy, i.e., a

continuous deformation. In our context, there are two ways to construct different homotopies.

One is to deform the covariance data Σ and study the equation (4.17) for a fixed ψ.1 Such

an argument has been used extensively in (Georgiou, 2005, 2006). Here we shall adopt an

alternative, that is, deforming the prior function ψ while keeping the covariance matrix fixed,

which can be seen as a multivariate generalization of the argument in (Enqvist, 2001, Section

4). An advantage to do so is that we can obtain a family of matrix spectral densities that are

consistent with the covariance data.

The set C+(T) is easily seen to be convex. One can then connect ψ with the constant

function 1 (taking value 1 on T) via the line segment

p(t) = (1− t)1+ tψ, t ∈ U = [0, 1], (4.19)

and construct a convex homotopy U ×C+→ Range+ Γ given by

(t, y) 7→ g (p(t), y). (4.20)

Now let the covariance matrix Σ ∈ Range+ Γ be fixed whose coordinate vector is xΣ, and

consider the family of equations

g (p(t), y) = xΣ (4.21)

1This will be reviewed in Chapter 5.
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parametrized by t ∈ U . By Corollary 4.3.2, we will have a continuously differentiable solution

path in the set C+

y(t) = h(s(p(t), xΣ)). (4.22)

Moreover, differentiating (4.21) on both sides w.r.t t, one gets

g ′1(p(t), y(t); p′(t)) + g ′2(p(t), y(t); y ′(t)) = 0,

where p′(t)≡ψ− 1 independent of t, and the partial derivatives are given by

g ′1(ψ, y) = f ′1(ψ, h−1(y)), (4.23a)

g ′2(ψ, y) = f ′2(ψ, h−1(y)) Jh−1(y). (4.23b)

The symbol Jh−1(y) means the Jacobian matrix of h−1 evaluated at y . Hence the path y(t) is

a solution to the initial value problem (IVP)

(

y ′(t) = −
�

g ′2(p(t), y(t))
�−1

g ′1(p(t), y(t); p′(t))

y(0) = y(0)
(4.24)

Notice that the partial g ′2 is a finite-dimensional Jacobian matrix which is invertible every-

where in its domain of definition since both terms on the right hand side of (4.23b) are

nonsingular (cf. Chapter 3). From classical results on the uniqueness of solution to an ODE,

we know that the IVP formulation and (4.21) are in fact equivalent.

The initial value y(0) corresponds to ψ= 1, and it is the spectral factor of the so-called

maximum entropy solution, i.e., solution to the problem

maximize
Φ∈Sm

∫

log detΦ subject to (3.3). (4.25)

As has been worked out in (Georgiou, 2002a), the above optimization problem has a unique

solution Φ = (G∗ΛG)−1 with

Λ = Σ−1B(B∗Σ−1B)−1B∗Σ−1,

from which the corresponding spectral factor C can be computed as

C = L−∗B∗Σ−1, (4.26)

where L is the right Cholesky factor of B∗Σ−1B. According to (Georgiou, 2002a), such C is

indeed in the set C+, i.e., CB lower triangular and the closed-loop matrix is stable.
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At this stage, any numerical ODE solver can in principle be used to solve the IVP and

obtain the desired solution y(1) corresponding to a particular prior ψ. However, this IVP

is special in the sense that for a fixed t, y(t) is a solution to a finite-dimensional nonlinear

system of equations, for which there are numerical methods (such as Newton’s method) that

exhibit rapid local convergence properties, while a general-purpose ODE solver does not

take this into account. Out of such consideration, a method called “predictor-corrector” is

recommended in (Allgower and Georg, 1990) to solve the IVP, which is reviewed next.

Suppose for some t ∈ U we have got a solution y(t) and we aim to solve (4.21) at t +δt

where δt is a chosen step length. The predictor step is just numerical integration of the

differential equation in (4.24) using e.g., the Euler method

z(t +δt) := y(t) + v(t)δt, (4.27)

where v(t) := −
�

g ′2(p(t), y(t))
�−1

g ′1(p(t), y(t); p′(t)). The corrector step is accomplished

by the Newton’s method to solve (4.21) initialized at the predictor z(t + δt). If the new

solution y(t +δt) can be attained in this way, one can repeat such a procedure until reaching

t = 1. The algorithm is summarized in the table.

Algorithm 4.1 Predictor-Corrector

Let k = 0, t = 0, and y(0) initialized as in (4.26)

Choose a sufficiently small step length δt

while t ≤ 1 do

Predictor: z(k+1) = y(k) + v(t)δt the Euler step (4.27)

Corrector: solve (4.21) at t +δt for y(k+1) initiated at z(k+1) using Newton’s method

Update t :=min{1, t +δt}, k := k+ 1

end while

return The last y(k) corresponding to t = 1

4.3.1 Convergence Analysis

We are now left to determine the step length δt so that the corrector step can converge and

the algorithm can return the target solution y(1) in a finite number of steps. We show next

that one can choose a uniformly constant step length δt such that the predictor z(k) will be

close enough to the solution y(k) for the Newton’s method to converge locally.2 We shall

need the next famous Kantorovich theorem which can be found in (Ortega and Rheinboldt,

2000, p. 421).

2Notice that convergence results in (Allgower and Georg, 1990) under some general assumptions do not apply

here directly.
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Theorem 4.3.3 (Kantorovich). Assume that f : D ⊂ Rn→ Rn is differentiable on a convex set

D0 ⊂ D and that

‖ f ′(x)− f ′(y)‖ ≤ γ‖x − y‖, ∀ x , y ∈ D0

for some γ > 0. Suppose that there exists an x (0) ∈ D0 such that α = βγη ≤ 1/2, for some

β ,η > 0 meeting

β ≥ ‖ f ′(x (0))−1‖, η ≥ ‖ f ′(x (0))−1 f (x (0))‖.

Set

t∗ = (βγ)−1
�

1− (1− 2α)1/2
�

, (4.28a)

t∗∗ = (βγ)−1
�

1+ (1− 2α)1/2
�

, (4.28b)

and assume that the closed ball B(x (0), t∗) is contained in D0. Then the Newton iterates

x (k+1) = x (k) − f ′(x (k))−1 f (x (k)), k = 0,1, . . .

are well-defined, remain in B(x (0), t∗), and converge to a solution x of f (x) = 0 which is unique

in B(x (0), t∗∗)∩ D0.

In order to apply the above theorem, we need to take care of the locally Lipschitz property.

To this end, we shall first introduce a compact set in which we can take extrema of various

norms.

Lemma 4.3.4. There exists a compact set K ⊂ C+ that contains the solution path {y(t) : t ∈ U}
given by (4.22) in its interior.

Proof. We know from previous reasoning that the solution path is contained in the open set

C+. By continuity, the set {y(t)} is easily seen to be compact, i.e., closed and bounded, and

thus admits a compact neighborhood K ⊂ C+. Such a neighborhood K can be constructed

explicitly as follows. Let B(y(t)) ⊂ C+ be an open ball centered at y(t) such that its closure

is also contained in C+. Then the set
⋃

t∈U B(y(t)) is an open cover of {y(t)}, which by

compactness, has a finite subcover
n
⋃

k=1

B(y(tk))

whose closure can be taken as K .

Lemma 4.3.5. For a fixed t ∈ U, the derivative g ′2(p(t), y) ∈ L(C, Range Γ ) is locally Lipschitz

continuous in y in any convex subset of the compact set K constructed in Lemma 4.3.4, where p(t)

is the line segment given in (4.19). Moreover, the Lipschitz constant can be made independent of

t.
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Proof. It is a well known fact a continuously differentiable function is locally Lipschitz. Hence

we need to check the continuity of the second-order derivative following from (4.23b)

g ′′22(ψ, y;δ y1,δ y2) =f ′′22(ψ, h−1(y); Jh−1(y)δ y2, Jh−1(y)δ y1)

+ f ′2(ψ, h−1(y))
d

d y
Jh−1(y)(δ y2,δ y1).

(4.29)

Here d
d y Jh−1(y) is the second order derivative of h−1 evaluated at y which is viewed as a

bilinear function C× C→ Range Γ . It is continuous in y since the function (3.51) is actually

smooth (of class C∞). Albeit more tedious computation, one can also show that the second-

order partial f ′′22(ψ, x) is continuous following the lines in Subsection 3.3.1. Therefore, for

fixed δ y1,δ y2, the differential (4.29) is continuous in (ψ, y). Consider any convex subset

D0 ⊂ K with y1, y2 ∈ D0. By the mean value theorem we have

‖g ′2(ψ, y2)− g ′2(ψ, y1)‖

=
















∫ 1

0

g ′′22(ψ, y1 + ξ(y2 − y1))dξ(y2 − y1)
















≤max
y∈K
‖g ′′22(ψ, y)‖‖y2 − y1‖.

(4.30)

Now let us replace ψ with p(t). The local Lipschitz constant can be taken as

γ := max
t∈U , y∈K

‖g ′′22(p(t), y)‖. (4.31)

Based on precedent lemmas, our main result in this section is stated as follows.

Theorem 4.3.6. Algorithm 4.1 returns a solution to (4.21) for t = 1 in a finite number of steps.

Proof. At each step, our task is to solve the equation (4.21) for t +δt from the initial point

z(t+δt) = y(t)+ v(t)δt given in (4.27). The idea is to work in the compact set K introduced

in Lemma 4.3.4. The boundary of K is denoted by ∂ K which is also compact.

First, we show that the predictor z(t +δt) will always stay in K as long as the step length

δt is sufficiently small. Define

c1 :=min
t∈U

d(y(t),∂ K), (4.32)

c2 :=max
t∈U
‖v(t)‖, (4.33)

where d(x , A) :=miny∈A d(x , y) is the distance function from a point x to a set A. Note that
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c1 > 0 because all the points {y(t)} are in the interior of K . Then we see that the condition

δt <
c1

c2

:= δt1 (4.34)

is sufficient since in this way

‖v(t)δt‖ ≤ c2δt < c1 ≤ d(y(t),∂ K), ∀t ∈ U ,

which implies that z(t + δt) ∈ K. The reason is that one can always go from y(t) in the

direction of v(t) until the boundary of K is hit. Hence we are safe to take the step length

δt = δt1/2.

Secondly, we want to apply the Kantorovich Theorem to ensure convergence of the

corrector step, i.e., the Newton iterates. The function ψ = p(t + δt) is held fixed in the

corrector step. The uniform Lipschitz constant γ has been given in Lemma 4.3.5, and there

are two remaining points:

(i) We need to take care of the constraint α = βγη ≤ 1/2. Clearly, we can simply take

β = ‖g ′2(ψ, y
(0)

in
)−1‖ and

η =








g ′2(ψ, y
(0)

in
)−1
�

g (ψ, y
(0)

in
)− xΣ

�







 ,

where y
(0)

in
= z(t +δt) is the initialized inner-loop variable. Define

c3 := max
y∈K ,t∈U

‖g ′2(p(t), y)−1‖, (4.35)

c4 := max
y∈K ,t∈U

‖g ′′22(p(t), y)‖, (4.36)

and obviously we have β ≤ c3, η ≤ c3‖g (ψ, y
(0)

in
)− xΣ‖. Hence a sufficient condition is

‖g (ψ, y
(0)

in
)− xΣ‖ ≤

1

2c2
3
γ

,

and we need an estimate of the left hand side. The Taylor expansion of g in its second

argument is

g (ψ, y(t) + v(t)δt) = g (ψ, y(t)) +δtg ′2(ψ, y(t))v(t) +
δt2

2
B[v(t), v(t)], (4.37)

where B is the bilinear function determined by the second order partials. Due to linearity
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and the identity ψ = p(t +δt) = p(t) +δt p′(t), the first term

g (p(t +δt), y(t)) = g (p(t), y(t)) +δtg ′1(p(t), y(t); p′(t))

= xΣ +δtg ′1(p(t), y(t); p′(t)).
(4.38)

The matrix in the second term3

g ′2(p(t +δt), y(t)) = g ′2(p(t), y(t)) +δtg ′2(p
′(t), y(t)) (4.39)

Substituting these two expressions into (4.37), we obtain a cancellation due to the

definition of v(t) after (4.27) and we have

g (ψ, y(t) + v(t)δt)− xΣ = δt2g ′2(p
′(t), y(t))v(t) +

δt2

2
B[v(t), v(t)] (4.40)

whose norm is less than δt2(c5c2 +
1
2 c2

2 c4), where

c5 :=max
y∈K
‖g ′2(p′(t), y)‖.

We end up having the sufficient condition

δt2(c5c2 +
1

2
c2
2 c4)≤

1

2c2
3
γ
=⇒ δt ≤ δt2.

(ii) We need to insure that the closed ball B(y
(0)

in
, t∗) is also contained in K . Clearly, we only

need to make t∗ ≤ mint∈U d(p(t) + v(t)δt1/2,∂ K) =: r2, where δt1 is the uniform

step determined in (4.34). This can be done since by its definition (4.28a), t∗ tends to

0 when the step length δt → 0. A sufficient condition is

1−
p

1− 2α≤ c6γr2⇐⇒ α≤
1

2
(1− (1− c6γr2)

2),

provided that 1− c6γr2 > 0, where

c6 := min
y∈K ,t∈U

‖g ′2(p(t), y)−1‖.

With the bound for β and η in the previous point, a more sufficient condition is

δt2γc2
3(c5c2 +

1

2
c2
2 c4)≤

1

2
(1− (1− c6γr2)

2),

3Attention: g ′
2
(p′(t), y(t)) is an abuse of notation because p′(t) = ψ− 1 may not be in the domain of the

functional. It should be understood as substituting ψ with p′(t) in the expression of g ′
2
(ψ, y(t)).
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which implies δt ≤ δt3 (constant).

At last we can just take δt :=min{δt1/2,δt2,δt3 }. In this way, the Kantorovich theo-

rem is applicable to ensure local convergence in each inner loop. The reasoning above is

independent of t and hence the step length is uniform. This concludes the proof.

4.3.2 Computation of the Inverse Jacobian

The coordinate thinking is suitable for theoretical reasoning. However, when implementing

the algorithm, it is better to work with matrices directly. In this section, we present a matricial

linear solver adapted from (Ramponi et al., 2009) (see also (Ferrante et al., 2012a)). Here

we shall assume ψ is rational and admits a factorization ψ = σσ∗ where σ is outer rational

and hence realizable. A crucial step in the implementation of the numerical algorithm is

the computation of the Newton direction g ′2(ψ, y)−1g (ψ, y), which amounts to solving the

linear equation in V given C and ψ

g ′2(ψ, C; V ) = g (ψ, C) (4.41)

where

g (ψ, C) =

∫

Gψ(G∗C∗CG)−1G∗ (4.42a)

g ′2(ψ, C; V ) = −
∫

Gψ(G∗C∗CG)−1G∗(V ∗C + C∗V )G(G∗C∗CG)−1G∗ (4.42b)

= −
∫

Gψ(CG)−1
�

(G∗C∗)−1G∗V ∗ + V G(CG)−1
�

(G∗C∗)−1G∗ (4.42c)

The cancellation of one factor CG from (4.42b) to (4.42c) is precisely why the condition

number of the Jacobian g ′2 is smaller than that of f ′2 in (3.31) when C tends to the boundary

of C+, i.e., when CG(eiθ ) tends to be singular for some θ . This point is illustrated in the next

example.

Example 4.3.7 (Reduction of the condition number of the Jacobian under the C parametriza-

tion). First we need to find a matrix representation of the Jacobian g ′2(ψ, C) which is a linear

operator from C to Range Γ . Fix the orthonormal bases of the two vector spaces as in (3.52).

Then the ( j, k) element of the real M ×M Jacobian matrix corresponding to g ′2(ψ, C) is just

〈Λ j , g ′2(ψ, C;Ck)〉. (4.43)
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Similarly, the matrix representation of the Jacobian (3.31) is

〈Λ j , f ′2(ψ,Λ;Λk)〉, j, k = 1, . . . , M . (4.44)

Next let us fix ψ ∈ C+(T) and C ∈ C+, evaluate explicitly the Jacobian matrix (4.43), and

compute its condition number. The same computation is done for the Jacobian matrix (4.44)

evaluated at (ψ, h−1(C)) where h−1 has been defined in (??). Comparison is made in such a

way because taking Λ = h−1(C) will lead to the same spectrum in the moment map f as that

in g due to the spectral factorization (3.49).

Our example is about the problem of matrix covariance extension mentioned in Section

?? with (A, B) matrices given in (??) and the filter G(z) in (3.5). We set the dimension m = 2,

the maximal covariance lag p = 1, and we have n= m(p+ 1) = 4.

Let us treat the problem for real processes. Then Range Γ is the M = 7-dimensional vector

space of symmetric block-Toeplitz matrices of the form

�

Λ0 Λ
⊤
1

Λ1 Λ0

�

, (4.45)

where Λ0,Λ1 are 2× 2 blocks. An orthonormal basis of Range Γ can be determined from the

matrix pairs

(Λ0,Λ1) ∈ {0} ×
¨�

1 0

0 0

�

,

�

0 1

0 0

�

,

�

0 0

1 0

�

,

�

0 0

0 1

�«

⋃

¨�

1 0

0 0

�

,

�

0 1

1 0

�

,

�

0 0

0 1

�«

× {0}
(4.46)

after normalization. Here the bold symbol 0 denotes the 2× 2 zero matrix.

On the other hand, the vector space C contains matrices of the shape

�

C1 C0

�

,

where C1, C0 are also 2× 2 blocks and C0 is lower triangular. An orthonormal basis of C can

be determined from the standard basis of Rm×n which is made up of matrices E jk whose

elements are all zero except that on ( j, k) position it is one. A basis of C is obtained by

excluding those E jk which constitute the (strict) upper triangular part of C0. Notice that

given C ∈ C, zCG is a matrix polynomial of degree −p.

The prior is chosen as a positive Laurent polynomial ψ(z) = b(z)b(z−1) where the

polynomial b(z) = 1− z−1 + 0.89z−2 has roots 0.5± 0.8i with a modulus 0.9434. We choose
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the parameter

C =

�

0.5 0.65 1 0

−2.2615 −1 2 1

�

, (4.47)

which belongs to the set C+, because the roots of det zCG are 0.9 ± 0.4i with a modulus

0.9849.

Integrals such as (4.42c) are approximated with Riemann sums

∫

F(θ )≈ ∆θ
2π

∑

k

F(θk),

where {θk} are equidistant points on the interval (−π,π] and the subinterval length ∆θ =

10−4. The resulting condition number of (4.43) is 2.4674 × 105 while that of (4.44) is

3.8187× 108.

In order to invert the Jacobian g ′2 at a given “point” (ψ, C) without doing numerical

integration, we first need to fix an orthonormal basis {C1, . . . , CM} of C such that C1 = C/‖C‖.4
Then one can obtain a basis {V1, . . . , VM} of C such that for k = 1, . . . , M

G∗(z)(V ∗
k

C + C∗Vk)G(z)> 0, ∀z ∈ T

by setting Vk = Ck +αkC for some αk ≥ 0. The procedure for solving (4.41) is described as

follows:

1) Compute Y = g (ψ, C) and Yk = g ′2(ψ, C; Vk).

2) Find αk such that Y =
∑

αkYk.

3) Set V =
∑

αkVk.

In order to obtain the coordinates αk in Step 2, one needs to solve a linear system of

equations whose the coefficient matrix is consisted of inner products 〈Yk, Yj〉. The matrix is

invertible because {Yk} are linearly independent, which is a consequence of the Jacobian

g ′2(ψ, C) being nonsingular.

The difficult part is Step 1 where we need to compute the integrals g (ψ, C) and g ′2(ψ, C; Vk).

Since we want to avoid numerical integration, we shall need some techniques from spectral

factorization. Evaluation of the former integral was essentially done in the proof of (Ferrante

et al., 2010, Theorem 11.4.3). More precisely, we have the expression

G(zCG)−1 = (zI −Π)−1B(CB)−1,

4This is always possible by adding C into any set of basis matrices and performing Gram-Schmidt orthonor-

malization starting from C .
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where Π := A− B(CB)−1CA is the closed-loop matrix which is stable. With a state-space

realization (A1, B1, C1) of the stable proper transfer function σG(zCG)−1, one then solves a

discrete-time Lyapunov equation for R

R− A1RA∗1 = B1B∗1.

Finally the integral g (ψ, C) = C1RC∗1 .

The integral g ′2(ψ, C; Vk) can be computed similarly. The only difference is that we need

to compute a left outer factor W (z) of

Z∗(z) + Z(z)> 0 on T

where

Z(z) = zV G(zCG)−1

= Vz(zI −Π)−1B(CB)−1

= VΠ(zI −Π)−1B(CB)−1 + V B(CB)−1

(4.48)

The factorization involves solving a DARE for the unique stabilizing solution, in terms of

which the factor can be expressed. Such a procedure is standard (cf. Appendix C for details).

Once we have the factor W (z), a realization of the transfer function σG(zCG)−1W can be

obtained, and we can just proceed in the same way as computing g (ψ, C).

Example 4.3.8. Let us continue Example 4.3.7 with the prior ψ and the parameter C given.

We begin the simulation by computing the covariance matrix Σ = g(ψ, C) with the formula

given in (4.15). Then the maximum entropy solution can be obtained with (4.26), which is

our initial value of Algorithm 4.1. The step length is set as δt = 0.1 which is quite large but

sufficient for convergence in this particular example. Our target parameter C (1) is certainly

equal to the given C in (4.47). The simulation result is shown in Figures 4.1 and 4.2, where

the coordinates of the solution parameter are plotted against the variable t ∈ [0, 1]. One can

see that the solution curves are smooth.
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Figure 4.1: Solution parameter (coordinates) against the variable t.
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Figure 4.2: Solution parameter (coordinates) against the variable t.



86 Numerical Solvers for the Spectral Estimation Problem

4.4 Conclusions

We have indicated how to numerically solve the spectral estimation problem given a scalar

prior. Although the problem is well-posed, in practice the Jacobian of the moment map may

become ill-conditioned when the parameter goes near the boundary. Such a numerical issue

can be alleviated if we carry out computations in the domain of spectral factors.

The optimization approach to the spectral estimation problem has been well studied in

(Avventi, 2011a). When reparametrized in terms of the spectral factor, the cost function

becomes only locally convex, and descent algorithms are proven to converge locally. The

second numerical solver is built upon the continuation method to trace a family of solutions

parametrized by a real variable living on the unit interval. Although the resulting algorithm

seems more complicated than the optimization approach, it serves as a viable alternative.

At last, we hope to generalize the results in this chapter to the open problem left in Chap-

ter 3 when the prior function is matrix-valued. One technical difficulty, namely, uniqueness

of the solution in that more general case remains to be tackled. One can expect that once

well-posedness is established, the numerical continuation procedure to find the solution will

be in a sense standard.



5
On an Alternative Parametrization of Matricial

Spectral Densities

5.1 Introduction

In this chapter, we consider the same multivariate spectral estimation problem as in Chapter 3,

although in a different family of matrix spectral densities. As described in Chapters 1 and 3,

in the “THREE” approach to the problem of spectral estimation, the steady-state covariance

matrix of the output process of a rational filter is used as data for the reconstruction of the

input spectrum, which naturally admits a formulation as a generalized moment problem.

Due to the typical ill-posedness of moment problems (Grenander and Szegö, 1958; Krĕın and

Nudel’man, 1977), entropy(-like) functionals are then exploited as optimization criteria to

promote uniqueness of the solution. More specifically, one tries to find the input spectrum

consistent with the output covariance matrix that maximizes some entropy or minimizes

some distance index to an a priori spectral density.

Different choices of cost functionals lead to different forms of solutions, especially in the

multivariate case (cf. (Georgiou, 2002a, 2006; Ferrante et al., 2008; Ramponi et al., 2009,

2010; Avventi, 2011a; Ferrante et al., 2012a; Zorzi, 2014a, 2015; Georgiou and Lindquist,

2017)). Among them (Georgiou, 2006) is an important work utilizing the following relative
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entropy as the optimization criterion

S(Φ|Ψ) =
∫

T

tr [Φ (logΦ− logΨ)]

which in turn, draws inspiration from quantum mechanics. Here Ψ is the known prior and T

stands for the unit circle. Minimization of S(Φ|Ψ) with respect to Φ subject to the generalized

moment constraint can be worked out explicitly leading to an exponential-type spectral

density. Such a solution can also be recovered as a limit case of a family of solutions based

on the multivariate Beta divergence discussed in (Zorzi, 2014a). Difficulty arises in the other

direction, namely, minimization of S(Ψ| ·) with respect to the second argument. As reported

in (Georgiou, 2006), variational analysis and duality reasoning hit an obstruction in the

middle because the functional dependence of the optimal primal on the dual variable cannot

be described in a closed form (see also (Ferrante et al., 2008)). As a response to this difficulty,

Theorem 6 of (Georgiou, 2006) suggests to “forgo an explicit form for the entropy functional

and start instead with a computable Jacobian”. In other words, a parametric form of the

spectral density has been proposed, which possibly does not correspond to any cost functional.

Although the statement of that theorem looks rather exciting, it is extremely nontrivial and

its validity remains elusive as a rigorous proof is absent. In this chapter, we are motivated

to address this issue. We shall only consider the first half of (Georgiou, 2006, Theorem 6)

concerning rational solutions to the spectral estimation problem.

The continuation argument is used extensively in the proofs of (Georgiou, 2006) which

follows the previous work (Georgiou, 2005) in the scalar case by the same author. As will

be reviewed later in Section 5.4, in order for the argument to be effective, the Jacobian

of the parametric moment map is required to vanish nowhere in the feasible set, which

is fulfilled when the prior is taken as Ψ = ψI , namely a scalar spectral density function

times the identity matrix. In this chapter, we show through a numerical example that the

requirement of everywhere nonvanishing Jacobian is not met in general by the moment map

in question when the prior is nontrivial, contrary to what is claimed in (Georgiou, 2006,

Section IV). Furthermore, a critical point of the moment map is computed in the example

and demonstrated to be a bifurcation point. In consequence, the parametric solution to

the spectral estimation problem considered in (Georgiou, 2006, Section IV) is generally not

unique.

This chapter is organized as follows. In Section 5.2, we review the parametric form of the

moment map introduced in (Georgiou, 2006) that will be the central object of investigation

in this chapter. We give a numerical example in Section 5.3 where a critical point of the

moment map is detected and computed. In Section 5.4, we apply a part of the bifurcation
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theory and carry out some further computation which allows us to conclude that the afore

obtained critical point is in fact a bifurcation point. Finally, we make some remarks on an

alternative parametrization of rational spectral densities.

5.2 Problem Review

One of the problems considered in (Georgiou, 2006) is about finding a matrix spectral density

function in a particular parametric family that satisfies a (generalized) moment constraint.

The problem setup is the same as in Chapter 3, only that the family of spectral densities

considered is different from (3.14). We shall first review the problem and restate one of the

main results of (Georgiou, 2006). Some notational differences are highlighted below to avoid

confusion.

• The symbol used in (Georgiou, 2006) for the linear operator Γ defined in (3.9) is L.

• Ψ is a bounded and coercive m×m spectral density function. It admits a (unique) left

outer factor WΨ , namely, Ψ =WΨW ∗
Ψ

. The notations used in (Georgiou, 2006) for Ψ

and its factor are σ and σ1/2, respectively.

•

κ : Λ 7→
∫

GWΨ(G
∗
ΛG)−1W ∗

Ψ
G∗ (5.1)

is a map from L
Γ

+ to Range+ Γ . This is the map hσ defined in (Georgiou, 2006, Section

IV). The domain and codomain of κ coincides with our ω map defined in (3.16), and

they are denoted with K
dual
+ and int(K) in (Georgiou, 2006), respectively. Moreover,

the argument Λ is lower cased in (Georgiou, 2006).

Theorem 6 of (Georgiou, 2006) states that the map κ is a bijection given any bounded

and coercive prior Ψ. In other words, given any positive definite matrix Σ ∈ Range Γ , there

exists a unique parameter Λ ∈L
Γ

+ such that the spectral density

Φ =WΨ(G
∗
ΛG)−1W ∗

Ψ
(5.2)

solves the generalized moment equation Γ (Φ) = Σ. A key argument in that paper is that

the Jacobian ∇κ(Λ) : Range Γ → Range Γ is invertible for any Λ ∈ L
Γ

+ . We will provide a

two-dimensional (m = 2) numerical counterexample in the next section to this argument

showing that the Jacobian of κ can be singular at one point.
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5.3 Singular Jacobian of the Moment Map

The Jacobian of the moment map κ, i.e., its Fréchet derivative, is a linear operator from

Range Γ to itself:

∇κ(Λ) : δΛ 7→ −
∫

GWΨΓ
∗(Λ)−1

Γ
∗(δΛ)Γ ∗(Λ)−1W ∗

Ψ
G∗, (5.3)

where Γ ∗ : X 7→ G∗X G is the adjoint operator of Γ in (3.9) from Hn to C(T;Hm), and Γ ∗(Λ)−1

is understood as (G∗ΛG)−1.

As mentioned in the Introduction, the claim that∇κ(Λ) vanishes nowhere in L
Γ

+ is true in

the special case when the prior Ψ =ψI with ψ a scalar spectral density. Details can be found

in Chapter 3 (see also (Georgiou, 2006) itself and (Ferrante et al., 2010)). An important

observation is that the Jacobian in that case is a self-adjoint operator, and in fact, it is equal

to the negative Hessian of the cost function (4.2). Therefore, the reasoning of nonvanishing

Jacobian is built upon the definiteness of the quadratic form 〈δΛ,∇κ(Λ)(δΛ)〉, where the

standard inner product over Hn is defined as 〈A, B〉 := tr(AB). Such reasoning fails in general

when Ψ is arbitrarily (but fixed) matrix-valued because the self-adjoint property is lost. One

can simply verify that the adjoint operator ∇κ(Λ)∗ : Range Γ → Range Γ of the Jacobian (5.3)

is given by

δΛ 7→ −
∫

GΓ ∗(Λ)−1W ∗
Ψ
Γ
∗(δΛ)WΨΓ

∗(Λ)−1G∗,

which is different from ∇κ(Λ).
In the sequel, we want to evaluate numerically the Jacobian determinant. Before that,

we will have to build a matrix representation of the linear operator ∇κ(Λ).

5.3.1 Matrix Representation of the Jacobian

The Jacobian (5.3) is a linear map from a finite dimensional vector space to itself. It admits

a matrix representation if we fix an orthonormal basis of Range Γ , say {Λk}Mk=1
, where

M = m(2n−m) in the complex case (cf. (Ferrante et al., 2012b, Proposition 3.1) for the

dimension). More precisely, the ( j, k) element of the real M ×M Jacobian matrix Jκ(Λ) is

〈Λ j ,∇κ(Λ)(Λk)〉. (5.4)

The domain of the map κ, namely the set L
Γ

+ , is convex, which is in particular path-connected.

We have the next simple proposition.

Proposition 5.3.1. Consider a C1 map f : D ⊂ Rn→ Rn such that D is path-connected. If its
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Jacobian ∇ f : D→ Rn×n is everywhere nonsingular, then its determinant det∇ f (·) does not

change sign over D.

Proof. Suppose the contrary, i.e., there exist two points x1, x2 ∈ D such that det∇ f (x1)> 0

and det∇ f (x2) < 0. By the assumption of path-connectedness, there exists a continuous

function p : [0,1]→ D such that p(0) = x1 and p(1) = x2. Since f is C1, the real-valued

function det∇ f (p(·)) is continuous. By the intermediate value theorem it must be zero for

some t ∈ (0,1).

Therefore, if a sign change of the Jacobian determinant is detected, the Jacobian of the

map under consideration cannot be everywhere nonsingular. This is the idea behind our

numerical example.

5.3.2 A Numerical Example

Here we consider the problem of matrix covariance extension of dimension m = 2 with

maximal covariance lag p = 1, the (probably) simplest nontrivial case. We have n = m(p+1) =

4. The matrix pair (A, B) of the filter bank G(z) is given by

A=

�

0 I2

0 0

�

, B =

�

0

I2

�

, with G(z) =

�

z−2 I2

z−1 I2

�

.

Let us work in the real case, in which an orthogonal but unnormalized basis of the linear

space Range Γ can be determined from (4.45) and (4.46) in Subsection 4.3.2. Normalization

of the basis matrices is necessary to compute the quantity (5.4) correctly.

The prior is taken as Ψ = KGG∗K∗, a matrix Laurent polynomial, for

K =

�

−0.22 −1.23 2.22 0

−1.11 −0.96 1.14 2.49

�

.

The polynomial zKG is Schur, with determinantal roots 0.5868,−0.3558, and thus the outer

factor WΨ ≡ zKG in this example.

The argument Λ lives in the open set L
Γ

+ . In practice, it is better to start with a factor of

the form zCG with C ∈ Cm×n. Then we can form the function

G∗ΛG := G∗C∗CG. (5.5)

Notice that if we assign the elements of C with Gaussian or uniformly distributed random

numbers, it is unlikely that the polynomial det zCG has roots on the unit circle. From (5.5)
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we have the relation that Λ is equal to the projection of C∗C onto the subspace Range Γ .

Details of the spectral factorization (5.5) can be found in Section 3.5.

We have picked two C matrices with corresponding Λ matrices and the determinantal

roots of zCG reported below:

C (0) =

�

−1.08 −0.57 2.45 0

0.84 −0.08 1.01 0.78

�

corresponds to the blocks of Λ(0)

Λ
(0)

0
=

�

4.4473 0.6681

0.6681 0.4698

�

, Λ
(0)

1
=

�

−1.7976 −1.4773

0.6552 −0.0624

�

with the roots of det zC (0)G at 0.1211± 0.5302i (modulus 0.5438).

C (1) =

�

0.63 0.67 1.45 0

1.68 −0.61 1.04 2

�

corresponds to the blocks of Λ(1)

Λ
(1)

0
=

�

3.2017 0.7387

0.7387 2.4105

�

, Λ
(1)

1
=

�

2.6607 0.3371

3.3600 −1.2200

�

with the roots of det zC (1)G at 0.7791,−0.6683.

The integral in (5.3) is approximated with the Riemann sum in Matlab:

∫

F(θ )≈ ∆θ
2π

∑

k

F(θk),

where {θk} are equidistant points on the interval (−π,π] and the “step length” ∆θ = 10−4.

With the normalized basis obtained from (4.46), the Jacobian matrix can be computed

explicitly as in (5.4) and its determinant can be evaluated. We have the numerical result

detJκ(Λ
(k)) = 10.6871,−326.6439 for k = 0, 1, respectively.

Computation of the above example has also been implemented in Mathematica in order

to evaluate the integrals symbolically given the numerical values of Λ. The result is consistent

with the numerical computation in Matlab, i.e., a sign change of the Jacobian determinant

has been detected.

Further, the critical point Λc can be computed using the bisection method on the real-
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valued function detJκ(Λ
(t)) where

Λ
(t) = (1− t)Λ(0) + tΛ(1), t ∈ [0,1] (5.6)

is the line segment between Λ(k), k = 0, 1. We have the blocks

Λ
c
0 =

�

4.3901 0.6713

0.6713 0.5589

�

, Λc
1 =

�

−1.5930 −1.3940

0.7793 −0.1155

�

,

with the corresponding tc = 0.0459, detJκ(Λ
c) = −5.4964× 10−14, and the two smallest

singular values of Jκ(Λ
c) are 1.1053× 10−16 and 0.0573. Hence the Jacobian matrix of κ

loses exactly rank 1 at Λc.

5.4 Characterization of the Critical Point

The quest for nowhere vanishing Jacobian is motivated by the use of continuation methods

to solve the nonlinear equation κ(Λ) = Σ for the parameter Λ. The idea is briefly reviewed

in the next proposition when the map under consideration is a diffeomorphism (cf. (Allgower

and Georg, 1990) for more general settings).

Proposition 5.4.1. Assume for simplicity that D, E are open and convex subsets of Rn. Let

f : D→ E be a C1 diffeomorphism. Then for y ∈ E, the solution x = f −1(y) can be found by

solving the initial value problem

(

ẋ(t) = [∇ f (x(t)) ]−1 (y − y0)

x(0) = x0

(5.7)

and evaluating x := x(1). The initial value x0 ∈ D is arbitrary and y0 := f (x0).

Proof. By the assumption of convexity, the line segment

p(t) = t y + (1− t)y0, t ∈ [0,1]

is inside E. It is easy to verify that the solution curve x(t) := f −1 (p(t)) satisfy the IVP (5.7). In

fact, the differential equation comes from differentiating the two sides of f (x(t)) = p(t) w.r.t.

t and inverting the Jacobian∇ f (x(t)). Due to the assumption that f is a diffeomorphism, the

solution curve x(t) is indeed continuously differentiable and the Jacobian of f is everywhere

invertible in D.

The precise terminal point x(1) can be obtained using a predictor-corrector algorithm
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(see Section 4.3 and more generally (Allgower and Georg, 1990)). If one is satisfied enough

with an approximate solution, then a general-purpose ODE solver can be used to numerically

integrate (5.7). Of course, the map f in the above proposition being a diffeomorphism is a

sufficient condition for the continuation method to return a unique solution. This is indeed

the case for our κ map when the prior takes the special form Ψ =ψI as mentioned previously

(cf. Section 3.3). However, in the presence of a singular Jacobian, it can happen that the

solution curve to the IVP branches out at a critical point, and several terminal points exist.

On the other hand, a numerical ODE solver diverges in that case because the norm of the

derivative tends to infinity near the critical point.

Next we shall demonstrate numerically that the critical point computed in Section 5.3 is

a bifurcation point. To this end, it is customary to define the augmented map

H(Λ, t) := κ(Λ)− p(t)

from L
Γ

+ × [0, 1]→ Range Γ , where p(t) := κ
�

Λ
(t)
�

is a smooth curve in Range+ Γ with Λ(t)

in (5.6). Under this convention, the curve
�

Λ
(t), t
�

parametrized by t is in the zero set H−1(0).

When a basis of Range Γ is fixed as in the previous section, the map H can be identified as a

function H from a subset of RM+1 to RM , whose coordinates have the expression

H j : (Λ, t) 7→ 〈Λ j ,H (Λ, t)〉, j = 1, . . . , M , (5.8)

where Λ =
∑

k xkΛk with x ∈ RM the coordinate vector. Explicit calls of the coordinate x will

be avoided subsequently in order to ease the notation.

The matrix representation of the augmented Jacobian JH ∈ RM×(M+1) can be described

in terms of the following vector with each entry in Range Γ :

∇H(Λ, t) =
�

∇κ(Λ)(Λ1) · · · ∇κ(Λ)(ΛM ) −ṗ(t)
�

,

where ṗ(t) =∇κ
�

Λ
(t)
� �

Λ
(1) −Λ(0)
�

. Then the ( j, k) element of the augmented Jacobian

[JH(Λ, t)] jk = 〈Λ j , [∇H(Λ, t)]k〉.

Notice that the last column of JH(Λ
c, tc) does not increase the rank due to the relation

Λ
(tc) = Λc. Hence we have

rank JH(Λ
c, tc) = M − 1, dim Ker JH(Λ

c, tc) = 2.
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Let us introduce the Lyapunov-Schmidt reduction in our finite dimensional context:

R
M+1 = D1 ⊕ D2, RM = E1 ⊕ E2, where

D1 := KerJH(Λ
c, tc), D2 := D⊥1 ,

E2 := Range JH(Λ
c, tc), E1 := E⊥2 .

The above subspaces can be made more precise by performing SVD to the Jacobian matrix of

H at (Λc, tc), namely

JH(Λ
c, tc) = UΣV⊤

=
�

u1:M−1 uM

�

�

ΣM−1 0

0 0

��

v⊤1:M−1

v⊤M :M+1

�

:=
�

U1 U2

�

�

ΣM−1 0

0 0

��

V⊤1
V⊤2

�

,

(5.9)

where ΣM−1 is the (square) diagonal matrix containing all the nonzero singular values, u,v

are columns of the orthogonal matrices U and V, respectively, and the notation u j:k denotes

the matrix obtained by putting together the columns u j ,u j+1, . . . ,uk. It is then elementary to

verify that

D1 = RangeV2, D2 = RangeV1,

E2 = RangeU1, E1 = RangeU2.

We can then partition H w.r.t. the new bases determined by the singular vectors. Specifically,

let us define

H̃(y) =

�

H̃1(y1, y2)

H̃2(y1, y2)

�

:=

�

U⊤2
U⊤1

�

H(V2 y1 +V1 y2),

where y = (y1, y2) ∈ R2×RM−1 are coordinates of the argument vector (Λ, t) in (5.8) under

the new basis. The Jacobian of H̃ is computed as

∇H̃(y) =

�

∇1H̃1(y1, y2) ∇2H̃1(y1, y2)

∇1H̃2(y1, y2) ∇2H̃2(y1, y2)

�

=

�

U⊤2
U⊤1

�

∇H(V2 y1 +V1 y2)
�

V2 V1

�

,

where∇kH̃ j denotes the Jacobian matrix of H̃ j w.r.t. the variable yk. It is then straightforward
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to check that

∇H̃(yc) =

�

0 0

0 ΣM−1

�

,

where yc is the coordinate of (Λc, tc) and ΣM−1 nonsingular. Since we have H̃2(y
c
1, yc

2) = 0,

the implicit function theorem can be applied to assert that locally around yc

H̃2(y1, y2) = 0 ⇐⇒ y2 = ϕ(y1)

for some smooth function ϕ. Substituting y2 with the above local functional dependence on

y1 into the equation H̃1(y1, y2) = 0, we obtain that equivalently,

b(y1) := H̃1 (y1,ϕ(y1)) = 0,

which is called the bifurcation equation at the critical point yc of H̃. Notice that b is a real-

valued function defined on some subset of R2. According to (Allgower and Georg, 1990,

Definition 8.1.11), if the Hessian matrix ∇2 b(yc
1) has two eigenvalues of distinct signs, then

yc is a simple bifurcation point of the equation H̃(y) = 0.

Following the derivation in (Allgower and Georg, 1990, pp. 77-78), we have the equality

∇2 b(yc
1) =∇2

1H̃1(y
c).

We now need a computable expression for the Hessian matrix. Its operator form is easily

obtained

∇2
1H̃1(y) : (δ y1,1,δ y1,2)

7→ U⊤2∇2H(V2 y1 +V1 y2)(V2δ y1,1,V2δ y1,2)

as a bilinear map from R2 ×R2→ R, whose matrix representation follows immediately

∇2
1H̃1(y) = V⊤2





∑

j

u jM∇2H j(V2 y1 +V1 y2)



V2, (5.10)

where U2 ≡ uM is the last left singular vector in (5.9), and ∇2H j is the Hessian of the

component function in (5.8).

Therefore, computation is ultimately reduced to evaluating the 3-d array of second-order

partials ∇2H under the standard (to be normalized) basis introduced in (4.46). Define the
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symmetric matrix with Range Γ -valued entries

∇2H(Λ, t) :=













∇2κ(Λ)(Λ1,Λ1) · · · ∇2κ(Λ)(Λ1,ΛM ) 0
...

. . .
...

...

∇2κ(Λ)(ΛM ,Λ1) · · · ∇2κ(Λ)(ΛM ,ΛM ) 0

0 · · · 0 −p̈(t)













, (5.11)

where

∇2κ(Λ)(δΛ1,δΛ2) =

∫

F + F∗

is the second-order differential of κ with

F := GWΨΓ
∗(Λ)−1

Γ
∗(δΛ2)Γ

∗(Λ)−1
Γ
∗(δΛ1)Γ

∗(Λ)−1W ∗
Ψ

G∗

and

p̈(t) =∇2κ(Λ(t))(Λ(1) −Λ(0),Λ(1) −Λ(0)).

The Hessian matrix of the component function results from taking element-wise inner product

with (5.11), i.e.,

[∇2H j(Λ, t)]kℓ = 〈Λ j , [∇2H(Λ, t)]kℓ〉, k,ℓ= 1, . . . , M + 1.

Continuing our numerical example in the previous section, the Hessian matrix ∇2 b(yc
1)

is computed according to the formula (5.10) and its two eigenvalues are −0.3226,0.0239.

Therefore, we confirm that yc, or equivalently (Λc, tc), is a bifurcation point. Following the

very definition of a bifurcation point (Allgower and Georg, 1990, p. 76), the original map κ

in (5.1) is not injective.

Remark 5.4.2. The sole purpose of the computation above is to show that the Hessian matrix

∇2 b(yc
1) is nonsingular, which according to (Allgower and Georg, 1990, p. 78) is generic. In

this case, the Hessian cannot have two eigenvalues of the same sign, since otherwise (Λc, tc)

would be an isolated zero point of H which cannot be reached through curve tracing. This is

a consequence of a celebrated theorem of Morse (Allgower and Georg, 1990, Lemma 8.1.10).
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5.5 Concluding Remarks

Although only nonvanishing Jacobian is emphasized in (Georgiou, 2006), properness1 is

another important property of the moment map, as it is closely related to the question of

surjectivity (cf. Section 3.4, also (Zhu and Baggio, 2017)). The argument on properness

has been made implicitly when the prior is taken to be Ψ = I , as can be seen in the second

column of (Georgiou, 2006, p. 1060), the part proving that the solution to the IVP can be

“continued” until t = 1. However, in the general case of a matrix-valued prior, a proof of the

κ map being proper does not seem obvious.

It is also worth pointing out that the solution form (5.2) to the moment problem plays a

major role in (Takyar and Georgiou, 2010), where the factor of Ψ is taken as WΨ = I + KG

for some K ∈ Cm×n, which is certainly matrix-valued, i.e., not scalar times identity.

At last, we wish to point out that the problem of real interest to us is how to parametrize

(possibly) all rational solutions of “minimal degree” to the moment equation Γ (Φ) = Σ in the

matrix case, since the scalar counterpart has been well solved in (Byrnes et al., 1995, 1998,

2001b) in the case of covariance extension. Out of such motive, we would like to mention

again the parametrization of rational spectral densities discussed in Chapter 3, where the

“denominator” G∗ΛG is factored instead of breaking the prior down into factors as in (5.2).

The moment map τ has been given in (4.16), which has been shown to be surjective (Theorem

3.4.2). Moreover, the derivative of (4.16) can be written down explicitly as in (3.67), and a

singular Jacobian has so far not been detected numerically, which suggests that there is still

hope for uniqueness in this alternative parametrization.
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6
Application of the Multidimensional Moment

Theory to Image Deblurring

6.1 Introduction

Image deblurring is a deconvolution problem in two dimensions. It is well known that

the problem of deconvolution is ill-posed (Commenges, 1984; Bertero and Boccacci, 1998;

Chan and Shen, 2005), and hence regularization is crucial. The deblurring problem is often

formulated as a regularized least squares problem, such as Tikhonov regularization, which

has a closed form solution. Other regularization methods include those exploiting partial

derivatives (Hansen, Nagy, and O’leary, 2006), total-variation deblurring (Chan, Golub, and

Mulet, 1999; Vogel, 2002), or penalized maximum likelihood (Hanke, Nagy, and Vogel, 2000).

Blurring a two-dimensional image Φ(x), x ∈ K ⊂ R2, can be modeled as a convolution

integral

b(x) =

∫

K

κ(x − y)Φ(y)d y, (6.1)

where κ is a kernel function, called the point spread function (PSF). Deblurring amounts to

the deconvolution of (6.1), i.e., to recover the original image Φ from the blurred image b.

If the blurred image is observed at discrete points x1, x2, . . . , xn like pixels, then (6.1)
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becomes a generalized two-dimensional moment problem

ck =

∫

K

αk(x)Φ(x)d x , k = 1, 2, . . . , n, (6.2)

where ck := b(xk) and αk(x) := κ(xk − x), k = 1,2, . . . , n. Here α1,α2, . . . ,αn are called

basis functions. Reconstructing Φ from c1, c2, . . . , cn is an inverse problem, which may or may

not have a solution. If it does, it will in general have infinitely many. To achieve compression

of data, we impose the rationality constraint

Φ(x) =
P(x)

Q(x)
, (6.3)

where P and Q are nonnegative functions formed by linear combinations of the basis functions.

This can be seen as a (generalized) two-dimensional spectral estimation problem with a

finiteness condition, and hence as a two-dimensional identification problem (Lindquist and

Picci, 2015).1 If (6.2) does not have a solution, which is the usual case, a regularized

approximate solution need to be determined.

The one-dimensional moment problem with rationality constraint has been studied inten-

sively during the last decades and a review is given in Chapter 1. More recently, these results

were generalized to the multidimensional case (Karlsson et al., 2016) with applications to

spectral estimation and image compression (Ringh et al., 2016). Related results can be found

in (Georgiou, 2006). It turns out that the early papers (McClellan and Lang, 1982; Lang and

McClellan, 1982, 1983) contain results that are equivalent to some major results in (Karlsson

et al., 2016; Ringh et al., 2016), but the basic idea of smooth parametrization is missing

there.

In this chapter, we apply the method of the moment problem with rationality constraint

to image deblurring with the help of regularization. The chapter is organized as follows. In

Section 6.2, we briefly introduce the main result of the theory of multidimensional moment

problem and in Section 6.3 regularized approximate solutions are determined for the case

that the estimated moments contain errors. We consider the optimization problem for image

deblurring in the framework of the multidimensional moment problem in Section 6.4, and a

Newton solver is developed. Finally, some implementation details of the proposed method

are given in Section 6.5 along with two reconstructed images. These results are preliminary,

and better methods to tune the solutions will be developed in future work.

1In fact, general basis functions, rather than trigonometric ones, are also used in system identification

(Wahlberg, 1991).
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6.2 The Multidimensional Moment Problem

We start by reviewing some results in (Karlsson et al., 2016). Let P+ be the positive cone of

vectors p := (p1, p2, . . . , pn) such that

P(x) =

n
∑

k=1

pkαk(x)> 0 for all x ∈ K , (6.4)

and let P̄+ be the closure of P+ and ∂P+ := P̄+\P+ its boundary. Then, given a set of real

numbers c1, c2, . . . , cn, and linearly independent functions α1,α2, . . . ,αn defined on a compact

subset K ⊂ Rd , consider the problem to find solutions Φ to the moment condition (6.2) of

the rational form (6.3), where p, q ∈P+. Here of course q is the vector of coefficients of Q.

Next define the open dual cone C+ of vectors c := (c1, c2, . . . , cn), i.e.,

C+ =

¨

c : 〈c, p〉=
n
∑

k=1

ckpk > 0, ∀p ∈ P̄+\{0}
«

. (6.5)

If the cone P+ is nonempty and has the property

∫

K

1

Q
d x =∞ for all q ∈ ∂P+, (6.6)

it follows from (Karlsson et al., 2016, Corollary 3.5) that the moment equations

ck =

∫

K

αk

P

Q
d x , k = 1,2, . . . , n. (6.7)

have a unique solution q ∈ P+ for each (c, p) ∈ C+ ×P+. Moreover, the solution can be

obtained by minimizing the strictly convex functional

J
c
p(q) = 〈c, q〉 −
∫

K

P logQd x , (6.8)

over all q ∈P+. This is the dual of the optimization problem to maximize an entropy-like

functional

Ip(Φ) =

∫

K

P(x) logΦ(x)d x (6.9)

over all Φ ∈ F+ satisfying

∫

K

αk(x)Φ(x)d x = ck, k = 1,2, . . . , n, (6.10)
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where F+ is the class of positive functions in L1(K).

We note that maximizing (6.9) is equivalent to minimizing the Kullback-Leibler pseudo-

distance given P

D(P‖Φ) =
∫

K

P(x) log
P(x)

Φ(x)
d x . (6.11)

In fact,

D(P‖Φ) =
∫

K

P(x) log P(x)d x − Ip(Φ). (6.12)

From (Karlsson et al., 2016, Theorem 3.4) we have that the map sending q ∈P+ to c ∈ C+
is a diffeomorphism, so the problem as stated above is well-posed.

6.3 Regularized Approximation

In practice, the moments are often estimated from a finite number of data, for example, the

ergodic estimates for covariance lags, and they may not belong to the dual cone C+ so that

no solution exists. The problem may be ill-posed also for other reasons. When the data

sequence is short, the estimates may contain large errors. Therefore, it is reasonable to match

the estimated moments only approximately by allowing an error d := (d1, d2, . . . , dn) in the

moment equations so that

ck −
∫

K

αkΦd x = dk, k = 1, 2, . . . , n. (6.13)

Then the problem is modified to minimize

1

2
‖d‖2 +λD(P‖Φ), (6.14)

subject to (6.13) for some suitable λ > 0. Here λD(P‖Φ) is a regularization term which

makes the solution smooth. In view of (6.12), this problem can be reformulated as the

problem to maximize

I(Φ, d) =

∫

K

P(x) logΦ(x)d x − 1

2λ
‖d‖2 (6.15)

subject to (6.13) over all Φ and d. Regularization problems of this type have been considered

in (Enqvist and Avventi, 2007) and (Avventi, 2011b, Paper B). Also see (Ringh et al., 2018),

where similar results are given.

We assume that the condition (6.6) holds. Modifying the idea of (Enqvist and Avventi,

2007) and (Avventi, 2011b, Paper B) to the setting of (Karlsson et al., 2016), we form the
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Lagrangian

L(Φ, d, q) = I(Φ, d) +

n
∑

k=1

qk

�

ck −
∫

K

αkΦd x − dk

�

=

∫

K

P logΦd x −
∫

K

QΦd x − 1

2λ
d⊤d + 〈c − d, q〉

(6.16)

with the directional derivative

δL(Φ, d, q;δΦ,δd) =

∫

K

�

P

Φ
−Q

�

δΦd x − (λ−1d + q)⊤δd. (6.17)

For stationarity we require that

Φ =
P

Q
and d = −λq, (6.18)

which inserted into L(Φ, d, q) yields the dual functional

ϕ(q) = Jp(q) +

∫

K

P(log P − 1)d x , (6.19)

where the last term is constant and

Jp(q) =
λ

2
〈q, q〉+ 〈c, q〉 −

∫

K

P logQd x . (6.20)

Setting the gradient of Jp equal to zero, we obtain the moment equations with errors

∫

K

αk

P

Q
d x = ck +λqk, k = 1, 2, . . . , n. (6.21)

The regularization parameter λ controls how much error/noise is allowed in the solution. By

choosing λ small, the error in the moment equation becomes small. In practice, however, it

may be difficult for the algorithm to converge if λ is chosen too small.

We need to show that (6.21) actually has a solution, which will follow if (6.20) has an

interior minimum. It is easy to see that (6.20) is strictly convex.

Lemma 6.3.1. The functional (6.20) has compact sublevel sets J−1
p (−∞, r], r ∈ R.

Proof. The sublevel set J−1
p (−∞, r] is closed, so it remains to prove that it is bounded, i.e.,
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α= ‖Q‖∞ is bounded. Set Q = αQ̃, where Q̃(x)≤ 1. Then we have

Jp(q) =
λ

2
〈q̃, q̃〉α2 + 〈c, q̃〉α−

∫

K

Pd x logα

−
∫

K

P log Q̃d x ≥ a0α
2 + a1α− a2 logα,

where a0 := λ〈q̃, q̃〉/2> 0, a1 := 〈c, q̃〉 and a2 :=
∫

K
Pd x > 0. Hence, if q ∈ J−1

p (−∞, r],

a0α
2 + a1α− a2 logα≤ r.

Comparing quadratic and logarithmic growth we see that α is bounded from above. Since

logα→−∞ as α→ 0, it is also bounded away from zero.

Consequently, by strict convexity, (6.20) has a unique minimum. We have to rule out

that this minimum is on the boundary of P+. In other words, we need to establish that the

minimal point is an interior point so that it satisfies the stationary condition (6.21).

Lemma 6.3.2. The minimum point of Jp does not lie on the boundary.

Proof. We proceed along the lines of (Byrnes et al., 1998, p. 662). Let q ∈P+ be arbitrary, and

let q0 be on the boundary. Set δq = q−q0 and define qµ = q0+µδq. Since qµ = µq+(1−µ)q0

and P+ is convex, it belongs to P+ for all µ ∈ (0, 1]. Next, calculate the directional derivative

δJp(qµ,δq) = λ〈qµ,δq〉+ 〈c,δq〉 −
∫

K

P

Qµ
δQd x

= 〈c +λqµ,δq〉 −
∫

K

Rµd x , where Rµ :=
P

Qµ
δQ.

Since
dRµ

dµ
= −P

(Q−Q0)
2

Q2
µ

≤ 0,

Rµ is monotonically decreasing and converges to R0 = P(Q−Q0)/Q0 as µ→ 0. However, by

condition (6.6), R0 is not integrable, and hence δJ(qµ,δq)→−∞ as µ→ 0.

6.4 Application to Image Deblurring

We now return to the convolution equation (6.1) introduced in Section 6.1, where κ is the

point spread function (PSF), Φ is original image and b is the blurred image. Then setting
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ck := b(xk) and αk(x) := κ(xk − x), we obtain the moment equations (6.2). We want to

recover the object Φ from the blurred image b given the PSF κ.

After discretization, the blurring process is described by a linear transform plus some

additive noise, i.e.,

b= Ax+η. (6.22)

Here we have introduced the bold lower-case letters b and x to denote the vectorized

discretization of the bivariate functions b(x) and Φ(x), respectively. The blurring matrix A is

determined by the PSF and the boundary condition depending on our assumptions of how

the picture would be continued outside the image (Ng, Chan, and Tang, 1999; Nagy, Palmer,

and Perrone, 2004; Hansen et al., 2006).

As pointed out in (Bertero and Boccacci, 1998), the continuous inverse problem (6.1) is

ill-posed. Although the problem may become well-posed after discretization, the blurring

matrix A is typically ill-conditioned. Due to the presence of the noise term η, the directly

inverted solution is very often not visually meaningful. Therefore, regularization must be

introduced as a way to add more information (e.g., smoothness, edge enhancement, etc.) on

the desired solution.

Note that each row of the blurring matrix A is the discrete analogue to the basis function αk

in the formulation of the moment problem. As already mentioned, A is nonsingular although

rather close to being singular, and hence its rows are linearly independent. Therefore, linear

combination of the basis functions becomes matrix-vector multiplication

q := vec(Q) = A⊤q, (6.23)

where the matrix Q here is the discretization of the function Q(x), and “vec” denotes the

vectorizing operation for the matrix. Due to the fact that the blurring matrix A is highly

structured (Vogel, 2002; Hansen et al., 2006), evaluation of the multiplication can be obtained

efficiently with 2-dimensional fast Fourier transform (FFT) or discrete cosine transform (DCT),

depending on the boundary condition.

6.4.1 The Optimization Problem

Using the vectorized notation as in (6.22) and (6.23), the discretized objective functional

corresponding to (6.8) can be written as

Jp(q) = b⊤q− p⊤ log(A⊤q), (6.24)
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where p here is the discretized prior function P. The vector-valued log function denotes

taking logarithm for each entry of the vector. The reconstructed image

x̂= p./(A⊤q∗), (6.25)

where q∗ is the optimal solution that minimizes (6.24) and the operation “./” means element-

wise division.

Consider the vector-valued log function first. For a matrix A∈ Rn×n and a vector x ∈ Rn,

(log A⊤x)i = log(a⊤i x),

where ai is the i-th column of A. The elements of the first order derivative (Jacobian) of

log A⊤x are given by
�

d log(A⊤x)

d x

�

ji

=
∂ log(a⊤

j
x)

∂ x i

=
ai j

a⊤
j

x
,

that is, the j-th row of the Jacobian matrix is a⊤
j
/(a⊤

j
x), so we have

d log(A⊤x)

d x
= D1(x)A

⊤,

where D1(x) := diag(1/a⊤
j

x). Consequently,

d

dτ
Jp(q+τv)

�

�

�

�

τ=0

= b⊤v − p⊤D1(q)A
⊤v

= 〈b− AD1(q)p, v〉,

and therefore the gradient of Jp is given by

∇Jp(q) = b− AD1(q)p. (6.26)

Similarly, for the computation of the Hessian, we form the following

∂ 2

∂ τ∂ ξ
Jp(q+τv + ξw)

�

�

�

�

τ,ξ=0

=
∂

∂ ξ

�

b⊤v − p⊤D1(y)A
⊤v
�

�

�

�

�

τ,ξ=0

= p⊤diag

�

a⊤
j

w

(a⊤
j

q)2

�

A⊤v,
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where y = q+τv + ξw. We can rewrite

p⊤diag

�

a⊤
j

w

(a⊤
j

q)2

�

= w⊤AD2(p, q)

in the last term, where D2(p, q) := diag(p j/(a
⊤
j

q)2). We then have

∂ 2

∂ τ∂ ξ
Jp(q+τv + ξw)

�

�

�

�

τ,ξ=0

= w⊤AD2(p, q)A⊤v.

Therefore, the formula for Hessian is

∇2
Jp(q) = AD2(p, q)A⊤. (6.27)

6.4.2 Choice of the Prior P

Recall that the primal problem to maximize (6.9) subject to (6.10) is equivalent to minimizing

the Kullback-Leibler divergence (6.11) subject to the same moment equations. Although the

Kullback-Leibler divergence is not a metric, it can be used as a pseudo-distance. In D(P‖Φ)
the function P could be regarded as a prior, and we want the Φ to be “as close as possible" to

P in this sense. The choice of P considerably affects the quality of the solution. Choosing

P ≡ 1 corresponds to no prior information, and the solution is referred to as the maximum

entropy solution (Lindquist and Picci, 2015). It is also demonstrated in the literature that the

maximum entropy solution is often unsatisfactory. In the setting of image deblurring, the

blurred image itself should serve as better prior information.

6.5 Numerical Examples

For the image deblurring problem in the presence of noise we solve the regularized optimiza-

tion problem to minimize

min
q>0

Jp(q) = b⊤q− p⊤ log(A⊤q) +
λ

2
‖q‖2. (6.28)

The gradient (6.26) and Hessian (6.27) are modified a bit as

∇Jp(q) = b− AD1(q)p+λq, (6.29)

∇2
Jp(q) = AD2(p, q)A⊤ +λI . (6.30)
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Newton’s method (Boyd and Vandenberghe, 2004) is used to solve the optimization problem

(6.28).

Two images are chosen for the numerical test. One is the famous Lena with a resolution

256× 256 and the other shows a part of the moon surface with a resolution 512× 512. The

blur type on the test images is out-of-focus and the PSF array is given below with radius

r = 15:

κi j =

¨

1/(πr2) if (i − k)2 + ( j − l)2 ≤ r2,

0 elsewhere,
(6.31)

where (k, l) is the center of the PSF array. Moreover, a periodic boundary condition is assumed

for the Lena image, while a reflexive boundary condition is chosen for the reconstruction

of the moon image. The intensity of the noise is characterized by the signal-to-noise ratio

(SNR), which is set as 40dB in the test.

The central part of Newton’s method is to solve the linear system of equations

∇2
Jp(q)∆q =∇Jp(q),

for the Newton direction ∆q, and we use the conjugate gradient (CG) method (Saad, 1996;

Greenbaum, 1997) to solve it iteratively. In each CG iteration, multiplication with the Hessian

is evaluated with 4 two-dimensional FFTs/inverse FFTs (or DCTs), which makes this linear

solver the major computational cost of the algorithm. To enforce the positivity constraint on

q= vec(Q) we restrict the step length τ of the line search in the Newton direction. In fact,

we have in the Newton iteration

q+ = q−τ∆q,

and therefore

q+ = A⊤q+ = A⊤q−τA⊤∆q = q−τ∆q,

where ∆q := A⊤∆q. The maximum step length is taken as

τmax =min{qi/∆qi |∆qi > 0}.

With the constraint 0< τ < τmax, various line search methods can be used.

The original image and the corresponding blurred one is depicted in Fig. 6.1 for the Lena

image and in Fig. 6.4 for the moon image. The reconstructed images are shown in Figure

6.3 and Figure 6.5, respectively. For comparison we also compute the classical Tikhonov

reconstruction in Figure 6.2, where the regularization parameter is chosen with generalized

cross-validation (GCV).

In Figure 6.3 we see that choosing the blurred image b as the prior indeed improves the
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Figure 6.1: Lena: original sharp image and the blurred one

Figure 6.2: Reconstructed image with the Tikhonov method

Figure 6.3: Reconstructed images by solutions of the moment problem, p = 1, λ = 12

(left), and p= b, λ = 0.11 (right).
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Figure 6.4: Moon: original sharp image and the blurred one

Figure 6.5: Reconstructed images, Tikhonov method (left), and solution of the moment

problem with p= b, λ = 0.4 (right).

reconstruction. Moreover, the solution of the regularized moment problem looks smoother

compared with Tikhonov reconstruction without losing many details. In fact, some recon-

struction artifacts are less pronounced. This can also be observed from Fig. 6.5. However,

some work remains to perfect this method.

6.6 Concluding Remarks

In this chapter, we have dealt with the image deblurring problem with a spatially invariant

blurring operator. We formulate the problem as a multidimensional moment problem and
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utilize the generalized entropy as an optimization criterion to select a solution. Due to typical

ill-posedness of deconvolution problems, a quadratic regularization term is added to the

cost function and the resulting optimization problem is solved with Newton’s method. The

reconstructed images given in the examples are comparable with those produced by the

classical Tikhonov regularization.

There are a few open questions for future research. The first one is whether exchanging

‖d‖2 in (6.14) for a more general positive definite form d⊤W d giving different weights to

the error components could improve the reconstruction. Moreover, an obvious downside is

that the number of basis functions is very high. One could investigate whether including a

sparsity promoting regularization term in the cost function could improve numerics. Further,

instead of using the blurred image as a prior, one could try to modify the procedure in the

style of (Byrnes et al., 2001c, 2002) to use estimated logarithmic moments. How to actually

construct such estimates is however an open question.
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7
Conclusions and Outlook

In this Ph.D. dissertation, we have mainly tackled problems of ARMA modeling (Chapter 2)

and multivariate spectral estimation (Chapters 3, 4, and 5). Both are formulated as moment

problems and we try to find a solution in a particular family of spectra parametrized by a

finite dimensional variable. Although the methodologies here may appear different from

the mainstream approach of optimization1, they are deeply connected. In fact, the form of

candidate solutions in the parametric family introduced in Chapter 3 takes inspiration from

the paper (Georgiou and Lindquist, 2003) where optimization was done with the (scalar)

Kullback-Leibler divergence. A nontrivial point, or the intrinsic difficulty in the multivariate

counterpart of the theory when a matrix prior comes into view is due to the noncommutativity

of matrix algebra and apparent absence of an optimization criterion (for our particular

formulation). Interesting open problems remain for future investigation.

Main contributions of this dissertation are listed below.

Contributions

• A new algorithm for covariance matching of scalar periodic ARMA models is developed

with guaranteed local convergence.

1The optimization approach is touched upon in Section 4.2, and Chapter 6 which treats image deblurring

using the multidimensional moment theory.
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• A procedure to solve the finite-interval smoothing problem for vector-valued stationary

processes is described based on model approximation subject to covariance matching.

• An existence result is established for the multivariate spectral estimation problem with

solution restricted to a parametric family of spectral densities.

• A possible approach to the uniqueness question in the parametric spectral estimation

problem is described together with some preliminary results through the introduction

of a diffeomorphic spectral factorization.

• A complete well-posedness result for the spectral estimation problem is given in the

special case of a scalar prior function, and numerical solvers to this problem and their

convergence properties are studied.

• An counterexample is provided to show that uniqueness of the solution to the multivari-

ate spectral estimation problem in general does not hold in an alternative parametric

family of matrix spectral densities that has been proposed in the literature.

• An application of the multidimensional moment theory to image deblurring is made,

and a Newton solver for the optimization problem is built up.

Outlook

Several important problems remain open in this field of research, with different emphases on

theoretical or numerical aspects. Some have already been mentioned in concluding sections

of previous chapters, and they are relisted here as a summary.

• Convergence of the fixed-point-type iterative algorithm for covariance matching of

vector ARMA models in Section 2.5.

• Uniqueness of the solution to the parametric spectral estimation problem and its well-

posedness in the presence of a matrix prior Ψ (Section 3.4).

• Convergence of the fixed-point iteration introduced in (Ferrante et al., 2010) to solve

the parametric spectral estimation problem that is also mentioned in the concluding

section of Chapter 3.

• A sparse promoting method for the reconstruction of images in Chapter 6 that may

reduce the number of basis functions in use.
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One would also like to find some nice applications of the spectral estimation theory.

Some pioneers in this direction are exploring noninvasive temperature estimation (Amini,

Ebbini, and Georgiou, 2005), and inverse problems in fluid flow control (Zare, Jovanović,

and Georgiou, 2017).
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A
Appendix for Chapter 2

A.1 Harmonic Analysis in Z2N and Stationary Periodic Processes

Let ζ1 := ei∆ where ∆= π/N , be the primitive 2N -th root of unity and define the discrete

variable ζ taking the 2N values ζk := ζk
1 = ei∆k ; k = −N + 1, . . . , 0, . . . , N running counter-

clockwise on the unit circle T. The set of 2N points {ζk} will be called the discrete unit circle,

denoted by T2N . In particular, we have ζ−k = ζk (complex conjugate). The DFT F maps a

(possibly random) finite support Cm signal g = { g(t) : t = −N + 1, . . . , N }, into a complex

vector sequence

ĝ(ζk) :=

N
∑

t=−N+1

g(t)ζ−t
k

, k = −N + 1,−N + 2, . . . , N ; (A.1)

and the signal g can be recovered from its DFT ĝ by the formula

g(t) =
1

2N

N
∑

k=−N+1

ζt
k
ĝ(ζk), t = −N + 1,−N + 2, . . . , N , (A.2)
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which can also be written as a Stieltjes integral

g(t) =

∫ π

−π
ei tθ ĝ(eiθ )dν(θ ), (A.3)

where ν is a step function with steps 1
2N at each ζk, i.e.,

dν(θ ) =

N
∑

k=−N+1

δ(eiθ − ζk)
dθ

2N
. (A.4)

With ĥ being the DFT of h(t), we have

N
∑

t=−N+1

g(t)h(t)∗ =
1

2N

N
∑

k=−N+1

ĝ(ζk)ĥ(ζk)
∗ =

∫ π

−π
ĝ(eiθ )ĥ(eiθ )∗dν, (A.5)

which is Parseval’s Formula for DFT.

The DFT (A.1) can also be written in the matrix form

ĝ= Fg, (A.6)

where

ĝ :=
�

ĝ(ζ−N+1)
⊤, ĝ(ζ−N+2)

⊤, . . . , ĝ(ζN )
⊤�⊤ ,

g :=
�

g(−N + 1)⊤, g(−N + 2)⊤, . . . , g(N)⊤
�⊤

,
(A.7)

and F is the nonsingular 2mN × 2mN block Vandermonde matrix

F=



















ζN−1
−N+1

Im ζN−2
−N+1

Im · · · ζ−N
−N+1

Im

...
... · · ·

...

ζN−1
0

Im ζN−2
0

Im · · · ζ−N
0

Im

...
... · · ·

...

ζN−1
N Im ζN−2

N Im · · · ζ−N
N Im



















. (A.8)

Likewise, it follows from (A.2) that

g=
1

2N
F∗ĝ, (A.9)

i.e., F−1 corresponds to 1
2N F∗, and consequently, FF∗ = 2N I.

Next consider a zero-mean stationary m-dimensional process y(t) defined on Z2N , i.e., a
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stationary process defined on a finite interval [−N + 1, N] of the integer line Z and extended

to all of Z as a periodic stationary process with period 2N . Let C−N+1, C−N+2, . . . , CN be the

m×m covariance lags Ck := E{y(t + k)y(t)∗}, and define its DFT

Φ(ζ j) :=

N
∑

k=−N+1

Ckζ
−k
j , j = −N + 1, . . . , N , (A.10)

which is a Hermitian matrix-valued function of ζ. Then, as seen from (A.2) and (A.3),

Ck =
1

2N

N
∑

j=−N+1

ζk
jΦ(ζ j) =

∫ π

−π
eikθ
Φ(eiθ )dν, k = −N + 1, . . . , N . (A.11)

The m×m matrix function Φ is the spectral density of the vector process y . In fact, let

ŷ(ζk) :=

N
∑

t=−N+1

y(t)ζ−t
k

, k = −N + 1, . . . , N , (A.12)

be the DFT of the process y. Since 1
2N

∑N

t=−N+1(ζkζ
∗
ℓ
)t = δkℓ, the random variables (A.12)

are uncorrelated, and
1

2N
E{ ŷ(ζk) ŷ(ζℓ)

∗}= Φ(ζk)δkℓ, (A.13)

from which we see that Φ is positive-semidefinite over T2N . The inverse DFT also yields a

spectral representation of y analogous to the usual one valid for stationary processes on Z

(Lindquist and Picci, 2015), namely

y(t) =
1

2N

N
∑

k=−N+1

ζt
k

ŷ(ζk) =

∫ π

−π
ei tθ d ŷ(θ ), (A.14)

where d ŷ := ŷ(eiθ )dν is an orthogonal random measure supported on T2N .

A.2 Block-Circulant Matrices

Block-circulant matrices are block-Toeplitz matrices with a special circulant structure

Circ{Λ0,Λ1,Λ2, . . . ,Λν}=

















Λ0 Λν Λν−1 · · · Λ1

Λ1 Λ0 Λν · · · Λ2

Λ2 Λ1 Λ0 · · · Λ3

...
...

...
. . .

...

Λν Λν−1 Λν−2 · · · Λ0

















, (A.15)
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where the block columns (or equivalently, block rows) are shifted cyclically, and where

Λ0,Λ1, . . . ,Λν here are taken to be complex square matrices of the same size. A good survey

of Toeplitz and circulant matrices can be found in (Gray, 2006).

In the multivariable circulant rational covariance extension problem, we consider Hermi-

tian block-circulant matrices

M := Circ{M0, M1, M2, . . . , MN , M∗N−1, . . . , M∗2 , M∗1}, (A.16)

with each Mk ∈ Cm×m. The materials below are mostly contained in (Lindquist and Picci,

2016). The matrix M admits a representation of the form

M=

N
∑

k=−N+1

(S−k ⊗Mk), M−k = M∗
k

(A.17)

where ⊗ is the Kronecker product and S is the nonsingular 2N × 2N cyclic shift matrix

S :=























0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

. . .
. . .

...

0 0 0 0 0 1

1 0 0 0 0 0























. (A.18)

The m×m Laurent polynomial

M(ζ) =

N
∑

k=−N+1

Mkζ
−k, M−k = M∗

k
(A.19)

is called the symbol of M. Let S = S⊗ Im be the 2mN ×2mN block cyclic shift matrix. Clearly

we have S2N = S0 = I2mN , and

Sk+2N = Sk, S2N−k = S−k = (Sk)⊤. (A.20)

Moreover,

SMS∗ =M (A.21)

is both necessary and sufficient for M to be block-circulant. With the stacked vector g
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introduced in (A.7), we have

[Sg]k = gk+1, k ∈ Z2N . (A.22)

Then, in view of (A.1), ζF(g)(ζ) = F(Sg)(ζ), from which we have

F(Mg)(ζ) = M(ζ)F(g)(ζ), (A.23)

where the matrix function M(ζ) is the symbol (A.19) of the block-circulant matrix M. An

important property of block-circulant block matrices is that they can be block-diagonalized

by the DFT. More precisely, it follows from (A.23) that

M=
1

2N
F∗diag
�

M(ζ−N+1), . . . , M(ζ−1), M(ζ0), M(ζ1), . . . , M(ζN )
�

F, (A.24)

where “diag” denotes block diagonal. If M is invertible, the inverse is

M−1 =
1

2N
F∗diag
�

M(ζ−N+1)
−1, . . . , M(ζN )

−1
�

F. (A.25)

Moreover, since

S=
1

2N
F∗diag
�

ζ−N+1 Im, . . . ,ζN Im

�

F and S∗ =
1

2N
F∗diag
�

ζ−1
−N+1 Im, . . . ,ζ−1

N Im

�

F,

we have

SM−1S∗ =M−1.

Consequently, M−1 is also a block-circulant matrix with symbol M(ζ)−1. In view of the

properties (A.17) and (A.20), quotients of symbols are themselves Laurent polynomials of

degree at most N and hence symbols. More generally, if A and B are block-circulant matrices

of the same dimension with symbols A(ζ) and B(ζ) respectively, then AB and A+B are block-

circulant matrices with symbols A(ζ)B(ζ) and A(ζ)+B(ζ), respectively. In fact, block-circulant

matrices of a fixed dimension form an algebra, and the DFT is an algebra homomorphism

from the set of block-circulant matrices onto the set of matrix Laurent polynomials of degree

at most N in the variable ζ ∈ T2N .
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B
Appendix for Chapter 3

B.1 Supplementary Propositions and Lemmas

Proposition B.1.1. A convex set A⊂ Rn is simply connected.

Proof. By definition (Krantz and Parks, 2013, p. 127), we need to show that: whenever

f : [0, 1]→ A is a closed curve, i.e., f is continuous with f (0) = f (1) = x ∈ A, there exists a

continuous function F : [0,1]× [0,1]→ A such that

(i) F(t, 0) = f (t), for all t ∈ [0, 1],

(ii) F(0, u) = F(1, u) = x , for all u ∈ [0,1], and

(iii) F(t, 1) = x , for all t ∈ [0,1].

One can easily verify that F(t, u) := (1− u) f (t) + ux is the desired function.

Lemma B.1.2. Let a sequence {Λk}k≥1 ⊂ L+ converge to some Λ̄ ∈ L+. Then there exists a

real number µ > 0 such that

G∗(eiθ )ΛkG(eiθ )≥ µI , ∀k,θ .
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Proof. Note that the sequence of matrix-valued functions {G∗ΛkG}k≥1 is such that

G∗(eiθ )ΛkG(eiθ )> 0, ∀θ ∈ [−π,π] and k.

Since the eigenvalues of a continuous matrix-valued function

F : [a, b]→ Cn×n, θ 7→ F(θ )

depend continuously on θ (Bhatia, 2013, Corollary VI.1.6), we have that G∗ΛkG ≥ µk I where

µk :=min
θ
λmin

�

G∗(eiθ )ΛkG(eiθ )
�

> 0

and λmin(·) denotes the smallest eigenvalue. To prove the lemma, it suffices to show that the

real number µ > 0 exists such that µk ≥ µ for all k.

For a Hermitian matrix A, we have

λmin(A) = min
‖x‖2=1

x∗Ax ,

which is a special case of the min-max theorem. Hence, we see that

µk = min
θ∈[−π,π]
‖x‖2=1

Fk(θ , x)

where Fk(θ , x) = x∗G∗(eiθ )ΛkG(eiθ )x , with x ∈ Cm. Obviously the real-valued function Fk

is continuous in θ and x . We claim that the sequence of functions {Fk(θ , x)}k≥1 converges

uniformly to F̄(θ , x) := x∗G∗(eiθ )Λ̄G(eiθ )x . To see this, let us compute

|Fk(θ , x)− F̄(θ , x)|= |x∗G∗(eiθ )(Λk − Λ̄)G(eiθ )x |
≤ ‖G(eiθ )‖22‖Λk − Λ̄‖2
≤ ‖G(eiθ )‖2F‖Λk − Λ̄‖2
≤ Gmax‖Λk − Λ̄‖2,

where

Gmax := max
θ∈[−π,π]

tr
�

G(eiθ )G∗(eiθ )
	

. (B.1)

The above maximum exists since the function on the right is continuous. The second inequality

follows from the fact that ‖ ·‖2 ≤ ‖·‖F . Therefore, the uniform convergence of Fk to F̄ indeed

holds.
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Next, define similarly

µ̄ := min
θ∈[−π,π]
‖x‖2=1

F̄(θ , x)> 0.

By the definition of uniform convergence, there exists a natural number N such that for all

k > N , we have

|Fk(θ , x)− F̄(θ , x)|< µ̄
2

, ∀θ , x ,

which implies

Fk(θ , x)> F̄(θ , x)− µ̄
2
≥ µ̄

2
,

and we can just take µ=min{µ1, . . . ,µN , µ̄/2}> 0.

Lemma B.1.3. The map ω̃ is continuously differentiable.

Proof. The map

GL(n,C)→ GL(n,C) : X 7→ X−1 (B.2)

is smooth, which follows from Cramer’s rule in linear algebra. Hence, the function F(z;Λ) :=

ψG(G∗ΛG)−1G∗ inside the integral of (3.17) is also smooth in Λ. Moreover, since G is a

rational function, all the partial derivatives of F(eiθ ;Λ) with respect to Λ are continuous in θ

(and Λ). Then by Leibniz’s rule for differentiation under the integral sign, partial derivatives

of ω̃ of all orders exist.

Next, we show that the first order partial derivatives are continuous. From (Brookes,

2005), the differential of the map (B.2) at X is given by

C
n×n→ Cn×n : V 7→ −X−1V X−1.

Using this fact, the differential of ω̃ at Λ ∈L
Γ

+ is

δω̃(Λ;δΛ) = −
∫

ψG(G∗ΛG)−1(G∗δΛG)(G∗ΛG)−1G∗ (B.3)

such that δΛ ∈ Range Γ . The integrand in (B.3) with the minus sign is just δF(eiθ ;Λ;δΛ),

the differential of F(eiθ ;Λ) w.r.t. the parameter Λ. For a fixed δΛ, one can see that the

differential δω̃(Λ;δΛ) is continuous in Λ. To see this fact, let a sequence {Λk}k≥1 ⊂ L
Γ

+

converge to some Λ̄ ∈L
Γ

+ as k→∞. By Lemma B.1.2, we know that there exits µ > 0 such

that G∗(eiθ )ΛkG(eiθ )≥ µI where for all k, θ . On the other hand, since δΛ is fixed, it must

hold that G∗δΛG ≤ M I , where

M :=max
θ
ρ
�

G∗(eiθ )δΛG(eiθ )
�

.



126 Appendix for Chapter 3

Here ρ(·) denotes the spectral radius of a matrix. Therefore, we have

‖δF(eiθ ;Λk;δΛ)‖2 ≤ KψMµ−2‖G(eiθ )‖22, ∀k, θ

where Kψ =maxθ |ψ|. Moreover,

�

�[δF(eiθ ;Λk;δΛ)] jℓ

�

�≤




δF(eiθ ;Λk;δΛ)






F

≤ κ




δF(eiθ ;Λk;δΛ)






2

≤ κKψMµ−2Gmax, ∀ k ≥ 1, θ , ∀ j,ℓ,

with Gmax in (B.1) and κ the constant for norm equivalence. Hence, by Lebesgue’s dominated

convergence theorem, we have

lim
k→∞

δω̃(Λk;δΛ) =

∫

lim
k→∞

δF(eiθ ;Λk;δΛ) = δω̃(Λ̄;δΛ).

Partial derivatives can then be recovered by the operation 〈δΛ1,δω̃(Λ;δΛ2)〉 by choosing

δΛk, k = 1,2 to be orthonormal basis matrices of Range Γ . In this way, one can see that

every partial derivative of ω̃ is continuous in Λ.

Lemma B.1.4. If a sequence {Λk}k≥1 ⊂L
Γ

+ converges to some Λ̄ ∈ ∂L
Γ

+ , then

tr

∫

G(G∗ΛkG)−1G∗→∞ as k→∞.

Proof. The condition Λ̄ ∈ ∂L
Γ

+ means that G∗(eiθ )Λ̄G(eiθ ) is singular for some θ0. To ease

the notation, let us call the integrand fk := G(G∗ΛkG)−1G∗. Notice first that for a fixed k,

the quantity tr fk is strictly positive since G of full column rank on T. To see this, for any

θ ∈ [−π,π], one can pick m rows of G(eiθ ) to form a nonsingular submatrix Gsub(e
iθ ). Then

we must have

tr fk(e
iθ )≥ tr Gsub(e

iθ )
�

G∗(eiθ )ΛkG(eiθ )
�−1

G∗sub(e
iθ )> 0

due to positive definiteness. We can thus restrict ourselves to a subinterval [a, b] containing

θ0 in which the chosen Gsub(e
iθ ) remains nonsingular. Clearly the largest eigenvalue of

Gsub(G
∗
ΛkG)−1G∗

sub
at eiθ0 tends to infinity as k→∞. Hence its trace (equal to the sum of

eigenvalues) is a rational function that tends to have a pole at eiθ0 . The claim of the lemma

follows since the trace of the integral in question diverges in [a, b].

Proposition B.1.5. The map h−1 defined in (3.51) is proper.
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Proof. Let V be a compact set in L
Γ

+ , we need to show that its preimage U under h−1 is again

compact, which is equivalent to being closed and bounded in this finite dimensional setting.

Suppose first that there exists a sequence {C j} j≥1 ⊂ U such that ‖C j‖ →∞. Apparently,

there exists a positive definite matrix Q ∈ Range Γ . Let Λ j := h−1(C j), and we have

〈Q ,Λ j〉= 〈Q , C jC
∗
j 〉= tr(C∗j QC j)→∞,

which means that {Λ j} j≥1 ⊂ V is unbounded, a contradiction. Hence U must be bounded.

Next suppose that there exists a sequence {C j} j≥1 ⊂ U tending to some limit C̄ ∈ ∂C+.

There are two cases according to the definition of C+ :

(i) C̄B has at least one diagonal entry equal to zero;

(ii) The closed-loop matrix Z̄ := A− B(C̄B)−1C̄A has at least one eigenvalue on the unit

circle.

Clearly, we can let Λ̄ := h−1(C̄) since h−1 is well defined for any m× n matrix. By continuity,

we have Λ j := h−1(C j)→ Λ̄. Since the sequence {Λ j} j≥1 is in the compact set V , it holds that

Λ̄ ∈ V , namely, G∗Λ̄G > 0 on T.

Let us treat case (ii) first. Since Z̄ is the state matrix of (zC̄G)−1, the condition means

that (zC̄G)−1 has a pole on the unit circle. Consequently, (G∗Λ̄G)−1 = (zC̄G)−1(zC̄G)−∗ has

an eigenvalue tending to infinity at that pole, which in turn means that G∗Λ̄G is singular

there, a contradiction.

For case (i), notice that for C ∈ C+ we have the expression

(zCG)−1 = (CB)−1 − (CB)−1CA(zI − Z)−1B(CB)−1,

which is obtained by applying the matrix inversion lemma to (3.43). Since the corresponding

Z j is stable, it follows that

(C jB)
−1 =

∫

(zC jG)
−1.

As illustrated in the proof of Proposition 3.6.2, one can argue that the smallest singular value

of zC jG(e
iθ ) is bounded from below by a positive constant for any j and θ due to compactness

of V . It then follows that ‖(C jB)
−1‖ is bounded uniformly in j, which is again a contradiction.

Therefore, for any convergent sequence {C j} ⊂ U , its limit must stay in C+. Then

closedness of U follows easily from the continuity of h−1.
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B.2 Homogeneous Polynomial Equations

Results here are adapted from (Ježek, 1983, 1986) to the case of polynomials with complex

coefficients. The adaption is straightforward and requires only notational changes most of

the time. Let us review some preliminaries first.

The expression in the indeterminate z

p(z) =

n
∑

k=m

pkzk, pk ∈ C, m, n ∈ Z (B.4)

is called a Laurent polynomial, abbreviated as LP. We adopt the convention that n ≥ m

otherwise p is the zero LP. The set of LP’s, denoted as C[z, z−1], has a ring structure under

the usual addition and multiplication. A given LP (B.4) is a polynomial if and only if m≥ 0.

Polynomials form a subring denoted with C[z]. It is worth pointing out that a unit1 of

C[z, z−1] has the form czn, where c ∈ C is nonzero and n ∈ Z, which is different from the

ring of polynomials. Two elements p and p′ in C[z, z−1] are called “associated” if there exists

a relation p′ = up for some unit u. Clearly every LP is associated to a polynomial.

Despite certain differences, the ring of LP’s shares many properties with that of polynomi-

als. In particular, we have the following.

Theorem B.2.1. The ring of Laurent polynomials C[z, z−1] is a principal ideal domain.

Proof. Given an ideal I of C[z, z−1], we need to show that it is principal, i.e., it can be

generated by a single element. To this end, consider the set I ∩C[z]. It is straightforward

to verify that this is an ideal of C[z]. According to (MacLane and Birkhoff, 1999, Theorem

20, p. 115), the polynomial ring C[z] is a principal ideal domain. Hence I ∩C[z] = (d)C[z]
for some polynomial d, where the subscript signifies the ring where the ideal lives. Now

for any p ∈ I , there exists a unit u such that p′ = up is a polynomial and thus p′ ∈ I ∩C[z].
Consequently, we have p = u−1p′ = u−1qd for some q ∈ C[z], which implies I ⊂ (d)C[z,z−1].

The opposite inclusion is by definition of an ideal. Therefore, we must have I = (d)C[z,z−1]

and this completes the proof.

One of the consequences of the above theorem is that every element in C[z, z−1] admits a

unique prime factorization (MacLane and Birkhoff, 1999, Theorem 24, p. 118). However, in

C[z, z−1] only factors (z − z j) with z j 6= 0 are considered primes (cf. (MacLane and Birkhoff,

1999, p. 111) for more details on algebraic terms).

1Recall that a unit is an element that admits a multiplicative inverse.
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Define the conjugate polynomial of (B.4) as

p∗(z) :=

n
∑

k=m

pkz−k. (B.5)

It is easy to verify that this operation of conjugation has the properties

(p+ q)∗ = p∗ + q∗, (pq)∗ = p∗q∗, p∗∗ = p.

The next lemma concerns the greatest common divisor (gcd) between a polynomial and its

conjugate.

Lemma B.2.2. For every polynomial p, g := gcd(p, p∗) can be selected so that it satisfies one of

the two following conditions:

(i) g∗ = g;

(ii) g∗ = z−1 g.

Proof. One can proceed along the same lines as in the proof of (Ježek, 1983, Lemma 2). First

one can show that

h= gcd(a, b) =⇒ h∗ = gcd(a∗, b∗).

Then let h = gcd(p, p∗), it follows from above that h∗ = gcd(p, p∗). Hence h and h∗ are

associated:

h∗ = uh, (B.6)

where u is a unit. Moreover, one can see by substitution that h∗ = uu∗h∗ and thus u is in fact

unitary, i.e., u−1 = u∗. In the ring of LP’s, unitaries have the form eiθ zn with θ ∈ (−π,π] and

n ∈ Z. Next, one can construct a new gcd g such that h = vg with the required property,

where v = ρeiϕzm is a unit for some real ρ > 0. Substituting into (B.6), we have

v∗g∗ = uvg =⇒ g∗ = u
v

v∗
g = ei(θ+2ϕ)zn+2m g.

By choosing ϕ = −1
2θ , the product uv/v∗ can obviously be made equal to either 1 or z−1.

Theories developed in (Ježek, 1983) focus on the ring R[z] of real polynomials. However,

we want to emphasize that realness of polynomial coefficients plays no role in the proofs. As

one of our interests here, the next result applies exactly to the case of complex polynomials.
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Theorem B.2.3 ((Ježek, 1983)). Let a, b ∈ C[z] and consider the equation in two unknown

Laurent polynomials x and y

ax∗ + b∗ y = 0.

Let g = gcd(a, b∗) such that a0 = a/g, b0 = b/g∗ are polynomials (which is always possible).

The general solution in C[z, z−1] is

x = b0q, y = −a0q∗,

where q is an arbitrary LP.

Proof. Cf. the proof of (Ježek, 1983, Theorem 1) that uses Theorem B.2.1.

We are interested in the case where a = b is unmixing in the sense defined next.

Definition B.2.4. A polynomial p is called unmixing if it does not have two roots z1, z2 such

that z1z2 = 1, or equivalently, gcd(p, p∗) = 1.

Remark B.2.5. Stable and anti-stable polynomials in the discrete-time sense certainly possess

the unmixing property.

Corollary B.2.6. Let a be an unmixing polynomial such that the constant term a0 6= 0. Then

the polynomial equation in two unknowns

ax∗ + a∗ y = 0

has the general solution in C[z]

x = aq, y = −aq,

where q is an arbitrary complex number.

Proof. The form of the solution follows directly from the previous theorem. Since we are

looking for polynomial solutions and a0 6= 0, it is necessary that the LP q in Theorem B.2.3

reduces to a constant.

Next we give results on symmetric polynomial equations.

Theorem B.2.7 ((Ježek, 1983)). Given a ∈ C[z] , consider the equation

ax∗ + a∗x = 0. (B.7)

Choose g = gcd(a, a∗) to satisfy one of the conditions in Lemma B.2.2. Then a0 = a/g is a

polynomial and the general solution in C[z, z−1] is:
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(i) for g∗ = g, x = a0(r − r∗);

(ii) for g∗ = z−1 g, x = a0(zr − r∗),

where r is an arbitrary polynomial.

Proof. Follow the proof of (Ježek, 1983, Theorem 3(a,c)) with reference to Theorem B.2.1.

Corollary B.2.8. Let a be an unmixing polynomial such that a0 6= 0. Then the homogeneous

polynomial equation (B.7) has the general solution x = iκa in C[z], where κ is an arbitrary

real number.

Proof. The situation here falls in to the case (i) of Theorem B.2.7 since a is unmixing. The

solution form simplifies because of the extra constraint of being a polynomial plus a0 6= 0.

We are now ready to deal with symmetric matrix polynomial equations. For a matrix

polynomial

P(z) =

n
∑

k=0

Pkzk, Pk ∈ Cm×m, n≥ 0, (B.8)

the definition of its conjugate polynomial extends naturally

P∗(z) =
n
∑

k=0

P∗
k
z−k. (B.9)

Notice that here we do not consider general Laurent polynomials with both positive and

negative powers.

Definition B.2.9. A matrix polynomial P is called unmixing if its determinantal polynomial

det P is unmixing in the sense of Definition B.2.4.

The next result interests us in particular.

Theorem B.2.10. The homogeneous matrix polynomial equation

AX ∗ + XA∗ = 0 (B.10)

with A unmixing and det A0 6= 0, has the general solution

X = AQ (B.11)

where Q is an arbitrary constant skew-Hermitian matrix.
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Proof. One can proceed as the proof of (Ježek, 1986, Theorem MP1). Denote Ã = adj A,

a = det A. Multiply (B.10) on both sides from left by Ã and from right by Ã∗, and we get

aX ∗Ã∗ + ÃX a∗ = 0.

Define a new unknown X̃ := ÃX , and we have the relation

aX̃ ∗ + X̃ a∗ = 0.

The above equation can be solved elementwisely. For diagonal entries we have

ax̃∗j j + x̃ j ja
∗ = 0.

Since a is unmixing and a0 = a(0) = det A(0) = det A0 6= 0, we can apply Corollary B.2.8

to conclude that the general solution is x̃ j j = iκa for an arbitrary real κ. For non-diagonal

entries, we have

ax̃∗
jk
+ x̃k ja

∗ = 0,

whose general solution, according to Corollary B.2.6, is

x̃ jk = aq, x̃k j = −aq,

where q is an arbitrary complex number. One can write compactly X̃ = aQ with Q skew-

Hermitian. Finally we can recover the unknown X = Ã−1X̃ = AQ, which is desired.
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C.1 From Additive Decomposition to Spectral Factorization

Let Z(z) = H(zI − F)−1G + J with F ∈ Cn×n stable, G ∈ Cn×m H ∈ Cm×n, and J ∈ Cm×m.

Suppose that Φ(z) = Z(z) + Z∗(z)> 0 for all z ∈ T. Set R := J + J∗ > 0. Then one can write

Φ(z) =
�

H(zI − F)−1 I
�

�

0 G

G∗ R

��

(z−1 I − F∗)−1H∗

I

�

,

which adding to the identity that holds for any Hermitian P

0≡
�

H(zI − F)−1 I
�

�

F PF∗ − P F PH∗

HPF∗ HPH∗

��

(z−1 I − F∗)−1H∗

I

�

yields

Φ(z) =
�

H(zI − F)−1 I
�

�

F PF∗ − P G + F PH∗

G∗ + HPF∗ R+ HPH∗

��

(z−1 I − F∗)−1H∗

I

�

.

Consequently, if P is the unique stabilizing solution of the DARE

P = F PF∗ − (G + F PH∗)(R+ HPH∗)−1(G∗ + HPF∗)
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such that R+ HPH∗ > 0, then one obtains the factorization

�

F PF∗ − P G + F PH∗

G∗ + HPF∗ R+ HPH∗

�

=

�

G + F PH∗

R+ HPH∗

�

(R+ HPH∗)−1
�

G∗ + HPF∗ R+ HPH∗
�

.

Taking L as the Cholesky factor of R+ HPH∗(= LL∗), one gets a left outer factor of Φ(z) in

this way

W (z) =
�

H(zI − F)−1 I
�

�

G + F PH∗

R+ HPH∗

�

L−∗

= H(zI − F)−1(G + F PH∗)L−∗ + L.
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