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ABSTRACT 

 

Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. 

Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated 

for example by the Bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood 

cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism 

of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing 

global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a 

large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic 

background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that 

ARQ531 constrained tumor cell proliferation and survival through Bruton’s tyrosine kinase and 

transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of 

short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. 

Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant 

impairment of tumor progression and survival, at tolerated doses. These data justify the clinical 

development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid 

leukemia. 
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INTRODUCTION 

Acute myeloid leukemia (AML) is an aggressive disease characterized by uncontrolled clonal 

proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Despite recent 

advances in its treatment, as many as 70% of patients aged 65 or older will die within 1 year of 

diagnosis. Efficacy of standard high-dose chemotherapy and stem cell transplantation is limited by 

treatment-related morbidity and mortality, especially in elderly patients. (1-3) Cancer treatment is 

undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches 

that precisely target molecular alterations. Notably, precision medicine, by linking specific genetic 

anomalies of tumors with available targeted therapies, is emerging as an innovative approach for AML 

treatment, with development of breakthrough drugs targeting specific molecular features (e.g. FLT3 

and IDH1/2 inhibitors). (4-6) However, identification of patients who will benefit from targeted 

therapies is more complex than simply identifying patients whose tumors harbor the targeted 

aberration. A rational combination of therapeutic agents may prevent the development of resistance to 

therapy, with molecular strategies aimed at targeting multiple pathways resulting in a more effective 

treatment across cancer subtypes.  

The Bruton’s tyrosine kinase (BTK), a member of the TEC family kinases, is a critical terminal kinase 

enzyme in the B-cell antigen receptor (BCR) signaling pathway. (7, 8) Its activation leads to BTK 

phosphorylation which in turn results in downstream events such as proliferation, immune function 

alteration and survival through multiple signaling cascades. (9) Chronic activation of BTK-mediated 

signaling represents a key driver for a number types of cancers, (10-14) including AML. (15-22) 

Therefore, new inhibitors are needed to better target tyrosine kinases in these patients. Recent studies 

have shown that oncogenic cellular dysregulation is critical for the activity of the anti-BTK targeting 
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agent ibrutinib, (23, 24) and that co-treatment with BET protein bromodomain antagonists or BCL-2 

inhibitors may enhance the efficacy of ibrutinib in tumor cells. (25, 26)   

Herein, we characterize ARQ531, a reversible small molecule inhibitor of BTK and several additional 

kinases, in preclinical models of AML. We provide evidence that ARQ531 greatly compromises 

survival of AML cells by inducing a “one shot” inhibition of multiple oncogenic transcriptional 

pathways. This results in potent anti-AML activity in a patient-derived xenograft (PDX) AML mice 

model, providing rationale for future clinical trials. 
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METHODS 

Reagents 

ARQ531 was provided by ArQule, Inc (Burlington, MA). The compound was dissolved in DMSO 

(Sigma, Aldrich) and stored at 10mM at -80°C for experiments. Ibrutinib (IBR), daunorubicin (DNR), 

cytarabine (ARA-C) and MG132 were purchased from Selleck Chemicals LLC (Houston, TX). ZVAD-

FMK was purchased from Promega (Cat.No G7232). 

Patient-derived xenograft AML cells 

Experiments were carried out on non-obese diabetic severe combined immunodeficient (NOD/SCID) 

interleukin-2 receptor g (IL-2Rg)–null (NSG) mice, 6 to 8-weeks-old. NSG mice were bred and housed 

under pathogen-free conditions in the animal facilities at the European Institute of Oncology–Italian 

Foundation for Cancer Research Institute of Molecular Oncology (IEO-IFOM, Milan, Italy). All animal 

experiments were carried out in strict accordance with the Italian laws (DLvo 26/2014 and following 

additions) and were approved by the institutional committee. NSG mice were engrafted with 300.000 

primary human AML cells (M4, acute myelomonocytic leukemia with FLT3wt). At day 19 post-graft, 

once a systemic xenograft was confirmed, mice were randomized into three groups: vehicle-treatment 

group (n=5), low-dose ARQ531 treatment group (25 mg/kg; n=5) and high-dose ARQ531 treatment 

group (37.5mg/kg; n = 5) and the percentage of human leukemic cells in peripheral blood was 

measured weekly till day 42. The phenotype of human cells in NSG mice was evaluated using the 

following anti-human antibodies: anti-CD117-PeCy7 (IMMU 103.44), -CD45-APC (J.33), -CD34-

APC-Cy7 (D3HL60.251) from Beckman-Coulter (Irving, TX, USA) and anti-mouse CD45-PE (30-

F11) from BD Biosciences to exclude murine cells contamination. Cell suspensions were evaluated by 

a 3-laser, 10-colour flow cytometer (Navios, Beckman Coulter, Brea, CA, USA) using analysis gates 

designed to exclude dead cells, platelets, and debris. Percentages of stained cells were determined and 
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compared to appropriate negative controls. Seven-aminoactinomycin D (7AAD) from Sigma-Aldrich 

was used to enumerate viable, apoptotic, and dead cells. 

Statistical analyses 

All in vitro experiments were repeated at least three times and performed in triplicate; a representative 

experiment is shown in each figure. All data are shown as mean ± standard deviation (SD). The 

Student's t test was used to compare two experimental groups using Graph-Pad Prism software 

(http://www.graphpad.com). The minimal level of significance was specified as p<0.05.  Survival 

analysis was performed by the Kaplan-Meier method, and the log-rank test was used to compare 

survival differences. Drug interaction were assessed by CalcuSyn 2 software (Biosoft), which is based 

on the Chou-Talalay method. Combination Index (CI) = 1, indicates additive effect; CI<1 indicates 

synergism; CI>1 indicates antagonism.  
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RESULTS 

ARQ 531 shows strong anti-AML activity but preserves normal hematopoietic stem cells (HSCs). 

In line with previously reported data, (15, 16) we observed that BTK is frequently dysregulated in 

AML, with mRNA levels significantly higher than in other cancer types. (Suppl. Fig. S1) To confirm 

its relative abundance, we screened a representative panel of human AML cell lines and primary blasts 

for BTK expression and activity by western blot. (Fig.1A) Protein was detectable in all AML-screened 

cells (15/15) and, more importantly, independent of specific mutational profiling. Similarly, BTK 

activity (measured by Y223 phosphorylation) was observed in FLT3 wild-type and FLT3 mutants as 

well. An analogous investigation was applied to a larger cohort of AML patients derived from The 

Cancer Genome Atlas (TCGA) database, which showed uniform expression of BTK transcript in 

different AML subtypes. Overall, these data, by confirming BTK presence in AML, support its 

targeting in this hematologic malignancy, as previously reported. (14, 15) 

ARQ531 is a recently described reversible BTK inhibitor with promising activity in mouse models of 

CLL and lymphomas. (27) Based on constitutively active BTK levels observed in AML cells, we 

evaluated the therapeutic activity of ARQ531 on these cells, using ibrutinib as a control. In-vitro 

efficacy screening was performed on cultured (n=8) and primary (n=13) AML cells, comparing the 

efficacy of both drugs. As shown in Figure 1B, ARQ531 exposure reduced in vitro viability more than 

ibrutinib (Fig.1C). IC50 analysis at 48 hours after treatment showed greater sensitivity to ARQ531 

compared with ibrutinib, which exhibited 10-fold lower activity. (Fig.1D) A significant anti-AML 

effect of ARQ531 was also observed on blasts from AML patients (n=13) regardless of mutational 

status, European leukemia Net (ELN) risk, and surface expression of CD117. (Fig.1E; Tab.1) 

Consistent with these data, a dose-dependent increase in the percentage of apoptotic and dead cells 

measured by Annexin V and Propidium iodide staining was also observed after ARQ531 treatment, 
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together with several apoptotic features including caspase 3 and poly (AD-ribose) polymerase cleavage 

as well as reduction of anti-apoptotic MCL-1 and BCL-2 protein expression. (Fig.1F-G and Suppl. 

Fig.S2A) Viability was completely restored by pan-caspase inhibitor Z-VAD pre-incubation (Suppl. 

Fig.S2B) In contrast, ibrutinib treatment resulted in weaker effects on apoptosis, thus suggesting that 

ARQ531 is more effective than ibrutinib probably because it induces downregulation of additional 

survival mechanisms.  

It is well known that the bone marrow microenvironment has a role in the promotion of tumor growth, 

survival and drug-resistance. (28) Therefore we treated AML cells in the presence of normal or 

leukemic mesenchymal stromal cells (MSCs). As expected, normal- and AML-stroma both protected 

tumor cells from spontaneous apoptosis, however ARQ531 efficacy was preserved, with no significant 

effect on the viability of MSCs (data not shown). Indeed, compared to spontaneous apoptosis of blast 

cells, ARQ531 increased cell death in AML cells cultured alone, and preserved its activity in the 

presence of normal or AML MSCs, suggesting that ARQ531 abrogates the survival benefit from 

stromal cells. (Fig.2A) Overall, our data indicate that ARQ531 is a potent anti-AML drug even in the 

presence of a tumor supportive microenvironment, and irrespective of FLT3 mutational status. (21)  

Finally, ARQ531 activity on normal cells was also investigated by employing clonogenic and viability 

assays in order to measure the impact of treatment on both CD34+ cells and mononuclear cells isolated 

from the bone marrow and peripheral blood of healthy donors. As shown in Figure 2 B-D, all of these 

cells were largely unaffected by ARQ531 exposure at dose levels toxic to tumor cells, proving that 

ARQ531 targets cancer cells without off-target effects on HSCs, resulting in a favorable therapeutic 

index.  

BTK signaling inhibition partially contributes to anti-AML activity of ARQ531 
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Based on its reported activity, we first studied the effect of ARQ531 on BTK-signaling by analyzing 

tumor cell migration. (27, 29-31). A transwell assay system was employed to investigate SDF-

1/CXCR4 axis in ARQ531 anti-AML activity. As shown in Supplementary Figure S3, ARQ531 

reduced tumor cell migration in response to stromal cell-derived factor 1 (SDF1) by 66% (P = 0.001), 

suggesting similar activity to ibrutinib (71% reduction; P <0.001).  

Next, to confirm the role of BTK in ARQ531 anti-AML activity, we investigated its effect on BTK-

signaling in AML cells over a range of concentrations. As shown in Figure 2E, ARQ531 treatment 

completely abrogated BTK activity as measured by Y223 phosphorylation, similar to the effects seen 

with ibrutinib treatment. However, as seen in Figure 1B, ARQ531 has anti-AML activity even on 

BTK-low expressing cells, suggesting that BTK targeting might not be critical for ARQ531 activity. To 

corroborate this hypothesis, we treated BTK-silenced (BTK knocked down, BTK-KD) AML cells with 

increasing doses of ARQ531. ARQ531 treatment reduced viability of both BTK-KD and BTK wild-

type cells to about 50% of control, demonstrating the importance of alternative targets for ARQ531 

activity in AML. (Fig.2F) 

ARQ531 treatment suppresses transcriptional oncogenic activity in AML cells 

To identify ARQ531-induced global perturbations in transcriptional profiling, we generated RNA-Seq 

data and performed functional annotation analysis of drug- versus DMSO-treated AML cells. As shown 

in Supplementary Figure S4A, principal component analysis (PCA) segregated samples based on 

treatment suggest a coherent transcriptional result rather than global, non-specific transcriptional 

silencing in response to this drug. Indeed, differential expression analysis identified 377 and 852 genes 

that were significantly up-regulated and down-regulated, respectively, with a ratio greater than 2-fold 

and P value <0.05. (Fig.3A, B) As a measure of the specificity of this effect, GSEA analysis was 

performed on the entire set of signatures available from the Molecular Signatures Database (MSigDB). 
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Biological modules associated with oncogenic transcriptional programs (e.g., ribosomal biogenesis and 

assembly, UPR stress and MYC) were significantly enriched in ARQ531-suppressed genes. (Fig.3C 

and Suppl. Fig.S4B) In line with these findings, although treatment did not exert significant 

suppression of gene sets for factors linked to pathophysiology of AML, such as C/EBPα-β, RUNX1, 

PU.1, ERG and FLI1, a significant reverse correlation was observed for transcriptional signatures of 

MYC-upregulated target genes, which in turn reflects the selective suppression of its transcriptional 

networks. (Fig.3D) Indeed, RT-PCR analysis of MYC and its target, CDC2, showed consistent 

downregulation following short-term exposure to the drug, (Suppl. Fig. S4C) pointing to ARQ531 as a 

selective suppressor of the MYC-regulated transcriptional pathway. To further support these data, we 

used ARQ531-expression signature to query the Library of Integrated Network-Based Cellular 

Signatures (LINCS) Program (www.lincscloud.org, web interface available at 

http://amp.pharm.mssm.edu/L1000CDS2/#/index). As shown in Figure 3E, the most significant 

ARQ531-correlated signatures were represented by those of oncogenic transcription factor inhibitors 

(such as fluvastatin, gefitinib and HDAC inhibitors) as well as those related to knockdown of ribosome 

subunits and translation initiation factors. Together, these data indicate that ARQ531 inhibits oncogenic 

transcriptional pathways in AML cells. 

ARQ531 interferes with the pro-survival MAPK pathway in OCI-AML3 cells  

As already reported, ARQ531 is a potent, ATP-competitive, reversible inhibitor of BTK and several 

additional kinases important to the viability, proliferation, activation, and motility of tumor cells. (27) 

Among the most intriguing additional targets of ARQ531 are RAF1 and MEK1, constituents of the 

ERK signaling pathway that is frequently dysregulated in tumor cells. (32-34) To confirm this activity 

in AML, cells were treated with increasing doses of ARQ531. As expected, activation of AKT and 

ERK was inhibited in a dose-dependent manner, likely due to predicted inhibition of RAF1 and MEK1. 
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(Fig. 4A) Subsequent experiments confirmed this hypothesis by revealing specific impairment of these 

kinases after ARQ531 treatment. (Fig. 4B) To support the pivotal role played by ERK, we exposed 

cells to the mitogenic effects of higher serum concentration (20%). As shown in Supplementary 

Figure S5 A-B, this strategy resulted in enhanced phosphorylation of ERK, which rescued the anti-

AML activity of this drug, thus providing evidence of ERK relevance in the observed anti-tumor effect. 

Moreover, consistent with RNA-Seq analysis, drug exposure resulted in prominent and specific 

downregulation of the oncogenic transcription factor MYC at the protein level. (Fig. 4B) Since the 

MAPK pathway enhances MYC protein stability by inducing its phosphorylation at serine 62, (35) we 

assessed p-MYC S62 changes in AML-treated cells. As shown in Figure 4C, ARQ531 exposure 

resulted in a prompt decrease of phosphorylation, followed by reduction of MYC protein. Accordingly, 

numerous MYC-addicted oncogenic cellular pathways, such as protein folding machinery, metabolic 

dependency and genome integrity, were compromised following this treatment, as highlighted by 

phospho-eukaryotic translation initiation factor 4E (eIF4e), ASCT2 and GLUT1 downregulation and 

γH2AX enhancement, respectively. (Fig. 4D) Combined drug screening revealed synergistic activity of 

ARQ531 with compounds affecting these programs, such as DNA damaging agents. (Suppl. Fig. S6 

A-B) Overall, these data support the existence of a mechanism of action that begins with MAPK 

signaling dysregulation and results in ARQ531-induced cytotoxicity in AML cells. Among MYC-

controlled programs, protein synthesis is emerging as the limiting step for tumor cell growth, (36) so 

we focused on this pathway. As shown in Figure 4D, AML cells treated with ARQ531 showed marked 

increases of eukaryotic translation initiation factor 4E-binding protein (4EBP1) with concomitant de-

phosphorylation of p70 ribosomal S6 kinase (p70-S6K) and eIF4e which result in blocking of mRNA 

recruitment to ribosomes for protein translation. (37) These data suggest that ARQ531 is a modulator 
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of several hubs controlling translation initiation in AML cells, providing evidence of marked protein 

synthesis inhibition specifically triggered by this treatment.  

Although MYC activation resulting from multiple tumor-driven genetic aberrations has been recognized 

as a major factor of leukemogenesis, its targeting did not show significant clinical benefit in AML. 

Thus, by using small interference RNA strategy (siRNA), we investigated the role of MYC in anti-

AML activity of ARQ531. As shown in Figure 4E, MYC-silenced HL-60 cells (MYC knocked down, 

KD) were treated with increasing doses of ARQ531. Surprisingly, despite their sensitivity to this 

treatment, cells were quite resistant to the loss of MYC protein expression, indicating that additional 

targets are implicated in anti-AML activity of this small molecule. 

Modulation of transcriptional regulatory machinery is an innovative strategy to treat AML. (38, 39) 

The oncogenic driver MYB, which is essential in hematopoiesis, is now emerging as a new target for 

anti-AML therapies. (40-45) We hypothesized that ARQ531 treatment of AML cells may inhibit this 

pathway. To validate this hypothesis, we measured MYB protein levels in ARQ531-treated cells. 

ARQ531 exposure resulted in marked MYB deregulation, (Fig. 4F) suggesting an important 

contribution to ARQ531 anti-tumor activity. To gain further insights into MYB reduction triggered by 

ARQ531, we tested proteasome contribution, as previously reported for other MYB-targeting agents.  

(43) As shown in Figure 4G, co-treatment with the proteasome inhibitor MG132 preserved MYB 

protein levels, suggesting that, in addition to its supposed effects on protein synthesis, ARQ531 affects 

MYB degradation. Therefore, our findings suggest that ARQ531 interferes with many pro-survival 

pathways, such as MAPK, in AML cells. 

ARQ531 dysregulates multiple oncogenic transcription factors in AML cells 

To gain insights into the molecular mechanisms of ARQ531, we analyzed treated HL-60 cells over 

time. As shown in Figure 5A, BTK signaling deregulation occurred early, after 2 hours of treatment, 
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followed by MYC downregulation. Importantly, apoptotic cell features, including PARP and caspase 3 

cleavage, were seen after MYB decrease, suggesting these events are crucial for ARQ531 anti-tumor 

activity. Published data show that small molecule BET inhibitors, by downregulating hematopoietic 

transcription factors, lead to potent therapeutic effects in several cancer models, including AML. (46, 

47) Therefore, we tested the anti-AML activity of the BTK inhibitor ibrutinib combined with the BET 

bromodomain inhibitor JQ1. (48) As was seen in other cell types, (25) the BET inhibitor enhanced the 

anti-tumor activity of the BTK inhibitor. (Fig. 5B) Western blot analysis of AML-treated cells 

confirmed these findings, further supporting the pivotal role of transcription factor deregulation in 

ARQ531 anti-AML activity. (Fig. 5C) Based on these data, we investigated the role of MYB in 

ARQ531 anti-AML activity by challenging BTK-silenced cells with the repurposed drug mebendazole, 

recently described as drug that induces MYB degradation. (44) As expected, mebendazole reduced cell 

viability of BTK-depleted cells more than control. (Suppl. Fig. S7A) We then performed several 

genetic studies to confirm these findings. As shown in Figure 6A, reduced viability was observed in 

MYC/MYB depleted cells compared with control, but more importantly, viability was significantly 

dampened in triple MYB/MYC/BTK silenced cells (reduction by 64.7% to 38.5%), suggesting that 

such inhibition is detrimental to AML cells. Consistently, simultaneous silencing of MYC, MYB and 

BTK resulted in PARP cleavage together with impairment of ERK phosphorylation. (Fig. 6B) Similar 

data were observed in BTK-KD cells. (Fig. 6C and Suppl. Fig. S7B) Nonetheless, the effect of triple 

knockdown was not quite equal to that of ARQ531 treatment, suggesting that other covalent or 

noncovalent targets are involved in its mechanism of action. 

Since MYB is reported to be crucial for leukemogenesis, (42, 49) we assessed the relationship between 

BTK and MYB in AML cells. Molecular data analysis of different publicly available AML cohort 

databases revealed higher expression of BTK and MYB in AML cells compared to normal HSCs, with 
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a positive correlation. (Suppl. Fig. S8 A-C) These data support the notion that several oncogenic 

pathways, including BTK, MYB and MYC, are essential for leukemia cells maintenance, supporting 

ARQ531 as an effective multi-targeted agent for the treatment of AML.     

ARQ531 shows potent activity in a patient derived (PDX) AML mouse model  

Based on in-vitro data, we next assessed whether ARQ531 treatment would be effective and tolerable 

in animal models by using our established AML patient-derived xenograft (PDX) model. NSG mice 

(n=20) were engrafted with 300.000 primary human AML cells (M4, acute myelomonocytic leukemia). 

Successful engraftment was documented by measuring circulating human CD45+ cells in mice 

peripheral blood with flow cytometry weekly for 2 months.  At day 19 post-graft, once a systemic 

xenograft was confirmed, mice were dosed orally with vehicle or ARQ531 (25 or 37.5 mg/kg; 5 

mice/each group) daily for 2 weeks. Percentage of human cells in peripheral blood samples was 

measured once a week up to day 42. (Fig. 7A) ARQ531-treated mice had significant reduction in 

hCD45+ cell numbers despite very rapid growth of the aggressive leukemic cells. (Fig. 7B) At day 42 

from treatment start, there were 66.5±0.1% and 69.5±0.2 % hCD45+ cells after ARQ531-treatment at 

37.5 and 25 mg/kg, respectively; in contrast, vehicle-treated mice had 85% hCD45+ cells (** 0.005< P 

<0.008; Fig. 7C). Also bone marrow and spleen analyses showed tumor burden (hCD45+) reduction, 

although it was not statistically significant. (Suppl. Fig. S9) In addition, ARQ531 treatment was found 

to significantly improve mouse survival. As shown in Figure 7D, Kaplan-Meier analyses indicated that 

ARQ531-treated mice, at higher dose, survived significantly longer than those treated with vehicle-

control (p<0.001). Overall, treatment was well tolerated as suggested by the maintenance of body 

weight and the lack of signs of toxicity, such as lethargy, ruffled fur, respiratory distress and hunchback 

posture (data not shown). Together these data indicate that in vivo ARQ531 administration was well 
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tolerated and efficiently reduced leukemia cell growth, providing impetus for clinical evaluation of this 

novel small molecule. 

DISCUSSION 

AML cells often demonstrate constitutive activation of tyrosine kinase signaling resulting from specific 

genomic aberrations. (16) These aberrations are attractive therapeutic targets, as demonstrated by the 

pharmacologic inhibitor of BTK, ibrutinib, which blocks AML blast proliferation, migration, and 

leukemic cell adhesion to bone marrow stromal cells. (15) However, BTK-based treatment of AML 

patients has been unsuccessful to date, (22) with only a few pre-clinical, ex-vivo reports suggesting that 

ibrutinib is effective against FLT3(ITD) and CD117 harboring cells, unlike the clinical benefit seen in 

patients with CLL and lymphoma. (18, 21) Adding inhibitory pressure on the BTK pathway might 

enhance the efficacy of this strategy, as previously reported. (19, 20, 50-54) In this study, using a 

combination of genetic and biochemical approaches, we extensively characterize ARQ531, a novel, 

reversible, orally bioavailable, ATP-competitive inhibitor of BTK and associated kinases. ARQ531 

greatly compromises AML cell survival by modulating transcriptional regulatory machinery 

coordinated by MYC, demonstrating activity both in-vitro and in a patient-derived xenograft (PDX) 

AML mouse model.  Thus, our study provides rationale for developing clinical trials using ARQ531 as 

a new treatment for patients with AML. 

Since ibrutinib does not directly inhibit members of the MAPK pathway, it is possible that the superior 

activity of ARQ531 in AML may be due to its modulation of additional targets, including kinases 

related to ERK signaling. (27) Although screening analysis of Src-family kinases (including Lyn and 

Syk) did not show any effect on AML cells, (55-57) (Suppl. Fig.S10) we assume that targeting of 

additional kinases is responsible for the high anti-AML activity of ARQ531. By combining 
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computational models and whole transcriptional analysis, we observed that ARQ531 treatment induces 

dysregulation of several transcription-addicted programs, including MYC and MYB. The combination 

of BTK inhibition and MYC/MYB downregulation explains the improved anti-AML activity of 

ARQ531 compared to single agent TKI’s such as ibrutinib. Since ARQ531 simultaneously inhibits 

different cellular functions such as folding machinery, metabolic dependency, and genome integrity, it 

may provide deeper and more durable remissions, while delaying the emergence of resistance. 

Additionally, based on reports that degrading MYB eradicates AML cells in mice without impairing 

normal myelopoiesis, (46) ARQ531 treatment may be safe for hematopoietic precursors cells, 

supporting its clinical relevance. We also provide experimental evidence that the bone marrow stroma 

is not affected by treatment and, more importantly, does not affect ARQ531 anti-tumor activity.  

Preliminary phase 1 studies confirm the ARQ531 safety profile, adding to the data that support its 

clinical development.  

Recent studies suggest that modulating transcriptional regulatory machinery is an innovative strategy to 

treat blood malignancies, including AML. (14, 38) An example of this strategy is all-trans retinoic acid 

(ATRA) treatment which, by modulating the transcriptional target PML-RARα, induces differentiation 

of leukemic blasts resulting in improved patients survival. (58) However, most transcription factors 

remain notoriously difficult to target, with siRNA-mediated silencing of gene expression being one of 

the few feasible approaches. (59) Other oncoproteins, including MYC and MYB, are emerging as 

compelling targets for drug development in AML, due to their ability to influence tumor proliferation. 

(40-44, 60, 61) In this context, the new small molecule ARQ531, by affecting multiple oncogenic 

pathways simultaneously, results in perturbation of the transcriptional regulatory machinery which 

maintains AML cell integrity. Therefore, targeting BTK, MYC and MYB with ARQ531 represents an 

innovative strategy for improving the efficacy of AML therapy.  
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In summary, we have demonstrated that ARQ531, a new reversible tyrosine kinases inhibitor, 

suppresses AML cells viability in vitro and in vivo by abrogating different oncogenic targets including 

BTK, MYC and MYB. Gene silencing of BTK, MYC and MYB in AML cells was not as effective as 

ARQ531, suggesting that other covalent or noncovalent targets are involved in its mechanism of action. 

Based on our preclinical data, we provide the rationale to explore the effects of this multi-targeted 

agent on hematologic malignancies as well as solid tumors, beyond investigating its clinical benefit in 

AML patients. 
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TABLES 

Table 1. AML patient characteristics 

 

 

Patient FAB classification karyotype NPM FLT3-ITD 
ELN RISK

GROUP 

AML-013 AML M2 normal MUT wt low 

 AML-012 AML M1 normal MUT MUT int. 
 AML-011 AML M6 complex wt wt high 
AML-009 AML M2 50XX wt wt high 

AML-007 AML M3 t(15;17) / wt  M3 
AML-006 AML  M4 normal MUT MUT  low 
AML-005 AML M2 normal MUT MUT  low 

AML-004 AML M4 normal MUT wt low 
  AML-003 AML M2 normal wt wt int 
 AML-001 AML M3 t(15;17) / MUT  M3 

 AML-008 AML M3 t(15;17) / wt M3 
 AML-010 AML M4 n.a wt wt int. 
 AML-002 AML M2 normal MUT wt high 
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FIGURE LEGENDS 

Figure 1. ARQ531 shows strong anti-tumor activity by inducing AML cells apoptosis. A) 

Immunoblot for phospho-BTK, BTK and GAPDH (loading control) in the indicated human AML cell 

lines and primary AML samples regardless of specific genomic landscape. B, C) Viability of AML cell 

lines after ARQ531 (B) or ibrutinib (C) treatment as measured by MTS assay. Displayed are the mean 

± standard deviation (SD) from at least 3 independent experiments. D) IC50 values measured for each 

tested cell line as B and C. E) Drug effects on primary AML patient-derived samples (n=13) treated 

with increasing doses of ARQ531 or ibrutinib (0-30µM for 48 hours). IC50 values are visualized for 

each tested primary AML cell lines F) HL60, OCI-AML2 and primary AML-002 cells were treated 

with ARQ531 or DMSO (CTR) in a dose-dependent manner for 48 hours. Apoptotic cells were 

detected by Annexin V/PI staining. Representative dot plots are shown. G) Immunoblots for PARP, 

caspase 3, MCL-1, BCL-2 and tubulin on indicated AML cell lines and primary blast cells following 

BTK inhibitor treatment (ARQ531 vs ibrutinib) at 24 hours. 

Figure 2. ARQ531 triggers anti-AML toxicity regardless of BTK activity and presence of stromal 

cells but preserves normal HSCs. A) Viability of OCI-AML2 GFP/luc+ cells treated with ARQ531 

for 48 hours, alone and in presence of normal MSCs (blank) or AML-MSCs (grey) stroma, measured 

by luciferase-based luminescence assay. Data are represented as mean +/− SD in all histograms (n = 3). 

*0.02<p<0.03; **p < 0.05. B-D) Healthy donor (HD) derived hematopoietic precursor (BM-CD34+) 

and PBMCs were exposed to increased doses of ARQ531, and clonogenic abilities (C) or viability (B, 

D) were calculated. Colony formation of ARQ531-treated cells (CFC) were measured after 2 weeks. 

Viability was calculated as propidium iodide-negative cells among CD34+ population. Data are 

represented as mean +/− SD (n = 3); unpaired t test, ***p < 0.001, ****p < 0.0001. E) Western blot 

showing that ARQ531 treatment effectively abrogates BTK signaling cascade in three different human 
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AML cell lines (HL60, OCI-AML3 and MOLM14) following 24 hours of treatment. Ibrutinib effect is 

also shown as a positive control. F) Viability of BTK-silenced (nucleofected with specific siRNAs 

targeting BTK) or control HL60 cells (siRNA scramble) treated with increasing doses of ARQ531 for 

48 hours. Displayed are data represented as mean +/− SD in all (n = 3). 

Figure 3. Molecular perturbation triggered by ARQ531 in AML cells. A) Heatmap for the highest 

50 down- and up-regulated genes (p< 0.0001) following ARQ531 treatment of OCI-AML 3 cells. B) 

Volcano plot of RNA-seq of drug- versus DMSO-treated cells in OCI-AML3 showing that 377 and 852 

genes were significantly up- and down-regulated, respectively, with a fold change (FC) > 2. C) Table 

of the ten most significantly enriched gene sets, from the Hallmark collection, enriched with genes 

downregulated by ARQ531 in AML cells. Number of genes in each set (n), the normalized enrichment 

score (NES), and test of statistical significance false discovery rate (FDR) q value are highlighted. D) 

Enrichment plots of top-four most significantly enriched gene sets (MYC-related) in transcriptional 

profiles of AML cells treated (right) or untreated (left) with ARQ531. E) Connectivity score generated 

by LINCS L1000 Characteristic Direction Signature Search Engine tool, that compared ARQ531-

derived transcriptional profile against 10,000 “perturbagen” signatures (corresponding to short-hairpin 

RNA, open reading frame and compounds). Top-ranked scores of relevant results are indicated by 

arrow. 

Figure 4. BTK inhibition and MYC/MYB degradation represent molecular basis for ARQ531 

anti-AML activity. A) Western blot showing that 24h of ARQ531 (0.3-1 μM) treatment abrogates 

ERK and AKT activation in HL60 and OCI-AML2 cells. B) Western blot analysis shows that 24h of 

ARQ531 treatments (0.3-1 μM) affects kinases in the RAF/MEK/ERK pathway of AML cell lines, 

resulting in MYC-downregulation. C) Western blot showing time-dependent effects of ARQ531 

exposure to p-MYC S62 and total MYC in HL60 cell line. D) Western blot showing deregulation of c-
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MYC controlled signals in AML cells following treatment with ARQ531 at indicated doses following 

24h. E) Viability of MYC-silenced or control HL60 cells treated with increasing doses of ARQ531 for 

48 hours. Displayed are data represented as mean +/− SD in all (n = 3). F) Protein and mRNA 

expression in AML cells after 24 h treatment with DMSO or indicated ARQ531 concentrations, 

normalized to DMSO controls. Bars and error bars are means and SD of three independent 

experiments. *P<0.05; **P=0.01; ***P<0.001; n.s. not significant (relative to DMSO controls), one 

sample t-test. Western blots below graphs show examples of MYB protein expression. G) Western blot 

analysis of MYB protein expression in AML cells after 24 h treatment with DMSO, ARQ531 (0.3-1 

μM) or ARQ531 and 10 μM MG132, a proteasome inhibitor.  

Figure 5. ARQ531 treatment results in oncogenic program dysregulation in AML cells. A) 

Western blot analysis of ARQ531 (1 μM) treated cells after indicated hours. Time-dependent effects 

demonstrate early inhibition of BTK activity and MYC downregulation followed by MYB reduction 

with associated PARP and caspase 3 cleavage. B) Treatment of HL60 cells with BET bromodomain 

inhibitor JQ1 (400nM), ibrutinib (30 µM) or their combination which resulted in synergistic effect. 

Bars and error bars are means and SD of three independent experiments. ***P<0.001 (relative to 

DMSO controls), one sample t-test. C) Western blot showing that ibrutinib, JQ1, or the combination 

result in appearance of apoptotic features, including caspase 3 and PARP cleavage in HL60 cells  

Figure 6. ARQ531 affects BTK, MYC and MYB in AML cells. A) BTK, MYC, MYB, and 

especially their simultaneous silencing considerably reduced viability of HL60 cells as measured by 

Typan blue staining. Displayed are the mean of triplicates. B) and C) Triple BTK/MYC/MYB silenced 

HL60 cells demonstrate diminished phosphorylation of ERK and PARP full length form compared 

with cells depleted either transiently (B) or stably (C) of each gene, individually. 
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Figure 7. ARQ531 inhibits tumor growth and extends survival in patient-derived xenograft 

(PDX) AML mouse model. A) Experimental outline for the analysis of the anti-leukemic activity of 

ARQ531 against primary human AML cells. Patient-derived xenograft mouse model of human primary 

AML cells was used to assess the efficacy of ARQ531 against AML cells isolated from patients with 

AML M4. B) Representative flow cytometric dot plots representing tumor engraftment evaluated at day 

35 after treatment. On the right panel, histogram represents percentage of human CD45+ cells in mice. 

Data are represented as mean ± SD; **P=0.006; **** P<0.001. C) Circulating human CD45+ cells 

were measured in peripheral blood by flow cytometry weekly for 2 months. At day 19, a systemic 

xenograft was confirmed (tumor engraftment) and mice were randomized to receive vehicle control, 

ARQ531 low dose (25 mg/kg) or high dose (37.5 mg/kg). Percentage of human leukemic cells in 

peripheral blood of mice was measured weekly, up to day 42. ** 0.005< P <0.008. D) Kaplan-Meier 

curve of PDX AML-model following treatment with vehicle, ARQ531 at low dose (25 mg/kg) or high 

dose (37.5 mg/kg). Higher drug-schedule led to significant longer overall survival compared with 

vehicle-control treated mice (5 mice/group; p<0.001). 

 

 

 

  

















SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Cell lines  

The AML cell lines ML2, MOLM-14, MV4-11, HL60, NOMO-1, OCI-AML2, OCI-AML3 and NB4 

were provided by collaborators or purchased from ATCC or DSMZ (Braunschweig, Germany). All cell 

lines were cultured in RPMI-1640 medium containing 10% FBS (GIBCO, Life Technologies, Carlsbad, 

CA), 2 μM l−1 glutamine, 100 U ml−1 penicillin, and 100 μg ml−1 streptomycin (GIBCO, Life 

Technologies, Carlsbad, CA). 293T cell line was purchased from ATCC and cultured in DMEM 

containing 10% FBS (GIBCO, Life Technologies, Carlsbad, CA), 4mM glutamine, 50 U ml/m1 

penicillin, and 50 U/ml streptomycin (GIBCO, Life Technologies, Carlsbad, CA). 

Primary cells 

All studies involving human samples were performed under Policlinico San Martino Hospital (Genoa, 

Italy) IRB committee-approved protocols, after informed consent; de-identified samples were utilized.  

Primary leukemic cells were obtained from peripheral or bone marrow blood of 13 AML patients at 

diagnosis, before treatment. (Table 1) (1) The percentage of leukemic blasts was always > 90%. Normal 

CD34+ cells (HSCs) were isolated from the bone marrow (BM) of healthy donors using anti-CD34 

magnetic-activated microbeads and MiniMacs high-gradient magnetic separation column (Miltenyi 

Biotec, Bergisch Gladbach, Germany). This strategy generated highly purified CD34+ cells (> 90%, as 

confirmed by FACS staining). Cells were either used immediately for viability assays or for mRNA 

isolation, or stored at −80°C in medium containing 50% FBS and 10% DMSO. Normal or AML MSCs, 

isolated as previously described, (2) were seeded in 96 well plates 1 × 104/well, AML cells were added 

to the confluent layer at 10:1 ratio. After overnight incubation, cells were used as indicated.  Normal 

mononuclear cells (MNCs), obtained from the BM of healthy donors were isolated by Ficoll-Hypaque 

centrifugation (Amersham Bioscience, Piscataway, NJ, USA).  



Cell Viability and Apoptosis Assay  

Cell viability was assessed by using CellTiter 96 AQueous One Solution Cell Proliferation Assay 

(Promega Corporation, Madison, WI, USA), as previously described. (3)  Apoptosis was evaluated by 

flow cytometric analysis following Annexin V–FITC (BD Biosciences, 556419) and PI (BD Biosciences, 

51-6621E) staining, according to manufacturer’s instructions. The percentage of cells undergoing 

apoptosis was defined as the sum of early apoptotic (annexin V+PI−) and late apoptotic (annexin V+PI+) 

cells. 

RNA Seq processing, differentially expressed genes detection and gene set enrichment analysis 

OCI-AML3 cells were treated with 1 µM ARQ 531 or vehicle control for 12 hours. RNA was prepared 

as mentioned earlier. A starting amount of 500 ng of RNA was used to prepare polyadenylate-enriched, 

single bar–coded libraries using the NEBNext Kit. Quality control of the libraries was evaluated by 

Bioanalyzer analysis with High Sensitivity chips (Agilent Technologies). Sequencing was performed on 

a HiSeq 2500 (Illumina) by 2× 50–base pair paired-end reads at the Biopolymers Facility of Harvard 

Medical School. We used Bcbio-next gen (https://github.com/bcbio/bcbio.nextgen/) to process the RNA-

seq data. Briefly, cutadapt (https:// github.com/marcelm/cutadapt/) was used to trim adapters; trimmed 

reads were aligned to human reference genome (GRCh37) by tophat2; and read counts for each gene 

were calculated by HTSeq under standard parameters. Genes with low expression (fragments per 

kilobase million, FPKM, <1 across all samples) were filtered out. Degust (http://degust.erc.monash.edu/) 

was used for data visualization and differential analysis using edgeR. GSEA 

(https://software.broadinstitute.org/gsea/) was used on the pre-ranked gene lists, by applying 1000 

permutations and using a weighted statistic enrichment. Significant enriched gene sets (16) were selected 

with a threshold FDR<0.25. Gene sets were downloaded from the Broad Institute’s MSigDB 

(https://software.broadinstitute.org/gsea/msigdb/). 

 

https://software.broadinstitute.org/gsea/
https://software.broadinstitute.org/gsea/msigdb/


Western blotting  

Whole-cell lysates were prepared as previously described. (3) Protein concentrations were determined 

by Bradford assay (Bio-Rad, CA), and equivalent amounts (40μg) were subjected to SDS-PAGE, 

transferred to PVDF membranes immunoblotted with following antibodies: anti-GAPDH (#5174, Cell 

Signaling Technology), -phospho-Histone H2A.X (Ser139) (#05-636, Millipore), -RAD51 (#588-B01P, 

Novus Biologicals), -Phospho-Btk (Tyr223) (#5082, Cell Signaling Technology), -BTK (#8547, Cell 

Signaling Technology), -γ tubulin (#MA1-850, ThermoFischer Scientific), -PARP (#9532, Cell 

Signaling Technology), -Caspase3 (#9662, Cell Signaling Technology), -Bcl2 (#sc-509, Santa Cruz 

Biotechnology), -Mcl1 (#sc-819, Santa Cruz Biotechnology), -Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (#4370, Cell Signaling Technology), -ERK1/2 (#9102, Cell Signaling Technology), 

Phospho-Akt (Ser473) (#4058, Cell Signaling Technology), AKT (#9272, Cell Signaling Technology), 

phospho-c-Raf (Ser338) (#9427, Cell Signaling Technology), phospho-MEK1/2 (Ser217/221) (#9154, 

Cell Signaling Technology), c-MYC (#9402, Cell Signaling Technology), Cyclin D1 (#2978, Cell 

Signaling Technology), Cyclin D3 (#2936, Cell Signaling Technology), Phospho-eIF4E (Ser209) 

(#9741, Cell Signaling Technology), Non-phospho-4E-BP1 (Thr46) (#4923, Cell Signaling 

Technology), Phospho-eIF2α (Ser51) (#3398, Cell Signaling Technology), Phospho-p70 S6 Kinase 

(Thr389) (#9206, Cell Signaling Technology), ASCT2 (#8057, Cell Signaling Technology), GLUT1 

(#12939, Cell Signaling Technology), RAD51 (#sc-8349, Santa Cruz Biotechnology), c-MYB (clone 1-

1) (#05-175, Millipore). Band intensities were quantified by Quantity One SW software (Bio-Rad 

Laboratories, Inc) using standard ECL Western Blotting Detection Reagents (Thermo Fisher Scientific, 

IL). Densitometric analysis of western blots was carried out using ImageJ software version 1.48 (National 

Institute of Health). 

 

 



Lentiviral mediated gene transfer  

pLV sh SCRAMBLE and pLV shBTK  lentiviral vectors were purchased from Vector Builder (Vector 

Builder Inc., Santa Clara, USA) . For lentiviral transduction, 1× 106 293T cells were plated on 60 mm 

Petri dishes and allowed to adhere for 24 h. Thereafter, cells were transfected with 1μg of lentiviral 

plasmidic DNA and 700ng of each of three packaging vectors (pRP CMV VSVG; pRP CMV gag:pol 

RRE; pRP CMV RSV Rev), using TransIT-293 (Mirus Bio, Madison, WI) according to the 

manufacturer's instructions. 48 and 72h after transfection, the supernatant containing lentiviral particles 

was harvested, filtered with a 0.45-μm-diameter filter, and used to infect 1.5× 106 AML cells. AML cells 

were spinoculated at 750g for 45 min in presence of 8 μg ml−1 polybrene, (Santa Cruz Biotechnologies, 

CA), incubated with viral supernatant for 6 h and left overnight in normal culturing medium. The day 

after, a second cycle of infection was performed. Successfully infected cells were selected using a 

suitable concentration of puromycin (1 μg ml−1). 48 and 72 h after selection, the transduction efficiency 

was approximated by counting the proportion of cells expressing the fluorescent protein (GFP) using a 

fluorescence microscope (Nikon Eclipse 80i, Nikon, Melville, NY); and the knockdown efficiency was 

validated by protein level with WB analysis. Functional studies were performed as described below. 

RNA Extraction and RT PCR.  

Total RNA was extracted from cells using RNeasy Plus mini kit (Qiagen S.r.l., Milan, Italy) according 

to the manufacturer's instructions. 1 μg RNA was reverse transcribed in a final volume of 100 μl using 

High Capacity cDNA Reverse Transcription kit (Life Technologies, Monza, Italy). 5 μl of the resulting 

cDNA were used for qPCR with a QuantStudio5 Real-Time PCR (Applied Biosystems by Life 

Technologies, Monza, Italy). Primer sequences were as follows: MYB Fw 5’-                                                                                                                                                           

CAAGCTCCGTTTTAATGGCAC-3’, Rev 5’-ATCTTTCCACAGGATGCAGG -3’  ; GAPDH     Fw 

5’-TCTCCTCTGACTTCAACAGCGAC-3’, Rev 5’-CCCTGTTGCTGTAGCCAAATTC-3’. mRNA 

levels were detected using SYBR Select Master Mix (Applied Biosystems, Italy) according to the 



manufacturer's protocol. Gene expression was normalized to housekeeping gene expression (GAPDH). 

Comparisons in gene expression were calculated using the 2−ΔΔCt method. 

Colony forming unit (CFU) assay 

Immediately after their purification, CD34+ HSCs were plated in HSC004 methylcellulose medium 

(R&D) supplemented with EPO 3 IU/ml and IL-6 20ng/ml at a concentration of 1x103 cells per plate and 

treated (in duplicate) with different concentrations of ARQ531 or DMSO as control.  All plates were 

incubated at 37°C, 5% CO2 for 10-14 days before counting the number of colonies.  

BMSC conditioned media 

10 x 105 Healthy donor- or Patient derived-BMSC were plated in 6 well plates and left to adhere for 24 

hours. The day after, medium was replaced with 2 ml of complete RPMI-1640 and cells were cultured 

for 5 days. Thereafter, BMSC-conditioned media were collected, filtered with 0,45 µM filters and 

immediately used for AML cells resuspension. Finally, drugs or vehicle were added at 20X 

concentration, in order to not dilute conditioned media. After 48 hours cell viability was measured as 

indicated.  

Tumor cell-specific bioluminescence imaging in co-cultures with stromal cells 

7x103 Luciferase+ AML cells (OCI-AML2 Plv sv40 GFP/luc+) were plated in 96-well optical white 

plates (Corning, Cat.No.3903) in the presence or absence of pre-plated luciferase−  primary stromal cells 

(20 x103 cells seeded 24hours before) and treated with drugs or veichle (DMSO), as indicated in each 

experiment. After 48 h of treatment, AML cell specific viability was assessed with Nano-Glo® Live Cell 

Assay System (Promega, Cat.No. N2011) 

Nucleofection 

HL60 cells were transfected by using the 4D-Nucleofector™ System (Lonza), according to 

manufacturer’s instruction. Small interfering RNAs (siRNAs) targeting human BTK (ON-TARGET plus 

SMART pool, #L-003107-00-0005) and a non-targeting negative control (ON-TARGET plus non-



targeting pool #D-001810-10-05) were purchased from Dharmacon. siRNAs targeting human Myc or 

Myb were purchased from ThermoFisher Scientific (Myc siRNA#1 Dharmacon J-003282-23; Myb 

ThermoFisher Scientific #AM16708, pool of siRNA ID 115653 and 10768); #AM16708, pool of siRNA 

ID 115653 and 107687). For each nucleofection, 2 x 106 cells was pulsed with the EN-138 program, 

using Amaxa SF Cell line 4-D Nucleofector X KitL (Cat.No. V4XC-2024, Lonza). In this procedure, all 

siRNAs were used at the final concentrations of 500 nM. After 24h from nucleofection, cells were 

cultured and then treated or collected for further experiments. 

Immunofluorescence and focal microscopy 

Cells were prepared as previously described, (3) using specific primary and secondary antibodies. The 

slides were then mounted with ProLong Gold Antifade reagent (Invitrogen, Life Technologies, Carlsbad, 

CA), and images were taken using a Leica TCS SP confocal laser scanning microscope (Leica 

Microsystems, Wetzlar, Germany), equipped with 476, 488, 543 and 633 excitation lines with a 60 x 

Plan Apo oil objective. 

Human Data Sets.  

Expression levels of BTK were obtained from the TCGA cohort among their low or high expression of 

BTK. (BloodPortal data of BTK probe 205504_at from U133 Plus 2.0 array). 
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Supplementary Figure Legends. 

 

Supplementary Figure 1. BTK expression in AML cells. BTK mRNA expression in AML as 

compared to other cancers, on the basis of data from The Cancer Cell Line Encyclopedia (CCLE) 

database. Data are presented as mean log2 expression with range; in red are highlighted AML cell lines 

(n=39).  

Supplementary Figure 2. Anti-tumor activity of ARQ531 is dependent of caspase activation. A) 

HL60, OCI-AML2 and primary AML-004 cells were treated with increasing doses of ARQ 531 (1-10 

µM) or DMSO for 48 hours. Apoptotic cell death was measured by Annexin V/PI staining and flow 

cytometric analysis. The percentage of each group is shown as solid columns. Data are derived from 3 

independent experiments. B) HL60 cells were pretreated with caspase inhibitors (zVAD-fmk 50 µM), 

for 2 hours and then incubated with ARQ531 at indicated concentrations for 48 hours. Specific cell death 

was then measured with MTS assay. 

Supplementary Figure 3. ARQ531 and Ibrutinib inhibit AML cell migration in response to SDF-

1. HL60 cells were pretreated with ibrutinib (500nM) or ARQ531 (500nM) for 1 h before wash-off and 

then placed in the upper well of a 8.0µM transwell plate. The lower chamber contained 500ul of serum 

free media supplemented with SDF1 (100 ng/ml) for 3 hours and then assessed for cell number using 

trypan blue staining. Data were normalized to DMSO treated cells.*** p=.001; **** p<.0001 

Supplementary Figure 4. Molecular perturbation triggered by ARQ531 in OCI-AML3 cells. A) 

Principal component analysis (PCA) of control and ARQ531 treatment on OCI-AML3 cells. B) GSEA 

analysis was performed on the entire set of signatures available from the Molecular Signatures Database 

(MSigDB). C) mRNA levels of selected genes were analyzed by qPCR in OCI-AML3 cell lines treated 

with 0.3 and 1 µM of ARQ 531 or ibrutinib for 24 hours. The graph shows the fold change compared to 

untreated cells. 



Supplementary Figure 5. The pro-survival MAPK pathway has a crucial role for anti-AML activity 

of ARQ 531. A) HL60 cells were treated with increasing concentrations of ARQ531 w/w 20% FBS. 

After 24 hours, cells were collected for western blot analysis. In parallel viability was measured by MTS 

assay after 48 hours of drug exposure. B) HL60 cells treated with ARQ531 or Ibrutinib in presence or 

not of 20% FBS for 24h were subjected to blot analysis for phospho-ERK1/2, ERK1/2, c-Myc and tubulin 

as shown.  

Supplementary Figure 6. ARQ531 treatment enhances genomic instability of AML cells. A) 3 x 106 

HL60 cells were treated with ARQ531 for 24hours, using Doxorubicin as positive control. Thereafter, 

cells were washed with PBS, fixed and stained. γH2AX foci and nuclei (Q-nuclear) were visualized by 

confocal microscopy. B) 2 x 105 HL60 cells were plated in 96 well plate and treated for 48 hours with 

indicated doses of ARQ531 (0.3 µM) in presence or not of DNA damaging agents including idarubicin 

and Ara-C at indicated doses. Cell viability was than measured by MTS assay. Combination index was 

calculated by CalcuSyn software and reported above the columns indicating specific co-treatment. Data 

are represented as mean +/− SD in all histograms (n = 2). **0.01<p<0.05; ***p < 0.001. 

Supplementary Figure 7. ARQ531 targets BTK and Myb in AML cells. A) Treatment of BTK-KD 

HL60 cells with increased doses of Mebendazole (0.2-1.8 µM) resulted in higher anti-AML activity of 

this drug. B) BTK, MYC/MYB, and especially triple gene knockdown considerably reduced viability of 

HL60 cells as measured by Typan blue staining. Displayed are the mean of triplicates.  

Supplementary Figure 8. MYB and BTK expression highly correlate in AML patients. A) 

Microarray data from GSE13204 database are expressed as histogram plots (25th-75th percentiles) for 

BTK (A) and MYB (B) expression in AML patients (n = 542) and ND (n = 73). The data were log2 

transformed and median centered (dark lines). C) Microarray gene expression data from GSE13204 data 

sets was robust multiarray average normalized and the correlation between BTK and MYB expression 



in AML patients was assessed by the Spearman rank-order correlation, where P < .05 was considered as 

statistically significant. 

Supplementary Figure 9. ARQ531 inhibits tumor growth in AML patient-derived xenograft (PDX) 

mice model. Tumor engraftment was determined by flow cytometry in bone marrow (BM) and spleen at 

day 53. Evaluated markers: human CD45. Any significant difference was observed among groups. 

Supplementary Figure 10. ARQ531screening analysis on Src-family kinases. Immunoblots for CSK, 

FGR, HCK, YES, FYN, LCK pSRC and tubulin on OCI-AML3 cells following ARQ531 treatment at 24 

hours at indicated doses. 
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Figure S4

Myc-dependent Gene Set Size ES NES FDR q-val

SCHUHMACHER_MYC_TARGETS_UP 39 -0,59 -2,97<0.0001

HALLMARK_MYC_TARGETS_V1 87 -0,48 -3,01<0.0001

HALLMARK_MYC_TARGETS_V2 33 -0,62 -2,81<0.0001

MYC_UP.V1_UP 32 -0,62 -2,91<0.0001

WEI_MYCN_TARGETS_WITH_E_BOX 166 -0,56 -3,99<0.0001

MENSSEN_MYC_TARGETS 31 -0,61 -2,81<0.0001

DANG_MYC_TARGETS_UP 38 -0,51 -2,57<0.0001

KIM_MYC_AMPLIFICATION_TARGETS_UP 34 -0,53 -2,51<0.0001

SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_DN 26 -0,56 -2,37 0,001

SCHLOSSER_MYC_TARGETS_REPRESSED_BY_SERUM 43 -0,46 -2,31 0,002
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