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Inherited platelet function disorders are associated with a heightened risk for mucocutaneous 

bleeding of variable severity and excessive hemorrhage after surgery or trauma.
1
 They are most 

commonly associated with abnormalities of receptors for adhesive proteins or soluble agonists, of 

cytoplasmic granules or of signal transduction pathways.
1 Laboratory screening for inherited 

platelet function disorders includes measurement of platelet aggregation by light transmission 

aggregometry, induced by agonists in citrate-anticoagulated platelet-rich plasma (PRP).
1
 Platelet 

aggregation induced by adenosine diphosphate (ADP) is abnormal in many platelet function 

disorders.
1
 ADP interacts with Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors, coactivation of 

which is essential for full platelet aggregation (Figure 1A).
2
 P2Y1 activates phospholipase Cβ-

dependent increase in cytoplasmic Ca
2+

, which stimulates platelet shape change through 

phosphorylation of myosin light chain and platelet aggregation through calcium- and 

diacylglycerol-regulated guanine exchange factor-1 (CalDAG-GEFI)-mediated stimulation of the 

small GTPase Rap1 and consequent activation of integrin αIIbβ3, which binds adhesive proteins, 

such as fibrinogen, bridging adjacent platelets together, forming a platelet aggregate (Figure 1B).
3
 

Platelet aggregation is reinforced by P2Y12, which, via phosphoinositide 3-kinase signaling, 

prevents Rap1 deactivation by Ras GTPase-activating protein 3 (Figure 1B).
4
 ADP-induced platelet 

aggregation is slowly reversible, but, in citrate-anticoagulated PRP, is amplified and stabilized by a 

“secondary” platelet aggregation, induced by thromboxane A2 and ADP secretion, when “primary” 

platelet aggregation exceeds a threshold amplitude.
5
 While abnormalities of secondary platelet 

aggregation, associated with defects of platelet granules or secretory mechanisms, are relatively 

common,
1
 platelet function disorders affecting primary platelet aggregation are rare, including 

defects of P2Y12,
6
 CalDAG-GEFI, reviewed by Palma-Barqueros et al.

7
, and the final common steps 

of integrin αIIbβ3 activation (Glanzmann Thrombasthenia and Leukocyte Adhesion Deficiency-III).
1
 

ADP-induced platelet aggregation is impaired in defects of P2Y12 or CalDAG-GEFI, while it is absent 
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(albeit preceded by normal platelet shape change) in Glanzmann Thromboasthenia and Leukocyte 

Adhesion Deficiency-III.
 1

 A platelet phenotype similar to that of Glanzmann Thrombasthenia and 

Leukocyte Adhesion Deficiency-III can be reproduced in normal platelets by antibodies against 

αIIbβ3 (Figure 1A). 

We report the case of a patient with severe bleeding diathesis associated with combined 

homozygous CalDAG-GEFI and heterozygous P2Y12 deficiencies (II-5, Figures 2A and 2B), 

characterized by normal ADP-induced platelet shape change but absent ADP-induced platelet 

aggregation. This is the first patient with combined CalDAG-GEFI and P2Y12 deficiencies that has 

been described so far. 

The following methods were employed: light transmission aggregometry in citrate-

anticoagulated PRP (patient II-1 [Figures 2A and 2B], who was first referred to our Center, was also 

studied by lumiaggregometry, which measures platelet aggregation and ATP secretion 

simultaneously); flow cytometry, to explore the expression of glycoproteins on the platelet 

membrane; PFA-100 and INNOVANCE PFA P2Y Closure Times; binding of P2Y12 antagonist 

[
3
H]PSB0413 to washed platelets, to calculate the number of P2Y12 binding sites;

8
 inhibition of 

prostaglandin (PG)E1-induced increase of cyclic adenosine monophosphate (cAMP) by ADP or 

epinephrine.
6
 

Genetic analyses were performed by Sanger sequencing of genomic DNA and cDNA from 

platelets after reverse transcriptase-polymerase chain reaction (RT-PCR), determination of P2RY12 

haplotypes and Whole Exome Sequencing. Details are included in Supplementary Materials. All 

diagnostic procedures were in accordance with the ethical standards of the responsible committee 

on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, 

as revised in 2008. All subjects gave their informed approval for all diagnostic procedures. 

Patient II-1 (Figures 2A and 2B) is a 31-year-old Italian woman with life-long easy bruising 
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and episodes of epistaxis, gum bleeding, otorrhagia, menorrhagia and excessive bleeding after 

tooth extractions (International Society on Thrombosis and Haemostasis Bleeding Score= 16; 

normal values <2). Platelet count and size were normal. Platelet aggregation induced by ADP, even 

at high concentrations (100 µM), was markedly reduced and rapidly reversible, suggesting a P2Y12 

defect (Figure 1C).
6
 The diagnostic suspicion was confirmed by the following findings: defective 

inhibition by ADP (but normal by epinephrine) of PGE1-induced increase in platelet cAMP (Figure 

1D), severe defect of binding sites for [
3
H]PSB0413 (Bmax=51 sites/platelet vs 425±50, mean±SD of 

10 controls), homozygous single base pair deletion (c.678delC, transcript ENST00000302632.3) in 

P2RY12-201 gene (Figures 2B and 2C), resulting in the p.T126 fs*34 (UniProtKB-Q9H244), expected 

to abrogate receptor function. Results of additional platelet studies were compatible with P2Y12 

deficiency: normal αIIbβ3 and GPIb/IX/V expression, normal platelet adenine nucleotides, 

serotonin and fibrinogen contents, partially defective platelet aggregation and secretion induced 

by secretion-stimulating agonists.
6
 Family studies revealed that the same mutation was present in 

homozygosity in her sister (II-2, with similar bleeding phenotype) and, in heterozygosity, in her 3 

first cousins (II-3, II-4, II-5) (Figure 2B). 

The personal bleeding history was negative for II-3 and II-4.
6
 However, it was positive and 

severe for II-5 (Figure 2A), despite her young age (9 years): in the first days of life she displayed 

purpuric lesions and suffered prolonged bleedings from the intramuscular injection sites of 

prophylactic vitamin K and vaccines, while in the first 2-3 years she suffered relapsing severe 

epistaxis that required hospitalizations and prolonged bleeding after the fall of a deciduous tooth. 

ADP-induced platelet aggregation was normal in II-3, slightly defective in II-4 and absent in II-5 

(Figure 1E), whose PFA-100 and INNOVANCE PFA P2Y Closure Times were extremely prolonged 

(>300 seconds). 

Based on these findings, we explored the possibility that II-5 carried additional defects of 
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platelet function. Extended P2RY12 genomic sequencing and haplotype analysis detailed the 

P2RY12 pattern (Figure 2D). The presence of an intronic mutation affecting mRNA expression
9 

was 

excluded by RT-PCR of platelet mRNA and cDNA sequencing. The heterozygous condition for the 

c.318C/T (Asn6) polymorphism (Figure2D, Supplementary Figure 1 and Supplementary Results) 

indicated the maternal inheritance of normal P2Y12 mRNA. Coexistent P2Y1 defect was ruled out 

based on the normality of platelet shape change and the normal sequence of P2RY1 gene 

(Supplementary Results). The type and severity of her platelet aggregation abnormality were 

apparently suggestive of a defect of integrin αIIbβ3 activation. Because Leukocyte Adhesion 

Deficiency-III could be safely ruled out based on the absence of predisposition to infections,
1
 we 

focused on Glanzmann Thrombasthenia and sequenced the ITGA2B and ITGB3 genes in platelet 

cDNAs, which revealed normal sequences characterized by polymorphic synonymous codons 

(Supplementary Results). Moreover, αIIbβ3 and other platelet glycoproteins were normally 

expressed on the patient’s platelets. 

We then turned to Whole Exome Sequencing for exploring the patient’s DNA, which 

revealed the presence of c.337delC mutation (transcript ENST00000354024.7, Figure 2E) in exon 5 

of RASGRP2-201 (encoding for CalDAG-GEFI), predicting a deleterious change in the protein 

(p.R113fs*6, UniProtKB-Q7LDG7), candidate to explain the phenotype. The mutation was 

confirmed in homozygosity by direct sequencing of the patient’s DNA, and in heterozygosity in II-1, 

II-3, II-4 (Figures 2Band 2E). 

In conclusion, patient II-5 displays an extremely severe defect of ADP-induced platelet 

aggregation, which is not attributable to defects in the final common steps of αIIbβ3 activation, as 

in Glanzmann Thrombasthenia or Leukocyte Adhesion Deficiency-III, but to combined homozygous 

CalDAG-GEFI and heterozygous P2Y12 deficiencies. The molecular defect of RASGRP2 causing 

CalDAG-GEFI deficiency in our patients is not present in The Genome Aggregation Database 
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(http://gnomad.broadinstitute.org/), while the P2Y12 defect has already been described in an 

unrelated family.
10

 Previous publications showed that patients with severe CalDAG-GEFI deficiency 

display partially defective ADP-induced platelet responses, characterized by normal shape change 

and irreversible or only partially reversible platelet aggregation of reduced amplitude.
11-14

 Based 

on the type and severity of the abnormality of platelet aggregation in patient II-5, we can infer 

that this pattern of platelet response to ADP in CalDAG-GEFI deficient patients would be explained 

by normal P2Y1-mediated platelet shape change, absent P2Y1/CalDAG-GEFI-mediated initial wave 

of fast platelet aggregation and normal (slow, incomplete and slowly reversible or irreversible) 

P2Y12-induced platelet aggregation (defective in patient II-5). Heterozygous P2Y12 deficiency is 

generally associated with abnormal, reversible platelet aggregation induced by ≤10 μM ADP
7
 (like 

in II-4), although our findings in II-3 suggest that the platelet aggregation defect is of variable 

severity in different patients. It is possible that the platelet aggregation defect in heterozygous 

P2Y12 deficiency is more evident in patients, like II-5, whose platelets lack the priming effect of 

P2Y1/CalDAG-GEFI. Interestingly, heterozygous CalDAG-GEFI deficiency did not appear to affect 

ADP-induced platelet aggregation significantly in the study subjects, when associated with both 

homozygous (II-1) and heterozygous (II-3, II-4) P2Y12 deficiency. It is interesting to note that, in our 

patients, compound homozygous CalDAG-GEFI and heterozygous P2Y12 deficiency (II-5) confers 

more severe abnormality of ADP-induced platelet aggregation and bleeding diathesis than 

compound homozygous P2Y12 and heterozygous CalDAG-GEFI deficiency (II-1). 

Unfortunately, the mother of patient II-5 did not give her consent to expose her daughter to 

additional blood sampling to allow the study of additional platelet functions and of leukocyte 

function. Indeed, deficiency of CalDAG-GEFI is expected to affect also leukocyte function, because 

Rap1 activation is important for leukocyte integrin activation.
15

 However, abnormal integrin-

dependent leukocyte function was shown to be defective in some, but not all CalDAG-GEFI-
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deficient patients. Despite the different results of in vitro experiments of leukocyte function, none 

of the patients who have been described so far, including our patient II-5, displayed overt immune 

defects, or susceptibility to bacterial infections, suggesting that alternative pathways of integrin 

activation in leukocytes compensate for CalDAG-GEFI deficiency. 
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Figure Legends 

Figure 1. Pathophysiology of ADP-induced platelet function in normal subjects and in the studied 

patients. A – Effects of antagonists of P2Y1 (MRS2216, 25 μM), P2Y12 (AR-C69931MX, 1 μM) and 

αIIbβ3 (MoAb 10E5, 10 μg/ml) on ADP (5 μM)-induced platelet aggregation in platelet-rich plasma 

ADP, added alone or in combination to normal platelet-rich plasma (PRP); maximal amplitude of 

platelet aggregation in control PRP (left tracing) was 78%; B - Regulation of ADP-induced platelet 

shape change and aggregation. ADP binding to Gq-coupled P2Y1 activates the PLCβ isoform, to 

form IP3, which releases Ca
2+

 from stores. Ca
2+

 induces: 1) platelet shape change through 

activation of MLCK and phosphorylation of myosin light chain (MLC); 2) platelet aggregation 

through rapid CalDAG-GEFI-dependent activation of the small GTPase Rap1 to Rap1-GTP, which, 

through the cooperation of talin and kindlin3 promotes the binding of adhesive proteins to αIIbβ3 

and platelet aggregation. This process is regulated by Ras GTPase-activating protein 3 (RASA3), 

which hydrolyses Rap1-GTP to inactive Rap1-GDP; RASA3 is inactivated by the Gi-coupled platelet 

ADP receptor P2Y12, allowing sustained Rap1 signalling and full platelet aggregation. PLCβ= 

phosphlipase Cβ; IP3= inositol trsiphosphate; MLCK= myosin light chain kinase; pMLC= 

phosphorylated myosin light chain; CalDAG-GEFI= calcium- and DAG-regulated guanine exchange 

factor-1; PI3K=phosphoinositide 3-kinase; DTS=dense tubular system; AC=adenylyl cyclase; 

cAMP=cyclic adenosine monophosphate; C - Platelet aggregation in citrate PRP from patient II-1 

(see Figure 2A and 2B) and a healthy control, induced by ADP at the indicated concentrations; 

maximal amplitude of platelet aggregation induced by ADP 10 μM was 80% in healthy control and 

15% in patient II-1; D – Effects of ADP and epinephrine, at the indicated concentrations, on PGE1 (1 

μM)-induced increase in platelet cAMP of II-1 and healthy controls (means±SD, n=21); E- Platelet 

aggregation in citrate PRP from patients II-3, II-4 and II-5 (see Figure 2A and 2B), induced by ADP at 
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the indicated concentrations; maximal amplitudes of platelet aggregation were 87% and 89% in II-

3 and 25% and 80% in II-4. 

Figure 2.  General characteristics and genetic abnormalities of the studied patients. A - Main 

characteristics of the study subjects (n.a.= not applicable); the two values of platelet count for 

patients II-1, II-2 and II-5 refer to values measured on two separate occasions; B - Upper part, 

pedigree chart. Filled symbols, subjects with bleeding diathesis. - Lower part, 

carriership/homozygosity for the P2RY12 and  RASGRP2 frameshift mutations; C - Chromatograms 

reporting the homozygous (II-1) and heterozygous (II-5) condition for the c.678delC frameshift 

mutation in the P2RY12 gene; D - P2RY12 haplotype analysis. Upper part, localization of SNPs in 

the P2RY12 genomic region. Primers for genomic DNA and cDNA amplification and sequencing are 

indicated by numbered arrows upper and below the scheme, respectively; numbering as reported 

in Supplementary Table 1; dotted arrows, position of gene alteration and informative SNPs. Lower 

part, haplotype marking of the c.678delC in the II generation. fs, frameshift; E- Chromatograms 

reporting the heterozygous (II-3) and homozygous (II-5) condition for the c.337delC frameshift 

mutation in the RASGRP2 gene. 







	 1	

Severe	bleeding	and	absent	ADP-induced	platelet	aggregation	

associated	with	inherited	combined	CalDAG-GEFI	and	P2Y12	deficiencies	

	

Supplementary	material	

Materials	

[3H]PSB-0413	was	from	General	Electric,	Healthcare	(Buckinghamshire,	UK).	ADP,	collagen,	the	

thromboxane/prostaglandin	endoperoxide	analogue	9,11-dideoxy-11,9-epoxymethano-

prostaglandin	F2	(U46619),	thrombin	receptor	activating	peptide	6	(TRAP-6),	prostaglandin	(PG)	E1,	

PGI2,	were	from	Sigma	(St.	Louis,	MO,	USA).	Apyrase	was	purified	from	potatoes.1	Commercial	

preparations	of	luciferin/luciferase	reagent	were	used	to	measure	the	platelet	ATP	and	ADP	

contents	(ATP	Assay	Kit,	BioOrbit	Oy,	Turku,	Finland),	and	platelet	secretion	concurrently	with	

platelet	aggregation	(Chronolume,	Chrono-log	Corp,	Havertown,	PA,	USA).	Serum	thromboxane	(Tx)	

B2	was	measured	by	a	commercially	available	enzymatic	immunoassay	(Thromboxane	B2	EIA	kit,	

Cayman	Chemical	Co.,	Ann	Arbor,	MI,	USA).	

	

Preparation	of	Platelet-Rich	Plasma	(PRP)	and	Washed	Platelet	Suspensions	

For	studies	with	PRP,	9	volumes	of	blood	were	drawn	into	1	volume	of	109	mmol/L	trisodium	

citrate,	and	then	centrifuged	at	200xg	for	10	min.	The	supernatant	PRP	was	transferred	into	a	clean	

plastic	tube;	the	platelet	counts	in	PRP	samples	were	not	adjusted	to	a	pre-defined	value.	For	the	

preparation	of	washed	platelet	suspensions,	6	volumes	of	blood	were	drawn	into	1	volume	of	acid-

citrate-dextrose	anticoagulant,	centrifuged	at	200xg	for	10	min	to	obtain	PRP,	which	was	used	to	

prepare	twice	washed	platelet	suspensions	in	Tyrode’s	buffer	containing	500	nmol/L	PGI2	during	the	

first	and	second	wash.	Platelet	counts	in	washed	platelet	suspensions	were	adjusted	to	3x1011/L.	
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Studies	of	Platelet	Aggregation	and	Secretion	

The	first	screening	of	platelet	aggregation	in	the	studied	patients	was	done	in	Florence,	suing	the	

platelet	aggregometer	APACT4004	(LABiTec®,	LAbor	BioMedical	Technologies	GmbH,	Ahrensburg,	

Germany).	Additional	studies	of	platelet	aggregation	in	patient	II-1	were	done	in	Milan,	where	

platelet	aggregation	and	secretion	were	studied	simultaneously	by	lumi-aggregometry.	Samples	of	

PRP	(0.45	mL)	were	incubated	with	50	µL	luciferine/luciferase	reagent	at	37	°C	for	30	sec	and	stirred	

at	1,000	rpm	in	a	lumi-aggregometer	(Lumi-aggregometer,	Chrono-log	Corp.,	Havertown,	PA,	USA).	

After	incubation,	10	µL	of	an	aggregating	agent	was	added	and	the	aggregation	and	ATP	secretion	

tracings	were	recorded	for	3	min. 

	

Binding	of	[3H]PSB-0413	to	Washed	Platelets	

Binding	experiments	were	performed	using	[3H]PSB-0413,	which	is	a	tritiated	derivative	of	a	

selective	nucleotide	antagonist	of	the	P2Y12R,	AR-C67085MX	(2-propylthioadenosine-5'-adenylic	

acid	(1,1-chloro-1-phosphonomethyl-1-phosphonylanhydride),	and	9x107	washed	platelets.	

Nonspecific	binding	was	defined	in	the	presence	of	1	mM	ADP.	Washed	platelets	were	incubated	

with	the	ligand	at	37°C	for	5	min;	then	bound	and	free	radioactivity	was	separated	by	filtration	

through	Whatman	GF/B	glass-fiber	filters.	Filters	were	then	washed	with	5x2	ml	of	ice	cold	washing	

buffer	(Tris	HCl	50	mM	pH	7.5,	EDTA	1	mM,	MgCl2	5	mM,	NaCl	100	mM).	Filter-bound	radioactivity	

was	counted	in	2	ml	liquid	scintillation	counter.	

	

Measurement	of	platelet	cAMP	

Platelet	cAMP	was	measured	by	a	radioisotopic	assay,	using	a	commercially	available	kit	(Cyclic	AMP	

[3H]	assay	system,	Amersham	International,	UK).	Duplicate	samples	of	1	mL	citrated	PRP	containing	

1	mM	theophylline	were	incubated	with	Tyrode’s	buffer	and	PGE1	(1	µM),	PGE1	and	ADP	or	
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epinephrine	(0.1	and	1.0	µM)	or	Tyrode’s	buffer	alone	in	a	control	mixture.	After	incubation	at	37	°C	

(2	min),	1	mL	of	5%	trichloroacetic	acid	was	added,	and	the	samples	were	snap-frozen	in	dry	ice	and	

methanol,	thawed	at	ambient	temperature,	and	then	shaken	at	4	°C	for	45	min.	After	centrifugation	

at	4	°C	for	30	min,	the	supernatant	was	extracted	three	times	with	5	mL	of	water-saturated	ether,	

dried	under	a	stream	of	nitrogen	at	60	°C,	and	stored	at	–20	°C.	Before	assay,	the	samples	were	

reconstituted	with	0.05	mol/L	Tris	buffer	containing	4	mmol/L	EDTA.	

	

Genetic	studies	

The		P2RY12	gene	(NCBI	Ref	Seq:	NG_016019.1)	was	genotyped	by	PCR	and	direct	sequencing	of	

the	three	exons	and	splicing	junctions,	of	1.1Kb	in	the	5’	gene	region,	0.64	Kb	of	intron	1	and	the	

whole	intron	2	(1.7Kb)	(Figure	2D).		Primer	sequences	and	position	are	shown	in	the	

Supplementary	Table	1.	Known	polymorphisms	were	identified,	which	permitted	the	definition	of	

P2RY12	haplotypes	in	the	family	(Figure	2D).	The	P2RY1	gene	was	amplified	and	sequenced	using	

the	forward	5’-CCCTGTTGTGTAAGCTCGGCG-3’	and	reverse	5’-	CTTTTTGAGCCGGCCCAGGG-3’	

primers,	and	the	forward	5’-CCATGTGTAAACTGCAGAGG-3’	and	5’-	CAAACAAGCTAAGTGTGGATG-

3’	primers.	Total	RNA	was	extracted	from	platelets	using	Tempus	Blood	RNA	Tubes	and	by	

Tempus	Spin	RNA	Isolation	Kit	(Applied	Biosystems,	Thermo	Fisher	Scientific,	Waltham,	MA	USA).	

The	P2RY12,	ITGB3	and	ITGA2B	mRNAs	were	reverse	transcribed	using	random	primers	and	the	

M-MLV	Reverse	Transcriptase	Kit	(Invitrogen,	Thermo	Fisher	Scientific,	Waltham,	MA	USA).	For	

P2RY12,	a	644	bp	cDNA	fragment,	spanning	exons	2-3,	was	amplified	with	primers	19	and	20	

(Supplementary	Table	1).	The	nested-PCR	fragment	(547	bp,	primers	21	and	22)	was	sequenced	

(Supplementary	Table	1).	The	cDNA	allelic	ratio	was	determined	by	densitometric	analysis	of	

chromatogram	peaks.	Evaluation	of	the	ratios	was	obtained	by	comparison	of	three	independent	
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nucleotide	sequences	and	normalization	for	flanking	C	and	T	peaks.	The	16	primers	for	ITGB3	and	

ITGA2B	cDNA	studies	are	available	on	request.	

We	performed	genetic	analysis	by	means	of	whole-exome	sequencing	(WES),	and	direct	DNA	

sequencing.	For	WES,	genomic	DNA	was	isolated	from	peripheral	blood	by	Wizard®	Genomic	DNA	

Purification	Kit	(Promega	Corporation,	Madison,	WI,	USA),	and	coding	regions	were	enriched	by	

using	SureSelectXT	Human	All	Exon	V5	kit	(50MB;	Agilent	Technologies).	DNA	sequencing	was	

undertaken	on	the	HiSeq2000	platform	(Illumina,	San	Diego,	CA,	USA)	with	125-bp	paired-end	

reads.	Mean	coverage	was	>95x	and	51	Megabases	was	the	target	size	that	required	∼4	Gigabases	

of	sequencing	per	sample.	Sequence	reads	were	aligned	to	the	human	genome	reference	sequence	

(GRCh37/hg19).	Exome	analysis	produced	a	large	number	of	variants	(~65.000	Single	Nucleotide	

Variations	and	~12.000	InDels).	Variant	annotation	(i.e.	exonic,	intronic,	UTRs;	for	exonic:	

synonymous,	nonsynonymous,	stop	gain/loss,	frameshift,	allele	frequency,	etc)	and	prioritization	

were	performed	using	an	open–source	software	(Variant	Studio,	Illumina).	To	minimize	the	number	

of	potentially	deleterious	gene	defects	different	approaches,	the	following	strategies	were	adopted:	

(i)	filtering	based	on	quality	score>30;	(ii)	excluding	variants	having	a	Minor	Allele	Frequency	(MAF)	

greater	than	0.01;	(iii)	removing	variants	outside	coding	regions	or	synonymous	coding	variants;	(iv)	

filtering	the	data	for	novelty	by	comparison	to	dbSNP	(http://www.ncbi.mln.nih.gov/snp),	Exome	

Aggregation	Consortium	(http://exac.broadinstitute.org/),	Exome	Variant	Server	

(http://evs.gs.washington.edu/EVS),	1000	Genomes	Projects	(http://browser.1000genomes.org),	

published	studies;		(v)	selecting	variants	that	segregate	according	to		the	presumed	pattern	of	

inheritance;	(vi)	querying	disease	databases,		such	as	ClinVar	(http://www.ncbi.nlm.nih.gov/clinvar),	

OMIM,	(http://www.omim.org),	HGMD	Locus-specific	database	(http://www.hgvs.org/).	After	these	

filtering	strategies,	the	number	of	variants	were	reduced	to~300-400.	To	further	prioritize	the	
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candidate	gene	defects,	a	functional	annotation	was	undertaken	based	on	effect	on	protein	

function	and	a	priori	knowledge	of	phenotype.		

After	this	initial	prioritization,	additional	strategies	were	used	to	find	the	causative	mutation:	

i.e.	the	linkage	strategy,	in	which	multiple	affected	family	members	were	sequenced	to	identify	

shared	variation	and,	in	addition,	unaffected	relatives	were	sequenced	to	exclude	a	benign	

variation;	the	overlap	strategy,	that	is	the	searching	for	mutation	in	multiple	unrelated	patients	with	

similar	phenotype.	Variants	were	validated	by	Sanger	sequencing	and	segregation	analysis	of	the	

prioritized	variants	was	performed	in	additional	affected	family	members	when	constitutive	DNA	

was	available.	

Supplementary	Results	

The	intron	less	P2RY1	gene	(coding	sequence,	1122bp)	sequencing	detected	only	previously	

reported	synonymous	codons	(Ala19Ala,	rs1065776	C/T	and	Val262Val,	rs701265	A/G),	in	the	

homozygous	condition	(CC	and	AA,	respectively)	in	the	patient	II-5	and	in	the	heterozygous	form	in	

her	mother	(I-4)	and	brother	(II-4).	

The	P2RY12	mRNA	extracted	from	platelets	of	the	patient	II-5,	heterozygous	for	the	c.318C/T	

polymorphism	and	the	c.678delC	frameshift	mutation,	was	studied.	The	cDNA	allelic	ratio	was	

estimated	at	the	c.618C/T	position	through	the	peak	area	in	the	chromatograms	derived	from	two	

independent	RT-PCR	and	sequencing.	The	cDNA	corresponding	to	the	alleles	318T	and	318C,	which	

marks	the	c.678delC	and	thus	the	translational	frameshift,	were	similarly	represented	(T/C	ratio	

0.77-1.27,	Supplementary	Figure	1).	The	nonsense	mediated	decay	(NMD)	mechanism	is	not	

expected	to	alter	this	ratio	because	of	the	introduction	of	a	premature	nonsense	triplet	in	the	last	

exon.	Sequencing	of	the	coding	portion	of	exon	3	(1	Kb)	in	the	cDNA	failed	to	detect	any	additional	

mutation.	
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The	ITGB3	and	ITGA2B	mRNA	were	characterized	by	sequencing	of	the	ITGB3	and	ITGA2B	

platelet	cDNAs	in	the	patient	II-5.	Only	previously	described	ITGB3	synonymous	polymorphisms	

(Val381Val,	rs15908	A/C,	Glu511Glu	rs4642	A/G	and	Arg515Arg	rs4634	G/A)	were	detected	in	the	

heterozygous	condition.	
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Supplementary	Table	1.	P2RY12	primer	sequence	and	position.	

Primer	 Primer	sequence	(5’-	3’)	 Position	a	
		1	 ACTTTCTGATCGCTTGTCTCC	 4698	
		2	 AACTCTATGCTTGGACTGGC	 5244	
		3	 TTCTCAGCCATCCTCATCCC	 48839	
		4	 TGAGGCAAAGTAACTAAGACCA	 49416	
		5	 GTGCTTTAAGAGGCAAACATTCA	 50622	
		6	 TGCCAGACTAGACCGAACTC	 51471	
		7	 TCTCTGTTGTCATCTGGGCA	 51342	
		8	 TGTCGTTTGTTTTGCTGCTAA	 52170	
		9	 GAATGTCGGTGGTTGCTTACTG	 3842	
10	 AGGCATATGCTTGTCTTCTAAG	 4452	
11	 TTCAGGGAAACATTTTAAGTCC	 4339	
12	 ATTGTGATCACTACCCTGGA	 5008	
13	 GGAAGCTGTTTCACCTACAAAG	 48473	
14	 TCAGTAAAGTCTTGAGTGCTC	 49016	
15	 AATACCAGATGCCACTCTGC	 49081	
16	 ATTGGCCTCACGGAGATTCA	 50249	
17	 GGAATGCCAACTCATGACCA	 50056	
18	 CGCCAGGCCATTTGTGATAA	 51049	
19	 CCACTCTGCAGGTTGCAATAAC	 49092	
20	 TGCCAGACTAGACCGAACTC	 51471	
21	 GATACATTCAAACCCTCCAGAATC	 49126	
22	 TGCCTGTTGGTCAGAATCATGT	 51408	
Grey	lines,	forward	primers;	white	lines,	reverse	primers.	Primers	1-8,	primers	used	to	amplify	and	

sequence	exons	and	splicing	junctions	of	the	P2RY12	gene;	primers	9-18,	primers	used	for	the	5’	
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and	intronic	regions;	primers	19-22,	primers	for	the	cDNA.	a	Corresponding	to	the	position	of	the	5’	

end	in	the	sequence	database.	
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Supplementary	Figure	1	-	Chromatograms	of	the	exonic	nucleotide	change	c.318C/T	(patient	II-5)	in	
the	genomic	DNA	(upper	panel)	and	platelet	cDNA	(lower	panel).	
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