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Abstract: Rett syndrome (RTT) is a neurodevelopmental disorder, affecting 1 in 10,000 girls. Intellectual
disability, loss of speech and hand skills with stereotypies, seizures and ataxia are recurrent features.
Stringent diagnostic criteria distinguish classical Rett, caused by a MECP2 pathogenic variant
in 95% of cases, from atypical girls, 40–73% carrying MECP2 variants, and rarely CDKL5 and
FOXG1 alterations. A large fraction of atypical and RTT-like patients remain without genetic cause.
Next Generation Sequencing (NGS) targeted to multigene panels/Whole Exome Sequencing (WES)
in 137 girls suspected for RTT led to the identification of a de novo variant in STXBP1 gene in four
atypical RTT and two RTT-like girls. De novo pathogenic variants—one in GABRB2 and, for first
time, one in GABRG2—were disclosed in classic and atypical RTT patients. Interestingly, the GABRG2
variant occurred at low rate percentage in blood and buccal swabs, reinforcing the relevance of
mosaicism in neurological disorders. We confirm the role of STXBP1 in atypical RTT/RTT-like patients
if early psychomotor delay and epilepsy before 2 years of age are observed, indicating its inclusion
in the RTT diagnostic panel. Lastly, we report pathogenic variants in Gamma-aminobutyric acid-A
(GABAa) receptors as a cause of atypical/classic RTT phenotype, in accordance with the deregulation
of GABAergic pathway observed in MECP2 defective in vitro and in vivo models.
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1. Introduction

Rett syndrome (RTT) is a neurodevelopmental disorder, with an incidence of approximately
1 in 10,000 live births, most frequently affecting girls during early childhood [1]. RTT patients
develop normally during the first 6–18 months of life, but over time they manifest a motor and
psychomotor regression and gradually develop a severe condition associated with motor, cognitive
and behavioral impairment. Up to 95% of classical RTT cases are accounted for by mutations in the
Methyl CpG-binding protein 2 gene (MECP2) [2], mapping at Xq28 and encoding a multifunctional
protein whose expression impacts many fundamental biological processes [3]. The MeCP2 protein
acts as epigenetic “reader” [4] which by binding with methylated DNA, interacting with corepressors
and recruiting histone deacetylases to methylated genes, leads to their silencing [5], but it can also
dampen transcriptional noise genome-wide, altering global chromatine structure [6]. MeCP2 is
also a transcriptional activator through its interaction with the c-AMP responsive element-binding
protein 1 (CREB1), has a role in alternative splicing in a DNA methylation-dependent manner and in
microRNA processing and may influence global translation through modulation of the AKT/mTOR
pathway [7–9]. In RTT patients, the differential expression of multiple genes related to intracellular
signaling, modulation of cytoskeleton plasticity and cell metabolism [9] support the involvement
of MeCP2 in neural development and synaptic function. Interestingly, perturbations in the genes
acting in GABAergic circuits [10] could result in neuron hyperexcitability, which in turn is potentially
responsible for epilepsy reported in 60–80% of RTT patients [11].

Similar to the classical form, atypical or variant RTT present many RTT clinical features, but do not
necessarily meet all the distinctive signs of the disorder; however highly stringent criteria allow proper
definition of the variant forms [12]. A fraction ranging from 5% to 8% of classic RTT [2,13] and 42% to
73% of variant RTT patients [13,14] are negative for MECP2 mutation. Among them, individuals with
early seizure onset variant RTT [15,16], who manifest epilepsy before regression, have mutations in the
cyclin-dependent kinase-like 5 gene (CDKL5), and patients with congenital RTT, who show gross early
abnormal development, have molecular defects in the forkhead box G1 gene FOXG1 [17]. However,
a subset of patients who receive the clinical diagnosis of RTT remain negative for mutation in all the
aforementioned genes. Next generation sequencing (NGS) and particularly Whole Exome Sequencing
(WES) have emerged as a powerful tool to identify new genes involved in rare genetic diseases [18] and
to give a diagnosis to patients without a known genetic cause. Thanks to these technological advances,
in the last few years, several uncommon causative genes for classic or variant Rett syndrome or similar
phenotypes (RTT-like) have been discovered [11,14,19–24]. Among the novel genes, several have been
previously associated with developmental delay, often in comorbidity with epilepsy. An emerging
concept is that some genes causing epileptic encephalopathy may be responsible for more complex
neurodevelopmental disorders (DEE, Developmental and Epileptic Encephalopathies), where both ID
and epilepsy contribute to the clinical phenotype [25–27].

Based on these premises, we expected that a proportion of patients with RTT phenotype and
epilepsy might be mutated in one of the genes involved in DEE.

In order to identify new genes responsible for the RTT phenotype, we processed by WES 26 girls
with a RTT/RTT-like phenotype negative to the conventional genetic test for RTT and by NGS Custom
multigene Panel a cohort of 78 patients with pediatric age onset seizures, that included 11 patients
with RTT/RTT-like phenotype.

The combined approaches allowed the identification of a genetic cause different from customarily
studied genes in RTT syndrome in six patients. Following this result, processing 100 patients with
RTT/RTT-like syndrome or syndromes in differential diagnosis by using an NGS custom panel enriched
in the new genes allowed the detection of two additional cases. Lastly, all the molecularly defined
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patients were clinically re-evaluated to highlight the occurrence of distinctive phenotypic traits that
might specifically guide the molecular investigation of the genes identified in this study.

2. Results

Overall, the NGS experiments identified eight patients carrying a pathogenic variant in genes
alternative to the customarily tested genes in RTT syndrome. Table 1 summarizes the patients’ clinical
features, the pathogenic variant and the NGS approach. The clinical features have been grouped
according to Neul classification [12] under separated entries distinguishing main and supportive
criteria. Epilepsy characteristics and neurological disturbances not specifically related to RTT are
reported in Table S1. All patients showed epilepsy during their lifetime. Six patients (No. 1–6) exhibited
a pathogenic variant in the STXBP1 gene (OMIM 602926), one patient (No. 7) showed a pathogenic
variant in GABRG2 (OMIM 137164), while another one (No. 8) had a pathogenic variant in GABRB2
(OMIM 600232).
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Table 1. Patient’s clinical features grouped according to Neul classification, the pathogenic variants and the Next generation sequencing (NGS) approach.

Patient 1 2 3 4 5 6 7 8

Sex, Current Age (years) F (18 y) F (11 y) F (19 y) F (29 y) F (7y) F (9 y) F (38 y) F (42 y)

Molecular Approach NGS-pediatric epilepsy WES-RTT WES-RTT NGS -pediatric epilepsy NGS-diagnostic NGS-diagnostic NGS -pediatric epilepsy WES-RTT

Mutation/Inheritance Pattern

STXBP1 NC_000009.11:
g.130423471 C>T,

NM_003165.3:
c.416C>T:

p.(Pro139Leu), de novo

STXBP1 NC_000009.11:
g.130435529 C>T,

NM_003165.3:
c.1099C>T:

p.(Arg367Ter), de novo

STXBP1 NC_000009.11:
g.130416077 T>C,
(NM_003165.3):

c.169+2T>C,
r.([169_170 ins

[gc;169+3_169+1168];
169_170ins [gc;

169+3_169+1334]]),
p.(Ile57Serfs7*) de novo

STXBP1 NC_000009.11:
g.130428548 T>C,

NM_003165.3:
c.767T>C,

p.(Leu256Pro), de novo

STXBP1 NC_000009.11:
g.130444840 G>A,

(NM_003165.3)
c.1702+1G>A, r.

[1585_1702del117]
p.(Glu530_Gly 568del)

de novo

STXBP1 NC_000009.11:
g.130438188 C>T,

NM_003165.3: c.1216
C>T, p.(Arg406Cys),

de novo

GABRG2 NC_000005.9:
g.161576128_161576129

delinsGG,
NM_000816.3:

c.937_938 delinsGG,
p.(Leu313Gly),
de novo mosaic

GABRB2 NC_000005.9:
g.160758063 C>T,

NM_021911.2:
c.904G>A

p.(Val302Met), de novo

Regression (age indicated) Followed
by Recovery or Stabilization No cdv No cdv No cdv No cdv No Yes (6 months) Yes (12 months) Yes (9 months)

M
ai

n
C

ri
te

ri
a

Partial or Complete
Loss of Acquired

Purposeful Hand Skills

No: not lost, but
NevAcq (grabs food

and takes it to her
mouth)

No: not lost, but
NevAcq (grasping and
manipulation disturbed

by involuntary
movements)

No: not lost, but
NevAcq (grasping

disturbed by tremors
and stereotypies)

No No: very limited hand
skills

No: not lost, but Nev
completely Acq

Yes: very limited hand
skills

Yes: (since 2 years
leaves behind and

drops things)

Partial or Complete loss
of Acquired Spoken

Language

No: not lost, but
NevAcq

No: not lost, vocalisms
and only ten words

No: not lost, but
NevAcq

No: not lost, only a few
words

No: not lost, but Nev
Acq, only vocalisms

No: not lost, but
NevAcq(vocalism)

No: not lost, but
NevAcq

Yes (only “Mum” and
“Dad”, then lost)

Gait Abnormalities:
Impaired or Absence of

Ability

Yes (ataxic-dyspraxic,
unstable and only for
short distances: since

4 years)

Yes (ataxic with axillary
support: since 4 years)

Yes absent (only
standing with

axillary support)

Yes ataxic (walking
with enlarged base and
out of rotation of feet:

since 3 years)

Yes (walking with
enlarged base/ not

apraxic: since 3 years)
Yes (Nev Acq) Yes (ataxic: since

6 years)

Yes (apraxic, slow but
autonomous, since

16 months, climbs the
stairs)

Stereotypic Hand
Movements (type)

Yes frequent (brings her
hands to mouth and

bites fingers)

Yes (not typical for RTT,
beats her head: since

3 years)
Yes (hand washing) Yes (hand rocking)

Yes (hand washing,
clapping, tapping right

hand on table/books,
tapping the forehead
with the right upper

limb, upper limb
flickering)

Yes (upper limbs
tremors, upper limb

flickering, and
dyskinesias)

Yes (tapping her right
hand on her teeth:
since 18 months),

Yes (upper limbs
flickering)

Ex
cl

us
io

n
C

ri
te

ri
a

Brain Injury: Peri or
Postnatal Trauma,
Neurometabolic

Disease or Severe
Infection

No No No No No No No No

Grossly Abnormal
Psychomotor

Development in First 6
Months of Life: Exam

at the Birth

hypotonia normal normal
hypotonia,

hyperexcitability,
inconsolable crying

normal normal normal normal
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Table 1. Cont.

Patient 1 2 3 4 5 6 7 8
Su

pp
or

ti
ve

C
ri

te
ri

a

Breathing Disturbances No Yes No No No No Yes (mild cyanosis and
apneas) Yes (hyperventilation)

Bruxism when Awake No No Yes No Yes Yes Yes Yes (significant)

Impaired Sleep Pattern Yes (sleeplessness and
nocturnal agitation) Yes (seizures) Yes (nocturnal bruxism) No

Yes (several and
prolonged nocturnal

awakenings)
No Yes No

Abnormal Muscle Tone Yes (proximal
hypotonia) Yes Yes No No

Yes (axial hypotonia,
hypertonus of the

limbs)

Yes mild hypertonus
(hypotonia in the first

years of life)
No

Peripheral Vasomotor
Disturbances No No Yes No No No

cold and bluish hands
and feet without
trophic changes

No

Scoliosis/Kyphosis Yes (lumbar
hyperlordosis) Yes (mild) Yes No No No Yes (mild kyphosis) No (only scoliotic

attitude)

Growth Retardation No No No hypostaturism and
obesity No Yes Yes mild No

Small Cold Hands/Feet Yes No Yes No (but short and
stubby fingers) No Yes (small, not cold) Yes Yes (cold feet)

Inappropriate
Laughing /Screaming

Spells
Yes No Yes (screams) No Yes nd Yes frequent Yes rare

Diminished Response
to Pain Yes No No nd Yes nd nd No

Intense Eye
Communication No Yes No No Yes No Yes Yes

Microcephaly: if Yes Indicate if
Acquired Yes acquired No No No No Yes acquired No Yes acquired

Clinical Diagnosis at Referral RTT atypical RTT atypical Hanefeld RTT atypical congenital RTT-like-EOEE
(West>Lennox-Gastaut) RTT atypical

RTT-like (myoclonic
epileptic

encephalopathy)
RTT atypical RTT classic

WES-RTT= Whole Exome Sequencing on Rett Syndrome; RTT = Rett Syndrome; NGS = Next generation Sequencing; WES = Whole Exome sequencing; cdv = Congenital Developmental
Delay; nd = not done; Nev Acq = Never Acquired.
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2.1. STXBP1 Variants

Two out of the six variants in STXBP1 (patients No. 3 and 4) had never been described in the
literature and the two splicing variants of patients No. 3 and 5 had never been studied at transcript level.

Therefore, in order to corroborate the pathogenicity of these latter variants, we characterized
the transcripts obtained by peripheral blood. To evaluate the effect of the mutation NC_000009.11:
g.130416077 T>C, (NM_003165.3): c.169+2 T>C of patient 3 (Figure 1) we set up two distinct
PCRs on STXBP1 cDNA: one with a reverse primer including the splice junction and a part of
the two flanking exons 4 and 5 and the forward in exon 2, and another with a forward primer
complementary to the intronic sequence, to check for possible splicing retention phenomena, as
described for a different mutation hitting the same splice site [28]. The second primer set allowed
us to highlight that the variant gives rise to two aberrant transcripts, a-Tr1 and a-Tr2, retaining part
of IVS3 (r.([169_170ins[gc;169+3_169+1168];169_170ins[gc;169+3_169+1334]])). For both transcripts
the predicted outcome is a protein prematurely truncated 57 aminoacids after the end of exon 3
(p. (Ile57Serfs7*)) and completely missing the functional domains of the Syntaxin–binding Protein 1.
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Figure 1. (A) Schematic representation of STXBP1 gene primer pairs used for characterization of patient
3 variant and on the right the electropherogram with the heterozygous variant. (B) The 2% agarose gel
shows the wt amplicon of 190 bp in the first PCR (ex2F/ex4–5R) (blue arrow) and a weak signal of two
aberrant fragments only in the proband (P). Two long amplicons obtained by a primer pair selective for
the aberrant transcript (Ex3-int3-mutF/ex4–5R) are well visible in the proband’s lanes (P) (red arrows)
and not in the control DNA lane (C). (C) Schematic of the mis-splicing caused by the c.169 + 2T> C
mutation inferred by sequencing of the two amplicons that correspond to two aberrant intron-retaining
transcripts resulting from the use of two alternative donor sites (in red) 1168 and 1134 nt downstream
from the end of exon 3.

In patient 5, the splice variant NC_000009.11: g.130444840 G>A, (NM003165.3) c.1702+ 1G>A
in STXBP1 gene generates an aberrant transcript due to the choice of a new donor site within exon
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18 stronger than the aberrant one, with deletion of the last 117 bp of this exon (r.[1585_1702del117])
predicting a protein, with an in frame deletion of 38 amino acids (p.(Glu530_Gly568del)), devoid of
a large portion of the functional D2 domain (Figure 2).
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Figure 2. (A) Schematic representation of the wild type (wt-Tr) and the aberrant transcript (a-Tr1)
generated by variant NC_000009.11: g.130444840 G>A, (NM003165.3), c.1702 + 1G>A of patient 5,
resulting in the deletion of the last 117 bp of exon 18. (B) cDNA electropherogram showing the wt
transcript (black and green letters) and the aberrant transcript (black and purple letters) produced
through the choice of a new donor site within exon 18 at position c.1585 (arrowed).

The de novo variant yet unreported NC_000009.11: g.130428548 T>C, NM_003165.3, c. 767 T>C
p.(Leu256Pro) of patient 4 is classified as likely pathogenic in ClinVar and predicted as pathogenic
using Align GVGD, SIFT, Mutation Taster and Polyphen by Alamut software (Figure S1).

The remaining variants already reported in the literature are specified in Table 1.

2.2. Clinical Features of Girls with STXBP1 Variants

Table 1 and Table S1 detail the phenotypic traits of the patients with STXBP1 mutation. In summary,
the clinical re-examination took into account the RTT criteria revisited by Neul [12], the epileptic
profile and the phenotypic traits usually observed in STXBP1-mutated patients, such as movement
disorders. Although the patients had been referred to the molecular study as atypical RTT (early
seizures onset RTT or congenital) or RTT-like (see Table 1 “Clinical Diagnosis” at referral) and all
presented hand stereotypies (which in 2 patients are typical for RTT such as “hand washing”), absence
or walking/gait abnormalities and absence of purposeful hands skills and language, only patient 6 had
a true regression, distinguishing them from RTT. The occurrence of supportive criteria for RTT varies
from patient to patient, apart from hypotonia which recurs in four out of six patients. Movements
disorders, typical of STXBP1-mutated patients are frequent (tremors and dyskinesia in 5/6 patients).
Epilepsy was referred in all of the six girls but: a) the age of seizures onset was very variable, occurring
later than expected for STXBP1-EE (on average at six weeks) [25] in three out of six patients; b) the type
of crisis was heterogeneous and only in one patient (No. 4) the onset was typical for West syndrome;
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c) the pharmacological response varied from drug resistance to responsiveness. Only patient 4 showed
the typical hypsarythmic pattern associated with West syndrome.

2.3. GABAa Receptors Genes Variants

The patient No. 7 carried a pathogenic variant in GABRG2 never described in literature. The variant
is a double nucleotide substitution in the first and second nucleotides of the CTG codon (Leu) in
position 313 of the GABRG2 gene (Figure 3). The analysis by True Seq Custom Amplicon (see File
S1) on genomic DNA from peripheral blood showed that the two substitutions are in cis and create
the novel GGG codon (Gly) (according to HGVD nomenclature guidelines the deletion/insertion
format is preferred, therefore variant is NC_000005.9: g.161576128_161576128 delinsGG, NM_000816.3:
c.937_938delinsGG, p.(Leu313Gly)). NGS approach showed a read count for the variant equal to about
12% of the total (Figure 3B), barely detectable even with Sanger Sequencing (Figure 3A). The analysis
on buccal swab DNA by Nextera approach using three different pairs of primers (see File S2), showed
a percentage similar to that observed in blood (Figure 3C), excluding the occurrence of a partial allelic
drop-out and supporting a real mosaicism condition. This variant is predicted as pathogenetic by the
Alamut software. Parents’ analysis on genomic DNA from both blood and buccal swab carried out by
Sanger and Nextera sequencing proved the de novo origin of the mutation.
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TM3 chains) of the mutational hot spots p.Lys303Arg and p.Lys303Asn [26,29] and close to the 

Figure 3. (A) Patient electropherograms show the mosaic double nucleotide substitution in the first
and second position of the CTG codon (framed) with the mutated GGG codon (framed) replacing
the aminoacid Leu at position 313 of the GABRG2 gene with Gly. (B) Annovar table revealing
the low-rate (12%) mosaicism for the double base substitution in DNA from peripheral blood.
(C) Nextera-XT-Library-prep protocol performed with three different pairs of primers (red-blue-green)
shows on DNA from buccal swab a mosaic mutation percentage comparable to that obtained on blood.
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The de novo variant in GABRB2, NC_000005.9: g.160758063 T>C, NM_021911.2: c.904G>A
p.(Val302Met) of patient 8, although unreported in literature, is present in ClinVar as probably
pathogenetic and is localized in the same region (the extracytoplasmic loop between the TM2 and TM3
chains) of the mutational hot spots p.Lys303Arg and p.Lys303Asn [26,29] and close to the p.Ala304Val
mutation [26,30].The pathogenicity is indicated by the in silico predictions using Alamut software
(Figure S2).

2.4. Clinical Features of Girls with Variants in GABAa Receptors Genes

According to the Neul criteria [12], the two patients with pathogenic variants in GABAa Receptors
genes can be classified as RTT, since they presented a true regression, patient 7 as atypical RTT (3
primary criteria and> 5 supportive criteria) and patient 8 as classical RTT (4 primary criteria). In two
patients epilepsy is not triggered by fever and in patient No. 8 the age of onset of seizures was not
very early.

3. Discussion

The widespread use of NGS targeted to multi-gene panels or to the whole exome has shown
that a notable number of patients referred with a suspected syndromic diagnosis turned out to be
carriers of a pathogenic variant in genes not classically associated with the initial clinical diagnosis.
The molecular definition of syndromes affecting the neurodevelopment associated with epilepsy
remains a challenge, often hampered by the genetic heterogeneity [31]. In any case, a clinical diagnosis
based on stringent diagnostic criteria commonly recognized by the scientific community should remain
an initial milestone. Furthermore, the clinical diagnosis of Rett syndrome (RTT OMIM 3127520) is
advantaged by the definition of stringent clinical criteria, which upon revision [12] allow classification
and distinguishing classical RTT from both early onset epilepsy and congenital atypical RTT, the latter
two mainly ascribed to disease causing variants in the CDKL5 and FOXG1 genes. On the other hand,
when molecular tests exclude the involvement of the three canonical genes, the most frequent choice
is a wider investigation usually starting with NGS targeted to multi gene panels including those
associated with epilepsy and neurological disorders and often ending with the more expensive and
time-consuming WES. According to recent literature [11,14], more than 69 genes from these studies
turned out to be candidate genes for RTT/RTT-like phenotypes.

The availability of a large cohort of girls referred to our lab with suspected RTT and found negative
for the canonical RTT genes, prompted us to perform NGS targeted to gene panels and/or the whole
exome, a common strategy which succeeded in identifying so far in our cohort pathogenic variants in
the STXBP1 gene and in two different subunits of GABAa receptor in six and two girls, respectively.

In keeping with the role of these genes, all eight patients experienced early-onset seizures (from the
neonatal period to the second year of age). In order to pinpoint the existence of distinctive phenotypic
traits helpful in addressing the molecular investigation of these three genes and designing a proper
therapy, the clinical history and features of all eight girls were reviewed by their child neurologists and
clinical geneticists and compared to the RTT diagnosis criteria.

STXBP1 encodes the presynaptic protein Munc18-1, a protein binding and stabilizing the complex
of SNARE (Soluble NSF Attachment Protein REceptor) proteins, actively involved in the fusion between
synaptic vesicles and the presynaptic membrane, thus favoring neuronal exocytosis [32]. Functional
in vitro studies and experiments on Stxbp1 mouse models [33] demonstrated that instability of defective
Munc18-1 protein and the consequent haploinsufficiency may explain the mechanism underlying
the STXBP1 encephalopathy (EIEE4, OMIM 612164). GABAergic more than glutamatergic neurons
seem impaired, probably resulting in an imbalanced excitability in the neocortex, responsible for
an abnormal epileptic activity [34,35]. The phenotype of patients with a STXBP1 pathogenic variant
ranges [25] from the generic early onset epilepsy encephalopathy, to Ohathara syndrome [36,37],
EME [38], West syndrome [39,40], Dravet syndrome [41], but also includes intellectual disability (ID)
in the absence of epilepsy [42–44], classic MECP2-negative RTT and atypical RTT [45]. As the degree of
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ID does not appear to correlate with the severity of the seizures and/or the age of onset of epilepsy,
STXBP1-EE is not thought to be a simple Early Onset Epileptic Encephalopaty-EOEE, but a more
complex neurodevelopmental disorder (DEE, Developmental and Epileptic Encephalopaty), where
both ID (often occurring before the onset of epilepsy) and epilepsy play a synergic role in the phenotype
evolution [25–27]. Considering that only four STXBP1 positive girls, two with a classical RTT [46,47],
one with atypical RTT [48] and one male with RTT-like phenotype [21] had been reported, the patients
described herein increase the overall number of RTT/RTT-like patients caused by pathogenic variants
in STXBP1. Variants in patients No. 3 and 4 have never been reported in literature, while concerning
the remaining mutations [25,49,50], one (p.(Pro139Leu)) is a mutational hotspot [51–53].

A review of clinical history of our patients and a comparison with the described cases highlighted
the fact that all our STXBP1 girls share hand stereotypies and abnormal, impaired ataxic or absent gait
and do not have purposeful use of hands and language, which has never, or in a very limited way, been
acquired and has not been lost. Furthermore, only patient 6 presented a regression. Since the presence
of regression is a fundamental criterion for the diagnosis of RTT syndrome, according to the Neul
criteria, our cases should not be classified as RTT, but RTT-like. However, MECP2-positive patients
presenting abnormal signs or deviant developmental profiles before 6 months who subsequently
acquired supportive criteria have been reported [54,55] (defined as atypical congenital RTT) and an
eventual regression before 6 months of age is difficult to identify also because ”typically the family
and the primary clinician is not concerned about development until after 6 months of age” [12,56],
suggesting that at the least our STXBP1 patients 1, 2, 3 and 5, who show two main criteria and
>5 supportive criteria might be included in the subset of atypical/congenital RTT variants. Moving
to the epileptic phenotype, the West syndrome history experienced by three of the four reported
RTT patients with STXBP1 variants [21,46–48], was not observed in our cases, with the exception of
patient 4.

Furthermore, our STXBP1 patients did not resemble the RTT Hanefeld variant due to mutations
in CDKL5 gene and characterized by a typical course of epilepsy [57], nor did they seem to share
a common epilepsy history and the age of seizure onset appeared to be quite different. Drug resistance,
common in RTT Hanefeld variant patients [58] was present only in one out of our six cases. Moderate
to severe ID is evident in all six patients, bruxism during wakefulness is present in three out of
six girls, a characteristic shared with RTT and STXBP1-DEE patients [59]. The small number of
reported cases with STXBP1 mutations and RTT/RTT-like diagnosis does not allow the definition of
a correlation between mutation type and severity of the phenotype or epileptic profile. On the other
hand, studies on a wide cohort of STXBP1-positive patients did not reveal any genotype–phenotype
correlation [25]. In conclusion, the identification of six patients with a pathogenic defect in this gene
from a RTT/RTT-like cohort of 137 patients (4.4%) suggests the performing of STXBP1 analysis when
a congenital phenotype, characterized by the main criteria for RTT syndrome and associated with
epilepsy is observed. Seizures may appear after developmental delay and are not necessarily drug
resistant or associated with West phenotype.

We also identified a patient with a mutation in GABRG2 which encodes the gamma subunit of the
heteropentameric GABA type A (GABAa) receptor in the form α2β27. It represents the most abundant
inhibitory receptor subtype in the CNS [60], and the primary mediator of fast inhibitory synaptic
transmission. The gamma subunit oligomerizes in the endoplasmic reticulum (ER) with the other
subunits and is required for postsynaptic GABAa receptor clustering [61,62]. To date, only about twenty
mutations associated with different epileptic phenotypes have been described, from mild (FS, Febrile
Seizures or CAE, Childhood Absence Epilepsy) to moderate (GEFS +, Generalized Epilepsy with Febrile
Seizures +), to severe [61] Dravet syndrome (DS) [63], or early onset encephalopathy phenotype [64,65],
but never underlying the RTT phenotype. Clinical heterogeneity may depend primarily on how the
mutation interferes with the assembly of the mutant with the other subunits, causing mechanisms of
haploinsufficiency or dominant negative suppression [61]. A genotype-phenotype correlation study
had previously associated missense mutations with milder clinical phenotypes and truncating variants
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with more severe phenotypes [61], but recent reports [63,64] identified several missense mutations in
epileptic encephalopathy and DS as well. The mosaic p.(Leu313Gly) variant of patient 7 (see Figure 3),
never described in literature, changes a highly conserved residue in the TM2 also located in the
pore-lining region likewise the p.(Pro302Leu) mutation, which is associated with the severe phenotype
of DS and that determine a dramatic whole-cell current reduction, resulting in hyperexcitability [63].
Moreover, a decrease in maximal response to GABA was observed for mutations located in TM2 [64].
The key location of the mutation together with the in silico predictions support its pathogenicity with
regard to the epileptic phenotype, highlighting a new genotype-phenotype correlation according to
which missense mutations associated with severe phenotype are located in the pore forming region of
the channel, while the missense mutations affecting the N-ter or the extracytoplasmatic loop region
underlie a mild phenotype. However, the condition of the mosaic mutation (described for this gene in
Stosser 2018 [66] in an epileptic male scarcely defined in the phenotype, with a mutation percentage
similar to that of our patient, but with localization in the N-terminal region) could be compatible with
a milder phenotype, at least for the epileptic features. Although the condition of disability appears
severe in our patient, she is now seizure-free. More generally, the evidence of mosaic status, at the
limits of Sanger sequencing sensitivity, suggests the opportunity to retest negative patients by the more
sensitive NGS approach, mainly for genes involved in epilepsy where mosaic mutations seem to be
frequent [66–68].

Lastly, patient 8 carries the de novo unreported mutation in the GABRB2 gene, p.Val302Met.
GABRB2 encodes the beta subunit of the GABAa ionotropic heteropentameric receptor, which also
includes the 7 subunit encoded by GABRG2, with which it shares the structure, common to all
the GABAa receptors subunits [69]. To date, only 13 mutations have been described in this gene,
clustered mainly in the 3 TM1–TM3 transmembrane domains and in the linker regions between
them, responsible for IECEE2 (Infantile or Early Childhood Epilepsy Encephalopaty type 2, OMIM
617829), a neurodevelopmental disorder characterized by the onset of epilepsy in infancy or childhood,
developmental delay and variable ID [26,30,70,71]. To our knowledge, only one other patient, carrying
the p.Ala304Val mutation which is very close to the residue mutated in our patient, has a phenotype
classified as atypical RTT [30].

According to Neul’s criteria, patients 7 and 8 can be classified RTT, since they exhibited regression,
unlike those mutated in STXBP1. In the reported GABRG2 patients, the onset of seizures, beyond
the severity of the clinical picture, is often triggered by fever, data not registered in patients 7 and 8.
With regards to GABRB2, epilepsy is present in almost all the patients so far described, but the age
of onset in patient 8 is later (2 years) (Table S1) than that (within the first year of life) reported [26].
Although replication of these findings in more patients is needed for a correct genotype-phenotype
correlation and to establish differences and similarities with RTT patients mutated in classic associated
genes, our data suggests testing this gene in negative RTT cases that meet Neul criteria for classic and
atypical forms with epilepsy presenting not necessarily at very early onset.

The identification of mutated patients in GABRB2 and GABRG2 is in agreement with the observation
of deregulation of the GABAergic pathway in murine Mecp2-deficient models [72,73] and iPSCs-derived
neurons of MECP2 mutated patients [10]. The evidence that haploinsufficiency of STXBP1 also affects
more inhibitory GABAergic than glutamatergic neurons [35] supports the hypothesis that the alteration
of the GABAergic pathway is of primary importance in the RTT phenotype and the genes acting in this
pathway may represent a target for mutational screening in RTT/RTT-like patients, as well as a key
gene network in the future treatment of the disorder.

4. Materials and Methods

4.1. Patients

Twenty-six girls (aged from 5 to 38 years), accurately selected by a number of different Italian
neuropsychiatric departments, classified as follows: 14 as Classical Rett, five as Atypical Early Onset,
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five as congenital Rett and two females as Rett-like, according to Neul classification, were tested in
2013 by a WES experiment.

Seventy-eight patients (72 singleton plus 3 pairs of siblings, of which 49 females and 29 males,
aged from 1 to 49 years) characterized by a) neonatal, infantile or childhood onset seizures, and/or or b)
drug resistant epilepsy and/or c) progressive worsening of the clinical course associated with epilepsy
and/or d) autistic traits and/or e) intellectual disability, were tested by NGS Custom Panel for pediatric
epilepsy; 11 of them were classified by clinicians as RTT/RTT-like.

One hundred patients referred to our lab with clinical suspicion of RTT/RTT-like, were screened
by NGS Custom panel in use in IAI laboratory since 2016 for diagnostics of RTT and syndromes in
differential diagnosis.

All positive patients were referred to our laboratory by a number of Italian neuropsychiatric
departments.

A written consent was signed for all patients by their families. The study was approved by IRCCS
Istituto Auxologico Italiano Ethical Committee on 03/04/2012 (protocol number 2012_04_03_05-Project
MOH 08C208 and AIRETT) and on 12/03/2013 (protocol number 2013_03_12_14-Project MOH 08C305).

4.2. Methods

Genomic DNA was extracted from peripheral blood leukocytes using Freedom Evo
TECAN extractor.

4.2.1. WES

The WES experiment was performed on Illumina Hi Scan SQ platform and technology (Illumina,
San Diego, CA, USA); the True Seq Exome Enrichment Kit enables the enrichment of the coding portion
as well as the adjacent intronic and 5’-3’-untranslated regions.

Sequencing Data Analysis

The text files of exome sequences were aligned to the Human assembly GRCh37/h19, using the
Burrows-Wheeler alignment tool, BWA [74] to generate Binary Alignment Map (BAM files). Variant
calling was performed using the Genome Analysis Tool Kit (GATK) [75] and Genotyping identification
was performed using GATK’s Unified Genotyper [76]. Variants were subsequently annotated for their
existence in dbSNP, also harboring all properties described in dbSNP for known variants (e.g., GMAF).
The possible impact of variations was evaluated using SnpEff [77]. Additional bioinformatics tools
were applied (SIFT score, Polyphen prediction, GERP score) using the NSFP database [78], to assess
their potential noxious effect.

The coverage at each nucleotide was extracted from each subject’s exome BAM file. The average
exome sequence coverage per individual was 40 X ranging from 20 X to 67 X at the target exome sequence.

Selection of Potentially Causative Variants

We utilized a custom-built interpretation scheme to identify possible causative variations, based
on several parameters including minor allele frequency, conservation, mutation type, predicted
pathogenicity, presence (in public databases or in literature) in genes already known to be associated
with phenotypes sharing common aspects with RTT or in genes involved in pathway relevant to the
development and features of the central nervous system. The prioritization was carried out using specific
bioinformatic tools as ToppGene (toppgene.cchmc.org) [79] and DAVIDgene (david.abcc.ncifcrf.gov).
Before proceeding to Single Nucleotide Variation (SNV) validation by Sanger Sequencing, prioritized
genes were further investigated individually by literature updates (www.ncbi.nlm.nih.gov/pubmed)
and through a range of bioinformatic websites providing further information about locus-specific
databases, protein structure, function, expression and interacting networks (www.genome.jp/kegg/,
ncbi.nlm.nih.gov/gene, www.genecards.org/).

toppgene.cchmc.org
david.abcc.ncifcrf.gov
www.ncbi.nlm.nih.gov/pubmed
www.genome.jp/kegg/
ncbi.nlm.nih.gov/gene
www.genecards.org/
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4.2.2. NGS Custom Panel for Pediatric Epilepsy

A Custom Illumina Panel covering coding regions and their intron–exon boundaries (flanking
20 nucleotides) of 33 genes (see Supplementary File S3) causing neonatal, infantile or childhood onset
seizures and/or autism was created in 2014 for sequencing using the True Seq Custom Amplicon
protocol according to the reference guide and analyzed in-house on an Illumina MiSeq instrument
(Illumina, San Diego, CA, USA).

4.2.3. NGS Custom Panel for Diagnostic Analysis

Genomic sequencing of whole coding region and intron-exon junctions of 35 genes involved in
RTT and syndromes in differential diagnosis (see Supplementary File S3) was performed by Illumina
Nextera Rapid Capture Enrichment protocol, following the manufacturer’s instructions.

For both approaches of NGS Custom Panel, the genomic regions with a coverage of less than 20 X
were analyzed by Sanger Sequencing or Nextera-XT-Library-prep protocol (Illumina) using MiSeq
Instrument for sequencing.

4.2.4. Variants Validation

The variants identified by all three experiments were validated by Sanger Sequencing using
a Big-Dye® Terminator v3.1 Cycle Sequencing Kit and analyzed in an Applied Biosystems Abi Prism
3500 Sequencer. The primers used for Sanger sequencing are shown in Table S2. Sanger sequencing
was also performed on DNA from patients’ parents. We analyzed microsatellite parental inheritance in
order to confirm the correct family relationship and avoid any possible sampling error. Microsatellite
analysis was performed using the commercial kit ChromoQuant® QF-PCR (CyberGene AB, Solna,
Sweden) which evaluates polymorphic loci on chromosomes X, Y, 13, 18 and 21, according to the
manufacturer’s protocol and analyzed on an ABI Prism 3500 sequencer (Applied Biosystems, Foster
City, CA, USA).

For STXBP1, splicing variants total RNA was extracted from peripheral blood leukocytes using
Tempus Spin RNA Isolation Kit (Applied Biosystems-Termofisher, Waltham, NA, USA) and reverse
transcribed to cDNA by SuperScript VILO Kit (Invitrogen-Termofisher, Waltham, NA, USA). cDNA
was amplified by Go Taq Hot Start Polymerase (Promega, Madison, WI, USA) and sequenced using
the Big DyeTerminator v.3.1 Cycle Sequencing Kit (Applied Biosystems) with primers: STXBP1ex2F
5’AAGAAGAAGGGGGAATGGAA3’, ex4-5R 5’GAGAGTGGACGGACTTCTCG3’ and Ex3-int3-mutF
5’AGGCATAACGAgcgagca, STXBP1 ex15-16F 5’ACCGATTCCACGCTGCGTCG3’, STXBP1ex19R
5’CCATTGTTGGAGCCTGATCC3’ and run on ABI PRISM 3500 sequencer (Applied Biosystems).

In the case of patient No. 7, Sanger Sequencing and Nextera-XT_library-prep protocol
was also conducted on DNA extracted from buccal swab collected with Oragene-DNA OG575,
using prepIT L2P kit (DNA genotek, Ottawa, Canada). Three different pairs of primers
were used to validate the variant on saliva and blood in the patient and her parents:
GABRG2EX8TrueSEQredF 5’AGTCTCACGAGTGACTCAGTTACCCAA3’, 5’GABRG2EX8True
SEQredR GTTATGGCCTGGCTAAACTCATACATG3’, GABRG2EX8blueF 5’tccctgtattctccatggca3’,
GABRG2EX8blueR 5’TTGTCCTTGCTTGGTTTCCG3’, GABRG2EX8greenF 5’ttcccattgctgaaactgcc3’,
GABRG2EX8greenR 5’CCTTGCTTGGTTTCCG3’.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/15/
3621/s1.
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Abbreviations

RTT Rett Syndrome
MECP2 Methyl CpG-binding protein 2
CREB1 cAMP Responsive Element Binding Protein 1
mTOR Mammalian Target of Rapamycin
GABA Gamma-aminobutyric acid
CDKL5 Cyclin-dependent kinase-like 5
FOXG1 Forkhead box G1 gene
NGS Next generation sequencing
WES Whole Exome Sequencing
DEE Developmental and Epileptic Encephalopaty
ID Intellectual Disability
EE Epileptic Encephalopaty
EOEE Early Onset Epileptic Encephalopaty
EIEE Early Infantil Epileptic Encephalopaty
STXBP1 Syntaxin-binding protein 1
GABRB2 Gamma-aminobutyric acid type A receptor beta2
GABRG2 Gamma-aminobutyric acid type A receptor gamma2
EME Early Myoclonic Encephalopathy
SNARE Soluble NSF Attachment Protein REceptor
Munc18-1 Mammalian uncoordinated-18-1
CNS Central Nervous System
FS Febrile Seizures
CAE Childhood Absence Epilepsy
GEFS + Generalized Epilepsy with Febrile Seizures plus
DS Dravet syndrome
TM Transmembrane Domain
ER Endoplasmic Reticulum
IECEE2 Infantile or Early Childhood Epilepsy Encephalopaty type 2
NTS Nucleus of the solitary tract

References

1. Laurvick, C.L.; de Klerk, N.; Bower, C.; Christodoulou, J.; Ravine, D.; Ellaway, C.; Williamson, S.; Leonard, H.
Rett syndrome in Australia: A review of the epidemiology. J. Pediatrics 2006, 148, 347–352. [CrossRef]
[PubMed]

2. Glaze, D.G.; Percy, A.K.; Motil, K.J.; Lane, J.B.; Isaacs, J.S.; Schultz, R.J.; Barrish, J.O.; Neul, J.L.; O’Brien, W.E.;
Smith, E.O. A study of the treatment of Rett syndrome with folate and betaine. J. Child. Neurol. 2009, 24,
551–556. [CrossRef] [PubMed]

3. Ehrhart, F.; Coort, S.L.; Cirillo, E.; Smeets, E.; Evelo, C.T.; Curfs, L.M. Rett syndrome - biological pathways
leading from MECP2 to disorder phenotypes. Orphanet J. Rare Dis. 2016, 11, 158. [CrossRef] [PubMed]

4. Weissman, J.; Naidu, S.; Bjornsson, H.T. Abnormalities of the DNA methylation mark and its machinery:
An emerging cause of neurologic dysfunction. Semin. Neurol. 2014, 34, 249–257. [CrossRef] [PubMed]

5. Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional
repression by the methyl-CpG-binding protein MECP2 involves a histone deacetylase complex. Nature 1998,
393, 386–389. [CrossRef]

http://dx.doi.org/10.1016/j.jpeds.2005.10.037
http://www.ncbi.nlm.nih.gov/pubmed/16615965
http://dx.doi.org/10.1177/0883073808327827
http://www.ncbi.nlm.nih.gov/pubmed/19225139
http://dx.doi.org/10.1186/s13023-016-0545-5
http://www.ncbi.nlm.nih.gov/pubmed/27884167
http://dx.doi.org/10.1055/s-0034-1386763
http://www.ncbi.nlm.nih.gov/pubmed/25192503
http://dx.doi.org/10.1038/30764


Int. J. Mol. Sci. 2019, 20, 3621 15 of 18

6. Skene, P.J.; Illingworth, R.S.; Webb, S.; Kerr, A.R.; James, K.D.; Turner, D.J.; Andrews, R.; Bird, A.P. Neuronal
MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 2010, 37,
457–468. [CrossRef] [PubMed]

7. Maunakea, A.K.; Chepelev, I.; Cui, K.; Zhao, K. Intragenic DNA methylation modulates alternative splicing
by recruiting MeCP2 to promote exon recognition. Cell Res. 2013, 23, 1256–1269. [CrossRef]

8. Cheng, T.L.; Wang, Z.; Liao, Q.; Zhu, Y.; Zhou, W.H.; Xu, W.; Qiu, Z. MECP2 suppresses nuclear microRNA
processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev. Cell 2014, 28, 547–560.
[CrossRef]

9. Bedogni, F.; Rossi, R.L.; Galli, F.; Cobolli Gigli, C.; Gandaglia, A.; Kilstrup-Nielsen, C.; Landsberger, N. Rett
syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci.
Biobehav. Rev. 2014, 46, 187–201. [CrossRef]

10. Landucci, E.; Brindisi, M.; Bianciardi, L.; Catania, L.M.; Daga, S.; Croci, S.; Frullanti, E.; Fallerini, C.; Butini, S.;
Brogi, S.; et al. iPSC -derived neurons profiling reveals GABAergic circuit disruption and acetylated
alpha-tubulin defect which improves after iHDAC6 treatment in Rett syndrome. Exp. Cell Res. 2018, 368,
225–235. [CrossRef]

11. Operto, F.F.; Mazza, R.; Pastorino, G.M.G.; Verrotti, A.; Coppola, G. Epilepsy and genetic in Rett syndrome:
A review. Brain Behav. 2019, 9, e01250. [CrossRef] [PubMed]

12. Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.;
Bailey, M.E.; Schanen, N.C.; Zappella, M.; et al. Rett syndrome: Revised diagnostic criteria and nomenclature.
Ann. Neurol. 2010, 68, 944–950. [CrossRef] [PubMed]

13. Percy, A.K. Rett syndrome: Recent research progress. J. Child. Neurol. 2008, 23, 543–549. [CrossRef] [PubMed]
14. Ehrhart, F.; Sangani, N.B.; Curfs, L.M.G. Current developments in the genetics of Rett and Rett-like syndrome.

Curr. Opin. Psychiatry 2018, 31, 103–108. [CrossRef] [PubMed]
15. Mari, F.; Azimonti, S.; Bertani, I.; Bolognese, F.; Colombo, E.; Caselli, R.; Scala, E.; Longo, I.; Grosso, S.;

Pescucci, C.; et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the
early-onset seizure variant of Rett syndrome. Hum. Mol. Genet. 2005, 14, 1935–1946. [CrossRef] [PubMed]

16. Scala, E.; Ariani, F.; Mari, F.; Caselli, R.; Pescucci, C.; Longo, I.; Meloni, I.; Giachino, D.; Bruttini, M.; Hayek, G.;
et al. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J. Med. Genet. 2005, 42,
103–107. [CrossRef] [PubMed]

17. Ariani, F.; Hayek, G.; Rondinella, D.; Artuso, R.; Mencarelli, M.A.; Spanhol-Rosseto, A.; Pollazzon, M.;
Buoni, S.; Spiga, O.; Ricciardi, S.; et al. FOXG1 is responsible for the congenital variant of Rett syndrome.
Am. J. Hum. Genet. 2008, 83, 89–93. [CrossRef]

18. Zhu, X.; Petrovski, S.; Xie, P.; Ruzzo, E.K.; Lu, Y.F.; McSweeney, K.M.; Ben-Zeev, B.; Nissenkorn, A.;
Anikster, Y.; Oz-Levi, D.; et al. Whole-exome sequencing in undiagnosed genetic diseases: Interpreting
119 trios. Genet. Med. 2015, 17, 774–781. [CrossRef]

19. Lucariello, M.; Vidal, E.; Vidal, S.; Saez, M.; Roa, L.; Huertas, D.; Pineda, M.; Dalfo, E.; Dopazo, J.; Jurado, P.;
et al. Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical
phenotype. Hum. Genet. 2016, 135, 1343–1354. [CrossRef]

20. Percy, A.K.; Lane, J.; Annese, F.; Warren, H.; Skinner, S.A.; Neul, J.L. When Rett syndrome is due to genes
other than MECP2. Transl. Sci. Rare Dis. 2018, 3, 49–53. [CrossRef]

21. Lopes, F.; Barbosa, M.; Ameur, A.; Soares, G.; de Sa, J.; Dias, A.I.; Oliveira, G.; Cabral, P.; Temudo, T.;
Calado, E.; et al. Identification of novel genetic causes of Rett syndrome-like phenotypes. J. Med. Genet.
2016, 53, 190–199. [CrossRef]

22. Kulikovskaja, L.; Sarajlija, A.; Savic-Pavicevic, D.; Dobricic, V.; Klein, C.; Westenberger, A. WDR45 mutations
may cause a MECP2 mutation-negative Rett syndrome phenotype. Neurol. Genet. 2018, 4, e227. [CrossRef]

23. Henriksen, M.W.; Ravn, K.; Paus, B.; von Tetzchner, S.; Skjeldal, O.H. De novo mutations in SCN1A are
associated with classic Rett syndrome: A case report. Bmc Med. Genet. 2018, 19, 184. [CrossRef] [PubMed]

24. Allou, L.; Julia, S.; Amsallem, D.; El Chehadeh, S.; Lambert, L.; Thevenon, J.; Duffourd, Y.; Saunier, A.;
Bouquet, P.; Pere, S.; et al. Rett-like phenotypes: Expanding the genetic heterogeneity to the KCNA2 gene
and first familial case of CDKL5-related disease. Clin. Genet. 2017, 91, 431–440. [CrossRef] [PubMed]

25. Stamberger, H.; Nikanorova, M.; Willemsen, M.H.; Accorsi, P.; Angriman, M.; Baier, H.;
Benkel-Herrenbrueck, I.; Benoit, V.; Budetta, M.; Caliebe, A.; et al. STXBP1 encephalopathy:
A neurodevelopmental disorder including epilepsy. Neurology 2016, 86, 954–962. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.molcel.2010.01.030
http://www.ncbi.nlm.nih.gov/pubmed/20188665
http://dx.doi.org/10.1038/cr.2013.110
http://dx.doi.org/10.1016/j.devcel.2014.01.032
http://dx.doi.org/10.1016/j.neubiorev.2014.01.011
http://dx.doi.org/10.1016/j.yexcr.2018.05.001
http://dx.doi.org/10.1002/brb3.1250
http://www.ncbi.nlm.nih.gov/pubmed/30929312
http://dx.doi.org/10.1002/ana.22124
http://www.ncbi.nlm.nih.gov/pubmed/21154482
http://dx.doi.org/10.1177/0883073807309786
http://www.ncbi.nlm.nih.gov/pubmed/18056689
http://dx.doi.org/10.1097/YCO.0000000000000389
http://www.ncbi.nlm.nih.gov/pubmed/29206688
http://dx.doi.org/10.1093/hmg/ddi198
http://www.ncbi.nlm.nih.gov/pubmed/15917271
http://dx.doi.org/10.1136/jmg.2004.026237
http://www.ncbi.nlm.nih.gov/pubmed/15689447
http://dx.doi.org/10.1016/j.ajhg.2008.05.015
http://dx.doi.org/10.1038/gim.2014.191
http://dx.doi.org/10.1007/s00439-016-1721-3
http://dx.doi.org/10.3233/TRD-180021
http://dx.doi.org/10.1136/jmedgenet-2015-103568
http://dx.doi.org/10.1212/NXG.0000000000000227
http://dx.doi.org/10.1186/s12881-018-0700-z
http://www.ncbi.nlm.nih.gov/pubmed/30305042
http://dx.doi.org/10.1111/cge.12784
http://www.ncbi.nlm.nih.gov/pubmed/27062609
http://dx.doi.org/10.1212/WNL.0000000000002457
http://www.ncbi.nlm.nih.gov/pubmed/26865513


Int. J. Mol. Sci. 2019, 20, 3621 16 of 18

26. Hamdan, F.F.; Myers, C.T.; Cossette, P.; Lemay, P.; Spiegelman, D.; Laporte, A.D.; Nassif, C.; Diallo, O.;
Monlong, J.; Cadieux-Dion, M.; et al. High rate of recurrent de novo mutations in developmental and
epileptic encephalopathies. Am. J. Hum. Genet. 2017, 101, 664–685. [CrossRef] [PubMed]

27. Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.;
Mathern, G.W.; Moshe, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE
commission for classification and terminology. Epilepsia 2017, 58, 512–521. [CrossRef] [PubMed]

28. Hamdan, F.F.; Piton, A.; Gauthier, J.; Lortie, A.; Dubeau, F.; Dobrzeniecka, S.; Spiegelman, D.; Noreau, A.;
Pellerin, S.; Cote, M.; et al. De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy.
Ann. Neurol. 2009, 65, 748–753. [CrossRef]

29. Baldridge, D.; Heeley, J.; Vineyard, M.; Manwaring, L.; Toler, T.L.; Fassi, E.; Fiala, E.; Brown, S.; Goss, C.W.;
Willing, M.; et al. The exome clinic and the role of medical genetics expertise in the interpretation of exome
sequencing results. Genet. Med. 2017, 19, 1040–1048. [CrossRef]

30. Sajan, S.A.; Jhangiani, S.N.; Muzny, D.M.; Gibbs, R.A.; Lupski, J.R.; Glaze, D.G.; Kaufmann, W.E.; Skinner, S.A.;
Annese, F.; Friez, M.J.; et al. Enrichment of mutations in chromatin regulators in people with Rett syndrome
lacking mutations in MECP2. Genet. Med. 2017, 19, 13–19. [CrossRef]

31. McTague, A.; Howell, K.B.; Cross, J.H.; Kurian, M.A.; Scheffer, I.E. The genetic landscape of the epileptic
encephalopathies of infancy and childhood. Lancet Neurol. 2016, 15, 304–316. [CrossRef]

32. Dawidowski, D.; Cafiso, D.S. Munc18-1 and the Syntaxin-1 n terminus regulate open-closed states in
a t-SNARE complex. Structure 2016, 24, 392–400. [CrossRef] [PubMed]

33. Kovacevic, J.; Maroteaux, G.; Schut, D.; Loos, M.; Dubey, M.; Pitsch, J.; Remmelink, E.; Koopmans, B.;
Crowley, J.; Cornelisse, L.N.; et al. Protein instability, haploinsufficiency, and cortical hyper-excitability
underlie STXBP1 encephalopathy. Brain 2018, 141, 1350–1374. [CrossRef] [PubMed]

34. Kang, J.Q. Defects at the crossroads of GABAergic signaling in generalized genetic epilepsies. Epilepsy Res.
2017, 137, 9–18. [CrossRef] [PubMed]

35. Toonen, R.F.; Wierda, K.; Sons, M.S.; de Wit, H.; Cornelisse, L.N.; Brussaard, A.; Plomp, J.J.; Verhage, M.
Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. Proc. Natl.
Acad. Sci. USA 2006, 103, 18332–18337. [CrossRef] [PubMed]

36. Saitsu, H.; Kato, M.; Shimono, M.; Senju, A.; Tanabe, S.; Kimura, T.; Nishiyama, K.; Yoneda, Y.; Kondo, Y.;
Tsurusaki, Y.; et al. Association of genomic deletions in the STXBP1 gene with Ohtahara syndrome. Clin.
Genet. 2012, 81, 399–402. [CrossRef]

37. Mastrangelo, M.; Peron, A.; Spaccini, L.; Novara, F.; Scelsa, B.; Introvini, P.; Raviglione, F.; Faiola, S.;
Zuffardi, O. Neonatal suppression-burst without epileptic seizures: Expanding the electroclinical phenotype
of STXBP1-related, early-onset encephalopathy. Epileptic Disord. 2013, 15, 55–61. [PubMed]

38. Aravindhan, A.; Shah, K.; Pak, J.; Veerapandiyan, A. Early-onset epileptic encephalopathy with myoclonic
seizures related to 9q33.3-q34.11 deletion involving STXBP1 and SPTAN1 genes. Epileptic Disord. 2018, 20,
214–218.

39. Deprez, L.; Weckhuysen, S.; Holmgren, P.; Suls, A.; Van Dyck, T.; Goossens, D.; Del-Favero, J.; Jansen, A.;
Verhaert, K.; Lagae, L.; et al. Clinical spectrum of early-onset epileptic encephalopathies associated with
STXBP1 mutations. Neurology 2010, 75, 1159–1165. [CrossRef]

40. Otsuka, M.; Oguni, H.; Liang, J.S.; Ikeda, H.; Imai, K.; Hirasawa, K.; Imai, K.; Tachikawa, E.; Shimojima, K.;
Osawa, M.; et al. STXBP1 mutations cause not only Ohtahara syndrome but also West syndrome–Result of
Japanese cohort study. Epilepsia 2010, 51, 2449–2452. [CrossRef]

41. Carvill, G.L.; Weckhuysen, S.; McMahon, J.M.; Hartmann, C.; Moller, R.S.; Hjalgrim, H.; Cook, J.; Geraghty, E.;
O’Roak, B.J.; Petrou, S.; et al. GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome. Neurology
2014, 82, 1245–1253. [CrossRef] [PubMed]

42. Hamdan, F.F.; Gauthier, J.; Dobrzeniecka, S.; Lortie, A.; Mottron, L.; Vanasse, M.; D’Anjou, G.; Lacaille, J.C.;
Rouleau, G.A.; Michaud, J.L. Intellectual disability without epilepsy associated with STXBP1 disruption.
Eur. J. Hum. Genet. 2011, 19, 607–609. [CrossRef] [PubMed]

43. Campbell, I.M.; Yatsenko, S.A.; Hixson, P.; Reimschisel, T.; Thomas, M.; Wilson, W.; Dayal, U.; Wheless, J.W.;
Crunk, A.; Curry, C.; et al. Novel 9q34.11 gene deletions encompassing combinations of four mendelian
disease genes: STXBP1, SPTAN1, ENG, and TOR1a. Genet. Med. 2012, 14, 868–876. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ajhg.2017.09.008
http://www.ncbi.nlm.nih.gov/pubmed/29100083
http://dx.doi.org/10.1111/epi.13709
http://www.ncbi.nlm.nih.gov/pubmed/28276062
http://dx.doi.org/10.1002/ana.21625
http://dx.doi.org/10.1038/gim.2016.224
http://dx.doi.org/10.1038/gim.2016.42
http://dx.doi.org/10.1016/S1474-4422(15)00250-1
http://dx.doi.org/10.1016/j.str.2016.01.005
http://www.ncbi.nlm.nih.gov/pubmed/26876096
http://dx.doi.org/10.1093/brain/awy046
http://www.ncbi.nlm.nih.gov/pubmed/29538625
http://dx.doi.org/10.1016/j.eplepsyres.2017.08.013
http://www.ncbi.nlm.nih.gov/pubmed/28865303
http://dx.doi.org/10.1073/pnas.0608507103
http://www.ncbi.nlm.nih.gov/pubmed/17110441
http://dx.doi.org/10.1111/j.1399-0004.2011.01733.x
http://www.ncbi.nlm.nih.gov/pubmed/23531706
http://dx.doi.org/10.1212/WNL.0b013e3181f4d7bf
http://dx.doi.org/10.1111/j.1528-1167.2010.02767.x
http://dx.doi.org/10.1212/WNL.0000000000000291
http://www.ncbi.nlm.nih.gov/pubmed/24623842
http://dx.doi.org/10.1038/ejhg.2010.183
http://www.ncbi.nlm.nih.gov/pubmed/21364700
http://dx.doi.org/10.1038/gim.2012.65
http://www.ncbi.nlm.nih.gov/pubmed/22722545


Int. J. Mol. Sci. 2019, 20, 3621 17 of 18

44. Rauch, A.; Wieczorek, D.; Graf, E.; Wieland, T.; Endele, S.; Schwarzmayr, T.; Albrecht, B.; Bartholdi, D.;
Beygo, J.; Di Donato, N.; et al. Range of genetic mutations associated with severe non-syndromic sporadic
intellectual disability: An exome sequencing study. Lancet 2012, 380, 1674–1682. [CrossRef]

45. Khaikin, Y.; Mercimek-Mahmutoglu, S. STXBP1 encephalopathy with epilepsy. In Genereviews; Adam, M.P.,
Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; GeneReviews®
[Internet]: Washington, DC, USA, 2016.

46. Yuge, K.; Iwama, K.; Yonee, C.; Matsufuji, M.; Sano, N.; Saikusa, T.; Yae, Y.; Yamashita, Y.; Mizuguchi, T.;
Matsumoto, N.; et al. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl. Brain Dev.
2018, 40, 493–497. [CrossRef]

47. Romaniello, R.; Saettini, F.; Panzeri, E.; Arrigoni, F.; Bassi, M.T.; Borgatti, R. A de-novo STXBP1 gene mutation
in a patient showing the Rett syndrome phenotype. Neuroreport 2015, 26, 254–257. [CrossRef]

48. Olson, H.E.; Tambunan, D.; LaCoursiere, C.; Goldenberg, M.; Pinsky, R.; Martin, E.; Ho, E.; Khwaja, O.;
Kaufmann, W.E.; Poduri, A. Mutations in epilepsy and intellectual disability genes in patients with features
of Rett syndrome. Am. J. Med. Genet. 2015, 167, 2017–2025. [CrossRef]

49. Allen, N.M.; Conroy, J.; Shahwan, A.; Lynch, B.; Correa, R.G.; Pena, S.D.; McCreary, D.; Magalhaes, T.R.;
Ennis, S.; Lynch, S.A.; et al. Unexplained early onset epileptic encephalopathy: Exome screening and
phenotype expansion. Epilepsia 2016, 57, e12–e17. [CrossRef]

50. Fitzgerald, T.W.; Gerety, S.S.; Jones, W.D.; van Kogelenberg, M.; King, D.A.; McRae, J.; Morley, K.I.;
Parthiban, V.; Al-Turki, S.; Ambridge, K.; et al. Deciphering Developmental Disorders, S. Large-scale
discovery of novel genetic causes of developmental disorders. Nature 2015, 519, 223–228.

51. Barcia, G.; Chemaly, N.; Gobin, S.; Milh, M.; Van Bogaert, P.; Barnerias, C.; Kaminska, A.; Dulac, O.;
Desguerre, I.; Cormier, V.; et al. Early epileptic encephalopathies associated with STXBP1 mutations: Could
we better delineate the phenotype? Eur. J. Med. Genet. 2014, 57, 15–20. [CrossRef]

52. Keogh, M.J.; Daud, D.; Pyle, A.; Duff, J.; Griffin, H.; He, L.; Alston, C.L.; Steele, H.; Taggart, S.; Basu, A.P.; et al.
A novel de novo STXBP1 mutation is associated with mitochondrial complex I deficiency and late-onset
juvenile-onset parkinsonism. Neurogenetics 2015, 16, 65–67. [CrossRef] [PubMed]

53. Olson, H.E.; Kelly, M.; LaCoursiere, C.M.; Pinsky, R.; Tambunan, D.; Shain, C.; Ramgopal, S.; Takeoka, M.;
Libenson, M.H.; Julich, K.; et al. Genetics and genotype-phenotype correlations in early onset epileptic
encephalopathy with burst suppression. Ann. Neurol. 2017, 81, 419–429. [CrossRef] [PubMed]

54. Kobayashi, Y.; Ohashi, T.; Akasaka, N.; Tohyama, J. Congenital variant of Rett syndrome due to an intragenic
large deletion in MECP2. Brain Dev. 2012, 34, 601–604. [CrossRef] [PubMed]

55. Rajaei, S.; Erlandson, A.; Kyllerman, M.; Albage, M.; Lundstrom, I.; Karrstedt, E.L.; Hagberg, B. Early
infantile onset “congenital” Rett syndrome variants: Swedish experience through four decades and mutation
analysis. J. Child. Neurol. 2011, 26, 65–71. [CrossRef] [PubMed]

56. Einspieler, C.; Marschik, P.B. Regression in Rett syndrome: Developmental pathways to its onset. Neurosci.
Biobehav. Rev. 2019, 98, 320–332. [CrossRef] [PubMed]

57. Bahi-Buisson, N.; Kaminska, A.; Boddaert, N.; Rio, M.; Afenjar, A.; Gerard, M.; Giuliano, F.; Motte, J.;
Heron, D.; Morel, M.A.; et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia 2008,
49, 1027–1037. [CrossRef]

58. Pintaudi, M.; Calevo, M.G.; Vignoli, A.; Parodi, E.; Aiello, F.; Baglietto, M.G.; Hayek, Y.; Buoni, S.; Renieri, A.;
Russo, S.; et al. Epilepsy in Rett syndrome: Clinical and genetic features. Epilepsy Behav. 2010, 19, 296–300.
[CrossRef]

59. Rezazadeh, A.; Uddin, M.; Snead, O.C., 3rd; Lira, V.; Silberberg, A.; Weiss, S.; Donner, E.J.; Zak, M.;
Bradbury, L.; Scherer, S.W.; et al. STXBP1 encephalopathy is associated with awake bruxism. Epilepsy Behav.
2019, 92, 121–124. [CrossRef]

60. Sarto-Jackson, I.; Sieghart, W. Assembly of GABA(a) receptors (review). Mol. Membr. Biol. 2008, 25, 302–310.
[CrossRef]

61. Kang, J.Q.; MacDonald, R.L. Molecular pathogenic basis for GABRG2 mutations associated with a spectrum
of epilepsy syndromes, from generalized absence epilepsy to Dravet syndrome. Jama Neurol. 2016, 73,
1009–1016. [CrossRef]

62. Alldred, M.J.; Mulder-Rosi, J.; Lingenfelter, S.E.; Chen, G.; Luscher, B. Distinct gamma2 subunit domains
mediate clustering and synaptic function of postsynaptic GABAa receptors and gephyrin. J. Neurosci. 2005,
25, 594–603. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(12)61480-9
http://dx.doi.org/10.1016/j.braindev.2018.02.002
http://dx.doi.org/10.1097/WNR.0000000000000337
http://dx.doi.org/10.1002/ajmg.a.37132
http://dx.doi.org/10.1111/epi.13250
http://dx.doi.org/10.1016/j.ejmg.2013.10.006
http://dx.doi.org/10.1007/s10048-014-0431-z
http://www.ncbi.nlm.nih.gov/pubmed/25418441
http://dx.doi.org/10.1002/ana.24883
http://www.ncbi.nlm.nih.gov/pubmed/28133863
http://dx.doi.org/10.1016/j.braindev.2011.09.014
http://www.ncbi.nlm.nih.gov/pubmed/22001500
http://dx.doi.org/10.1177/0883073810374125
http://www.ncbi.nlm.nih.gov/pubmed/21212452
http://dx.doi.org/10.1016/j.neubiorev.2019.01.028
http://www.ncbi.nlm.nih.gov/pubmed/30832924
http://dx.doi.org/10.1111/j.1528-1167.2007.01520.x
http://dx.doi.org/10.1016/j.yebeh.2010.06.051
http://dx.doi.org/10.1016/j.yebeh.2018.12.018
http://dx.doi.org/10.1080/09687680801914516
http://dx.doi.org/10.1001/jamaneurol.2016.0449
http://dx.doi.org/10.1523/JNEUROSCI.4011-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15659595


Int. J. Mol. Sci. 2019, 20, 3621 18 of 18

63. Hernandez, C.C.; Kong, W.; Hu, N.; Zhang, Y.; Shen, W.; Jackson, L.; Liu, X.; Jiang, Y.; Macdonald, R.L.
Altered channel conductance states and gating of GABAa receptors by a pore mutation linked to Dravet
syndrome. eNeuro 2017, 4. [CrossRef]

64. Shen, D.; Hernandez, C.C.; Shen, W.; Hu, N.; Poduri, A.; Shiedley, B.; Rotenberg, A.; Datta, A.N.; Leiz, S.;
Patzer, S.; et al. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain 2017, 140,
49–67. [CrossRef] [PubMed]

65. Zou, F.; McWalter, K.; Schmidt, L.; Decker, A.; Picker, J.D.; Lincoln, S.; Sweetser, D.A.; Briere, L.C.; Harini, C.;
Members of the Undiagnosed Diseases, N.; et al. Expanding the phenotypic spectrum of GABRG2 variants:
A recurrent GABRG2 missense variant associated with a severe phenotype. J. Neurogenet. 2017, 31, 30–36.
[CrossRef] [PubMed]

66. Stosser, M.B.; Lindy, A.S.; Butler, E.; Retterer, K.; Piccirillo-Stosser, C.M.; Richard, G.; McKnight, D.A. High
frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders.
Genet. Med. 2018, 20, 403–410. [CrossRef] [PubMed]

67. Myers, C.T.; Hollingsworth, G.; Muir, A.M.; Schneider, A.L.; Thuesmunn, Z.; Knupp, A.; King, C.; Lacroix, A.;
Mehaffey, M.G.; Berkovic, S.F.; et al. Parental mosaicism in "de novo" epileptic encephalopathies. New Engl.
J. Med. 2018, 378, 1646–1648. [CrossRef] [PubMed]

68. Muir, A.M.; King, C.; Schneider, A.L.; Buttar, A.S.; Scheffer, I.E.; Sadleir, L.G.; Mefford, H.C. Double somatic
mosaicism in a child with Dravet syndrome. Neurol. Genet. 2019, 5, e333. [CrossRef]

69. Jacob, T.C.; Moss, S.J.; Jurd, R. Gaba(a) receptor trafficking and its role in the dynamic modulation of neuronal
inhibition. Nat. Rev. Neurosci. 2008, 9, 331–343. [CrossRef]

70. Srivastava, S.; Cohen, J.; Pevsner, J.; Aradhya, S.; McKnight, D.; Butler, E.; Johnston, M.; Fatemi, A. A novel
variant in GABRB2 associated with intellectual disability and epilepsy. Am. J. Med. Genet. 2014, 164,
2914–2921. [CrossRef]

71. Ishii, A.; Kang, J.Q.; Schornak, C.C.; Hernandez, C.C.; Shen, W.; Watkins, J.C.; Macdonald, R.L.; Hirose, S. A
de novo missense mutation of GABRB2 causes early myoclonic encephalopathy. J. Med. Genet. 2017, 54,
202–211. [CrossRef]

72. Chao, H.T.; Chen, H.; Samaco, R.C.; Xue, M.; Chahrour, M.; Yoo, J.; Neul, J.L.; Gong, S.; Lu, H.C.; Heintz, N.;
et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.
Nature 2010, 468, 263–269. [CrossRef] [PubMed]

73. Chen, C.Y.; Di Lucente, J.; Lin, Y.C.; Lien, C.C.; Rogawski, M.A.; Maezawa, I.; Jin, L.W. Defective GABAergic
neurotransmission in the nucleus tractus solitarius in MECP2-null mice, a model of Rett syndrome. Neurobiol.
Dis. 2018, 109, 25–32. [CrossRef] [PubMed]

74. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics
2010, 26, 589–595. [CrossRef] [PubMed]

75. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.;
Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A mapreduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [CrossRef] [PubMed]

76. DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.;
Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [CrossRef] [PubMed]

77. Cingolani, P.; Platts, A.; Wang le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M.
A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in
the genome of Drosophila Melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [CrossRef] [PubMed]

78. Liu, X.; Jian, X.; Boerwinkle, E. Dbnsfp v2.0: A database of human non-synonymous SNVs and their
functional predictions and annotations. Hum. Mutat. 2013, 34, E2393–E2402. [CrossRef]

79. Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene suite for gene list enrichment analysis and
candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1523/ENEURO.0251-16.2017
http://dx.doi.org/10.1093/brain/aww272
http://www.ncbi.nlm.nih.gov/pubmed/27864268
http://dx.doi.org/10.1080/01677063.2017.1315417
http://www.ncbi.nlm.nih.gov/pubmed/28460589
http://dx.doi.org/10.1038/gim.2017.114
http://www.ncbi.nlm.nih.gov/pubmed/28837158
http://dx.doi.org/10.1056/NEJMc1714579
http://www.ncbi.nlm.nih.gov/pubmed/29694806
http://dx.doi.org/10.1212/NXG.0000000000000333
http://dx.doi.org/10.1038/nrn2370
http://dx.doi.org/10.1002/ajmg.a.36714
http://dx.doi.org/10.1136/jmedgenet-2016-104083
http://dx.doi.org/10.1038/nature09582
http://www.ncbi.nlm.nih.gov/pubmed/21068835
http://dx.doi.org/10.1016/j.nbd.2017.09.006
http://www.ncbi.nlm.nih.gov/pubmed/28927958
http://dx.doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.4161/fly.19695
http://www.ncbi.nlm.nih.gov/pubmed/22728672
http://dx.doi.org/10.1002/humu.22376
http://dx.doi.org/10.1093/nar/gkp427
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	STXBP1 Variants 
	Clinical Features of Girls with STXBP1 Variants 
	GABAa Receptors Genes Variants 
	Clinical Features of Girls with Variants in GABAa Receptors Genes 

	Discussion 
	Materials and Methods 
	Patients 
	Methods 
	WES 
	NGS Custom Panel for Pediatric Epilepsy 
	NGS Custom Panel for Diagnostic Analysis 
	Variants Validation 


	References

