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Abstract. In this note we show that Lorentzian Concircular Structure

manifolds (LCS)n coincide with Generalized Robertson-Walker space-

times.

Generalized Robertson-Walker (GRW) space-times were introduced in 1995
by Aĺıas, Romero and Sánchez [1] as the warped product −1 ×q2 M∗, where
(M∗, g∗) is a Riemannian submanifold. In other terms, they are Lorentzian
manifolds characterised by a metric

gijdx
idxj = −(dt)2 + q(t)2g∗µν(x1, . . . , xn−1)dxµdxν .(1)

They are interesting not only for geometry [2, 5, 9–11], but also for physics:
they include relevant space-times such as Robertson-Walker, Einstein-de Sitter,
static Einstein, de-Sitter, the Friedmann cosmological models. They are a wide
generalization of space-times for cosmological models.

In 2003 A. A. Shaikh [12] introduced the notion of Lorentzian Concircular
Structure (LCS)n. It is a Lorentzian manifold endowed with a unit time-like
concircular vector field, i.e., uiui = −1 and

∇kuj = ϕ(ukuj + gkj),(2)

where ϕ 6= 0 is a scalar function obeying

∇jϕ = µuj(3)

being µ a scalar function. Various authors studied the properties of (LCS)n
manifolds [6, 13–15].

We show that GRW and (LCS)n are the same space-times.
We recall few definitions that will be used in this note. The first ones are

the definitions of “torse-forming” and “concircular” vector fields, by Yano:

Definition 1 (Yano, [16, 17]). A vector field Xj is named torse-forming if
∇kXj = ωkXj + ϕgkj , being ϕ a scalar function and ωk a non vanishing one-
form. It is named concircular if ωk is a gradient or locally a gradient of a scalar
function.
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Fialkow gave a definition different from Yano’s:

Definition 2 (Fialkow [4]). A vector field Xj is named concircular if it satisfies
∇kXj = ρgkj , being ρ a scalar function.

The following simple but deep result was recently proven:

Theorem 3 (Bang-Yen Chen, [3]). A n > 3 dimensional Lorentzian manifold
is a GRW space-time if and only if it admits a time-like concircular vector field
(in the sense of Fialkow).

It is worth noticing that for a unit time-like vector field, the torse-forming
property by Yano becomes precisely Eq. (2), with generic scalar field ϕ. Based
on Chen’s theorem we proved:

Proposition 4 (Mantica and Molinari, [7,8]). A n > 3 dimensional Lorentzian
manifold is a GRW space-time if and only if it admits a unit time-like torse-
forming vector, (2), that is also an eigenvector of the Ricci tensor.

Now comes the equivalence: from (2) (holding either for GRW and (LCS)n
space-times) we evaluate

Rjkl
mum = [∇j ,∇k]ul = (hkl∇j − hjl∇k)ϕ− ϕ2(ujgkl − ukgjl),

where hkl = ukul + gkl. Contraction with gjl gives

Rk
mum = uk[um∇mϕ+ (n− 1)ϕ2]− (n− 2)∇kϕ.(4)

If (3) holds, then uk is an eigenvector of the Ricci tensor, and we conclude that
a (LCS)n manifold is a GRW space-time.

If Rkmu
m = ξuk it is (n − 2)∇kϕ = αuk for some scalar field α, i.e., (3)

holds. Then we conclude that a GRW space-time is a (LCS)n manifold.
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