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A NOTE ON CONCIRCULAR STRUCTURE SPACE-TIMES
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ABSTRACT. In this note we show that Lorentzian Concircular Structure
manifolds (LCS), coincide with Generalized Robertson-Walker space-
times.

Generalized Robertson-Walker (GRW) space-times were introduced in 1995
by Alfas, Romero and Sanchez [1] as the warped product —1 x,2 M*, where
(M*,g*) is a Riemannian submanifold. In other terms, they are Lorentzian
manifolds characterised by a metric

(1) gijdr'da? = —(dt)* + q(t)zg:‘w(xl, cos " Y dat da .

They are interesting not only for geometry [2,5,9-11], but also for physics:
they include relevant space-times such as Robertson-Walker, Einstein-de Sitter,
static Einstein, de-Sitter, the Friedmann cosmological models. They are a wide
generalization of space-times for cosmological models.

In 2003 A. A. Shaikh [12] introduced the notion of Lorentzian Concircular
Structure (LC'S),,. Tt is a Lorentzian manifold endowed with a unit time-like
concircular vector field, i.e., ufu; = —1 and

(2) Viu; = @(uru; + grj),
where ¢ # 0 is a scalar function obeying
(3) Ve = pu;
being p a scalar function. Various authors studied the properties of (LCS),
manifolds [6,13-15].
We show that GRW and (LCS),, are the same space-times.

We recall few definitions that will be used in this note. The first ones are
the definitions of “torse-forming” and “concircular” vector fields, by Yano:

Definition 1 (Yano, [16,17]). A vector field X; is named torse-forming if
ViX; = wpX; + @gi;j, being ¢ a scalar function and wy, a non vanishing one-
form. It is named concircular if wy, is a gradient or locally a gradient of a scalar
function.
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Fialkow gave a definition different from Yano’s:

Definition 2 (Fialkow [4]). A vector field X is named concircular if it satisfies
Vi X; = pgr;, being p a scalar function.

The following simple but deep result was recently proven:

Theorem 3 (Bang-Yen Chen, [3]). A n > 3 dimensional Lorentzian manifold
is a GRW space-time if and only if it admits a time-like concircular vector field
(in the sense of Fialkow).

It is worth noticing that for a unit time-like vector field, the torse-forming
property by Yano becomes precisely Eq. (2), with generic scalar field ¢. Based
on Chen’s theorem we proved:

Proposition 4 (Mantica and Molinari, [7,8]). A n > 3 dimensional Lorentzian
manifold is a GRW space-time if and only if it admits a unit time-like torse-
forming vector, (2), that is also an eigenvector of the Ricci tensor.

Now comes the equivalence: from (2) (holding either for GRW and (LCS),,
space-times) we evaluate

Rk ™ = [V, ViJuy = (hitVj — hjiVi)e — ¢ (wigr — urgi),
where hy; = upu; + gg;. Contraction with gjl gives
(4) Rt = up[u™ Ve + (n — 1)¢%] — (n — 2) V.

If (3) holds, then uy is an eigenvector of the Ricci tensor, and we conclude that
a (LCS),, manifold is a GRW space-time.

If Rpmu™ = Euy it is (n — 2)Vip = auy for some scalar field «, i.e., (3)
holds. Then we conclude that a GRW space-time is a (LCS),, manifold.
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