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Ákos Kiss, September 2008.

3





Contents

1 Preface 15

I The Theory of Slicing 17

2 Introduction to Slicing and its Theory 19

3 Background 22

3.1 The Program Projection Theory . . . . . . . . . . . . . . . . . 22

3.2 The Syntactic Ordering Induced by Statement Deletion . . . . 23

3.3 Weiser’s Static Backward Slicing . . . . . . . . . . . . . . . . . 23

3.4 The Dynamic Slicing of Korel and Laski . . . . . . . . . . . . 26

4 The Unified Framework 29

4.1 Comparison of Weiser’s Static Slicing with Korel and Laski’s

Dynamic Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The Unified Equivalence . . . . . . . . . . . . . . . . . . . . . 30

4.3 Dynamic and Static Slicing Re-defined . . . . . . . . . . . . . 32

4.4 Eight Forms of Slicing . . . . . . . . . . . . . . . . . . . . . . 35

5 Relationships between Forms of Slicing 41

5.1 The Subsumes Relation . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Subsumes Relation of Slicing Techniques . . . . . . . . . . . . 48

5.3 Minimal Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Traditional Syntactic Ordering of the Eight Forms of Slicing . 55

5



6 Conclusions 60

II Slicing of Binary Programs 63

7 Introduction to Binary Slicing 65

8 Dependence Graph-based Slicing of Binary Executables 67

8.1 Control Flow Analysis . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Building the Program Dependence Graph . . . . . . . . . . . . 73

8.3 Interprocedural Slicing using the System Depencence Graph . 77

9 Improving the Slicing of Binary Executables 80

9.1 Refining Static Analyses . . . . . . . . . . . . . . . . . . . . . 80

9.2 Improving the Call Graph with Dynamic Information . . . . . 83

10 Experimental Results 87

10.1 Static Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.2 The Effect of Dynamic Information . . . . . . . . . . . . . . . 90

11 Conclusions 94

III Code Obfuscation via Control Flow Flattening 95

12 Introduction to Code Obfuscation 97

13 Control Flow Flattening 100

13.1 Flattening of C++ Programs . . . . . . . . . . . . . . . . . . 100

13.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 110

14 Conclusions 116

6



IV Appendices 119

15 Summary 121

15.1 Summary in English . . . . . . . . . . . . . . . . . . . . . . . 121

15.2 Summary in Hungarian . . . . . . . . . . . . . . . . . . . . . . 123

15.3 Main Results of the Thesis and Contributions of the Author . 126

16 Related Work 130

16.1 Program Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . 130

16.2 Analysis and Slicing of Binary Code . . . . . . . . . . . . . . . 134

16.3 Code Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 137

7



List of Figures

3.1 A program and one of its static slices. . . . . . . . . . . . . . . 25

4.1 A static slice, which is not a KL–slice. . . . . . . . . . . . . . 29

4.2 Example to capture the difference between iteration count

aware and iteration count unaware equivalence relations. . . . 37

4.3 Example where the iteration count is interesting in a static

computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Example to capture the difference between static and dynamic

equivalence relations. . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Subsumes relationship between equivalence relations. . . . . . 42

5.2 Corollaries to Lemmas 5.4, 5.6, and 5.7. . . . . . . . . . . . . . 47

5.3 Subsumes relationship between slicing techniques. . . . . . . . 50

5.4 Example program which shows that the reverse of the duality

theorem is not true. . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Slicing techniques ordered by traditional syntactic ordering. . 56

5.6 Non–KL (execution path unaware) minimal slices. . . . . . . . 57

8.1 The same sequence of bytes decoded starting from two differ-

ent addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 The same sequence of bytes decoded to two different instruc-

tion sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.3 An indirect function call with two possible targets. . . . . . . 70

8.4 Two overlapping functions. . . . . . . . . . . . . . . . . . . . . 70

8.5 A Thumb program for computing the sum and product of the

first N natural numbers. . . . . . . . . . . . . . . . . . . . . . 71

8



8.6 The CFG of the program which computes the sum and product

of the first N natural numbers. . . . . . . . . . . . . . . . . . . 72

8.7 The CDG of two overlapping functions. . . . . . . . . . . . . . 73

8.8 Uf and Df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.9 Computing Uf and Df sets for the functions of the program

given in Figure 8.5. . . . . . . . . . . . . . . . . . . . . . . . . 75

8.10 The PDG of function mul of the example program presented

in Figure 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.11 A portion of the SDG of the example program given in Figure 8.5. 78

9.1 The lattice to characterise register content. . . . . . . . . . . . 81

9.2 Rules for u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.3 An interprocedural backward slice of the example program

given in Figure 8.5. . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4 The statically computed call graph of the program decode. . . 86

9.5 The call graph shown in Figure 9.4 made more precise with

the help of dynamically gathered information. . . . . . . . . . 86

13.1 The effect of control flow flattening on the source code. . . . . 101

13.2 The effect of control flow flattening on the control flow graph. 102

13.3 Duff’s device. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13.4 Transformation of a loop with unstructured control transfer. . 104

13.5 Exception handling with unstructured control transfer. . . . . 105

13.6 The algorithm of control flow flattening, part one. . . . . . . . 106

13.7 The algorithm of control flow flattening, part two. . . . . . . . 107

13.8 The algorithm of control flow flattening, part three. . . . . . . 108

13.9 The relationship between the complexities of the original and

the flattened code. . . . . . . . . . . . . . . . . . . . . . . . . 113

9



List of Tables

10.1 The benchmark used to evaluate binary slicing. . . . . . . . . 87

10.2 All functions present in the programs and the statically reach-

able ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.3 Summary of edges in the SDGs built using both conservative

and improved data dependence analyses. . . . . . . . . . . . . 89

10.4 Average number of instructions in interprocedural static slices

based on both conservative and improved data dependence

analyses (no criteria from library code). . . . . . . . . . . . . . 89

10.5 Average number of instructions in interprocedural static slices

based on both conservative and improved data dependence

analyses (criteria taken from all reachable functions). . . . . . 90

10.6 The functions called during test executions. . . . . . . . . . . 91

10.7 Indirect function call sites and indirectly callable functions. . . 92

10.8 Change in the number of call edges as a result of using of

dynamic information. . . . . . . . . . . . . . . . . . . . . . . . 92

10.9 Change in the average size of slices as a result of using dynamic

information (no criteria from library code). . . . . . . . . . . . 93

10.10Change in the average size of slices as a result of using dynamic

information (criteria taken from the entire executable set). . . 93

13.1 The benchmark used to evaluate the effects of control flow

flattening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

13.2 The effect of control flow flattening on McCabe’s complexity

metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10



13.3 Pearson correlation of the increases in McCabe’s metric in

the cases of source code, -O0-optimised binary code, and -O2-

optimised binary code. . . . . . . . . . . . . . . . . . . . . . . 113

13.4 The effect of control flow flattening on program size. . . . . . . 114

13.5 The effect of control flow flattening on the number of executed

instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11
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Chapter 1

Preface

“While much attention in the wider software engineering community is prop-

erly directed towards other aspects of systems development and evolution,

such as specification, design and requirements engineering, it is the source

code that contains the only precise description of the behaviour of the sys-

tem. The analysis and manipulation of source code thus remains a pressing

concern.”

The above sentences constitute the motto of SCAM, the annual confer-

ence on Source Code Analysis and Manipulation, and this is what motivated

the author while doing his research work. The field of code analysis and ma-

nipulation is huge; it includes topics like program transformation, abstract

interpretation, program slicing, source level software metrics, decompilation,

source level testing and verification, source level optimisation and program

comprehension among others. Out of these numerous topics, the author

focused on three issues: the theoretical foundation of program slicing, the

application of program slicing to binary programs, and the obfuscation of

programs written in C++ language.

The structure of the main body of the thesis follows the previous list of

research topics. Part I is devoted to the theory of program slicing, Part II is

about the slicing of binary programs, while Part III discusses the application

of code obfuscation to C++ source code. Each part of the thesis begins with

an introduction to and motivation for the specific area, and then following
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the presentation of the results a there is a summary. After the main parts,

the appendices follow with the summary of the whole thesis (both in English

and in Hungarian), a description of the author’s contributions to the key

results, a description of the related work and bibliographic references.

The author admits that Part II, i.e., the slicing of binaries, might seem

inappropriate in the context of source code analysis. However, for the scien-

tific community of SCAM, ‘source code’ is any fully executable description of

a software system. Thus, this definition not only covers high level languages

but includes machine code as well. Even though this relaxed definition nicely

incorporates all three main parts of this work, the thesis has been titled Pro-

gram Code Analysis and Manipulation to match the terminology used by the

wider software engineering community.

In addition, the author remarks that although the results presented in

this thesis are his major contribution, from this point on, the term ‘we’ will

be used instead of ‘I’ for self reference to acknowledge the contribution of

the co-authors of the papers that this thesis is based on.
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Part I

The Theory of Slicing
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Chapter 2

Introduction to Slicing and its

Theory

Program slicing is a technique for extracting the parts of a program which

affect a given set of variables of interest, and was originally introduced by

Mark Weiser in 1979 [102]. By focusing on the computation of only a few

variables, the slicing process can be used to eliminate the parts of the program

which cannot affect these variables. This way the size of the program is

reduced. The reduced program is called a slice.

Slicing has many applications because it allows a program to be simplified

by focusing attention on a sub–computation of interest for a chosen program.

The user specifies the sub–computation of interest using a ‘slicing criterion’.

This first part of the thesis is concerned with the relationships between the

slicing criteria for the dynamic and the static forms of slicing and the sets of

slices allowable according to the different slicing techniques which use these

criteria.

Among other applications, slicing has been applied in reverse engineer-

ing [23, 95], program comprehension [36, 52], software maintenance [22, 29,

43, 42], debugging [2, 61, 80, 105], testing [16, 48, 50, 56, 57], component

re–use [7, 28], program integration [19, 58], and software metrics [10, 71, 86].

In the literature there are several surveys on slicing techniques, applications

and variations [17, 18, 35, 53, 98].
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Slices can be constructed statically [104, 60] or dynamically [66, 3]. In

static slicing, the input to the program is unknown and the slice must there-

fore preserve the meaning for all possible inputs. By contrast, in dynamic

slicing, the input to the program is known, and so the slice only needs to

preserve the meaning for the input under consideration. Dynamic slicing

is especially useful in applications like debugging, where the input to the

program has a crucial bearing on the problem in hand.

Here, we are interested in the formal definitions and properties of slic-

ing (rather than in algorithms for computing them). We shall employ the

projection theory of program slicing introduced by Harman, Danicic, and

Binkley [49, 51], which was first used to examine the similarities and dif-

ferences between the amorphous and the syntax-preserving forms of slicing.

This study uses projection theory to investigate the nature of dynamic slicing,

as originally formulated by Korel and Laski [66].

The next few chapters will make abundantly clear that the dynamic slic-

ing criterion is more subtle than previous authors have observed [21, 41, 100].

There is no simple two-element subsumption relationship between Korel and

Laski dynamic slicing and static slicing. Previous authors regarded the ad-

dition of program input as the only aspect separating the static and the

dynamic slicing criteria. However, projection theory allows for the analy-

sis of the ‘subsumption’ relationship between various formulations of static

and dynamic slicing, and the analysis reveals the existence of new, as yet

unexplored slicing criteria which may find applications in their own right.

This part of the thesis also proves that the ‘subsumption’ relationship for

the semantic properties of slicing criteria is respected by all the definitions

of slicing which use the standard statement deletion.

However, subsumption is not the only interesting relationship between

slicing techniques. In any application of slicing, the size of the slices is

crucial: the smaller, the better. Thus, we want to put statements such as

“dynamic slices are smaller than static slices” on a firm theoretical footing.

We intuitively know what we mean by such statements, but capturing this

formally is non-trivial. Needless to say, not all dynamic slices are smaller than

all static slices, since there is the complication of which particular dynamic

20



slicing definition one is to adopt; some are incomparable with static slicing.

Therefore, in the following we will define a relationship that allows us to

determine whether one definition of slicing leads to inherently smaller slices

than another.
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Chapter 3

Background

3.1 The Program Projection Theory

Program Projection Theory [49, 51] is, in essence, a generalisation of slicing.

It uses two relations over programs: a pre-order, i.e., a transitive and reflexive

relation called syntactic ordering, and an equivalence relation called semantic

equivalence. Syntactic ordering is used to capture the syntactic property that

slicing seeks to optimise. Programs that are lower according to the ordering

are considered to be ‘better’. The semantic relation is an equivalence relation

which captures the semantic property that remains invariant during slicing.

Definition 3.1 (Syntactic Ordering). A syntactic ordering, denoted by <
∼ ,

is a computable transitive and reflexive relation on programs.

Definition 3.2 (Semantic Equivalence). A semantic equivalence, denoted

by ≈, is an equivalence relation on program semantics.

Definition 3.3 ((<
∼
,≈) Projection). Given syntactic ordering <

∼
and seman-

tic equivalence ≈,

program q is a (<
∼
,≈) projection of program p

if and only if

q <
∼ p ∧ q ≈ p.
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That is, in a projection, the syntax can only improve while the seman-

tics of interest must remain unchanged. Projection theory, thus, elegantly

separates the syntactic and semantic constraints inherent in program slicing.

3.2 The Syntactic Ordering Induced by State-

ment Deletion

The following definition formalises the oft-quoted remark: “a slice is a subset

of the program from which it is constructed”. It defines the syntactic ordering

for syntax-preserving slicing. Note that for ease of presentation, it is assumed

that each program component occupies a unique line. Thus, a line number

can be used to uniquely identify a particular program component. In this

thesis, just the syntax-preserving forms of slicing are considered [49], so all

the following slicing definitions will share the following Syntactic Ordering.

Definition 3.4 (Traditional Syntactic Ordering). Let F be a function that

takes a program and returns a partial function from line numbers to state-

ments, such that the function F (p) maps l to c if and only if program p

contains the statement c at line number l. Traditional syntactic ordering,

denoted by v, is defined as follows:

p v q ⇔ F (p) ⊆ F (q).

3.3 Weiser’s Static Backward Slicing

The semantic property that static slicing respects is based upon the concept

of state trajectory. According to Weiser, informally, for program q to be a

static slice of program p with respect to slicing criterion (V, n), the trajecto-

ries of p and q must semantically agree with respect to variables V at line

n for every initial state. This means that if we remove all elements from

the state trajectories apart from those which mention n and then, in what

remains, just consider the subset of the states which are concerned with the

set of variables V , the two trajectories should appear to be identical. There

23



is, of course, also the syntactic requirement that q must be obtained from p

by statement deletion, i.e. q v p.

The following definitions of state trajectory, state restriction, Proj, and

Proj′ come from Weiser’s definition of slice semantics [104].

Definition 3.5 (State Trajectory). A state trajectory is a finite sequence of

(line number, state) pairs:

(l1, σ1)(l2, σ2) . . . (lk, σk),

where a state is a partial function mapping a variable to a value, and entry i

is (li, σi) if after i statement executions the state is σi, and the next statement

to be executed is at line number li.

This definition considers only terminating programs. Both Weiser and

subsequent authors remain silent on the required behaviour of a slice in

situations where the original program fails to terminate. In this thesis, it is

Weiser’s definition of slicing which will be adopted. The definitions presented

give rise to semantic equivalence relations over terminating programs. Like

previous authors, the present definitions do not define the meaning of a slice

for programs which fail to terminate.

Definition 3.6 (State Restriction). Given a state, σ and a set of variables

V , σ � V restricts σ so that it is defined only for variables in V :

(σ � V )x =

{

σ x if x ∈ V, and

⊥ otherwise.

Definition 3.7 (Proj). For slicing criterion (V, n), and state trajectory T =

(l1, σ1)(l2, σ2) . . . (lk, σk),

Proj(V,n)(T ) = Proj′(V,n)(l1, σ1) . . . P roj′(V,n)(lk, σk),

where

Proj′(V,n)(l, σ) =

{

(l, σ � V ) if l = n, and

λ otherwise,
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1 n=input(); 1 n=input();

2 s=0;

3 p=1; 3 p=1;

4 while (n>1) { 4 while (n>1) {
5 s=s+n;

6 p=p*n; 6 p=p*n;

7 n=n-1; 7 n=n-1;

8 } 8 }
9 output(s);

10 output(p); 10 output(p);

p3.1: Original program q3.1: Slice w.r.t. ({p}, 10)

Figure 3.1: A program and one of its static slices.

where λ denotes the empty string.

Having defined the necessary auxiliary functions, we are now in a position

to define static backward equivalence, the semantic relationship preserved by

backward static slicing, as originally defined by Weiser [102].

Definition 3.8 (Static Backward Equivalence). Given two programs p and

q, and slicing criterion (V, n), p is static backward equivalent to q, written

p S (V, n) q, if and only if for all initial states σ, when the execution of p in

σ gives rise to a state trajectory T σ
p and the execution of q in σ gives rise to

a state trajectory T σ
q , then Proj(V,n)(T

σ
p ) = Proj(V,n)(T

σ
q ).

The static slicing semantic equivalence relation is parameterised by V

and n, and hence it really defines a function from slicing criterion (V, n), to

equivalence relations over programs. This reflects the fact that each slicing

criterion yields slices that respect a different projection of the semantics of

the program from which they are constructed. Instantiating Definitions 3.4

and 3.8 into Definition 3.3, yields the following:

Definition 3.9 (Static Backward Slicing). A program q is a static backward

slice of a program p with respect to the slicing criterion (V, n) if and only if

q is a (v, S (V, n)) projection of p.

As an example, consider programs p3.1 and q3.1 in Figure 3.1. Program

q3.1 is a static backward slice of p3.1, because p3.1 is static backward equivalent
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to q3.1, written p3.1 S ({p}, 10) q3.1, since for every initial state σ,

Proj({p},10)(T
σ
p3.1

) = Proj({p},10)(T
σ
q3.1

)

and q3.1 is obtained from p3.1 by statement deletion.

3.4 The Dynamic Slicing of Korel and Laski

Static slices must preserve a projection of the semantics of the original pro-

gram for all possible program inputs. In certain applications this requirement

is too strict. For example, when debugging, only a single input is often of

interest. Korel and Laski [66] were the first to introduce a dynamic definition

of a slice. A dynamic slice only needs to preserve the effect of the original

program upon the slicing criterion for a single input. The dynamic paradigm

is ideally suited to problems such as bug-location, because a bug is typically

detected as the result of the execution of a program with respect to some

specific inputs.

Consider once again the example in Figure 3.1, but with p=1 mistakenly

coded as p=0. Suppose the original program is executed and given the input

1. The value of p at the end of the execution is incorrect — it is 0 when it

should be 1. The dynamic slice identifies those statements that contribute

to the value of the variable p when the input 1 is supplied to the program;

in this case, just the line p=0. Locating the bug (the faulty initialisation of

p) in terms of the dynamic slice is thus easier than with either the original

program or the corresponding static slice.

This is a rather contrived example as the input causes the while loop to

go un-executed. However, in general, dynamic slicing improves precision in

several ways. One is that statements which remain un-executed are not in-

cluded in a dynamic slice. Another is that statements which are executed and

create data and control dependencies may be removed from the slice, should

these dependencies be subsequently ‘overwritten’ during the execution. Yet

another is that dynamic slicing has more precise information concerning the

value of array indices and pointer variables, which allows a more precise
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determination of data dependencies.

The literature on dynamic slicing includes many different algorithms

[3, 9, 46, 62, 66, 68]. Many of these algorithms do not necessarily output

executable programs [3, 9, 46, 62]. Rather, they regard a dynamic slice as

the collection of statements that have an effect upon the slicing criterion

given the chosen input. By contrast, this part of the thesis is concerned

solely with the executable forms of slicing.

As defined by Korel and Laski, an executable dynamic slicing criterion

is (x, Iq, V ), which like the static slicing criterion (V, n) includes a set of

variables V . Unlike the static slicing criterion, it also includes the program’s

input x and replaces the location of interest n with Iq, which is the qth

instruction in the execution trajectory, which is I. Thus, a slice can be

taken with respect to a particular instance rather than all the instances of a

statement (instruction) from the program.

The definition uses two auxiliary functions on sequences, Front and

DEL [66]. Front(T, i) is the ‘front’ i elements of sequence T from 1 to i

inclusive. DEL(T, π) is a filtering operation which takes a predicate π and

returns the sequence obtained by deleting the elements of T that satisfy π.

The following definition is taken verbatim from Korel and Laski’s work on

dynamic slicing [66], even if this causes some inconsistencies in the notations

used in the thesis. E.g., in Korel and Laski’s interpretation, a trajectory is

simply a finite sequence of line numbers, as opposed to Weiser’s definition

of a state trajectory (see Definition 3.5). However, in the following, we will

refer to both kinds of trajectories as a trajectory and the context will make

clear which meaning is involved.

Definition 3.10 (Korel and Laski’s Dynamic Slice). Let c = (x, Iq, V ) be

a slicing criterion of a program p and T the trajectory of p on input x. A

dynamic slice of p on c is any executable program p′ that is obtained from

p by deleting zero or more statements such that when executed on input x,

produces a trajectory T ′ for which there exists an execution position q′ such

that

(KL1) Front(T ′, q′) = DEL(Front(T, q), T (i) /∈ N ′ ∧ 1 ≤ i ≤ q),
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(KL2) for all v ∈ V , the value of v before the execution of instruction T (q)

in T equals the value of v before the execution of instruction T ′(q′) in

T ′,

(KL3) T ′(q′) = T (q) = I,

where N ′ is a set of instructions in p′.

It would be nice to define a projection corresponding precisely to the

dynamic slice defined by Korel and Laski. However, as it will be seen, this

requires quite some effort. Thus, inserting dynamic slicing into the framework

of projection theory will be left for the next chapter.
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Chapter 4

The Unified Framework

4.1 Comparison of Weiser’s Static Slicing with

Korel and Laski’s Dynamic Slicing

A common view is that every static slice is (an overly large) Korel-and-Laski-

style dynamic slice as well. One intuitively expects that a dynamic slicing

criterion is looser than a static one, since it preserves the semantics of a

program for only one fixed input instead of all the possible ones. Moreover,

a dynamic slicing criterion selects just one occurrence of an instruction from

the trajectory, as opposed to static slicing where all occurrences of the point

of interest are taken into account.

However, as Figure 4.1 shows, Korel and Laski’s (KL) definition of dy-

namic slicing is incomparable with the definition of static slicing, since not

1 x=1; 1 x=1;

2 x=2;

3 if (x>1) 3 if (x>1)

4 y=1; 4 y=1;

5 else 5 else

6 y=1; 6 y=1;

7 z=y; 7 z=y;

p4.1: Original Program q4.1: Slice w.r.t. ({y}, 7)

Figure 4.1: A static slice, which is not a KL–slice.
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all static slices are appropriate KL–slices (and not all KL–slices are static

slices, which is trivial). In Figure 4.1, program q4.1 is a valid static slice with

respect to ({y}, 7) since at Line 7 the value of y is 1 for all inputs, just like in

p4.1. However, q4.1 is not a Korel-and-Laski-style dynamic slice of p4.1 with

respect to (〈〉, 74, {y}), because the trajectory of p4.1 is (2 3 4 7), but the

trajectory of q4.1 is (3 6 7). Having different execution paths violates KL1

(see Definition 3.10), since the truncated and filtered trajectories differ, i.e.,

(3 4 7) 6= (3 6 7).

Notice that the cause of incomparability between KL–dynamic-slicing

and static slicing is that KL–dynamic-slicing is “looser” as it must preserve

behaviour for just a single input (a desired effect) while, because of KL1, it

is also more strict. Thus, restriction KL1 can prevent us from choosing an

otherwise acceptable program from several semantically equivalent programs.

4.2 The Unified Equivalence

Now that the main cause of imcomparability between Weiser’s static slicing

and KL–slicing has been identified, KL–slicing can be incorporated into the

framework of projection theory. However, Definition 3.7 is not sufficient for

this purpose as it cannot capture the execution path (KL1) requirement.

To set up a unified framework we shall extend these definitions by in-

troducing counterparts to Proj and Proj′ named Proj∗ and Proj′∗, respec-

tively. The extension splits the “statement” parameter n into P and I: P ,

an instruction-natural number pair, identifies those instruction occurrences

from the trajectory whose semantics must be preserved. Parameter I cap-

tures the trajectory requirement of KL1 by keeping only the line number, in

the form of (n,⊥), for those instructions that are not in the slicing criterion

but get executed.

Notice that in the following definitions the notation is different from the

one used by Korel and Laski. While, in Definition 3.10, Iq represents the

qth instruction in the trajectory, which is I, n(k) is used to denote the kth

occurrence of instruction n in the trajectory and the exact position is only

implicitly given. This difference makes it possible to capture the iteration
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count component of the Korel and Laski slicing criterion.

Definition 4.1 (Proj′∗). Proj′∗ is defined in terms of 5 parameters: a set

of variables V , a set of (line number, natural number) pairs P , a set of line

numbers I, a (line number, natural number) pair n(k), and a state σ:

Proj′∗(V,P,I)(n
(k), σ) =











(n, σ � V ) if n(k) ∈ P,

(n,⊥) if n(k) /∈ P and n ∈ I,

λ otherwise.

Note that Proj′∗(V,P,I)(n
(k), σ) evaluates either to a single pair or an empty

sequence of pairs depending on its parameters. It, in effect, keeps a projected

version of each pair if either n(k) ∈ P or n ∈ I otherwise it ‘throws away’ the

pair completely.

Definition 4.2 (Proj∗). For a set of variables V , set of (line number, natural

number) pairs P , set of line numbers I and state trajectory T :

Proj∗(V,P,I)(T ) = Proj′∗(V,P,I)(n1
(k1), σ1) . . . P roj′∗(V,P,I)(nl

(kl), σl),

where ki is the number of occurrences of ni in the first i elements of T (i.e.,

ni
(ki) is the most recent occurrence of ni in T (1) . . . T (i)), and l is the highest

index in T such that nl
(kl) ∈ P .

Observe that if P = {n}×N, where N is the set of natural numbers, and

I = ∅ then Proj∗(V,P,I)(T ) = Proj(V,n)(T ), since the middle case of Proj′∗

can be dropped. This leaves Weiser’s definition of Proj. However, by choos-

ing different values for P and I, Proj∗ can capture Korel and Laski’s re-

quirements as well. Consider again the program p4.1 from Figure 4.1. If

V = {y}, P = {7(1)}, and I = {1, 3, 4, 5, 6, 7} then Proj∗(V,P,I)(T
〈〉
p4.1) =

(3,⊥)(4,⊥)(7, {y = 1}), thus it keeps not only the value of variable y at Line

7 but the path of execution as well. Note that the result of Proj∗(V,P,I)(T
〈〉
q4.1)

is different because of the different path of execution taken in q4.1.

Using the above functions we can define a unified semantic equivalence

relation U, which is capable of expressing Korel and Laski’s dynamic slicing.
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In the following definition, the roles of the parameters are as follows: S

denotes the set of initial states for which the equivalence must hold. This

captures the ‘pure’ part of the dynamic slicing critera (the input supplied to

the program, or, equivalently the initial state in which the program is to be

executed). The set of variables of interest V is common to all slicing criteria.

Parameter P , just as in Definitions 4.1 and 4.2, contains the points of interest

in the trajectory and it also captures the ‘iteration count’ component of the

criteria. Finally, X captures the ‘trajectory requirement’. It is a function

that determines which statements must be preserved in the trajectory (even

though they have not affected the variables of the slicing criterion). The

domain of X is a pair of sets of statement numbers from two programs.

Definition 4.3 (Unified Equivalence). Given programs p and q, a set of

states S, a set of variables V , a set of (line number, natural number) pairs

P , and a set of line numbers × set of line numbers → set of line numbers

function X, the unified equivalence U is defined as follows:

p U(S, V, P, X) q

if and only if

∀σ ∈ S : Proj∗(V,P,X(p,q))(T
σ
p ) = Proj∗(V,P,X(p,q))(T

σ
q )

where p and q denote the set of statement numbers in p and q, respectively.

4.3 Dynamic and Static Slicing Re-defined

By instantiating Definition 4.3 with appropriate parameters we get a new

equivalence relation which captures the semantics of Korel and Laski’s dy-

namic slicing.

Definition 4.4 (Korel and Laski Style Dynamic Equivalence). For a state

σ, set of variables V and a (line number, natural number) pair n(k), the

Korel-and-Laski-style dynamic equivalence (DKLi) is defined as follows:

DKLi(σ, V, n(k)) = U({σ}, V, {n(k)},∩).
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We shall adopt the notational convention that a KL subscript indicates

that a slicing criterion respects Korel and Laski’s requirement (KL1) and

an i subscript indicates that only one occurrence of an instruction in the

trajectory is of interest. Naturally, S and D denote static and dynamic

slicing, respectively. Theorem 4.1 establishes that Definition 4.4 faithfully

captures Korel and Laski’s definition.

Theorem 4.1. A program p′ is a Korel-and-Laski-style dynamic slice of p

with respect to the dynamic slicing criterion (x, Iq, V ) if and only if p′ is

a (v, DKLi(σ, V, n(k))) projection of p, where σ = x, n = I, and q is the

position of the kth occurrence of n in T σ
p .

First, we will demonstrate the equivalence informally. It is easy to see

that the phrase “obtained from p by deleting zero or more statements from it”

in Definition 3.10 is equivalent to v. Furthermore, the second and third cases

of Proj′∗ correspond to the DEL auxiliary function. Finally, the semantics

of KL1 (and Front) are captured by Proj∗; the first case of Proj′∗ gives

KL2, and from Proj′∗ and the definition of l in Proj∗ follows KL3.

Now, we will present a formal proof.

Proof. First, we have to show that p′ is a (v, DKLi(σ, V, n(k))) projection of p,

assuming that p′ is a Korel-and-Laski-style dynamic slice of p with respect to

(σ, nq, V ). The fact that a Korel-and-Laski-style dynamic slice is a syntactic

subset of the program from which it is constructed implies that p′ v p.

Reformulating KL1 gives that a q′ exists so that

q′
⊕

i=1

π(T σ
p′(i)) =

q
⊕

i=1

δ(π(T σ
p (i))),

where
⊕

, as a shorthand notation, denotes the concatenation of sequences,

π((m, s)) = (m,⊥), and

δ((m, s)) =

{

(m, s) if m ∈ p′

λ otherwise.
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Since we can apply δ to the left-hand side, from this follows

q′
⊕

i=1

δ(π(T σ
p′(i))) =

q
⊕

i=1

δ(π(T σ
p (i))),

where we can substitute δ′ = π ◦ δ and thus we get

q′
⊕

i=1

δ′(T σ
p′(i)) =

q
⊕

i=1

δ′(T σ
p (i)).

From KL2 and KL3 it follows that

δ′′(T σ
p′(q

′)) = δ′′(T σ
p (q)),

where δ′′((m, s)) = (m, s � V ).

If we combine the reformulation of KL1 with that obtained from KL2 and

KL3, we get
q′

⊕

i=1

∆q′(i, T
σ
p′(i)) =

q
⊕

i=1

∆q(i, T
σ
p (i)),

where

∆j(i, (m, s)) =











(m, s � V ) if i = j

(m,⊥) if i 6= j and m ∈ p′

λ otherwise.

Since, from KL1 and KL3 it follows that at position q is the kth occurrence

of n in T σ
p and at position q′ is also the kth occurrence of n in T σ

p′ , it is clear

that the above equation is only a reformulation of p′ U(σ, V, {n(k)},∩) p.

Conversely, we also have to show that p′ is a Korel-and-Laski-style dy-

namic slice of p with respect to (σ, nq, V ) if p′ is a (v, DKLi(σ, V, n(k))) pro-

jection of p. From p′ v p it follows immediately that p′ is a syntactic subset

of p. By reformulating p′ DKLi(σ, V, n(k)) p we get

l′
⊕

i=1

Proj′∗
(V,{n(k)},p′)

(n′
i
(k′

i), σ′
i) =

l
⊕

i=1

Proj′∗
(V,{n(k)},p′)

(ni
(ki), σi),

34



where by definition (ni, σi) is T σ
p (i), ki is the number of occurrences of ni in

the first i elements of T σ
p and l is the highest index j such that nj

(kj) ∈ {n(k)}.

Here, n′
i, σ′

i, k′
i and l′ have similar meanings in T σ

p′. From this it follows that

l is the position of n(k) in T σ
p and l′ is the position of n(k) in T σ

p′. Substituting

l by q and l′ by q′, the above equation implies KL1, KL2 and KL3.

With the help of the unified equivalence not only can we express Korel and

Laski’s dynamic equivalence, but we can redefine Weiser’s static backward

equivalence as well.

Definition 4.5 (Traditional Static Equivalence). For a set of variables V

and line number n,

S (V, n) = U(Σ, V, {n} ×N, ε)

where Σ is the set of all possible states, and for every set of line numbers, x

and y, ε(x, y) = ∅.

Since we have already observed that with an appropriate parameterisation

Proj∗ reduces to Weiser’s Proj, it is a trivial matter to show that S (V, n) is

simply a reformulation of the static backward equivalence given in Definition

3.8. The proof here will be left to the reader.

4.4 Eight Forms of Slicing

From the new definitions, we can identify several orthogonal slicing criteria

concepts within the slicing criterion. The traditional view of dynamic slicing

is that it is obtained from static slicing with the addition of the input sequence

to the static slicing criterion. It turns out that this is not the case for KL

dynamic slicing. It is more subtle than that. Now, using the projection

theory it is possible to tease apart these criterion components.

In the traditional static formulation for slicing, the set of states of interest

is the set of all possible states, Σ. The set of variables, V and the point in the

program n are those of the traditional static slicing criterion. For traditional

static slicing, the slicing process must preserve the behaviour of the program
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at the point of interest n, and for each possible execution of n (hence n×N

in Definition 4.5). However, the traditional definition of static slicing places

no requirement on the way in which the slice must be computed (hence ε

in the same definition). On the other hand, KL–slicing does not require a

slice to behave the same way as the original program does for all possible

inputs, but only for a specific one, σ. Moreover, the point of interest is only

one occurrence of a statement, n(k). Contrary to traditional static slicing,

KL–slicing does care about the path of execution in the slice, thus parameter

I of Proj∗ is p ∩ q.

In Figure 4.1, the program performs no input, so the relation U for this

program will not be affected by different choices of the first parameter. So, for

any state σ, p4.1 U(σ, {y}, {7(1)}, ε) q4.1 but ¬(p4.1 U(σ, {y}, {7(1)},∩) q4.1).

That is, the fourth parameter of U, which captures the presence or absence

of the KL requirement, is sensitive to the difference in the two programs p4.1

and q4.1 in Figure 4.1. Observe that for both programs, the final value of y is 1

regardless of how the program is executed. However, the trajectory followed

by the program q4.1 differs from the one followed by p4.1 even when the two

trajectories are restricted to those nodes which occur in both programs; it

seems that q4.1 arrives at the same answer as p4.1 but in a different way.

The requirement that a slice observes this (stringent) requirement for

equivalence is similar to the path equivalence studied in the context of pro-

gram restructuring [65, 88]. It is useful in the context of debugging however.

When slicing is applied to debugging, it is vital that the sliced program

faithfully reproduce the behaviour that causes a fault to manifest itself as

an error. For this reason, program q4.1 would not be a useful slice of pro-

gram p4.1 in Figure 4.1. In this regard, the KL requirement is important for

debugging applications of slicing [80, 61]. It may also be important in appli-

cations to program comprehension [36, 67] because, in these applications, the

programmer typically tries to understand the behaviour of the original pro-

gram in terms of the behaviour of the slice. However, for other applications

such as testing, reuse, and restructuring [7, 22, 54], the KL requirement is

unimportant because program modification is inherent to these application

areas.
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1 x=1; 1 x=1;

2 while (x<=2) { 2 while (x<=2) {
3 y=1; 3 y=1;

4 if (x==1)

5 y=2;

6 z=y; 6 z=y;

7 x++; 7 x++;

8 } 8 }
Program p4.2 Program q4.2

V4.2 = {y}, n4.2 = 6, k4.2 = 2

Figure 4.2: Example to capture the difference between iteration count aware
and iteration count unaware equivalence relations.

We may also observe that there is another not-yet-discussed concept in

the criterion of Korel and Laski’s dynamic slicing which is easier to notice

when comparing the unified equivalence-based definitions of the traditional

static and KL-slicing. Parameter P gives the point(s) of interest in the

trajectory in the form of n(k), which has a slightly different meaning from

the Iq component of Korel and Laski’s original slicing criterion. Theorem 4.1

shows that these two notations are equivalent, and this makes us to realise

that the iteration count is a new type of criterion.

To see how the iteration count can affect the meaning of the equivalence

preserved by slicing, consider the program in the left-hand column of Fig-

ure 4.2. In this program, the conditional at line numbers 4 and 5 can only

affect the value of y at Line 6 on the first time it is executed. Therefore,

choosing the second iteration of this statement in the slicing criterion will

allow the conditional to be deleted. That is, in terms of equivalence, for all

states σ, p4.2 U(σ, {y}, {6(2)},∩) q4.2 and p4.2 U(σ, {y}, {6(2)}, ε) q4.2.

When slicing is applied to debugging, the iteration count will be of inter-

est. This is because debugging typically starts when the program fails due to

a fault. To locate the fault, a slice can be constructed. Of course, it would

be sensible to take into account the iteration count for the statement which

reveals the error when constructing the slice; this may reduce the size of the

slice, thereby reducing the effort involved in debugging.
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1 prev=1; 1 prev=1;

2 curr=1; 2 curr=1; 2 curr=1;

3 i=1; 3 i=1;

4 while (i<n) { 4 while (i<n) {
5 oldc=curr; 5 oldc=curr; 5 oldc=curr;

6 curr=curr+prev; 6 curr=curr+prev;

7 prev=oldc; 7 prev=oldc; 7 prev=oldc;

8 i++; 8 i++;

9 } 9 }
Program p4.3 V = {prev}, n = 7, k = 1 V = {prev}, n = 7, k = 2

Figure 4.3: Example where the iteration count is interesting in a static com-
putation.

Although it was (implicitly) introduced as part of Korel and Laski’s dy-

namic slicing criterion, the iteration count concept is independent of whether

a slice is to be static or dynamic. The same is true of the KL requirement.

This can be seen from the fact that no input was necessary in the two ex-

amples used to illustrate the difference in equivalence relations produced by

including or excluding these two requirements. Furthermore, it is possible

to find static computations where the iteration count is an interesting and

useful concept. For example, in loop carried dependence, it may take several

iterations of a loop in order to propagate a dependence from one point to

another. An example of this is the program which computes values in the

Fibonacci sequence in Figure 4.3. This program performs no input either.

In the example, the ability to focus upon different iteration counts allows

the dependence structure to be examined in more detail; it becomes possi-

ble to see how dependence grows with each loop iteration. In this example,

on the first iteration the value of the variable prev does not depend on the

assignment to curr at Line 6, but it depends on the second (and subsequent

iterations). As this example demonstrates, the concept of an iteration count

may be a useful slicing criterion in its own right.

Finally, consider the example in Figure 4.4, which illustrates the tradi-

tional difference between static and dynamic slicing. That is, for dynamic

slicing the input affects the outcome of slicing, while for static slicing, the slice
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1 y=1; 1 y=1;

2 x=input();

3 if (x>1)

4 y=2;

5 z=y; 5 z=y;

Program p4.4 Program q4.4

σ4.4 = 〈1〉, V4.4 = {y}, n4.4 = 5, k4.4 = 1

Figure 4.4: Example to capture the difference between static and dynamic
equivalence relations.

must be correct for all possible initial states. This is the difference between

static and dynamic slicing to which most authors [3, 21] refer. However, as

the preceding discussion shows, there are two other aspects to a dynamic

slice: path equivalence (or otherwise) and iteration count sensitivity (or oth-

erwise).

Now that we have identified the orthogonal criterion components (set

of initial states, KL1 restriction or execution path awareness, and iteration

count) we realise that the two semantic equivalence relations S (V, n) and

DKLi(σ, V, n(k)) represent extremes in a space of eight possible equivalence

relations. This space has three orthogonal criteria, which means that there

are six additional intervening equivalence relations (and thus, three addi-

tional pairs of extremes) resulting from the other possible parameterisations

of the unified equivalence. Now, we can define these equivalence relations as

well. For the sake of completeness, those relations which have already been

presented are included in the list below.
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Definition 4.6 (Eight Equivalences).

S (V, n) = U(Σ, V, {n} × N, ε),

Si(V, n(k)) = U(Σ, V, {n(k)}, ε),

D(σ, V, n) = U({σ}, V, {n} × N, ε),

Di(σ, V, n(k)) = U({σ}, V, {n(k)}, ε),

SKL(V, n) = U(Σ, V, {n} × N,∩),

SKLi(V, n(k)) = U(Σ, V, {n(k)},∩),

DKL(σ, V, n) = U({σ}, V, {n} × N,∩),

DKLi(σ, V, n(k)) = U({σ}, V, {n(k)},∩).

Each of these definitions expresses the semantic aspect of eight different

forms of slicing. Six equivalence relations of the above eight capture the

semantic property of six new, hitherto undiscussed slicing methods.
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Chapter 5

Relationships between Forms of

Slicing

5.1 The Subsumes Relation

The eight equivalence relations S , Si, D , Di, SKL, SKLi, DKL and DKLi in

fact represent classes of equivalence relations, since they are parameterised

by σ, V , n and k (even though not all of the relations make use of all four).

Denoting a parameterised equivalence relation by ≈, it is possible to define

a subsumption relationship ≈B ⊆≈A between these classes.

Definition 5.1 (Subsumes Relation). For equivalence relations ≈A and ≈B,

both parameterised by σ, V , n and k, ≈A subsumes ≈B , denoted as ≈B⊆≈A,

if and only if

∀σ, V, n, k :≈
(σ,V,n,k)
B ⊆≈

(σ,V,n,k)
A

or equivalently,

∀p, q, σ, V, n, k : (p, q) ∈ ≈
(σ,V,n,k)
B ⇒ (p, q) ∈ ≈

(σ,V,n,k)
A .

This subsumes relation is a partial ordering of parameterised equivalence

relations, since it is defined with the help of the subset relation, which is

itself a partial ordering (i.e., reflexive, transitive and antisymmetric). Fig-

ure 5.1 presents the lattice of the subsumes relation for S , Si, D , Di, SKL,
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Figure 5.1: Subsumes relationship between equivalence relations.

SKLi, DKL and DKLi (e.g., S is subsumed by D). As can be seen, the rela-

tionship between the semantic aspect of static and dynamic slicing is not as

straightforward as previous authors have claimed [21, 41, 100]. The following

theorem proves the correctness of the diagram in Figure 5.1: in other words,

there are no superfluous edges and no missing edges in the lattice.

Theorem 5.1. The lattice shown in Figure 5.1 is correct: two parameterised

equivalence relations are connected in the diagram if and only if they are in

subsumes relation.

The proof makes use of four lemmas and their corollaries. The first lemma

is used to prove the “if” direction and the latter three the “only if” direction.

Lemma 5.2. Given sets of initial states S1 and S2, sets of variables V1 and

V2, sets of points of interests P1 and P2 and functions of pairs of line number

sets X1 and X2 such that

S1 ⊆ S2, V1 ⊆ V2, P1 ⊆ P2, and ∀p, q : X1(p, q) ⊆ X2(p, q)

then

U(S2, V2, P2, X2) ⊆ U(S1, V1, P1, X1).

Proof. Let (p, q) ∈ U(S2, V2, P2, X2). By definition, this is equivalent to

∀σ ∈ S2 :

Proj∗(V2,P2,X2(p,q))(T
σ
p ) = Proj∗(V2,P2,X2(p,q))(T

σ
q ).
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As S1 ⊆ S2, it follows that ∀σ ∈ S1 :

Proj∗(V2,P2,X2(p,q))(T
σ
p ) = Proj∗(V2,P2,X2(p,q))(T

σ
q ).

By inlining the definition of Proj∗, this is equivalent to ∀σ ∈ S1 :

lp2
⊕

i=1

Proj′∗(V2,P2,X2(p,q))(n
p
i
(kp

i ), σp
i ) =

lq2
⊕

i=1

Proj′∗(V2,P2,X2(p,q))(n
q
i
(kq

i ), σq
i ).

Corresponding prefixes from the above equality are also equal. As the

points of interest P1 is a subset of P2, the location of the last occurrence in

the trajectory of a point from P1 must occur before the last occurrence of a

point from P2. More formally, lp1 ≤ lp2 and lq1 ≤ lq2; thus, the above equality

holds when
⊕lp2

i=1 and
⊕lq2

i=1 are replaced by
⊕lp1

i=1 and
⊕lq1

i=1. Consequently,

∀σ ∈ S1 :

lp1
⊕

i=1

Proj′∗(V2,P2,X2(p,q))(n
p
i
(kp

i ), σp
i ) =

lq1
⊕

i=1

Proj′∗(V2,P2,X2(p,q))(n
q
i
(kq

i ), σq
i ).

This means that the projections of those state trajectory elements, which

are not projected to λ are pairwise equal in the two trajectories. Thus,

any corresponding subsequence of these elements must be pairwise equal. In

particular, as V1 ⊆ V2, P1 ⊆ P2, and ∀p, q : X1(p, q) ⊆ X2(p, q), restricting

the sequences to variables in V1 at points in P1 where the instruction from

X1(p, q) are preserved must also be equivalent. Thus, ∀σ ∈ S1 :

lp1
⊕

i=1

Proj′∗(V1,P1,X1(p,q))(n
p
i
(kp

i ), σp
i ) =

lq1
⊕

i=1

Proj′∗(V1,P1,X1(p,q))(n
q
i
(kq

i ), σq
i ),

which, by definition, is equivalent to ∀σ ∈ S1 :

Proj∗(V1,P1,X1(p,q))(T
σ
p ) = Proj∗(V1,P1,X1(p,q))(T

σ
q ).

which, again by definition, is equivalent to (p, q) ∈ U(S1, V1, P1, X1), as

required.
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The existence of each of the 12 subsumption relationships between the pa-

rameterised equivalence relations shown in Figure 5.1 follows from Lemma 5.2,

as proven by the corollary below.

Corollary 5.3. The parameterised equivalence relations connected in the

diagram are in subsumes relation.

Proof. The proof of each case considers each of the four attributes of the

unified equivalence operator U(S, V, P, X) independently. The relevant re-

lationships are as follows: For S, {σ} ⊆ Σ, for V , all 12 use the same

argument (which is thus ignored below), for P , n(k) ⊆ ({n} × N), and for

X, ∀p, q : ε(p, q) = ∅ ⊆ ∩(p, q). The table below shows how Lemma 5.2

implies all of the cases (ε(p, q) and ∩(p, q) have been abbreviated ε and ∩).

Subsumption Lemma 5.2 Requirement

S P X

DKLi ⊆ Di {σ} ⊆ {σ} n(k) ⊆ n(k) ε ⊆ ∩

DKL ⊆ DKLi {σ} ⊆ {σ} n(k) ⊆ {n} × N ∩ ⊆ ∩

DKL ⊆ D {σ} ⊆ {σ} {n} × N ⊆ {n} × N ε ⊆ ∩

D ⊆ Di {σ} ⊆ {σ} n(k) ⊆ {n} × N ε ⊆ ε

SKLi ⊆ DKLi {σ} ⊆ Σ n(k) ⊆ n(k) ∩ ⊆ ∩

SKLi ⊆ Si Σ ⊆ Σ n(k) ⊆ n(k) ε ⊆ ∩

SKL ⊆ DKL {σ} ⊆ Σ {n} × N ⊆ {n} × N ∩ ⊆ ∩

SKL ⊆ SKLi Σ ⊆ Σ n(k) ⊆ {n} × N ∩ ⊆ ∩

SKL ⊆ S Σ ⊆ Σ {n} × N ⊆ {n} × N ε ⊆ ∩

Si ⊆ Di {σ} ⊆ Σ n(k) ⊆ n(k) ε ⊆ ε

S ⊆ D {σ} ⊆ Σ {n} × N ⊆ {n} × N ε ⊆ ε

S ⊆ Si Σ ⊆ Σ n(k) ⊆ {n} × N ε ⊆ ε

The proof of the “only if” direction involves showing that there are no

“missing” edges in Figure 5.1. To be more precise, the following nine pairs

of parameterised slicing equivalence relations are incomparable (denoted by

“≈A 6⊇6⊆ ≈B”): (D 6⊇6⊆ DKLi), (D 6⊇6⊆ Si), (DKLi 6⊇6⊆ Si), (Si 6⊇6⊆ DKL),
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(DKL 6⊇6⊆ S ), (DKL 6⊇6⊆ SKLi), (S 6⊇6⊆ SKLi), (D 6⊇6⊆ SKLi), and (DKLi 6⊇6⊆

S ).

Proving the incomparability of two parameterised equivalence relations

≈A and ≈B requires showing that neither relation subsumes the other. This

is done by showing two things. First, that there exist programs p and q such

that (p, q) ∈ ≈
(σ,V,n,k)
A but (p, q) /∈ ≈

(σ,V,n,k)
B (for some σ, V , n and k that

parameterise the relations) and then by showing that there exist programs

p′ and q′ such that (p′, q′) ∈ ≈
(σ′,V ′,n′,k′)
B but (p′, q′) /∈ ≈

(σ′,V ′,n′,k′)
A (for some

other σ′, V ′, n′ and k′). The following three lemmas introduce examples used

to show the necessary incomparabilities.

Lemma 5.4. S 6⊆ DKLi

Proof. For p4.1 and q4.1 as given in Figure 4.1, for V4.1 = {y}, n4.1 = 7, k4.1 = 1

and for any input state σ the following is shown:

(p4.1, q4.1) ∈ S (V4.1, n4.1) and (p4.1, q4.1) /∈ DKLi(σ, V4.1, n4.1
(k4.1)).

First, as the program is unaffected by its input, (p4.1, q4.1) ∈ S (V4.1, n4.1)

for all input states σ because ∀σ ∈ Σ:

Proj∗(V4.1,{n4.1}×N,∅)(T
σ
p4.1

) = Proj∗(V4.1,{n4.1}×N,∅)(T
σ
q4.1

) = (7, {y = 1}).

Second (p4.1, q4.1) /∈ DKLi(σ, V4.1, n4.1
(k4.1)) because, as shown in Sec-

tion 4.2, KL1 is violated. Thus, combined S (V4.1, n4.1) 6⊆ DKLi(σ, V4.1, n4.1
(k4.1))

and, in general, S 6⊆ DKLi.

Five corollaries to Lemma 5.4 are used in the proof of Theorem 5.1. They

are given as Equations (2) through (6) in Figure 5.2. A detailed proof of the

first is given below; the other proofs are similar. Note that Equation (6)

follows from Equations (2) and (4).

Corollary 5.5. Si 6⊆ DKLi (Equation (2) of Figure 5.2)

Proof. From Lemma 5.4 we know that (p4.1, q4.1) ∈ S (V4.1, n4.1) and (p4.1, q4.1) /∈

DKLi(σ, V4.1, n4.1
(k4.1)), for any σ ∈ Σ. Additionally, Lemma 5.2 implies
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S (V4.1, n4.1) ⊆ Si(V4.1, n4.1
(k4.1)), from which follows (p4.1, q4.1) ∈ Si(V4.1, n4.1

(k4.1)).

Thus, it must be the case that Si(V4.1, n4.1) 6⊆ DKLi(σ, V4.1, n4.1
(k4.1)) or sim-

ply Si 6⊆ DKLi.

Lemma 5.6. SKLi 6⊆ D

Proof. For p4.2, q4.2, V4.2, n4.2, k4.2 as given in Figure 4.2, and for any input

state σ the following hold:

(p4.2, q4.2) ∈ SKLi(V4.2, n4.2
(k4.2)) and (p4.2, q4.2) /∈ D(σ, V4.2, n4.2).

First, (p4.2, q4.2) ∈ SKLi(V4.2, n4.2
(k4.2)) since ∀σ ∈ Σ :

Proj∗
(V4.2,{n4.2

(k4.2)},p4.2∩q4.2)
(T σ

p4.2
)

= Proj∗
(V4.2,{n4.2

(k4.2)},p4.2∩q4.2)
(T σ

q4.2
)

= (2,⊥)(3,⊥)(6,⊥)(7,⊥)(2,⊥)(3,⊥)(6, {y = 1}).

Second (p4.2, q4.2) /∈ D(σ, V4.2, n4.2) because

Proj∗(V4.2,{n4.2}×N,∅)(T
σ
p4.2

) = (6, {y = 2})(6, {y = 1}),

but

Proj∗(V4.2,{n4.2}×N,∅)(T
σ
q4.2

) = (6, {y = 1})(6, {y = 1}).

Thus, combined SKLi(V4.2, n4.2
(k4.2)) 6⊆ D(σ, V4.2, n4.2) and, in general,

SKLi 6⊆ D .

As with Lemma 5.4, five corollaries to Lemma 5.6 are given as Equa-

tions (8) through (12) in Figure 5.2. Note that Equation (12) follows from

Equations (9) and (11).

Lemma 5.7. DKL 6⊆ Si

Proof. For p4.4, q4.4, σ4.4, V4.4, n4.4, k4.4 as given in Figure 4.4, the following

must be shown to be true:

(p4.4, q4.4) ∈ DKL(σ4.4, V4.4, n4.4) and (p4.4, q4.4) /∈ Si(V4.4, n4.4
(k4.4)).
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Eq. Result/Corollaries Justification

(1) S 6⊆ DKLi by Lemma 5.4

(2) Si 6⊆ DKLi as S ⊆ Si implies (p4.1, q4.1) ∈ Si(V4.1, n4.1
(k4.1))

(3) D 6⊆ DKLi as S ⊆ D implies (p4.1, q4.1) ∈ D(σ, V4.1, n4.1)

(4) S 6⊆ DKL as DKL ⊆ DKLi implies (p4.1, q4.1) /∈ DKL(σ, V4.1, n4.1)

(5) S 6⊆ SKLi as SKLi ⊆ DKLi implies (p4.1, q4.1) /∈ SKLi(V4.1, n4.1
(k4.1))

(6) Si 6⊆ DKL as (p4.1, q4.1) ∈ Si(V4.1, n4.1
(k4.1)) and (p4.1, q4.1) /∈ DKL(σ, V4.1, n4.1)

(7) SKLi 6⊆ D by Lemma 5.6

(8) Si 6⊆ D as SKLi ⊆ Si implies (p4.2, q4.2) ∈ Si(V4.2, n4.2
(k4.2))

(9) DKLi 6⊆ D as SKLi ⊆ DKLi implies (p4.2, q4.2) ∈ DKLi(σ, V4.2, n4.2
(k4.2))

(10) SKLi 6⊆ DKL as DKL ⊆ D implies (p4.2, q4.2) /∈ DKL(σ, V4.2, n4.2)

(11) SKLi 6⊆ S as S ⊆ D implies (p4.2, q4.2) /∈ S (V4.2, n4.2)

(12) DKLi 6⊆ S as (p4.2, q4.2) ∈ DKLi(σ, V4.2, n4.2
(k4.2)) and (p4.2, q4.2) /∈ S (V4.2, n4.2)

(13) DKL 6⊆ Si by Lemma 5.7

(14) D 6⊆ Si as DKL ⊆ D implies (p4.4, q4.4) ∈ D(σ4.4, V4.4, n4.4)

(15) DKLi 6⊆ Si as DKL ⊆ DKLi implies (p4.4, q4.4) ∈ DKLi(σ4.4, V4.4, n4.4
(k4.4))

(16) DKL 6⊆ S as S ⊆ Si implies (p4.4, q4.4) /∈ S (V4.4, n4.4)

(17) DKL 6⊆ SKLi as SKLi ⊆ Si implies (p4.4, q4.4) /∈ SKLi(V4.4, n4.4
(k4.4))

(18) D 6⊆ SKLi as (p4.4, q4.4) ∈ D(σ4.4, V4.4, n4.4) and (p4.4, q4.4) /∈ SKLi(V4.4, n4.4
(k4.4))

Figure 5.2: Corollaries to Lemmas 5.4, 5.6, and 5.7.

First, (p4.4, q4.4) ∈ DKL(σ4.4, V4.4, n4.4) since

Proj∗(V4.4,{n4.4}×N,p4.4∩q4.4)
(T σ4.4

p4.4
)

= Proj∗(V4.4,{n4.4}×N,p4.4∩q4.4)
(T σ4.4

q4.4
)

= (5, {y = 1}).

Second (p4.4, q4.4) /∈ Si(V4.4, n4.4
(k4.4)) because Proj∗

(V4.4,{n4.4
(k4.4)},∅)

(T σ∗

p4.4
) =

(5, {y = 2}) but Proj∗
(V4.4,{n4.4

(k4.4)},∅)
(T σ∗

q4.4
) = (5, {y = 1}), where σ∗ = 〈2〉.

Thus, combined Si(V4.4, n4.4
(k4.4)) 6⊆ DKL(σ4.4, V4.4, n4.4), and in general,

Si 6⊆ DKL.

As with Lemmas 5.4 and 5.6, five corollaries to Lemma 5.7 are given

as Equations (14) through (18) in Figure 5.2. Note that Equation (18) fol-

lows from Equations (14) and (17). Using Lemma 5.2 and Equations (1)

through (18) from Figure 5.2, it is now possible to prove Theorem 5.1, which

is restated.
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Theorem 5.1. The lattice shown in Figure 5.1 is correct: two parameterised

equivalence relations are connected in the diagram if and only if they are in

subsumes relation.

Proof. The “if” direction is proven in Corollary 5.3, while the relations given

in Figure 5.2 are sufficient to prove all of the cases in the “only if” direction,

as summarised in the following table:

Follows from

Incompatibility Figure 5.2 Equations

D 6⊇6⊆ DKLi (3) and (9)

D 6⊇6⊆ Si (14) and (8)

DKLi 6⊇6⊆ Si (15) and (2)

Si 6⊇6⊆ DKL (6) and (13)

DKL 6⊇6⊆ S (16) and (4)

DKL 6⊇6⊆ SKLi (17) and (10)

S 6⊇6⊆ SKLi (5) and (11)

D 6⊇6⊆ SKLi (18) and (7)

DKLi 6⊇6⊆ S (12) and (1)

5.2 Subsumes Relation of Slicing Techniques

In the above we studied the relationships between the semantic properties of

eight forms of slicing. In general, however, in addition to studying the seman-

tic properties of slicing, we are also interested in the relationship between the

forms of slicing, not merely in the relationships between the semantic equiv-

alence relations.

In order to achieve this, we will need to take account of both the syn-

tactic ordering relation and the semantic equivalence relation. We call the

combination of a syntactic ordering and a parameterised equivalence a slicing

technique, and we define subsumes relations between the slicing techniques

as well (e.g., between static and Korel and Laski’s dynamic slicing).
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Informally, a slicing technique s1 subsumes another slicing technique s2 if

and only if all slices of an arbitrary program with respect to any given slicing

criterion according to s2 are valid slices with respect to the same slicing

criterion according to s1. This informal definition is formalised below.

Definition 5.2 (Subsumes Relation of Slicing Techniques). Given syntactic

ordering <
∼

and semantic equivalence relations ≈A and ≈B, both parame-

terised by σ, V , n and k, (<∼ ,≈A)–slicing subsumes (<∼ ,≈B)–slicing if and

only if

∀p, σ, V, n, k : Sp(<∼ ,≈
(σ,V,n,k)
B ) ⊆ Sp(<∼ ,≈

(σ,V,n,k)
A ),

where Sp(<∼ ,≈) = {q|q ≈ p and q <
∼

p} is the set of all the possible slices of

program p for given projection (<
∼
,≈).

For example, (v, Si)–slicing subsumes (v, S )–slicing as every (v, S (V, n))

projection of a given program p is a (v, Si(V, n(k))) projection of p as well,

i.e. Sp(v, S (V, n)) ⊆ Sp(v, Si(V, n(k))), for any given V , n and k. On the

contrary, (v, S )–slicing does not subsume (v, Si)–slicing. This is illustrated

in Figure 4.2 where q4.2 is a (v, Si({y}, 6
(2))) projection of p4.2 but it is not

a (v, S ({y}, 6)) projection.

This definition of subsumption relationship between slicing techniques

is closely related to the subsumption relationship defined for parameterised

semantic equivalence relations. Namely, if ≈A subsumes ≈B then (<∼ ,≈A)–

slicing subsumes (<
∼
,≈B)–slicing as well. This is stated and proven in the

following lemma:

Lemma 5.8. Given semantic equivalence relations ≈A and ≈B, both pa-

rameterised with σ, V , n and k, if ≈A subsumes ≈B then (<∼ ,≈A)–slicing

subsumes (<
∼
,≈B)–slicing, for any syntactic ordering <

∼
.

Proof. Let p be a program, <
∼

a syntactic ordering and q ∈ Sp(<∼ ,≈
(σ,V,n,k)
B )

(for any given σ, V , n and k). Then, by definition, q ≈
(σ,V,n,k)
B p and q <

∼ p.

Since ≈A subsumes ≈B, q ≈
(σ,V,n,k)
A p holds as well, which means that q ∈

Sp(<∼ ,≈
(σ,V,n,k)
A ) as required.

The above lemma can be used to prove the correctness of the diagram

depicted in Figure 5.3, which mirrors the diagram from Figure 5.1. Figure 5.3
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(v, SKL)
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Figure 5.3: Subsumes relationship between slicing techniques.

shows the precise connections between the slicing techniques (as opposed to

equivalence relations) that all use the traditional syntactic ordering v and

the parameterised equivalence relations S , Si, D , Di, SKL, SKLi, DKL and

DKLi. The correctness of this diagram is shown in the following theorem.

Theorem 5.9. The lattice shown in Figure 5.3 is correct: two slicing tech-

niques are connected in the diagram if and only if they are in subsumes rela-

tion.

Proof. “if”: The correctness of each of the subsumption relations shown in

Figure 5.3 follows from Theorem 5.1 and Lemma 5.8 where the syntactic

ordering is v.

“only if”: The argument that no edges are missing from the diagram

follows from the “only if” argument of Theorem 5.1 and the observation that

the examples in Figures 4.1, 4.2, and 4.4 are constructed so that q4.1 v p4.1,

q4.2 v p4.2 and q4.4 v p4.4.

Theorems 5.1 and 5.9 formalise the relationship between the eight equiv-

alence relations and the derived slicing techniques depicted in Figures 5.1

and 5.3, respectively. The significance of this result is that it shows that the

dynamic slicing criterion contains two, previously un-studied criteria: path

sensitivity and iteration count sensitivity. The presence of these criteria make

the subsumption relationship between the forms of static and dynamic slicing

more involved than previously thought. This is both theoretically interesting
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and practically important. As mentioned in the previous chapter, the new

criteria may also find useful applications in their own right. For example,

they allow those working on building slicers to better understand the trade-

offs between slicing precision and computation time. They also allow slice

users to understand and then choose the most appropriate slicing definition

for a given problem.

5.3 Minimal Slices

Statements like “dynamic slices are smaller than static slices” are occasionally

heard amongst slicing researchers. We intuitively know what is meant by such

statements but clearly, not every dynamic slice is smaller than every static

slice. Even for a given choice of program point and variable, the statement

may not be true, because of differences in slicing algorithms. Furthermore,

there is the complication of which particular dynamic slicing definition one

is to adopt; some are incomparable with static slicing. One interpretation

of what is meant by such statements is that the minimal slices inherent in

dynamic slicing are smaller than the minimal slices inherent in static slicing.

To compare slicing techniques, it is important to be free of the algorithmic

and implementation details. We are concerned with the investigation of var-

ious definitions for ‘slice’; not the peculiarities which emerge from attempts

to arrive at ‘good’ slicing algorithms. In other words, we are concerned with

the output of idealised algorithms. Any realisable slicing algorithm must by

definition compute an approximation to the idealised algorithm. Even with

idealised algorithms there is no guarantee of a unique minimal slice. There-

fore, sets of minimal slices will be studied. Such a set includes all the ‘best’

(i.e., smallest) slices.

To formalise the beliefs about the size of slices (more precisely, about the

size of minimal slices), we shall compare sets of minimal slices. To allow such

a comparison, we have to extend the syntactic ordering of programs (from

Definition 3.1) to sets of programs.

Definition 5.3 (Extending <
∼

to Sets). Given a pre-order <
∼

over a set, we
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can define a pre-order over its subsets as follows

A <
∼ B ⇐⇒ ∀b ∈ B : ∃a ∈ A : a <

∼ b.

Now we will show that the syntactic ordering extended to sets from Def-

inition 5.3 is indeed a pre-order.

Lemma 5.10. The syntactic ordering is a pre-order over sets of programs.

Proof. We have to show that the relation given in Definition 5.3 is reflexive

and transitive.

Reflexivity. We have to show that A <
∼

A holds for all sets of programs.

According to the definition this means that we have to show that ∀a ∈ A :

∃a′ ∈ A : a′ <
∼

a. This follows as a <
∼

a.

Transitivity. We have to show for all A, B and C sets of programs that

A <
∼

B and B <
∼

C imply A <
∼

C. That is, we have to show that

∀c ∈ C : ∃a ∈ A : a <
∼

c. From B <
∼

C we know that ∀c ∈ C : ∃b ∈ B : b <
∼

c.

Furthermore, from A <
∼ B we know that ∀b ∈ B : ∃a ∈ A : a <

∼ b. Together

these imply ∀c ∈ C : ∃b ∈ B : ∃a ∈ A : a <
∼

b <
∼

c, from which follows

∀c ∈ C : ∃a ∈ A : a <
∼ c, as required.

One might think that there are more natural extensions of the syntactic

ordering to the domain of sets than the one given in Definition 5.3. We could,

for example, define A less than B if and only if all elements of A are less than

all elements of B. Notice, however, that this definition is not a pre-order.

Assume that A = {a1, a2} where a1 6>∼ 6<∼ a2. This implies, according to the

hypothetical definition above, that A <
∼

A is not true, thus reflexivity is

broken. This shows that we must not have an overly strong requirement on

comparability. We shall allow some elements to be incomparable so long as

there is one element which is comparable. Definition 5.3 captures the right

balance in this area, and it is still an effective extension of the syntactic

ordering, since if given two one-element sets A = {a} and B = {b}, then

A <
∼

B if and only if a <
∼

b.

Now that we have all the necessary definitions we can turn to minimal

slices. Since minimal slices are not necessarily unique, we shall work with
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sets of minimal slices, which are formally defined below.

Definition 5.4 (Set of All Minimal Slices). The set of all minimal slices of

a program p for a given projection (<∼ ,≈), denoted by Mp(<∼ ,≈), is defined

as follows:

Mp(<∼ ,≈) = {q|q ∈ Sp(<∼ ,≈) and @q′ ∈ Sp(<∼ ,≈) : q′ <
∼/

q},

where q′ <
∼/

q is an abbreviation for q′ <
∼

q ∧ q 6<
∼

q′.

Below we state the central theorem regarding the connection between the

sets of slices and the sets of minimal slices. Informally, given a program, if

its slices for projection A are valid slices for projection B as well, then the

minimal slices for B are smaller than the minimal slices for A.

Theorem 5.11 (Duality of Slices). Let ≈A and ≈B be semantic equivalences

and let <
∼ be such a syntactic ordering that every set of programs has a min-

imal element with respect to <
∼ . Then for any program p the following holds:

Sp(<∼ ,≈A) ⊆ Sp(<∼ ,≈B) ⇒ Mp(<∼ ,≈B) <
∼ Mp(<∼ ,≈A).

Proof. We need to demonstrate that

∀a ∈ Mp(<∼ ,≈A) : ∃b ∈ Mp(<∼ ,≈B) : b <
∼

a.

Observe that if a ∈ Mp(<∼ ,≈A) then, by definition, a ∈ Sp(<∼ ,≈A), and

also a ∈ Sp(<∼ ,≈B), as Sp(<∼ ,≈A) ⊆ Sp(<∼ ,≈B). If there is no b ∈ Sp(<∼ ,≈B)

such that b <
∼/ a then a ∈ Mp(<∼ ,≈B) (by Definition 5.4). Otherwise, ∃b ∈

Sp(<∼ ,≈B) : b <
∼/

a. Since we require <
∼

to have a minimal element for every

set of programs, ∃b′ ∈ Mp(<∼ ,≈B) : b′ <
∼ b. In either case there is an element

of Mp(<∼ ,≈B) which is <
∼

a.

Notice that in the above theorem we added the requirement of having a

minimal element in all sets of programs to the syntactic ordering pre-order.

Fortunately, this requirement is not overly strict; those syntactic orderings

that behave in an intuitive way (i.e., a program is considered smaller only
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1 x=1;

2 x=2;

3 if (x>1)

4 y=1; 4 y=1;

5 else

6 y=1; 6 y=1;

7 x=input(); 7 x=input(); 7 x=input();

8 if (x<1) 8 if (x<1) 8 if (x<1)

9 z=0; 9 z=0; 9 z=0; 9 z=0;

10 else 10 else 10 else

11 z=x*y; 11 z=x*y; 11 z=x*y;

12 w=z; 12 w=z; 12 w=z; 12 w=z;

Program p5.4 q5.4 q′5.4 q′′5.4

σ5.4 = 〈0〉, V5.4 = {z}, n5.4 = 12, k5.4 = 1

Figure 5.4: Example program which shows that the reverse of the duality
theorem is not true.

if it has fewer statements) fulfil this requirement. The traditional syntactic

ordering we use throughout the thesis meets this requirement, and in another

example, the amorphous syntactic ordering studied by Harman et al. [49] has

the same property.

Interestingly, the converse of Theorem 5.11 does not hold, i.e., Mp(<∼ ,≈B

) <
∼ Mp(<∼ ,≈A) does not imply Sp (<∼ ,≈A) ⊆ Sp(<∼ ,≈B). As a counter exam-

ple, consider program p in Figure 5.4. In this case, there are two minimal

static slices, i.e., Mp5.4(v, S (V5.4, n5.4)) = {q5.4, q
′
5.4}, while the set of minimal

(Korel-and-Laski-style) dynamic slices consists of just one element, Mp5.4(v

, DKLi(σ5.4, V5.4, n5.4
(k5.4))) = {q′′5.4}. Clearly, Mp5.4(v, DKLi(σ5.4, V5.4, n5.4

(k5.4))) v

Mp5.4(v, S (V5.4, n5.4)), since q′′5.4 v q5.4 and q′′5.4 v q′5.4, but Sp5.4(v, S (V5.4, n5.4)) 6⊆

Sp5.4(v, DKLi(σ5.4, V5.4, n5.4
(k5.4))), since q′5.4 /∈ Sp5.4(v, DKLi(σ5.4, V5.4, n5.4

(k5.4))).

The above theorem provides the basis for a comparison of slicing tech-

niques. It provides the necessary machinery for formalising observations such

as ‘dynamic slices are smaller than static slices’. This is done for all possible

programs and all possible slicing criteria admissible to a chosen form of slic-

ing. To facilitate this formalisation and thus be able to determine whether

one definition of slicing leads to inherently smaller slices than another, we
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will extend syntactic ordering to apply to slicing techniques.

Definition 5.5 (Syntactic Ordering of Slicing Techniques). For any two

slicing techniques, (<∼ ,≈A) and (<∼ ,≈B),

(<
∼
,≈A) <

∼
(<
∼
,≈B)

if and only if

∀p, σ, V, n, k : Mp(<∼ ,≈
(σ,V,n,k)
A ) <

∼
Mp(<∼ ,≈

(σ,V,n,k)
B ).

Now we will show that a duality exists between subsumes relation and

syntactic ordering over slicing techniques.

Theorem 5.12 (Duality of Slicing Techniques). For any two slicing tech-

niques (<
∼
,≈A) and (<

∼
,≈B) where <

∼
is such a syntactic ordering that every

set of programs has a minimal element with respect to <
∼ ,

(<∼ ,≈A) ⊆ (<∼ ,≈B) ⇒ (<∼ ,≈B) <
∼ (<∼ ,≈A).

Proof. According to Definition 5.2, (<∼ ,≈A) ⊆ (<∼ ,≈B) means ∀p, σ, V, n, k :

Sp(<∼ ,≈
(σ,V,n,k)
A )⊆ Sp(<∼ ,≈

(σ,V,n,k)
B ). Theorem 5.11 proved that ∀p, σ, V, n, k :

Mp(<∼ ,≈
(σ,V,n,k)
B ) <

∼ Mp(<∼ ,≈
(σ,V,n,k)
A ), which, by Definition 5.5, is equivalent

to (<
∼
,≈B) <

∼
(<
∼
,≈A).

This theorem tells us that if slicing technique B subsumes slicing tech-

nique A, then the minimal slices of B will be less than those of A. That is,

A will tend to produce larger slices.

5.4 Traditional Syntactic Ordering of the Eight

Forms of Slicing

Although syntactic ordering in general is only a pre-order, the eight slicing

techniques obtained by the combination of the traditional syntactic ordering

v and the eight equivalences (as given in Definition 4.6) result in a lattice

isomorphic (in this case inverted) to that given in Figure 5.3. This is shown

in Figure 5.5.
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Figure 5.5: Slicing techniques ordered by traditional syntactic ordering.

Theorem 5.12 proves that whenever two slicing techniques are related in

Figure 5.3, i.e., they are in subsumes relation, then they have an inverse

syntactical ordering relationship. That is, in the “if” direction, the correct-

ness of Figure 5.5 is proven. However, (<∼ ,≈A) 6⊆ (<∼ ,≈B) does not imply

that (<
∼
,≈B) 6<

∼
(<
∼
,≈A); thus, it must be shown that the slicing techniques

not related in Figure 5.5 are really not related according to the traditional

syntactic ordering. This is the role of the following theorem.

Theorem 5.13 (Duality of the Eight Forms of Slicing (only if)). If two

slicing techniques are not connected in Figure 5.5, then they are not related

according to the traditional syntactic ordering.

Proof. For each unconnected pair of slicing techniques (v,≈A) and (v,≈B)

we have to show that (v,≈A) 6w6v (v,≈B); in other words that

∃p, σ, V, n, k : Mp(v,≈
(σ,V,n,k)
A ) 6v Mp(<∼ ,≈

(σ,V,n,k)
B )

and

∃p′, σ′, V ′, n′, k′ : Mp′(v,≈
(σ′,V ′,n′,k′)
B ) 6v Mp′(v,≈

(σ′,V ′,n′,k′)
A ).

The proof makes use of the three counter examples: the one shown in

Figure 5.6, and the other two already given in Figures 4.2 and 4.4. The

implications of these counter examples are combined to prove the pairs of

slicing techniques that go unconnected in Figure 5.5 incomparable.

First, we show that execution path aware (Korel-and-Laski-style) slicing
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1 x=1;

2 x=2;

3 if (x>1)

4 y=1; 4 y=1;

5 else

6 y=1; 6 y=1;

7 z=y; 7 z=y; 7 z=y;

Program p5.6 q5.6 q′5.6

σ5.6 = 〈〉, V5.6 = {y}, n5.6 = 7, k5.6 = 1

Figure 5.6: Non–KL (execution path unaware) minimal slices.

techniques, denoted by a subscript KL, are not smaller than execution path

unaware (or non-Korel-and-Laski-style) ones, denoted by a subscript ¬KL.

Figure 5.6 gives p5.6, σ5.6, V5.6, n5.6 and k5.6, while the two equations below

give the sets of minimal slices for each technique.

MKL = {q5.6}

= Mp5.6(v, SKL(V5.6, n5.6))

= Mp5.6(v, SKLi(V5.6, n5.6
(k5.6)))

= Mp5.6(v, DKL(σ5.6, V5.6, n5.6))

= Mp5.6(v, DKLi(σ5.6, V5.6, n5.6
(k5.6)))

M¬KL = {q5.6, q
′
5.6}

= Mp5.6(v, S (V5.6, n5.6))

= Mp5.6(v, Si(V5.6, n5.6
(k5.6)))

= Mp5.6(v, D(σ5.6, V5.6, n5.6))

= Mp5.6(v, Di(σ5.6, V5.6, n5.6
(k5.6)))

From this it follows by definition that MKL 6v M¬KL, since @q ∈ MKL :

q v q′5.6(∈ M¬KL).

Now we will prove that iteration count unaware forms of slicing are not

smaller than iteration count aware ones. Since q4.2 in Figure 4.2 is constructed

such that it is a minimal slice of p4.2 for the iteration count aware forms of

slicing with respect to σ4.2 = 〈〉, V4.2, n4.2, and k4.2, we can re-use it here.

The two equations below give the minimal slice sets for the eight slicing
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techniques.

Mi = {q4.2}

= Mp4.2(v, Si(V4.2, n4.2
(k4.2)))

= Mp4.2(v, SKLi(V4.2, n4.2
(k4.2)))

= Mp4.2(v, Di(σ4.2, V4.2, n4.2
(k4.2)))

= Mp4.2(v, DKLi(σ4.2, V4.2, n4.2
(k4.2)))

M¬i = {p4.2}

= Mp4.2(v, S (V4.2, n4.2))

= Mp4.2(v, SKL(V4.2, n4.2))

= Mp4.2(v, D(σ4.2, V4.2, n4.2))

= Mp4.2(v, DKL(σ4.2, V4.2, n4.2))

Again, by definition, the above equations imply that M¬i 6v Mi, since

q4.2(∈ Mi) @ p4.2(∈ M¬i).

Finally, we will show that static forms of slicing are not smaller than

dynamic forms. In Figure 4.4, p4.4, q4.4, σ4.4, V4.4, n4.4 and k4.4 were given

and below the sets of minimal slices are listed for the eight slicing techniques.

MS = {p4.4}

= Mp4.4(v, S (V4.4, n4.4))

= Mp4.4(v, SKL(V4.4, n4.4))

= Mp4.4(v, Si(V4.4, n4.4
(k4.4)))

= Mp4.4(v, SKLi(V4.4, n4.4
(k4.4)))

MD = {q4.4}

= Mp4.4(v, D(σ4.4, V4.4, n4.4))

= Mp4.4(v, DKL(σ4.4, V4.4, n4.4))

= Mp4.4(v, Di(σ4.4, V4.4, n4.4
(k4.4)))

= Mp4.4(v, DKLi(σ4.4, V4.4, n4.4
(k4.4)))

The implication of these equations is similar to the above ones, namely

MS 6v MD, since q4.4(∈ MD) @ p4.4(∈ MS).

The table below shows how the above three counter examples are used

to prove that the slicing techniques unconnected in the lattice in Figure 5.5
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are not in relation according to the traditional syntactic ordering.

Incomparability Follows from

(v, D) 6w6v (v, DKLi) MKL 6v M¬KL and M¬i 6v Mi

(v, D) 6w6v (v, Si) MS 6v MD and M¬i 6v Mi

(v, DKLi) 6w6v (v, Si) MS 6v MD and MKL 6v M¬KL

(v, DKL) 6w6v (v, Si) MS 6v MD and M¬i 6v Mi

(v, DKL) 6w6v (v, S ) MS 6v MD and MKL 6v M¬KL

(v, DKL) 6w6v (v, SKLi) MS 6v MD and M¬i 6v Mi

(v, S ) 6w6v (v, SKLi) MKL 6v M¬KL and M¬i 6v Mi

(v, D) 6w6v (v, SKLi) MS 6v MD and M¬i 6v Mi

(v, DKLi) 6w6v (v, S ) MS 6v MD and MKL 6v M¬KL

Earlier, Theorem 5.12 established the connection between the two funda-

mental relationships between slicing techniques: subsumption and syntactic

ordering. The subsumption relationship tells us when one form of slicing

can be used in the place of another, while the syntactic ordering tells us

which produces the best (i.e., smallest) slices. Now Theorem 5.13 proves

that for the eight forms of slicing we investigated, the lattice of the slicing

techniques ordered by the traditional syntactic ordering is isomorphic to that

for subsumption (in this case inverted, as a result of duality).
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Chapter 6

Conclusions

This part of the thesis presented results concerning the theory of program

slicing. The projection theory was used to uncover the precise relationship

between various forms of dynamic slicing and static slicing. It had previ-

ously been thought that there had been only two nodes in the subsumption

relationship between static and dynamic slicing. That is, it was thought that

the dynamic slicing criterion merely adds the input sequence to the static

criterion and this is all that there is to the difference between the two.

However, the results of the study presented here show that the original

dynamic slicing criterion introduced by Korel and Laski contains two addi-

tional aspects over and above the input sequence. These are the iteration

count and the requirement of maintaining a form of projected path equiva-

lence to the original program. These two additional criteria were shown to

be orthogonal components of the original dynamic slicing definition. These

two new dimensions can be treated as separate criteria in their own right and

may find applications which have yet to be fully exploited by the program

slicing community.

The previous sections considered two forms of subsumption relationship.

The first is the relationship between the semantic properties of a slice, as

captured in the equivalence maintained by slicing. The second relationship

concerns the relationship between the slices which may be constructed by the

equivalence relations. Thus the first subsumption relationship simply tells us

60



about the semantic projections denoted by the different forms of the slicing

criteria, while the second concerns the slices which may be produced when

this semantic requirement is combined with a syntactic ordering. The results

make clear that the two lattices so-constructed are isomorphic.

In addition, the syntactic ordering relationship between slicing techniques

for static and dynamic slicing was also investigated. It was shown that syn-

tactic ordering is a mirror image of the subsumes relationship, leading to an

inverted but isomorphic lattice of inter-technique relationships. The results

also tell us that the sets of minimal slices are useful when examining the

relationships between slicing techniques.
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Part II

Slicing of Binary Programs
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Chapter 7

Introduction to Binary Slicing

As described in the previous part of the thesis, program slicing is a tech-

nique originally introduced by Weiser [104] for automatically decomposing

programs. Since the introduction of the original concept several algorithms

have been proposed [87, 60, 49, 69, 21, 66, 9]. These algorithms were origi-

nally developed for slicing high-level structured programs, and so, they usu-

ally do not handle unstructured control flow correctly and yield imprecise re-

sults. Another source of imprecision is the complexity of the static resolution

of pointers. Several modifications and improvements have been published to

overcome imprecise behaviour [1, 6, 25, 94, 4, 70].

Although lots of papers have appeared in the literature on the slicing

of programs written in a high-level language, comparatively little attention

has been paid to the slicing of binary executable programs. Cifuentes and

Frabuolet [27] presented a technique for the intraprocedural slicing of binary

executables, but we are not aware of any usable interprocedural solution.

Bergeron et al. [8] suggested using dependence graph-based interprocedu-

ral slicing to analyse binaries, but they did not discuss how to handle the

problems which arise or provide any concrete experimental results.

The lack of existing solutions is really hard to understand since the ap-

plication domain for slicing binaries is similar to the one for slicing high-

level languages. Furthermore, there are special applications of the slicing

of programs without source code like assembly programs, legacy software,
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commercial off-the-shelf (COTS) products, viruses and post-link time mod-

ified programs. (These include source code recovery, binary bug fixing and

code transformation.) Security is also becoming an increasingly important

topic: the detection of malicious code fragments is now a major concern of

researchers. The slicing of binary executables can be a useful method for

helping extract security critical code fragments [8].

Naturally, since the topic of binary slicing is not well covered, difficulties

may arise in various parts of the slicing process, especially in the control flow

analysis and data dependence analysis of binary executables. These may

require special handling techniques.

In this part of the thesis, we will present a method for the interprocedu-

ral static slicing of binary executables. First, we will introduce conservative

approaches for handling unresolved function calls and branching instructions

as well as a safe but imprecise memory model. Then, we will suggest im-

provements to eliminate useless edges from both the data dependence graph

and the call graph.
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Chapter 8

Dependence Graph-based

Slicing of Binary Executables

8.1 Control Flow Analysis

Many tasks in the area of code analysis, manipulation and maintenance re-

quire a control flow graph (CFG). It is also necessary for program slicing to

have a CFG of the sliced program as every step in the slicing process depends

on it. Building a CFG for a program written in a high-level well-structured

programming language like C or Pascal is usually a simple task and only

requires syntactical analysis. However, the control flow analysis of a binary

executable has a number of associated problems, as we shall see below.

In a binary executable the program is stored as a sequence of bytes. To

be able to analyse the control flow of the program, the program itself has to

be recovered from its binary form. This requires that the boundaries of the

low-level instructions from which the program is constructed be detected.

On architectures with variable length instructions, the boundaries may not

be detected unambiguously. A typical example for this is the Intel platform.

Figure 8.1 shows an example byte sequence interpreted in two ways. This

highlights the problem that it has to be detected exactly where the decoding

of instructions should start from, since even an offset of one byte can and

will yield completely false results. On other architectures where multiple
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Address Raw Interpretation 1 Interpretation 2
0x80592b9 0x8b mov 0x8(%ebp),%eax

0x80592ba 0x45 inc %ebp

0x80592bb 0x08 or %cl,0x558bf045(%ecx)

0x80592bc 0x89 mov %eax,0xfffffff0(%ebp)

0x80592bd 0x45

0x80592be 0xf0

0x80592bf 0x8b mov 0xc(%ebp),%edx

0x80592c0 0x55

0x80592c1 0x0c or $0x89,%al

0x80592c2 0x89 mov %edx,0xffffffec(%ebp)

0x80592c3 0x55 push %ebp

0x80592c4 0xec in (%dx),%al

Figure 8.1: Two different interpretations of the same sequence of bytes. The
raw binary data is decoded to Intel instructions starting from two different
addresses.

Address Raw Thumb interpretation ARM interpretation
0x0000006c 0x1c add r4,r1,#0 stcne p0xc,c0x1,[r12],#0x14

0x0000006d 0x0c

0x0000006e 0x1c add r5,r0,#0

0x0000006f 0x05

0x00000070 0x68 ldr r0,[r4,#0] stmvsda r0!,{r11-r14}
0x00000071 0x20

0x00000072 0x78 ldrb r0,[r0,#0]

0x00000073 0x00

0x00000074 0x28 cmp r0,#42 stmcsda r10!,{r2-r4,r12,r14,pc}
0x00000075 0x2a

0x00000076 0xd0 beq 0xb2

0x00000077 0x1c

Figure 8.2: Two different interpretation of the same sequence of bytes. The
raw binary data is decoded to two different instruction sets: Thumb and
ARM.

instruction sets are supported at the same time, the problem is to determine

which instruction set is used at a given point in the code. Figure 8.2 shows

an example byte sequence interpreted as Thumb and ARM instructions, both

supported by some ARM CPUs. If the binary representation mixes code and

data, as is typical for most widespread architectures, their separation has to

be carried out as well.

After we have identified the instructions of the program, we may begin
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to build the graph. First, the basic blocks which will constitute the nodes

of the CFG need to be determined. For this, basic block leader information

has to be collected by analysing the instructions. The instructions following

branching or function calling instructions, instructions targeted by branching

instructions, first instructions of functions and instructions following instruc-

tion set switches are called leaders. Instructions between the leaders form

the basic blocks of the program, and these blocks are further grouped to rep-

resent functions. Next, for each function a special node called the exit node

is created to represent the single exit point of the corresponding function.

The nodes of the CFG are connected by control flow, call and return edges

to represent the appropriate possible control transfers during the execution of

the program. Control flow edges connect basic blocks in the CFG to represent

the possible flow of control within functions. From basic blocks ending in an

instruction representing a return from a function, control flow edges lead to

the exit node. A basic block that ends in an instruction implementing a

function call is called a call site, while the basic block following it is called

the corresponding return site. Call edges connect the call sites with nodes

representing the called functions, while return edges connect the exit nodes

of the functions with the corresponding return sites.

The correct detection of the possible control transfers requires a behaviour

analysis of machine instructions. Even the high number of instruction types

may be hard to cope with, since the types of instructions at the binary level

are much more numerous than the types of control structures at the source

level, but the hardest problem arises with those control transfer instruc-

tions where the target cannot be determined unambiguously. In high-level

languages, only indirect function calls fall into this category, but on the bi-

nary level, intraprocedural control transfer may be represented this way as

well. (Such constructs typically arise from compiling switch structures.) To

correctly handle these instructions, two new CFG node types have to be

introduced, namely the unknown function and unknown block nodes, which

represent the targets of indirect calls and jumps, respectively. For the un-

known function, there is only one globally, while every function containing

a statically unresolved jump has its own unknown block. These nodes are
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Code CFG
zero: mov r0,#0 ;B1

mov pc,lr

one: mov r0,#1 ;B2

mov pc,lr

caller: stmfd r13!,{r4,lr} ;B3

mov r4,r0

mov r14,pc

mov pc,r4 ;indirect call

ldmfd r13!,{r4,pc} ;B4

Exit

B3

B4

caller
function
unknown

Exit

Exit

zero B1

Exit

one B2

Figure 8.3: An indirect function call with two possible targets in ARM. In
the CFG, the thin and thick solid lines represent control flow and call edges,
respectively, while the thick dashed lines stand for return edges. The basic
block nodes represent the corresponding code fragments, as denoted on the
left.

Code CFG
entry1: str r0,[r13,#4] ;B1

;control falls through

entry2: ldr r0,[r13,#8] ;B2

sub r0,#1

str r0,[r13,#8]

mov pc,r14

Exit

B1

Exit

B2

entry1

entry2

Figure 8.4: Two overlapping functions in ARM. In the CFG, the solid lines
are control flow edges, while the dashed lines represent compensation control
edges. The basic block nodes represent the corresponding code fragments, as
denoted on the left.

linked to all the possible targets of the indirect control transfers. Figure 8.3

shows a function which contains an indirect call and two other functions as

the possible targets of the call. The corresponding CFG is given as well.

Another type of problems is when control is transferred between functions

in a way that is different from a function call. Overlapping (or multiple

entry) and cross-jumping functions, which usually do not occur in high-level

languages and result from aggressive interprocedural compiler optimisations,

are typical examples of this problem. Since, with these constructs, the exit
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add: add r0, r1, r0 ;B1

mov pc, lr

mul: push {r4,r5,lr} ;B2

add r4, r1, #0

add r5, r0, #0

mov r3, #0

mov r2, #1

cmp r2, r4

bgt .l2

.l1: add r0, r3, #0 ;B3

add r1, r5, #0

bl add

add r3, r0, #0 ;B4

add r0, r2, #0

mov r1, #1

bl add

add r2, r0, #0 ;B5

cmp r2, r4

ble .l1

.l2: add r0, r3, #0 ;B6

pop {r4,r5,pc}

main: push {r4,r5,lr} ;B7

add sp, #-8

bl readin

add r5, r0, #0 ;B8

mov r0, #0

str r0, [sp, #0]

mov r0, #1

str r0, [sp, #4]

mov r4, #1

cmp r4, r5

bge .l4

.l3: ldr r0, [sp, #0] ;B9

add r1, r4, #0

bl add

str r0, [sp, #0] ;B10

ldr r0, [sp, #4]

bl mul

str r0, [sp, #4] ;B11

add r4, #1

cmp r4, r5

blt .l3

.l4: ldr r0, [sp, #0] ;B12

ldr r1, [sp, #4]

bl writeout

add sp, #8 ;B13

pop {r4,r5,pc}

Figure 8.5: A Thumb program for computing the sum and product of the
first N natural numbers.

node of the control transferring function is not reached, a control flow edge

has to be inserted between the exit nodes of the functions to compensate for

it. Figure 8.4 gives an example for the overlapping functions and shows their

CFG representation.

As the last example in this section, the Thumb assembly listing of the

classic slicing example program (which computes the sum and product of the

first N natural numbers) is provided in Figure 8.5, while the corresponding

CFG is given in Figure 8.6.

During our discussion of the problems above we left open some questions:

How might we detect the instruction boundaries? How might we locate in-

struction set switching points? How should we separate code from data?

How might we determine the boundaries of functions? How should we iden-
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B2

B3

B4

B5

B6

Exit

mul

readin

writeout

add

B1

Exit

B7

B9

B10

B11

B12

B13

Exit

B8

main

Figure 8.6: The CFG of the program which computes the sum and product of
the first N natural numbers. The thin and thick solid lines represent control
flow and call edges, respectively, while the thick dashed lines are return
edges. The basic block nodes represent the corresponding code fragments, as
denoted in Figure 8.5.

tify the potential targets of indirect jumps and calls? It is not possible to

furnish a simple and general solution for all these problems, but with some

extra information and some architecture specific heuristics the problems may

become more manageable. Fortunately, most executable file formats [99, 82]

can store extra information along with the raw binary data. The symbolic

information, which is usually found in binaries, may be employed to sepa-

rate code and data in the binary image of the program or assist in detecting

function boundaries and instruction set switches. In a similar way, relocation

information can be most helpful in determining the targets of indirect func-

tion calls and ambiguous control transfers. Usually a hand-written assembly

code can also be analysed with no, or very little, extra user input.

Needless to say, the kinds of information stored in the files are highly de-

pendent on the hardware and operating system the binary executable is going

to run on, the tool chain the program is generated with, and the file format

used. Hence, we cannot say in general how useful data can be extracted from

symbolic and relocation information will be. However, our experiences with

three kinds of tool chains and file formats on the ARM platform have shown

that with an appropriate compiler, file format and architecture specification,
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entry1

B1 B2
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Figure 8.7: The CDG of two overlapping functions in ARM. The thick solid
lines denote control dependence. The basic block nodes represent the corre-
sponding code fragments in Figure 8.4.

the necessary information can be retrieved relatively easily.

8.2 Building the Program Dependence Graph

To slice a binary executable, we will perform the following steps: first, we will

build an interprocedural control flow graph as described in Section 8.1, then

we will perform a control and data dependence analysis for each function

found in the CFG, which will result in a program dependence graph (PDG).

These PDGs can then be used to compute slices.

One component of the PDG of a function is the control dependence graph

(CDG), which represents control dependences between the basic blocks of

the function. The CDG is computed in a two-step process: since control

dependence in the presence of arbitrary control flow is defined in terms of

post-dominance in the CFG, we shall use the algorithm described in [78] to

find post-dominators, and then we will build the actual CDG according to

Ferrante et al. [40]. The resulting graph will consist of nodes representing the

basic blocks and function entries, and control dependence edges connecting

these nodes.

One peculiar feature of binary programs is that the instructions may be-

long to multiple functions due to overlapping and cross-jumping, a situation

that rarely occurs in high-level structured programming languages. This

leads to instructions that may depend on multiple function entry nodes.

Figure 8.7 shows the CDG of the two overlapping functions presented in

Figure 8.4.

The other part of a PDG is the data dependence graph (DDG) represent-

ing the dependences between instructions according to their used and defined
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arguments. In high-level languages, the arguments of statements are usually

local variables, global variables or formal parameters, but such constructs

are generally not present at the binary level. Low-level instructions read and

write registers, flags (one bit units) and memory addresses, hence existing

approaches have to be adapted to use the appropriate terms.

In our approach, we analyse each instruction in the program and deter-

mine which registers and flags it reads and writes. The analysis does not have

to take into account the register which controls the flow of the program (usu-

ally called the instruction pointer or the program counter), since the effect of

this register is captured by the CFG and CDG. However, the memory access

of the instructions has to be analysed. A conservative approach is to just find

out whether an instruction reads from or writes to the memory. Thus, the

whole memory here is represented as a single argument of the instructions.

A possible optimisation of this rather conservative approach is discussed in

Section 9.1.

The analysis results in the sets uj and dj for each instruction j, which

contain all used and defined arguments of j, respectively. During the analysis

we also determine the sets ua
j for every a ∈ dj which contain the arguments

of j actually used to compute the value of a. Obviously uj =
⋃

a∈dj
ua

j for

each instruction j, but instructions may exist where ua
j ⊂ uj for a defined

argument a. High-level programming languages may also have such state-

ments, but usually they can be divided into subexpressions with only one

defined argument, which cannot be done with low-level instructions.

Unlike in high-level programs, the parameter list of procedures is not

explicitly defined in binaries but has to be determined via a suitable inter-

procedural analysis. We use a fix-point iteration to collect the sets of input

and output parameters of each function. We compute the sets Uf and Df

(similar to the sets GREF(f) and GMOD(f) in [60]) representing the used

and defined arguments of every instruction in function f itself and in the

functions called (transitively) from f , as given in Figure 8.8. If is the set of

instructions in f and Cf is the set of functions called from f . The resulting

set Df is called the set of output parameters of function f , while Uf ∪ Df

yields the set of input parameters of f .
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Figure 8.8: Uf and Df

Cadd = ∅, Cmul = {add}, Cmain = {add, mul, readin, writeout}
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Figure 8.9: Computing Uf and Df sets for the functions of the program given
in Figure 8.5.

Figure 8.9 shows the evaluation of the Uf and Df sets for the functions of

the example program in Figure 8.5. The iteration for functions readin and

writeout is not detailed, but the fixpoint is given.

Using the results of the above analyses we extend the CDG with appro-

priate nodes to form the basis of the DDG. We insert nodes into the graph

to represent the instructions of the program, where, of course, each depends

on its basic block. We also insert nodes to represent the used and defined

arguments of each instruction; these nodes are in turn dependent on the

corresponding instructions. Next, for basic blocks, which act as call sites,

we add control dependent nodes representing the parameters of the called

function. Actual-in and actual-out parameter nodes are created for the in-

put and output parameters of the called function, respectively. Finally, for
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the function entry nodes we add control dependent formal-in and formal-out

parameter nodes to represent the formal input and output parameters of the

functions.

Once the appropriate nodes have been inserted, the data dependence

edges are added to the graph. First, we add the data dependence edges

which represent a dependence inside individual instructions: the definition

of argument a in instruction j is data dependent on the use of argument a′ in

j if a′ ∈ ua
j . Then, the data dependences between instructions are analysed:

the use of argument a in instruction j depends on the definition of a in

instruction k if definition of a in k is a reaching definition for the use of a in

j, which means that there exists a path in the CFG from k to j such that a

is not redefined. The above definition for the notion of reaching definition is

suitable for flags and registers, but it has to be relaxed for memory access.

The definition of memory in an instruction k is a reaching definition for

the use of memory in another instruction j, if there is a path in the CFG

from k to j, even if there is another instruction on that path which defines

memory, since the whole memory is represented as a single argument. In our

analysis, the call site basic blocks are viewed as pseudo instructions which are

placed after the last instruction in the block, with actual-in and actual-out

parameters treated as used and defined arguments, respectively. Similarily,

formal-in and formal-out parameter nodes are treated as defined and used

arguments of pseudo instructions at the entry and exit points of functions.

The PDG constructed so far still lacks some dependence edges. Control

dependence edges connect basic block nodes, but the dependences are in fact

caused by the branching instructions in the blocks. Unfortunately, these

dependeces are not represented in the PDG in its current form. Therefore,

to make it precise, the PDG has to be augmented with additional control

dependence edges for compensation.

As an example for a fully built PDG, Figure 8.10 shows the PDG of

function mul of the example program of Figure 8.5.

76



V

N

Z

C

R5

R4

SP SP

M

PUSH {R4,R5,LR}

LR

V

N

Z

C

R1

R4

ADD R4, R1, #0 ADD R5, R0, #0

R0

R5

N

Z

R2

MOV R2, #1 CMP R2, R4

V

N

Z

C

R2

R4N

Z

R3

MOV R3, #0

V

N

Z

BGT

B2

mul

B6

V

N

Z

C

SP SP

ADD R0, R3, #0 POP {R4,R5,PC}

R3

R0

R5

R4M

B3

V

N

Z

C

ADD R0, R3, #0

R3

R0

V

N

Z

C

ADD R1, R5, #0

R5

R1

LR LR

BL (add)

R0LRR1R0

R0 R1 R2 R3 R4 R5 SP LR M R0R1R2R3R4R5SPLRM

B5

BLE

V

N

Z

ADD R2, R0, #0

R0 V

N

Z

C

R2

CMP R2, R4

V

N

Z

C

R4

R2

LR LR

BL (add)

V

N

Z

C

ADD R3, R0, #0

R0

R3

B4 R0LRR0 R1

V

N

Z

C

R1

MOV R1, #1

Z

N

ADD R0, R2, #0

R2

R0

Figure 8.10: The PDG of function mul of the example program presented
in Figure 8.5. The thick and thin solid lines represent control and data de-
pendence edges respectively, while the dotted lines are compensation control
dependence edges. The Rx, LR and SP arguments represent registers, V, N,
Z, and C are flags and M stands for the memory.

8.3 Interprocedural Slicing using the System

Depencence Graph

The PDGs built so far can be used to compute intraprocedural slices by

treating call sites as instructions with actual-in and actual-out parameters

as used and defined arguments, respectively, where each defined argument is

data dependent on all used arguments. A slice can be computed for any set

of used or defined arguments as the slice criterion by traversing via control

and data dependence edges [87]. The resulting program slice consists of the

instruction nodes reached during the graph traversal.

However, to compute interprocedural slices, the individual PDGs of func-
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Figure 8.11: A portion of the SDG of the example program given in Figure 8.5
showing the function add and call site B3 in the function mul. The thick and
thin solid lines represent control and data dependence edges, respectively,
the thick dashed lines are summary edges, the thin ones denote parameter
and call edges, while the dotted and dot-dashed vectors are for control and
call compensation edges.

tions need to be interconnected. We connect all actual-in and actual-out

parameter nodes with the appropriate formal-in and formal-out nodes us-

ing parameter-in and parameter-out edges to represent parameter passing.

We also add summary edges to represent dependences between actual-in and

actual-out parameters, see [90]. The resulting graph is the system depen-

dence graph (SDG) of the program.

Similar to the control dependences described in Section 8.2, even though

call edges connect basic block and function entry nodes, the real dependences

come from the call instructions. To avoid missing dependences, the SDG

needs to be augmented with new compensation dependence edges connecting

the used arguments of function call instructions to the called function entry
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nodes. Figure 8.11 presents a small portion of the SDG of the example

program containing a call site and the entry point of the corresponding called

function.

The SDG built by using the approach described in this section and in

the preceding ones can be used to compute interprocedural slices using the

two-pass algorithm of Horwitz et al. [60] with respect to a set of argument

nodes. However, experience shows that the computed static slices tend to

be quite large. The reason for this will be investigated in the next chapter,

where solutions are proposed as well.
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Chapter 9

Improving the Slicing of Binary

Executables

9.1 Refining Static Analyses

Although the program and system dependence graphs built as described in

the previous chapter are safe, they are overly conservative. One reason for

this is the conservative approach of the data dependence analysis and the lack

of use of architecture specific information. In this section, we will present

two approaches for improving the precision of the DDG. One is based on a

heuristical analysis of function prologs and epilogs, while the other is a more

sophisticated analysis of the memory access of the instructions.

On most current architectures, various function calling conventions exist

which specify what portions of the register file a function has to keep intact

when called. Functions conforming to such calling conventions usually save

registers somewhere to the memory on entry (mostly to the stack) and restore

them just before exiting. These register save and restore operations are

usually easy to detect by using knowledge of the architecture and the calling

convention.

If the set of saved and restored registers can be determined, we can re-

define the set of output parameters for a function f as Df \ Sf where Df

is defined in Figure 8.8, and Sf is the set of registers saved on entry and
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Figure 9.1: The lattice to characterise register content.

restored on exit in f . Using the new set of input and output parameters to

build the PDG, the slice is going to suffer less from the imprecision caused

by the conservative handling of function calls.

Another source of imprecision is the handling of memory accesses in data

dependence analysis. At the binary level, the high-level concepts of variables

and function parameters do not exist, so compilers use registers in their place.

But in most architectures the number of available registers is limited, and

registers are also used to store the temporary results of computations in the

program. The parameters and variables that cannot be assigned to registers

are usually stored in a specific portion of the memory called the stack.

Since the memory model outlined in Section 8.2 is very simple, a data de-

pendence analysis cannot accurately detect the dependences across the stack,

hence the computed slices are too conservative. As a solution to this prob-

lem, we propose an improved memory model (a modified data dependence

analysis and a propagation algorithm) to aid the analysis.

In our procedure, we characterise all registers at a given instruction lo-

cation with a pair of lattice elements to represent statically collected infor-

mation about their contents at the entry and exit points of the instruction.

The lattice and its elements are shown in Figure 9.1.

Assigning > to a register means that it may contain a reference to an (as

yet) undetermined stack position. The lattice element ⊥ tells us that whether

the register contains a reference in the stack or not cannot be statically

determined. If it is dereferenced it may access not only a stack element but

also a memory location outside the stack. Assigning M to a register means
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any u > = any

any u ⊥ = ⊥

Si u Sj = Si if i = j

Si u Sj = S if i 6= j

Si u S = S

Si u M = ⊥

S u M = ⊥

Figure 9.2: Rules for u.

that it may not contain a reference in the stack. The lattice element S shows

that the register definitely contains a reference somewhere in the stack, but

the exact location cannot be determined. Assigning Si to a register means

that the register contains a reference to a known stack element.

For each function, our algorithm starts by assigning > to all registers

both at the entry and exit points of each instruction, except the first one.

At the entry point of the first instruction, the algorithm assigns ⊥ to all

registers except the one that specifies the current top of the stack (usually

called the stack pointer or SP), which is assigned a value of S0.

The algorithm uses the CFG to propagate information. First of all, the

first instruction is placed on a worklist. Then, iteratively, a node is chosen

and removed from the worklist, and it is examined. The lattice elements

associated with the registers at the entry of the examined instruction become

the meet of the lattice elements associated with the corresponding registers at

the exit of the preceeding instructions. The meet rules are given in Figure 9.2.

The instruction is evaluated by simulating its behaviour on the new input

values, and then the exit values are determined. If any of the computed

exit values differ from the corresponding lattice elements associated with

the registers at the exit point of the instruction, the instructions following

it according to the control flow are added to the worklist. The process is

repeated until the worklist is empty.

Using the results of this process, data dependence analysis described in
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Section 8.2 can be improved so as to avoid adding superfluous dependence

edges to the graph. In the conservative approach, the entire memory was

represented by only one argument, but by using the results of the above al-

gorithm, the used and defined arguments can be determined more precisely.

Instead of the argument representing the whole memory, we can use argu-

ments labeled according to the same lattice elements as those used in the

analysis. This is used to represent certain parts of the memory.

In our current approach, the improved handling of the memory is not

applied to formal and actual parameters owing to the difficulties of inter-

procedural analysis of stack and memory access. The formal and actual

parameters represent memory access with a ⊥ type node.

For the data dependence analysis to make use of the above analysis, the

reaching definition has to be modified for arguments representing access to

the memory. The definition of the argument a′ in instruction k is a reaching

definition for the used argument a of instruction j if a′ua ∈ {a, a′} and there

is a path in the CFG from k to j such that if a′ is some Si, then a′ is not

redefined.

Figure 9.3 shows the interprocedural backward slice of the example pro-

gram given in Figure 8.5 with respect to R0 used by the instruction at

label .l4 using the results of the here-presented optimisations. The slice

contains the instructions responsible for the loop control logic and the com-

putation of the sum in function main and the whole function add. Without

the improvements, the slice would contain the whole function mul and all the

instructions in basic blocks B8, B10 and B11.

9.2 Improving the Call Graph with Dynamic

Information

Our investigations revealed that the high number of unresolved indirect func-

tion calls is another reason why the slices are too large. Antoniol et al. [4]

experimented with static points-to analysis of C programs, focusing on func-

tion pointers and their effect on the call graph. Although their results are
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add: add r0, r1, r0 ;B1

mov pc, lr

mul: ;B2

.l1: ;B3

;B4

;B5

.l2: ;B6

main: push {r4,r5,lr} ;B7

add sp, #-8

bl readin

add r5, r0, #0 ;B8

mov r0, #0

str r0, [sp, #0]

mov r4, #1

cmp r4, r5

bge .l4

.l3: ldr r0, [sp, #0] ;B9

add r1, r4, #0

bl add

str r0, [sp, #0] ;B10

;B11

add r4, #1

cmp r4, r5

blt .l3

.l4: ldr r0, [sp, #0] ;B12

;B13

Figure 9.3: An interprocedural backward slice of the example program given
in Figure 8.5 w.r.t. R0 used by the instruction at label .l4.

impressive, the application of a static points-to analysis with a cubic worst-

case complexity on low-level programs where even local variables reside on

the stack and are accessed via pointers would prove quite ineffective.

In contrast, Mock et al. [83] examined the effects of using dynamic points-

to information in the slicing of C programs. Their results suggest that at-

tention should be paid to function pointers and calls through them. Fur-

thermore, since points-to data is collected only for function pointers, the

slowdown caused by this type of profiling is minimal, which makes the ap-

proach feasible in practice.

In the case of binary executables, the equivalent terms for function pointer

and call via a function pointer are register and statically unresolved indirect

call site, respectively, while points-to sets translate to sets of memory ad-

dresses (of functions) in this context. That is why we are interested in the

values of registers at specific call sites.

To facilitate the gathering of dynamic information, we need to determine
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the run-time address of each statically unresolved indirect call site after the

construction of the CFG is completed. The application can then be executed

in a controlled environment on some representative input. These previously

determined addresses are used as breakpoints where dumping the registers

to a log file should be performed.

The controlled environment could be either a software emulator or real

hardware with a debugger interface. We should note, however, that the

required information (i.e., the contents of registers at call sites) could be

obtained by other means as well – for example, by instrumentation. The

drawback of instrumentation is that it requires the modification of the binary

code, which is prone to error and must be done with extreme care.

With the help of the generated log files, it is possible to determine the re-

alised targets of the statically unresolved indirect call sites and thus, replace

call edges to the unknown function node with call edges to the actual targets.

The call sites which were not executed during any invocation of the appli-

cation have no associated dynamic information with them, so they may be

handled in various ways. One alternative is to rely entirely on dynamic data

and treat them as calling no functions (which makes them equivalent with

no-operation instructions), but this solution may result in over-optimistic

slices. The other alternative is to retain the call edge to the unknown func-

tion node at these call sites as a fallback. In Section 10.2, we provide results

for both approaches. Although the resulting call graphs may be imprecise in

both cases, so the slices may become unsafe, in some situations (e.g., when

debugging with limited resources) this limitation is acceptable.

Figure 9.4 shows the call graph of an example program named decode,

while Figure 9.5 shows the same call graph made more precise with the

dynamically gathered information at 80% coverage level (unexecuted indirect

call sites are treated as no-operation instructions). As is readily apparent

from the difference between the two figures, the use of dynamic information

can result in a huge reduction in the number of call edges.

Once the dynamic information is processed, only the summary edges in

the SDG need to be recomputed, and then the interprocedural static slice

can be computed in the usual way.
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Figure 9.4: The statically computed call graph of the program decode.

Figure 9.5: The call graph shown in Figure 9.4 made more precise with the
help of dynamically gathered information.

86



Chapter 10

Experimental Results

10.1 Static Slicing

We implemented a slicer for statically linked binary ARM executables and

evaluated it on programs taken from the SPEC CINT2000 [96] and Medi-

aBench benchmark suites [76]. The selected programs were compiled using

Texas Instruments’ TMS470R1x Optimizing C Compiler version 1.27e for the

ARM7T processor core with Thumb instruction set. The size of code in the

executables ranged from 12 to 419 kilobytes. In Table 10.1, we also state the

number of lines in the C source files of the programs and the number of low-

level instructions compiled from these sources. The number of instructions

originating from the linked libraries is given in parentheses.

First, we built the CFG for all the selected programs, as described in

Table 10.1: The benchmark used to evaluate binary slicing.

Program Source lines Raw size Instructions
ansi2knr 693 12596 774 (+5014)
decode 1593 15476 2074 (+5162)
bzip2 4247 43324 8788 (+5311)
toast 5997 37748 10662 (+5517)
sed 12241 42328 13284 (+5820)
cjpeg 28720 99352 37019 (+7482)
osdemo 62374 419032 177214 (+7025)
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Table 10.2: All functions present in the programs and the statically reachable
ones. Library functions are given in parentheses for each case.

Program All functions Reachable functions
ansi2knr 5 (+114) 5 (+97)
decode 26 (+109) 21 (+91)
bzip2 73 (+119) 51 (+102)
toast 86 (+124) 72 (+107)
sed 102 (+142) 92 (+128)
cjpeg 381 (+149) 327 (+133)
osdemo 1186 (+145) 675 (+127)

Section 8.1. As one result of this analysis, in Table 10.2 we list for each

program the number of functions present in the binary code and the number

of functions statically reachable from the entry point of the program accord-

ing to the statically computed call graph. The first number in each column

represents the functions actually present in the sources, while the second one

in parentheses stands for library functions. The difference between the num-

ber of all functions present in the binary code and the number of reachable

functions reveals the inefficiency of the linking process.

Once the CFGs were present, we performed control and data dependence

analyses (both the conservative and statically improved ones, as described

in Sections 8.2 and 9.1) to obtain PDGs for each reachable function, and

finally, we created the SDGs. Table 10.3 shows the summary of edge types

in the dependence graphs as well as the effect of the static improvements. As

can be seen, the reduction in the number of data dependence and summary

edges in the SDGs are, on average 28% and 51%, respectively, with maximum

improvements as high as 44% and 58%, respectively.

After obtaining the SDGs for all the benchmark programs, we computed

interprocedural slices using both the conservative and the statically improved

dependence graphs. To avoid bias from applying a given selection strategy,

we decided to compute slices for each instruction of those reachable functions

that were compiled from the sources (not added during the linking process).

During slicing, we considered the used arguments of the instructions as slice

criteria. Table 10.4 shows the results of the computations. We obtained slices
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Table 10.3: Summary of edges in the SDGs built using both conservative and
improved data dependence analyses.

Program Control Data dependence Summary
dependence conservative improved conservative improved

ansi2knr 1953 51535 40181 19859 9626
decode 2018 56650 45253 22864 11099
bzip2 4154 169934 131410 61404 30363
toast 3435 155867 110194 48061 24500
sed 7254 797140 448998 69924 37082
cjpeg 10305 539978 395443 228210 118127
osdemo 48302 4614767 3071640 779437 327126

Table 10.4: Average number of instructions in interprocedural static slices
based on both conservative and improved data dependence analyses (no cri-
teria from library code). The contribution of library code to the slice size is
given in parentheses.

Program Criteria Conservative Improved
ansi2knr 774 495 (+3145) 486 (+2911)
decode 1670 1205 (+3234) 1167 (+2992)
bzip2 8591 3147 (+3178) 3099 (+2960)
toast 7876 5783 (+3486) 5660 (+3268)
sed 13109 7532 (+3868) 7435 (+3629)
cjpeg 33048 26338 (+5447) 25556 (+5144)
osdemo 141686 97680 (+4262) 95311 (+4004)

that on average had 36%-71% of the source-originated instructions using the

conservative approach and 1%-3% fewer instructions with the help of the

improvements.

The above results mainly relate to that part of the application which was

compiled from sources, but there are situations (e.g., programs modified at

post-link time) where library code also becomes important and the entire

binary executable needs to be analysed. For this reason in Table 10.5, we

list the results on the slices computed for those (reachable) functions which

originate from library code as well. The figures in this table show similar

trends to the ones in the previous table. The slices computed using the
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Table 10.5: Average number of instructions in interprocedural static slices
based on both conservative and improved data dependence analyses (criteria
taken from all reachable functions).

Program Criteria Conservative Improved
ansi2knr 5137 3754 3520
decode 6177 4457 4190
bzip2 13275 7399 7114
toast 12757 9418 9066
sed 18437 11969 11623
cjpeg 40077 31606 30529
osdemo 148011 102324 99683

conservative dependence graphs on average contained 52%-71% of all the

instructions, while the static improvements brought only a 1%-4% decrease

in these values. According to our investigations, a key factor in the moder-

ate improvement in the size of interprocedural slices is the high number of

statically unresolved function calls.

10.2 The Effect of Dynamic Information

To gather dynamic information about the selected benchmark programs, we

executed them in the emulator of Texas Instruments’ TMS470R1x C Source

Debugger. We used the test inputs that came with the benchmark suites

to achieve as good a code coverage as possible. In Table 10.6 we list for

each program the number of functions called during the executions of the

program. The number of executed functions shows, when compared to the

figures given in Table 10.2, that in some cases it is possible to get a very

good code coverage using the default test inputs, but in others – especially

in the case of larger programs – the achieved coverage ratio is poor. However,

sometimes – e.g. in the case of osdemo – it is impossible to achieve a better

ratio, since a big portion of the code turns out to be never executed, even

though static analysis marks it as reachable. This is usually the case when the

number of indirectly called functions is high. After all, unless all realisable

paths of execution can be covered by the test inputs, the call graph resulting
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Table 10.6: The functions called during test executions. Library functions
are given in parentheses for each case.

Program Executed functions
ansi2knr 4 (+57)
decode 21 (+45)
bzip2 38 (+53)
toast 60 (+54)
sed 57 (+70)
cjpeg 134 (+62)
osdemo 122 (+85)

from the static call graph improved by dynamically gathered information can

be considered only as an approximation of the real, precise call graph.

With the help of the dynamic information collected, we were able to make

the call graph at the indirect call sites and their targets more accurate. In

Table 10.7, we give the number of indirect call sites and the number of in-

directly callable functions for every benchmark program (separately for the

application and library parts of the program), while Table 10.8 shows how

the number of call edges changes with the improvements, giving results for

both approaches handling unexecuted indirect call sites (as described in Sec-

tion 9.2). Here, the number of indirect call edges is given in parentheses.

As expected, the number of call edges is significantly reduced in those appli-

cations which make intensive use of indirect function calls (cjpeg, osdemo).

Even those programs that contained only a few indirect call sites and indi-

rectly callable functions showed a clear reduction. However, as a consequence

of the poor indirect call site coverage, the reduction becomes only moderate

if the static fallback is used, i.e., when the unexecuted call sites call all the

possible targets.

To measure the effect of a more precise call graph, we computed slices

for the same slicing criteria using the static call graph and the two kinds

of dynamically improved ones. Again, to avoid bias from applying a given

selection strategy, we computed slices for each instruction of those source-

originated functions that were called during the executions of the benchmark

programs. In Table 10.9, we list the average number of instructions in the
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Table 10.7: Indirect function call sites and indirectly callable functions. Call
sites and targets in library code are given in parentheses.

Program Call sites Targets
ansi2knr 0 (+12) 0 (+12)
decode 1 (+12) 3 (+10)
bzip2 0 (+12) 0 (+10)
toast 6 (+12) 13 (+12)
sed 1 (+12) 3 (+16)
cjpeg 469 (+32) 181 (+15)
osdemo 245 (+12) 359 (+14)

Table 10.8: Change in the number of call edges as a result of the use of dy-
namic information. The number of indirect call edges is given in parentheses.

Program Static Dynamic with fallback Dynamic
ansi2knr 401 (144) 324 (67) 264 (7)
decode 428 (169) 358 (99) 267 (8)
bzip2 781 (120) 736 (75) 666 (5)
toast 1010 (450) 774 (214) 574 (14)
sed 1047 (247) 886 (86) 810 (10)
cjpeg 99320 (98196) 83145 (82021) 1217 (93)
osdemo 106819 (95861) 91940 (80982) 10999 (41)

computed slices. The contribution of library code to the slice size is shown

in parentheses. The results reveal that there is a high correlation between

the reduction of the call edges and the reduction of the size of the slices.

In the case of cjpeg and osdemo, the average size of the slices computed

using the dynamically improved call graph fell by 72% and 57%, respectively,

compared to the static approach. Two programs using indirect function calls

only rarely (decode and toast) achieved a 6% reduction, but the others,

not surprisingly, brought no improvements. In the case of the dynamically

improved call graph using the static fallback, the high number of remaining

call edges cancelled out nearly all the improvements.

Since, as mentioned in the previous section, there are cases when the

entire binary is important, in Table 10.10 we list the results on the slices

computed for those functions which originate from library code as well. As
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Table 10.9: Change in the average size of slices as a result of using dynamic
information (no criteria from library code). The contribution of library code
to the slice size is given in parentheses.

Program Criteria Static Dynamic with fallback Dynamic
ansi2knr 761 485 (+2911) 485 (+2904) 485 (+2782)
decode 1670 1167 (+2992) 1166 (+2984) 1097 (+2719)
bzip2 8237 3084 (+2985) 3084 (+2977) 3084 (+2764)
toast 7428 5695 (+3287) 5693 (+3277) 5373 (+3107)
sed 11218 7282 (+3619) 7281 (+3604) 7159 (+3397)
cjpeg 12103 24038 (+4873) 24003 (+4865) 6700 (+4246)
osdemo 20142 91855 (+3890) 91825 (+3878) 39368 (+3440)

Table 10.10: Change in the average size of slices as a result of using dynamic
information (criteria taken from the entire executable set).

Program Criteria Static Dynamic with fallback Dynamic
ansi2knr 2894 3366 3358 3228
decode 3445 4119 4111 3674
bzip2 10122 6431 6423 6211
toast 9631 8959 8947 8344
sed 14431 11307 11292 10981
cjpeg 14640 28911 28870 11127
osdemo 24319 97890 97850 48514

these figures are similar to the ones shown in Table 10.9, we may draw a

similar conclusion as before. With the applications which make extensive

use of indirect function calls the dynamically improved call graph can result

in a high slice size reduction, but otherwise the improvements are only mod-

erate. Moreover, unless the coverage of the indirect call sites can be greatly

improved, there is not much sense in using the improved call graph with the

static fallback method.
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Chapter 11

Conclusions

In this part of the thesis, we described how interprocedural slicing can be ap-

plied to binary executables. First, we discussed the problems associated with

the control flow analysis of binary programs, and then we presented a conser-

vative dependence graph-based slicing approach as well as its improvements.

First, we experimented with two static improvements, and then we described

how superfluous edges could be removed from the statically computed call

graph with the help of dynamically gathered information.

We evaluated both approaches on programs compiled for ARM architec-

ture with the help of a prototype implementation of the described methods.

Using the conservative approach, we achieved an interprocedural slice size of

52%-71% on average and 1%-4% reduction using the static improvements.

The moderate improvements are due to the conservative handling of mem-

ory and indirect function calls. The experiments with the dynamic approach

demonstrated that the slice size could be dramatically further reduced if the

analysed application made extensive use of indirect function calls. The draw-

back of the method described is that the improved call graph may be unsafe,

but the safe call graph can be approximated if sufficient code coverage can

be achieved. The resulting call graph may work well in situations where the

safety of slices is not critical, e.g. in some debugging scenarios.
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Part III

Code Obfuscation via Control

Flow Flattening
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Chapter 12

Introduction to Code

Obfuscation

Protecting programs from unauthorised access has always been a concern

of software vendors. Unfortunately, it is impossible to guarantee complete

safety, since given sufficient time, any code can be broken. Thus, the goal

is usually to make the job of the attacker as difficult as possible. Therefore,

several techniques have been suggested to hinder the comprehension and

modification of programs.

Some of the protection methods rely on hardware support [109], while

others are pure software solutions [32]. Some techniques are static, i.e., they

are applied to programs using compile or build time information only, while

others protect the code even during runtime, i.e., dynamically [44]. In this

part of the thesis, we focus on code obfuscation, which is a first line of

defence in the protection of programs, since its goal is to prevent attackers

from comprehending the code. If an attacker cannot comprehend the code,

he cannot modify it either.

Several code obfuscation techniques exist. Their common feature is that

they change programs to make their comprehension difficult, while preserv-

ing their original behaviour. The simplest technique is layout transforma-

tion [79], which scrambles identifiers in the code, removes comments and de-

bug information. Another technique is data obfuscation [31], which changes
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data structures, e.g., by changing variable visibilities or by reordering and

restructuring arrays. The third group consists of control flow transforma-

tion algorithms where the goal is to hide the control flow of a program from

analysers. These algorithms change the predicates of control structures to an

equivalent, but more complex code, insert irrelevant statements, or “flatten”

the control flow [101, 26].

Nowadays, both open source and commercial obfuscator tools are mostly

targeted for Java [108, 107]. For that platform, the typically used method is

to apply the kind of transformations to the binary bytecode representation

of the program that do not alter its behaviour, but make the recovery of

human readable source code harder for automatic deobfuscators. Another,

although questionable, use of obfuscation typically applied to C and C++

sources is the circumvention of open source licenses like GPL. In such cases,

the goal of the author is to keep the code in conformance with the license,

i.e., to make the source publicly available, but still make the comprehension

almost impossible for an outsider.

Although several large software systems are still written in C++, e.g.,

Symbian, the market-leading smartphone OS and most applications writ-

ten for it, to date only a few tools have been designed specifically for their

protection, and they mostly use simple source code transformations [5, 93].

Since the importance of protecting C++ programs is not negligible, we set

ourselves the goal of developing non-trivial obfuscation techniques for C++.

Here, we discuss the adaptation of a control flow transformation technique

called control flow flattening to the C++ language. Although the general

idea has been defined informally in [101], no paper has been published on

the adaptation of the technique to a given programming language.

Moreover, to our best knowledge, currently there are no obfuscation tech-

niques which would give protection to programs written in and built from

C++ against comprehending the binary code. However, lots of attacks are

directed against programs released in binary form to work around or to deac-

tivate their protection. Activation code validation routines and digital rights

management (a.k.a. DRM) modules are especially attractive for crackers, to

name but a few of their potential targets.
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To achieve a kind of protection for C++ originated binaries that is similar

to what is already available for Java, two alternatives exist. The first one is to

transform the binary code, while the second one is to transform the source in

such a way that the transformation has an effect on the compiled binary code

as well. Unfortunately, the first alternative has serious drawbacks. First, the

transformation of binary programs is a very complex problem which is hard to

perform in a safe manner, and second, it has to be adapted to every targeted

platform. Thus, in this thesis, we will focus on the second alternative.

In the next chapter, we will discuss the identified problems of adapting

control flow flattening to C++ and we give solutions to them. In addition,

we will present the complete formal algorithm of the technique. Finally,

we will evaluate control flow flattening using a prototype implementation,

and we will demonstrate the effect of the algorithm on test programs. Most

importantly, in our experiments, we analysed the effect of the algorithm not

just at the source code level, but at the binary level as well, thus were able

to learn whether a static source-to-source transformation could render the

comprehension of the binary code more difficult as well.
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Chapter 13

Control Flow Flattening

13.1 Flattening of C++ Programs

In the case of most real life programs, branches and their targets are easily

identifiable due to high level programming language constructs and coding

guidelines. In such cases, the complexity of determining the control flow of

a function is linear with respect to the number of its basic blocks [84]. The

idea behind control flow flattening is to transform the structure of the source

code in such a way that the targets of branches cannot be easily determined

by static analysis, thus hindering the comprehension of the program.

The basic method for flattening a function is the following. First, we

break up the body of the function into basic blocks, and then we put all

these blocks, which were originally at different nesting levels, next to each

other. These new basic blocks are encapsulated in a selective structure (a

switch statement in the C++ language) with each block in a separate case,

and the selection is in turn encapsulated in a loop. Finally, the correct

flow of control is ensured by a control variable representing the state of the

program, which is set at the end of each basic block and is used in the

predicates of the enclosing loop and selection. An example of this method

is given in Figures 13.1 and 13.2. The control flow graphs of the original

and the obfuscated code show the changes in the structure of the program,

i.e., all the original blocks are at the same level, thus concealing the loop
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int swVar = 1;

while (swVar != 0) {
switch (swVar) {

case 1: {
i = 1; i = 1;

s = 0; s = 0;

swVar = 2;

break;

}
case 2: {

while (i <= 100) { if (i <= 100)

swVar = 3;

else

swVar = 0;

break;

}
case 3: {

s += i; s += i;

i++; i++;

swVar = 2;

break;
} }

}
}

(a) (b)

Figure 13.1: The effect of control flow flattening on the source code (a: orig-
inal, b: flattened).

structure of the original program.

According to the above description, the task of flattening a function seems

to be quite simple. However, when it comes to applying the idea to a real

programming language, we run into certain problems. Below we will discuss

the difficulties we encountered during the adaptation of control flow flattening

to the C++ language.

As the example in Figure 13.1 makes clear, breaking up loops into basic

blocks is not the same as simply splitting the head of the loop from its body.

Retaining the same language construct, i.e., while, do or for, in the flattened

code would lead to incorrect results, since a single loop head with its body

detached definitely cannot reproduce the original behaviour. Thus, for loops,

the head of these structures has to be replaced with an if statement where
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Start

?
i = 1;
s = 0;

?
while (i <= 100)

?

�

s += i;
i++;

-

Stop

Start

?
int swVar = 1;

?
while (swVar != 0)

?

�

switch (swVar)

?? ?
case 1: {

i = 1;
s = 0;
swVar = 2;
break;

}

-

case 2: {

if (i <= 100)
swVar = 3;

else
swVar = 0;

break;

}

?

case 3: {
s += i;
i++;
swVar = 2;
break;

}

�

-

Stop

(a) (b)

Figure 13.2: The effect of control flow flattening on the control flow graph
(a: original, b: flattened).

the predicate is retained from the original contruct and the branches ensure

the correct flow of control by assigning appropriate values to the control

variable.

Another compound statement that is not easy to deal with is the switch

construct. In this case, the cause of the problem is the relaxed specification

of the switch statement, which only requires that the controlled statement of

the switch be a syntactically valid (compound) statement where case labels

can appear as the prefixes of any sub-statements. An interesting example

which exploits this lazy specification is Duff’s device [97] where loop unrolling

is implemented by interlacing the structures of a switch and a loop. A

slightly modified version of the device and its possible flattened version are

given in Figure 13.3.

When it comes to loops and switch statements, we must not forget to

mention unstructured control transfers either. If left unchanged in the flat-

tened code, break and continue statements could cause problems, since in-

stead of terminating or restarting the loop or switch as they were intended

to do, they would terminate or restart the control structure of the flattened

code. To avoid this, these kind of instructions have to be replaced in the
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int swVar = 1;

while (swVar != 0) {
switch (swVar) {
case 1: {

switch (cnt % 4) { switch (cnt % 4) {
case 0: do { *to++ = *from++; case 0: goto L1;

case 3: *to++ = *from++; case 3: goto L2;

case 2: *to++ = *from++; case 2: goto L3;

case 1: *to++ = *from++; case 1: goto L4;

} while ((cnt -= 4) > 0); }
} swVar = 0;

break;

}
case 2: {

L1: *to++ = *from++;

L2: *to++ = *from++;

L3: *to++ = *from++;

L4: *to++ = *from++;

swVar = 3;

break;

}
case 3: {
if ((cnt -= 4) > 0)

swVar = 2;

else

swVar = 0;

break;

}
}

}
(a) (b)

Figure 13.3: Duff’s device (a: original code, b: flattened version).

flattened program by assignments to the control variable in such a way that

the correct order of execution is ensured. Figure 13.4 gives an example of

this replacement.

Compared to C, C++ has an additional control structure, the try-catch

construct for exception handling. By simply applying the basic idea of control

flow flattening to a try block, i.e., determining the basic blocks and placing

them in the cases of the controlling switch, this would violate the logic of

exception handling. In such a case, the instructions that would be moved

out of the body of the try would not be protected anymore by the exception

103



int swVar = 1;

while (swVar != 0) {
switch (swVar) {
case 1: {

while (1) { if (1)

swVar = 2;

else

swVar = 0;

break;

}
case 2: {

break; swVar = 0;

break;

}
} }

}
(a) (b)

Figure 13.4: Transformation of a loop with unstructured control transfer
(a: original code, b: flattened code).

handling mechanism, and thrown exceptions could not be caught by the

originally intended handlers. To keep the original behaviour of the program

in the flattened version, try blocks have to be flattened independently of the

other parts of the program, which will result in a new while-switch control

structure which remains under the control of the try construct. Thus, the

flattening of try constructs produces multiple levels of flattened blocks. This

causes problems again when an unstructured control transfer has to jump

across different levels.

Figure 13.5 shows an example of the multiple levels of flattened blocks

created by the transformation of a try construct as well as a solution for

jumping across levels when it is required by a break statement. Although

using goto statements is usually discouraged by coding guidelines, there are

cases when their use is justified [38].
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int swVar1 = 1;

L: while (swVar1 != 0) {
switch (swVar1) {

case 1: {
while (1) { if (1)

swVar1 = 2;

else

swVar1 = 0;

break;

}
case 2: {

try { try {
int swVar2 = 1;

while (swVar2 != 0) {
switch (swVar2) {
case 1: {

buf = new char[512]; buf = new char[512];

break; swVar1 = 0;

goto L;

}
}

}
swVar1 = 1;

} catch (...) { } catch (...) {
swVar1 = 3;

}
break;

}
case 3: {

cerr << "exception" << endl; cerr << "exception" << endl;

swVar1 = 1;

break;

} }
} }

}
(a) (b)

Figure 13.5: Exception handling with unstructured control transfer (a: orig-
inal code, b: flattened code).

13.2 The Algorithm

In the following, we will propose an algorithm for flattening the control flow of

C++ functions, which solves the problems presented in the previous section.

The algorithm expects that the abstract syntax tree of the function-to-be-

flattened is available and, after a preprocessing phase, it traverses the tree in

one pass along which the obfuscated version of the function is generated.

In the formal description of the algorithm (see Figures 13.6, 13.7, and 13.8),

the words in bold denote the keywords of the used pseudo-language, the for-

malised parts are typeset in roman font, while the parts which are easier to
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levels : stack of 〈variable, label〉
breaks : stack of 〈level, entry〉
continues : stack of 〈level, entry〉

procedure control flow flattening (block)
begin

separate variable declarations from the rest

of block and output them before all other

statements

flatten block(block)
end

procedure flatten block (block)
begin

while label := unique identifier()
switch variable := unique identifier()
entry := unique number()
exit := unique number()
⇒ "int " ⊕ switch variable ⊕ " = " ⊕ entry ⊕
";"

⇒ while label ⊕ ":"

⇒ "while (" ⊕ switch variable ⊕ " != " ⊕
exit ⊕ ") {"

⇒ " switch (" ⊕ switch variable ⊕ ") {"
push(levels, 〈switch variable, while label〉)
transform block(block, entry, exit)
pop(levels)
⇒ " }"
⇒ "}"

end

procedure transform block (block, entry, exit)
begin

block parts[] := split block to parts so that

each part is either a compound statement

or a sequence of non-compound statements

for each part in block parts do

part exit := part is the last ? exit :
unique number()

case type of part of

block : transform block(part, entry,
part exit)

if : transform if(part, entry, part exit)
switch: transform switch(part, entry,

part exit)
while: transform while(part, entry,

part exit)
do: transform do(part, entry, part exit)
for : transform for(part, entry, part exit)
try : transform try(part, entry, part exit)
sequence: transform sequence(part, entry,

part exit)
endcase

entry := part exit
endfor

end

Figure 13.6: The algorithm of control flow flattening, part one.

explain in free text are in italics. The output of the algorithm is a C++

code for which typewriter font and double quotes are used. Throughout

the algorithm, two symbols are used as well: ⊕ denotes string concatenation,

while ⇒ outputs the result of the algorithm, e.g., to the console or to a file.

The algorithm starts at the control flow flattening procedure (see Fig-

ure 13.6), which first performs a preprocessing on the function. In this step,

all the variable declarations that are not at the beginning of the function

(i.e., the ones that are preceeded by other statements) are eliminated to

avoid visibility problems that would result from the change in the scope of

such declarations. So, the declaration of these variables is moved to the

beginning of the function, and only their initialisation is left in place, i.e.,

converted to an assignment. The possible name collisions are resolved by

variable renaming.

The actual flattening starts at the procedure flatten block where the con-

struct controlling the control flow is generated. As Figure 13.5 showed in the
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procedure transform if (if stmt, entry, exit)
begin

switch variable := top(levels).variable
then entry := unique number()
else entry := if stmt has an else branch ?

unique number() : exit
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of if stmt do

⇒ label ⊕ ":"

endfor

⇒ " if (" ⊕ predicate of if stmt ⊕ ")"

⇒ " " ⊕ switch variable ⊕ " = " ⊕
then entry ⊕ ";"

⇒ " else"

⇒ " " ⊕ switch variable ⊕ " = " ⊕
else entry ⊕ ";"

⇒ " break;"

⇒ "}"
transform block(true branch of if stmt,

then entry, exit)
if if stmt has an else branch then

transform block(else branch of if stmt,
else entry, exit)

endif

end

procedure transform switch (switch stmt, entry,
exit)

begin

switch variable := top(levels).variable
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of switch stmt do

⇒ label ⊕ ":"

endfor

⇒ " switch (" ⊕ predicate of switch stmt ⊕
") {"

for each case label in cases of switch stmt do

goto label := unique identifier()
⇒ " " ⊕ case label ⊕ ”:”
⇒ " goto " ⊕ goto label ⊕ ";"

add a label named goto label to the

statement referenced by case label
endfor

⇒ " }"
⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"

⇒ " break;"

⇒ "}"
push(breaks, 〈size(levels), exit〉)
transform block(body of switch stmt,

unique number(), exit)
pop(breaks)

end

procedure transform while (while stmt, entry,
exit)

begin

switch variable := top(levels).variable
body entry := unique number()
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of while stmt do

⇒ label ⊕ ":"

endfor

⇒ " if (" ⊕ predicate of while stmt ⊕ ")"

⇒ " " ⊕ switch variable ⊕ " = " ⊕
body entry ⊕ ";"

⇒ " else"

⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"

⇒ " break;"

⇒ "}"
push(breaks, 〈size(levels), exit〉)
push(continues, 〈size(levels), entry〉)
transform block(body of while stmt,

body entry, entry)
pop(breaks)
pop(continues)

end

procedure transform do (do stmt, entry, exit)
begin

switch variable := top(levels).variable
test entry := unique number()
body entry := unique number()
⇒ "case " ⊕ test entry ⊕ ": {"
⇒ " if (" ⊕ predicate of do stmt ⊕ ")"

⇒ " " ⊕ switch variable ⊕ " = " ⊕
body entry ⊕ ";"

⇒ " else"

⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"

⇒ " break;"

⇒ "}"
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of do stmt do

⇒ label ⊕ ":"

endfor

⇒ " " ⊕ switch variable ⊕ " = " ⊕
body entry ⊕ ";"

⇒ " break;"

⇒ "}"
push(breaks, 〈size(levels), exit〉)
push(continues, 〈size(levels), test entry〉)
transform block(body of do stmt, body entry,

test entry)
pop(breaks)
pop(continues)

end

Figure 13.7: The algorithm of control flow flattening, part two.

previous section, sometimes it is necessary to jump across different levels of

flattened blocks. To aid this, the controlling loop is annotated with a label,

and this label together with the name of the control variable is pushed to a
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procedure transform for (for stmt, entry, exit)
begin

switch variable := top(levels).variable
test entry := unique number()
inc entry := unique number()
body entry := unique number()
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of for stmt do

⇒ label ⊕ ":"

endfor

⇒ " " ⊕ initialization part of for stmt
⇒ " " ⊕ switch variable ⊕ " = " ⊕ test entry
⊕ ";"

⇒ " break;"

⇒ "}"
⇒ "case " ⊕ test entry ⊕ ": {"
⇒ " if (" ⊕ predicate of for stmt ⊕ ")"

⇒ " " ⊕ switch variable ⊕ " = " ⊕
body entry ⊕ ";"

⇒ " else"

⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"

⇒ " break;"

⇒ "}"
⇒ "case " ⊕ inc entry ⊕ ": {"
⇒ " " ⊕ increment part of for stmt
⇒ " " ⊕ switch variable ⊕ " = " ⊕ test entry
⊕ ";"

⇒ " break;"

⇒ "}"
push(breaks, 〈size(levels), exit〉)
push(continues, 〈size(levels), inc entry〉)
transform block(body of for stmt, body entry,

inc entry)
pop(breaks)
pop(continues)

end

procedure transform try (try stmt, entry, exit)
begin

switch variable := top(levels).variable
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of try stmt do

⇒ label ⊕ ":"

endfor

⇒ " try {"
flatten block(body of try stmt)
⇒ " }"
for each handler in catch handlers of

try stmt do

⇒ " catch (" ⊕ parameter of handler ⊕ ") {"
flatten block(body of handler)
⇒ " }"

endfor

⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"

⇒ " break;"

⇒ "}"
end

procedure transform sequence (sequence, entry,
exit)

begin

⇒ "case " ⊕ entry ⊕ ": {"
for each stmt in sequence do

for each label in labels of stmt do

⇒ label ⊕ ":"

endfor

case type of stmt of

continue:
⇒ levels[top(continues).level].variable ⊕
" = " ⊕ top(continues).entry ⊕ ";"

if top(continues).level <> size(levels) then

⇒ "goto " ⊕
levels[top(continues).level].label ⊕ ";"

else

⇒ "break;"

endif

break :
⇒ levels[top(breaks).level].variable ⊕
" = " ⊕ top(breaks).entry ⊕ ";"

if top(breaks).level <> size(levels) then

⇒ "goto " ⊕
levels[top(breaks).level].label ⊕ ";"

else

⇒ "break;"

endif

otherwise:
⇒ stmt

endcase

endfor

⇒ top(levels).variable ⊕ " = " ⊕ exit ⊕ ";"

⇒ "break;"

⇒ "}"
end

Figure 13.8: The algorithm of control flow flattening, part three.
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stack (levels) every time a new level is created.

The procedure transform block, called from the flatten block, is respon-

sible for breaking up a block into compound statements and sequences of

non-compound statements, while the other transform procedures do the ob-

fuscation of these block parts according to their type. The procedure trans-

form if in Figure 13.7 is a good example of how compound statements are

obfuscated: a new case is generated in the controlling switch for the head

of the selection, while the branches are handled by calling transform block

on them recursively. The procedure transform while works in a similar way,

except that before recursively calling transform block, the case labels where

the execution shall continue on a break or continue statement are pushed

to two stacks, breaks and continues, respectively. Along with the case labels,

the depth of the actual level of flattening, i.e., the number of entries in the

levels stack, is pushed to both stacks as well. The same approach is used to

transform do and for statements. The procedure transform switch also uses

stacking to deal with unstructured control transfer, but just the breaks stack

is used, since continue statements have no effect on a switch.

The last type of compound statements to be transformed is try. As men-

tioned in the previous section, this construct requires the use of multiple levels

of flattened blocks. Thus, contrary to the previous procedures, transform try

in Figure 13.8 calls flatten block recursively instead of transform block.

Finally, the procedure transform sequence is the one that handles simple

statements, and this is where the stacks managed in flatten block (levels)

and in some of the transform procedures (breaks, continues) are utilised.

All break and continue statements are rewritten to an assignment to the

control variable – more precisely, to the appropriate control variable. The

levels stack together with either the breaks or the continues stack determine

which variable is to be used. In addition, if the stacks indicate that the

control has to cross levels of flattening, a goto instruction is inserted, as can

be seen in the example in Figure 13.5.
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13.3 Experimental Results

To evaluate how effective control flow flattening is in protecting either the

source code or the binary program compiled from the obfuscated source, we

used the following scenario. First, we collected a benchmark which con-

sisted of 23 functions selected from programs of the Java-is-faster-than-C++

Benchmark [75], the C version of the LINPACK Benchmark [85] and LDA-

C [20]. These functions were then obfuscated using a prototype tool which

implements the obfuscation technique introduced in the previous section on

the basis of the CAN C++ analyzer of the Columbus framework [39]. Before

and after obfuscation, we computed McCabe’s cyclomatic complexity met-

ric [81] from the source representation of each function to measure the change

in their complexity and comprehensibility. Once the obfuscated versions of

the sources were generated and the complexity metrics were computed, we

compiled both the original and the obfuscated codes using GCC 4.0.2 for the

ARM target. The resulting binaries were analysed using the same tool that

we applied for slicing binary executables (as described in Part II) and we

built control flow graphs from the binary representations of the benchmark

functions. These CFGs were then used to compute McCabe’s metric for the

original and obfuscated codes. This data was in turn used to measure the

change in the complexity and comprehensibility of the binary programs.

As we mentioned above, first, we collected a benchmark. Table 13.1 lists

the names of the selected functions and gives their size as the number of their

effective lines of code (ELOC). As the table shows, our benchmark contains

functions of only 1 line (ack in ackermann.cpp) up to functions consisting of

78 effective lines (dgefa in linpack.cpp).

The effect of obfuscation on complexity (and thus, on comprehensibil-

ity) is presented in Table 13.2. Here, we investigated how McCabe’s metric

changes with source code and in the case of two binary versions which were

compiled from source using two different optimisation settings, -O0 and -O2.

As the second column of the table shows, we obtained a significant, 4.63-fold

increase in the complexity of the source code on average. Moreover, the data

in the third and fourth columns supported our assumption, i.e., that the
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Table 13.1: The benchmark used to evaluate the effects of control flow flat-
tening.

Function ELOC
dgefa (linpack.cpp) 78
read data (lda-data.c) 34
main (moments.cpp) 26
main (sumcol.cpp) 26
main (almabench.cpp) 25
main (wc.cpp) 24
lda mle (lda-model.c) 24
save lda model (lda-model.c) 23
main (sieve.cpp) 20
main (nestedloop.cpp) 18
matgen (linpack.cpp) 18
new lda model (lda-model.c) 17
main (matrix.cpp) 16
argmax (utils.c) 15
deep (penta.cpp) 13
mmult (matrix.cpp) 13
main (random.cpp) 13
log sum (utils.c) 12
digamma (utils.c) 10
anpm (almabench.cpp) 7
radecdist (almabench.cpp) 7
gen random (random.cpp) 5
ack (ackermann.cpp) 1

complexity of the binary programs increases as a result of the obfuscation

of the source code. The increase in McCabe’s metric measured on binary

programs is similar to the increase measured on the sources, i.e., 5.19-fold

and 3.26-fold, on average, for -O0 and -O2-optimised binaries, respectively.

The somewhat smaller increase in the case of -O2-optimised binaries can

be attributed to the strong optimisation techniques applied by GCC. How-

ever, a more than threefold increase can still be considered significant, and it

shows that compiler optimisations do not eliminate the effects of the source

obfuscation technique.

Statistical analysis also supports our hypothesis that the increase in Mc-

Cabe’s metric on the binaries can be attributed to the obfuscation of the

source code. As Table 13.3 shows, the increase in the complexity metric
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Table 13.2: The effect of control flow flattening on McCabe’s complexity
metric.

Function Source Binary -O0 Binary -O2
dgefa (linpack.cpp) 16→65 ( 4.06×) 16→65 ( 4.06×) 23→58 ( 2.52×)
read data (lda-data.c) 4→17 ( 4.25×) 4→16 ( 4.00×) 5→14 ( 2.80×)
main (moments.cpp) 5→28 ( 5.60×) 4→33 ( 8.25×) 18→46 ( 2.56×)
main (sumcol.cpp) 3→32 (10.67×) 2→41 (20.50×) 4→46 (11.50×)
main (almabench.cpp) 4→25 ( 6.25×) 4→28 ( 7.00×) 8→37 ( 4.63×)
main (wc.cpp) 9→20 ( 2.22×) 8→31 ( 3.88×) 14→40 ( 2.86×)
lda mle (lda-model.c) 5→19 ( 3.80×) 4→18 ( 4.50×) 8→15 ( 1.88×)
save lda model (lda-model.c) 3→15 ( 5.00×) 3→14 ( 4.67×) 6→11 ( 1.83×)
main (sieve.cpp) 8→31 ( 3.88×) 8→33 ( 4.13×) 13→39 ( 3.00×)
main (nestedloop.cpp) 9→39 ( 4.33×) 9→42 ( 4.67×) 9→47 ( 5.22×)
matgen (linpack.cpp) 7→28 ( 4.00×) 7→28 ( 4.00×) 6→23 ( 3.83×)
new lda model (lda-model.c) 3→15 ( 5.00×) 3→14 ( 4.67×) 5→12 ( 2.40×)
main (matrix.cpp) 3→16 ( 5.33×) 3→19 ( 6.33×) 8→30 ( 3.75×)
argmax (utils.c) 3→12 ( 4.00×) 3→11 ( 3.67×) 3→ 9 ( 3.00×)
deep (penta.cpp) 5→20 ( 4.00×) 5→19 ( 3.80×) 7→16 ( 2.29×)
mmult (matrix.cpp) 4→20 ( 5.00×) 4→19 ( 4.75×) 4→16 ( 4.00×)
main (random.cpp) 3→14 ( 4.67×) 3→17 ( 5.67×) 8→28 ( 3.50×)
log sum (utils.c) 2→ 9 ( 4.50×) 2→ 8 ( 4.00×) 2→ 7 ( 3.50×)
digamma (utils.c) 1→ 4 ( 4.00×) 1→ 3 ( 3.00×) 1→ 1 ( 1.00×)
anpm (almabench.cpp) 3→ 9 ( 3.00×) 3→ 8 ( 2.67×) 2→ 6 ( 3.00×)
radecdist (almabench.cpp) 2→ 8 ( 4.00×) 2→ 7 ( 3.50×) 2→ 6 ( 3.00×)
gen random (random.cpp) 1→ 7 ( 7.00×) 1→ 6 ( 6.00×) 1→ 2 ( 2.00×)
ack (ackermann.cpp) 3→ 6 ( 2.00×) 3→ 5 ( 1.67×) 13→13 ( 1.00×)

on source code closely correlates with the increase on both binary versions.

Our analysis of the raw data also confirms that the effect of the algorithm

on complexity is linearly proportional to the original complexity. For source

code and for both binary versions, Figure 13.9 shows how the complexity

of the obfuscated code varies as a function of the complexity of the original

code and also the lines fitted via linear regression on the data.

In addition to the effect on complexity, we measured the effect of control

flow flattening on resource consumption as well. Therefore, we examined the

change in the size of the benchmark functions. Since making a comparison of

the lines of code metric for a hand-written and an automatically generated

code is not a fair one, we decided to count the nodes in the abstract syntax

tree (AST) representation of the functions to measure the effect of flattening
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Table 13.3: Pearson correlation of the increases in McCabe’s metric in the
cases of source code, -O0-optimised binary code, and -O2-optimised binary
code. All correlations are significant at the 0.01 level (2-tailed).

Source Binary -O0 Binary -O2
Source 1 0.905 0.747
Binary -O0 0.905 1 0.872
Binary -O2 0.747 0.872 1
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Figure 13.9: The relationship between the complexities of the original and
the flattened code.

on the source size. The change in the binary code size is easier to measure,

and the symbols in the ARM binary executable files help to determine the

size of the functions in bytes. The results listed in Table 13.4 show that the

size of the obfuscated sources is about twice as big as the original size on

average, while the size increase of the -O0 and -O2-optimised binary code is

only 1.55-fold and 1.57-fold on average.

In addition to the analysis of the static code size, we examined the ef-

fect of control flow flattening on a dynamic attribute as well: we counted

the number of executed instructions in some of the benchmark functions us-

ing an enhanced version of the ARM simulator of GDB. In Table 13.5, we
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Table 13.4: The effect of control flow flattening on program size.

Function Source Binary -O0 Binary -O2
(AST) (bytes) (bytes)

dgefa (linpack.cpp) 494→894 (1.81×) 2352→3572 (1.52×) 1260→2604 (2.07×)
read data (lda-data.c) 198→286 (1.44×) 668→ 916 (1.37×) 388→ 560 (1.44×)
main (moments.cpp) 105→355 (3.38×) 1252→2080 (1.66×) 2512→3076 (1.22×)
main (sumcol.cpp) 94→392 (4.17×) 1386→2072 (1.49×) 2380→2840 (1.19×)
main (almabench.cpp) 90→257 (2.86×) 772→1360 (1.76×) 1332→1744 (1.31×)
main (wc.cpp) 99→273 (2.76×) 868→1436 (1.65×) 1484→1892 (1.27×)
lda mle (lda-model.c) 101→196 (1.94×) 528→ 796 (1.51×) 336→ 484 (1.44×)
save lda model (lda-model.c) 103→182 (1.77×) 404→ 620 (1.53×) 316→ 444 (1.41×)
main (sieve.cpp) 93→287 (3.09×) 1132→1760 (1.55×) 1900→2460 (1.29×)
main (nestedloop.cpp) 89→320 (3.60×) 788→1548 (1.96×) 1084→1900 (1.75×)
matgen (linpack.cpp) 126→267 (2.12×) 764→1120 (1.47×) 360→ 684 (1.90×)
new lda model (lda-model.c) 77→151 (1.96×) 304→ 524 (1.72×) 168→ 340 (2.02×)
main (matrix.cpp) 112→228 (2.04×) 848→1288 (1.52×) 1524→1816 (1.19×)
argmax (utils.c) 34→ 92 (2.71×) 204→ 380 (1.86×) 96→ 204 (2.13×)
deep (penta.cpp) 79→178 (2.25×) 572→ 848 (1.48×) 220→ 508 (2.31×)
mmult (matrix.cpp) 61→163 (2.67×) 316→ 608 (1.92×) 128→ 368 (2.88×)
main (random.cpp) 56→155 (2.77×) 648→1056 (1.63×) 1248→1504 (1.21×)
log sum (utils.c) 39→ 78 (2.00×) 368→ 504 (1.37×) 168→ 288 (1.71×)
digamma (utils.c) 81→ 93 (1.15×) 1116→1172 (1.05×) 752→ 752 (1.00×)
anpm (almabench.cpp) 27→ 61 (2.26×) 288→ 412 (1.43×) 156→ 256 (1.64×)
radecdist (almabench.cpp) 92→128 (1.39×) 596→ 712 (1.19×) 304→ 392 (1.29×)
gen random (random.cpp) 18→ 54 (3.00×) 276→ 452 (1.64×) 140→ 216 (1.54×)
ack (ackermann.cpp) 24→ 35 (1.46×) 172→ 224 (1.30×) 408→ 408 (1.00×)

present the effect of obfuscation on the runtime behaviour for a subset of all

the benchmark functions. (Unfortunately, although all benchmark programs

could be compiled for the ARM target, because of porting problems, not

all of them executed correctly on the simulator.) As the table shows, the

increase in the number of executed instructions is 2.03-fold and 2.39-fold on

average for the -O0 and -O2-optimised programs.

We should remark here that in a real situation flattening is not expected

to be performed on the whole program but only on some selected critical

functions or modules, as mentioned earlier. This means that in real applica-

tions both the static and the dynamic effects on the resource consumption

of the whole program should be much smaller.
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Table 13.5: The effect of control flow flattening on the number of executed
instructions.

Function Binary -O0 Binary -O2
read data (lda-data.c) 79278→ 135992 (1.72×) 35422→ 69388 (1.96×)
main (wc.cpp) 8968073→19948317 (2.22×) 5432144→12235649 (2.25×)
lda mle (lda-model.c) 15969282→28325635 (1.77×) 9077355→14728182 (1.62×)
save lda model (lda-model.c) 4781282→11018150 (2.30×) 2286764→ 5613102 (2.45×)
main (sieve.cpp) 26461157→80562761 (3.04×) 8358569→57199282 (6.84×)
new lda model (lda-model.c) 3949918→10186780 (2.58×) 1247460→ 4989484 (4.00×)
main (matrix.cpp) 670→ 1664 (2.48×) 701→ 1205 (1.72×)
argmax (utils.c) 166492→ 398204 (2.39×) 89154→ 209508 (2.35×)
mmult (matrix.cpp) 25852143→51781473 (2.00×) 5840373→19763133 (3.38×)
main (random.cpp) 510112→ 1110196 (2.18×) 390185→ 660233 (1.69×)
log sum (utils.c) 1415248→ 2499893 (1.77×) 724684→ 1339416 (1.85×)
digamma (utils.c) 7702020→ 8044332 (1.04×) 5134680→ 5134680 (1.00×)
gen random (random.cpp) 2010000→ 3120020 (1.55×) 990000→ 1320002 (1.33×)
ack (ackermann.cpp) 18392568→26026172 (1.42×) 3590986→ 3590986 (1.00×)
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Chapter 14

Conclusions

We realised that there was a definite need for the obfuscation of C++ pro-

grams and thus, in this part of the thesis, we described the adaptation of

a technique called control flow flattening. We identified the problems that

occurred during the adaptation and proposed solutions for them. Moreover,

we also gave a formal description of an algorithm that performed control

flow flattening based on these solutions. The algorithm tells us how to trans-

form general control structures and how to deal with unstructured control

transfers. In addition, the technique flattens exception handling contructs

as well. Since the transformed control structures are quite similar in other

widespread languages, the algorithm can be used as a starting point when

control flow flattening has to be adapted.

Furthermore, we found that an important motivation for program code

obfuscation was to hinder the reverse engineering of the binary program to

a human readable source form. At least, this is true for Java. However,

we also found that no such solution exists for C++, although there is a

need for this kind of protection. Thus, we presented the idea of applying

source-to-source transformations in order to cause a detrimental effect on

the comprehensibility of the compiled binaries.

In the previous chapter, we performed experiments with a working pro-

totype of control flow flattening. In the experiments, we measured the effect

of flattening on (both source and binary) code complexity and on resource
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consumption as well. Our results confirm that control flow flattening causes

a significant increase in the complexity of both the source and the binary

code, even in the presence of optimisations. These results indicate that the

transformation will make the code difficult to understand, while at the same

time, the increase in the resource consumption remains acceptable. More-

over, they show that not just the source code but even binary programs can

be obfuscated in a platform independent manner using appropriate source

code transformation techniques.
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Part IV

Appendices
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Chapter 15

Summary

15.1 Summary in English

In this thesis, we presented three areas of the domain of program code analy-

sis and manipulation, namely the theoretical foundations of program slicing,

the application of program slicing to binary programs, and the obfuscation

of programs written in C++ language. The main body of the thesis is split

up into three parts according to the above three topics. Below, we give a

summary of each part.

In Part I, we presented results concerning the theory of program slicing.

Program projection theory was used to uncover the precise relationship be-

tween various forms of dynamic slicing and static slicing. It had previously

been thought that there were only two nodes in the subsumption relationship

between static and dynamic slicing. That is, it was thought that the dynamic

slicing criterion merely adds the input sequence to the static criterion and

this is all that there is to the difference between the two.

However, the results of the study presented here demonstrate that the

original dynamic slicing criterion introduced by Korel and Laski contains two

additional aspects over and above the input sequence. The discovery of these

two additional criteria led to the creation of a unified framework of program

projection theory. With the help of this unified framework, these criteria are

shown to be orthogonal components of the original dynamic slicing definition.
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Based on our unified framework, two forms of subsumption relationship

were considered. The first is the relationship between the semantic proper-

ties of a slice, as captured in the equivalence maintained by slicing. The sec-

ond relationship concerns the relationship between slicing techniques. Thus,

the first subsumption relationship is simply about the semantic projections

denoted by the different forms of the slicing criteria, while the second con-

cerns the slices which may be produced when this semantic requirement is

combined with a syntactic ordering. The results show that the two lattices

so-constructed are isomorphic.

In addition, the syntactic ordering relationship between slicing techniques

for static and dynamic slicing was also investigated. It was shown that syn-

tactic ordering is a mirror image of the subsumes relationship, leading to an

inverted but isomorphic lattice of inter-technique relationships.

In Part II, we described how interprocedural slicing can be applied to bi-

nary executables. First, we discussed the problems associated with the con-

trol flow analysis of binary programs, and then we presented a conservative

dependence graph-based slicing approach along with its improved versions.

We experimented with two static improvements, and we also outlined how

superfluous edges could be removed from the statically computed call graph

with the help of dynamically gathered information.

We evaluated both approaches on programs compiled for ARM archi-

tecture with the help of a prototype implementation of the above-described

methods. Using the conservative approach, we achieved an interprocedural

slice size of 52%-71% on average and a 1%-4% reduction using the static im-

provements. The experiments with the dynamic approach demonstrated that

the slice size could be dramatically further reduced if the analysed applica-

tion made extensive use of indirect function calls. Even though the resulting

improved call graph may be unsafe, it may work well in situations where the

safety of slices is not critical, e.g. in some debugging scenarios.

Finally, in Part III, we described the adaptation of a code obfuscation

technique called control flow flattening to C++ programs. We identified

the problems that occurred during the adaptation and proposed solutions

for them. Moreover, we gave a formal description of an algorithm that per-
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formed control flow flattening based on these solutions. The algorithm tells

us how to transform general control structures and how to deal with un-

structured control transfers. In addition, the technique flattens exception

handling constructs. Since the transformed control structures are quite sim-

ilar in other widespread languages, the algorithm can be used as a starting

point when control flow flattening has to be adapted.

Furthermore, we found that an important motivation for program code

obfuscation is to hinder the reverse engineering of the binary program to a

human readable source form. However, we also learned that no such solution

exists for C++, although there is a need for this kind of protection. Thus, we

presented the idea of applying source-to-source transformations in order to

create a detrimental effect on the comprehensibility of the compiled binaries.

The idea of C++ code obfuscation was not only presented theoretically,

but we performed experiments with a working prototype of control flow flat-

tening as well. In the experiments, we measured the effect of flattening on

(both source and binary) code complexity. Our results show that control flow

flattening causes a significant increase in the complexity of both the source

and the binary code, even in the presence of optimisations. These results also

tell us that the transformation will make the code difficult to understand,

while at the same time the increase in the resource consumption remains

acceptable. Moreover, this demonstrates that not only the source code but

even binary programs can be obfuscated in a platform independent manner

using appropriate source code transformation techniques.

15.2 Summary in Hungarian

A disszertációban bemutattunk a programkód elemzésének és módóśıtásának

területéről három részterületet. Ezek a következők: a programszeletelés

elméleti alapjai, a programszeletelés alkalmazása bináris programokra, vala-

mint C++ nyelvű programok obfuszkálása. Ez a három téma a disszertáció

szerkezetében is tükröződik, a dolgozat három fő részből áll. A következőkben

összegezzük mindhárom részt.

A dolgozat első részében a programszeletelés elméletével kapcsolatos ered-
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mények találhatók. A programprojekció elméletét használtuk fel a különféle

dinamikus és statikus szeletelések közötti kapcsolatok pontos feltárására.

Korábban az volt az általános vélekedés, hogy a statikus és dinamikus szele-

telés között a fölérendeltségi reláció mindössze kételemű. Azaz a legtöbben

úgy vélték, hogy a dinamikus szeletelési kritérium csupán a program be-

menetével bőv́ıti a statikus kritériumot, és a két kritérium között nincs is

más eltérés.

Az itt léırt vizsgálódások azonban rámutatnak, hogy a Korel és Laski

által bevezetett eredeti dinamikus szeletelési kritérium a bemeneten túl két

további elemet is tartalmaz. A két új kritérium felfedezése vezetett az

egységes programprojekció-elméleti keretrendszer létrejöttéhez. Az egységes

keretrendszer seǵıtségével megmutattuk, hogy a fenti kritériumok az eredeti

dinamikus szeletelési defińıciónak ortogonális elemei.

Az egyéges keretrendszer seǵıtségével a fölérendeltségi reláció két formáját

is megvizsgáltuk. Ezek közül az első a programszeletek szemantikus jellemzői

közötti reláció, amely jellemzőket a szeletelések által megtartott ekvivalenciák

ı́rnak le. A második reláció a szeletelési módszerek közötti kapcsolatot ra-

gadja meg. Más szóval az első fölérendeltségi reláció pusztán a különféle szele-

telési kritériumok által meghatározott szemantikus projekciókkal foglalkozik,

mı́g a második magukat a szeleteket veszi figyelembe, amelyek előálĺıtásához

a szemantikus feltételhez egy szintaktikus rendezést is csatolni kell. Az

eredményeink azt mutatják, hogy a relációk által meghatározott hálók izomor-

fak.

A fentieken túl a statikus és dinamikus szeletelési módszerek szintaktikus

rendezési relációját is megvizsgáltuk. Ennek eredménye ráviláǵıtott arra,

hogy a szintaktikus rendezés a fölérendeltségi reláció tükörképe. Így tehát a

programszeletelési technikák kettő, egymáshoz képest invertált, ám izomorf

hálóját kaptuk.

A disszertáció második részében tárgyaltuk az interprocedurális szele-

telés bináris programokra való alkalmazását. Először bemutattuk a bináris

programok vezérlési folyamanaĺızisével járó problémákat, majd léırtunk egy

konzervat́ıv, függőségi gráf alapú szeletelési módszert. Emellett a módszernek

jav́ıtásait is bemutattuk. Kı́sérleteztünk kétféle statikus jav́ıtással, majd
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megmutattuk, hogy miként lehet dinamikusan gyűjtött információk seǵıtsé-

gével a statikusan éṕıtett h́ıvási gráfból a felesleges éleket eltávoĺıtani.

Mind a statikus, mind a dinamikus módon jav́ıtott módszert kipróbáltuk

ARM architektúrára ford́ıtott programokon. Ehhez a bemutatott módszerek

egy protot́ıpus implementációját használtuk fel. A konzervat́ıv megközeĺı-

téssel átlagosan 52%-71%-os interprocedurális szeletméretet értünk el, mı́g a

statikus jav́ıtások 1%-4% méretcsökkenést eredményeztek. A dinamikus meg-

közeĺıtéssel végzett ḱısérletek azt mutatták, hogy a szeletek mérete jelentősen

tovább csökkenthető, amennyiben az elemzett alkalmazás nagy számban hasz-

nál indirekt függvényh́ıvásokat. Ugyan az ı́gy kapott h́ıvási gráf pontossága

nem garantálható, a megközeĺıtés jól használható marad olyan esetekben,

amikor a szeletek pontossága nem kritikus, például bizonyos hibakeresési

szkenáriók esetén.

Végezetül a harmadik részben bemutattuk a vezérlési folyamlaṕıtásnak

nevezett kódobfuszkálási technika C++ programokra való adaptálását. Azo-

nośıtottuk az adaptálás során felmerült problémákat, majd megoldásokat

javasoltunk rájuk. Emellett a javasolt megoldásokon alapulva egy vezérlési

folyamlaṕıtó algoritmus formális léırását is megadtuk. Ez az algoritmus be-

mutatja, hogy hogyan kell az általános vezérlési szerkezeteket átalaḱıtani,

valamint hogy miként kell kezelni a nem struktúrált vezérlésátadásokat. A

módszer mindemellett kivételkezelő szerkezetek laṕıtására is képes. Mivel a

módszer által lekezelt és átalaḱıtott vezérlési szerkezetek más, szintén elter-

jedt nyelvekben is igen hasonlóak, ezért az itt léırt algoritmus jó kiindulási

alap lehet olyankor, amennyiben a vezérlési folyamlaṕıtási technikát más

nyelvre kell adaptálni.

Kutatásunk során észrevettük, hogy sokszor azért kerül sor a programkód

obfuszkálására, hogy megneheźıtsék a bináris programok visszaford́ıtását em-

ber számára is érthető forráskód formába. Azt is észrevettük azonban, hogy

ilyen megoldás nem létezik C++ nyelvű programokra, habár van igény ilyen

jellegű programvédelemre. Ennek okán ḱısérleteztünk azzal az elgondolással,

hogy pusztán forráskód transzformációkkal meg lehet-e neheźıteni a leford́ı-

tott binárisok megérthetőségét.

A C++ nyelvű programok obfuszkálását nem csupán elméleti śıkon tár-
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gyaltuk, hanem a vezérlési folyamlaṕıtás egy működő protot́ıpus-implemen-

tációjával ḱısérleteket is végeztünk. A ḱısérletek során megmértük, hogy

a laṕıtás milyen módon hat a kód bonyolultságára (mind forráskód, mind

bináris kód tekintetében). Az eredményeink azt mutatják, hogy a vezérlési

folyamlaṕıtás jelentős bonyolultságnövekedést eredményez mind forráskód-

ban, mind binárisban. Az eredmények arra is utalnak, hogy az elvégzett áta-

laḱıtás megneheźıti a kód megértését, miközben az erőforrásigény növekedése

még elfogadható marad. A fentiekből továbbá az is következik, hogy megfelelő

forráskód-átalaḱıtó technikák használatával nem csak a forráskód, de bináris

programok obfuszkálása is kivitelezhető platformfüggetlen módon.

15.3 Main Results of the Thesis and Contri-

butions of the Author

In this thesis, four main results are stated. As the thesis consists of three

main parts, the results are also separated into three parts. In the list below,

the author’s contributions to these results are clearly stated.

The Theory of Slicing

The main results of the first part of the thesis include the creation of a unified

framework of program projection theory and the analysis of the relationships

between the different forms of slicing that was made possible by the unified

framework. (Note that these results use program projection theory and its

application to Weiser’s static slicing as a background, but these are not the

works of the author.) The results, which are based on publications [12, 11,

14, 13], are presented in Chapters 4 and 5 respectively.

1. The Unified Framework of Program Projection Theory

Based on the results of a comparison of Weiser’s static slicing and Korel

and Laski’s dynamic slicing, the author found that the dynamic slicing cri-

terion does not merely add the input sequence to the static criterion but
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contains two additional aspects as well. The discovery of these two addi-

tional components of the dynamic criterion allowed the author to create a

unified equivalence and a unified framework of program projection theory.

Thus, the author was able to put the two slicing approaches, i.e., dynamic

and static slicing, into one framework. The created framework not only al-

lowed the author to re-define the existing and well-known slicing techniques

of Weiser, and Korel and Laski, but it also led to the identification of six new

possible forms of slicing that were hitherto unknown in the literature. (Note

that the discussion of these new forms of slicing is a joint work of the author

and his co-authors.)

2. Analysis of the Relationships between Forms of Slicing

The author defined a subsumption relationship between the semantic aspect

of forms of slicing and, using the unified equivalence, he showed that the

semantic parts of the eight forms of slicing described in this thesis form a

lattice. In addition, the author also showed that when not just the semantic

aspect but also the syntactic component of slicing techniques are considered,

the subsumption relationship between the eight forms of slicing does not

change.

Since the size of slices is of great importance in every slicing application,

the author chose to investigate the minimal slices allowed by slicing tech-

niques. The author found that slicing techniques can be ordered based on

sets of minimal slices and that the so-resulting ordering is the dual of the

subsumption relationship. The author showed that over the eight previously

mentioned forms of slicing, this ordering forms a lattice that is the mirror

image of the lattice of the subsumption relationship.

Slicing of Binary Programs

The main result of the second part of the thesis is the description of the

dependence graph-based slicing of binary executables, which can be found in

Chapters 8, 9, and 10. These results were published in papers [64, 63].
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3. Dependence Graph-based Slicing of Binary Executables

Similar to other code analysing techniques, dependence graph-based slicing

requires a control flow graph. Thus, the author decided to explore the prob-

lems of control flow analysis of binary programs and proposed solutions as

well. In addition to a discussion of this analysis, the method of building

program and system dependence graphs for binaries is given as well. (Note,

however, that this method is not the result of the work of the author.)

Since binary executables are quite special, the author investigated several

possible ways of improving slicing in a binary-specific manner. The improve-

ments include static approaches that reduce the number of data dependence

and summary edges in the dependence graphs as well as a dynamic approach

that removes edges from the static call graph using dynamically collected

information. These improvements are the joint work of the author and his

co-authors, and the contribution of the author is the following: the author

designed the lattice used for the improved stack access analysis, the author

participated in the design of the dynamic improvement approach as well as in

the implementation of the prototype slicer tool used to compute experimental

results.

Code Obfuscation via Control Flow Flattening

The main result in the third part of the thesis is the adaptation of the code

obfuscation method entitled control flow flattening to the C++ language.

Based on paper [73], this result is presented in Chapter 13.

4. Control Flow Flattening of C++ Programs

To make control flow flattening of C++ programs possible, the author iden-

tified those constructs of the language that are not trivial to handle and gave

solutions for them. Moreover, the author also designed an algorithm that can

flatten functions of the C++ language and he gave its formal description.

The author, jointly with his co-author, took part in the implementation of a

prototype obfuscator tool and experimented with it in order to evaluate the
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effect of control flow flattening on code comprehensibility. The experiments

were also used to evaluate the suitability of source-to-source transformations

for binary code obfuscation.
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Chapter 16

Related Work

16.1 Program Slicing

Program slicing was introduced by Mark Weiser in 1979 as a static program

analysis and extraction technique [102]. Weiser originally had many appli-

cations of slicing in mind. Most of these and many others were developed in

the literature which followed. One of the primary initial goals of slicing was

to assist with debugging. Weiser noticed [103] that programmers naturally

form program slices, mentally, when they debug and understand programs.

Therefore, it seemed natural to attempt to automate this process to improve

the efficiency of the debugging process. Lyle and Weiser [80] further devel-

oped the theme of slicing as an aid to debugging and this remained a primary

application of slicing for some time.

In this initial work on slicing, the algorithms used for slicing were based

upon data flow equations [104]. However, in 1984 Ottenstein and Otten-

stein [87] showed how the Program Dependence Graph (PDG) could be used

to turn slicing into a graph reachability question. Ottenstein and Ottenstein’s

formulation was an intraprocedural one, however, and it was not clear how it

could handle the calling context problem using the PDG. In 1998, Horwitz,

Reps and Binkley [59, 60] introduced the System Dependence Graph (SDG),

an extension of the PDG which could allow for the efficient computation of

interprocedural slices while respecting calling context. Since then, the major-
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ity of slicing algorithms have been SDG-based including those implemented

in Grammatech’s commercial program slicing tool, CodeSurfer [47].

The slices produced by the algorithm of Horwitz et al. are not necessarily

executable programs [59]. The problem arises when different calling con-

texts require different subsets of a procedure’s input parameters. Horwitz et

al. propose two methods to transform non-executable SDG slices into exe-

cutable programs. The first creates a copy of a procedure for each calling

context requiring different subsets of the input parameters. The second op-

tion, later refined by Binkley [15], iteratively includes intraprocedural slices

taken with respect to actual parameters until all calls to a procedure include

the same parameters. This approach yields static slices that also satisfy the

KL requirement of being execution path preserving.

In 1988 Korel and Laski [66] observed that slices might be more useful

as a debugging aid if they could be constructed dynamically, taking into ac-

count the execution characteristics which led to the observation of erroneous

behaviour. If slices are constructed dynamically, then they are guaranteed to

be no larger than their static counter parts and they may be smaller. Korel

and Laski’s algorithm for constructing dynamic slices was a modified version

of Weiser’s data flow equations.

In 1990 Agrawal and Horgan [3] introduced two algorithms for construct-

ing dynamic slices based on the PDG. (They actually proposed four algo-

rithms, but two only impact performance and not the slices computed.)

These two algorithms differ in ways made clear with the benefit of the the-

ory introduced herein. In terms of the equivalence relations from Chapter 4,

Agrawal and Horgan’s first algorithm preserves D(σ, V, n) while their second

algorithm and that of Korel and Laski both preserve DKLi(σ, V, n(k)).

De Lucia et al. [36, 21] introduced a concept called conditioned slicing.

The conditioned slicing criterion augments the traditional static criterion

with a condition. The slicing process only needs to preserve the effect of

the original program on the variables of interest if the condition is satisfied.

By choosing this condition to be simply the constant predicate ‘true’, the

definition of conditioned slicing becomes that of static slicing and by making

it a conjunction of equalities, it is possible to mimic the effect of an input
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sequence.

These observation led several authors to observe that conditioned slicing

“subsumes” static and dynamic slicing [21, 34, 41]. However, this use of the

term “subsumes” differs from the one used herein. It is based on the ex-

pressive power of the slicing criterion. The subsumption relations introduced

herein are based on the semantics preserved by slicing and the set of pro-

grams that qualify as slices. Informally, it appears that conditioned slicing

subsumes static slicing and is subsumed by dynamic slicing. The same is

true for the iteration aware and execution path preserving variants.

Later theoretical works attempted to lay the foundations of slicing. How-

ever, these earlier works were primarily concerned with static slicing. Reps

and Yang [91] showed that the PDG is adequate as a representation of

program semantics, allowing it to be used in slicing and related program

analyses without the loss of semantic information. Reps [89] showed how

interprocedural-slicing can be formulated as a graph reachability problem.

Cartwright and Felleisen [24] showed that the PDG semantics is a lazy se-

mantics because of the demand driven nature of the representation, while

Giacobazzi and Mastroeni [45] presented a transfinite semantics to attempt

to capture the behaviour of static slicing. Harman et al. showed that slicing

is lazy in the presence of errors [55]. Weiser [102] observed that his slicing al-

gorithm was not dataflow minimal and speculated on the question of whether

dataflow minimal slices were computable. Danicic showed how this problem

could be reformulated as a theorem about unfolding [33], while Laurence

et al. [74] showed how the problem can be expressed in terms of program

schematology.

However, all this work was just concerned with static slicing. And to

date very little formal theoretical analysis has been done on the properties

of dynamic slicing. The closest prior work to that in the present thesis is the

earlier work of Venkatesh [100] and the work by Harman et al. [49]. Venkatesh

defined three orthogonal slicing dimensions, each of which offered a boolean

choice. A slice could be static or dynamic, it could be constructed in a

forward or backward direction and it could be either an executable program

or merely a set of statements related to the slicing criterion. Venkatesh
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therefore considered 23 slicing criteria, some of which had not, at the time,

been thought of before (for example, the forward dynamic slice). Harman

et al. introduced projection theory to analyse dynamic slicing. However,

they used this theory to explain the difference between syntax-preserving

and amorphous slicing, without addressing the issue of dynamic slicing.

Venkatesh also provided a formal description of program slicing. His se-

mantic description was cast in terms of a novel denotational description of a

labelled structured language using a concept of contamination. The idea was

to capture the set of labels that identified statements and predicates whose

computation would become contaminated when some particular variable was

initially contaminated. Contamination propagates through the semantic de-

scription of a program in much the same way as data dependence and control

dependence propagation is represented by the edges in a PDG [40, 60].

Venkatesh’s approach does allow for a formal statement of the way in

which dynamic and static slicing are related. However, Venkatesh was con-

cerned with the three broad parameters of slicing and not with the details

of dynamic slicing. As a result, he did not take account of the additional

components of the dynamic slicing criterion: path preservation and iteration

count sensitivity. Rather, Venkatesh’s work was only cornered with Agrawal

and Horgan’s version of dynamic slicing and so, it avoided a lot of the subtlety

found in the present work.

in the literature there are several surveys on slicing: Tip [98], and Binkley

and Gallagher [17] provide surveys of program slicing techniques and applica-

tions. De Lucia [35] presents a shorter but more up-to-date survey of slicing

paradigms. Binkley and Harman [18] present a survey of empirical results

on program slicing. These papers provide a broad picture of slicing technol-

ogy, tools, applications, definitions, and theory. By contrast, the first part

of the present thesis is solely concerned with the formalisation and analysis

of dynamic slicing.
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16.2 Analysis and Slicing of Binary Code

The slicing of binary executables requires the building of a CFG from raw

binary data. Debray et al. built a CFG for binaries compiled for the Alpha

architecture in their code compaction solution [37], making use of a technique

similar to the one outlined above.

To our knowledge, there are currently no practical interprocedural slicing

solutions available for binary executable programs, and a useful intraproce-

dural binary slicing technique is also hard to find in the literature. Larus

and Schnarr used an intraprocedural static slicing technique in their binary

executable editing library called EEL [72]. They utilised slicing to improve

the precision of control flow analysis, with indirect jumps mainly occurring

in the compiled form of case statements. With the help of backward slic-

ing, they were able to analyse constructs like these in an architecture and

compiler-independent way.

Cifuentes and Fraboulet also made use of intraprocedural slicing for solv-

ing indirect jumps and function calls in their binary translation framework [27].

Bergeron et al. recommended using interprocedural static slicing for analysing

binary code to detect malicious behaviour [8]. The computed slices should

be verified against behavioural specifications in order to statically detect po-

tentially malicious code. However, they did not elaborate on the potential

problems of analysing binary executables, nor did they present any experi-

mental results.

Antoniol et al. examined the static points-to analysis of C programs and

investigated the impact of function pointers on the call graph [4]. Mock et al.

analysed the feasibility of improving static slicing with dynamically gathered

points-to data [83]. They carried out their experiments on C language sources

and concluded that the information obtained might be especially useful in

cases where function pointers are present.
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16.3 Code Obfuscation

The scientific literature on program obfuscation is now about ten years old.

A significant paper was written by Collberg, Thomborson, and Low [30],

which describes the importance of obfuscation and summarises the most im-

portant techniques, mainly for the Java language. They gave a classification

of the above-mentioned techniques and defined a formal method to measure

their quality. In a later work [32], they focused on the obfuscation of the

control flow of Java systems by inserting irrelevant but opaque predicates

in the code. In their paper, they demonstrated that this method can give

effective protection from automatic deobfuscators, while not increasing code

size and runtime significantly. In another paper [31], they described a way of

transforming data structures in Java programs. A summary of their results is

given by Low [79], and a Java-targeted implementation is presented as well.

Similar to Collberg et al., Sarmenta studied parameterised obfuscators [92].

The parameters can select either the parts of the program where transforma-

tions shall be applied or the transformations to be applied. In addition, the

transformations themselves can have parameters. Sarmenta investigated the

combination of encryption and obfuscation as well. E.g., encrypted functions

can be obfuscated or encryption can be performed during obfuscation.

In his PhD thesis, Wroblewski discussed low (assembly) level obfuscation

techniques [106]. In his work, he analysed and compared the main algorithms

of the field, and based on the results, he gave the description of a new algo-

rithm. Zhuang et al. developed a hardware-assisted technique [109] which

obfuscates the control flow information by dynamically changing memory ac-

cesses on-the-fly, thus preventing recurrent instruction sequences from being

identified. Ge et al. presented another dynamic approach [44] where control

flow obfuscation was based on a two-process model: control flow information

is removed from the obfuscated program, and a concurrent monitor process

is created to contain this information. During the execution of the program

process, it continuously queries the monitor process, thus following the orig-

inal path of control.

Wang et al. described an obfuscation technique [101] which combines
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several algorithms, e.g., data flow transformation and control flow flattening.

They showed that the problem of analysing and reverse engineering the code

obfuscated by applying their technique is NP-complete. Chow et al. investi-

gated control flow flattening [26] too, but they claimed that their approach

worked for programs containing only simple variables, operators and labelled

statements.

Code obfuscation is not only discussed in scientific papers, but it is utilised

in several open source and commercial tools. Most of these tools are targeted

for Java and work on byte code, e.g., Zelix Klassmaster [108], yGuard [107]

and Smokescreen [77]. These tools perform name obfuscation (renaming of

classes, methods and fields), encode string constants, and transform loops

using gotos. The renaming technique is used by the Thicket tool family [93]

and COBF [5] as well. Thicket supports several programming languages,

while COBF is the only C/C++ obfuscator that is freely available.

The latter tool is the only one that is comparable to our prototype obfus-

cator implementation. Even though it transforms the names of classes, func-

tions and variables, and removes spaces and comments from the source (thus

making the code unreadable for a human analyzer), this offers no protection

against automatic deobfuscators. We evaluated COBF on our benchmark

functions but, as expected, we observed no change in the McCabe metric

after obfuscation. What is more, in some cases, the renamings applied by

COBF caused compile time errors.

136



Bibliography

[1] H. Agrawal. On slicing programs with jump statements. In Proc.

ACM SIGPLAN Conference on Programming Languages, Design and

Implementation, pages 302–312, June 1994.

[2] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. De-

bugging with dynamic slicing and backtracking. Software Practice and

Experience, 23(6):589–616, June 1993.

[3] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In

ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 246–256, New York, June 1990.

[4] G. Antoniol, F. Calzolari, and P. Tonella. Impact of function pointers

on the call graph. In Proc. of the 3rd European Conference on Software

Maintenance and Reengineering (CSMR), pages 51–59, March 1999.

[5] Bernhard Baier. COBF. http://home.arcor.de/bernhard.baier/cobf/.

[6] T. Ball and S. Horwitz. Slicing program with arbitrary control-flow. In

Proc. International Workshop on Automated and Algorithmic Debug-

ging, pages 206–222, May 1993.

[7] Jon Beck and David Eichmann. Program and interface slicing for re-

verse engineering. In IEEE/ACM 15th Conference on Software Engi-

neering (ICSE’93), pages 509–518. IEEE Computer Society Press, Los

Alamitos, California, USA, 1993.

137



[8] Jean Bergeron, Mourad Debbabi, Mourad M. Erhioui, and Béchir
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tion in the interprocedural static slicing of binary executables. Software

Quality Journal, 13(3):227–245, September 2005.
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[73] T́ı mea László and Ákos Kiss. Obfuscating C++ programs via control

flow flattening. Annales Universitatis Scientiarum de Rolando Eötvös
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