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1 ABSTRACT

2 Trees in Mediterranean areas frequently face severe drought stress events, due to sudden decreases in 

3 soil water availability associated to intense heat waves. The knowledge of strategies adopted by plants 

4 to cope with the environmental pressures associated to Mediterranean climate is crucial for reforestation 

5 strategies and planning future urban greening. Here we investigated the physiological and biochemical 

6 adjustments activated by Celtis australis in response to drought stress during summer. Despite widely 

7 used for reforestation in Southern Mediterranean, how C. australis responds to the severe challenges 

8 imposed by Mediterranean climate has not investigated yet. In our study, we performed analyses of water 

9 relations, gas exchange and PSII performance, the concentration of photosynthetic pigments, the activity 

10 and the concentration of primary antioxidants in plants exposed to drought stress of increasing severity. 

11 Data of our study reveal that C. australis displays both conservative water use and isohydric behavior in 

12 response to drought, and diffusive resistance mostly limits photosynthesis even at severe drought. Our 

13 study also reveals an effective down-regulation rather than permanent impairment of PSII 

14 photochemistry in response to drought stress of increasing severity, since excess electron transport due 

15 to declines in photosynthesis (-61% at severe stress, compared to control) was matched by an increase in 

16 nonphotochemical quenching (+71% at severe stress, compared to control). However, our study 

17 highlights that under severe drought, zeaxanthin (and neoxanthin) increased by 75% (and 25%), likely 

18 served an important function as chloroplast antioxidant, other than sustaining nonphotochemical 

19 quenching. Antioxidant enzymes and ascorbate also increased (+132% on average for superoxide 

20 dismutase, ascorbate peroxidase, and catalase) and contributed in countering oxidative stress in severely 

21 droughted plants. Large adjustments in the suite of physiological and biochemical traits may effectively 

22 enable C. australis to gain carbon at appreciable rates while avoiding irreversible damage to the 

23 photosynthetic apparatus even when challenged by severe drought stress, thereby making this species an 

24 excellent candidate for forest and urban plantings in sites experiencing extended periods of drought 

25 stress. 

26

27 Key words: antioxidant enzymes, gas exchange and PSII performance, isohydry, Mediterranean climate, 

28 photo-oxidative stress, xanthophylls 

29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



2

30 1. Introduction

31 There is strong interest in understanding plant responses to drought since the frequency of intense 

32 dry periods has increased much during the last three decades, and it is predicted to rise further because 

33 of climate change (Flexas et al., 2014; Matesanz and Valladares, 2014; Percival, 2017). Plants living in 

34 the Mediterranean basin frequently experience severe drought conditions, since rainfall scarcity occurs 

35 in concomitance with intense heat waves under excessive solar irradiance (Bussotti et al., 2014; Matesanz 

36 and Valladares, 2014). The negative impact of multiple stressors on plant performance will be 

37 exacerbated by climate change (Allen et al., 2010), thereby increasing the risk of regional-scale mortality 

38 in both forest and urban Mediterranean areas (Giorgi and Lionello, 2008). There is recent evidence, 

39 indeed, that in response to drought stress, Mediterranean plants display a more negative predawn leaf 

40 water potential (ψw) compared to not only temperate and tropical species, but also to desert plants 

41 (Martinez-Vilalta et al., 2014). 

42 Plants inhabiting the Mediterranean areas adopt different strategies to cope with the severe 

43 scarcity of water available to the roots during the summer period (Lo Gullo and Salleo 1988; Quero et 

44 al., 2011), which originates from both rainfall scarcity and high evapo-transpiration demand. Some 

45 species display a near-anisohydric stomatal behavior in response to drought stress, which is manifested 

46 by low stomatal sensitivity to vapor pressure deficit (VPD) an active osmotic adjustment, and marked 

47 changes in cell wall elasticity and xylem traits (Kozlowski and Pallardy, 2002). This results in near-

48 anisohydric plants actively decreasing  their leaf ψw to similar or even greater extent than the drop in soil 

49 water potential, thereby maintaining soil-to-leaf water flux and a positive net carbon assimilation, even 

50 at very negative soil water potentials (Kozlowski and Pallardy, 2002; Roman et al., 2015). Instead, near-

51 isohydric species display early depression in stomatal conductance to maintain ψw within a narrow range 

52 and avoid embolism, but at expenses of photosynthetic gas exchange (Quero et al., 2011; Tattini et al., 

53 2015). This large reduction in the use radiant energy for carbon fixation enhances greatly the generation 

54 of reactive oxygen species (ROS), and imposes severe photo-oxidative stress to leaves (Hernández et al., 

55 2012; Tattini et al., 2015). 

56 Highly integrated biochemical adjustments operate in plants to effectively limit ROS formation 

57 and scavenge ROS once they are formed in response to drought (Noctor et al., 2014). These include the 

58 activation of a network of ‘antioxidant’ defenses, primarily constituted by photosynthetic pigments, 

59 antioxidant enzymes and low molecular weight antioxidants (Apel and Hirt, 2004; Pintó-Matijuan and 
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60 Munné-Bosch, 2014; Esteban et al., 2015a,b). This metabolic plasticity is of crucial significance for the 

61 survival of near-isohydric plants to the environmental challenges imposed by the Mediterranean climate 

62 (Tattini et al., 2015). There is still uncertainty about the effectiveness of such antioxidant system in 

63 preserving leaves from irreversible photooxidative damage during severe drought stress (Fini et al., 2012; 

64 Noctor et al., 2014; Tattini et al., 2015).

65 For instance, loss of chlorophyll may reduce centers of light absorption under excessive sunlight, 

66 but contemporarily limits the plant capacity to assimilate carbon and to promote new growth. There is 

67 controversial evidence that reduction in chlorophyll concentration is effective in reducing drought-

68 induced photooxidative damage (Munné-Bosch et al., 2001; 2003), and chlorophyll loss has been 

69 associated to species or genotypes that display low resistance to drought (Colom and Vazzana 2003). In 

70 contrast, increases in carotenoid biosynthesis in response to several abiotic stresses have been 

71 documented in several species (possibly through ROS-mediated signaling, Fanciullino et al., 2014), with 

72 a very few exceptions (e.g. when leaves suffer from very severe dehydration, Colom and Vazzana 2003). 

73 This conforms to the notion that the ratio of carotenoids, particularly of violaxanthin cycle pigments 

74 (VAZ) to chlorophyll, increases when the radiation use efficiency is limited by a wide range of 

75 environmental constraints, including drought (Esteban et al., 2015a; Tattini et al., 2015). Carotenoids 

76 may indeed serve functions that go well beyond their mere ability to quench the excess energy in the 

77 chloroplast, when plants face severe drought (Davison et al., 2002; Demmig-Adams and Adams, 2006; 

78 Ramel et al., 2012; Esteban et al., 2015a,b). Zeaxanthin (Zea) may enhance the rigidity of thylakoid 

79 membranes, thus limiting lipid peroxidation (Jahns and Holzwarth, 2012; Domonkos et al., 2013; Havaux 

80 and Garcia-Plazaola, 2014; Esteban et al., 2015a, Tattini et al., 2015). Similarly, β-carotene (β-car), due 

81 to its specific location in the core complexes of PSI and PSII, may effectively quench the highly reactive 

82 singlet oxygen (1O2), rather than deactivate the chlorophyll triplet state (3Chl*) (Ramel et al., 2012, 2013). 

83 Similarly, the effectiveness of antioxidant enzymes to control cellular redox homeostasis has been 

84 questioned in some instances (Peltzer and Polle, 2001; Peltzer et al., 2002; Fini et al., 2011, 2012). There 

85 is evidence that the activities of catalase and ascorbate peroxidases substantially decrease in plants facing 

86 a severe light excess (Mubarakshina et al., 2010; Fini et al., 2011, Agati et al., 2012; Fini et al., 2012), 

87 as observed in isohydric plants suffering from multiple stressors associated to Mediterranean summer 

88 conditions (Tattini et al., 2015). 
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89 Celtis australis, native of thermophile mixed deciduous forests in the South Mediterranean is largely 

90 used in reforestation plans in semiarid riparian zone as well as in restoration programs of natural 

91 Mediterranean ecosystems (Schirone et al., 2011). In addition to its importance in natural Mediterranean 

92 ecosystems, C. australis is also widely planted in the green infrastructure in cities across the Southern 

93 Mediterranean (Oliveira et al., 2011; Gratani et al., 2016). Despite the large utilization of this species to 

94 extensively replace ornamental trees that are not native to the Mediterranean (Konijnendijk, 2008), the 

95 responses of C. australis to drought have been poorly investigated. 

96 Therefore, in our study we investigated the physiological and biochemical strategies adopted by 

97 C. australis to cope with drought stress of increasing severity during Mediterranean summer. We 

98 analyzed (1) water relations, gas exchange and PSII performance; (2) relevant biochemical traits involved 

99 in photoprotection mechanisms, such as the concentration of photosynthetic pigments, the activity and 

100 the concentration of primary antioxidants and (3) markers of photo-oxidative damage, related to the 

101 oxidation of membrane lipids and proteins. 

102 2. Material and Methods

103 2.1. Plant material and growth conditions

104 Two–year-old Celtis australis L. plants were grown in 8-L pots with a peat/pumice substrate 

105 (50:50, v:v), and grown outside in screen houses in Florence, Italy (43 46’ N, 11 15’ E). Screen houses 

106 were covered with a 100 µm ETFE fluoropolymer film (NOWOFLON® ET-6235, NOWOFLON® 

107 Kunststoffprodukte GmbH & Co. KG, Siegsdorf, Germany), as reported in Agati et al. (2011). Drought 

108 stress was imposed by withholding water (WS plants) whereas control plants (WW) were irrigated daily 

109 to pot capacity, over a two-week experimental period. Pots were weighed daily, and actual water content 

110 (AWC) of the substrate, a parameter depicting available moisture, was calculated as described in Fini et 

111 al. (2013). Solar irradiance and air temperature, over the experimental period, were recorded at the 

112 Institute of Biometeorology of the National Research Council of Italy 

113 (http://www.lamma.rete.toscana.it/en/weather-stations-data) located 200 m away from the experimental 

114 site. The experiment was performed in July, under minimum/maximum temperatures of 18.3 ± 1.5 / 33.1 

115 ± 2.6 C, and midday photosynthetic photon flux density (PPFD) of 1780 ± 140 µmol quanta m-2 s-1 

116 (mean ± standard deviation, n = 15). Measurements were conducted one and two weeks after withholding 

117 water in fully developed leaves. 

118 2.2. Analysis of water relations, gas exchanges and chlorophyll fluorescence 
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119 Measurements of predawn water (ψw) and osmotic (ψπ) potentials, and relative water content 

120 (RWC) were conducted as in Tattini et al. (2002). Net assimilation rate (AN), stomatal conductance (gs), 

121 and intercellular CO2 concentration (Ci) were measured using a LI-6400 portable photosynthesis system 

122 (Li-Cor, Lincoln, NE, USA). Measurements were conducted at 1200 µmol photons m−2 s−1 , a leaf 

123 temperature of 30°C, and external CO2 concentration of 400 µmol mol−1. Irradiance was provided by the 

124 Li-Cor integrated light source. To draw photosynthetic response curves to internal CO2 concentration 

125 (AN/Ci), measurements were first recorded at 400 µmol mol−1 external CO2 concentration (Ca). Then, Ca 

126 was decreased stepwise to 50 µmol mol−1, returned to 400 µmol mol−1, finally increased to 1800 µmol 

127 mol−1 as reported in Tattini et al. (2015). The apparent maximum carboxylation rate allowed by Rubisco 

128 (Vc,max), and the apparent maximum electron transport rate contributing to ribulose-1,5-bisphosphate 

129 (RuBP) regeneration (Jmax) were calculated from AN/Ci curves, as described by Sharkey et al. (2007). A 

130 quantitative analysis of stomatal (SL), and non-stomatal (NSL) limitations to AN was performed from 

131 AN/Ci curves as described previously (Lawlor, 2002; Long and Bernacchi, 2003). Briefly, SL were 

132 assessed as: SL = (A’’-A’)/A’’, where A’ is net CO2 assimilation at ambient CO2 concentration and A’’ 

133 is CO2 assimilation assuming Ci = Ca (i.e. infinite gs). NSL were assessed as NSL = (A – B)/A where A 

134 and B denote CO2 assimilation at ambient CO2 concentration in unstressed and drought stressed plants, 

135 respectively.

136 Chlorophyll-fluorescence kinetics analysis was conducted using an Imaging-PAM chlorophyll 

137 fluorometer (Heinz Walz, Effeltrich, Germany), as detailed in Tattini et al. (2015). Minimum 

138 fluorescence (F0) was determined after a 0.8 μmol m−2 s−1 measuring light in dark-adapted leaves (over 

139 a 30-min period), and maximum fluorescence in the dark-adapted state (Fm) using saturating pulses (0.5 

140 s) of red light (8000 μmol m−2 s−1). Maximum PSII photochemistry (Fv/Fm) was then calculated as Fv/Fm 

141 = (Fm – F0)/Fm. Steady state fluorescence (Fs) was recorded under actinic light of 1000 μmol m−2 s−1, then 

142 the maximum fluorescence under actinic light (Fm’) was recorded following saturating light pulses. 

143 Nonphotochemical quenching (NPQ) was calculated as NPQ= (Fm – Fm′)/Fm′) and actual quantum yield 

144 of PSII (PSII) as PSII = (Fm′ – Fs)/Fm′. The electron transport rate (ETR) was calculated as ETR = 0.5 × 

145 PSII × PPFD × leaf absorptance. The factor 0.5 assumes an equal distribution of photons between PSI 

146 and PSII. Leaf absorptance of 0.87 was determined using a Li-Cor 1800 spectroradiometer equipped with 

147 a Li-Cor 1800-125 integrating sphere, as previously reported (Tattini et al. 2005).

148 2.3. Analysis of photosynthetic pigments 
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149 Photosynthetic pigments were analyzed following the protocol of Tattini et al. (2015). Fresh leaf material 

150 (300 mg) was extracted with 2 × 5 mL acetone (with the addition of 0.5 g L–1 CaCO3) and injected (15 

151 µL) in a Perkin Elmer Flexar liquid chromatograph equipped with a quaternary 200Q/410 pump and a 

152 LC 200 photodiode array detector (PAD) (Perkin Elmer, Bradford, CT, USA). Photosynthetic pigments 

153 were separated in a 250 × 4.6 mm Agilent Zorbax SB-C18 (5 µm) column operating at 30°C, and eluted 

154 with a linear gradient solvent system, from 100% CH3CN/MeOH (95/5 with 0.05% of triethylamine) to 

155 100% MeOH/ethyl acetate (6.8/3.2), at a flow rate of 1 mL min–1 over a 18-min run. Violaxanthin-cycle 

156 pigments (violaxanthin, Vio; antheraxanthin, Ant; zeaxanthin, Zea), neoxanthin (Neo), lutein (Lut), β-

157 carotene (β-car), chlorophylls a and b, were identified using spectral characteristics and retention times. 

158 Pigments were quantified using authentic standards from Extrasynthese (Lyon-Nord, Genay, France) and 

159 from Sigma Aldrich (Milan, Italy), respectively.

160 2.4. Analysis of antioxidant enzymes and ascorbic acid

161 The activities of antioxidant enzymes and the concentrations of reduced (ASA) and oxidized (DHA) 

162 ascorbic acid concentration were determined spectrophotometrically on 500 mg fresh leaf material, 

163 frozen in liquid nitrogen and extracted with 2 mL of 100 mM potassium phosphate buffer (pH 7.0) with 

164 the addition of ethylene diamine tetra-acetic acid (EDTA), as recently reported (Tattini et al., 2015). 

165 Protein content was determined using the Protein Assay Kit (Bio Rad®, Hercules, CA, USA). Catalase 

166 (CAT, EC 1.11.1.6) activity was measured at 270 nm by measuring the rate of conversion of H2O2 to O2 

167 and H2O. The activity of ascorbate peroxidase (APX, EC 1.11.1.11) was determined by monitoring at 

168 265 nm the H2O2-dependent ASA oxidation in a reaction mixture (in phosphate buffer, pH 6.4) consisting 

169 of 50 µM ASA, 90 µM H2O2, 50-100 µg protein. Non-enzymatic H2O2-dependent and H2O2-independent 

170 ASA oxidation were subtracted to correct APX activity. The analysis of superoxide dismutase (SOD; EC 

171 1.15.1.1) activity was conducted by measurements at 560 nm of the inhibition of nitroblue tetrazolium 

172 (NBT) reduction by SOD. The amount of enzyme required to reduce the NBT reduction state by 50% 

173 was defined as one unit of SOD. The concentrations of ASA and DHA were determined as in Tattini et 

174 al. (2015). 

175 2.5. Analysis of lipid peroxidation and protein oxidation

176 The lipid peroxidation was determined spectrophotometrically based on the formation of 

177 malondialdehyde (MDA) using the thiobarbituric acid (TBA) reaction, whereas protein-carbonyl content 
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178 was determined by the reaction with 2,4-dinitrophenylhydrazine, following the protocols reported in 

179 Tattini et al., 2015. 

180 2.6. Experimental design and statistical analysis

181 The experiment was a completely randomized block design, with four blocks (screen houses), each 

182 consisting of eight plants per water treatment. Measurements were conducted when AWC of WS plants 

183 reached 25-30% (moderate stress, 7 days after withholding water), and when AWC < 10% (severe stress, 

184 15 days after withholding water). Water relations, gas exchange and chlorophyll fluorescence kinetics 

185 were analyzed in four replicate plants per treatment between 11:30-14:00 h. Each replicate consisted of 

186 two leaves. Identification and quantification of metabolites and the activities of antioxidant enzyme were 

187 conducted on four replicate plants (two leaves per replicate) sampled at 11:30 and 14:00 h, and pooled 

188 together prior to analysis. Data were analyzed using repeated measures with ANOVA (SPSS v.20, IBM, 

189 NY, USA), with water treatment as the between-subjects factor and time as the within-subjects factor. 

190 Significant differences among means were determined with Tukey’s test at the 5% level. 

191 3. Results

192 3.1. Drought effects on water relations, gas exchange and PSII performance

193 C. australis did not suffer from severe leaf water unbalance during drought stress (Fig. 1). Predawn leaf 

194 water potential declined already after one week of drought stress, and decreased further, though to lesser 

195 extent, as drought stress progressed (Fig. 1a). Turgor potential decreased in WS plants (ψp varied from 

196 1.45 in WW to 1.18 MPa in WS leaves at day 15, data not shown), since osmotic potential did not 

197 vary between WW and WS plants (Fig. 1b). Nonetheless, relative water content (RWC) was unaffected 

198 by the water treatment (Fig. 1c).

199 Net photosynthesis (AN, 29%, Fig. 2a) and particularly stomatal conductance (gs, 48%, Fig. 2b) 

200 decreased substantially already at moderate drought, and declined further as the stress became more 

201 severe, with slightly greater reductions in gs than in AN.  Drought-induced depressions in AN were mostly 

202 due to stomatal limitations (SL, Fig. 3), irrespective of the severity of drought. This is in line with the 

203 observation that the intercellular CO2 concentration (Ci) was lower in WS leaves than in WW leaves 

204 throughout the experiment (Fig. 2c). Nonetheless, NSL to AN (i.e. mesophyll resistance to CO2 diffusion 

205 to chloroplasts plus biochemical constraints to CO2 carboxylation, Fini et al., 2016) considerably 

206 increased from moderate to severe drought (inset in Fig. 3). 
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207 The apparent rate of carboxylation by Rubisco (Vc,max, Fig. 2d) did not vary, whereas the apparent 

208 maximum electron transport rate contributing to RuBP regeneration (Jmax, Fig. 2e) declined significantly 

209 (-26%) at moderate drought in WS leaves. Both parameters, particularly Jmax decreased steeply (-68%) 

210 from moderate to severe drought in WS leaves. The electron transport rate (ETR, Fig. 2f) did not vary at 

211 moderate drought, and the reduction in ETR at severe drought was less than the declines in other 

212 photosynthetic parameters. 

213 Maximum efficiency of PSII photochemistry (Fv/Fm, Fig. 4a) decreased similarly at moderate stress and 

214 severe stress (-5% and -10%, compared to well-watered trees), because of increases in the fluorescence 

215 yield of open reaction centers (i.e., F0/Fm increased by 25% in WS leaves at severe drought, Fig. 4b). The 

216 removal of excess energy estimated by NPQ significantly increased at moderate stress (+54%), but did 

217 not change further at severe drought (Fig. 4c). 

218 3.2. Drought effects on photosynthetic pigments

219 The concentration of total chlorophyll (Chltot, Fig. 5a) did not differ between WS and WW leaves, 

220 whereas the concentration of carotenoids (Cartot) was higher in severely WS leaves than in the WW ones 

221 (Fig. 5b). In WW leaves, all carotenoids, with the exception of Vio (Fig. 5g) and β-car (Fig. 5d), 

222 decreased in concentration throughout the experiment. While the concentrations of Lut (+20%, Fig. 5e), 

223 Neo (+34%, Fig. 5f) and Zea (+34%, Fig. 5h) increased in WS leaves from moderate to severe drought, 

224 the reverse was observed  regarding  the concentration of β-car. The concentration of VAZ pigments in 

225 WS leaves largely exceeded that in WW leaves, not only on Chltot basis (on average +51%, Fig. 5c), but 

226 also on leaf mass basis (+39%, data not shown). The de-epoxidation state of VAZ pigments (DES, Fig. 

227 5i), which was on average 90% higher  in WS than in WW leaves, increased already at mild drought, but 

228 much less from mild to severe drought.

229 3.3. Drought effects on enzymatic and non-enzymatic antioxidants, and markers of oxidative 

230 damage

231 The activities of antioxidant enzymes, with the exception of CAT, varied significantly early during 

232 drought stress imposition (on average by 45% between WW and WS leaves at moderate drought, Fig.6 

233 a-c). In contrast, the activities of all antioxidant enzymes greatly increased at severe drought (on average 

234 + 130%). We did not observe changes in the concentration of ascorbic acid (ASA) between WW and WS 
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235 leaves (Fig. 6d), whereas the ratio of ASA to DHA (dehydroascorbic acid) was significantly higher in 

236 WW compared to WS leaves at severe drought (Fig. 6e). 

237 Moderately droughted leaves experienced greater photooxidative damage, here estimated by the 

238 peroxidation of leaf membrane lipids (MDA, Fig. 7a) and by the formation of carbonyl groups due to 

239 protein oxidation (Fig. 7b), compared WW leaves. Instead, both MDA and carbonyl group concentration 

240 did not differ between WW and severely droughted WS leaves.

241 4. Discussion

242 4.1. Celtis australis displays near-isohydric behavior under drought and diffusional 

243 limitations mostly constrain photosynthesis

244 Our study indicates C. australis does not tolerate dehydration since leaf osmotic potential did not 

245 vary between WW and WS leaves (Kozlowski and Pallardy, 2002). Instead, markedly higher reductions 

246 in AN and gs than in both ψw and tissue hydration (RWC), irrespective of the severity of drought, are 

247 consistent with a near-isohydric behaviour regulating the response of C. australis to low water 

248 availability. Data of our study suggests that C. australis adopts a conservative use of water (Moreno-

249 Gutierrez et al., 2012) to cope with water deficit. Drought stressed leaves display a higher intrinsic water 

250 use efficiency (iWUE = AN/gs, was on average 105.4 ± 8.3 mmol CO2 mol-1 H2O, mean ± SD, n = 8) 

251 compared to WW leaves (iWUE averaged 75.2 ± 5.6). Water and CO2 exchange between the atmosphere 

252 and the sub-stomatal chamber were hindered by high stomatal limitations occurring in both WW (on 

253 average SL accounted for 36%) and WS leaves (SL reached 44%), regardless of soil water availability. 

254 Indeed, in our study, saturating photosynthesis and stomatal conductance did not exceed 7.85 μmol m-2 

255 s-1 and 108.4 mmol m-2 s-1, respectively, under well-watered conditions. Though we have not measured 

256 morphological traits of leaf surface, the dense indumentum of non-glandular trichomes coupled with a 

257 low frequency of paracytic and small-sized stomata previously reported in Celtis (Abrams et al., 1994) 

258 might have contributed to high stomatal limitations to photosynthesis observed in our study.

259 Albeit stomatal closure mostly limited AN in drought stressed C. australis leaves, our study also 

260 evidences that both the apparent decreases in both maximum Rubisco carboxylation (Vc,max), and 

261 particularly the RuBP regeneration (Jmax) contributed in limiting photosynthesis at severe drought 

262 (Medrano et al., 2002; Flexas et al., 2014). The markedly greater declines in Vc,max and Jmax than in ETR, 

263 coupled with small reductions in Fv/Fm, suggest down-regulation rather than permanent impairment of 
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264 the photosynthetic apparatus occurred in C. Australis even at severe drought (Murchie and Lawson, 

265 2013). In our study, drought-induced declines in Fv/Fm resulted from large enhancements in F0/Fm. Since 

266 Chltot did not vary between WW and WS plants, we suggest that drought stress mostly affected the 

267 photochemical efficiency of PSII reaction centers, possibly due to the physical separation of PSII reaction 

268 centers from both light harvesting complexes and from the donor side of PSII (Murchie and Lawson, 

269 2013). 

270 Regulatory mechanisms aimed dissipating the excess energy in the chloroplast are evident in our 

271 study. Drought-induced increase in ETR/AN (on average ETR/AN varied from 14.2 ± 2.4 in WW to 20.1 

272 ± 2.1 in WS leaves, mean ± s.d., n = 8) was paralleled by an increased amount of energy dissipated as 

273 heat, as revealed by the increase in NPQ. However, we note that ETR/AN significantly increased (P = 

274 0.007) in WS plants from moderate (ETR/AN = 17.7 ± 1.8, mean ± S.D. n = 4) to severe drought (ETR/AN 

275 = 24.2 ± 1.9) without a parallel enhancement in NPQ. We hypothesize that alternative dissipation 

276 processes, such as photorespiration, (see section 4.3 for further details) may have additionally contributed 

277 in dissipating excess electrons.

278 4.2. Carotenoids only in part contributed to nonphotochemical quenching in severely droughted 

279 leaves 

280 The concentration of carotenoids decreased in WW, but not in WS leaves during the experiment. 

281 The carotenoid reduction in WW leaves was possibly due to the concomitant effect of high both solar 

282 irradiance and air temperature to which leaves were exposed in our study, as also recently reported by 

283 (Tattini et al. (2015). Since fresh assimilated carbon available to the biosynthesis of Methylerythritol 4-

284 phosphate (MEP)-derived products progressively decreased, we suggest that an increased flux of fresh 

285 assimilated carbon was devoted to the biosynthesis of photoprotective pigments in WS leaves, as drought 

286 stress became more severe. This may have relevant functional reasons, since WS leaves retained Chltot 

287 at the level of WW leaves, and hence were exposed to photo-oxidative stress of increasing severity as 

288 drought stress progressed.

289 Our hypothesis is further corroborated by the observation that the composition, not only the bulk 

290 of carotenoid pigments underwent large variations because of the severity of drought. Firstly, the 

291 significantly higher concentration of VAZ, coupled with the greater contribution of Zea to the VAZ pool, 

292 sustained the superior dissipation of excess energy through NPQ observed in WS than in WW leaves. It 

293 is worth nothing, however, that the concentration of VAZ pigments relative to Chltot was high enough 
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294 (even in WW leaves) to exceed largely their potential binding sites in antenna proteins (Esteban et al., 

295 2015a). This suggests that Zea likely served antioxidant functions in the chloroplast (Havaux et al., 2007; 

296 Peguero-Pina et al., 2013; Esteban et al., 2015a,b), the significance of which increased along with the 

297 severity of drought stress. This is in line with the observation that while the VAZ pool and de-epoxidation 

298 state of VAZ significantly increased, NPQ did not vary in from moderately to severely droughted, WS 

299 leaves. Secondly, the increase in Zea concentration was not paralleled by a decrease in Vio concentration, 

300 but by a decrease in β-car concentration, as drought stress progressed. We hypothesize that Zea may have 

301 been in part synthesized from β-car (through the action of β-car hydroxylase, Davison et al., 2002) in 

302 severely droughted plants. Indeed, the ratio of Zea to β-car increased from 0.72 in moderately to 1.38 in 

303 severely droughted leaves. This likely enhanced the rigidity of thylakoid membranes and limited 

304 membrane lipid peroxidation (Gruszecki and Strzałka 2005; Domonkos et al., 2013), thereby contributing 

305 to drought resistance. We cannot exclude that the decrease in β-car concentration, as the drought become 

306 more severe, may have resulted from its direct oxidation by 1O2, with formation of oxidation products 

307 (which is known to occur also in low-light conditions, Ramel et al., 2012) that have not been examined 

308 in our study. However, β-car oxidation unlikely fully accounted for the large decrease in β-car 

309 concentration (0.09 µmol on leaf mass basis) from moderate to severe drought in WS leaves. Finally, the 

310 increases in the concentration of other major components of the xanthophyll pool, such as Lut and Neo, 

311 during drought stress progression may have also relevant functional reasons. Lut has the greatest ability 

312 to quench 3Chl* compared to other xanthophylls, because of its specific ability to bind at the L1 site of 

313 the major LHCII complex (Mozzo et al., 2008), whereas the location of Neo at the periphery of the PSII 

314 super complexes may be an effective scavenger of superoxide anion (O2
-, Dall’Osto et al., 2007). 

315 4.3 Antioxidant enzymes effectively preserve drought stressed leaves from oxidative damage

316 Data of our study suggest a central role of SOD, CAT, and APX in protecting C. australis against 

317 intense drought stress, since their activities increased considerably and markers of oxidative damage did 

318 not vary as drought stress progressed. Data of our study are in contrast with the marked declines in the 

319 activities of APX and CAT observed in species with wider geographical distribution when exposed to 

320 long periods of drought stress and high air temperature (Peltzer and Polle, 2011; Peltzer et al., 2002; Fini 

321 et al., 2012; Tattini et al., 2015). Our data offer additional experimental support to previous suggestions 

322 that the depression in the activities of antioxidant enzymes occurs when leaves are challenged by a severe 

323 excess of excitation energy (Mullineaux and Karpinski, 2002; Mubarakshina et al., 2010; Fini et al., 

324 2012; Tattini et al., 2015). Indeed, in our experiment, AN was still appreciable and ETR/AN did not 
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325 increase steeply even at severe drought. Since drought stress did not affect the ASA concentration, 

326 whereas the ASA/DHA ratio decreased relatively little (-18%) even in severely droughted WS leaves, it 

327 is suggested that the chloroplasts were equipped with an efficient system for the removal of H2O2 (Jubani-

328 Mari et al., 2010). The observation of the steep enhancement of CAT activity from moderate to severe 

329 drought stress is interesting, and may further corroborate our hypothesis that photorespiration might have 

330 represented an effective dissipation process for excess reducing power in severely droughted leaves 

331 (Noctor et al., 2014). In fact, because CAT is mainly located in peroxisomes, enhanced activity of this 

332 enzyme may be particularly important to metabolize photorespiratory H2O2, which, as noted above, can 

333 be produced at higher rates when water becomes limiting (Noctor et al., 2014).

334 5. Conclusions

335 C. australis displays a very effective -near-isohydric- strategy to cope with the scarcity of soil 

336 water, and diffusional limitations mostly constrain photosynthesis even at severe drought. Our study 

337 reveals an effective down-regulation rather than permanent impairment of PSII photochemistry in 

338 response to drought stress of increasing severity. It is therefore conceivable that prompt recovery of 

339 photosynthetic performance will occur upon the removal of stomatal limitations, when water is newly 

340 available to the roots. We have shown that C. australis did not suffer from severe photo-oxidative 

341 damage, here estimated based on the products of both lipid and protein oxidation, even when challenged 

342 by severe drought. We offer evidence of a major role of de-epoxided xanthophylls in sustaining the 

343 thermal dissipation of excess radiant energy through NPQ at moderate drought, whereas at severe drought 

344 both Zea (which likely was partially synthesized thorough hydroxylation of β-car) and Neo likely served 

345 prominent antioxidant functions. Our study also reveals pivotal roles of antioxidant enzymes and ascorbic 

346 acid in ROS detoxification, the significance of which increased along with the severity of drought. 

347 Our study supports the view that C. australis, an isohydric species with a conservative use of use, 

348 is effectively equipped to match the oxidative load generated by the reductions in CO2 availability for 

349 photosynthesis during drought. This makes C. australis an excellent candidate for forest and urban 

350 plantings in sites experiencing extended periods of drought stress. 
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493 Figure captions

494 Figure 1. Predawn leaf water (w, a) and osmotic (, b) potentials, and relative water content (RWC, 

495 c) in well-watered (WW, open bars) or drought stressed (WS, grey bars) leaves of Celtis australis 

496 sampled at moderate (7 d) and severe (15 d) drought stress. Data (means ± SD, n = 4) were analyzed with 

497 repeated measures with ANOVA, and bars with different letters differ significantly at P < 0.05, using 

498 Tukey’s test.

499 Figure 2. Photosynthesis (AN, a), stomatal conductance (gs, b), intercellular CO2 concentration (Ci, c), 

500 apparent maximum both carboxylation rate allowed by Rubisco (Vc,max, d), electron transport rate 

501 contributing to ribulose-1,5-bisphosphate (RuBP) regeneration (Jmax, e), and the actual electron transport 

502 rate (ETR, f) in well-watered (WW, open bars) and drought stressed (WS, grey bars) leaves of Celtis 

503 australis, measured at moderate (7 d) and severe (15 d) drought stress. Data (means ± SD, n = 4) were 

504 analyzed with repeated measures with ANOVA, and bars with different letters differ significantly at P < 

505 0.05, using Tukey’s test. 

506 Figure 3. Stomatal limitations (SL, in percent) to photosynthesis (AN) in well-watered (WW, open bars) 

507 or drought stressed (WS, grey bars) leaves of Celtis australis sampled at moderate (7 d) and severe (15 

508 d) drought stress. Graph in the inset shows the contribution of non-stomatal limitations (NSL, in percent) 

509 to AN in droughted leaves. Data (means ± SD, n = 4) were analyzed with repeated measures with 

510 ANOVA, and bars with different letters differ significantly at P < 0.05, using Tukey’s test.

511 Figure 4. The maximum efficiency of PSII photochemistry (Fv/Fm, a), the ratio of minimum (F0) to 

512 maximum (Fm) fluorescence (F0/Fm, b), and the nonphotochemical quenching (NPQ, c) in well-watered 

513 (WW, open bars) or drought stressed (WS, grey bars) leaves of Celtis australis sampled at moderate (7 

514 d) and severe (15 d) drought stress. Data (means ± SD, n = 4) were analyzed with repeated measures with 

515 ANOVA, and bars with different letters differ significantly at P < 0.05, using Tukey’s test.

516 Figure 5. The concentrations of total chlorophyll (Chltot, a) and total carotenoids (Cartot, b), the 

517 concentration of violaxanthin-cycle pigments (VAZ) relative to Chltot (c), the concentrations of lutein 

518 (d), β-carotene (e), neoxanthin (f), violaxanthin (g), zeaxanthin (h), and the de-epoxidation state (DES) 

519 of VAZ ((DES = (0.5A + Z) (V + A + Z)-1, i) in well-watered (WW, open bars) or drought stressed (WS, 

520 grey bars) leaves of Celtis australis sampled at moderate (7 d) and severe (15 d) drought stress.  Data 

521 (means ± SD, n = 4) were analyzed with repeated measures with ANOVA, and bars with different letters 

522 differ significantly at P < 0.05, using Tukey’s test.
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523 Figure 6. The activities (on protein, p., basis) of (a) superoxide dismutase (SOD,), (b) ascorbate 

524 peroxidase (APX,) and (c) catalase (CAT), (d) the concentration (on DW basis) of reduced ascorbate 

525 (ASA) and (e) the ratio of ASA to oxidized ascorbate (DHA) (ASA/DHA) in well-watered (WW, open 

526 bars) or drought stressed (WS, grey bars) leaves of Celtis australis sampled at moderate (7 d) and severe 

527 (15 d) drought stress. Data (means ± SD, n = 4) were analyzed with repeated measures with ANOVA, 

528 and bars with different letters differ significantly at P < 0.05, using Tukey’s test.

529 Figure 7. The concentrations of malondialdehyde (MDA, a) and of carbonyl groups (b) in well-watered 

530 (WW, open bars) or drought stressed (WS, grey bars) leaves of Celtis australis sampled at moderate (7 

531 d) and severe (15 d) drought stress. Data (means ± SD, n = 4) were analyzed with repeated measures with 

532 ANOVA, and bars with different letters differ significantly at P < 0.05, using Tukey’s test.
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